WO2022019179A1 - ゴム粒子、複合粒子及びそれらの製造方法 - Google Patents

ゴム粒子、複合粒子及びそれらの製造方法 Download PDF

Info

Publication number
WO2022019179A1
WO2022019179A1 PCT/JP2021/026331 JP2021026331W WO2022019179A1 WO 2022019179 A1 WO2022019179 A1 WO 2022019179A1 JP 2021026331 W JP2021026331 W JP 2021026331W WO 2022019179 A1 WO2022019179 A1 WO 2022019179A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
rubber
rubber particles
particles
molecule
Prior art date
Application number
PCT/JP2021/026331
Other languages
English (en)
French (fr)
Inventor
祥士 岡部
貴仁 大木
良範 井口
俊司 青木
恒雄 木村
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to KR1020237005491A priority Critical patent/KR20230041743A/ko
Priority to US18/014,818 priority patent/US20230295426A1/en
Priority to EP21845792.7A priority patent/EP4186943A1/en
Priority to CN202180059700.6A priority patent/CN116157449A/zh
Priority to JP2022537944A priority patent/JPWO2022019179A1/ja
Publication of WO2022019179A1 publication Critical patent/WO2022019179A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • C08G63/912Polymers modified by chemical after-treatment derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/695Polyesters containing atoms other than carbon, hydrogen and oxygen containing silicon
    • C08G63/6952Polyesters containing atoms other than carbon, hydrogen and oxygen containing silicon derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/445Block-or graft-polymers containing polysiloxane sequences containing polyester sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/126Polymer particles coated by polymer, e.g. core shell structures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/128Polymer particles coated by inorganic and non-macromolecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/10Block- or graft-copolymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/10Block- or graft-copolymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes

