WO2022037311A1 - 一种光电子器件封装用组成物、封装结构及光电子器件 - Google Patents

一种光电子器件封装用组成物、封装结构及光电子器件 Download PDF

Info

Publication number
WO2022037311A1
WO2022037311A1 PCT/CN2021/105556 CN2021105556W WO2022037311A1 WO 2022037311 A1 WO2022037311 A1 WO 2022037311A1 CN 2021105556 W CN2021105556 W CN 2021105556W WO 2022037311 A1 WO2022037311 A1 WO 2022037311A1
Authority
WO
WIPO (PCT)
Prior art keywords
unsubstituted
substituted
composition
silicon
encapsulating
Prior art date
Application number
PCT/CN2021/105556
Other languages
English (en)
French (fr)
Inventor
吴朝新
雷霆
李璐
周桂江
刘育红
Original Assignee
西安思摩威新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安思摩威新材料有限公司 filed Critical 西安思摩威新材料有限公司
Priority to US18/042,273 priority Critical patent/US20230295361A1/en
Publication of WO2022037311A1 publication Critical patent/WO2022037311A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • H10K50/8445Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention belongs to the technical field of organic thin films, and in particular relates to a composition for encapsulating an optoelectronic device, an encapsulation structure and an optoelectronic device.
  • the replacement of electronic products is also changing with each passing day, and many display devices have also changed from bulky and rigid to thin, foldable and curved.
  • the performance and life of the display device are partly determined by its own characteristics, and the other part is guaranteed and extended by the external package protection.
  • the substrates used are rigid materials (such as steel plates, acrylic, glass, ceramics, etc.), which lack flexibility and cannot fully meet market demands.
  • inorganic barrier films can create defects such as cracks or shrinkage holes during deposition, so insertion of organic barrier films helps stabilize inorganic barrier films and prolong water and oxygen permeation paths.
  • the packaging of optoelectronic devices requires materials that must meet the requirements of high light transmittance, high curing rate, low volume shrinkage rate, high thermal stability, and high water and oxygen insulation. The current system cannot meet the above requirements.
  • the technical problem to be solved by the present invention is to provide an optoelectronic device encapsulation composition, encapsulation structure and optoelectronic device in view of the above-mentioned deficiencies in the prior art. It has strong deformation ability, and can play a stress dispersing role when it is impacted by force, reduce internal stress, and improve the mechanical properties of organic packaging compositions; on the other hand, it can effectively improve the thermal properties and hydrophobic properties of organic packaging compositions. Thin-film encapsulation for optoelectronic devices can effectively improve the service life of the device.
  • the present invention adopts following technical scheme:
  • a composition for encapsulating an optoelectronic device comprising a photocurable monomer, a mono- or trifunctional silicon-containing monomer and an initiator, and the mono-functional silicon-containing monomer is as follows:
  • R1 is substituted or unsubstituted C1 to C30 alkyl, alkoxy; substituted or unsubstituted C6 to C30 aryl;
  • R2 is a single bond; substituted or unsubstituted C1 to C20 substituted or unsubstituted C1 to C30 alkyleneoxy; substituted or unsubstituted C6 to C30 arylene; substituted or unsubstituted C7 to C30 arylalkylene;
  • R3 is hydrogen; substituted or unsubstituted C1 to C30 alkyl; X1, X2, X3, X4 are the same or different; and each independently substituted or unsubstituted C1 to C30 alkyl, alkoxy or substituted or unsubstituted C6 to C30 aryl;
  • n is an integer from 0 to 30, or an average of 0 to 30.
  • the trifunctional silicon-containing monomers are as follows:
  • R1 is substituted or unsubstituted C1 to C30 alkyl, alkoxy; substituted or unsubstituted C6 to C30 aryl;
  • R2, R3, R4 are single bonds; substituted or unsubstituted C1 to C20 alkylene; substituted or unsubstituted C1 to C30 alkyleneoxy; substituted or unsubstituted C6 to C30 arylene; substituted or unsubstituted C7 to C30 aryl Alkylene;
  • R5, R6, R7 are hydrogen; substituted or unsubstituted C1 to C30 alkyl;
  • X1, X2, X3, X4, X5, X6 are the same or different, and each independently substituted or Unsubstituted C1 to C30 alkyl, alkoxy or substituted or unsubstituted C6 to C30 aryl;
  • n is an integer from 0 to 30, or within 0 to 30 on average.
  • the silicon-containing monomer contains at least one C6 to C30 substituted or unsubstituted aryl group bonded to a silicon atom.
  • the silicon-containing monomer has a molecular weight of 200-2000 g/mol.
  • silicon-containing monomer includes the following structures:
  • the photocurable monomer is 10%-85%; the mono- or trifunctional silicon-containing monomer is 10%-70%; and the initiator is 0.5%-10%.
  • the mono- or trifunctional silicon-containing monomer is 20%-50%
  • the photocurable monomer is 30%-70%
  • the initiator is 0.5%-10%.
  • the photocurable monomers include monofunctional (meth)acrylates of C1 to C30 monohydric or polyhydric alcohols, difunctional (meth)acrylates of C2 to C30 monohydric or polyhydric alcohols, and C3 to C30 monohydric alcohols or at least one of polyfunctional (meth)acrylates of polyols;
  • the mass ratio of the monofunctional acrylate to the bifunctional acrylate is 1:(0.1-20), and the mass ratio of the monofunctional acrylate to the multifunctional acrylate is 1:(0.1-20).
  • the photoinitiator is one or more of oxazine, acetophenone, benzophenone, thioxanthone, benzoin, phosphorus, oxime initiator or a mixture thereof.
  • Another technical solution of the present invention is an encapsulation structure, wherein the encapsulation layer adopts any one of flash evaporation, inkjet printing, deposition, screen printing, spin coating or blade coating of the encapsulation composition for optoelectronic devices. After being attached in one way, it is formed by irradiation with ultraviolet light.
  • an optoelectronic device includes a functional structure and an encapsulation structure, the encapsulation structure is the encapsulation structure, the optoelectronic device is an organic light emitting diode or a solar cell, and the photocuring rate is 90% to 97%, The transmittance is 95% to 99%.
  • the present invention at least has the following beneficial effects:
  • the invention provides a composition for encapsulating an optoelectronic device, a photocurable monomer, a mono- or trifunctional silicon-containing monomer and a photoinitiator.
  • the viscosity, curing rate, light transmittance, etc. of the encapsulation composition can be adjusted by adjusting the mass mixing ratio of the three components to realize the preparation of an efficient and stable encapsulation protective layer.
  • the mono- or tri-functional silicon-containing monomer can effectively improve the heat resistance and corrosion resistance of the encapsulation composition.
  • the mono- or trifunctional silicon-containing monomer has a molecular weight range of 200-000 g/mol, and has good ink jet printing or spin coating performance.
  • the mono- or tri-functional structure silicon-containing monomer can effectively reduce the volume shrinkage caused by curing due to its large steric hindrance.
