WO2022021493A1 - 一种光伏系统安装太阳能板用平整度检测设备及其检测方法 - Google Patents

一种光伏系统安装太阳能板用平整度检测设备及其检测方法 Download PDF

Info

Publication number
WO2022021493A1
WO2022021493A1 PCT/CN2020/109528 CN2020109528W WO2022021493A1 WO 2022021493 A1 WO2022021493 A1 WO 2022021493A1 CN 2020109528 W CN2020109528 W CN 2020109528W WO 2022021493 A1 WO2022021493 A1 WO 2022021493A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
clamping
vertical
frame
solar panel
Prior art date
Application number
PCT/CN2020/109528
Other languages
English (en)
French (fr)
Inventor
陈磊
Original Assignee
南京国绿能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京国绿能源有限公司 filed Critical 南京国绿能源有限公司
Publication of WO2022021493A1 publication Critical patent/WO2022021493A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/28Measuring arrangements characterised by the use of mechanical techniques for measuring roughness or irregularity of surfaces

Definitions

  • the invention relates to a flatness detection device, in particular to a flatness detection device for installing a solar panel in a photovoltaic system.
  • Photovoltaic power generation is a technology that directly converts light energy into electrical energy by utilizing the photovoltaic effect of the semiconductor interface. It is mainly composed of solar panels (components), controllers and inverters, and the main components are composed of electronic components. After the solar cells are connected in series, they can be packaged and protected to form a large-area solar cell module, and then combined with power controllers and other components to form a photovoltaic power generation device.
  • the main principle of photovoltaic power generation is the photoelectric effect of semiconductors.
  • a photon irradiates a metal, its energy can be completely absorbed by an electron in the metal.
  • the energy absorbed by the electron is large enough to overcome the internal gravity of the metal to do work, escape from the metal surface and become a photoelectron.
  • a flatness detection device for installing solar panels in a photovoltaic system is provided to solve the above problems existing in the prior art.
  • a base part including a base, and a table top fixedly mounted on the base;
  • a conveying part comprising a conveying assembly arranged on one side of the base;
  • the detection part includes a detection table fixedly installed above the table top, a detection component arranged on one side of the detection table and fixedly installed on the table top, and a computer terminal electrically connected with the detection part;
  • the material conveying part includes a clamping component that is fixedly installed on the other side of the inspection table and fixedly installed above the table.
  • the conveying assembly includes a conveying assembly disposed on the side of the base, a blanking assembly fixedly installed at one end of the conveying assembly, and a loading assembly fixedly installed at the other end of the conveying assembly .
  • the transport assembly includes a transport conveyor frame, a transport motor fixedly installed on the side of the transport conveyor frame, and a conveyor belt drivingly connected with the transport motor; the transport assembly is designed mainly for driving solar panels to carry out The moving position is then used for the clamping component to adsorb and clamp the solar panel, and then the detection component to complete the detection of the solar panel.
  • the blanking assembly includes a blanking bracket fixedly connected to the transport conveyor, and a bottom blanking mechanism and a top blanking mechanism fixedly connected to the blanking frame; the bottom blanking mechanism and The top blanking mechanism is two sets of identical units set in mirror images, each set of identical units includes a blanking guide rod fixedly connected with the blanking support, and two sets of limit units with the same structure that sleeve the blanking guide rod , each set of limit units includes a blanking cylinder fixedly connected with the blanking support, a blanking output shaft inserted into the blanking cylinder, and a blanking limit block fixedly connected with the blanking output shaft;
  • the blanking limit block is sleeved with the blanking guide rod;
  • a blanking limit shell is fixedly installed above the blanking component;
  • the blanking component is designed mainly to perform blanking work on the backing plate equipped with the solar panel , and then complete the one-by-one blanking work of the backing plate equipped with solar panels, thereby avoiding the accumulation of materials
  • the feeding assembly includes a feeding cylinder fixedly connected with the transporting frame, a feeding input rod inserted into the feeding cylinder, and a feeding abutting block fixedly connected with the feeding input rod , a feeding frame abutting with the feeding abutting block and fixedly installed above the transport conveyor, and four sets of feeding limit blocks rotatably connected with the feeding frame; the feeding limit blocks A feeding rotating shaft is arranged between the feeding frame and the feeding frame; a feeding guide rod for inserting the transporting frame is arranged below the feeding block; a feeding limit is fixed above the feeding assembly
  • the design of the feeding component is mainly for stacking the backing plate with the solar panel after the inspection is completed, so that the backing plate with the solar panel after the inspection is completed after the stacking is completed. It is more convenient and neat to put it, and it is more convenient to count the number.
  • the detection table includes a detection frame, and a detection board fixedly mounted on the detection frame, and the detection board is a weight sensing board.
  • the clamping assembly includes a clamping column fixedly installed on the table top, a clamping transverse frame fixedly connected with the clamping column, and a clamp fixedly installed on the clamping transverse frame Take the horizontal cylinder, insert the clipping horizontal telescopic rod of the clipping horizontal cylinder, the clipping vertical frame that is fixedly connected with the clipping horizontal telescopic rod, and the clipping vertical frame that is fixedly installed on the clipping vertical frame
  • the transverse slide block is a clamping transverse slide rail that is adapted to the clamping transverse sliding block and is fixedly installed on the clamping transverse frame, and the clamping vertical cylinder fixedly connected with the clamping vertical frame, which is inserted into the clamping transverse slide rail.
  • a clamping vertical slide rail that is adapted to the clamping vertical slider and is fixedly connected to the clamping vertical frame
  • a clamping vertical cylinder that is fixedly connected to the clamping vertical connecting block, plugged
  • the clamping vertical telescopic rod of the clamping vertical cylinder, the clamping suction frame fixedly connected with the clamping vertical telescopic rod, and the clamping suction cup fixedly installed on the clamping suction frame, the design of the clamping component is mainly In order to carry out the mechanical feeding of the solar panel, and thus avoid fatigue caused by repetitive work due to long-term work due to manually placing the solar panel on the test table, the solar panel is placed in the wrong position on the test table, which will affect the test results. .
  • the detection assembly includes a moving cross frame fixedly installed on the table top, and a detection sensing element fixedly connected with the moving cross frame;
  • the moving cross frame includes a moving cross frame fixedly installed on the table top the detection frame, the detection transverse frame fixedly connected with the detection frame, the detection transverse motor fixedly connected with the detection transverse frame, the detection transverse screw drive connected with the detection transverse motor, and the detection transverse wire is sleeved a detection horizontal slider connected with the detection horizontal frame, a detection vertical frame fixedly connected with the detection horizontal slider, a detection vertical motor fixedly connected with the detection vertical frame, and the detection vertical frame fixedly connected with the detection vertical frame.
  • the detection vertical screw rod coaxially rotated by the vertical motor, the detection vertical frame sleeved on the detection vertical screw rod and slidably connected with the detection vertical frame, and the detection vertical motor fixedly connected with the detection vertical frame,
  • the detection vertical screw is inserted into the detection vertical motor, and the detection vertical sliding block is sleeved with the detection vertical screw and is slidably connected with the detection vertical frame.
  • the bumps and concave areas can prevent the power generation efficiency of the installed power generation system from being far less than the power generation efficiency of the design scheme due to the bumps and concave areas on the solar panel after installation, thereby avoiding the occurrence of repeated rework.
  • the detection sensing element includes a detection stable plate fixedly connected with the detection vertical sliding block, several groups of vibration damping rods fixedly connected with the detection stable plate, and fixedly connected with several groups of vibration reduction rods
  • the detection pressure sensing panel is designed to sense the pressure of each detection area of the solar panel. Since the pressures of the bumps and the depressions are different, the flatness of the solar panel is detected; while the traditional detection of flatness
  • the solution generally uses laser for detection, and the use of laser detection requires stricter requirements for the detection room, thereby increasing the cost of detection.
  • a detection method for flatness detection equipment for installing solar panels in a photovoltaic system comprising the following steps:
  • Step 1 When the flatness needs to be checked before the solar panel is installed, the backing plate with the solar panel is placed on the blanking limit shell.
  • the pads need to be fed one by one during testing. At this time, the pads with solar panels are fed one by one through the blanking assembly. At this time, the pads with solar panels are pressed against the bottom blanking mechanism.
  • the top unloading mechanism will abut the bottom unloading mechanism against the top layer of the backing plate with solar panels on the backing board with solar panels. At this time, by relaxing the bottom unloading mechanism, the bottom layer is equipped with solar panels.
  • the board falls onto the transport component, and then the top unloading mechanism is loosened. At this time, the backing plate with the solar panel against which the top unloading mechanism is held will fall, and then be resisted by the bottom unloading mechanism, and then reciprocate. work, and then make the pads with solar panels enter the conveying components one by one;
  • top unloading mechanism and the bottom unloading mechanism are the same units set up in two groups of mirror images, only the working process of the top unloading mechanism is described here.
  • the top unloading mechanism is operated by the unloading cylinder, which in turn drives the unloading output shaft to move, and then drive the blanking stopper to reciprocate along the blanking guide rod, so as to complete the abutting and loosening of the blanking stopper on the backing plate with the solar panel;
