WO2022032570A1 - 一种端羟基聚酯树脂及其制备方法和应用 - Google Patents

一种端羟基聚酯树脂及其制备方法和应用 Download PDF

Info

Publication number
WO2022032570A1
WO2022032570A1 PCT/CN2020/108898 CN2020108898W WO2022032570A1 WO 2022032570 A1 WO2022032570 A1 WO 2022032570A1 CN 2020108898 W CN2020108898 W CN 2020108898W WO 2022032570 A1 WO2022032570 A1 WO 2022032570A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydroxyl
polyester resin
terminated polyester
parts
mgkoh
Prior art date
Application number
PCT/CN2020/108898
Other languages
English (en)
French (fr)
Inventor
牛晓雪
马志平
曾历
谢静
李勇
Original Assignee
擎天材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 擎天材料科技有限公司 filed Critical 擎天材料科技有限公司
Priority to US17/923,827 priority Critical patent/US20230174710A1/en
Priority to PCT/CN2020/108898 priority patent/WO2022032570A1/zh
Priority to CN202080003832.2A priority patent/CN112384549B/zh
Publication of WO2022032570A1 publication Critical patent/WO2022032570A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/20Polyesters having been prepared in the presence of compounds having one reactive group or more than two reactive groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/199Acids or hydroxy compounds containing cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/85Germanium, tin, lead, arsenic, antimony, bismuth, titanium, zirconium, hafnium, vanadium, niobium, tantalum, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • C08G63/914Polymers modified by chemical after-treatment derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/916Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D167/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/03Powdery paints