  • the mass ratio of the components of the encapsulation composition is: the mass ratio of the photocurable monomer is 10% to 85%, the mass ratio of the silicon-containing monomer is 10% to 70%, and the mass ratio of the photoinitiator is 0.1% to 10%. %. Within this range, the encapsulation composition can be cured to form an effective organic protective layer.
  • the preferred mass ratio of the components of the encapsulation composition is: the mass ratio of the photocurable monomer is 30% to 70%, the mass ratio of the silicon-containing monomer is 20% to 50%, and the mass ratio of the photoinitiator is 0.1% ⁇ 10%. Within this range, the encapsulation composition has the best ink jet printing or spin coating performance.
  • the photocurable monomer is a silicon-free monohydric alcohol or polyhydric alcohol acrylate monomer, which has high curing rate, light transmittance and low viscosity at room temperature, which can effectively adjust the package composition. viscosity, curing rate, etc.
  • the photoinitiators use phosphorus initiators.
  • the system initiators have good solubility with monomers, and the absorption wavelength can reach 430nm. It is suitable for colored light ultraviolet curing systems. In addition, it is colorless after decomposition and has excellent yellowing resistance.
  • an optoelectronic device encapsulation composition of the present invention has high light transmittance, high curing rate, low volume shrinkage rate, high heat resistance, yellowing resistance and good inkjet printing performance.
  • a composition for encapsulating an optoelectronic device of the present invention comprises: 10% to 70% of a photocurable monomer; 10% to 70% of a mono- or trifunctional silicon-containing monomer; and 0.5% to 70% of a silicon-containing monomer. 10% initiator.
  • Monofunctional silicon-containing monomers are as follows:
  • R1 is substituted or unsubstituted C1 to C30 alkyl, alkoxy; substituted or unsubstituted C6 to C30 aryl;
  • R2 is a single bond; substituted or unsubstituted C1 to C20 substituted or unsubstituted C1 to C30 alkyleneoxy; substituted or unsubstituted C6 to C30 arylene; substituted or unsubstituted C7 to C30 arylalkylene;
  • R3 is hydrogen; substituted or unsubstituted C1 to C30 alkyl; X1, X2, X3, X4 are the same or different; and each independently substituted or unsubstituted C1 to C30 alkyl, alkane Oxygen or substituted or unsubstituted C6 to C30 aryl;
  • n is an integer from 0 to 30, or ranges from 0 to 30 on average.
  • the trifunctional silicon-containing monomers are as follows:
  • R1 is substituted or unsubstituted C1 to C30 alkyl, alkoxy; substituted or unsubstituted C6 to C30 aryl;
  • R2, R3, R4 are single bonds; substituted or unsubstituted C1 to C20 alkylene; substituted or unsubstituted C1 to C30 alkyleneoxy; substituted or unsubstituted C6 to C30 arylene; substituted or unsubstituted C7 to C30 aryl Alkylene;
  • R5, R6, R7 are hydrogen; substituted or unsubstituted C1 to C30 alkyl;
  • X1, X2, X3, X4, X5, X6 are the same or different, and each independently is substituted or unsubstituted C1 to C30 alkyl, alkoxy or substituted or unsubstituted C6 to C30 aryl;
  • n is an integer from 0 to 30, or within 0 to 30 on average.
  • the silicon-containing monomer contains at least one C6 to C30 substituted or unsubstituted aryl group bonded to a silicon atom, which improves the heat resistance of the encapsulating composition on the one hand, and reduces the generation of the encapsulating composition during curing on the other hand. volume shrinkage.
  • the silicon-containing monomer includes at least one of the following structures:
  • the silicon-containing monomer has a molecular weight of 200-2000 g/mol.
  • Mono- or trifunctional silicon-containing monomers account for 30% to 50% of the composition.
  • Photo-curable monomers are photo-curable monomers that exclude silicon-containing monomers; photo-curable monomers may be non-silicon photo-curable monomers that do not contain silicon and contain photo-curable functional groups, such as (meth)acrylic acid Ester groups, vinyl groups, etc.; the photocurable monomers can also be monofunctional monomers, difunctional monomers, multifunctional monomers, or mixtures.
  • Monofunctional monomers refer to monomers containing one photocurable functional group; “difunctional” monomers refer to monomers containing two photocurable functional groups, and “multifunctional” monomers refer to monomers containing three or three A monomer with more than one photocurable functional group.
  • the photocurable monomer is preferably a monomer containing two to four photocurable functional groups.
  • the photocurable monomer can also be a mixture of monofunctional, difunctional, and multifunctional curable monomers.
  • the monofunctional curable monomer and the bifunctional curable monomer or the multifunctional curable monomer are mixed in a ratio of 1:(0.1-20).
  • Photocurable monomers include at least one of the following categories:
  • Monofunctional (meth)acrylates of C1 to C30 monohydric or polyhydric alcohols are monofunctional (meth)acrylates of C1 to C30 monohydric or polyhydric alcohols
  • Multifunctional (meth)acrylates of C3 to C30 monohydric or polyhydric alcohols are Multifunctional (meth)acrylates of C3 to C30 monohydric or polyhydric alcohols.
  • Monofunctional photocurable monomers are classified into alkyl acrylate, hydroxy (meth)acrylate, (meth)acrylate and vinyl monomers with cyclic structure or benzene ring according to the difference in structure.
  • Photoinitiators include any typical photopolymerization initiators capable of performing a photocuring reaction, specifically including at least one of triazine, acetophenone, benzophenone, thioxanthone, benzoin, phosphorus, oxime initiators, or mixtures thereof , but not limited to these.
  • the phosphorus initiator may comprise dibenzoylphenylphosphine oxide, benzoyldiphenylphosphine oxide, and mixtures thereof. Under the UV light of 365-430 nm, phosphorus initiators can effectively improve the photo-initiating performance without damaging the luminescence performance of organic optoelectronic devices, and are widely used.
  • the use method of the composition for encapsulation of optoelectronic devices is as follows: firstly, it is uniformly attached to the surface of the device to be encapsulated by any one of flash evaporation, inkjet printing, deposition, screen printing, spin coating or blade coating, and then The formation of the organic barrier film is facilitated by UV lamp irradiation.
  • the encapsulation composition is printed with a thickness of 0.1-20 ⁇ m by inkjet printing, and then cured by UV irradiation in the range of 10-500 mW/cm 2 for about 1-50 seconds to obtain an organic thin film barrier layer.
  • composition for encapsulating an optoelectronic device can be used as an ultraviolet curable material for an encapsulating layer of an organic optoelectronic device, and can also be applied to encapsulating an OLED display device.
  • the composition for encapsulating organic light emitting diodes has a photocuring rate of 90% to 97%. Within this range, the encapsulation layer does not suffer from offset due to low curing shrinkage stress after curing, whereby the composition can be used for encapsulation of optoelectronic devices.
  • the composition for encapsulating the organic light emitting diode may have light transmittance of 95% ⁇ 99% after curing.
  • a composition for encapsulating optoelectronic devices of the present invention is used for encapsulating OLED devices, and the composition forms an organic barrier layer in an encapsulation structure in which an inorganic barrier layer and an organic barrier layer are sequentially formed.