Definitions

  • the present invention relates to rubber particles, composite particles and a method for producing them.
  • Silicone rubber particles with rubber elasticity are used as a stress relaxation agent for resin.
  • resins such as epoxy resins used for packaging electronic and electrical parts
  • rubber particles may be added to prevent the packaging from cracking even if stress is applied to the package due to expansion due to heat generation of the electrical parts. It is done. It is also used in cosmetics for the purpose of imparting a soft feel, a feeling of use such as smoothness, and extensibility.
  • silicone rubber particles composite particles in which the silicone rubber particles are coated with a polyorganosylsesquioxane resin (Patent Document 1: JP-A-7-196815) and silicone rubber particles are coated with metal oxide fine particles such as silica.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 4-348143
  • These composite particles are characterized by low cohesiveness and high dispersibility.
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2001-40214 describes an organic compound having an aliphatic saturated bond and silicon-containing silicon having a silicon atom-bonded hydrogen atom. Described are organic crosslinked particles obtained by cross-linking a liquid composition composed of an organic compound by a hydrosilylation reaction.
  • Japanese Unexamined Patent Publication No. 7-196815 Japanese Unexamined Patent Publication No. 4-348143 Japanese Unexamined Patent Publication No. 2001-40214
  • silicone rubber particles blended in resins and cosmetics are discarded in the environment, they are very difficult to recover due to their extremely small particle size, so they go directly to the ocean via land water. It is possible that it will leak out. Silicone rubber particles discarded in land water and the ocean do not have a decomposition structure in the particle structure, so it is expected that they will not be decomposed into the environment and will continue to remain in the environment.
  • microplastics in the ocean have the property of adsorbing harmful substances and pathogens in the environment, and there is concern that they will have an adverse effect on the ecosystem, and microplastics are beginning to be regulated.
  • silicone rubber particles that decompose in the environment after use and do not continue to remain as particles (solids).
  • the crosslinked structure of the rubber particles needs to be decomposed (cut) in the environment, but since the silicone rubber particles are structurally not degradable, they are in the crosslinked structure.
  • a structure containing degradable functional groups must be introduced into the.
  • an object of the present invention is to provide rubber particles containing a polysiloxane structure, composite particles, and a method for producing them, which have high dispersibility and high decomposability.
  • the present invention provides the following rubber particles, composite particles, and a method for producing the same.
  • Rubber particles made of a copolymer containing a polyester structure and an organopolysiloxane structure.
  • the copolymer is (A) Polyester having at least two aliphatic unsaturated groups in one molecule, and (B) Hydrosilylated cross-linking product of organohydrogenpolysiloxane having at least two hydrogen atoms bonded to silicon atoms in one molecule.
  • the aliphatic unsaturated group of the component (A) is present in one molecule, and the hydrogen atom bonded to the silicon atom of the component (B) is present in two molecules.
  • the polyester having at least two aliphatic unsaturated groups of the component (A) in one molecule is The rubber particles according to [3], wherein the end of the molecular chain of a polyester or a polyester copolymer having a linear or branched structure is substituted with an aliphatic unsaturated group. [5].
  • the rubber particles according to [4], wherein the polyester structure of the component (A) is poly- ⁇ -caprolactone. [6].
  • the component (B) is the following general formula (1): (R 1 is a monovalent hydrocarbon group having an unsubstituted or substituted carbon number of 1 to 30 independently, and R 2 is a monovalent hydrogen atom or an unsubstituted or substituted monovalent hydrocarbon group having a carbon number of 1 to 30 independently of each other.
  • the rubber particle according to [6] which is an organohydrogenpolysiloxane having at least two hydrogen atoms in one molecule. [8].
  • the component (A) and ( B) The oil phase component composed of the components is cured by a hydrosilylation reaction to obtain an aqueous dispersion (C) of rubber particles (iii).
  • the method for producing composite particles according to [8] which comprises the following steps (i) to (v).
  • the following general formula (3) (R 4 is a monovalent hydrocarbon group having 1 to 6 carbon atoms, R 5 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 20 carbon atoms or -OR 4 ).
  • the surface of the rubber particles is coated with polyorganosylsesquioxane or silica by adding a kind (F) selected from organotrialkoxysilanes, tetraalkoxysilanes and their hydrolyzates represented by (F) and subjecting them to a condensation reaction.
  • Step (v) to obtain an aqueous dispersion of composite particles A step to obtain composite particles by drying and removing water, which is a continuous phase, from the aqueous dispersion of composite particles obtained in step (iv).
  • the rubber particles and composite particles of the present invention contain an ester group (polyester structure) which is a degradable functional group in the particles, and the crosslinked structure is cleaved in a water-presence environment, so that the particles have degradability.
  • the rubber particles of the present invention are rubber particles made of a copolymer containing a polyester structure and an organopolysiloxane structure, and the composite particles are particles in which the surface of the rubber particles is coated with polyorganosylsesquioxane or silica.
  • the shape of the rubber particles of the present invention is not particularly limited, but a spherical shape is preferable.
  • spherical does not mean that the particle shape is only a true sphere, but the value of the aspect ratio (length of the longest axis / length of the shortest axis) is usually 1 to 4, preferably 1 to 4.
  • the value of the aspect ratio is usually 1 to 4, preferably 1 to 4.
  • it also includes deformed ellipsoids in the range of 1-2, more preferably 1-1.6, even more preferably 1-1.4.
  • the shape of the particles can be confirmed by observing them using, for example, an optical microscope or an electron microscope, and the aspect ratio is obtained by measuring the lengths of the longest axis and the shortest axis of 100 particles arbitrarily from a micrograph and using them as an average value. It is a calculated value.
  • the volume average particle size of the rubber particles is preferably 0.1 to 50 ⁇ m, more preferably 0.5 to 40 ⁇ m, and even more preferably 1 to 20 ⁇ m.
  • the volume average particle size of the rubber particles is less than 0.1 ⁇ m, the fluidity of the particles is low and the cohesiveness is high.
  • the particle size is the volume average particle size measured by the electric resistance method.
  • the rubber which is a component of the rubber particles, does not have tack, and the rubber hardness thereof is preferably 5 to 90 as measured by the Asker rubber hardness tester C type specified in the Japan Rubber Association Standard Standard (SRIS). It is preferably 20 to 85, and even more preferably 40 to 85. When the rubber hardness is less than 5, the cohesiveness becomes high and the dispersibility becomes poor.
  • SRIS Japan Rubber Association Standard Standard
  • the rubber particles of the present invention are (A) Polyester having at least two aliphatic unsaturated groups in one molecule, and (B) Organohydrogenpolysiloxane having at least two hydrogen atoms bonded to silicon atoms in one molecule (however, the above (A). ) Except for a combination in which two aliphatic unsaturated groups of the component are present in one molecule and two hydrogen atoms bonded to the silicon atom of the component (B) are present in one molecule).
  • the liquid composition of No. 1 is preferably copolymerized by a hydrosilylation reaction.
  • the molecular chain end of a polyester having a linear or branched chain structure or a polyester copolymer is substituted with an aliphatic unsaturated group. It was done. That is, the component (A) has a linear or branched structure, has at least one polyester structure (polyester repeating unit), and has an aliphatic unsaturated group at the end of the molecular chain.
  • This component (A) can be obtained by substituting the terminal of the molecular chain of, for example, polyester, polyester copolymer, polyester polyol, etc. with an aliphatic unsaturated group.
  • polyesters examples include poly- ⁇ -caprolactone, poly- ⁇ -propiolactone, ⁇ -butyrolactone, polylactic acid, polyhydroxybutyrate, polyglycolic acid, polyethylene adipate, polyhydroxybutyric acid, polyethylene succinate, and polybutylene succin.
  • examples thereof include aliphatic polyesters such as nate, and aromatic polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and polytrimethylene terephthalate, and aliphatic polyesters considered to be more degradable are preferable.
  • polyester copolymer examples include a copolymer of the polyester and another type of polymer.
  • This other type of polymer may be selected from the polyester, or may be a polymer other than polyester such as polyether or polycarbonate.
  • the polyester copolymer is preferably a copolymer of aliphatic polyesters, and examples thereof include L-lactic acid / ⁇ -caprolactone copolymer and L-lactic acid / glycolic acid copolymer.
  • polyester polyol examples include polyester polyols such as polyethylene adipateol, polytetramethylene adipatediol, and polyethylene adipatediol, and polys such as poly- ⁇ -caprolactone diol, poly- ⁇ -caprolactone triol, and poly- ⁇ -caprolactone tetraol.
  • polyester polyols such as polyethylene adipateol, polytetramethylene adipatediol, and polyethylene adipatediol
  • polys such as poly- ⁇ -caprolactone diol, poly- ⁇ -caprolactone triol, and poly- ⁇ -caprolactone tetraol.
  • Examples thereof include a lactone polyol, preferably a polylactone polyol, more preferably a poly- ⁇ -caprolactone diol represented by the following formula (4), a poly- ⁇ -caprolactone triol represented by the following formula (5), and the following formula ( It is the
  • poly- ⁇ -caprolactone polyol examples include a heavy addition of lactone to an aliphatic polyhydric alcohol having 2 to 20 carbon atoms, and R 6 to R 8 in the formula are aliphatic polyhydric compounds having 2 to 20 carbon atoms. It is a valent alcohol residue, and k, l, m and n in the formula are integers satisfying 1 ⁇ k + l + m + n ⁇ 100.
  • R 6 in the above formula (4) is an aliphatic group having 2 to 20 carbon atoms, and the aliphatic group is an aliphatic hydrocarbon group having 2 to 20 carbon atoms and contains a heteroatom such as an oxygen atom. It may be, specifically, a residue derived from the following aliphatic dihydric alcohol.
  • Examples of the aliphatic dihydric alcohol include ethylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, and 1, , 8-octanediol, 1,9-nonanediol, 1,10-dodecanediol, diethylene glycol, triethylene glycol and tetraethylene glycol; linear alcohols such as 1,2-, 1,3- or 2,3-butane; Diol, 2-methyl-1,4-butanediol, neopentylglycol, 2,2-diethyl-1,3-propanediol, 2-methyl-1,5-pentanediol, 3-methyl-1,5-pentane Diol, 2-methyl-1,6-hexanediol, 3-methyl-1,6-hexanedio
  • R 7 in the above formula (5) is an aliphatic group having 2 to 20 carbon atoms
  • the aliphatic group is an aliphatic hydrocarbon group having 2 to 20 carbon atoms and contains a heteroatom such as an oxygen atom.
  • it is a residue derived from the following aliphatic trihydric alcohols.
  • the aliphatic trihydric alcohol include glycerin, trimethylolethane, trimethylolpropane and the like.
  • Examples of commercially available products of poly- ⁇ -caprolactone triol include Praxel 305 [manufactured by Daicel Corporation] and the like.
  • R 8 in the above formula (6) is an aliphatic group having 2 to 20 carbon atoms
  • the aliphatic group is an aliphatic hydrocarbon group having 2 to 20 carbon atoms and contains a heteroatom such as an oxygen atom. It may be, specifically, a residue derived from the following aliphatic tetravalent alcohol. Examples of the aliphatic tetrahydric alcohol include pentaerythritol and the like. Examples of this commercially available product include Praxel 410 [manufactured by Daicel Corporation] and the like.
  • a molecule having an aliphatic unsaturated group at the end of a molecular piece is ester-bonded to a polyester, a polyester copolymer or a polyester polyol having a linear or branched structure exemplified above.
  • examples thereof include a method of introducing via an ether bond, a urethane bond, a urea bond, an amide bond, a sulfide bond and the like.
  • an acid halide having excellent stability and reaction rate of polyester during a reaction is reacted with the polylactone polyol or the like as a molecule having an aliphatic unsaturated group forming the bond at the end of the molecular piece.
  • the acid chloride is preferable in terms of availability and cost.
  • the aliphatic unsaturated group is preferably possessed at the molecular terminal site, for example, an alkenyl group such as a vinyl group, an allyl group, a butenyl group, a pentenyl group and a hexener group, an alkynyl group such as an ethynyl group, a norbornen group and a di.
  • alkenyl group such as a vinyl group, an allyl group, a butenyl group, a pentenyl group and a hexener group
  • an alkynyl group such as an ethynyl group
  • a norbornen group a di.
  • Examples thereof include a cyclic unsaturated group such as a cyclopentadienyl group, but an alkenyl group is preferable.
  • Examples of the acid chloride having an alkenyl group at the end of the molecule include 4-pentenoyl chloride, 6-heptenoyl chloride, 8-nonenoyl chloride, 10-undecenoyl chloride and the like.
  • the component (A) is preferably liquid, and more preferably has a weight average molecular weight of 200 to 10000 as measured by gel permeation chromatography (GPC). More preferably, it is 300 to 5000. If the molecular weight is less than 200, the decomposability may be deteriorated, and if it is larger than 10,000, it becomes difficult to prepare rubber particles.
  • GPC gel permeation chromatography
  • the structure of the organohydrogenpolysiloxane having at least two hydrogen atoms bonded to the silicon atom of the component (B) may be linear, cyclic, or branched, but is linear.
  • the shape is preferable, and the structure shown in the following formula (1) is preferable.
  • R 1 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 30 carbon atoms, respectively.
  • R 2 is a hydrogen atom or a monovalent hydrocarbon group having an unsubstituted or substituted carbon number of 1 to 30 independently of each other.
  • n 0
  • n 1
  • n 2 or more.
  • R 1 examples include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, decyl group, undecyl group, dodecyl group, tetradecyl group, pentadecyl group, hexadecyl group and heptadecyl.
  • Alkyl group such as group, octadecyl group, nonadecyl group, icosyl group, henicosyl group, docosyl group, tricosyl group, tetracosyl group, triacontyl group; aryl group such as phenyl group, trill group, naphthyl group; benzyl group, phenethyl group and the like.
  • Aralkyl group; cycloalkyl group such as cyclopentyl group, cyclohexyl group, cycloheptyl group; and some or all of the hydrogen atom bonded to the carbon atom of these groups is a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom). ) And / or a hydrocarbon group substituted with a substituent such as an acryloyloxy group, a methacryloyloxy group, an epoxy group, a glycidoxy group, a carboxyl group and the like.
  • R 2 is a hydrogen atom or a unsubstituted or substituted monovalent hydrocarbon group having 1 to 30 carbon atoms.
  • the unsubstituted or the carbon number of the substituent is 1 to 30 monovalent hydrocarbon group R 2, the same as the above R 1 are exemplified.
  • the component (B) is preferably an organohydrogenpolysiloxane containing a diphenylsiloxy unit represented by the following formula (2).
  • R 1 and R 2 represent the same as those in the formula (1), and R 3 independently has an unsubstituted or substituted carbon number of 1 to 30 other than the phenyl group. It is a monovalent hydrocarbon group.
  • R 3 is, for example, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a decyl group, an undecyl group, a dodecyl group, a tetradecyl group and a pentadecyl group.
  • Alkyl group such as group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, icosyl group, henicosyl group, docosyl group, tricosyl group, tetracosyl group, triacontyl group; aryl group other than phenyl group such as tolyl group and naphthyl group; Aralkyl groups such as benzyl group and phenethyl group; cycloalkyl groups such as cyclopentyl group, cyclohexyl group and cycloheptyl group; and some or all of the hydrogen atoms bonded to the carbon atoms of these groups are halogen atoms (fluorine atom, chlorine).
  • Examples thereof include an atom such as an atom, a bromine atom and an iodine atom) and / or a hydrocarbon group substituted with a substituent such as an acryloyloxy group, a methacryloyloxy group, an epoxy group, a glycidoxy group and a carboxyl group.
  • (A) Polyester having at least two aliphatic unsaturated groups in one molecule and (B) Organohydrogenpolysiloxane having at least two hydrogen atoms bonded to silicon atoms in one molecule are components (A). It is more preferable that the composition is such that either the aliphatic unsaturated group of No. 1 or the hydrogen atom of the component (B) is at least three.
  • the compounding ratio of the component (A) and the component (B) is such that the number of hydrosilyl groups of the component B is 0.5 to 2.0 with respect to one aliphatic unsaturated group of the component (A). preferable.
  • Examples of the hydrosilylation catalyst for cross-linking the component (A) and the component (B) include a platinum-based catalyst, a rhodium-based catalyst, and a palladium-based catalyst, but a platinum-based catalyst is preferable.
  • Specific examples of the platinum-based catalyst include platinum (including platinum black) alone, platinum-supported carbon or silica, platinum chloride acid, platinum-olefin complex, platinum-alcohol complex, platinum-vinyl group-containing siloxane complex, and platinum chloride. Examples thereof include an acid-vinyl group-containing siloxane complex.
  • the blending amount of the platinum-based catalyst may be the amount of the catalyst as the hydrosilylation reaction catalyst.
  • the amount is about 0.1 to 500 ppm, preferably about 0.1 to 200 ppm, and more preferably about 0.5 to 100 ppm in terms of the mass of platinum in the catalyst. If it is less than 0.1 ppm, curing will be slow and it will be easily affected by catalytic poison. On the other hand, if it exceeds 500 ppm, coloring is observed in the rubber particles, which is not preferable in terms of economy.
  • Examples of the method for producing the component (A) include, but are not limited to, the following.
  • 2.2 to 8.0 mol of the base for capturing the generated hydrogen chloride is preferably 2.5 mol.
  • An excess amount of ⁇ 6.0 mol is mixed, and 2.0 to 7.0 mol, preferably more than 2.2 mol, and 6.0 mol of the acid compound having the above-mentioned aliphatic unsaturated group at the molecular end are mixed therein.
  • the following excess amount is added dropwise and reacted under heating for 30 minutes to 6 hours, preferably 1 hour to 2 hours.
  • the reaction product is extracted, washed with water, and the by-product is removed by an adsorption step, and the solvent is distilled off to obtain the component (A).
  • a polylactone polyol a polyester polyol, or a base that does not react with the acid chloride, which is added to capture hydrogen chloride generated by the reaction, can be used.
  • a base a tertiary amine is preferable, and triethylamine is more preferable.
  • a hydrophobic organic solvent may be used to adjust the viscosity of the reaction product in the extraction step.
  • the hydrophobic organic solvent is not particularly limited, but toluene is preferable from the viewpoint of solubility and the like.
  • Adsorption is a process for dehydration, decolorization, and deodorization of basic hydrochloride that cannot be completely removed by the washing process.
  • the adsorbent that can be used may be a known one, and a plurality of adsorbents may be used in combination.
  • the adsorbent is preferably a desiccant such as magnesium sulfate or sodium sulfate, activated carbon, or Kyoward series (manufactured by Kyowa Chemical Industry Co., Ltd.).
  • the rubber particles of the present invention can be produced, for example, by a method having the following steps (i) to (iii).
  • (I) (A) Polyester having at least two aliphatic unsaturated groups in one molecule, and (B) An oil phase component composed of an organohydrogenpolysiloxane having at least two hydrogen atoms bonded to a silicon atom in one molecule.
  • An O / W type emulsion is prepared by adding an aqueous phase component containing a surfactant and stirring the mixture.
  • An aqueous dispersion (C) of rubber particles can be obtained by curing the oil phase component composed of the component (A) and the component (B) in the O / W type emulsion in the presence of the hydrosilylation catalyst.
  • Rubber particles can be obtained by drying and removing water, which is a continuous phase of the aqueous dispersion of the rubber particles.
  • Step (i) The surfactant used in step (i) is not particularly limited, and is a nonionic surfactant, anionic surfactant, cationic surfactant or amphoteric surfactant. These can be used alone or in combination of two or more.
  • nonionic surfactant examples include polyoxyethylene alkyl ether, polyoxyethylene polyoxypropylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyethylene glycol fatty acid ester, sorbitan fatty acid ester, and polyoxyethylene sorbitan fatty acid.
  • anionic surfactant examples include an alkyl sulfate ester salt such as sodium lauryl sulfate, a polyoxyethylene alkyl ether sulfuric acid ester salt, a polyoxyethylene alkylphenyl ether sulfate ester salt, an aliphatic alcoholamide sulfate ester salt, and an alkylbenzene.