Definitions

  • the invention belongs to the field of polymer materials, and in particular relates to a hydroxyl-terminated polyester resin and a preparation method and application thereof.
  • Hydroxyl-terminated polyester resin is an important part of isocyanate-curable powder coatings, and the powder coatings not only have high decorative properties and excellent physical properties, but also have good chemical resistance, especially not easy to yellowing, It has excellent weather resistance and light resistance, and is widely used in refrigerators, washing machines, air conditioners and other household appliances, as well as high-end furniture, automobiles, motorcycles and other industries.
  • the demand for mid-to-high-end isocyanate-curable powder coatings and key polyester resins is also increasing. Germany's BASF has used isocyanate-curable powder systems for automobile bodies and window frames, and the United States has used it on vehicles that require high impact resistance.
  • Patent CN108912317A proposes a method for synthesizing a low-viscosity hydroxyl-terminated polyester resin with a hydroxyl value in the range of 30-50 mgKOH/g.
  • Patent CN109517150A proposes to synthesize a low-viscosity hydroxyl-terminated polyester resin with high weather resistance and high solid content, which is used in the field of high-end coil coatings, but the polyester resin synthesized by this method has a low Tg and poor storage stability.
  • the isocyanate-cured powder coating prepared by using the polyester resin has high decorative properties and excellent physical properties, especially excellent impact stability and weather resistance. .
  • the purpose of the present invention is to coordinately solve the problems such as low curing agent dosage, unstable mechanical properties and poor weather resistance of coatings, propose a hydroxyl-terminated polyester resin with low hydroxyl value and a preparation method thereof, and provide a method using the hydroxyl-terminated polyester resin.
  • Coatings prepared from polyester resins have good mechanical properties and excellent weather resistance.
  • a first aspect of the present invention provides:
  • a hydroxyl-terminated polyester resin comprising the following components in parts by mass: 25-50 parts of dibasic alcohol, 40-70 parts of dibasic acid, 0.1-2 parts of tertiary glycidyl carbonate, 0.5-4 parts of hydroxylation reagent , 0.08 to 0.3 parts of catalyst, 0.2 to 0.5 parts of antioxidant.
  • the hydroxyl value of the above-mentioned hydroxyl-terminated polyester resin is 20-30 mgKOH/g, and the acid value of the hydroxyl-terminated polyester resin is 1-8 mgKOH/g.
  • the hydroxyl value of the hydroxyl-terminated polyester resin is controlled at 20-30mgKOH/g, so that it can be controlled within a reasonable low hydroxyl value range, so as to reduce the amount of curing agent in the application of subsequent coatings, and at the same time improve the mechanical properties of the coating. Weatherability.
  • the melt viscosity of the above-mentioned hydroxyl-terminated polyester resin at 200° C. is 9000-13000 mPa ⁇ s.
  • the above-mentioned hydroxyl-terminated polyester resin has a reactivity of 410s-520s at 180°C, a glass transition temperature of 53°C to 59°C, and a softening point of 101°C to 106°C.
  • the above-mentioned dihydric alcohol is selected from neopentyl glycol, 1,4-cyclohexanedimethanol, ethylene glycol, 2-ethyl-2-butyl-1,3-propanediol, 1,2-propanediol , at least one of 2-methyl-1,3-propanediol and 1,6-hexanediol.
  • the above-mentioned dihydric alcohol is composed of the following components: 60%-97% of neopentyl glycol, 1%-25% of 1,4-cyclohexanedimethanol, 0-25% of Ethylene glycol, 0-20% 2-ethyl-2-butyl-1,3-propanediol, 0-10% 1,2-propanediol, 0-10% 2-methyl-1,3- Propylene glycol, 0 to 10% of 1,6-hexanediol.
  • the above-mentioned dihydric alcohol is composed of the following components: 65%-95% of neopentyl glycol, 3%-20% of 1,4-cyclohexanedimethanol, 0-23% of Ethylene glycol, 0-15% 2-ethyl-2-butyl-1,3-propanediol, 0-15% 1,2-propanediol, 0-15% 2-methyl-1,3- Propylene glycol, 0 to 15% of 1,6-hexanediol.
  • Reasonable addition of various diols can improve the stability of the mechanical properties of polyester resins, and at the same time can optimize the crosslinking density and improve the weather resistance.
  • the above-mentioned dibasic acid is at least one selected from aromatic dibasic acid and aliphatic dibasic acid.
  • the above aromatic dibasic acid includes terephthalic acid and isophthalic acid, wherein the mass of isophthalic acid accounts for 0-15% of the mass of the aromatic dibasic acid.
  • the above-mentioned aliphatic dibasic acid is selected from 1,4-succinic acid, 1,6-adipic acid, 1,10-sebacic acid, dodecanedioic acid, 1,4-cyclohexanedioic acid At least one of formic acid.
  • the above-mentioned hydroxylating reagent is selected from 1,2,3,4,5-pentapentanol, 1,2,3,4,5,6-hexanol, 2,2-dimethylol butanol at least one of them.
  • the above catalyst is an organotin catalyst.