  • the composition for encapsulation can be used in flexible organic light emitting diode displays.
  • the flexible OLED device includes: an organic light-emitting diode, an inorganic layer used for encapsulation, and an organic layer stacked together.
  • the OLED device device includes a substrate ITO, an organic light emitting diode formed on the substrate, and an organic light emitting diode formed on the packaging member and comprising an inorganic barrier layer, an organic barrier layer, and a stacked inorganic barrier layer.
  • the structure of OLED includes but is not limited to the stacking of the following layers: ITO (transparent indium tin oxide glass) as anode and substrate, hole injection layer, hole transport layer, electron blocking layer, light emitting layer, hole blocking layer, electron Transport layer, electron injection layer, cathode metal electrode.
  • ITO transparent indium tin oxide glass
  • the barrier stack includes an inorganic barrier layer and an organic barrier layer, and the inorganic barrier layer and the organic barrier layer are composed of different components, thereby realizing the respective functions of encapsulating the organic light emitting diode.
  • the inorganic barrier layer contains a composition different from that of the organic barrier layer, thereby supplementing the influence of the organic barrier layer.
  • the inorganic barrier layer is formed of an inorganic material having excellent light transmittance and excellent moisture and/or oxygen barrier properties.
  • the inorganic barrier layer comprises at least one of the following: a metal; a non-metal; a compound or alloy of at least two metals; a compound or alloy of at least two non-metals; an oxide of a metal, a non-metal, or a mixture thereof; a metal or fluorides of non-metals or their mixtures; nitrides of metals, non-metals or their mixtures; carbides of metals, non-metals or their mixtures; oxynitrides of metals, non-metals or their mixtures; metals, non-metals or their mixtures Borides of mixtures; boron oxides of metals, non-metals or mixtures thereof; silicides of metals, non-metals or mixtures thereof; and mixtures thereof.
  • Metals or non-metals include silicon (Si), aluminum (Al), selenium (Se), zinc (Zn), antimony (Sb), indium (In), germanium (Ge), tin (Sn), bismuth (Bi), Transition metals and lanthanide metals, but not limited to these.
  • the inorganic barrier layers are silicon oxide (SiO x ), silicon nitride (SiN x ), silicon oxynitride (SiO x N y ), zinc selenide (ZnSe), zinc oxide (ZnO), antimony trioxide ( Sb 2 O 3 ), aluminum oxide (AlO x ) containing aluminum oxide (Al 2 O 3 ), indium oxide (In 2 O 3 ), or tin oxide (SnO 2 ).
  • the inorganic barrier layer is deposited by a plasma process or a vacuum process such as sputtering, chemical vapor deposition, plasma chemical vapor deposition, evaporation, sublimation, electron cyclotron resonance-plasma enhanced chemical vapor deposition, or a combination thereof.
  • the organic barrier layers and the inorganic barrier layers are alternately deposited, thereby ensuring smooth properties of the inorganic barrier layers while preventing defects of one inorganic barrier layer from spreading to other inorganic barrier layers.
  • (A) silicon-containing monomer (A1) monomer of formula 5; (A2) monomer of formula 9;
  • the encapsulant properties were evaluated as follows:
  • the light curing rate is as follows:
  • F is the ratio of the absorption peak intensity around 1635cm -1 to the absorption peak intensity around 1720cm -1 of the encapsulated protective film after curing
  • S is the absorption peak intensity around 1635cm -1 of the package composition and the absorption peak intensity around 1720cm -1 The ratio of the intensities of the nearby absorption peaks.
  • Light transmittance The encapsulation composition was formed by inkjet printing to form a sample, and then a photocurable film was formed by UV curing. The transmittance of the cured film in the visible light range of 400-700 nm was measured by an ultraviolet spectrophotometer.
  • volume shrinkage reflects the change in volume of the encapsulation composition before and after curing, and is calculated as follows:
  • Vb is the volume before curing and Va is the volume after curing.
  • Va is the volume after curing. The greater the volume shrinkage, the greater the collapse formed by the film and the worse the encapsulation protection effect.
  • (A) silicon-containing monomer (A1) monomer of formula 5; (A2) monomer of formula 9;
  • Example 3 The components used in Example 3 are described in detail as follows:
  • (A) silicon-containing monomer (A1) monomer of formula 5; (A2) monomer of formula 9;
  • Example 4 The components used in Example 4 are described in detail as follows:
  • (A) silicon-containing monomer (A1) monomer of formula 5; (A2) monomer of formula 9;
  • Example 5 The components used in Example 5 are described in detail as follows:
  • (A) silicon-containing monomer (A1) monomer of formula 5; (A2) monomer of formula 9;
  • composition 3 for packaging
  • a package protective film is formed.
  • Example 7 Preparation of encapsulation composition Comparative Example 7
  • composition 3 for packaging
  • a package protective film is formed.
  • composition 3 for packaging
  • a package protective film is formed.
  • composition 3 for packaging
  • a package protective film is formed.
  • increasing the mass ratio of the silicon-containing monomer can reduce the volume shrinkage rate of the encapsulation composition, but at the same time, the curing rate and light transmittance decrease to some extent; increasing the mass ratio of the photocurable monomer can enhance the encapsulation composition.
  • the curing rate and light transmittance are higher, but the volume shrinkage rate increases.
  • the introduction of mono- or trifunctional silicon-containing monomers can effectively reduce the volume shrinkage of the system.
  • the final preferred composition ratio of the encapsulation composition is: the mass ratio of the silicon-containing monomer is 30% to 50%, the mass ratio of the photocurable monomer is 30% to 70%, and the light The mass ratio of the initiator is 2% to 8%.
  • the present invention provides a composition for encapsulating an optoelectronic device, an encapsulation structure and an optoelectronic device.
  • the components of the encapsulating composition and the mass ratio thereof are as follows: the mass ratio of the photocurable monomer is 10-85%, the mono- or tri-functional The mass ratio of the silicon monomer is 10-70%, and the mass ratio of the photoinitiator is 0.1-10%.
  • the encapsulation composition can be formed into a film by inkjet printing, spin coating, etc., and further forms an organic protective layer by ultraviolet curing.
  • the organic protective layer prepared by the encapsulation composition has the characteristics of high curing rate, high light transmittance, low volume shrinkage rate, high heat resistance, low yellowing and the like, and can be effectively used in the encapsulation protection application of optoelectronic devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种光电子器件封装用组成物、封装结构及光电子器件,包括10%~70%的光可固化单体;10%~70%的单或三官能度含硅单体;以及0.5%~10%的引发剂,使用含硅单体,一方面由于自身的Si-O-Si链段变形能力强,在受到力的冲击时,能够起到应力分散作用,降低内应力,提高有机封装组成物的力学性能;另一方面,能够有效提高有机封装组成物的热性能和疏水性能,用于光电子器件的薄膜封装可有效提高器件的使用寿命。