  • Step 2 After the backing plate with the solar panel enters the transport assembly, the backing plate with the solar panel is moved through the conveying assembly, and the transport motor is used to work, and then the drive belt is driven to work, which in turn drives the The backing plate with solar panels placed on the transmission belt moves until the backing plate with solar panels moves to the fitting position and stops working;
  • Step 3 At this time, the solar panel is adsorbed and clamped by the clamping component.
  • the clamping transverse cylinder is used to work, which in turn drives the clamping transverse telescopic rod to perform telescopic movement, and then drives the clamping vertical frame to clamp along the The horizontal slide rail moves, and then the vertical clamping cylinder works, which in turn drives the clamping vertical telescopic rod to perform telescopic movement, and then drives the clamping vertical connecting block to move along the clamping vertical slide rail, thereby completing the driving
  • the gripping suction cup moves to the moving position until the gripping suction cup moves to the top of the solar panel and stops working.
  • the gripping vertical cylinder works, which in turn drives the gripping vertical telescopic rod to perform telescopic movement, which in turn drives the gripping suction frame to move. , and then drive the clamping sucker to move, and then the clamping sucker absorbs the solar panel and moves it to the test table;
  • Step 4 the cross moving frame is used to drive the detection sensing element against the solar panel for detection.
  • the detection horizontal motor works, which in turn drives the detection transverse screw to rotate, and then drives the detection vertical plus for edge detection.
  • the horizontal frame slides, and then the detection vertical motor works, which in turn drives the detection vertical screw to rotate, which in turn drives the detection vertical frame to slide along the detection vertical frame, and then completes the driving of the detection sensing element to move to the detection table.
  • the detection vertical motor works again at this time, and then drives the detection vertical screw to rotate, which in turn drives the detection vertical sliding block to move along the detection vertical frame, and then drives the detection induction piece to be placed against the detection Solar panels on the stage, and then test the solar panels placed on the test stage;
  • Step 5 the movement of the detection vertical sliding block will drive the detection stabilization plate to move, which in turn drives the vibration reduction rod to move, and then drives the detection pressure sensing plate to squeeze the solar panel; when there are bumps above the solar panel, due to the solar energy The panel is under pressure, and the pressure at the convex point is greater. At this time, the pressure value of each detection area of the solar panel will be displayed on the computer terminal, and different colors will be used to distinguish it.
  • the computer terminal When the pressure value in the detection area is higher than the pre-entered error value , at this time, the computer terminal will display the area with excessive pressure value in red; and when the solar panel has depressions, the void position in the area will not be under pressure, and the computer terminal will use yellow to mark the void position, while The pressure value of the solar panel within the error will be marked in green, so that the inspection personnel can see it clearly;
  • Step 6 When the flatness test of the solar panel is completed, the clamping component will work again at this time, and then drive the solar panel after the test to move to the backing plate. At this time, the loading component will work, and then the detection will be carried out. After the solar panels are stacked, at this time, the tested solar panel backing plate is moved to the lower part of the feeding assembly through the transport component. At this time, the feeding cylinder is used to work, and then the feeding block is driven to resist the installation and testing. The mechanical energy of the back solar panel backing plate will rise until the solar panel backing plate installed with the detection will continue to move upward against the loading limit block. Keep swinging, and then stop working when the detected solar panel backing plate moves to the top of the loading limit block. At this time, the loading limit block will be driven and reset by the loading shaft, and then complete the detection of the solar panel installed with the detected solar energy. Board backing board card position work.
  • the invention discloses a flatness detection device for installing a solar panel in a photovoltaic system.
  • the invention detects the flatness of the solar panel by designing a detection component, thereby avoiding the bumps and depressions on the solar panel in the power generation system after the installation is completed.
  • the power generation efficiency in the area is far lower than the power generation efficiency of the design scheme, thereby avoiding the occurrence of repeated rework.
  • Figure 1 is a schematic structural diagram of the present invention.
  • FIG. 2 is a schematic diagram of the conveying assembly of the present invention.
  • Figure 3 is a schematic diagram of the blanking assembly of the present invention.
  • Figure 4 is a schematic diagram of the top blanking mechanism of the present invention.
  • Fig. 5 is a schematic diagram of the feeding assembly of the present invention.
  • FIG. 6 is a schematic diagram of the detection assembly of the present invention.
  • FIG. 7 is a schematic diagram of the clamping assembly of the present invention.
  • Reference numerals are: base 1, detection assembly 2, detection frame 21, detection transverse frame 22, detection transverse motor 23, detection transverse slider 24, detection vertical motor 25, detection vertical motor 26, detection vertical frame 27, Detecting vertical sliding block 28, detecting pressure sensing plate 29, damping rod 30, conveying assembly 3, transporting assembly 31, transporting bracket 32, unloading assembly 33, bottom unloading mechanism 331, top unloading mechanism 332, unloading cylinder 3321 , feeding limit block 3322, feeding guide rod 3323, feeding support 333, feeding limit shell 34, feeding assembly 35, feeding cylinder 351, feeding guide rod 352, feeding block 353, feeding Rotary shaft 354, feeding frame 355, feeding limit block 356, feeding limit shell 36, inspection table 4, clamping assembly 5, clamping column 51, clamping transverse frame 52, clamping transverse cylinder 53, clamping Transverse slide rail 54, clamping transverse sliding block 55, clamping vertical cylinder 56, clamping vertical frame 57, clamping vertical sliding rail 58, clamping vertical sliding block 59, clamping vertical connecting block 60, clamp Take the vertical cylinder 61, the clamping suction
  • the reason for this problem is that when the traditional photovoltaic power generation installs the solar panel, there is no pre-treatment of the solar energy.
  • the flatness of the panel is checked, and then during the installation, the flatness deviation is prone to occur, and after the installation is completed, the power generation efficiency is likely to be far less than the power generation efficiency that the design scheme can achieve.
  • the situation of repeated rework is avoided.
  • a flatness detection device for installing solar panels in a photovoltaic system comprising: a base 1, a detection component 2, a detection frame 21, a detection transverse frame 22, a detection transverse motor 23, a detection transverse slider 24, a detection vertical motor 25, a detection Vertical motor 26, detection vertical frame 27, detection vertical sliding block 28, detection pressure sensing plate 29, vibration damping rod 30, transmission component 3, transportation component 31, transportation bracket 32, unloading component 33, bottom unloading mechanism 331, Top unloading mechanism 332, unloading cylinder 3321, unloading limit block 3322, unloading guide rod 3323, unloading bracket 333, unloading limit shell 34, loading assembly 35, loading cylinder 351, loading guide rod 352, feeding block 353, feeding shaft 354, feeding frame 355, feeding limit block 356, feeding limit shell 36, testing table 4, clamping component 5, clamping column 51, clamping transverse frame 52.
  • the top of the base 1 is provided with a table
  • the detection table 4 is fixedly installed on the table
  • the detection assembly 2 is arranged on one side of the detection table 4 and fixedly installed on the table, so The detection part is electrically connected to the computer terminal
  • the clamping assembly 5 is fixedly installed on the other side of the detection table 4 and above the table.
  • the conveying assembly 3 includes a transport assembly 31 disposed on the side of the base 1 , a blanking assembly 33 fixedly installed at one end of the transport assembly 31 , and a loading assembly fixedly installed at the other end of the transport assembly 31 . 35.
  • the transport assembly 31 includes a transport conveyor frame, a transport motor fixedly installed on the side of the transport conveyor frame, and a conveyor belt drivingly connected with the transport motor; the transport assembly 31 is designed mainly to drive the solar panels to move positions, and then For the clamping assembly 5 to adsorb and clamp the solar panel, and then to complete the detection of the solar panel by the detection assembly 2; a transportation bracket 32 is fixedly installed below the transportation conveyor.
  • the blanking assembly 33 includes a blanking support 333 fixedly connected with the transporting frame, and a bottom blanking mechanism 331 and a top blanking mechanism 332 fixedly connected with the blanking support 333; the bottom blanking mechanism 331 and The top blanking mechanism 332 is two sets of identical units arranged in mirror images.
  • Each set of identical units includes a blanking guide rod 3323 that is fixedly connected to the blanking bracket 333 , and the two sets of the blanking guide rods 3323 have the same structure.
  • Each set of limit units includes a blanking cylinder 3321 fixedly connected with the blanking support 333, a blanking output shaft of the blanking cylinder 3321 is inserted, and a blanking output shaft is fixedly connected to the blanking output shaft.
  • the lowering limit block 3322; the lowering limit block 3322 is sleeved with the lowering guide rod 3323; the upper part of the lowering assembly 33 is fixedly installed with a lowering limit shell 34; the lowering assembly 33 is designed mainly for the purpose of Carry out the blanking work of the backing plate equipped with solar panels, and then complete the blanking work of the backing panels equipped with solar panels, so as to avoid material accumulation and collision caused by collective blanking.
  • the feeding assembly 35 includes a feeding cylinder 351 fixedly connected with the transporting frame, a feeding input rod inserted into the feeding cylinder 351, a feeding block 353 fixedly connected with the feeding input rod, and a feeding block 353 fixedly connected with the feeding input rod.