  • the above-mentioned organotin catalyst is at least one selected from the group consisting of monobutyltin oxide and monobutyltin triisooctoate.
  • the above-mentioned antioxidant is selected from antioxidant 1010 (tetrakis[beta-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid] pentaerythritol ester), antioxidant 1076 (3-( At least one of 3,5-di-tert-butyl-4-hydroxyphenyl) propionic acid n-octadecyl ester) and antioxidant DSTP (di(octadecyl) thiodipropionate).
  • antioxidant 1010 tetrakis[beta-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid] pentaerythritol ester
  • antioxidant 1076 3-( At least one of 3,5-di-tert-butyl-4-hydroxyphenyl) propionic acid n-octadecyl ester)
  • antioxidant DSTP di(octadecyl) thio
  • a second aspect of the present invention provides:
  • a preparation method of the above-mentioned hydroxyl-terminated polyester resin comprising the following steps:
  • dibasic alcohol, dibasic acid, glycidyl tertiary carbonate and catalyzer carry out polycondensation reaction in inert atmosphere to obtain primary polymer
  • step (1) when the acid value of the initial polymer in step (1) is 10 to 25 mgKOH/g, vacuumize and continue the polycondensation reaction to obtain a polycondensate;
  • step (3) When the acid value of the polycondensate in step (2) is 8-15 mgKOH/g, carry out a hydroxylation reaction until the acid value of the hydroxylation reaction product is 1-8 mgKOH/g, and the hydroxyl value is 20-30 mgKOH/g. Antioxidant, mixed to obtain the hydroxyl-terminated polyester resin of the above composition.
  • the temperature of the polycondensation reaction in the above step (1) is 230°C to 240°C.
  • the polycondensation reaction time in the above step (1) is 3h-5h.
  • the vacuum degree of the vacuum in the above step (2) is 0.08-0.1 MPa.
  • the system of step (1) is evacuated to extract unreacted substances or small polymer molecules, thereby improving the polycondensation degree of the polycondensation reaction in step (2), thereby improving the crosslinking density;
  • the operation can also improve the molecular weight distribution of the polycondensate and control it within a reasonable range, so that the final product can reach a hydroxyl value of 20-30 mgKOH/g and a melt viscosity at 200°C of 9000-13000 mPa ⁇ s.
  • there is no vacuuming operation in the prior art resulting in excess unreacted alcohol substances in the synthesized polyester resin, resulting in low viscosity and low crosslinking density of the final synthesized product.
  • the overall performance of the coating is poor.
  • the time of the polycondensation reaction in the above step (2) is 50min-120min.
  • the temperature of the hydroxylation reaction is 215°C to 230°C, and the time of the hydroxylation reaction is 1 h to 3 h.
  • the temperature of mixing in the above step (3) is 200°C to 230°C.
  • the mixing time in the above step (3) is 10min-40min.
  • a third aspect of the present invention provides:
  • a coating comprises a hydroxyl-terminated polyester resin, wherein the hydroxyl-terminated polyester resin is the above-mentioned hydroxyl-terminated polyester resin, or is prepared by the above-mentioned preparation method of the hydroxyl-terminated polyester resin.
  • the above-mentioned coating comprises a hydroxyl-terminated polyester resin, an isocyanate, a pigment and other auxiliary agents, and the hydroxyl-terminated polyester resin is the above-mentioned hydroxyl-terminated polyester resin, or is prepared by the preparation method of the above-mentioned hydroxyl-terminated polyester resin.
  • other additives include leveling agents, degassing agents and the like.
  • the hydroxyl-terminated polyester resin of the present invention has an acid value of 1-8 mgKOH/g, a hydroxyl value of 20-30 mgKOH/g, and a melt viscosity of 9000-9000-9000 C at 200°C through reasonable formulation and selection of catalysts. 13000mPa ⁇ s, 180°C reactivity 410-520s, glass transition temperature 53-59°C, softening point 101-106°C.
  • the polyester resin has ideal glass transition temperature and hydroxyl value, and the powder coating prepared from the polyester resin and curing agent such as isocyanate (B1530) and other materials has good comprehensive properties, and the Mechanical properties are stable and weather resistance is outstanding.
  • the polycondensation degree of the polycondensation reaction of the reaction system can be improved, thereby improving the crosslinking density;
  • the vacuum operation can also improve the molecular weight of the polycondensate and control it within a reasonable range, so that the final product can reach a hydroxyl value of 20-30 mgKOH/g and a melt viscosity at 200 ° C of 9000-13000mPa ⁇ s .
  • Examples 1 to 6 and comparative examples 1 to 2 according to the composition of the hydroxyl-terminated polyester resin in Table 1, add dihydric alcohol, glycidyl tertiary carbonate, aromatic dibasic acid, aliphatic dibasic acid and catalyst in proportion to react
  • nitrogen protection was introduced, and the temperature was programmed to be about 182-184°C, and esterified water was formed and discharged by distillation, then continued to slowly heat up to 230-240°C, and kept at 230-240°C for 2-5h until there was 90°C.