  • alkyl sulfate ester salt such as sodium lauryl sulfate, a polyoxyethylene alkyl ether sulfuric acid ester salt, a polyoxyethylene alkylphenyl ether sulfate ester salt, an aliphatic alcoholamide sulfate ester salt, and an alkylbenzene.
  • Examples of the cationic surfactant include alkyltrimethylammonium salt, dialkyldimethylammonium salt, polyoxyethylene alkyldimethylammonium salt, dipolyoxyethylene alkylmethylammonium salt, tripolyoxyethylene alkylammonium salt, alkylbenzyldimethylammonium salt, and alkylpyri. Examples thereof include a didium salt, a monoalkylamine salt, and a monoalkylamidoamine salt.
  • amphoteric surfactant examples include alkyldimethylamine oxide, alkyldimethylcarboxybetaine, alkylamidepropyldimethylcarboxybetaine, alkylhydroxysulfobetaine, and alkylcarboxymethylhydroxyethylimidazolinium betaine.
  • the surfactant a nonionic surfactant is preferable because the curable liquid silicone composition can be emulsified with a small amount and fine particles can be obtained.
  • the amount of the surfactant added is preferably 0.01 to 20 parts by mass, more preferably 0.05 to 10 parts by mass with respect to 100 parts by mass of the emulsion. If it is less than 0.01 parts by mass, there arises a problem that emulsification cannot be performed or fine particles cannot be formed. If the amount is more than 20 parts by mass, it becomes difficult to coat the rubber particles with polyorganosylsesquioxane or silica in the composite particle manufacturing step described later.
  • a polyester having at least two aliphatic unsaturated groups of the component (A), which is an oil phase component in this emulsion, and a hydrogen atom bonded to a silicon atom of the component (B) are contained in one molecule.
  • the content of at least two organohydrogenpolysiloxanes is preferably 1 to 80 parts by mass, more preferably 10 to 60 parts by mass with respect to 100 parts by mass of the emulsion. If it is less than 1 part by mass, it is disadvantageous efficiently, and if it is more than 80 parts by mass, it becomes difficult to obtain it as an aqueous dispersion of rubber particles.
  • a known emulsification / disperser may be used for emulsification, and general emulsification / dispersers include high-speed rotary shear type stirrers such as homomixers, high-speed centrifugal radiation type stirrers such as homodispers, and homogenizers. Examples thereof include a high-pressure injection emulsification disperser, a colloid mill, and an ultrasonic emulsifier.
  • the oil phase component in the emulsion thus prepared is cured in the presence of the above hydrosilylation catalyst to obtain a dispersion liquid of rubber particles.
  • This hydrosilylation catalyst may be added to the oil phase before the emulsion preparation, or may be added after the emulsion preparation. When added after preparing the emulsion, the hydrosilylation catalyst may not be dispersed. In that case, the surfactant may be mixed with the hydrosilylation catalyst before addition. Hydrosilylation may be carried out at room temperature, or if the reaction is not complete, it may be carried out under heating below 100 ° C. The hydrosilylation reaction time is appropriately selected. By this method, an aqueous dispersion of rubber particles having a volume average particle size of 0.1 to 50 ⁇ m can be obtained.
  • Rubber particles can be obtained by drying and removing water, which is a continuous phase, from the obtained aqueous dispersion of rubber particles. Dry removal of water from the aqueous dispersion of rubber particles can be performed, for example, by heating under normal pressure or reduced pressure, and specifically, the dispersion is allowed to stand under heating to remove water. Examples thereof include a method of removing water while stirring and flowing the dispersion liquid under heating, a method of spraying and dispersing the dispersion liquid in a hot air stream like a spray dryer, and a method of using a flow heat medium. As a pretreatment for this operation, the dispersion may be concentrated by a method such as heat dehydration, filtration separation, decantation, or if necessary, the dispersion may be washed with water or alcohol.
  • the shape of the polyorganosylsesquioxane or silica coated on the surface of the composite particles is not particularly limited, but in the case of the production method described later, it is granular.
  • the particle size is preferably small, specifically 500 nm or less.
  • the organosilsesquioxane or silica may be a part or all of the surface of the rubber particles, but it is preferable that the organosilsesquioxane or silica is coated over the entire surface of the rubber particles with approximately no gaps. The state, shape and particle size of the coating can be confirmed by observing the particle surface with an electron microscope.
  • the amount of polyorganosylsesquioxane or silica coated on the particle surface is not particularly limited, but the ratio is preferably 0.5 to 200 parts by mass, more preferably 1 to 50 parts by mass with respect to 100 parts by mass of the rubber particles. It is a ratio that becomes a part.
  • the composite particles of the present invention are (C) Rubber particle aqueous dispersion, (D) Water (optional), (E) Alkaline substance, In a liquid containing (F) A type selected from organotrialkoxysilanes, tetraalkoxysilanes and their hydrolysates represented by the following general formula (3). Is added and hydrolyzed and condensed, and the surface of the rubber particles is coated with polyorganosylsesquioxane or silica.
  • R 4 is a monovalent hydrocarbon group having 1 to 6 carbon atoms independently
  • R 5 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 20 carbon atoms or ⁇ OR.
  • the composite particles of the present invention can be produced by the method having the following steps (i) to (v).
  • Step of obtaining an O / W type emulsion by adding an aqueous phase component containing a surfactant to the oil phase component and stirring (ii) In the presence of a hydrosilylation reactive catalyst, the component (A) and ( B) The oil phase component composed of the components is cured by a hydrosilylation reaction to obtain the aqueous dispersion (C) of the rubber particles, and the aqueous dispersion (C) of the rubber particles obtained in the step (iii').
  • Process (iii') (D) Water
  • the water is not particularly limited, and purified water or the like is used, and includes water in the water dispersion of the rubber particles obtained in the above step (ii) and water added as needed.
  • the alkaline substance may be any substance as long as it acts as a catalyst for the hydrolysis and condensation reaction of organotrialkoxysilane or tetraalkoxysilane, but specifically, for example, potassium hydroxide.
  • Alkaline metal hydroxides such as sodium hydroxide and lithium hydroxide; Alkaline earth metal hydroxides such as calcium hydroxide and barium hydroxide; Alkaline metal carbonates such as potassium carbonate and sodium carbonate; Ammonia, monomethylamine, dimethyl Aminates such as amines; quaternary ammonium hydroxides such as tetramethylammonium hydroxide can be used, and more preferably, ammonia having excellent water solubility and catalytic activity and being easily removed by volatilization. A commercially available aqueous solution of ammonia may be used.
  • the amount of the component (E) added is preferably such that the pH of the liquid containing (C) to (E) at 25 ° C. is 9.0 to 13.0, and more preferably 10.0 to 12. It is an amount in the range of 5.
  • the pH is lower than 10.0, the hydrolysis-condensation reaction of organotrialkoxysilane or tetraalkoxysilane does not proceed sufficiently, and when the pH is higher than 13.0, the hydrolysis rate becomes high and the surface of the rubber particles becomes large. A hydrolysis-condensation reaction occurs in a portion other than the above, and the coverage is lowered.
  • a cationic surfactant and a cationic water-soluble polymer compound may be blended.
  • the cationic surfactant and the cationic water-soluble polymer compound have an action of accelerating the condensation reaction of hydrolyzed organotrialkoxysilane and tetraalkoxysilane to produce polyorganosylsesquioxane or silica.
  • the produced polyorganosylsesquioxane or silica may be adsorbed on the surface of the rubber particles.
  • Examples of the cationic surfactant include alkyltrimethylammonium salt, dialkyldimethylammonium salt, polyoxyethylene alkyldimethylammonium salt, dipolyoxyethylene alkylmethylammonium salt, tripolyoxyethylene alkylammonium salt, alkylbenzyldimethylammonium salt, and alkylpyri.
  • Examples thereof include a didium salt, a monoalkylamine salt, and a monoalkylamidoamine salt. Of these, an alkyltrimethylammonium salt is preferable, and a lauryltrimethylammonium salt and a cetyltrimethylammonium salt are more preferable.
  • Examples of the cationic water-soluble polymer compound include a polymer of dimethyldiallylammonium chloride, a polymer of vinylimidazolin, a polymer of methylvinylimidazolium chloride, a polymer of ethyltrimethylammonium chloride acrylate, and a polymer of ethyltrimethylammonium methacrylate.
  • Chloride polymer acrylamide propyltrimethylammonium chloride polymer, methacrylamide propyltrimethylammonium chloride polymer, epichlorohydrin / dimethylamine polymer, ethyleneimine polymer, quaternary product of ethyleneimine polymer, allylamine hydrochloride
  • examples thereof include polymers of the above, polylysine, cationic starch, cationized cellulose, chitosan, and derivatives thereof obtained by copolymerizing these with a monomer having a nonionic group or an anionic group. Of these, a polymer of dimethyldiallylammonium chloride is preferable.
  • the amount of the component (G) added is preferably 0.001 to 2 parts by mass, more preferably 0.005 to 1 part by mass with respect to 100 parts by mass of water in the liquid containing (C) to (E). Is. If the amount added is more than 2 parts by mass, polyorganosylsesquioxane or silica that is not coated on the surface of the rubber particles may be produced.
  • (F) A type of organotrialkoxysilane, tetraalkoxysilane, and a hydrolyzate thereof represented by the above general formula (3). It is formed by adding one selected from organotrialkoxysilanes, tetraalkoxysilanes and their hydrolysates represented by the general formula (3) above.
  • R 4 is a monovalent hydrocarbon group having 1 to 6 carbon atoms, and examples thereof include a methyl group, an ethyl group, a propyl group and a butyl group.
  • R 5 is a monovalent hydrocarbon group or ⁇ OR 4 having an unsubstituted or substituted carbon number of 1 to 20.
  • the unsubstituted or substituted monovalent hydrocarbon group having 1 to 20 carbon atoms includes an alkyl group such as a methyl group, an ethyl group, a propyl group and a butyl group; an aryl group such as a phenyl and a trill group; a vinyl group and an allyl group.
  • Alkyl groups such as; alkyl groups such as ⁇ -phenylethyl group, ⁇ -phenylpropyl group; monovalent halogenated hydrocarbon groups such as chloromethyl group, 3,3,3-trifluoropropyl group; and even one of these.
  • Examples thereof include a group in which a valent hydrocarbon group is substituted with an epoxy group, an amino group, a mercapto group, an acryloxy group, a methacryloxy group or the like.
  • R 5 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 20 carbon atoms, it is polyorganosylsesquioxane that coats the rubber particles, and when R 5 is -OR 4, the rubber particles are coated. It is silica that coats.
  • organotrialkoxysilane and tetraalkoxysilane used for coating include methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltributoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, and butyl.
  • Trimethoxysilane N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, vinyltrimethoxysilane, phenyltrimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane , Gamma-mercaptopropyltrimethoxysilane, 3,3,3-trifluoropropyltrimethoxysilane, 3,3,4,4,5,5,6,6,6-nonafluorohexyltrimethoxysilane, 3,3 , 4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-Heptadecafluorodecyltrimethoxysilane, tetramethoxysilane, tetraethoxysilane and the like. ..
  • the amount of the component (F) added is preferably 20 parts by mass or less with respect to 100 parts by mass of water in the liquid containing (C) to (E). If this is more than 20 parts by mass, lumps may be generated.
  • organotrialkoxysilane, tetraalkoxysilane and their hydrolysates under stirring using a normal stirrer such as a propeller blade or a flat plate blade.
  • the organotrialkoxysilane, tetraalkoxysilane and their hydrolysates are preferably added over time, and the dropping time is preferably 1 minute to 6 hours, more preferably 10 minutes to 3 hours.
  • the temperature inside the system during dropping is preferably 0 to 60 ° C, more preferably 0 to 40 ° C. At temperatures in this range, the surface of the rubber particles can be coated with polyorganosylsesquioxane and silica.
  • the composite particles can be obtained by drying and removing water, which is a continuous phase, from the obtained aqueous dispersion of the composite particles of the present invention.
  • Water can be removed, for example, by heating the water dispersion after the reaction under normal pressure or reduced pressure, and specifically, a method of allowing the dispersion to stand still under heating to remove water. Examples thereof include a method of removing water while stirring and flowing the dispersion liquid under heating, a method of spraying and dispersing the dispersion liquid in a hot air stream like a spray dryer, and a method of using a flow heat medium.
  • the dispersion may be concentrated by a method such as heat dehydration, filtration separation, centrifugation, decantation, or if necessary, the dispersion may be washed with water or alcohol.
  • the surface of the rubber particles can be removed by crushing it with a crusher such as a jet mill, a ball mill, or a hammer mill.
  • a crusher such as a jet mill, a ball mill, or a hammer mill.
  • Composite particles coated with polyorganosyl sesquioxane and silica can be obtained.
  • the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.
  • the kinematic viscosity is a value measured at 25 ° C., and "%" indicating the concentration and the content rate indicates "mass%”.
  • the degree of needle penetration of the hardened rubber is a value measured according to the standard of the Japan Rubber Association Standards (SRIS).
  • SRIS Japan Rubber Association Standards
  • the molecular weight of the component (A) is a weight average molecular weight using polystyrene as a standard substance measured by GPC measured under the following conditions.
  • This emulsion is transferred to a glass flask having a capacity of 1 L equipped with a stirrer using an anchor-type stirring blade, the temperature is adjusted to 15 to 20 ° C., and then an isododecane solution of a platinum-vinyl group-containing disiloxane complex (platinum content 0) under stirring. .5%)
  • An isododecane solution of a platinum-vinyl group-containing disiloxane complex platinum content 0
  • a mixed solution of 1 g and 0.68 g of polyoxyethylene lauryl ether was added dropwise, and the mixture was stirred for 30 minutes to 1 hour. Then, the temperature was adjusted to 40 ° C. and the mixture was stirred for 2 days to obtain an aqueous dispersion of rubber particles.
  • the shape of the rubber particles in the obtained aqueous dispersion was observed with an optical microscope, it was spherical, and the volume average particle size was measured by the electrical resistance method particle size distribution measuring device (Multisizer 3, manufactured by Beckman Coulter Co., Ltd.). The volume average particle size was 5 ⁇ m as measured using.
  • the hardness of the rubber constituting the rubber particles was measured as follows. An isododecane solution (platinum content 0.5%) of alkenyl group-containing poly- ⁇ -caprolactone 1, phenylhydrogenpolysiloxane represented by the above formula (8) and platinum-vinyl group-containing disiloxane complex is mixed at the above ratio. Then, it was poured into an aluminum garage so that the thickness was 10 mm. After leaving at 40 ° C. for 2 days, a flat rubber without stickiness (tack) was obtained. When this hardness was measured with an Askar C hardness tester, it was 63.
  • aqueous dispersion of rubber particles was obtained in the same manner as in Example 1. 357 g of the obtained aqueous dispersion of rubber particles was transferred to a 2 L glass flask equipped with a stirring device using an anchor-type stirring blade, and 602.5 g of water, 19 g of a 28% aqueous ammonia solution and an aqueous solution of a 40% dimethyldiallyl ammonium chloride polymer (commodity). Name: ME Polymer H40W, manufactured by Toho Kagaku Kogyo Co., Ltd., 1 g was added. The pH of the liquid at this time was 11.3.
  • Methyltrimethoxysilane was hydrolyzed and condensed in an aqueous dispersion of rubber particles, and the solution was dehydrated to a water content of about 30% using a pressure filter.
  • the dehydrated product was transferred to a glass flask having a capacity of 2 L equipped with a stirring device using an anchor-shaped stirring blade, 1000 g of water was added, the mixture was stirred for 30 minutes, and then dehydrated using a pressure filter.
  • the dehydrated product was transferred again to a glass flask having a capacity of 2 L equipped with a stirring device using an anchor-type stirring blade, 1000 g of water was added, stirring was performed for 30 minutes, and then dehydration was performed using a pressure filter.
  • the dehydrated product was dried in a hot air flow dryer at a temperature of 105 ° C., and the dried product was crushed with a jet mill to obtain fluid particles.
  • the obtained composite particles were dispersed in water using a surfactant and measured using an electric resistance method particle size distribution measuring device (Multisizer 3, manufactured by Beckman Coulter Co., Ltd.).
  • the particle size distribution was as described above. It was equivalent to the aqueous dispersion of rubber particles and had a volume average particle size of 5 ⁇ m.
  • An aqueous dispersion of rubber particles was obtained in the same manner as in Example 1. 265 g of the obtained aqueous dispersion of rubber particles was transferred to a glass flask having a capacity of 2 L equipped with a stirring device using an anchor-type stirring blade, and 651.1 g of water, 2.2 g of a 2.8% aqueous ammonia solution and 30% lauryltrimethylammonium chloride were transferred. 12 g of an aqueous solution (trade name: cation BB, manufactured by Nichiyu Co., Ltd.) (amount of lauryltrimethylammonium chloride in an amount of 0.44 parts with respect to 100 parts by mass of water) was added. The pH at this time was 10.4.
  • tetramethoxysilane (amount of silica after hydrolysis and condensation reaction becomes 27 parts by mass with respect to 100 parts by mass of rubber particles) was added dropwise over 60 minutes, during which time.
  • the liquid temperature was maintained at 5 to 10 ° C., and the mixture was further stirred for 3 hours.
  • the mixture was heated to 70 to 75 ° C., and the mixture was stirred for 1 hour while maintaining the temperature to complete the hydrolysis and condensation reaction of tetramethoxysilane.
  • the obtained composite particles were dispersed in water using a surfactant and measured using an electric resistance method particle size distribution measuring device (Multisizer 3, manufactured by Beckman Coulter Co., Ltd.).
  • the particle size distribution was as described above.
  • the volume average particle size was 5 ⁇ m, which was equivalent to that of the aqueous dispersion of rubber particles.
  • Example 1 Synthesis of alkenyl group-containing poly- ⁇ -caprolactone 2
  • poly- ⁇ -caprolactone diol trade name: Praxel 205U, manufactured by Daicel Corporation
  • poly- ⁇ -caprolactone tetraol trade name: Praxel 410, manufactured by Daicel Corporation, molecular weight
  • Example 1 [Preparation of rubber particles]
  • the synthesized alkenyl group-containing poly- ⁇ -caprolactone 1 was replaced with 171 g, and the alkenyl group-containing poly- ⁇ -caprolactone 2 was 170 g, and the kinematic viscosity represented by the above formula (8) was 23 mm.
  • Example 4 From the aqueous dispersion of rubber particles obtained in Example 4, composite particles coated with polyorganosylsesquioxane were obtained in the same manner as in Example 2. The obtained composite particles were dispersed in water using a surfactant and measured using an electric resistance method particle size distribution measuring device (Multisizer 3, manufactured by Beckman Coulter Co., Ltd.). The particle size distribution was as described above. It was equivalent to the aqueous dispersion of rubber particles and had a volume average particle size of 5 ⁇ m.
  • silica-coated composite particles were obtained in the same manner as in Example 3.
  • the obtained composite particles were dispersed in water using a surfactant and measured using an electric resistance method particle size distribution measuring device (Multisizer 3, manufactured by Beckman Coulter Co., Ltd.).
  • the particle size distribution was as described above.
  • the volume average particle size was 5 ⁇ m, which was equivalent to that of the aqueous dispersion of rubber particles.
  • the hydrolyzability of a flat rubber (rubber hardness: 60) composed of the methylvinylpolysiloxane represented by the formula (10) and the methylhydrogenpolysiloxane represented by the above formula (11) was evaluated by the following method.
  • the above three flat rubber samples were placed in a constant temperature and humidity chamber (IW222 type, manufactured by Yamato Kagaku Co., Ltd.) having a temperature of 70 ° C. and a humidity of 90% and allowed to stand, and changes in rubber hardness were measured on a daily basis.
  • the flat rubber samples that had been allowed to stand in the constant temperature and humidity chambers of Examples 1 and 4 were poly- ⁇ -caprolactone having an alkenyl group in the presence of a hydrosilylation catalyst and organohydrogen having a hydrogen atom bonded to a silicon atom. Since it has a structure crosslinked with polysiloxane and the rubber hardness is lowered in a high temperature and high humidity environment with a temperature of 70 ° C. and a humidity of 90%, it is presumed to have degradability.
  • the flat rubber sample of Comparative Example 1 does not use a component having a hydrolyzable functional group such as polyester as a component constituting the rubber, and the rubber hardness is constant even in a high temperature and high humidity environment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Silicon Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