  • the feeding block 353 abuts against and is fixedly installed on the feeding frame 355 above the transporting frame, and four sets of feeding limit blocks 356 are rotatably connected with the feeding frame 355; the feeding limit A feeding rotating shaft 354 is arranged between the position block 356 and the feeding frame 355 ; a feeding guide rod 352 is provided below the feeding block 353 for inserting the transporting frame; the feeding assembly 35
  • the upper part is fixedly installed with the loading limit shell 36; the design of the loading assembly 35 is mainly to carry out the stacking work of the backing plate with the solar panel after the inspection is completed, so that the backing plate of the solar panel after the inspection is installed after the stacking is completed.
  • the board is more tidy, and at the same time, it is more convenient and tidy to handle and put in use, and it is more convenient to count the number.
  • the detection table 4 includes a detection frame, and a detection plate fixedly mounted on the detection frame, and the detection plate is a weight sensing plate.
  • the clamping assembly 5 includes a clamping column 51 fixedly installed on the table top, a clamping transverse frame 52 fixedly connected to the clamping column 51 , and a clamping transverse frame 52 fixedly installed on the clamping transverse frame 52 .
  • the transverse cylinder 53 is inserted into the clamping transverse telescopic rod of the clamping transverse cylinder 53, and the clamping vertical frame 57 fixedly connected with the clamping transverse telescopic rod is fixedly installed on the clamping vertical frame 57
  • the clamping transverse slider 55 is adapted to the clamping transverse slider 55 and is fixedly installed on the clamping transverse sliding rail 54 on the clamping transverse frame 52, and is fixedly connected with the clamping vertical frame 57
  • the clamping vertical cylinder 56 is inserted into the clamping vertical telescopic rod of the clamping vertical cylinder 56, and the clamping vertical connecting block 60 fixedly connected with the clamping vertical telescopic rod is connected with the clamping vertical telescopic rod.
  • the vertical connection block 60 is fixedly connected to the vertical clamping slider 59, and the vertical clamping rail 58 that is adapted to the vertical clamping slider 59 and is fixedly connected to the vertical frame 57 is connected to the vertical clamping rail 58.
  • the clamping vertical cylinder 61 fixedly connected to the clamping vertical connecting block 60 is inserted, the clamping vertical telescopic rod of the clamping vertical cylinder 61 is inserted, the clamping adsorption frame 63 fixedly connected to the clamping vertical telescopic rod, and
  • the clamping suction cup 64 fixedly installed on the clamping suction frame 63, the clamping component 5 is designed mainly for the mechanical feeding of the solar panel, thereby avoiding the occurrence of long-term problems caused by manually placing the solar panel on the inspection table 4.
  • the fatigue of repetitive work that occurs in the work makes the position of placing the solar panel on the inspection table 4 wrong, thereby affecting the inspection result.
  • the detection assembly 2 includes a cross moving frame fixedly installed on the table top, and a detection sensing element fixedly connected with the cross moving frame;
  • the cross moving frame includes a detection frame 21 fixedly installed on the table top,
  • the detection transverse frame 22 fixedly connected with the detection frame 21, the detection transverse motor 23 fixedly connected with the detection transverse frame 22, and the detection transverse screw drive connected with the detection transverse motor 23 are sleeved to the detection transverse
  • the detection horizontal slider 24 is a screw rod and is slidably connected to the detection transverse frame 22
  • the detection vertical frame 27 is fixedly connected to the detection lateral slider 24
  • the detection vertical frame 27 is fixedly connected to the detection vertical frame 27 .
  • the detection vertical motor 26 fixedly connected to the vertical frame, the detection vertical screw rod for plugging the detection vertical motor 26, and the detection vertical sliding block 28 for socketing the detection vertical screw rod and slidingly connected with the detection vertical frame, are designed
  • the detection component 2 is mainly used to detect the bumps and concave areas of each area of the solar panel, so as to avoid the power generation efficiency of the power generation system after the installation is far lower than the power generation efficiency of the design scheme due to the bumps and concave areas on the solar panel. Repeated rework occurs.
  • the detection sensing element includes a detection stable plate fixedly connected with the detection vertical sliding block 28, several groups of damping rods 30 fixedly connected with the detection stable plate, and a detection pressure fixedly connected with the several groups of vibration reduction rods 30.
  • the sensing plate 29 is designed to sense the pressure of each detection area of the solar panel. Since the pressure of the convex point and the concave point is different, the flatness of the solar panel is detected; while the traditional method of detecting the flatness Generally, laser detection is used for detection, but the requirements for the detection room are stricter when using laser detection, which increases the cost of detection.
  • the backing plate with the solar panel is placed on the unloading limit shell 34.
  • the backing plate of the solar panel needs to be fed one by one during detection.
  • the backing plate with the solar panel is fed one by one through the blanking assembly 33, and at this time, the bottom blanking mechanism 331 is used to hold the solar panel installed.
  • the top unloading mechanism 332 will press the bottom unloading mechanism 331 against the top layer of the backing board equipped with solar panels, at this time, by relaxing the bottom unloading mechanism 331, and then The backing plate with the solar panel on the bottom layer is dropped to the transport assembly 31, and then the top unloading mechanism 332 is loosened.
  • the backing board with the solar panel against which the top unloading mechanism 332 is placed will fall down, and then the top unloading mechanism 332 will fall.
  • the bottom unloading mechanism 331 is resisted, and then the reciprocating work is performed, so that the pads with solar panels are entered into the conveying assembly 3 one by one; and because the top unloading mechanism 332 and the bottom unloading mechanism 331 are two sets of mirror images. For the same unit, only the working process of the top blanking mechanism 332 will be described here.
  • the top blanking mechanism 332 is operated by the blanking cylinder 3321, which in turn drives the blanking output shaft to move, and then drives the blanking limit block 3322 to carry out blanking along the
  • the guide rod 3323 reciprocates, thereby completing the abutting and loosening of the blanking block 3322 on the backing plate with the solar panel; when the backing plate with the solar panel enters the transport assembly 31, it passes through the conveying assembly at this time. 3.
  • the backing plate stops working after moving to the fitting position; at this time, the solar panel is adsorbed and clamped by the clamping assembly 5, and the clamping transverse cylinder 53 is used for work at this time, which in turn drives the clamping transverse telescopic rod to perform telescopic movement, and then
  • the vertical frame 57 is driven to move along the horizontal slide rail 54, and then the vertical cylinder 56 is used to work, which in turn drives the vertical telescopic rod to perform telescopic movement, thereby driving the vertical connecting block 60.
  • the detection sensor is driven by the cross moving frame to press against the solar panel for detection.
  • the detection transverse motor 23 works, and then drives the detection transverse screw to rotate, and then drives the detection vertical plus to slide along the detection transverse frame 22. , and then work by the detection vertical motor 25, and then drive the detection The vertical screw rotates, and then drives the detection vertical frame to slide along the detection vertical frame 27, and then completes the movement of the detection sensing element to the top of the solar panel placed on the detection table 4.
  • the detection vertical motor 26 is used. work, and then drive the detection vertical screw to rotate, and then drive the detection vertical sliding block 28 to move along the detection vertical frame, and then drive the detection sensing element to press against the solar panel placed on the detection table 4, and then perform detection.
  • the solar panel on the stage 4 at this time, the movement of the detection vertical sliding block 28 will drive the detection stabilization plate to move, and then drive the vibration damping rod 30 to move, and then drive the detection pressure sensing plate 29 to squeeze the solar panel; when the top of the solar panel is When there are bumps, the pressure at the bumps is greater due to the pressure of the solar panel.
  • the pressure value of each detection area of the solar panel will be displayed on the computer terminal, and different colors will be used to distinguish them.
  • the computer terminal When the pressure value in the detection area is high At the pre-entered error value, the computer terminal will display the area with excessive pressure value in red; and when the solar panel has depressions, the hollow position of the area will not be under pressure, and the computer terminal will use The position of the cavity is marked in yellow, and the pressure value of the solar panel within the error will be marked in green, so that the inspectors can see it clearly; when the flatness inspection of the solar panel is completed, the components will be clamped at this time. 5. Carry out work, and then drive the solar panel after the inspection to move to the backing plate. At this time, the loading assembly 35 will work to stack the inspected solar panels. At this time, the transportation assembly 31 will be equipped with The detected solar panel backing plate moves to the bottom of the loading assembly 35.
  • the feeding cylinder 351 works, and then the feeding block 353 is driven to resist the mechanical energy of the detected solar panel backing plate and rise until the detected solar panel backing is installed.
  • the rear solar panel backing plate is pressed against the loading limit block 356 to continue the upward movement.
  • the loading limit block 356 will be swung against the detected solar panel backing plate, and then when the detected solar energy When the plate backing plate moves to the top of the loading limit block 356, it stops working.
  • the loading limit block 356 will be driven and reset by the loading shaft 354, thereby completing the detection of the solar panel backing plate after installation.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种光伏系统安装太阳能板用平整度检测设备,包括:基础部、传送部、检测部和运料部,其中基础部包括基座(1)、以及固定安装在基座(1)上的台面;传送部,包括设置在基座(1)一侧的传送组件(3);检测部包括固定安装在台面上方的检测台(4),设置在检测台(4)一侧且固定安装在台面上的检测组件(2),以及与检测部电性连接的电脑终端;运料部包括固定安装在检测台(4)另外一侧且固定安装在台面上方的夹取组件(5)。通过设计检测组件(2)进行对太阳能板的平整度进行检测,进而避免安装完成后的发电系统因太阳能板上的凸点及凹陷区域出现发电效率远不及设计方案的发电效率,进而避免了重复返工的情况出现。