  • the system is clear and transparent, and the tested acid value is 10-25 mgKOH/g, and vacuum polycondensation is carried out, and the vacuum degree is adjusted to 0.08-0.1 MPa for the reaction, wherein, the vacuum polycondensation reaction of Examples 1-6 is 80min, Comparative example 1 vacuum polycondensation reaction 118min, comparative example 2 vacuum polycondensation reaction 90min, the test acid value is 8 ⁇ 15mgKOH/g, cool down to 215°C ⁇ 230°C for hydroxylation reaction, and keep at this temperature for 1 ⁇ 3h, wait for acid The value is 1 ⁇ 8mgKOH/g, the hydroxyl value is 20 ⁇ 30mgKOH/g and the melt viscosity at 200°C is 9000 ⁇ 13000mPa ⁇ s, the polycondensation reaction is completed, and the temperature is lowered to 200 ⁇ 230°C to obtain the molten polycondensate. Antioxidant is added to the polycondensate, stir
  • Comparative Example 3 Formed according to the hydroxyl-terminated polyester resin of Example 1, dihydric alcohol, glycidyl tertiary carbonate, aromatic dibasic acid, aliphatic dibasic acid and catalyst were added to the reaction kettle in proportions, and nitrogen protection was introduced. , the temperature of the program is raised to about 184°C, and esterified water is formed and discharged by distillation, and then the temperature is slowly raised to 235°C, and the temperature is kept at 235°C for 3.5h until more than 90% of the esterified water is discharged.
  • test Acid value is 10 ⁇ 25mgKOH/g
  • carry out polycondensation reaction react for 50min ⁇ 120min and cool down to 230°C to carry out hydroxylation reaction, and keep at this temperature for 2h to complete polycondensation reaction, cool down to 215°C, then obtain molten polycondensate
  • Antioxidant was added to the molten polycondensate, stirred for 30 min, discharged, and cooled to obtain hydroxyl-terminated polyester resin.
  • the method for determining the hydroxyl value of the hydroxyl-terminated polyester resin is as follows: according to Table 2, weigh the prepared hydroxyl-terminated polyester resin of the corresponding quality in a 250 mL conical flask, then add 20 mL of tetrahydrofuran to dissolve, and then use a pipette to measure it separately.
  • V 1 the volume of potassium hydroxide solution consumed by the hydroxyl-terminated polyester resin
  • V 2 the volume of potassium hydroxide solution consumed by the blank solution
  • the method for determining the acid value of the hydroxyl-terminated polyester resin is as follows: weigh 5 g of the hydroxyl-terminated polyester resin into a conical flask, accurate to 1 mg, and add 30 mL of toluene-ethanol mixed solvent to make the hydroxyl-terminated polyester resin completely dissolve (if Insoluble at room temperature, it can be properly heated in a well ventilated environment, but the solution should be cooled to room temperature before titration). Add 3 to 5 drops of phenolphthalein indicator solution to the sample solution, and immediately titrate with ethanolic potassium hydroxide solution until the red color appears, and it does not disappear within 30s. A blank test was performed in parallel with the determination, and the procedure was the same as before.
  • m the mass of the hydroxyl-terminated polyester resin sample
  • V the volume of potassium hydroxide solution consumed by the hydroxyl-terminated polyester resin
  • V 0 the volume of potassium hydroxide solution consumed by the blank test
  • polyester resins obtained from the above-mentioned Examples 1 to 6 and Comparative Examples 1 to 3 respectively 36g of curing agent B1530 (purchased from Evonik Degussa Specialty Chemicals (Shanghai) Co., Ltd.), and titanium dioxide (purchased from Panzhihua Dongfang Titanium) Industry Co., Ltd.) 165g, leveling agent (purchased from Ningbo Nanhai Chemical Co., Ltd.) 6g, brightener 701 (purchased from Ningbo Nanhai Chemical Co., Ltd.) 3g, defoamer 703 (purchased from Zhaoqing Shiying Coating Materials Co., Ltd. ) 3g, then melt extrusion, tableting, crushing with a screw extruder, and pass through a 180-mesh powder sieve to complete the preparation of the powder coating.
  • curing agent B1530 purchasedd from Evonik Degussa Specialty Chemicals (Shanghai) Co., Ltd.
  • titanium dioxide purchasedd from
  • the powder coatings obtained in the above Examples 1 to 6 and Comparative Examples 1 to 3 were sprayed on the surface-treated (phosphatized) metal plate with an electrostatic spray gun, with a coating thickness of about 70 ⁇ m, and cured at 200°C/15min. Perform performance test again.
  • the powder coating coatings prepared in Examples 1 to 6 of the present invention have better mechanical properties and outstanding weather resistance. After accelerated aging by A lamp for 1000 hours , almost all of the gloss retention rate can be maintained at 100%, no loss of light; after A lamp accelerated aging for 2000h, the gloss retention rate can be maintained above 85%; the gloss retention rates are all good, which can better meet the needs of the market.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Paints Or Removers (AREA)