Description

一种光电子器件封装用组成物、封装结构及光电子器件 技术领域
本发明属于有机薄膜技术领域,具体涉及一种光电子器件封装用组成物、封装结构及光电子器件。
背景技术
随着科技的发展,电子产品的更新换代也是日新月异,很多显示器件也由笨重、刚性转变成轻薄、可折叠弯曲。显示器件的性能和寿命一部分由自身特性决定,另一部分则由外部的封装保护所保证和延续。在传统的封装技术中,使用的基板为刚性材料(如:钢板、亚克力,玻璃、陶瓷等硬质材料),缺乏灵活性,不能完全满足市场需求。
在Barix的薄膜封装技术(TFE)中,无机阻挡薄膜在沉积过程中会产生缺陷,如裂纹或缩孔,因此插入有机阻挡薄膜有助于稳定无机阻挡薄膜以及延长水、氧渗透路径。光电子器件的封装要求材料必须满足高透光率、高固化率、低体积收缩率、高热稳定性、高水氧隔绝性等要求。目前的体系不能满足以上要求。
发明内容
本发明所要解决的技术问题在于针对上述现有技术中的不足,提供一种光电子器件封装用组成物、封装结构及光电子器件,使用含硅单体,一方面由于自身的Si-O-Si链段变形能力强,在受到力的冲击时,能够起到应力分散作用,降低内应力,提高有机封装组成物的力学性能;另一方面,能够有效提高有机封装组成物的热性能和疏水性能,用于光电子器件的薄膜封装可有效提高器件的使用寿命。
本发明采用以下技术方案:
一种光电子器件封装用组成物,包括光可固化单体、单或三官能度含硅单体和引发剂,单 官能度含硅单体如下:
Figure PCTCN2021105556-appb-000001
其中,R1是经取代或未经取代的C1到C30的烷基、烷氧基;经取代或未经取代的C6到C30芳基;R2是单键;经取代或未经取代的C1到C20的亚烷基;经取代或未经取代的C1到C30亚烷氧基;经取代或未经取代的C6到C30亚芳基;经取代或未经取代的C7到C30芳基亚烷基;R3是氢;经取代或未经取代的C1到C30烷基;X1、X2、X3、X4是相同的或者不同的;并且各自独立地经取代或未经取代的C1到C30烷基、烷氧基或经取代或未经取代的C6到C30芳基;n是0~30的整数,或平均在0~30内。
三官能度含硅单体如下:
Figure PCTCN2021105556-appb-000002
其中,R1是经取代或未经取代的C1到C30的烷基、烷氧基;经取代或未经取代的C6到C30芳基;R2、R3、R4是单键;经取代或未经取代的C1到C20的亚烷基;经取代或未经取代的C1到C30亚烷氧基;经取代或未经取代的C6到C30亚芳基;经取代或未经取代的C7到C30芳基亚烷基;R5、R6、R7是氢;经取代或未经取代的C1到C30烷基;X1、X2、X3、X4、X5、X6是相同的或不同的,并且各自独立地经取代或未经取代的C1到C30烷基、烷氧基或经取代或未经取代的C6到C30芳基;n是0~30的整数,或平均在0~30内。
具体的,含硅单体包含至少一个C6到C30取代或未经取代的键接到硅原子的芳基。
具体的,含硅单体具有200~2000g/mol的分子量。
进一步的,含硅单体包括以下结构:
Figure PCTCN2021105556-appb-000003
Figure PCTCN2021105556-appb-000004
Figure PCTCN2021105556-appb-000005
具体的,组成物中按重量百分比计,光可固化单体为10%~85%;单或三官能度含硅单体为10%~70%;引发剂为0.5%~10%。
具体的,组成物中按重量百分比计,单或三官能度含硅单体为20%~50%,光可固化单体为30%~70%,引发剂为0.5%~10%。
具体的,光可固化单体包括C1到C30一元醇或多元醇的单官能(甲基)丙烯酸酯、C2到C30一元醇或多元醇的双官能(甲基)丙烯酸酯和C3到C30一元醇或多元醇的多官能(甲基)丙烯酸酯中的至少一种;
单官能丙烯酸酯与双官能丙烯酸酯的质量比为1:(0.1~20),单官能丙烯酸酯和多官能丙烯酸酯的质量比为1:(0.1~20)。
具体的,光引发剂为嗪、苯乙酮、二苯甲酮、噻吨酮、安息香、磷、肟引发剂或其混合物中的一种或多种。
本发明的另一技术方案是,一种封装结构,封装层采用所述的光电子器件封装用组成物经 闪蒸、喷墨印刷、沉积、网版印刷、旋转涂布或刮刀涂布中的任意一种方式附着后,经紫外光照射形成。
本发明的另一技术方案是,一种光电子器件,包括功能结构和封装结构,封装结构为所述的封装结构,光电子器件为有机发光二极管或太阳能电池,光固化率为90%~97%,透光率为95%~99%。
与现有技术相比,本发明至少具有以下有益效果:
本发明一种光电子器件封装用组成物,光可固化单体,单或三官能含硅单体以及光引发剂。三种成分可通过调节其质量混合比例,来调节封装组成物的粘度、固化率、透光率等以实现制备高效稳定的封装保护层。
进一步的,单或三官能含硅单体,可有效的提高封装组成物的耐热性以及抗腐蚀特性。
进一步的,单或三官能含硅单体在200~000g/mol的分子量范围内,具有良好的喷墨打印或旋涂性能。
进一步的,单或三官能结构含硅单体,由于其自身结构具有较大的空间位阻,可有效降低由于固化而导致的体积收缩。
进一步的,封装组成物成分的质量比为:光可固化单体的质量比为10%~85%,含硅单体质量比为10%~70%,光引发剂质量比为0.1%~10%。在此范围内,封装组成物可固化形成有效的有机保护层。
进一步的,封装组成物成分的优选质量比为:光可固化单体的质量比为30%~70%,含硅单体质量比为20%~50%,光引发剂质量比为0.1%~10%。在此范围内,封装组成物具有最佳的喷墨打印或旋涂性能。
进一步的,光可固化单体为不含硅一元醇或多元醇丙烯酸酯单体,该类材料具有较高的固化率、透光率以及在常温下具有较低的粘度,可有效调节封装组成物的粘度、固化率等。
进一步的,光引发剂多采用磷引发剂,该体系引发剂与单体溶解性好,吸收波长可达430nm,适合有色光紫外固化体系,另外分解后无色,耐黄变性能出色。
综上所述,本发明一种光电子器件封装组成物,具有高透光率、高固化率、低体积收缩率、高耐热性、耐黄变性以及良好的喷墨打印性能。
下面通过实施例,对本发明的技术方案做进一步的详细描述。
具体实施方式
本发明一种光电子器件封装用组成物,按重量百分比计,包括:10%~70%的光可固化单体;10%~70%的单或三官能度含硅单体;以及0.5%~10%的引发剂。
单官能度含硅单体如下:
Figure PCTCN2021105556-appb-000006
其中,R1是经取代或未经取代的C1到C30的烷基、烷氧基;经取代或未经取代的C6到C30芳基;R2是单键;经取代或未经取代的C1到C20的亚烷基;经取代或未经取代的C1到C30亚烷氧基;经取代或未经取代的C6到C30亚芳基;经取代或未经取代的C7到C30芳基亚烷基;R3是氢;经取代或未经取代的C1到C30烷基;X1、X2、X3、X4是相同的或者不同的;并且各自独立地是经取代或未经取代的C1到C30烷基、烷氧基或经取代或未经取代的C6到C30芳基;n是0到30的整数,或平均在0到30的范围内。
三官能度含硅单体如下:
Figure PCTCN2021105556-appb-000007