高い分散性及び高い分解性を有する、ポリシロキサン構造を含むゴム粒子、複合粒子及びそれらの製造方法の提供。 ポリエステル構造及びオルガノポリシロキサン構造を含む共重合体からなるゴム粒子であって、該共重合体が、 (A)脂肪族不飽和基を一分子中に少なくとも2個有するポリエステル、及び (B)ケイ素原子に結合した水素原子を一分子中に少なくとも2個有するオルガノハイドロジェンポリシロキサン のヒドロシリル化架橋物であるゴム粒子、並びに 該ゴム粒子の表面に、ポリオルガノシルセスキオキサン又はシリカが被覆している複合粒子。

Description

ゴム粒子、複合粒子及びそれらの製造方法
 本発明は、ゴム粒子、複合粒子及びそれらの製造方法に関するものである。
 ゴム弾性を有するシリコーンゴム粒子は、樹脂の応力緩和剤として使用されている。例えば、電子、電気部品のパッケージングに用いられるエポキシ樹脂等の熱硬化性樹脂においては、電気部品の発熱による膨張によってパッケージに応力がかかっても割れにくくするために、ゴム粒子を配合することが行われている。また、化粧料においても、柔らかな感触、なめらかさ等の使用感及び伸展性を付与する目的で使用されている。
 シリコーンゴム粒子として、シリコーンゴム粒子がポリオルガノシルセスキオキサン樹脂で被覆された複合粒子(特許文献1:特開平7-196815号公報)や、シリコーンゴム粒子がシリカなどの金属酸化物微粒子で被覆された複合粒子(特許文献2:特開平4-348143号公報)等も提案されている。これらの複合粒子は、凝集性が低く、分散性が高いことが特徴である。
 また、熱可塑性樹脂等に対して良好な分散性を有する粒子として、特許文献3:特開2001-40214号公報には、脂肪族飽和結合を有する有機化合物とケイ素原子結合水素原子を有する含ケイ素有機化合物からなる液状組成物をヒドロシリル化反応により架橋してなる有機架橋粒子が記載されている。
特開平7-196815号公報 特開平4-348143号公報 特開2001-40214号公報
 しかしながら、樹脂や化粧料等に配合されるこのようなシリコーンゴム粒子が環境中に廃棄された場合、粒径が非常に小さいことから、回収が大変困難であるため、陸水を経てそのまま海洋へと流出してしまうことが考えられる。陸水や海洋に廃棄されたシリコーンゴム粒子は粒子構造内に分解構造を有していないことから環境分解されず、環境中に残存し続けることが予測される。
 加えて、海洋中のマイクロプラスチックは環境中の有害物質や病原菌を吸着する特性があり、生態系に悪影響を及ぼすことが懸念され、マイクロプラスチックが規制される動きが出始めている。このような背景から、使用後に環境中で分解し、粒子(固体)として残存し続けないシリコーンゴム粒子が求められつつある。シリコーンゴム粒子が環境分解するためには、ゴム粒子の架橋構造が環境中で分解(切断)される必要があるが、シリコーンゴム粒子は構造上、分解性を有していない為、架橋構造中に分解性官能基を含む構造を導入しなければならない。
 特許文献3に具体的に示されているのは、両末端アリル基含有ポリプロピレンオキサイドをケイ素原子結合水素原子含有オルガノポリシロキサンで架橋した粒子及びヘキサジエンをジメチルポリシロキサン・メチルハイドロジェンポリシロキサンで架橋した粒子であり、これらの粒子は環境中で分解されるための因子となる分解性官能基が含まれていないため、分解性に乏しい。
 したがって、本発明は、高い分散性及び高い分解性を有する、ポリシロキサン構造を含むゴム粒子、複合粒子及びそれらの製造方法を提供することを目的とする。
 本発明者らは、上記目的を達成するため鋭意研究した結果、ポリエステル構造及びポリオルガノシロキサン構造を含む共重合体からなるゴム粒子及び複合粒子が、上述した課題を解決することを見出し、本発明をなすに至った。
 従って、本発明は下記ゴム粒子、複合粒子及びその製造方法を提供するものである。
[1].
 ポリエステル構造及びオルガノポリシロキサン構造を含む共重合体からなるゴム粒子。
[2].
 粒子形状が球状で、体積平均粒径が0.1~50μmである[1]に記載のゴム粒子。
[3].
 共重合体が、
(A)脂肪族不飽和基を一分子中に少なくとも2個有するポリエステル、及び
(B)ケイ素原子に結合した水素原子を一分子中に少なくとも2個有するオルガノハイドロジェンポリシロキサン
のヒドロシリル化架橋物であり、但し、前記(A)成分の前記脂肪族不飽和基が一分子中に2個存在し、且つ前記(B)成分の前記ケイ素原子に結合した水素原子が一分子中に2個存在する組み合わせの場合を除くものである[1]又は[2]に記載のゴム粒子。
[4].
 (A)成分の脂肪族不飽和基を一分子中に少なくとも2個有するポリエステルが、
直鎖又は分岐鎖構造を有するポリエステル又はポリエステル共重合体の分子鎖末端を脂肪族不飽和基で置換したものである[3]に記載のゴム粒子。
[5].
 (A)成分が有するポリエステル構造が、ポリ-ε-カプロラクトンである[4]に記載のゴム粒子。
[6].
 (B)成分が、下記一般式(1):
Figure JPOXMLDOC01-appb-C000004
(R1はそれぞれ独立に非置換又は置換の炭素数が1~30の一価炭化水素基であり、R2は互いに独立に水素原子又は非置換もしくは置換の炭素数が1~30の一価炭化水素基であり、1≦m≦1000、0≦n≦1000、ただし、n=0の場合、2つのR2は共に水素原子であり、2つのR2が共に水素原子でない場合、nは2以上である)で表されるケイ素原子に結合した水素原子を一分子中に少なくとも2個有するオルガノハイドロジェンポリシロキサンである、[3]~[5]のいずれか1項に記載のゴム粒子。
[7].
 (B)成分が、下記一般式(2):
Figure JPOXMLDOC01-appb-C000005
(R3はフェニル基を除く、非置換又は置換の炭素数が1~30の一価炭化水素基であり、0≦a≦500、1≦b≦1000、1≦a+b≦1000、0≦c≦1000、ただし、c=0の場合、2つのR2は共に水素原子であり、2つのR2が共に水素原子でない場合、cは2以上である)で表される、ケイ素原子に結合した水素原子を一分子中に少なくとも2個有するオルガノハイドロジェンポリシロキサンである[6]に記載のゴム粒子。
[8].
 [3]~[7]のいずれか1項に記載のゴム粒子の表面に、ポリオルガノシルセスキオキサン又はシリカが被覆されている複合粒子。
[9].
 下記(i)~(iii)の工程を含む[3]~[7]のいずれか1項に記載のゴム粒子を製造する方法。
(i)脂肪族不飽和基を一分子中に少なくとも2個有するポリエステル(A)及びケイ素原子に結合した水素原子を一分子中に少なくとも2個有するオルガノハイドロジェンポリシロキサン(B)で構成される油相成分に、界面活性剤を含む水相成分を添加し乳化することで、O/W型エマルションを得る工程
(ii)ヒドロシリル化反応性触媒存在下で、エマルション中の(A)成分及び(B)成分からなる油相成分をヒドロシリル化反応により硬化させ、ゴム粒子の水分散液(C)を得る工程
(iii)工程(ii)で得られたゴム粒子の水分散液(C)から連続相である水を乾燥除去させることにより、ゴム粒子を得る工程
[10].
 下記(i)~(v)の工程を含む[8]に記載の複合粒子を製造する方法。
(i)脂肪族不飽和基を一分子中に少なくとも2個有するポリエステル(A)及びケイ素原子に結合した水素原子を一分子中に少なくとも2個有するオルガノハイドロジェンポリシロキサン(B)で構成される油相成分に、界面活性剤を含む水相成分を添加し撹拌することで、O/W型エマルションを得る工程
(ii)ヒドロシリル化反応性触媒存在下で、エマルション中の(A)成分及び(B)成分からなる油相成分をヒドロシリル化反応により硬化させ、ゴム粒子の水分散液(C)を得る工程
(iii’)工程(ii)で得られたゴム粒子の水分散液(C)に、アルカリ性物質(E)を添加する工程
(iv)工程(iii’)で得られたアルカリ性物質を添加したゴム粒子水分散液に、下記一般式(3):
Figure JPOXMLDOC01-appb-C000006
(R4は炭素数が1~6の一価炭化水素基、R5は非置換又は置換の炭素数が1~20の一価炭化水素基又は-OR4
で表されるオルガノトリアルコキシシラン、テトラアルコキシシラン及びそれらの加水分解物から選ばれる一種(F)を添加し、縮合反応させることにより、ゴム粒子の表面をポリオルガノシルセスキオキサン又はシリカで被覆し、複合粒子の水分散液を得る工程
(v)工程(iv)で得られた複合粒子の水分散液から連続相である水を乾燥除去させることにより、複合粒子を得る工程
 本発明のゴム粒子及び複合粒子は、粒子中に分解性官能基であるエステル基(ポリエステル構造)を含有しており、水分存在環境にて架橋構造が切断されるため、分解性を有する。特に、粒子中のポリエステル構造として、微生物認識骨格のポリ-ε-カプロラクトン構造を有する粒子は、ゴム粒子の環境分解性も期待できる。
 したがって、本発明のゴム粒子及び複合粒子は、凝集性が低く、分散性が高く、分解性を有する粒子であり、環境負荷低減材料として期待される。
 以下、本発明について詳細に説明する。
 本発明のゴム粒子はポリエステル構造及びオルガノポリシロキサン構造を含む共重合体からなるゴム粒子であり、複合粒子は、該ゴム粒子の表面をポリオルガノシルセスキオキサン又はシリカで被覆した粒子である。
[ゴム粒子]
 本発明のゴム粒子の形状は特に限定されないが、球状が好ましい。本発明において、「球状」とは、粒子形状が真球のみを指すのではなく、アスペクト比(最長軸の長さ/最短軸の長さ)の値が平均して、通常1~4、好ましくは、1~2、より好ましくは、1~1.6、さらにより好ましくは、1~1.4の範囲にある、変形した楕円体も含むことを意味する。粒子の形状は、例えば光学顕微鏡や電子顕微鏡を用いて観察することで確認でき、アスペクト比は顕微鏡写真から任意に100個の粒子の最長軸及び最短軸の長さをそれぞれ計測し、平均値として算出した値である。
 ゴム粒子の体積平均粒径は0.1~50μmが好ましく、より好ましくは0.5~40μmであり、1~20μmがさらに好ましい。ゴム粒子の体積平均粒径が0.1μm未満であると、粒子の流動性が低く、凝集性が高くなる。また、ポリオルガノシルセスキオキサン又はシリカで被覆する際、均一に被覆することが困難となる。50μmより大きいと、なめらかさが低下し、またざらつき感が出る場合がある。本発明において、粒径は、電気抵抗法で測定した体積平均粒径である。
 ゴム粒子の成分であるゴムは、タックが生じていないことが好ましく、そのゴム硬度は日本ゴム協会基準規格(SRIS)に規定されているアスカーゴム硬度計C型による測定で5~90が好ましく、より好ましくは、20~85、さらにより好ましくは、40~85である。ゴム硬度が5未満であると、凝集性が高くなり、分散性が悪くなる。
 本発明のゴム粒子は、
(A)脂肪族不飽和基を一分子中に少なくとも2個有するポリエステル、及び
(B)ケイ素原子に結合した水素原子を一分子中に少なくとも2個有するオルガノハイドロジェンポリシロキサン(但し、前記(A)成分の前記脂肪族不飽和基が一分子中に2個存在し、且つ前記(B)成分の前記ケイ素原子に結合した水素原子が一分子中に2個存在する組み合わせの場合を除く)
の液状組成物をヒドロシリル化反応により共重合させた粒子であることが好ましい。
 (A)成分の脂肪族不飽和基を一分子中に少なくとも2個有するポリエステルは、例えば、直鎖又は分岐鎖構造を有するポリエステル又はポリエステル共重合体の分子鎖末端を脂肪族不飽和基で置換したものである。
 即ち、(A)成分は、直鎖又は分岐鎖構造で、ポリエステル構造(ポリエステル繰り返し単位)を少なくとも1つ有し、かつ、分子鎖末端に脂肪族不飽和基を有するものである。この(A)成分は、例えばポリエステル、ポリエステル共重合体、ポリエステルポリオール等の分子鎖末端を脂肪族不飽和基で置換することで得られる。
 前記ポリエステルとしては、例えばポリ-ε-カプロラクトン、ポリ-β-プロピオラクトン、γ-ブチロラクトン、ポリ乳酸、ポリヒドロキシブチレート、ポリグリコール酸、ポリエチレンアジペート、ポリヒドロキシ酪酸、ポリエチレンサクシネート、ポリブチレンサクシネート等の脂肪族ポリエステル、ポリエチレンテレフタラート、ポリブチレンテレフタラート、ポリエチレンナフタレート、ポリトリメチレンテレフタラート等の芳香族ポリエステルが挙げられ、より分解性が高いと考えられる脂肪族ポリエステルが好ましい。
 また、前記ポリエステル共重合体としては、前記ポリエステルと、別種のポリマーとの共重合体が挙げられる。この別種のポリマーは、前記ポリエステルから選択されても構わないし又はポリエーテルやポリカーボネート等のポリエステル以外のポリマーでも構わない。このポリエステル共重合体は、前記理由から脂肪族ポリエステルどうしの共重合体が好ましく、例えばL-乳酸/ε-カプロラクトン共重合体、L-乳酸/グリコール酸共重合体等が挙げられる。
 上記ポリエステルポリオールとしては、例えば、ポリエチレンアジペートオール、ポリテトラメチレンアジペートジオール、ポリエチレンアジペートジオール等のポリエステルポリオール、ポリ-ε-カプロラクトンジオール、ポリ-ε-カプロラクトントリオール、ポリ-ε-カプロラクトンテトラオール等のポリラクトンポリオールが挙げられるが、好ましくは、ポリラクトンポリオールで、さらに好ましくは、下記式(4)に示すポリ-ε-カプロラクトンジオール、下記式(5)に示すポリ-ε-カプロラクトントリオール、下記式(6)に示すポリ-ε-カプロラクトンテトラオールである。
Figure JPOXMLDOC01-appb-C000007
 ポリ-ε-カプロラクトンポリオールとしては、炭素数2~20の脂肪族多価アルコールへのラクトンの重付加物等が挙げられ、式中R6~R8はこの炭素数2~20の脂肪族多価アルコール残基であり、式中k、l、m及びnは1≦k+l+m+n≦100を満たす整数である。
 上記式(4)中のR6は炭素数2~20の脂肪族基であり、該脂肪族基は炭素数2~20の脂肪族炭化水素基であり、酸素原子等のヘテロ原子を含んでいてもよく、具体的には下記の脂肪族二価アルコールから誘導される残基である。前記脂肪族二価アルコールとしては、例えば、エチレングリコール、1,3-プロピレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-ドデカンジオール、ジエチレングリコール、トリエチレングリコール及びテトラエチレングリコール等の直鎖アルコール;1,2-、1,3-又は2,3-ブタンジオール、2-メチル-1,4-ブタンジオール、ネオペンチルグリコール、2,2-ジエチル-1,3-プロパンジオール、2-メチル-1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、2-メチル-1,6-ヘキサンジオール、3-メチル-1,6-ヘキサンジオール、2-メチル-1,7-ヘプタンジオール、3-メチル-1,7-ヘプタンジオール、4-メチル-1,7-ヘプタンジオール、2-メチル-1,8-オクタンジオール、3-メチル-1,8-オクタンジオール及び4-メチルオクタンジオール等の分岐アルコール;1,4-シクロヘキサンジオール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジオール、1,3-シクロペンタンジオール、1,4-シクロヘプタンジオール、2,5-ビス(ヒドロキシメチル)-1,4-ジオキサン、2,7-ノルボルナンジオール、テトラヒドロフランジメタノール、1,4-ビス(ヒドロキシエトキシ)シクロヘキサン、1,4-ビス(ヒドロキシメチル)シクロヘキサン及び2,2-ビス(4-ヒドロキシシクロヘキシル)プロパン等の脂環式アルコール等が挙げられる。ポリ-ε-カプロラクトンジオールの市販品としては、例えばプラクセル205U[(株)ダイセル製]等が挙げられる。
 上記式(5)中のR7は炭素数2~20の脂肪族基であり、該脂肪族基は炭素数2~20の脂肪族炭化水素基であり、酸素原子等のヘテロ原子を含んでいてもよく、具体的には下記の脂肪族三価アルコールから誘導される残基である。脂肪族三価アルコールとしては、例えば、グリセリン、トリメチロールエタン、トリメチロールプロパン等が挙げられる。ポリ-ε-カプロラクトントリオールの市販品としては、例えばプラクセル305[(株)ダイセル製]等が挙げられる。