Abstract

一种端羟基聚酯树脂及其制备方法和应用,所述端羟基聚酯树脂由以下质量份的原料组成:25~50份二元醇、40~70份二元酸、0.1~2份叔碳酸缩水甘油酯、0.5~4份羟基化试剂、0.08~0.3份催化剂、0.2~0.5份抗氧剂。该聚酯树脂的酸值为1-8mgKOH/g,羟值为20-30mgKOH/g,200℃熔体粘度9000-13000mPa·s,180℃反应性410s-520s,玻璃化温度为53-59℃,软化点为101-106℃。

Description

一种端羟基聚酯树脂及其制备方法和应用 技术领域
本发明属于高分子材料领域,尤其涉及一种端羟基聚酯树脂及其制备方法和应用。
背景技术
端羟基聚酯树脂是异氰酸酯固化型粉末涂料的重要组成部分,而该粉末涂料涂层不仅具有较高的装饰性和优良的物理性能,而且有较好耐化学药品性,特别是不易黄变、耐候性和耐光性优良,被广泛应用于冰箱、洗衣机、空调等家电及高级家具、汽车、摩托车等产业。随着粉末涂料的快速发展,对中高端的异氰酸酯固化型粉末涂料及关键聚酯树脂的需求量也逐渐增加。德国BASF已将异氰酸酯固化型粉末体系用于汽车车身和窗框,美国已将其用于要求高的抗冲击的车辆上。我国虽是聚酯树脂的生产大国,但是高端功能性异氰酸酯固化型粉末涂料用聚酯树脂还需大量进口,亟待开发一款低B1530用量且综合性能突出的高端功能性端羟基聚酯树脂,解决市场供求相对单一问题。目前异氰酸酯固化型粉末涂料用端羟基聚酯树脂的羟值主要大于30mgKOH/g,专利CN108912317A中提出一种合成羟值在30~50mgKOH/g范围的低粘度端羟基聚酯树脂的方法,该树脂的羟值较高,固化剂在粉末涂料配方中占比较高,推升了涂料成本,影响了该类型涂料的市场推广。专利CN109517150A中提出合成一种高耐候性高固体分的低粘度端羟基聚酯树脂,应用于高端卷材涂料领域,但该方法合成出来的聚酯树脂Tg偏低,储存稳定性较差。
因此,提供一种低羟值的端羟值聚酯树脂,使用该聚酯树脂制备的异氰酸酯固化粉末涂料具有较高的装饰性和优良的物理性能,特别是冲击稳定和耐候性优良,十分必要。
发明内容
本发明的目的在于协调解决涂料低固化剂用量、机械性能不稳定和耐候性能欠佳等问题,提出一种低羟值的端羟基聚酯树脂及其制备方法,并提供一种使用该端羟基聚酯树脂制备的涂料,其具备良好的机械性能和优异的耐候性。
本发明所采取的技术方案为:
本发明的第一个方面,提供:
一种端羟基聚酯树脂,包括以下质量份的组分组成:25~50份二元醇、40~70份二元酸、0.1~2份叔碳酸缩水甘油酯、0.5~4份羟基化试剂、0.08~0.3份催化剂、0.2~0.5份抗氧剂。
优选的,上述端羟基聚酯树脂的羟值为20~30mgKOH/g,所述端羟基聚酯树脂的酸值为 1~8mgKOH/g。将端羟基聚酯树脂的羟值控制在20~30mgKOH/g,使其控制在合理的低羟值范围内,从而在后续涂料的应用中,减少固化剂的用量,同时提升涂料的机械性能和耐候性。
优选的,上述端羟基聚酯树脂在200℃下的熔体粘度为9000-13000mPa·s。
优选的,上述端羟基聚酯树脂180℃反应性410s-520s,玻璃化温度为53℃~59℃,软化点为101℃~106℃。
优选的,上述二元醇为选自新戊二醇、1,4-环己烷二甲醇、乙二醇、2-乙基-2-丁基-1,3-丙二醇、1,2-丙二醇、2-甲基-1,3-丙二醇、1,6-己二醇中的至少一种。
优选的,以重量百分数计,上述二元醇由以下组分组成:60%~97%的新戊二醇、1%~25%的1,4-环己烷二甲醇、0~25%的乙二醇、0~20%的2-乙基-2-丁基-1,3-丙二醇、0~10%的1,2-丙二醇、0~10%的2-甲基-1,3-丙二醇、0~10%的1,6-己二醇。
优选的,以重量百分数计,上述二元醇由以下组分组成:65%~95%的新戊二醇、3%~20%的1,4-环己烷二甲醇、0~23%的乙二醇、0~15%的2-乙基-2-丁基-1,3-丙二醇、0~15%的1,2-丙二醇、0~15%的2-甲基-1,3-丙二醇、0~15%的1,6-己二醇。多种二元醇的合理添加,改善聚酯树脂机械性能的稳定性,同时可以优化交联密度,提高耐候性。
优选的,上述二元酸为选自芳香族二元酸、脂肪族二元酸中的至少一种。
优选的,上述芳香族二元酸包括对苯二甲酸和间苯二甲酸,其中,间苯二甲酸的质量占芳香二元酸质量的0~15%。
优选的,上述脂肪族二元酸为选自1,4-丁二酸、1,6-己二酸、1,10-癸二酸、十二烷二酸、1,4-环己烷二甲酸中的至少一种。
优选的,上述羟基化试剂为选自1,2,3,4,5-戊五醇、1,2,3,4,5,6-己六醇、2,2-二羟甲基丁醇中的至少一种。
优选的,上述催化剂为有机锡类催化剂。
优选的,上述有机锡类催化剂为选自单丁基氧化锡、单丁基三异辛酸锡中的至少一种。
优选的,上述抗氧剂为选自抗氧剂1010(四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯)、抗氧剂1076(3-(3,5-二叔丁基-4-羟基苯基)丙酸正十八烷醇酯)、抗氧剂DSTP(硫代二丙酸二(十八)酯)中的至少一种。
本发明的第二个方面,提供:
一种上述端羟基聚酯树脂的制备方法,包括以下步骤:
(1)二元醇、二元酸、叔碳酸缩水甘油酯和催化剂在惰性氛围中进行缩聚反应,得初聚物;
(2)待步骤(1)初聚物的酸值为10~25mgKOH/g时,抽真空,继续缩聚反应,得缩聚物;
(3)待步骤(2)缩聚物的酸值为8~15mgKOH/g时,进行羟基化反应,至羟基化反应产物的酸值为1~8mgKOH/g,羟值为20~30mgKOH/g加入抗氧剂,混合,即得上述组成的端羟基聚酯树脂。
优选的,上述步骤(1)中缩聚反应的温度为230℃~240℃。
优选的,上述步骤(1)中缩聚反应时间为3h~5h。