其中,R1是经取代或未经取代的C1到C30的烷基、烷氧基;经取代或未经取代的C6到C30芳基;R2、R3、R4是单键;经取代或未经取代的C1到C20的亚烷基;经取代或未经取代的C1到C30亚烷氧基;经取代或未经取代的C6到C30亚芳基;经取代或未经取代的C7到C30芳基亚烷基;R5、R6、R7是氢;经取代或未经取代的C1到C30烷基;X1、X2、X3、X4、X5、X6是相同的或不同的,并且各自独立地是经取代或未经取代的C1到C30烷基、烷氧基或经取代或未经取代的C6到C30芳基;n是0~30的整数,或平均在0~30内。
含硅单体包含至少一个C6到C30取代或未经取代的键接到硅原子的芳基,一方面提高了封装组合物的耐热性,另一方面降低了封装组合物在固化时所产生的体积收缩。
含硅单体包括以下结构中的至少一个:
Figure PCTCN2021105556-appb-000008
Figure PCTCN2021105556-appb-000009
Figure PCTCN2021105556-appb-000010
优选的,含硅单体具有200~2000g/mol的分子量。
单或三官能度含硅单体占组成物的30%~50%。
光可固化单体为排除含硅单体的光可固化单体;光可固化单体可以是不包含硅并且含有光可固化官能团的非硅光可固化单体,例如,(甲基)丙烯酸酯基、乙烯基等;光可固化单体也可以是单官能单体、双官能单体、多官能单体或者混合物。
“单官能”单体是指含有一个光可固化官能团的单体;“双官能”单体是指含有两个光可固化官能团的单体,“多官能”单体是指含有三个或三个以上光可固化官能团的单体。
光可固化单体优选含有两个到四个光可固化官能团的单体。光可固化单体也可以是单官能团可固化单体、双官能团可固化单体和多官能团可固化单体的混合物。
在混合物中,单官能团可固化单体和双官能团可固化单体或者多官能团可固化单体按1:(0.1~20)的比例混合。
光可固化单体包括以下种类中的至少一种:
C1到C30一元醇或多元醇的单官能(甲基)丙烯酸酯;
C2到C30一元醇或多元醇的双官能(甲基)丙烯酸酯;
C3到C30一元醇或多元醇的多官能(甲基)丙烯酸酯。
单官能光可固化单体按结构上的不同分为丙烯酸烷基酯,(甲基)丙烯酸羟基酯,带有环状结构或苯环的(甲基)丙烯酸酯和乙烯基单体等。
光引发剂包含能够执行光固化反应的任何典型的光聚合引发剂,具体包括三嗪、苯乙酮、二苯甲酮、噻吨酮、安息香、磷、肟引发剂或其混合物中的至少一个,但不限于这些。举例来说,磷引发剂可以包含二苯甲酰苯基氧化膦、苯甲酰基二苯基氧化膦以及其混合物。在365~430nm的UV光下,磷引发剂可以在不损伤有机光电子器件发光性能的同时,有效的提高光引发性能,而被广泛使用。
光电子器件封装用组成物的使用方法为:先通过闪蒸、喷墨印刷、沉积、网版印刷、旋转涂布或刮刀涂布中的任意一种方式均匀地附着在需要封装的器件表面,然后通过UV灯照射来促进形成有机阻挡薄膜。
在本发明中,考虑到性能与成本之间的平衡与控制,喷墨打印是最优使用方法。本发明将封装组合物通过喷墨打印的方式打印0.1~20μm的厚度,然后通过在10~500mW/cm 2范围内UV下照射约1~50秒使其固化得到一层有机薄膜阻挡层。
光电子器件封装用组成物可作为有机光电子器件封装层的紫外可固化材料,也可以应用于OLED显示器件封装。
用于封装有机发光二极管的组成物具有90%~97%的光固化率。在此范围内,封装层不会遭受由于在固化之后的低固化收缩应力造成的偏移,由此可以使用组成物用于光电子器件的封装。用于封装有机发光二极管的组成物在固化之后可以具有95%~99%的透光率。
本发明一种用于封装光电子器件的组成物用于封装OLED器件,组成物在依次形成无机阻挡层和有机阻挡层的封装结构中形成有机阻挡层。具体来说,用于封装的组成物可以用于柔性有机发光二极管显示器。
柔性OLED器件包含:有机发光二极管、封装所用无机层和有机层叠加而成。
OLED器件装置包括基板ITO,形成于基板上的有机发光二级管,和形成于封装构件上并且包括无机阻挡层、有机阻挡层、无机阻挡层叠层而成。
OLED的结构包括但不限于以下几层结构的堆叠:ITO(透明氧化铟锡玻璃)作为阳极以及基板、空穴注入层、空穴传输层、电子阻挡层、发光层、空穴阻挡层、电子传输层、电子注入层、阴极金属电极。
阻挡叠层包含无机阻挡层和有机阻挡层,并且无机阻挡层和有机阻挡层由不同组分构成,由此实现封装有机发光二极管的各自的功能。
无机阻挡层所包含的组分不同于有机阻挡层的组分,由此补充有机阻挡层的影响。无机阻挡层由具有极佳透光率和极佳水分和/或氧气阻挡特性的无机材料形成。
举例来说,无机阻挡层包含以下中的至少一个:金属;非金属;至少两种金属的化合物或合金;至少两种非金属的化合物或合金;金属、非金属或其混合物的氧化物;金属或非金属或其混合物的氟化物;金属、非金属或其混合物的氮化物;金属、非金属或其混合物的碳化物;金属、非金属或其混合物的氮氧化物;金属、非金属或其混合物的硼化物;金属、非金属或其混合物的硼氧化物;金属、非金属或其混合物的硅化物;以及其混合物。
金属或非金属包含硅(Si)、铝(Al)、硒(Se)、锌(Zn)、锑(Sb)、铟(In)、锗(Ge)、锡(Sn)、铋(Bi)、过渡金属以及镧系金属,但不限于这些。
具体来说,无机阻挡层是氧化硅(SiO x)、氮化硅(SiN x)、氮氧化硅(SiO xN y)、硒化锌(ZnSe)、氧化锌(ZnO)、三氧化锑(Sb 2O 3)、包含氧化铝(Al 2O 3)的氧化铝(AlO x)、氧化铟(In 2O 3)或氧化锡(SnO 2)。
无机阻挡层通过等离子体工艺或真空工艺来沉积,工艺例如溅射、化学气相沉积、等离子体化学气相沉积、蒸发、升华、电子回旋共振-等离子体增强式化学气相沉积或其组合。交替地沉积有机阻挡层和无机阻挡层,由此确保无机阻挡层的平滑特性,同时防止一个无机阻挡层的缺陷扩散到其它无机阻挡层。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中的描述和所示的本发明实施例的组件可以通过各种不同的配置来布置和设计。因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本 发明保护的范围。
实施例1:封装组成物1的制备
使用的组分描述如下:
(A)含硅单体:(A1)式5的单体;(A2)式9的单体;
(B)光可固化单体:(B1)(甲基)丙烯酸2-苯乙酯,(B2)丙三醇二丙烯酸酯;
(C)引发剂:苯甲基(二苯基)氧化膦。
在棕色玻璃瓶中,加入总质量的10%(A1)、40%(B1)、45%(B2)以及5%(C),在室温下振荡混合2h后,过滤得到用于封装的组成物1;然后通过喷墨印刷将组成物涂在ITO基板表面形成面积大小为10cm×10cm×10um(长×宽×厚)的样品,接着通过100mW/cm 2UV固化设备紫外固化10~30秒来固化封装组成物,最终形成封装保护膜。
封装胶性能评估如下:
光固化率:使用FT-IR(Nicolet iS10,Thermo)测量封装组成物以及固化后的封装保护膜在1635cm -1(C=C)和1720cm -1(C=O)处的吸收峰强度。
光固化率如下所示:
光固化率(%)=|1-(F/S)|x100。