Description

一种光伏系统安装太阳能板用平整度检测设备及其检测方法 技术领域
本发明涉及一种平整度检测设备,具体是一种光伏系统安装太阳能板用平整度检测设备。
背景技术
光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。主要由太阳电池板(组件)、控制器和逆变器三大部分组成,主要部件由电子元器件构成。太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上功率控制器等部件就形成了光伏发电装置。
光伏发电的主要原理是半导体的光电效应。光子照射到金属上时,它的能量可以被金属中某个电子全部吸收,电子吸收的能量足够大,能克服金属内部引力做功,离开金属表面逃逸出来,成为光电子。
而传统的光伏发电在安装太阳能板的时候,由于没有预先进行对太阳能板的平整度进行检查,进而在安装时,容易出现平整度偏差,进而在安装完成后容易出现发电效率远不及设计方案所能达到的发电效率。
技术问题
提供一种光伏系统安装太阳能板用平整度检测设备,以解决现有技术存在的上述问题。
技术解决方案
基础部,包括基座、以及固定安装在所述基座上的台面;
传送部,包括设置在所述基座一侧的传送组件;
检测部,包括固定安装在所述台面上方的检测台,设置在所述检测台一侧且固定安装在所述台面上的检测组件,以及与检测部电性连接的电脑终端;
运料部,包括固定安装在所述检测台另外一侧且固定安装在所述台面上方的夹取组件。
在进一步实施例中,所述传送组件包括设置在所述基座侧部的运输组件,固定安装在所述运输组件一端的下料组件,以及固定安装在所述运输组件另外一端的上料组件。
在进一步实施例中,所述运输组件包括运输传送架,固定安装在所述运输传送架侧部的运输电机,以及与所述运输电机传动连接的传送带;设计运输组件主要为了进行带动太阳能板进行移动位置,进而以供夹取组件进行对太阳能板的吸附夹取,进而进行由检测组件进行完成对太阳能板的检测工作。
在进一步实施例中,所述下料组件包括与运输传送架固定连接的下料支架,以及与所述下料支架固定连接的底部下料机构和顶部下料机构;所述底部下料机构和顶部下料机构为两组镜像设置的相同单元,每组相同单元包括与所述下料支架固定连接的下料导杆,以及套接所述下料导杆的两组结构相同的限位单元,每组限位单元包括与所述下料支架固定连接的下料气缸,插接所述下料气缸的下料输出轴,与所述下料输出轴固定连接的下料限位块;所述下料限位块套接所述下料导杆;所述下料组件的上方固定安装有下料限位壳;设计下料组件主要为了进行对装有太阳能板的垫板进行下料工作,进而完成对装有太阳能板的垫板的逐一下料工作,进而避免出现集体下料出现的物料堆积,以及碰撞现象。
在进一步实施例中,所述上料组件包括与运输传送架固定连接的上料气缸,插接所述上料气缸的上料输入杆,与所述上料输入杆固定连接的上料抵块,与所述上料抵块抵接且固定安装在所述运输传送架上方的上料框架,以及与所述上料框架转动连接的四组上料限位块;所述上料限位块与所述上料框架之间设有上料转轴;所述上料抵块的下方设有插接所述运输传送架的上料导杆;所述上料组件的上方固定安装有上料限位壳;设计上料组件主要为了进行对装有检测完成后太阳能板的垫板码垛工作,进而使得码垛完成后装有检测完成后太阳能板的垫板更加整齐,同时在使用时的拿放更加便捷与整齐,同时更加方便的清点数目。
在进一步实施例中,所述检测台包括检测框架,以及固定安装在所述检测框架上的检测板,所述检测板为重量感应板。
在进一步实施例中,所述夹取组件包括固定安装在所述台面上的夹取立柱,与所述夹取立柱固定连接的夹取横向架,固定安装在所述夹取横向架上的夹取横向气缸,插接所述夹取横向气缸的夹取横向伸缩杆,与所述夹取横向伸缩杆固定连接的夹取竖向架,固定安装在所述夹取竖向架上的夹取横向滑块,与所述夹取横向滑块适配且固定安装在所述夹取横向架上的夹取横向滑轨,与所述夹取竖向架固定连接的夹取竖向气缸,插接所述夹取竖向气缸的夹取竖向伸缩杆,与所述夹取竖向伸缩杆固定连接的夹取垂直连接块,与所述夹取垂直连接块固定连接的夹取竖向滑块,与所述夹取竖向滑块适配且与所述夹取竖向架固定连接的夹取竖向滑轨,与所述夹取垂直连接块固定连接的夹取垂直气缸,插接所述夹取垂直气缸的夹取垂直伸缩杆,与所述夹取垂直伸缩杆固定连接的夹取吸附架,以及固定安装在所述夹取吸附架上的夹取吸盘,设计夹取组件主要为了进行对太阳能板的机械上料,进而避免因人工将太阳能板放置在检测台上出现因长时间工作出现的重复性工作出现的疲劳使得将太阳能板放置检测台的位置错误,进而影响检测结果。
在进一步实施例中,所述检测组件包括固定安装在所述台面上的十字移动架,以及与所述十字移动架固定连接的检测感应件;所述十字移动架包括固定安装在所述台面上的检测架,与所述检测架固定连接的检测横向架,与所述检测横向架固定连接的检测横向电机,与所述检测横向电机传动连接的检测横向丝杆,套接所述检测横向丝杆且与所述检测横向架滑动连接的检测横向滑块,与所述检测横向滑块固定连接的检测竖向架,与所述检测竖向架固定连接的检测竖向电机,与所述检测竖向电机同轴转动的检测竖向丝杆,套接所述检测竖向丝杆且与所述检测竖向架滑动连接的检测垂直架,与所述检测垂直架固定连接的检测垂直电机,插接所述检测垂直电机的检测垂直丝杆,以及套接所述检测垂直丝杆且与所述检测垂直架滑动连接的检测垂直滑动块,设计检测组件主要为了进行检测太阳能板的各个区域的凸点以及凹陷区域,进而避免安装完成后的发电系统因太阳能板上的凸点及凹陷区域出现发电效率远不及设计方案的发电效率,进而避免了重复返工的情况出现。
在进一步实施例中,所述检测感应件包括与所述检测垂直滑动块固定连接的检测稳固板,与所述检测稳固板固定连接的若干组减振杆,以及与若干组减振杆固定连接的检测压力感应板,设计检测感应件主要为了进行对太阳能板的各个检测区域的压力进行感应,由于凸点与凹陷点的压力不同,因此进行检测出太阳能板的平整度;而传统检测平整度的方案一般使用激光进行检测,而使用激光检测对检测室的需求条件较为严格,进而增加了检测的成本。
一种光伏系统安装太阳能板用平整度检测设备的检测方法,包括以下步骤:
步骤1、当太阳能板安装前需要进行检测平整度时,此时将装有太阳能板的垫板放置在下料限位壳上,此时由于下料限位壳内存放有多组装有太阳能板的垫板,而检测时需要逐一进给,此时通过下料组件进行对装有太阳能板的垫板进行逐一进给,此时通过底部下料机构进行抵住装有太阳能板的垫板,而顶部下料机构将抵住底部下料机构抵住装有太阳能板的垫板的上面一层装有太阳能板的垫板,此时通过放松底部下料机构,进而使得底层装有太阳能板的垫板进行下落至运输组件上,此时再放松顶部下料机构,此时顶部下料机构抵住的装有太阳能板的垫板将进行下落,进而由底部下料机构进行抵住,进而进行往复工作,进而使得装有太阳能板的垫板进行逐一进入传送组件上;
而由于顶部下料机构和底部下料机构为两组镜像设置的相同单元,在此只赘述顶部下料机构的工作过程,顶部下料机构由下料气缸进行工作,进而带动下料输出轴进行运动,进而带动下料限位块进行沿下料导杆进行往复运动,进而完成下料限位块对装有太阳能板的垫板进行抵接与放松工作;
步骤2、当装有太阳能板的垫板进入至运输组件后,此时通过传送组件进行对装有太阳能板的垫板进行移动,此时通过运输电机进行工作,进而带动传动带进行工作,进而带动放置在传动带上的装有太阳能板的垫板进行移动,直至装有太阳能板的垫板移动至适配位置后停止工作;