优选的,上述步骤(2)中所述真空的真空度为0.08~0.1MPa。对步骤(1)的体系进行抽真空,能将未反应的物质或小聚合物分子抽出,从而提高了步骤(2)中缩聚反应的缩聚程度,从而提高交联密度;同时,上述抽真空的操作还能改善缩聚物的分子量分布,将其控制在合理范围内,使得最终的产物能达到羟值为20~30mgKOH/g、在200℃下的熔体粘度为9000-13000mPa·s。而现有技术中未有抽真空的操作,导致合成的聚酯树脂中存在过剩的未反应完全的醇类物质,导致最终合成的产物粘度低、交联密度低,后续由该产物制得的涂料综合性能欠佳。
优选的,上述步骤(2)中缩聚反应的时间为50min~120min。
优选的,上述步骤(3)中羟基化反应的温度为215℃~230℃,羟基化反应的时间为1h~3h。
优选的,上述步骤(3)中混合的温度为200℃~230℃。
优选的,上述步骤(3)中混合的时间为10min~40min。
本发明的第三个方面,提供:
一种涂料,包括端羟基聚酯树脂,所述端羟基聚酯树脂为上述端羟基聚酯树脂,或者为权上述端羟基聚酯树脂的制备方法制得。
优选的,上述涂料包括端羟基聚酯树脂、异氰酸酯、颜料及其他助剂,所述端羟基聚酯树脂为上述端羟基聚酯树脂,或者为权上述端羟基聚酯树脂的制备方法制得。其中,其他助剂包括流平剂、脱气剂等。
本发明的有益效果为:
(1)本发明的端羟基聚酯树脂通过合理的配方以及催化剂的选择,使得聚酯树脂的酸值为1-8mgKOH/g,羟值为20-30mgKOH/g,200℃熔体粘度9000-13000mPa·s,180℃反应性410-520s,玻璃化温度为53-59℃,软化点为101-106℃。所述聚酯树脂具有理想的玻璃化转变温度与羟值,由所述聚酯树脂与固化剂如异氰酸酯(B1530)以及其他物料制备所得的粉末涂料,具有良好的综合性能,同时粉末涂层的机械性能稳定且耐候性突出。
(2)本发明的端羟基聚酯树脂的制备方法中,通过在反应体系达到特定酸值增加抽真空 操作,能提高了反应体系缩聚反应的缩聚程度,从而提高交联密度;同时,上述抽真空的操作还能改善缩聚物的分子量分步,将其控制在合理范围内,使得最终的产物能达到羟值为20~30mgKOH/g、在200℃下的熔体粘度为9000-13000mPa·s。
具体实施方式
为了使本发明的发明目的、技术方案及其技术效果更加清晰,以下结合具体实施方式,对本发明进行进一步详细说明。应当理解的是,本说明书中描述的具体实施方式仅仅是为了解释本发明,并非为了限定本发明。
实施例1~6和对比例1~2,按表1端羟基聚酯树脂的组成,将二元醇、叔碳酸缩水甘油酯、芳香二元酸、脂肪二元酸及催化剂按配比量加入反应釜中,通入氮气保护,程序升温至182~184℃左右开始有酯化水生成并被蒸馏排出,然后继续缓慢升温至230~240℃,在230~240℃下保温2~5h直至有90%以上的酯化水排出后,体系澄清透明,测试酸值为10~25mgKOH/g,进行真空缩聚,将真空度调到0.08~0.1MPa反应,其中,实施例1~6真空缩聚反应80min,对比例1真空缩聚反应118min,对比例2真空缩聚反应90min,测试酸值为8~15mgKOH/g,降温至215℃~230℃进行羟基化反应,并在此温度下保温1~3h,待酸值为1~8mgKOH/g,羟值为20~30mgKOH/g及200℃熔体粘度9000~13000mPa·s,完成缩聚反应,降温至200~230℃,即制得熔融缩聚物,在所述熔融缩聚物中加入抗氧剂,搅拌混合10~40min,出料,冷却,即得端羟基聚酯树脂。
表1 实施例1~6和对比例1~2的端羟基树脂组成
Figure PCTCN2020108898-appb-000001
Figure PCTCN2020108898-appb-000002
对比例3:按照实施例1的端羟基聚酯树脂组成,将二元醇、叔碳酸缩水甘油酯、芳香二元酸、脂肪二元酸及催化剂按配比量加入反应釜中,通入氮气保护,程序升温至184℃左右开始有酯化水生成并被蒸馏排出,然后继续缓慢升温至235℃,在235℃下保温3.5h直至有90%以上的酯化水排出后,体系澄清透明,测试酸值为10~25mgKOH/g,进行缩聚反应,反应50min~120min降温至230℃进行羟基化反应,并在此温度下保温2h,完成缩聚反应,降温 至215℃,即制得熔融缩聚物,在所述熔融缩聚物中加入抗氧剂,搅拌30min,出料,冷却,即得端羟基聚酯树脂。
对实施例1~6和对比例1~3制得的端羟基聚酯树脂进行性能测试,其中:
端羟基聚酯树脂羟值的测定方法为:按照表2称取相应质量的制得的端羟基聚酯树脂于250mL的锥形瓶中,然后加入20mL四氢呋喃进行溶解,然后用移液管分别量取25mL催化剂溶液(质量浓度为10g/L的含4-二甲氨基吡啶的四氢呋喃溶液)和10mL乙酰化溶液(含125mL乙酸酐的1L四氢呋喃溶液)到锥形瓶中、摇匀,并在室温下静置5min;再加入20mL水解溶液(按照四氢呋喃:蒸馏水=4:1体积比配制)、摇匀(有时会出现混浊),并在室温下保持30min,每隔5min摇一次;加入25mL四氢呋喃和5滴酚酞溶液(按10g酚酞/1L无水乙醇配制),用0.35N氢氧化钾乙醇溶液滴定,当溶液颜色由无色变为红色时达到终点。做空白溶液滴定实验,测出端羟基聚酯树脂酸值。
计算羟值:
Figure PCTCN2020108898-appb-000003
其中,V 1:端羟基聚酯树脂消耗的氢氧化钾溶液体积数;
V 2:空白溶液消耗的氢氧化钾溶液体积数;
N:氢氧化钾溶液浓度;
M:端羟基聚酯树脂样品的质量;
AV:端羟基聚酯树脂样品的酸值。
表2 树脂羟值测定样品取样质量表
Figure PCTCN2020108898-appb-000004
端羟基聚酯树脂酸值的测定方法为:称取5g的端羟基聚酯树脂放入锥形瓶中,精确至1mg,加入甲苯-乙醇混合溶剂30mL,使得端羟基聚酯树脂完全溶解(如果在室温下不能溶解,可在良好的通风环境下适当加热,但在进行滴定前药使溶液冷却至室温)。向试样溶液中加入3~5滴酚酞指示剂溶液,立即用氢氧化钾的乙醇溶液滴定至出现红色,30s内不消失即为终点,记下所消耗的氢氧化钾溶液体积数。与测定平行进行空白试验,步骤与前述相同。
计算酸值:
Figure PCTCN2020108898-appb-000005