其中,F为固化后封装保护膜在1635cm -1附近的吸收峰强度与在1720cm -1附近的吸收峰强度的比值;S为封装组成物在1635cm -1附近的吸收峰强度与在1720cm -1附近的吸收峰强度的比值。
透光率:将封装组成物通过喷墨打印形成试样,随后通过紫外固化形成光固化膜。通过紫外分光光度计测量固化膜在400~700nm可见光范围内的透光率。
体积收缩率:体积收缩率反映封装组成物固化前后体积的塌缩变化,计算如下:
η=(Vb-Va)/Vb×100%
其中,Vb是固化前体积,Va是固化后体积。体积收缩率越大,则薄膜形成的塌缩越大,封装保护效果越差。
实施例2:封装组成物2的制备
在实施例2中使用的组分的详细描述如下:
(A)含硅单体:(A1)式5的单体;(A2)式9的单体;
(B)光可固化单体:(B1)(甲基)丙烯酸2-苯乙酯,(B2)丙三醇二丙烯酸酯;
(C)引发剂:苯甲基(二苯基)氧化膦。
在棕色玻璃瓶中,加入总质量的10%(A2)、40%(B1)、20%(B2)以及5%(C),在室温下振荡混合2h后,过滤得到用于封装的组成物2;然后通过喷墨印刷将组成物涂在ITO基板表面形成面积大小为10cm×10cm×10um(长×宽×厚)的样品,接着通过100mW/cm 2UV固化设备紫外固化10~30秒来固化封装组成物,最终形成封装保护膜。
实施例3:封装组成物3的制备
在实施例3中使用的组分详细描述如下:
(A)含硅单体:(A1)式5的单体;(A2)式9的单体;
(B)光可固化单体:(B1)(甲基)丙烯酸2-苯乙酯,(B2)丙三醇二丙烯酸酯;
(C)引发剂:苯甲基(二苯基)氧化膦。
在棕色玻璃瓶中,加入总质量的70%(A1)、5%(B1)、25%(B2)以及5%(C),在室温下振荡混合2h后,过滤得到用于封装的组成物3;然后通过喷墨印刷将组成物涂在ITO基板表面形成面积大小为10cm×10cm×10um(长×宽×厚)的样品,接着通过100mW/cm 2UV固化设备紫外固化10~30秒来固化封装组成物,最终形成封装保护膜。
实施例4:封装组成物4的制备
在实施例4中使用的组分详细描述如下:
(A)含硅单体:(A1)式5的单体;(A2)式9的单体;
(B)光可固化单体:(B1)(甲基)丙烯酸2-苯乙酯,(B2)丙三醇二丙烯酸酯;
(C)引发剂:苯甲基(二苯基)氧化膦。
在棕色玻璃瓶中,加入总质量的70%(A2)、5%(B1)、25%(B2)以及5%(C),在室温下振荡混合2h后,过滤得到用于封装的组成物3;然后通过喷墨印刷将组成物涂在ITO基板表面形成面积大小为10cm×10cm×10um(长×宽×厚)的样品,接着通过100mW/cm 2UV固化设备紫外固化10~30秒来固化封装组成物,最终形成封装保护膜。
实施例5:封装组成物5的制备
在实施例5中使用的组分详细描述如下:
(A)含硅单体:(A1)式5的单体;(A2)式9的单体;
(B)光可固化单体:(B1)(甲基)丙烯酸2-苯乙酯,(B2)丙三醇二丙烯酸酯;
(C)引发剂:苯甲基(二苯基)氧化膦
在棕色玻璃瓶中,加入总质量的30%(A2)、20%(B1)、45%(B2)以及5%(C),在室温下振荡混合2h后,过滤得到用于封装的组成物3;然后通过喷墨印刷将组成物涂在ITO基板表面形成面积大小为10cm×10cm×10um(长×宽×厚)的样品,接着通过100mW/cm 2UV固化设备紫外固化10~30秒来固化封装组成物,最终形成封装保护膜。
Figure PCTCN2021105556-appb-000011
Figure PCTCN2021105556-appb-000012
实施例6:封装组成物对比例6的制备
在比较例6中使用的组分详细描述如下:
(B)光可固化单体:(B1)(甲基)丙烯酸2-苯乙酯,(B2)丙三醇二丙烯酸酯;
(C)引发剂:苯甲基(二苯基)氧化膦
在棕色玻璃瓶中,加入总质量的90%(B1)、5%(B2)以及5%(C),在室温下振荡混合2h后,过滤得到用于封装的组成物3;然后通过喷墨印刷将组成物涂在ITO基板表面形成面积大小为10cm×10cm×10um(长×宽×厚)的样品,接着通过100mW/cm 2UV固化设备紫外固化10~30秒来固化封装组成物,最终形成封装保护膜。
实施例7:封装组成物对比例7的制备
在比较例7中使用的组分详细描述如下:
(B)光可固化单体:(B1)(甲基)丙烯酸2-苯乙酯,(B2)丙三醇二丙烯酸酯;
(C)引发剂:苯甲基(二苯基)氧化膦
在棕色玻璃瓶中,加入总质量的75%(B1)、20%(B2)以及5%(C),在室温下振荡混合2h后,过滤得到用于封装的组成物3;然后通过喷墨印刷将组成物涂在ITO基板表面形成面积大小为10cm×10cm×10um(长×宽×厚)的样品,接着通过100mW/cm 2UV固化设备紫外固化10~30秒来固化封装组成物,最终形成封装保护膜。
实施例8:封装组成物对比例8的制备
在比较例8中使用的组分详细描述如下:
(B)光可固化单体:(B1)(甲基)丙烯酸2-苯乙酯,(B2)丙三醇二丙烯酸酯;
(C)引发剂:苯甲基(二苯基)氧化膦
在棕色玻璃瓶中,加入总质量的50%(B1)、45%(B2)以及5%(C),在室温下振荡混合2h后,过滤得到用于封装的组成物3;然后通过喷墨印刷将组成物涂在ITO基板表面形成面积大小为10cm×10cm×10um(长×宽×厚)的样品,接着通过100mW/cm 2UV固化设备紫外固化10~30秒来固化封装组成物,最终形成封装保护膜。
实施例9:封装组成物对比例7的制备
在比较例9中使用的组分详细描述如下:
(B)光可固化单体:(B1)(甲基)丙烯酸2-苯乙酯,(B2)丙三醇二丙烯酸酯;
(C)引发剂:苯甲基(二苯基)氧化膦
在棕色玻璃瓶中,加入总质量的25%(B1)、70%(B2)以及5%(C),在室温下振荡混合2h后,过滤得到用于封装的组成物3;然后通过喷墨印刷将组成物涂在ITO基板表面形成面积大小为10cm×10cm×10um(长×宽×厚)的样品,接着通过100mW/cm 2UV固化设备紫外固化10~30秒来固化封装组成物,最终形成封装保护膜。
Figure PCTCN2021105556-appb-000013
Figure PCTCN2021105556-appb-000014
根据以上实施例可知,增加含硅单体的质量比,可降低封装组成物的体积收缩率,但同时固化率透光率有所降低;增加光固化单体的质量比,可增强封装组成物的固化率与透光率,但体积收缩率增大。根据以上比较例可知,引入单或三官能含硅单体可有效降低体系的体积收缩率。根据以上各例以及喷墨打印要求,最后优选的封装组成物成分比例为:含硅单体的质量比在30%~50%,光可固化单体的质量比为30%~70%,光引发剂的质量比为2%~8%。
综上所述,本发明一种光电子器件封装用组成物、封装结构及光电子器件,封装组成物成分以及其质量比如下:光可固化单体质量比为10-85%,单或三官能含硅单体质量比为10-70%,光引发剂质量比为0.1-10%,该封装组成物可以通过喷墨打印、旋涂等方式成膜,进一步通过紫外固化形成有机保护层。该封装组成物制备的有机保护层具有高固化率、高透光率、低体积收缩率、高耐热性、低黄变性等特点,可有效的用于光电子器件的封装保护应用之中。
以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。