步骤3、此时通过夹取组件进行对太阳能板的吸附夹取,此时由夹取横向气缸进行工作,进而带动夹取横向伸缩杆进行伸缩运动,进而带动夹取竖向架进行沿夹取横向滑轨进行移动,进而再由夹取竖向气缸进行工作,进而带动夹取竖向伸缩杆进行伸缩运动,进而带动夹取垂直连接块进行沿夹取竖向滑轨进行移动,进而完成带动夹取吸盘进行移动位置,直至夹取吸盘移动至太阳能板上方时停止工作,此时再由夹取垂直气缸进行工作,进而带动夹取垂直伸缩杆进行伸缩运动,进而带动夹取吸附架进行移动,进而带动夹取吸盘进行移动,进而由夹取吸盘进行吸附太阳能板进行移动至检测台上;
步骤4、此时再由十字移动架进行带动检测感应件进行抵住太阳能板进行检测,此时由检测横向电机进行工作,进而带动检测横向丝杆进行转动,进而带动检测竖向加进行沿检测横向架进行滑动,再由检测竖向电机进行工作,进而带动检测竖向丝杆进行转动,进而带动检测垂直架进行沿检测竖向架进行滑动,进而完成带动检测感应件移动至放置在检测台上的太阳能板上方,此时再由检测垂直电机进行工作,进而带动检测垂直丝杆进行转动,进而带动检测垂直滑动块进行沿检测垂直架进行移动,进而带动检测感应件进行抵住放置在检测台上的太阳能板,进而进行检测放置在检测台上的太阳能板;
步骤5、此时检测垂直滑动块的移动将带动检测稳固板进行移动,进而带动减振杆进行移动,进而带动检测压力感应板进行挤压太阳能板;当太阳能板上方具有凸点时,由于太阳能板受压力作用,凸点处的压力更大,此时电脑终端上将显示出太阳板各个检测区域的压力值,并用不同颜色进行区分,当检测区域中压力值高于预先录入的误差值时,此时电脑终端上通过红色进行显示该压力值过大区域;而当太阳能板上具有凹陷时,此时区域的空洞位置将不受压力,此时电脑终端将使用黄色进行标注空洞位置,而太阳能板的在误差之内的压力值,将通过绿色进行标注,进而以供检测人员进行醒目的查看;
步骤6、当太阳能板平整度检测完成后,此时再由夹取组件进行工作,进而带动检测完成后的太阳能板进行移动至垫板上,此时再由上料组件进行工作,进而将检测后的太阳能板进行码垛,此时通过运输组件将装有检测后的太阳能板垫板移动至上料组件下方,此时通过上料气缸进行工作,进而带动上料抵块进行抵住装有检测后的太阳能板垫板机械能上升,直至装有检测后的太阳能板垫板抵住上料限位块继续进行上升运动,此时上料限位块将被装有检测后的太阳能板垫板抵住摆动,进而当装有检测后的太阳能板垫板移动至上料限位块上方时,停止工作,此时上料限位块将由上料转轴进行带动复位,进而完成对装有检测后的太阳能板垫板卡位工作。
有益效果
本发明公开了一种光伏系统安装太阳能板用平整度检测设备,本发明通过设计检测组件进行对太阳能板的平整度进行检测,进而避免安装完成后的发电系统因太阳能板上的凸点及凹陷区域出现发电效率远不及设计方案的发电效率,进而避免了重复返工的情况出现。
附图说明
图1是本发明的结构示意图。
图2是本发明的传送组件示意图。
图3是本发明的下料组件示意图。
图4是本发明的顶部下料机构示意图。
图5是本发明的上料组件示意图。
图6是本发明的检测组件示意图。
图7是本发明的夹取组件示意图。
附图标记为:基座1、检测组件2、检测架21、检测横向架22、检测横向电机23、检测横向滑块24、检测竖向电机25、检测垂直电机26、检测竖向架27、检测垂直滑动块28、检测压力感应板29、减振杆30、传送组件3、运输组件31、运输支架32、下料组件33、底部下料机构331、顶部下料机构332、下料气缸3321、下料限位块3322、下料导杆3323、下料支架333、下料限位壳34、上料组件35、上料气缸351、上料导杆352、上料抵块353、上料转轴354、上料框架355、上料限位块356、上料限位壳36、检测台4、夹取组件5、夹取立柱51、夹取横向架52、夹取横向气缸53、夹取横向滑轨54、夹取横向滑块55、夹取竖向气缸56、夹取竖向架57、夹取竖向滑轨58、夹取竖向滑块59、夹取垂直连接块60、夹取垂直气缸61、夹取吸附架63、夹取吸盘64。
本发明的实施方式
经过申请人的研究分析,出现这一问题(安装后的光伏发电系统发电效率远达不到设计方案发电效率)的原因在于,传统的光伏发电在安装太阳能板的时候,由于没有预先进行对太阳能板的平整度进行检查,进而在安装时,容易出现平整度偏差,进而在安装完成后容易出现发电效率远不及设计方案所能达到的发电效率,本发明通过设计检测组件进行对太阳能板的平整度进行检测,进而避免安装完成后的发电系统因太阳能板上的凸点及凹陷区域出现发电效率远不及设计方案的发电效率,进而避免了重复返工的情况出现。
一种光伏系统安装太阳能板用平整度检测设备,包括:基座1、检测组件2、检测架21、检测横向架22、检测横向电机23、检测横向滑块24、检测竖向电机25、检测垂直电机26、检测竖向架27、检测垂直滑动块28、检测压力感应板29、减振杆30、传送组件3、运输组件31、运输支架32、下料组件33、底部下料机构331、顶部下料机构332、下料气缸3321、下料限位块3322、下料导杆3323、下料支架333、下料限位壳34、上料组件35、上料气缸351、上料导杆352、上料抵块353、上料转轴354、上料框架355、上料限位块356、上料限位壳36、检测台4、夹取组件5、夹取立柱51、夹取横向架52、夹取横向气缸53、夹取横向滑轨54、夹取横向滑块55、夹取竖向气缸56、夹取竖向架57、夹取竖向滑轨58、夹取竖向滑块59、夹取垂直连接块60、夹取垂直气缸61、夹取吸附架63、夹取吸盘64。
其中,所述基座1的上方设有台面,所述检测台4固定安装在所述台面上,所述检测组件2设置在所述检测台4一侧且固定安装在所述台面上,所述检测部电性连接电脑终端,所述夹取组件5固定安装在所述检测台4另外一侧且固定安装在所述台面上方。
所述传送组件3包括设置在所述基座1侧部的运输组件31,固定安装在所述运输组件31一端的下料组件33,以及固定安装在所述运输组件31另外一端的上料组件35。
所述运输组件31包括运输传送架,固定安装在所述运输传送架侧部的运输电机,以及与所述运输电机传动连接的传送带;设计运输组件31主要为了进行带动太阳能板进行移动位置,进而以供夹取组件5进行对太阳能板的吸附夹取,进而进行由检测组件2进行完成对太阳能板的检测工作;所述运输传送架的下方固定安装有运输支架32。
所述下料组件33包括与运输传送架固定连接的下料支架333,以及与所述下料支架333固定连接的底部下料机构331和顶部下料机构332;所述底部下料机构331和顶部下料机构332为两组镜像设置的相同单元,每组相同单元包括与所述下料支架333固定连接的下料导杆3323,以及套接所述下料导杆3323的两组结构相同的限位单元,每组限位单元包括与所述下料支架333固定连接的下料气缸3321,插接所述下料气缸3321的下料输出轴,与所述下料输出轴固定连接的下料限位块3322;所述下料限位块3322套接所述下料导杆3323;所述下料组件33的上方固定安装有下料限位壳34;设计下料组件33主要为了进行对装有太阳能板的垫板进行下料工作,进而完成对装有太阳能板的垫板的逐一下料工作,进而避免出现集体下料出现的物料堆积,以及碰撞现象。
所述上料组件35包括与运输传送架固定连接的上料气缸351,插接所述上料气缸351的上料输入杆,与所述上料输入杆固定连接的上料抵块353,与所述上料抵块353抵接且固定安装在所述运输传送架上方的上料框架355,以及与所述上料框架355转动连接的四组上料限位块356;所述上料限位块356与所述上料框架355之间设有上料转轴354;所述上料抵块353的下方设有插接所述运输传送架的上料导杆352;所述上料组件35的上方固定安装有上料限位壳36;设计上料组件35主要为了进行对装有检测完成后太阳能板的垫板码垛工作,进而使得码垛完成后装有检测完成后太阳能板的垫板更加整齐,同时在使用时的拿放更加便捷与整齐,同时更加方便的清点数目。