其中,m:端羟基聚酯树脂样品的质量;
V:端羟基聚酯树脂消耗的氢氧化钾溶液体积数;
V 0:空白试验所消耗的氢氧化钾溶液体积数;
N:氢氧化钾溶液浓度;
端羟基聚酯树脂性能测试结果如表3所示:
表3 实施例1~6和对比例1~3各端羟基聚酯树脂性能测定结果
Figure PCTCN2020108898-appb-000006
结果分析:从上述实施例1~6和对比例1~3可知,得到相应黏度范围的聚酯树脂,实施例1~6的抽真空时间较对比例1~2少一些,对比例3不抽真空,得到的聚酯树脂黏度和玻璃化温度均较低,说明得到的聚酯树脂交联密度较低,存在聚酯树脂存储稳定性欠佳等问题。
分别取上述实施例1~6和对比例1~3所得的聚酯树脂264g,固化剂B1530(购买于赢创德固赛特种化学(上海)有限公司)36g,钛白粉(购买于攀枝花东方钛业有限公司)165g,流平剂(购买于宁波南海化学有限公司)6g,光亮剂701(购买于宁波南海化学有限公司)3g,消泡剂703(购买于肇庆市十盈涂装材料有限公司)3g,然后用螺杆挤出机熔融挤出、压片、破碎,并过180目粉筛即完成粉末涂料的制备。
产品效果测试:
将上述实施例1~6和对比例1~3所得粉末涂料,采用静电喷枪喷涂在经表面处理(磷化)的金属板上,涂膜厚度70μm左右,在200℃/15min条件下进行固化,再进行性能测试。
依据GB/T9754-2007测试光泽;
依据GB/T16995-1997进行胶化时间测试;
依据T/GDTL 004-2018进行冲击测试;
依据GB6554-1986进行水平流动测试;
依据GB/T14522-2008进行A灯加速老化测试。
实施例1~6和对比例1~3制得的粉末涂层性能测试结果如表4所示。
表4 实施例1~6和对比例1~3制得的粉末涂层性能测试结果
Figure PCTCN2020108898-appb-000007
结果分析:本发明实施例1~6制成的粉末涂料涂层相比与对比例1~3常规粉末聚酯涂层具有较好的机械性能和突出的耐候性,在A灯加速老化1000h后,保光率几乎全部可保持100%,无失光;在A灯加速老化2000h后,保光率可保持85%以上;保光率均较好,可以更好地满足市场的需求。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种端羟基聚酯树脂,其特征在于:包括以下质量份的组分组成:25~50份二元醇、40~70份二元酸、0.1~2份叔碳酸缩水甘油酯、0.5~4份羟基化试剂、0.08~0.3份催化剂、0.2~0.5份抗氧剂。
  2. 根据权利要求1所述的端羟基聚酯树脂,其特征在于:所述端羟基聚酯树脂的羟值为20~30mgKOH/g,所述端羟基聚酯树脂的酸值为1~8mgKOH/g。
  3. 根据权利要求1所述的端羟基聚酯树脂,其特征在于:所述端羟基聚酯树脂在200℃下的熔体粘度为9000-13000mPa·s。
  4. 根据权利要求1所述的端羟基聚酯树脂,其特征在于:所述二元醇为选自新戊二醇、1,4-环己烷二甲醇、乙二醇、2-乙基-2-丁基-1,3-丙二醇、1,2-丙二醇、2-甲基-1,3-丙二醇、1,6–己二醇中的至少一种。
  5. 根据权利要求1所述的端羟基聚酯树脂,其特征在于:所述二元酸为选自芳香族二元酸、脂肪族二元酸中的至少一种。
  6. 根据权利要求1所述的端羟基聚酯树脂,其特征在于:所述羟基化试剂为选自1,2,3,4,5-戊五醇、1,2,3,4,5,6-己六醇、2,2-二羟甲基丁醇中的至少一种。
  7. 根据权利要求1所述的端羟基聚酯树脂,其特征在于:所述催化剂为有机锡类催化剂。
  8. 一种如权利要求1~7任一项所述的端羟基聚酯树脂的制备方法,其特征在于:包括以下步骤:
    (1)二元醇、二元酸、叔碳酸缩水甘油酯和催化剂在惰性氛围中进行缩聚反应,得初聚物;
    (2)待步骤(1)初聚物的酸值为10~25mgKOH/g时,抽真空,继续缩聚反应,得缩聚物;
    (3)待步骤(2)缩聚物的酸值为8~15mgKOH/g时,进行羟基化反应,至羟基化反应产物的酸值为1~8mgKOH/g,羟值为20~30mgKOH/g,加入抗氧剂,混合,即得所述组成的端羟基聚酯树脂。
  9. 根据权利要求8所述的端羟基聚酯树脂的制备方法,其特征在于:步骤(2)中所述真空的真空度为0.08~0.1MPa。
  10. 一种涂料,其特征在于:包括端羟基聚酯树脂,所述端羟基聚酯树脂为权利要求1~7任一项所述的端羟基聚酯树脂,或者为权利要求8或9所述的端羟基聚酯树脂的制备方法制得。
PCT/CN2020/108898 2020-08-13 2020-08-13 一种端羟基聚酯树脂及其制备方法和应用 WO2022032570A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/923,827 US20230174710A1 (en) 2020-08-13 2020-08-13 Hydroxyl-terminated polyester resin, preparation method therefor and use thereof
PCT/CN2020/108898 WO2022032570A1 (zh) 2020-08-13 2020-08-13 一种端羟基聚酯树脂及其制备方法和应用
CN202080003832.2A CN112384549B (zh) 2020-08-13 2020-08-13 一种端羟基聚酯树脂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/108898 WO2022032570A1 (zh) 2020-08-13 2020-08-13 一种端羟基聚酯树脂及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2022032570A1 true WO2022032570A1 (zh) 2022-02-17