Claims (10)

  1. 一种光电子器件封装用组成物,其特征在于,包括光可固化单体、单或三官能度含硅单体和引发剂,单官能度含硅单体如下:
    Figure PCTCN2021105556-appb-100001
    其中,R1是经取代或未经取代的C1到C30的烷基、烷氧基;经取代或未经取代的C6到C30芳基;R2是单键;经取代或未经取代的C1到C20的亚烷基;经取代或未经取代的C1到C30亚烷氧基;经取代或未经取代的C6到C30亚芳基;经取代或未经取代的C7到C30芳基亚烷基;R3是氢;经取代或未经取代的C1到C30烷基;X1、X2、X3、X4是相同的或者不同的;并且各自独立地经取代或未经取代的C1到C30烷基、烷氧基或经取代或未经取代的C6到C30芳基;n是0~30的整数,或平均在0~30内。
    三官能度含硅单体如下:
    Figure PCTCN2021105556-appb-100002
    其中,R1是经取代或未经取代的C1到C30的烷基、烷氧基;经取代或未经取代的C6到C30芳基;R2、R3、R4是单键;经取代或未经取代的C1到C20的亚烷基;经取代或未经取代的C1到C30亚烷氧基;经取代或未经取代的C6到C30亚芳基;经取代或未经取代的C7到C30芳基亚烷基;R5、R6、R7是氢;经取代或未经取代的C1到C30烷基;X1、X2、X3、X4、X5、X6是相同的或不同的,并且各自独立地经取代或未经取代的C1到C30烷基、烷氧基或经取代或未经取代的C6到C30芳基;n是0~30的整数,或平均在0~30内。
  2. 根据权利要求1所述的光电子器件封装用组成物,其特征在于,含硅单体包含至少一个C6到C30取代或未经取代的键接到硅原子的芳基。
  3. 根据权利要求1所述的光电子器件封装用组成物,其特征在于,含硅单体具有200~2000g/mol的分子量。
  4. 根据权利要求1或2或3所述的光电子器件封装用组成物,其特征在于,含硅单体包括以下结构:
    Figure PCTCN2021105556-appb-100003
    Figure PCTCN2021105556-appb-100004
    Figure PCTCN2021105556-appb-100005
  5. 根据权利要求1所述的光电子器件封装用组成物,其特征在于,组成物中按重量百分比计,光可固化单体为10%~85%;单或三官能度含硅单体为10%~70%;引发剂为0.5%~10%。
  6. 根据权利要求1所述的光电子器件封装用组成物,其特征在于,组成物中按重量百分比计,单或三官能度含硅单体为20%~50%,光可固化单体为30%~70%,引发剂为0.5%~10%。
  7. 根据权利要求1所述的光电子器件封装用组成物,其特征在于,光可固化单体包括C1到C30一元醇或多元醇的单官能(甲基)丙烯酸酯、C2到C30一元醇或多元醇的双官能(甲基)丙烯酸酯和C3到C30一元醇或多元醇的多官能(甲基)丙烯酸酯中的至少一种;
    单官能丙烯酸酯与双官能丙烯酸酯的质量比为1:(0.1~20),单官能丙烯酸酯和多官能丙烯酸酯的质量比为1:(0.1~20)。
  8. 根据权利要求1所述的光电子器件封装用组成物,其特征在于,光引发剂为嗪、苯乙酮、二苯甲酮、噻吨酮、安息香、磷、肟引发剂或其混合物中的一种或多种。
  9. 一种封装结构,包括封装层,其特征在于,封装层采用权利要求1至8中任一项所述的光电子器件封装用组成物经闪蒸、喷墨印刷、沉积、网版印刷、旋转涂布或刮刀涂布中的任意一种方式附着后,经紫外光照射形成。
  10. 一种光电子器件,包括功能结构和封装结构,其特征在于,封装结构为权利要求9所述的封装结构,光电子器件为有机发光二极管或太阳能电池,光固化率为90%~97%,透光率为95%~99%。
PCT/CN2021/105556 2020-08-21 2021-07-09 一种光电子器件封装用组成物、封装结构及光电子器件 WO2022037311A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/042,273 US20230295361A1 (en) 2020-08-21 2021-07-09 Composition for use in photoelectronic component packaging, packaging structure, and photoelectronic component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010852255.6A CN111933823B (zh) 2020-08-21 2020-08-21 一种光电子器件封装用组成物、封装结构及光电子器件
CN202010852255.6 2020-08-21

Publications (1)

Publication Number Publication Date
WO2022037311A1 true WO2022037311A1 (zh) 2022-02-24

Family

ID=73304487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105556 WO2022037311A1 (zh) 2020-08-21 2021-07-09 一种光电子器件封装用组成物、封装结构及光电子器件

Country Status (3)