所述检测台4包括检测框架,以及固定安装在所述检测框架上的检测板,所述检测板为重量感应板。
所述夹取组件5包括固定安装在所述台面上的夹取立柱51,与所述夹取立柱51固定连接的夹取横向架52,固定安装在所述夹取横向架52上的夹取横向气缸53,插接所述夹取横向气缸53的夹取横向伸缩杆,与所述夹取横向伸缩杆固定连接的夹取竖向架57,固定安装在所述夹取竖向架57上的夹取横向滑块55,与所述夹取横向滑块55适配且固定安装在所述夹取横向架52上的夹取横向滑轨54,与所述夹取竖向架57固定连接的夹取竖向气缸56,插接所述夹取竖向气缸56的夹取竖向伸缩杆,与所述夹取竖向伸缩杆固定连接的夹取垂直连接块60,与所述夹取垂直连接块60固定连接的夹取竖向滑块59,与所述夹取竖向滑块59适配且与所述夹取竖向架57固定连接的夹取竖向滑轨58,与所述夹取垂直连接块60固定连接的夹取垂直气缸61,插接所述夹取垂直气缸61的夹取垂直伸缩杆,与所述夹取垂直伸缩杆固定连接的夹取吸附架63,以及固定安装在所述夹取吸附架63上的夹取吸盘64,设计夹取组件5主要为了进行对太阳能板的机械上料,进而避免因人工将太阳能板放置在检测台4上出现因长时间工作出现的重复性工作出现的疲劳使得将太阳能板放置检测台4的位置错误,进而影响检测结果。
所述检测组件2包括固定安装在所述台面上的十字移动架,以及与所述十字移动架固定连接的检测感应件;所述十字移动架包括固定安装在所述台面上的检测架21,与所述检测架21固定连接的检测横向架22,与所述检测横向架22固定连接的检测横向电机23,与所述检测横向电机23传动连接的检测横向丝杆,套接所述检测横向丝杆且与所述检测横向架22滑动连接的检测横向滑块24,与所述检测横向滑块24固定连接的检测竖向架27,与所述检测竖向架27固定连接的检测竖向电机25,与所述检测竖向电机25同轴转动的检测竖向丝杆,套接所述检测竖向丝杆且与所述检测竖向架27滑动连接的检测垂直架,与所述检测垂直架固定连接的检测垂直电机26,插接所述检测垂直电机26的检测垂直丝杆,以及套接所述检测垂直丝杆且与所述检测垂直架滑动连接的检测垂直滑动块28,设计检测组件2主要为了进行检测太阳能板的各个区域的凸点以及凹陷区域,进而避免安装完成后的发电系统因太阳能板上的凸点及凹陷区域出现发电效率远不及设计方案的发电效率,进而避免了重复返工的情况出现。
所述检测感应件包括与所述检测垂直滑动块28固定连接的检测稳固板,与所述检测稳固板固定连接的若干组减振杆30,以及与若干组减振杆30固定连接的检测压力感应板29,设计检测感应件主要为了进行对太阳能板的各个检测区域的压力进行感应,由于凸点与凹陷点的压力不同,因此进行检测出太阳能板的平整度;而传统检测平整度的方案一般使用激光进行检测,而使用激光检测对检测室的需求条件较为严格,进而增加了检测的成本。
工作原理说明:当太阳能板安装前需要进行检测平整度时,此时将装有太阳能板的垫板放置在下料限位壳34上,此时由于下料限位壳34内存放有多组装有太阳能板的垫板,而检测时需要逐一进给,此时通过下料组件33进行对装有太阳能板的垫板进行逐一进给,此时通过底部下料机构331进行抵住装有太阳能板的垫板,而顶部下料机构332将抵住底部下料机构331抵住装有太阳能板的垫板的上面一层装有太阳能板的垫板,此时通过放松底部下料机构331,进而使得底层装有太阳能板的垫板进行下落至运输组件31上,此时再放松顶部下料机构332,此时顶部下料机构332抵住的装有太阳能板的垫板将进行下落,进而由底部下料机构331进行抵住,进而进行往复工作,进而使得装有太阳能板的垫板进行逐一进入传送组件3上;而由于顶部下料机构332和底部下料机构331为两组镜像设置的相同单元,在此只赘述顶部下料机构332的工作过程,顶部下料机构332由下料气缸3321进行工作,进而带动下料输出轴进行运动,进而带动下料限位块3322进行沿下料导杆3323进行往复运动,进而完成下料限位块3322对装有太阳能板的垫板进行抵接与放松工作;当装有太阳能板的垫板进入至运输组件31后,此时通过传送组件3进行对装有太阳能板的垫板进行移动,此时通过运输电机进行工作,进而带动传动带进行工作,进而带动放置在传动带上的装有太阳能板的垫板进行移动,直至装有太阳能板的垫板移动至适配位置后停止工作;此时通过夹取组件5进行对太阳能板的吸附夹取,此时由夹取横向气缸53进行工作,进而带动夹取横向伸缩杆进行伸缩运动,进而带动夹取竖向架57进行沿夹取横向滑轨54进行移动,进而再由夹取竖向气缸56进行工作,进而带动夹取竖向伸缩杆进行伸缩运动,进而带动夹取垂直连接块60进行沿夹取竖向滑轨58进行移动,进而完成带动夹取吸盘64进行移动位置,直至夹取吸盘64移动至太阳能板上方时停止工作,此时再由夹取垂直气缸61进行工作,进而带动夹取垂直伸缩杆进行伸缩运动,进而带动夹取吸附架63进行移动,进而带动夹取吸盘64进行移动,进而由夹取吸盘64进行吸附太阳能板进行移动至检测台4上;此时再由十字移动架进行带动检测感应件进行抵住太阳能板进行检测,此时由检测横向电机23进行工作,进而带动检测横向丝杆进行转动,进而带动检测竖向加进行沿检测横向架22进行滑动,再由检测竖向电机25进行工作,进而带动检测竖向丝杆进行转动,进而带动检测垂直架进行沿检测竖向架27进行滑动,进而完成带动检测感应件移动至放置在检测台4上的太阳能板上方,此时再由检测垂直电机26进行工作,进而带动检测垂直丝杆进行转动,进而带动检测垂直滑动块28进行沿检测垂直架进行移动,进而带动检测感应件进行抵住放置在检测台4上的太阳能板,进而进行检测放置在检测台4上的太阳能板;此时检测垂直滑动块28的移动将带动检测稳固板进行移动,进而带动减振杆30进行移动,进而带动检测压力感应板29进行挤压太阳能板;当太阳能板上方具有凸点时,由于太阳能板受压力作用,凸点处的压力更大,此时电脑终端上将显示出太阳板各个检测区域的压力值,并用不同颜色进行区分,当检测区域中压力值高于预先录入的误差值时,此时电脑终端上通过红色进行显示该压力值过大区域;而当太阳能板上具有凹陷时,此时区域的空洞位置将不受压力,此时电脑终端将使用黄色进行标注空洞位置,而太阳能板的在误差之内的压力值,将通过绿色进行标注,进而以供检测人员进行醒目的查看;当太阳能板平整度检测完成后,此时再由夹取组件5进行工作,进而带动检测完成后的太阳能板进行移动至垫板上,此时再由上料组件35进行工作,进而将检测后的太阳能板进行码垛,此时通过运输组件31将装有检测后的太阳能板垫板移动至上料组件35下方,此时通过上料气缸351进行工作,进而带动上料抵块353进行抵住装有检测后的太阳能板垫板机械能上升,直至装有检测后的太阳能板垫板抵住上料限位块356继续进行上升运动,此时上料限位块356将被装有检测后的太阳能板垫板抵住摆动,进而当装有检测后的太阳能板垫板移动至上料限位块356上方时,停止工作,此时上料限位块356将由上料转轴354进行带动复位,进而完成对装有检测后的太阳能板垫板卡位工作。
以上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种等同变换,这些等同变换均属于本发明的保护范围。