 上記式(6)中のR8は炭素数2~20の脂肪族基であり、該脂肪族基は炭素数2~20の脂肪族炭化水素基であり、酸素原子等のヘテロ原子を含んでいてもよく、具体的には下記の脂肪族四価アルコールから誘導される残基である。脂肪族四価アルコールとしては、例えば、ペンタエリトリトール等が挙げられる。この市販品としては、例えばプラクセル410[(株)ダイセル製]等が挙げられる。
 (A)成分の製造方法としては、上記で例示した、直鎖又は分岐鎖構造を有するポリエステル、ポリエステル共重合体又はポリエステルポリオールに、脂肪族不飽和基を分子片末端に有する分子をエステル結合、エーテル結合、ウレタン結合、ウレア結合、アミド結合、スルフィド結合などを介して導入する方法が挙げられる。具体的には、例えば上記ポリラクトンポリオールなどに、上記結合を形成する脂肪族不飽和基を分子片末端に有する分子として、反応時のポリエステルの安定性や反応率が優れる酸ハロゲン化物などを反応させればよく、入手のしやすさ、コストの面から酸塩化物が好ましい。また、脂肪族不飽和基は、分子末端部位に有するのが好ましく、例えば、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセネル基等のアルケニル基、エチニル基等のアルキニル基、ノルボルネン基、ジシクロペンタジエニル基等の環状不飽和基等が挙げられるが、好ましくはアルケニル基である。アルケニル基を分子末端に有する酸塩化物としては、例えば4-ペンテノイルクロリド、6-ヘプテノイルクロリド、8-ノネノイルクロリド、10-ウンデセノイルクロリド等が挙げられる。
 (A)成分は液状であることが好ましく、ゲルパーミエ―ションクロマトグラフィー(GPC)で測定した重量平均分子量が200~10000であることがより好ましい。さらに好ましくは300~5000である。分子量が200より小さいと、分解性が悪くなるおそれがあり、10000より大きいと、ゴム粒子の調製が困難となる。
(B)成分のケイ素原子に結合した水素原子を一分子中に少なくとも2個有するオルガノハイドロジェンポリシロキサンの構造としては、直鎖状、環状、分岐状のいずれであってもよいが、直鎖状が好ましく、下記(1)式に示した構造であるものが好ましい。
 式(1)中、R1は、それぞれ独立に、非置換又は置換の炭素数が1~30の一価炭化水素基である。R2は、互いに独立に、水素原子又は非置換もしくは置換の炭素数が1~30の一価炭化水素基である。mは1≦m≦1000の数、nは0≦n≦1000の数であり、好ましくは1≦m≦500、1≦n≦500である。n=0の場合、2つのR2は水素原子であり、2つのR2が共に水素原子でない場合、nは2以上である。
Figure JPOXMLDOC01-appb-C000008
 R1としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ウンデシル基、ドデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基、ヘニコシル基、ドコシル基、トリコシル基、テトラコシル基、トリアコンチル基等のアルキル基;フェニル基、トリル基、ナフチル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基;シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基;及びこれらの基の炭素原子に結合した水素原子の一部又は全部をハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)等の原子及び/又はアクリロイルオキシ基、メタクリロイルオキシ基、エポキシ基、グリシドキシ基、カルボキシル基等の置換基で置換した炭化水素基等が挙げられる。
 式(1)中、R2は水素原子又は非置換もしくは置換の炭素数が1~30の一価炭化水素基である。R2の非置換又は置換の炭素数が1~30の一価炭化水素基としては、上記R1と同じものが例示される。
 (B)成分はさらに下記式(2)で示されるジフェニルシロキシ単位を含むオルガノハイドロジェンポリシロキサンであることが好ましい。式(2)中、R1及びR2は、式(1)中のものと同じものを示し、R3は、それぞれ独立に、フェニル基以外の非置換又は置換の炭素数が1~30の一価炭化水素基である。
Figure JPOXMLDOC01-appb-C000009
 式(2)中、R3としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ウンデシル基、ドデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基、ヘニコシル基、ドコシル基、トリコシル基、テトラコシル基、トリアコンチル基等のアルキル基;トリル基、ナフチル基等のフェニル基以外のアリール基;ベンジル基、フェネチル基等のアラルキル基;シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基;及びこれらの基の炭素原子に結合した水素原子の一部又は全部をハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)等の原子及び/又はアクリロイルオキシ基、メタクリロイルオキシ基、エポキシ基、グリシドキシ基、カルボキシル基等の置換基で置換した炭化水素基等が挙げられる。
 式(2)中、a、b及びcは、0≦a≦500、1≦b≦1000、1≦a+b≦1000、0≦c≦1000で、好ましくは0≦a≦250、1≦b≦500、1≦c≦500の範囲である。ただしc=0の場合、2つのR2は共に水素原子であり、2つのR2が共に水素原子でない場合、cは2以上である。
 (A)脂肪族不飽和基を一分子中に少なくとも2個有するポリエステルと、(B)ケイ素原子に結合した水素原子を一分子中に少なくとも2個有するオルガノハイドロジェンポリシロキサンは、(A)成分の脂肪族不飽和基と(B)成分の水素原子のどちらかが、少なくとも3個となる組成がより好ましい。(A)成分と(B)成分との配合比は、(A)成分の脂肪族不飽和基1個に対し、B成分のヒドロシリル基が0.5~2.0個となるような比率が好ましい。
 (A)成分及び(B)成分を架橋させるヒドロシリル化触媒は、白金系触媒、ロジウム系触媒、パラジウム系触媒が例示されるが、白金系触媒であることが好ましい。白金系触媒の具体的例としては、例えば白金(白金黒を含む)単体、白金担持カーボン又はシリカ、塩化白金酸、白金-オレフィン錯体、白金-アルコール錯体、白金-ビニル基含有シロキサン錯体、塩化白金酸-ビニル基含有シロキサン錯体等が挙げられる。白金系触媒の配合量は、ヒドロシリル化反応触媒としての触媒量でよい。具体的には、触媒中の白金質量換算で、0.1~500ppm程度、好ましくは0.1~200ppm程度、さらに好ましくは0.5~100ppm程度の量である。0.1ppm未満では硬化が遅くなるうえ触媒毒の影響を受けやすくなる。一方、500ppm超では、ゴム粒子に着色が見られることや、経済面で好ましくない。
[(A)成分の製造方法]
 (A)成分の製造方法としては、例えば下記が挙げられるが、この製造方法には限定されない。上記式(4)~(6)に示したポリラクトンポリオール、ないしポリエステルポリオール成分1モルに、発生する塩化水素を捕捉するための塩基を2.2~8.0モル、好ましくは、2.5~6.0モルの過剰量を混合し、そこに上記脂肪族不飽和基を分子末端に有する酸塩化物を2.0~7.0モル、好ましくは2.2モルを超え6.0モル以下の過剰量を滴下し、加熱下で30分~6時間、好ましくは1時間~2時間反応させる。反応後、反応生成物を抽出、水洗、吸着工程にて副生成物を除去し、溶媒留去することで(A)成分を得ることができる。
 塩基としては、反応により生成する塩化水素を捕捉するために添加され、ポリラクトンポリオール、ないしポリエステルポリオールや酸塩化物と反応しないものが使用できる。このような塩基としては、三級アミンが好ましく、より好ましくはトリエチルアミンである。
 抽出工程にて反応生成物の粘度調製の為に疎水性有機溶媒を用いてもよい。疎水性有機溶媒としては特に限定されないが、溶解性などの点からトルエンが好ましい。
 吸着は、水洗工程で除去しきれない塩基の塩酸塩や、脱水、脱色、脱臭のための工程である。使用できる吸着材は公知のものでよく、複数を組み合わせて使用してもよい。吸着材として好ましくは硫酸マグネシウム、硫酸ナトリウム等の乾燥剤、活性炭、キョーワードシリーズ(協和化学工業(株)製)である。
[ゴム粒子の製造方法]
 本発明のゴム粒子は、例えば、次の工程(i)~(iii)を有する方法により製造することができる。
(i)
(A)脂肪族不飽和基を一分子中に少なくとも2個有するポリエステルと、
(B)ケイ素原子に結合した水素原子を一分子中に少なくとも2個有するオルガノハイドロジェンポリシロキサンで構成される油相成分に、
 界面活性剤を含む水相成分を添加し撹拌することで、O/W型エマルションを調製する。
(ii)
 そのO/W型エマルション中で(A)成分及び(B)成分からなる油相成分を上記ヒドロシリル化触媒存在下で硬化させることでゴム粒子の水分散液(C)を得ることができる。
(iii)
 このゴム粒子の水分散液の連続相である水を乾燥除去させることにより、ゴム粒子を得ることができる。
工程(i)
 工程(i)で用いられる界面活性剤は、特に限定されず、非イオン性界面活性剤、アニオン性界面活性剤、カチオン性界面活性剤又は両イオン性界面活性剤である。これらは1種単独で又は2種以上を適宜組み合わせて用いることができる。
 ここで用いる非イオン性界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンポリオキシプロピレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリエチレングリコール脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビット脂肪酸エステル、グリセリン脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステル、プロピレングリコール脂肪酸エステル、ポリオキシエチレンヒマシ油、ポリオキシエチレン硬化ヒマシ油、ポリオキシエチレン硬化ヒマシ油脂肪酸エステル、ポリオキシエチレンアルキルアミン、ポリオキシエチレン脂肪酸アミド、ポリオキシエチレン変性オルガノポリシロキサン、ポリオキシエチレンポリオキシプロピレン変性オルガノポリシロキサン等が挙げられる。
 アニオン性界面活性剤としては、例えば、ラウリル硫酸ナトリウム等のアルキル硫酸エステル塩、ポリオキシエチレンアルキルエーテル硫酸エステル塩、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩、脂肪族アルキロールアミドの硫酸エステル塩、アルキルベンゼンスルホン酸塩、ポリオキシエチレンアルキルフェニルエーテルスルホン酸塩、アルキルジフェニルエーテルジスルホン酸塩、アルカンスルホン酸塩、N-アシルタウリン酸塩、ジアルキルスルホコハク酸塩、モノアルキルスルホコハク酸塩、ポリオキシエチレンアルキルエーテルスルホコハク酸塩、脂肪酸塩、ポリオキシエチレンアルキルエーテルカルボン酸塩、N-アシルアミノ酸塩、モノアルキルリン酸エステル塩、ジアルキルリン酸エステル塩、ポリオキシエチレンアルキルエーテルリン酸エステル塩等が挙げられる。
 カチオン性界面活性剤としては、アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウム塩、ポリオキシエチレンアルキルジメチルアンモニウム塩、ジポリオキシエチレンアルキルメチルアンモニウム塩、トリポリオキシエチレンアルキルアンモニウム塩、アルキルベンジルジメチルアンモニウム塩、アルキルピリジウム塩、モノアルキルアミン塩、モノアルキルアミドアミン塩等が挙げられる。
 両イオン性界面活性剤としては、アルキルジメチルアミンオキシド、アルキルジメチルカルボキシベタイン、アルキルアミドプロピルジメチルカルボキシベタイン、アルキルヒドロキシスルホベタイン、アルキルカルボキシメチルヒドロキシエチルイミダゾリニウムベタイン等が挙げられる。
 界面活性剤としては、少量で上記硬化性液状シリコーン組成物を乳化することができ、微細な粒子とすることができる点から、非イオン性界面活性剤が好ましい。
 界面活性剤の添加量は、エマルション100質量部に対して0.01~20質量部が好ましく、より好ましくは0.05~10質量部である。0.01質量部未満であると、乳化ができないことや、微細な粒子とすることができないような問題が生じる。20質量部より多くすると、後記する複合粒子製造工程でゴム粒子にポリオルガノシルセスキオキサン又はシリカを被覆させることが困難となる。
 また、このエマルション中における油相成分である、(A)成分の脂肪族不飽和基を一分子中に少なくとも2個有するポリエステルと、(B)成分のケイ素原子に結合した水素原子を一分子中に少なくとも2個有するオルガノハイドロジェンポリシロキサンの含有量は、エマルション100質量部に対して1~80質量部が好ましく、より好ましくは10~60質量部である。1質量部より少ないと、効率的に不利となり、80質量部より多いとゴム粒子の水分散液として得ることが困難となる。
 乳化を行うには、公知の乳化分散機を用いればよく、一般的な乳化分散機としては、ホモミキサー等の高速回転剪断型撹拌機、ホモディスパー等の高速遠心放射型撹拌機、ホモジナイザー等の高圧噴射式乳化分散機、コロイドミル、超音波乳化機等が挙げられる。
工程(ii)
 このようにして調製したエマルション中の油相成分は、上記のヒドロシリル化触媒存在下にて硬化させることで、ゴム粒子の分散液を得ることができる。このヒドロシリル化触媒は、エマルション調製前の油相に加えてもよいし、エマルション調製後に添加してもよい。エマルション調製後に添加する場合に、ヒドロシリル化触媒が分散しない可能性があるが、その場合は界面活性剤をヒドロシリル化触媒と混合させてから添加すればよい。ヒドロシリル化は室温で行ってもよく、反応が完結しない場合には、100℃未満の加熱下で行ってもよい。ヒドロシリル化反応時間は適宜選択される。この方法により体積平均粒径が0.1~50μmであるゴム粒子の水分散液を得ることができる。
工程(iii)
 得られたゴム粒子の水分散液から連続相である水を乾燥除去することにより、ゴム粒子を得ることができる。ゴム粒子の水分散液からの水の乾燥除去は、例えば、常圧下又は減圧下に加熱することにより行うことができ、具体的には、分散液を加熱下で静置して水分を除去する方法、分散液を加熱下で撹拌流動させながら水分を除去する方法、スプレードライヤーのように熱風気流中に分散液を噴霧、分散させる方法、流動熱媒体を利用する方法等が挙げられる。なお、この操作の前処理として、加熱脱水、濾過分離、デカンテーション等の方法で分散液を濃縮してもよいし、必要ならば分散液を水やアルコールで洗浄してもよい。
[複合粒子]
 複合粒子の表面に被覆しているポリオルガノシルセスキオキサン又はシリカは、その形状は特に限定されないが、後記の製造方法の場合、粒状となる。その粒径は小さい方が好ましく、具体的には500nm以下である。オルガノシルセスキオキサン又はシリカは、ゴム粒子表面の一部又は全部でもよいが、ゴム粒子表面全体に渡り、おおよそ隙間なく被覆されていることが好ましい。なお、被覆の状態、形状及び粒径は、粒子表面を電子顕微鏡にて観察することにより確認することができる。
 粒子表面に被覆しているポリオルガノシルセスキオキサン又はシリカの量は特に限定されないが、ゴム粒子100質量部に対し0.5~200質量部となる比率が好ましく、より好ましくは1~50質量部となる比率である。
[複合粒子の製造方法]
 本発明の複合粒子は、
(C)ゴム粒子水分散液、
(D)水(任意)、
(E)アルカリ性物質、
を含む液に、
(F)下記一般式(3)で表されるオルガノトリアルコキシシラン、テトラアルコキシシラン及びそれらの加水分解物から選ばれる一種、
を添加し、加水分解縮合反応させることにより、ゴム粒子の表面をポリオルガノシルセスキオキサン又はシリカで被覆することで得られる。
Figure JPOXMLDOC01-appb-C000010
 式(3)中、R4はそれぞれ独立に炭素数が1~6の一価炭化水素基であり、R5は非置換もしくは置換の炭素数が1~20の一価炭化水素基又は-OR4である。