Country Link
US (1) US20230295361A1 (zh)
CN (1) CN111933823B (zh)
WO (1) WO2022037311A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115109464A (zh) * 2022-07-06 2022-09-27 杭州福斯特应用材料股份有限公司 墨水组合物、封装结构和半导体器件
CN115595101A (zh) * 2022-10-26 2023-01-13 西安思摩威新材料有限公司(Cn) 一种紫外光可固化胶水组合物、使用方法及其应用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111933823B (zh) * 2020-08-21 2022-10-18 西安思摩威新材料有限公司 一种光电子器件封装用组成物、封装结构及光电子器件
CN112457714A (zh) * 2020-11-19 2021-03-09 西安思摩威新材料有限公司 一种基于环烷烃的紫外光固化封装油墨及其使用方法和应用
CN113563808A (zh) * 2021-07-23 2021-10-29 西安思摩威新材料有限公司 一种具有高附着力的封装组合物及其使用方法和应用
CN113549401B (zh) * 2021-07-23 2023-10-27 西安思摩威新材料有限公司 一种光电子器件封装用的组成物及其形成的封装结构
CN114195982B (zh) * 2021-12-10 2024-03-26 西安思摩威新材料有限公司 一种用于封装光电子器件的环氧组成物、封装结构及光电子器件
CN115960490B (zh) * 2022-12-08 2023-11-24 西安思摩威新材料有限公司 一种可光固化油墨组合物及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101928370A (zh) * 2010-07-30 2010-12-29 东莞市派乐玛新材料技术开发有限公司 一种眼镜铭牌和饰品封装用辐射固化密封胶
CN102299118A (zh) * 2011-05-20 2011-12-28 电子科技大学 一种光电子器件的封装方法
KR20170003169A (ko) * 2015-06-30 2017-01-09 코오롱인더스트리 주식회사 잉크젯프린팅 공정에 적합한 유기발광소자 봉지용 액상 충진제 조성물 및 이의 제조방법
CN110128783A (zh) * 2019-03-26 2019-08-16 西安思摩威新材料有限公司 可uv固化的环氧体系有机封装组成物及其制备和使用方法
CN111171729A (zh) * 2019-12-31 2020-05-19 东莞市联灏新材料技术开发有限公司 可uv led快速固化的oled端子保护胶
CN111205815A (zh) * 2020-03-12 2020-05-29 东莞市联灏新材料技术开发有限公司 一种可uv混杂固化的oled密封剂组合物
CN111933823A (zh) * 2020-08-21 2020-11-13 西安思摩威新材料有限公司 一种光电子器件封装用组成物、封装结构及光电子器件

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130236681A1 (en) * 2012-03-06 2013-09-12 Chang Min Lee Photocurable composition, barrier layer including the same, and encapsulated apparatus including the same
KR101596544B1 (ko) * 2012-06-15 2016-02-22 제일모직주식회사 광경화 조성물, 이를 포함하는 장벽층, 및 이를 포함하는 봉지화된 장치
EP2924085B1 (en) * 2014-03-28 2019-05-08 Samsung SDI Co., Ltd. Composition for encapsulation of organic light emitting diode and organic light emitting diode display manufactured using the same
KR101861893B1 (ko) * 2014-04-23 2018-05-29 삼성에스디아이 주식회사 유기발광소자 봉지용 조성물 및 이로부터 제조된 유기발광소자 표시장치
KR102008177B1 (ko) * 2016-05-24 2019-08-07 삼성에스디아이 주식회사 유기발광소자 봉지용 조성물 및 이로부터 제조된 유기발광소자 표시장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101928370A (zh) * 2010-07-30 2010-12-29 东莞市派乐玛新材料技术开发有限公司 一种眼镜铭牌和饰品封装用辐射固化密封胶
CN102299118A (zh) * 2011-05-20 2011-12-28 电子科技大学 一种光电子器件的封装方法
KR20170003169A (ko) * 2015-06-30 2017-01-09 코오롱인더스트리 주식회사 잉크젯프린팅 공정에 적합한 유기발광소자 봉지용 액상 충진제 조성물 및 이의 제조방법
CN110128783A (zh) * 2019-03-26 2019-08-16 西安思摩威新材料有限公司 可uv固化的环氧体系有机封装组成物及其制备和使用方法
CN111171729A (zh) * 2019-12-31 2020-05-19 东莞市联灏新材料技术开发有限公司 可uv led快速固化的oled端子保护胶
CN111205815A (zh) * 2020-03-12 2020-05-29 东莞市联灏新材料技术开发有限公司 一种可uv混杂固化的oled密封剂组合物
CN111933823A (zh) * 2020-08-21 2020-11-13 西安思摩威新材料有限公司 一种光电子器件封装用组成物、封装结构及光电子器件

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115109464A (zh) * 2022-07-06 2022-09-27 杭州福斯特应用材料股份有限公司 墨水组合物、封装结构和半导体器件
CN115109464B (zh) * 2022-07-06 2023-07-14 杭州福斯特应用材料股份有限公司 墨水组合物、封装结构和半导体器件
CN115595101A (zh) * 2022-10-26 2023-01-13 西安思摩威新材料有限公司(Cn) 一种紫外光可固化胶水组合物、使用方法及其应用
CN115595101B (zh) * 2022-10-26 2023-11-03 西安思摩威新材料有限公司 一种紫外光可固化胶水组合物、使用方法及其应用

Also Published As

Publication number Publication date
US20230295361A1 (en) 2023-09-21
CN111933823A (zh) 2020-11-13
CN111933823B (zh) 2022-10-18

Similar Documents

Publication Publication Date Title
WO2022037311A1 (zh) 一种光电子器件封装用组成物、封装结构及光电子器件
TWI750112B (zh) 混成有機-無機材料的組成物及其製造方法與用途以及所述用途的製造方法
JP4147008B2 (ja) 有機el素子に用いるフィルム及び有機el素子
Morais et al. Hybrid Organic–Inorganic Light‐Emitting Diodes
CN103309162B (zh) 光固化组合物和包括含有其的阻挡层的封装装置
CN110894361B (zh) 光固化封装组合物、封装结构及半导体器件
CN109251584B (zh) 一种具有高耐热性和高透光率的油墨组合物及用途
US20150252125A1 (en) Curable resin compositions and barrier stacks including the same
KR20130129959A (ko) 다층 보호 층, 유기 광전자 소자 및 이들의 제조 방법
CN105122491A (zh) 具光提取层的有机发光二极管
CN112979690B (zh) 一种墨水单体、光固化组合物、封装薄膜及有机发光器件
CN104903384A (zh) 可光固化组合物、包含其的阻挡层和包含该层的封装设备
TWI613247B (zh) 光固化組合物、包含該光固化組合物的阻擋層以及包含該阻擋層的封裝裝置
CN109935714A (zh) 电子传输材料及其制备方法和发光二极管
TW201351048A (zh) 光固化型組成物、包含其之障壁層及包含其之封裝裝置
KR20150093185A (ko) 파장 변환 중합체 필름
WO2022095792A1 (zh) 一种紫外光固化组合物胶水及其使用方法和应用
CN113683968B (zh) 基于氮杂环丙烯酸酯化合物的紫外光固化胶组合物及其使用方法和应用
CN113563808A (zh) 一种具有高附着力的封装组合物及其使用方法和应用
CN109795177A (zh) 一种带转光阻隔膜在光伏电池铺设结构中的应用
TW201351040A (zh) 光可固化型組成物、包含該組成物之保護層及包含該組成物之封裝裝置
WO2023065723A1 (zh) 一种用于oled封装的油墨组合物及其应用
CN114195982B (zh) 一种用于封装光电子器件的环氧组成物、封装结构及光电子器件
CN112029034A (zh) 用于封装有机发光二极管装置的组合物和显示装置
WO2005091682A1 (ja) 有機el素子およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21857406

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21857406

Country of ref document: EP

Kind code of ref document: A1