Claims (10)

  1. 一种光伏系统安装太阳能板用平整度检测设备,其特征是,包括:
    基础部,包括基座、以及固定安装在所述基座上的台面;
    传送部,包括设置在所述基座一侧的传送组件;
    检测部,包括固定安装在所述台面上方的检测台,设置在所述检测台一侧且固定安装在所述台面上的检测组件,以及与检测部电性连接的电脑终端;
    运料部,包括固定安装在所述检测台另外一侧且固定安装在所述台面上方的夹取组件。
  2. 根据权利要求1所述的一种光伏系统安装太阳能板用平整度检测设备,其特征是:所述传送组件包括设置在所述基座侧部的运输组件,固定安装在所述运输组件一端的下料组件,以及固定安装在所述运输组件另外一端的上料组件。
  3. 根据权利要求2所述的一种光伏系统安装太阳能板用平整度检测设备,其特征是:
    所述运输组件包括运输传送架,固定安装在所述运输传送架侧部的运输电机,以及与所述运输电机传动连接的传送带。
  4. 根据权利要求2所述的一种光伏系统安装太阳能板用平整度检测设备,其特征是:所述下料组件包括与运输传送架固定连接的下料支架,以及与所述下料支架固定连接的底部下料机构和顶部下料机构;所述底部下料机构和顶部下料机构为两组镜像设置的相同单元,每组相同单元包括与所述下料支架固定连接的下料导杆,以及套接所述下料导杆的两组结构相同的限位单元,每组限位单元包括与所述下料支架固定连接的下料气缸,插接所述下料气缸的下料输出轴,与所述下料输出轴固定连接的下料限位块;所述下料限位块套接所述下料导杆;所述下料组件的上方固定安装有下料限位壳。
  5. 根据权利要求2所述的一种光伏系统安装太阳能板用平整度检测设备,其特征是:所述上料组件包括与运输传送架固定连接的上料气缸,插接所述上料气缸的上料输入杆,与所述上料输入杆固定连接的上料抵块,与所述上料抵块抵接且固定安装在所述运输传送架上方的上料框架,以及与所述上料框架转动连接的四组上料限位块;所述上料限位块与所述上料框架之间设有上料转轴;所述上料抵块的下方设有插接所述运输传送架的上料导杆;所述上料组件的上方固定安装有上料限位壳。
  6. 根据权利要求1所述的一种光伏系统安装太阳能板用平整度检测设备,其特征是:所述检测台包括检测框架,以及固定安装在所述检测框架上的检测板,所述检测板为重量感应板。
  7. 根据权利要求1所述的一种光伏系统安装太阳能板用平整度检测设备,其特征是:所述夹取组件包括固定安装在所述台面上的夹取立柱,与所述夹取立柱固定连接的夹取横向架,固定安装在所述夹取横向架上的夹取横向气缸,插接所述夹取横向气缸的夹取横向伸缩杆,与所述夹取横向伸缩杆固定连接的夹取竖向架,固定安装在所述夹取竖向架上的夹取横向滑块,与所述夹取横向滑块适配且固定安装在所述夹取横向架上的夹取横向滑轨,与所述夹取竖向架固定连接的夹取竖向气缸,插接所述夹取竖向气缸的夹取竖向伸缩杆,与所述夹取竖向伸缩杆固定连接的夹取垂直连接块,与所述夹取垂直连接块固定连接的夹取竖向滑块,与所述夹取竖向滑块适配且与所述夹取竖向架固定连接的夹取竖向滑轨,与所述夹取垂直连接块固定连接的夹取垂直气缸,插接所述夹取垂直气缸的夹取垂直伸缩杆,与所述夹取垂直伸缩杆固定连接的夹取吸附架,以及固定安装在所述夹取吸附架上的夹取吸盘。
  8. 根据权利要求1所述的一种光伏系统安装太阳能板用平整度检测设备,其特征是:所述检测组件包括固定安装在所述台面上的十字移动架,以及与所述十字移动架固定连接的检测感应件;所述十字移动架包括固定安装在所述台面上的检测架,与所述检测架固定连接的检测横向架,与所述检测横向架固定连接的检测横向电机,与所述检测横向电机传动连接的检测横向丝杆,套接所述检测横向丝杆且与所述检测横向架滑动连接的检测横向滑块,与所述检测横向滑块固定连接的检测竖向架,与所述检测竖向架固定连接的检测竖向电机,与所述检测竖向电机同轴转动的检测竖向丝杆,套接所述检测竖向丝杆且与所述检测竖向架滑动连接的检测垂直架,与所述检测垂直架固定连接的检测垂直电机,插接所述检测垂直电机的检测垂直丝杆,以及套接所述检测垂直丝杆且与所述检测垂直架滑动连接的检测垂直滑动块。
  9. 根据权利要求8所述的一种光伏系统安装太阳能板用平整度检测设备,其特征是:所述检测感应件包括与所述检测垂直滑动块固定连接的检测稳固板,与所述检测稳固板固定连接的若干组减振杆,以及与若干组减振杆固定连接的检测压力感应板。
  10. 一种光伏系统安装太阳能板用平整度检测设备的检测方法,其特征是,包括以下步骤:
    步骤1、当太阳能板安装前需要进行检测平整度时,此时将装有太阳能板的垫板放置在下料限位壳上,此时由于下料限位壳内存放有多组装有太阳能板的垫板,而检测时需要逐一进给,此时通过下料组件进行对装有太阳能板的垫板进行逐一进给,此时通过底部下料机构进行抵住装有太阳能板的垫板,而顶部下料机构将抵住底部下料机构抵住装有太阳能板的垫板的上面一层装有太阳能板的垫板,此时通过放松底部下料机构,进而使得底层装有太阳能板的垫板进行下落至运输组件上,此时再放松顶部下料机构,此时顶部下料机构抵住的装有太阳能板的垫板将进行下落,进而由底部下料机构进行抵住,进而进行往复工作,进而使得装有太阳能板的垫板进行逐一进入传送组件上;
    而由于顶部下料机构和底部下料机构为两组镜像设置的相同单元,在此只赘述顶部下料机构的工作过程,顶部下料机构由下料气缸进行工作,进而带动下料输出轴进行运动,进而带动下料限位块进行沿下料导杆进行往复运动,进而完成下料限位块对装有太阳能板的垫板进行抵接与放松工作;
    步骤2、当装有太阳能板的垫板进入至运输组件后,此时通过传送组件进行对装有太阳能板的垫板进行移动,此时通过运输电机进行工作,进而带动传动带进行工作,进而带动放置在传动带上的装有太阳能板的垫板进行移动,直至装有太阳能板的垫板移动至适配位置后停止工作;
    步骤3、此时通过夹取组件进行对太阳能板的吸附夹取,此时由夹取横向气缸进行工作,进而带动夹取横向伸缩杆进行伸缩运动,进而带动夹取竖向架进行沿夹取横向滑轨进行移动,进而再由夹取竖向气缸进行工作,进而带动夹取竖向伸缩杆进行伸缩运动,进而带动夹取垂直连接块进行沿夹取竖向滑轨进行移动,进而完成带动夹取吸盘进行移动位置,直至夹取吸盘移动至太阳能板上方时停止工作,此时再由夹取垂直气缸进行工作,进而带动夹取垂直伸缩杆进行伸缩运动,进而带动夹取吸附架进行移动,进而带动夹取吸盘进行移动,进而由夹取吸盘进行吸附太阳能板进行移动至检测台上;
    步骤4、此时再由十字移动架进行带动检测感应件进行抵住太阳能板进行检测,此时由检测横向电机进行工作,进而带动检测横向丝杆进行转动,进而带动检测竖向加进行沿检测横向架进行滑动,再由检测竖向电机进行工作,进而带动检测竖向丝杆进行转动,进而带动检测垂直架进行沿检测竖向架进行滑动,进而完成带动检测感应件移动至放置在检测台上的太阳能板上方,此时再由检测垂直电机进行工作,进而带动检测垂直丝杆进行转动,进而带动检测垂直滑动块进行沿检测垂直架进行移动,进而带动检测感应件进行抵住放置在检测台上的太阳能板,进而进行检测放置在检测台上的太阳能板;
    步骤5、此时检测垂直滑动块的移动将带动检测稳固板进行移动,进而带动减振杆进行移动,进而带动检测压力感应板进行挤压太阳能板;当太阳能板上方具有凸点时,由于太阳能板受压力作用,凸点处的压力更大,此时电脑终端上将显示出太阳板各个检测区域的压力值,并用不同颜色进行区分,当检测区域中压力值高于预先录入的误差值时,此时电脑终端上通过红色进行显示该压力值过大区域;而当太阳能板上具有凹陷时,此时区域的空洞位置将不受压力,此时电脑终端将使用黄色进行标注空洞位置,而太阳能板的在误差之内的压力值,将通过绿色进行标注,进而以供检测人员进行醒目的查看;
    步骤6、当太阳能板平整度检测完成后,此时再由夹取组件进行工作,进而带动检测完成后的太阳能板进行移动至垫板上,此时再由上料组件进行工作,进而将检测后的太阳能板进行码垛,此时通过运输组件将装有检测后的太阳能板垫板移动至上料组件下方,此时通过上料气缸进行工作,进而带动上料抵块进行抵住装有检测后的太阳能板垫板机械能上升,直至装有检测后的太阳能板垫板抵住上料限位块继续进行上升运动,此时上料限位块将被装有检测后的太阳能板垫板抵住摆动,进而当装有检测后的太阳能板垫板移动至上料限位块上方时,停止工作,此时上料限位块将由上料转轴进行带动复位,进而完成对装有检测后的太阳能板垫板卡位工作。
PCT/CN2020/109528 2020-07-31 2020-08-17 一种光伏系统安装太阳能板用平整度检测设备及其检测方法 WO2022021493A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010758865.X 2020-07-31
CN202010758865.XA CN111947554A (zh) 2020-07-31 2020-07-31 一种光伏系统安装太阳能板用平整度检测设备及其检测方法

Publications (1)

Publication Number Publication Date
WO2022021493A1 true WO2022021493A1 (zh) 2022-02-03