Family

ID=74590208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108898 WO2022032570A1 (zh) 2020-08-13 2020-08-13 一种端羟基聚酯树脂及其制备方法和应用

Country Status (3)

Country Link
US (1) US20230174710A1 (zh)
CN (1) CN112384549B (zh)
WO (1) WO2022032570A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115850674A (zh) * 2022-12-14 2023-03-28 安徽神剑新材料股份有限公司 一种耐强碱聚酯树脂及其制备方法、耐强碱粉末涂料
CN115851084A (zh) * 2023-02-28 2023-03-28 山东千江粉末科技有限公司 一种高耐碱粉末涂料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5089598A (en) * 1990-10-05 1992-02-18 General Electric Company Endcapped, chain-extended and branched polyesters
CN106832236A (zh) * 2017-02-16 2017-06-13 广州擎天材料科技有限公司 一种四甲氧甲基甘脲固化纹理粉末涂料用的低羟值端羟基聚酯树脂及其制备方法
CN107868235A (zh) * 2017-10-30 2018-04-03 广州擎天材料科技有限公司 一种粉末涂料用双官能团聚酯树脂及其制备方法
CN108912317A (zh) * 2018-06-14 2018-11-30 中山市绿浪助剂有限公司 一种粉末涂料用端羟基聚酯树脂、制备方法及制得的粉末涂料
CN109517150A (zh) * 2018-11-27 2019-03-26 中国海洋石油集团有限公司 一种高耐候性高固体份聚酯树脂及其制备方法
CN110790909A (zh) * 2019-10-30 2020-02-14 广州擎天材料科技有限公司 一种聚酯树脂及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4539688B2 (ja) * 2007-07-24 2010-09-08 Basfコーティングスジャパン株式会社 熱硬化性塗料組成物を改質する反応性希釈剤及びそれを用いた塗料組成物
CN104311806B (zh) * 2014-10-20 2016-05-11 浙江天松新材料股份有限公司 一种高流平透明粉末涂料用聚酯树脂及其制备方法
CN106046336B (zh) * 2016-07-15 2018-06-26 广州擎天材料科技有限公司 一种具有羟基酸封端的水溶性聚酯树脂及其制备方法
CN109293904A (zh) * 2018-09-03 2019-02-01 杭州福斯特应用材料股份有限公司 一种高耐候性聚酯树脂及用途
CN110204702B (zh) * 2019-07-08 2021-03-26 黄山华惠科技有限公司 一种基于tgic副产品制备的羟基聚酯树脂及制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5089598A (en) * 1990-10-05 1992-02-18 General Electric Company Endcapped, chain-extended and branched polyesters
CN106832236A (zh) * 2017-02-16 2017-06-13 广州擎天材料科技有限公司 一种四甲氧甲基甘脲固化纹理粉末涂料用的低羟值端羟基聚酯树脂及其制备方法
CN107868235A (zh) * 2017-10-30 2018-04-03 广州擎天材料科技有限公司 一种粉末涂料用双官能团聚酯树脂及其制备方法
CN108912317A (zh) * 2018-06-14 2018-11-30 中山市绿浪助剂有限公司 一种粉末涂料用端羟基聚酯树脂、制备方法及制得的粉末涂料
CN109517150A (zh) * 2018-11-27 2019-03-26 中国海洋石油集团有限公司 一种高耐候性高固体份聚酯树脂及其制备方法
CN110790909A (zh) * 2019-10-30 2020-02-14 广州擎天材料科技有限公司 一种聚酯树脂及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115850674A (zh) * 2022-12-14 2023-03-28 安徽神剑新材料股份有限公司 一种耐强碱聚酯树脂及其制备方法、耐强碱粉末涂料
CN115851084A (zh) * 2023-02-28 2023-03-28 山东千江粉末科技有限公司 一种高耐碱粉末涂料及其制备方法
CN115851084B (zh) * 2023-02-28 2023-05-12 山东千江粉末科技有限公司 一种高耐碱粉末涂料及其制备方法

Also Published As

Publication number Publication date
CN112384549A (zh) 2021-02-19
CN112384549B (zh) 2023-03-28
US20230174710A1 (en) 2023-06-08

Similar Documents

Publication Publication Date Title
CN112566990B (zh) 一种聚酯树脂组合物、粉末涂料及工件
WO2022032570A1 (zh) 一种端羟基聚酯树脂及其制备方法和应用
US20060122314A1 (en) Preparation of high solid polyester polyol/silica nanocomposite resin with low viscosity and related nanocomposite coatings
CN106634476B (zh) 一种环氧固化高柔韧性粉末涂料用聚酯树脂及其制备方法
JP3395375B2 (ja) 塗料用樹脂組成物
CN112062941A (zh) 一种6040型聚酯树脂及其制备方法
CN109517512B (zh) 一种高固体份双组份涂料及其应用
CN108484894B (zh) 一种高流平聚酯树脂及其制备方法应用
CN116285636B (zh) 一种低光泽聚氨酯粉末涂料及其制备方法
US5625028A (en) Thermosetting powder coating compositions
WO2020089132A1 (en) Low bake powder coating resins
US6005056A (en) Modified acryl copolymer
CN112654658B (zh) 一种水性聚酯共聚物及其制备方法与应用
CN112521838B (zh) 一种消光透明聚酯树脂组合物及其制备方法和应用
CN113603872A (zh) 一种超延时机械性能的聚酯树脂及其制备方法和应用
US4365046A (en) Process to control the curing reaction between a copolyester resin and an epoxide compound, and a composition formed for that process
CN111378102A (zh) 一种耐水解的水性聚酯树脂及其制备方法和应用
CN110903471A (zh) 一种粉末涂料用有机硅改性聚酯共聚物及其制备方法
CN115612078B (zh) 一种二乙烯三胺改性饱和聚酯树脂及其制备方法
USRE32029E (en) Process to control the curing reaction between a copolyester resin and an epoxide compound, and a composition formed for that process
TWI795096B (zh) 聚酯與塗料
CN115746313B (zh) 一种聚酯树脂、粉末涂料及其制备方法和应用
CN115466379B (zh) 一种超耐候聚酯树脂组合物及其制备方法和应用
JP2616271B2 (ja) 塗料用ポリエステル樹脂の製造法及び塗料
CN117586688A (zh) 一种固化温度低、流平性高的透明粉末涂料用聚酯树脂及制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20949069

Country of ref document: EP

Kind code of ref document: A1