 即ち、本発明の複合粒子は、次の工程(i)~(v)を有する方法により製造することができる。
(i)脂肪族不飽和基を一分子中に少なくとも2個有するポリエステル(A)及びケイ素原子に結合した水素原子を一分子中に少なくとも2個有するオルガノハイドロジェンポリシロキサン(B)で構成される油相成分に、界面活性剤を含む水相成分を添加し撹拌することで、O/W型エマルションを得る工程
(ii)ヒドロシリル化反応性触媒存在下で、エマルション中の(A)成分及び(B)成分からなる油相成分をヒドロシリル化反応により硬化させ、ゴム粒子の水分散液(C)を得る工程
(iii’)工程(ii)で得られたゴム粒子の水分散液(C)に、アルカリ性物質(E)を添加する工程
(iv)工程(iii’)で得られたアルカリ性物質を添加したゴム粒子水分散液に、一般式(3)で表されるオルガノトリアルコキシシラン、テトラアルコキシシラン及びそれらの加水分解物から選ばれる一種(F)を添加し、縮合反応させることにより、ゴム粒子の表面をポリオルガノシルセスキオキサン又はシリカで被覆し、複合粒子の水分散液を得る工程
(v)工程(iv)で得られた複合粒子の水分散液から連続相である水を乾燥除去させることにより、複合粒子を得る工程