Family

ID=73339862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109528 WO2022021493A1 (zh) 2020-07-31 2020-08-17 一种光伏系统安装太阳能板用平整度检测设备及其检测方法

Country Status (2)

Country Link
CN (1) CN111947554A (zh)
WO (1) WO2022021493A1 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114234899A (zh) * 2022-02-14 2022-03-25 江苏丰天新能源科技有限公司 一种光伏设备的检测设备
CN114674205A (zh) * 2022-03-25 2022-06-28 中国建筑第五工程局有限公司 一种具有升降功能的绿色建筑装修墙面平整度检测装置
CN114985278A (zh) * 2022-05-30 2022-09-02 苏州欧瑞杰智能科技有限公司 一种基于环行线运输的金属件检测设备
CN115078785A (zh) * 2022-06-30 2022-09-20 深圳市瑞亿科技电子有限公司 一种pcba加工用电子整机测试装置
CN115106302A (zh) * 2022-06-29 2022-09-27 深圳市海铭德科技有限公司 用于分拣纱布的设备
CN115321805A (zh) * 2022-08-24 2022-11-11 安徽明玻玻璃科技有限公司 基于定位机构的钢化玻璃生产用切割机及其定位方法
CN115609259A (zh) * 2022-11-07 2023-01-17 盖文智控技术(深圳)有限公司 一种基于视觉检测的光伏器件组装设备
CN116067792A (zh) * 2023-02-21 2023-05-05 江西华盛电子科技有限公司 一种led屏生产用抗压检测装置
CN116374531A (zh) * 2023-05-10 2023-07-04 深圳市广晟德科技发展有限公司 一种光伏逆变器空中运输设备
CN116539533A (zh) * 2023-06-28 2023-08-04 昆山佰易仪器设备有限公司 Pcba生产aoi检测装置
CN116779513A (zh) * 2023-08-22 2023-09-19 无锡市爱维丝科技有限公司 一种太阳能电池片上料装置
CN117300387A (zh) * 2023-11-28 2023-12-29 武汉特种工业泵厂有限公司 一种用于蜗壳泵生产加工的激光切割装置及工艺
CN118089609A (zh) * 2024-04-25 2024-05-28 北京京燃凌云燃气设备有限公司 一种pe闸板阀门加工用外轮廓检测设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112556554B (zh) * 2021-01-05 2022-08-12 华能太仓发电有限责任公司 一种光伏太阳能板平整度检测装置
CN115001397B (zh) * 2022-07-18 2022-11-01 苏州万可顶钇电源有限公司 一种大容量光伏电站移动式检测平台

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6275032B1 (en) * 1997-12-25 2001-08-14 System Seiko Co., Ltd. Surface flatness measuring apparatus
JP2001337132A (ja) * 2000-05-30 2001-12-07 Sony Corp 半導体部品の試験方法及び試験装置
CN105438829A (zh) * 2014-08-21 2016-03-30 大族激光科技产业集团股份有限公司 一种自动上下料装置
CN206347976U (zh) * 2016-11-18 2017-07-21 大族激光科技产业集团股份有限公司 一种非接触式表面平面度光学测量设备
CN209326620U (zh) * 2019-02-13 2019-08-30 刘能 一种全自动端子平整度检测设备
CN111457867A (zh) * 2020-05-15 2020-07-28 南京精益通信息技术有限公司 一种电子元件壳体平整度检测装置及其检测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6275032B1 (en) * 1997-12-25 2001-08-14 System Seiko Co., Ltd. Surface flatness measuring apparatus
JP2001337132A (ja) * 2000-05-30 2001-12-07 Sony Corp 半導体部品の試験方法及び試験装置
CN105438829A (zh) * 2014-08-21 2016-03-30 大族激光科技产业集团股份有限公司 一种自动上下料装置
CN206347976U (zh) * 2016-11-18 2017-07-21 大族激光科技产业集团股份有限公司 一种非接触式表面平面度光学测量设备
CN209326620U (zh) * 2019-02-13 2019-08-30 刘能 一种全自动端子平整度检测设备
CN111457867A (zh) * 2020-05-15 2020-07-28 南京精益通信息技术有限公司 一种电子元件壳体平整度检测装置及其检测方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114234899A (zh) * 2022-02-14 2022-03-25 江苏丰天新能源科技有限公司 一种光伏设备的检测设备
CN114674205A (zh) * 2022-03-25 2022-06-28 中国建筑第五工程局有限公司 一种具有升降功能的绿色建筑装修墙面平整度检测装置
CN114985278A (zh) * 2022-05-30 2022-09-02 苏州欧瑞杰智能科技有限公司 一种基于环行线运输的金属件检测设备
CN115106302A (zh) * 2022-06-29 2022-09-27 深圳市海铭德科技有限公司 用于分拣纱布的设备
CN115106302B (zh) * 2022-06-29 2024-04-19 深圳市海铭德科技有限公司 用于分拣纱布的设备
CN115078785A (zh) * 2022-06-30 2022-09-20 深圳市瑞亿科技电子有限公司 一种pcba加工用电子整机测试装置
CN115321805B (zh) * 2022-08-24 2023-12-26 安徽明玻玻璃科技有限公司 基于定位机构的钢化玻璃生产用切割机及其定位方法
CN115321805A (zh) * 2022-08-24 2022-11-11 安徽明玻玻璃科技有限公司 基于定位机构的钢化玻璃生产用切割机及其定位方法
CN115609259A (zh) * 2022-11-07 2023-01-17 盖文智控技术(深圳)有限公司 一种基于视觉检测的光伏器件组装设备
CN116067792A (zh) * 2023-02-21 2023-05-05 江西华盛电子科技有限公司 一种led屏生产用抗压检测装置
CN116067792B (zh) * 2023-02-21 2024-03-12 江西华盛电子科技有限公司 一种led屏生产用抗压检测装置
CN116374531A (zh) * 2023-05-10 2023-07-04 深圳市广晟德科技发展有限公司 一种光伏逆变器空中运输设备
CN116539533B (zh) * 2023-06-28 2023-09-08 昆山佰易仪器设备有限公司 Pcba生产aoi检测装置
CN116539533A (zh) * 2023-06-28 2023-08-04 昆山佰易仪器设备有限公司 Pcba生产aoi检测装置
CN116779513B (zh) * 2023-08-22 2023-10-27 无锡市爱维丝科技有限公司 一种太阳能电池片上料装置
CN116779513A (zh) * 2023-08-22 2023-09-19 无锡市爱维丝科技有限公司 一种太阳能电池片上料装置
CN117300387A (zh) * 2023-11-28 2023-12-29 武汉特种工业泵厂有限公司 一种用于蜗壳泵生产加工的激光切割装置及工艺
CN117300387B (zh) * 2023-11-28 2024-02-09 武汉特种工业泵厂有限公司 一种用于蜗壳泵生产加工的激光切割装置及工艺
CN118089609A (zh) * 2024-04-25 2024-05-28 北京京燃凌云燃气设备有限公司 一种pe闸板阀门加工用外轮廓检测设备

Also Published As

Publication number Publication date
CN111947554A (zh) 2020-11-17

Similar Documents

Publication Publication Date Title
WO2022021493A1 (zh) 一种光伏系统安装太阳能板用平整度检测设备及其检测方法
WO2022021491A1 (zh) 一种光伏系统安装太阳能板用抗撞击检测设备及其检测方法
WO2022021490A1 (zh) 一种光伏系统安装太阳能板用尺寸检测设备及其检测方法
CN108773676B (zh) 一种面板检测装置
CN109406538A (zh) 手机外观检测系统
CN112007868A (zh) 一种芯片电容器检测设备
CN114054387B (zh) 一种气密性测试设备
CN108855962B (zh) 一种用于压入电陶瓷微粒电容的治具板的检测机
CN206184802U (zh) 一种pcb成品自动检测装置
CN103837112A (zh) 刹车盘尺寸检测设备
CN103787081A (zh) 一种零件抓取检验机构
CN110320686B (zh) Uled屏幕基板检测/测量设备的预对位装置及其使用方法
WO2021218134A1 (zh) 一种多通道阻差均衡及聚能快固一体机
WO2022021492A1 (zh) 一种光伏系统安装太阳能板用磨损实验设备及其实验方法
WO2023216739A1 (zh) 多层交错式料盒收纳装置、下料分选设备和分选系统
CN114560292A (zh) 集成电路芯片平移式分选机自动检测装置及检测方法
CN209113086U (zh) 双工位芯片自动上下料装置
CN112676672A (zh) 一种导热块自动组装上料机
CN203753965U (zh) 一种零件抓取检验机构
CN209296608U (zh) 手机外观检测系统
CN111137640A (zh) 一种屏幕色彩检查机
CN217433624U (zh) 服务器主板自动组装测试生产线
KR100994199B1 (ko) 태양전지용 웨이퍼 프린트 장치
CN110549087B (zh) 一种处理器框架自动安装设备
CN211887970U (zh) 一种芯片自动检查外观装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20946589

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20946589

Country of ref document: EP

Kind code of ref document: A1