 複合粒子の製造方法の工程(i)及び(ii)は、前記ゴム粒子の製造方法の工程(i)及び(ii)と同様である。また、工程(iii’)において、任意成分として(D)水を添加してもよい。
工程(iii’)
(D)水
 水は特に限定されず、精製水等が用いられ、上記工程(ii)で得られたゴム粒子の水分散液中の水及び必要に応じて添加した水が含まれる。
(E)アルカリ性物質
 アルカリ性物質は、オルガノトリアルコキシシラン又はテトラアルコキシシランの加水分解縮合反応の触媒として作用するものであれば、任意のものであってよいが具体的に、例えば、水酸化カリウム、水酸化ナトリウム、水酸化リチウム等のアルカリ金属水酸化物;水酸化カルシウム、水酸化バリウム等のアルカリ土類金属水酸化物;炭酸カリウム、炭酸ナトリウム等のアルカリ金属炭酸塩;アンモニア、モノメチルアミン、ジメチルアミン等のアミン類;テトラメチルアンモニウムヒドロキシド等の四級アンモニウムヒドロキシド等を用いることができ、より好ましくは、水溶性、触媒活性に優れ、揮発により除去が容易なアンモニアであり、これには一般に市販されているアンモニア水溶液を用いればよい。
 (E)成分の添加量は、(C)~(E)を含む液の25℃におけるpHが9.0~13.0となる量であるのが好ましく、より好ましくは10.0~12.5の範囲となる量である。pHが10.0よりも低いと、オルガノトリアルコキシシラン又はテトラアルコキシシランの加水分解縮合反応が十分に進行せず、pHが13.0よりも高いと、加水分解速度が大きくなり、ゴム粒子表面以外の部分で加水分解縮合反応が生じ、被覆性が低くなる。
 (F)成分を添加する際に(G)カチオン性界面活性剤及びカチオン性水溶性高分子化合物から選ばれる1種以上を配合してもよい。
 カチオン性界面活性剤及びカチオン性水溶性高分子化合物は、加水分解したオルガノトリアルコキシシラン、テトラアルコキシシランの縮合反応を促進させ、ポリオルガノシルセスキオキサン又はシリカを生成させる作用がある。また、生成したポリオルガノシルセスキオキサン又はシリカをゴム粒子表面に吸着させる場合がある。
 カチオン性界面活性剤としては、アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウム塩、ポリオキシエチレンアルキルジメチルアンモニウム塩、ジポリオキシエチレンアルキルメチルアンモニウム塩、トリポリオキシエチレンアルキルアンモニウム塩、アルキルベンジルジメチルアンモニウム塩、アルキルピリジウム塩、モノアルキルアミン塩、モノアルキルアミドアミン塩等が挙げられる。このうち、アルキルトリメチルアンモニウム塩が好ましく、より好ましくはラウリルトリメチルアンモニウム塩及びセチルトリメチルアンモニウム塩である。
 カチオン性水溶性高分子化合物としては、例えば、ジメチルジアリルアンモニウムクロライドの重合体、ビニルイミダゾリンの重合体、メチルビニルイミダゾリウムクロライドの重合体、アクリル酸エチルトリメチルアンモニウムクロライドの重合体、メタクリル酸エチルトリメチルアンモニウムクロライドの重合体、アクリルアミドプロピルトリメチルアンモニウムクロライドの重合体、メタクリルアミドプロピルトリメチルアンモニウムクロライドの重合体、エピクロルヒドリン/ジメチルアミン重合体、エチレンイミンの重合体、エチレンイミンの重合体の4級化物、アリルアミン塩酸塩の重合体、ポリリジン、カチオンデンプン、カチオン化セルロース、キトサン及びこれらに非イオン性基やアニオン性基を持つモノマーを共重合する等したこれらの誘導体等が挙げられる。このうち、ジメチルジアリルアンモニウムクロライドの重合体が好ましい。
 (G)成分の添加量は、(C)~(E)を含む液中の水100質量部に対し0.001~2質量部が好ましく、より好ましくは、0.005~1質量部の範囲である。2質量部より多い添加量では、ゴム粒子表面に被覆されないポリオルガノシルセスキオキサン又はシリカが生じるおそれがある。
(F)上記一般式(3)で表されるオルガノトリアルコキシシラン、テトラアルコキシシラン及びそれらの加水分解物から選ばれる一種
 ゴム粒子を被覆するポリオルガノシルセスキオキサン又はシリカは、ゴム粒子に既記の一般式(3)で示される、オルガノトリアルコキシシラン、テトラアルコキシシラン及びそれらの加水分解物から選ばれる一種を添加することで形成されるものである。この式中R4は炭素数が1~6の一価炭化水素基であり、メチル基、エチル基、プロピル基、ブチル基などが挙げられる。式中R5は、非置換又は置換の炭素数が1~20の一価炭化水素基又は-OR4である。非置換又は置換の炭素数が1~20の一価炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基などのアルキル基;フェニル、トリル基などのアリール基;ビニル基、アリル基などのアルケニル基;β-フェニルエチル基、β-フェニルプロピル基のようなアラルキル基;クロロメチル基、3,3,3-トリフルオロプロピル基などの1価ハロゲン化炭化水素基;さらにはこれら一価炭化水素基をエポキシ基、アミノ基、メルカプト基、アクリロキシ基、メタクリロキシ基などで置換した基が挙げられる。
 R5が非置換又は置換の炭素数が1~20の一価炭化水素基の場合、ゴム粒子を被覆するのはポリオルガノシルセスキオキサンになり、R5が-OR4の場合、ゴム粒子を被覆するのはシリカとなる。
 被覆に用いられるオルガノトリアルコキシシラン、テトラアルコキシシランは具体的に、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、プロピルトリメトキシシラン、ブチルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、ビニルトリメトキシシラン、フェニルトリメトキシシラン、γ-メタクルロキシプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、3,3,3-トリフロロプロピルトリメトキシシラン、3,3,4,4,5,5,6,6,6-ノナフロロヘキシルトリメトキシシラン、3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-ヘプタデカフロロデシルトリメトキシシラン、テトラメトキシシラン、テトラエトキシシランなどが挙げられる。
 (F)成分の添加量は、(C)~(E)を含む液中の水100質量部に対して、20質量部以下であることが好ましい。これが20質量部より多いと塊状物の発生するおそれがある。
工程(iv)
 (C)~(E)、(G)を含む液に、(F)オルガノトリアルコキシシラン、テトラアルコキシシラン及びそれらの加水分解物から選ばれる一種を添加し、オルガノトリアルコキシシラン、テトラアルコキシシランを加水分解、縮合させることにより、ゴム粒子の表面をポリオルガノシルセスキオキサン又はシリカで被覆する。具体的には、(C)ゴム粒子水分散液、(D)水(任意)に、(E)アルカリ性物質、(G)カチオン性界面活性剤及びカチオン性水溶性高分子化合物から選ばれる1種以上(任意)を溶解させた水溶液に、(F)オルガノトリアルコキシシラン、テトラアルコキシシラン及びそれらの加水分解物から選ばれる一種を添加し、加水分解、縮合させる。この縮合物、すなわちポリオルガノシルセスキオキサン又はシリカは、ゴム粒子の表面を被覆し、複合粒子が形成される。
 オルガノトリアルコキシシラン、テトラアルコキシシラン及びそれらの加水分解物の添加は、プロペラ翼、平板翼等の通常の撹拌機を用いて撹拌下で行うことが好ましい。オルガノトリアルコキシシラン、テトラアルコキシシラン及びそれらの加水分解物は時間をかけて添加することが好ましく、滴下時間は1分~6時間が好ましく、より好ましくは10分~3時間である。
 滴下中の系内温度は0~60℃であることが好ましく、より好ましくは0~40℃の範囲である。この範囲の温度であると、ゴム粒子表面上にポリオルガノシルセスキオキサン及びシリカを被覆することができる。
工程(v)
 加水分解、縮合反応完了後、得られた本発明の複合粒子の水分散液から連続相である水を乾燥除去することによって、複合粒子を得ることができる。水の除去は、例えば、反応後の水分散液を常圧下又は減圧下に加熱することにより行うことができ、具体的には、分散液を加熱下で静置して水分を除去する方法、分散液を加熱下で撹拌流動させながら水分を除去する方法、スプレードライヤーのように熱風気流中に分散液を噴霧、分散させる方法、流動熱媒体を利用する方法等が挙げられる。なお、この操作の前処理として、加熱脱水、濾過分離、遠心分離、デカンテーション等の方法で分散液を濃縮してもよいし、必要ならば分散液を水やアルコールで洗浄してもよい。
 反応後の水分散液から水を乾燥除去することにより得られた生成物が凝集している場合には、ジェットミル、ボールミル、ハンマーミル等の粉砕機で解砕することにより、ゴム粒子表面がポリオルガノシルセスキオキサン及びシリカで被覆された複合粒子を得ることができる。
 以下、実施例及び比較例を示し、本発明をより詳細に説明するが、本発明は下記の実施例に制限されるものではない。また、例中、動粘度は25℃において測定した値であり、濃度及び含有率を表す「%」は「質量%」を示す。ゴム硬化物の針入度は、日本ゴム協会基準規格(SRIS)の規格に準じて測定した値である。(A)成分の分子量は、下記条件で測定したGPCによるポリスチレンを標準物質とした重量平均分子量である。
[測定条件]
展開溶媒:テトラヒドロフラン(THF)
流量:0.60mL/min
検出器:示差屈折率検出器(RI)
カラム:TSK Guardcolumn SuperH-H
    TSKgel SuperHM-N
    TSKgel SuperH2500
    (いずれも東ソー社製)
カラム温度:40℃
試料注入量:50μL(濃度0.5質量%のTHF溶液)
[アルケニル基含有ポリ-ε-カプロラクトンの合成1]
 攪拌機と、滴下ロートと、温度計と、冷却管を備えた1リットルのガラスフラスコに、ポリ-ε-カプロラクトンジオール(商品名:プラクセル205U、(株)ダイセル製、分子量530、水酸基価212.4mg/g)200g、トルエン200g及びトリエチルアミン95.8gを加え、温調を55℃にして混合し、ここにウンデセン酸クロライド168.9g(ポリ-ε-カプロラクトンジオールの水酸基1個に対し、酸塩化物の塩素が1.1個となる添加量)を滴下ロートで滴下し、滴下後2時間熟成させた。熟成後、水200g及びトルエン100gを加え、水相を分液ロートへ移し、トルエン100gで抽出した。抽出後、油相を水450g一回、飽和食塩水450g二回で水洗し、次いで硫酸マグネシウム、活性炭、キョーワード700(協和化学工業(株)製)を各10g添加し、2時間振盪させた。振盪後、加圧ろ過により硫酸マグネシウム、活性炭、キョーワード700を除き、60℃、10mmHg以下の条件で溶媒留去することで、アルケニル基含有ポリ-ε-カプロラクトン1(下記式(7))を得た。
Figure JPOXMLDOC01-appb-C000011
(R6は脂肪族基を示し、2≦m+n≦5、重量平均分子量:862)
[ゴム粒子の作製]
 合成した上記のアルケニル基含有ポリ-ε-カプロラクトン1を171gと、下記式(8)で示される、動粘度が23mm2/sのフェニルハイドロジェンポリシロキサン83.46g(ビニル基1個に対しヒドロシリル基が1.1個となる配合量)とを1Lの容器に仕込み、ホモミキサーを用いて1500rpmで撹拌溶解させた。次いで、ポリオキシエチレンラウリルエーテル1.35gと水31.5gを加え、ホモミキサーで、5000rpmで撹拌したところ、O/W型エマルションとなり増粘が認められ、更に10分撹拌を続けた。次いで、1500rpmで撹拌しながら、水258.54gで希釈し、白色のエマルションを得た。
Figure JPOXMLDOC01-appb-C000012
 このエマルションを錨型撹拌翼による撹拌装置の付いた容量1Lのガラスフラスコに移し、15~20℃に温調した後、撹拌下で白金-ビニル基含有ジシロキサン錯体のイソドデカン溶液(白金含有量0.5%)1gとポリオキシエチレンラウリルエーテル0.68gの混合溶解物を滴下し、30分~1時間撹拌した。次いで、温調を40℃にして2日撹拌し、ゴム粒子の水分散液を得た。
 得られた水分散液中のゴム粒子の形状を光学顕微鏡にて観察したところ、球状であり、体積平均粒径を電気抵抗法粒度分布測定装置(マルチサイザー3、ベックマン・コールター(株)製)を用いて測定したところ、体積平均粒径は5μmであった。
 得られたゴム粒子の水分散液を入口温度150℃、出口温度80℃に設定したスプレードライヤーを用いて水を乾燥させたところ、白色~淡黄色の粉体状のゴム粒子が得られた。
 また、ゴム粒子を構成するゴムの硬度を以下のように測定した。アルケニル基含有ポリ-ε-カプロラクトン1、上記式(8)で表されるフェニルハイドロジェンポリシロキサン及び白金-ビニル基含有ジシロキサン錯体のイソドデカン溶液(白金含有量0.5%)を上記割合で混合し、厚みが10mmになるようアルミシャーレに流し込んだ。40℃で2日放置後、べたつき(タック)の無い平状ゴムを得た。この硬度を、AskerC硬度計で測定したところ、63であった。
[複合粒子の作製]
 実施例1と同様にして、ゴム粒子の水分散液を得た。得られたゴム粒子の水分散液357gを錨型撹拌翼による撹拌装置の付いた2Lのガラスフラスコに移し、水602.5g、28%アンモニア水溶液19g及び40%ジメチルジアリルアンモニウムクロライド重合体水溶液(商品名:MEポリマーH40W、東邦化学工業(株)製)1gを添加した。このときの液のpHは11.3であった。5~10℃に温調した後、メチルトリメトキシシラン20.5g(ゴム粒子100質量部に対し、加水分解、縮合反応後のポリメチルシルセスキオキサンが6.7質量部となる量)を25分かけて滴下し、この間の液温を5~10℃に保ち、さらに1時間撹拌を継続させた。次いで、55~60℃まで加熱し、その温度を保ったまま1時間撹拌を行い、メチルトリメトキシシランの加水分解、縮合反応を完結させた。
 ゴム粒子の水分散液中でメチルトリメトキシシランを加水分解、縮合反応させた液を、加圧ろ過器を用いて水分約30%に脱水した。脱水物を錨型撹拌翼による撹拌装置の付いた容量2Lのガラスフラスコに移し、水1000gを添加し、30分間撹拌を行った後、加圧ろ過器を用いて脱水した。脱水物を再度錨型撹拌翼による撹拌装置の付いた容量2Lのガラスフラスコに移し、水1000gを添加し、30分間撹拌を行った後、加圧ろ過器を用いて脱水した。脱水物を熱風流動乾燥機中で105℃の温度で乾燥し、乾燥物をジェットミルで解砕し、流動性のある粒子を得た。
 得られた粒子を電子顕微鏡で観察したところ、ゴム粒子表面が全面に渡り、粒状形状のポリオルガノシルセスキオキサンで被覆した複合粒子(ポリオルガノシルセスキオキサン被覆ゴム粒子)となっていることが確認された。
 得られた複合粒子を、界面活性剤を用いて水に分散させて、電気抵抗法粒度分布測定装置(マルチサイザー3、ベックマン・コールター(株)製)を用いて測定したところ、粒度分布は上記ゴム粒子の水分散液と同等で、体積平均粒径は5μmであった。
 実施例1と同様にして、ゴム粒子の水分散液を得た。得られたゴム粒子の水分散液265gを錨型撹拌翼による撹拌装置の付いた容量2Lのガラスフラスコに移し、水651.1g、2.8%アンモニア水溶液2.2g及び30%ラウリルトリメチルアンモニウムクロライド水溶液(商品名:カチオンBB、日油(株)製)12g(水100質量部に対しラウリルトリメチルアンモニウムクロライドが0.44部となる量)を添加した。この時のpHは、10.4であった。5~10℃に温調した後、テトラメトキシシラン70.7g(ゴム粒子100質量部に対し、加水分解、縮合反応後のシリカが27質量部となる量)を60分かけて滴下し、この間の液温を5~10℃に保ち、さらに3時間撹拌を行った。次いで70~75℃まで加熱し、その温度を保ったまま1時間撹拌を行い、テトラメトキシシランの加水分解、縮合反応を完結させた。
 得られた複合粒子を、界面活性剤を用いて水に分散させて、電気抵抗法粒度分布測定装置(マルチサイザー3、ベックマン・コールター(株)製)を用いて測定したところ、粒度分布は前記のゴム粒子の水分散液と同等で、体積平均粒径は5μmであった。この粒子を電子顕微鏡で観察したところ、ゴム粒子表面が粒状形状のシリカで被覆した複合粒子となっていることが確認された。
[アルケニル基含有ポリ-ε-カプロラクトンの合成2]
 実施例1において、ポリ-ε-カプロラクトンジオール(商品名:プラクセル205U、(株)ダイセル製)200gの代わりに、ポリ-ε-カプロラクトンテトラオール(商品名:プラクセル410、(株)ダイセル製、分子量1030、水酸基価216.7mg/g)、200g用い、トリエチルアミン95.8gから98.4gに、ウンデセン酸クロライド168.9gから173.5g(水酸基1個に対し、酸塩化物が1.1個となる添加量)に変更し、その他は実施例1と同様にして合成を行い、アルケニル基含有ポリ-ε-カプロラクトン2(重量平均分子量:1698)を得た。
Figure JPOXMLDOC01-appb-C000013
(R9は脂肪族基を示し、4≦k+l+m+n≦9、重量平均分子量:1698)
[ゴム粒子の作製]
 実施例1において、合成した上記のアルケニル基含有ポリ-ε-カプロラクトン1を171gに代えて、アルケニル基含有ポリ-ε-カプロラクトン2を170gと、上記式(8)で示される、動粘度が23mm2/sのフェニルハイドロジェンポリシロキサン85.32g(ビニル基1個に対しヒドロシリル基が1.1個となる配合量)を用い、その他は実施例1と同様にしてゴム粒子の水分散液を得た。得られた水分散液中のゴム粒子の形状を光学顕微鏡にて観察したところ、球状であり、体積平均粒径を電気抵抗法粒度分布測定装置(マルチサイザー3、ベックマン・コールター(株)製)を用いて測定したところ、体積平均粒径は5μmであった。この水分散液を実施例1と同様に、スプレードライヤーを用いて水を除去させたところ、白色~淡黄色の粉体が得られた。また、ゴム粒子を構成するゴムの硬度を実施例1と同様に測定したところ、このゴムの硬度は82であった。
 実施例4で得たゴム粒子の水分散液から、実施例2と同様にして、ポリオルガノシルセスキオキサンで被覆した複合粒子を得た。得られた複合粒子を、界面活性剤を用いて水に分散させて、電気抵抗法粒度分布測定装置(マルチサイザー3、ベックマン・コールター(株)製)を用いて測定したところ、粒度分布は上記ゴム粒子の水分散液と同等で、体積平均粒径は5μmであった。
 実施例4において得たゴム粒子の水分散液を用いて、実施例3と同様にして、シリカ被覆複合粒子を得た。得られた複合粒子を、界面活性剤を用いて水に分散させて、電気抵抗法粒度分布測定装置(マルチサイザー3、ベックマン・コールター(株)製)を用いて測定したところ、粒度分布は前記のゴム粒子の水分散液と同等で、体積平均粒径は5μmであった。この粒子を電子顕微鏡で観察したところ、ゴム粒子表面が粒状形状のシリカで被覆した複合粒子となっていることが確認された。
[比較例1]
[平状シリコーンゴム作製]
 下記式(10)で示される、動粘度が600mm2/sのメチルビニルポリシロキサン25gと、下記式(11)で示される、動粘度が27mm2/sのメチルハイドロジェンポリシロキサン1g(ビニル基1個に対しヒドロシリル基が1.1個となる配合量)とを100mLの容器に仕込み、撹拌溶解させた。次いで、白金-ビニル基含有ジシロキサン錯体のイソドデカン溶液(白金含有量0.5%)を0.06g加え撹拌し、厚みが10mmになるようアルミシャーレに流し込み、40℃で2日放置することで、シリコーン粒子のゴム組成の平状ゴムを作製した。ゴムの硬度を実施例1と同様に測定したところ、このゴムの硬度は60であった。
Figure JPOXMLDOC01-appb-C000014
 
[ゴムの加水分解性評価(平状ゴム硬度経時測定)]
 上記実施例1で得られたアルケニル基含有ポリ-ε-カプロラクトン1と上記式(8)で示したフェニルハイドロジェンポリシロキサンで構成される平状ゴム(ゴム硬度:63)と、上記実施例4で得られたアルケニル基含有ポリ-ε-カプロラクトン2と上記式(8)で示したフェニルハイドロジェンポリシロキサンで構成される平状ゴム(ゴム硬度:82)と、比較例1で得られた上記式(10)で示したメチルビニルポリシロキサンと上記式(11)で示したメチルハイドロジェンポリシロキサンで構成される平状ゴム(ゴム硬度:60)について、下記方法で加水分解性を評価した。
 温度70℃、湿度90%の恒温恒湿器(IW222型、ヤマト科学(株)製)の中に上記平状ゴムサンプル3種を入れ静置し、ゴム硬度の変化を日単位で測定した。
 また、温度70℃の乾燥機(DNE601型、ヤマト科学(株)製)の中と、室温、湿度~65%環境下(使用環境想定)に実施例1で得られた平状ゴム(ゴム硬度:63)を静置し、ゴム硬度の変化を日単位で測定した。
Figure JPOXMLDOC01-appb-T000015
 実施例1、4の恒温恒湿器に静置していた平状ゴムサンプルは、ヒドロシリル化触媒存在下でアルケニル基有するポリ-ε-カプロラクトンと、ケイ素原子に結合した水素原子を有するオルガノハイドロジェンポリシロキサンにより架橋された構造を有し、温度70℃、湿度90%の高温多湿環境下においてゴム硬度が低下していることから、分解性を有すものと推察される。一方、比較例1の平状ゴムサンプルは、ゴムを構成する成分に、ポリエステルのような加水分解性官能基を有するものを使用しておらず、高温多湿環境下においてもゴム硬度が一定であることから、分解性を有さないと推測される。実施例1の70℃乾燥機に静置していた平状ゴムサンプルは、その熱により硬化が少し進んだためと推察されるゴム硬度の上昇が確認されたが、ゴム硬度の低下が生じていないことから、水分の存在下でなければ分解が生じないと推察される。実施例1の使用環境を想定した、室温、湿度~60%環境下に静置していた平状ゴムサンプルは、95日の測定期間においてゴム硬度の低下が生じていないことから、この測定期間において実使用環境では安定であると推察される。

Claims (10)

  1.  ポリエステル構造及びオルガノポリシロキサン構造を含む共重合体からなるゴム粒子。
  2.  粒子形状が球状で、体積平均粒径が0.1~50μmである請求項1に記載のゴム粒子。
  3.  共重合体が、
    (A)脂肪族不飽和基を一分子中に少なくとも2個有するポリエステル、及び
    (B)ケイ素原子に結合した水素原子を一分子中に少なくとも2個有するオルガノハイドロジェンポリシロキサン
    のヒドロシリル化架橋物であり、但し、前記(A)成分の前記脂肪族不飽和基が一分子中に2個存在し、且つ前記(B)成分の前記ケイ素原子に結合した水素原子が一分子中に2個存在する組み合わせの場合を除くものである請求項1又は2に記載のゴム粒子。
  4.  (A)成分の脂肪族不飽和基を一分子中に少なくとも2個有するポリエステルが、
    直鎖又は分岐鎖構造を有するポリエステル又はポリエステル共重合体の分子鎖末端を脂肪族不飽和基で置換したものである請求項3に記載のゴム粒子。
  5.  (A)成分が有するポリエステル構造が、ポリ-ε-カプロラクトンである請求項4に記載のゴム粒子。
  6.  (B)成分が、下記一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    (R1はそれぞれ独立に非置換又は置換の炭素数が1~30の一価炭化水素基であり、R2は互いに独立に水素原子又は非置換もしくは置換の炭素数が1~30の一価炭化水素基であり、1≦m≦1000、0≦n≦1000、ただし、n=0の場合、2つのR2は共に水素原子であり、2つのR2が共に水素原子でない場合、nは2以上である)で表されるケイ素原子に結合した水素原子を一分子中に少なくとも2個有するオルガノハイドロジェンポリシロキサンである、請求項3~5のいずれか1項に記載のゴム粒子。
  7. (B)成分が、下記一般式(2):
    Figure JPOXMLDOC01-appb-C000002
    (R3はフェニル基を除く、非置換又は置換の炭素数が1~30の一価炭化水素基であり、0≦a≦500、1≦b≦1000、1≦a+b≦1000、0≦c≦1000、ただし、c=0の場合、2つのR2は共に水素原子であり、2つのR2が共に水素原子でない場合、cは2以上である)で表される、ケイ素原子に結合した水素原子を一分子中に少なくとも2個有するオルガノハイドロジェンポリシロキサンである請求項6に記載のゴム粒子。
  8.  請求項3~7のいずれか1項に記載のゴム粒子の表面に、ポリオルガノシルセスキオキサン又はシリカが被覆されている複合粒子。
  9.  下記(i)~(iii)の工程を含む請求項3~7のいずれか1項に記載のゴム粒子を製造する方法。
    (i)脂肪族不飽和基を一分子中に少なくとも2個有するポリエステル(A)及びケイ素原子に結合した水素原子を一分子中に少なくとも2個有するオルガノハイドロジェンポリシロキサン(B)で構成される油相成分に、界面活性剤を含む水相成分を添加し乳化することで、O/W型エマルションを得る工程
    (ii)ヒドロシリル化反応性触媒存在下で、エマルション中の(A)成分及び(B)成分からなる油相成分をヒドロシリル化反応により硬化させ、ゴム粒子の水分散液(C)を得る工程
    (iii)工程(ii)で得られたゴム粒子の水分散液(C)から連続相である水を乾燥除去させることにより、ゴム粒子を得る工程
  10.  下記(i)~(v)の工程を含む請求項8に記載の複合粒子を製造する方法。
    (i)脂肪族不飽和基を一分子中に少なくとも2個有するポリエステル(A)及びケイ素原子に結合した水素原子を一分子中に少なくとも2個有するオルガノハイドロジェンポリシロキサン(B)で構成される油相成分に、界面活性剤を含む水相成分を添加し撹拌することで、O/W型エマルションを得る工程
    (ii)ヒドロシリル化反応性触媒存在下で、エマルション中の(A)成分及び(B)成分からなる油相成分をヒドロシリル化反応により硬化させ、ゴム粒子の水分散液(C)を得る工程
    (iii’)工程(ii)で得られたゴム粒子の水分散液(C)に、アルカリ性物質(E)を添加する工程
    (iv)工程(iii’)で得られたアルカリ性物質を添加したゴム粒子水分散液に、下記一般式(3):
    Figure JPOXMLDOC01-appb-C000003
    (R4は炭素数が1~6の一価炭化水素基、R5は非置換又は置換の炭素数が1~20の一価炭化水素基又は-OR4
    で表されるオルガノトリアルコキシシラン、テトラアルコキシシラン及びそれらの加水分解物から選ばれる一種(F)を添加し、縮合反応させることにより、ゴム粒子の表面をポリオルガノシルセスキオキサン又はシリカで被覆し、複合粒子の水分散液を得る工程
    (v)工程(iv)で得られた複合粒子の水分散液から連続相である水を乾燥除去させることにより、複合粒子を得る工程
PCT/JP2021/026331 2020-07-21 2021-07-13 ゴム粒子、複合粒子及びそれらの製造方法 WO2022019179A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237005491A KR20230041743A (ko) 2020-07-21 2021-07-13 고무 입자, 복합 입자 및 그것들의 제조 방법
US18/014,818 US20230295426A1 (en) 2020-07-21 2021-07-13 Rubber particles, composite particles and production methods thereof
EP21845792.7A EP4186943A1 (en) 2020-07-21 2021-07-13 Rubber particles, composite particles, and production methods therefor
CN202180059700.6A CN116157449A (zh) 2020-07-21 2021-07-13 橡胶粒子、复合粒子及其制造方法
JP2022537944A JPWO2022019179A1 (ja) 2020-07-21 2021-07-13

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-124630 2020-07-21
JP2020124630 2020-07-21

Publications (1)

Publication Number Publication Date
WO2022019179A1 true WO2022019179A1 (ja) 2022-01-27

Family

ID=79728756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/026331 WO2022019179A1 (ja) 2020-07-21 2021-07-13 ゴム粒子、複合粒子及びそれらの製造方法

Country Status (7)

Country Link
US (1) US20230295426A1 (ja)
EP (1) EP4186943A1 (ja)
JP (1) JPWO2022019179A1 (ja)
KR (1) KR20230041743A (ja)
CN (1) CN116157449A (ja)
TW (1) TW202214750A (ja)
WO (1) WO2022019179A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023276648A1 (ja) * 2021-07-01 2023-01-05 信越化学工業株式会社 シリコーンゴム球状粒子用液状組成物、シリコーンゴム球状粒子およびその製造方法、およびシリコーン複合粒子およびその製造方法
WO2023195402A1 (ja) * 2022-04-08 2023-10-12 信越化学工業株式会社 複合粒子、複合粒子の製造方法、及び化粧料
EP4310149A1 (de) 2022-07-21 2024-01-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Biodegradierbare polysiloxane

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113372690A (zh) * 2021-06-22 2021-09-10 惠州北方树工艺品有限公司 一种阻燃型全生物降解塑料及其制备方法与应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03277645A (ja) * 1990-03-27 1991-12-09 Shin Etsu Chem Co Ltd 硬化性樹脂組成物
JPH04348143A (ja) 1991-05-27 1992-12-03 Toray Dow Corning Silicone Co Ltd シリコーンゴム粉状物の製造方法
JPH07196815A (ja) 1993-12-28 1995-08-01 Shin Etsu Chem Co Ltd シリコーン微粒子およびその製造方法
JPH0873664A (ja) * 1994-09-01 1996-03-19 Sumitomo Bakelite Co Ltd 熱可塑性エラストマーの製造方法
JPH08209037A (ja) * 1994-10-26 1996-08-13 Kanegafuchi Chem Ind Co Ltd 新規なポリエステル系硬化性組成物を用いた粉体塗料
JPH08297380A (ja) * 1995-03-23 1996-11-12 Agfa Gevaert Nv ポリシロキサン変性樹脂を含有するトナー粒子
JP2001040097A (ja) * 1999-08-03 2001-02-13 Dow Corning Toray Silicone Co Ltd 有機架橋粒子、そのサスペンジョン、およびそれらの製造方法
JP2001040214A (ja) 1999-08-03 2001-02-13 Dow Corning Toray Silicone Co Ltd 有機架橋粒子、そのサスペンジョン、およびそれらの製造方法
JP2001114899A (ja) * 1999-10-18 2001-04-24 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JP2006045559A (ja) * 2004-07-08 2006-02-16 Byk Chem Gmbh ポリエステルで修飾されたポリシロキサン類、ならびに熱可塑性プラスチック、成形用コンパウンドおよびコーティング材料用の添加剤としてのこれらの使用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03277645A (ja) * 1990-03-27 1991-12-09 Shin Etsu Chem Co Ltd 硬化性樹脂組成物
JPH04348143A (ja) 1991-05-27 1992-12-03 Toray Dow Corning Silicone Co Ltd シリコーンゴム粉状物の製造方法
JPH07196815A (ja) 1993-12-28 1995-08-01 Shin Etsu Chem Co Ltd シリコーン微粒子およびその製造方法
JPH0873664A (ja) * 1994-09-01 1996-03-19 Sumitomo Bakelite Co Ltd 熱可塑性エラストマーの製造方法
JPH08209037A (ja) * 1994-10-26 1996-08-13 Kanegafuchi Chem Ind Co Ltd 新規なポリエステル系硬化性組成物を用いた粉体塗料
JPH08297380A (ja) * 1995-03-23 1996-11-12 Agfa Gevaert Nv ポリシロキサン変性樹脂を含有するトナー粒子
JP2001040097A (ja) * 1999-08-03 2001-02-13 Dow Corning Toray Silicone Co Ltd 有機架橋粒子、そのサスペンジョン、およびそれらの製造方法
JP2001040214A (ja) 1999-08-03 2001-02-13 Dow Corning Toray Silicone Co Ltd 有機架橋粒子、そのサスペンジョン、およびそれらの製造方法
JP2001114899A (ja) * 1999-10-18 2001-04-24 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JP2006045559A (ja) * 2004-07-08 2006-02-16 Byk Chem Gmbh ポリエステルで修飾されたポリシロキサン類、ならびに熱可塑性プラスチック、成形用コンパウンドおよびコーティング材料用の添加剤としてのこれらの使用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023276648A1 (ja) * 2021-07-01 2023-01-05 信越化学工業株式会社 シリコーンゴム球状粒子用液状組成物、シリコーンゴム球状粒子およびその製造方法、およびシリコーン複合粒子およびその製造方法
WO2023195402A1 (ja) * 2022-04-08 2023-10-12 信越化学工業株式会社 複合粒子、複合粒子の製造方法、及び化粧料
EP4310149A1 (de) 2022-07-21 2024-01-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Biodegradierbare polysiloxane
DE102022118294A1 (de) 2022-07-21 2024-02-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Biodegradierbare Polysiloxane

Also Published As

Publication number Publication date
EP4186943A1 (en) 2023-05-31
CN116157449A (zh) 2023-05-23
TW202214750A (zh) 2022-04-16
KR20230041743A (ko) 2023-03-24
JPWO2022019179A1 (ja) 2022-01-27
US20230295426A1 (en) 2023-09-21

Similar Documents

Publication Publication Date Title
WO2022019179A1 (ja) ゴム粒子、複合粒子及びそれらの製造方法
JP5614392B2 (ja) シリコーン微粒子の製造方法
JPH0330620B2 (ja)
CN108699247B (zh) 二氧化硅涂覆的硅橡胶粒子和化妆品
JPH07196815A (ja) シリコーン微粒子およびその製造方法
JP5607001B2 (ja) シリコーン微粒子及びその製造方法
EP2150571A1 (en) Polyalkylsilsesquioxane particulates and a preparation method thereof
KR102161727B1 (ko) 실리콘 복합 입자 및 그의 제조 방법
Stefanović et al. Tailoring the properties of waterborne polyurethanes by incorporating different content of poly (dimethylsiloxane)
JPH1036675A (ja) シリコーンエマルジョン組成物およびそれを用いたシリコーン粉体の製造方法
KR102608579B1 (ko) 실리카 피복 실리콘 엘라스토머 구상 입자의 제조 방법 및 실리카 피복 실리콘 엘라스토머 구상 입자
CN112654668B (zh) 多孔性硅橡胶球状粒子、多孔性有机硅复合粒子和这些粒子的制造方法
JPH03281538A (ja) シリコーン水性エマルジョン組成物
JP2018177881A (ja) シリコーン粒子及びその製造方法
WO2021220625A1 (ja) ポリエーテル/ポリシロキサン架橋ゴム球状粒子及びこれを製造する方法、並びにポリエーテル/ポリシロキサン架橋複合粒子及びこれを製造する方法
EP3434715B1 (en) Silicone particles and method for producing same
JP7467639B2 (ja) 微細に分割された水性の粒子安定化ピッカリングエマルション及びそれから製造された粒子
WO2023058383A1 (ja) ゴム粒子、複合粒子、及びそれらの製造方法
WO2023276648A1 (ja) シリコーンゴム球状粒子用液状組成物、シリコーンゴム球状粒子およびその製造方法、およびシリコーン複合粒子およびその製造方法
KR20240072252A (ko) 고무 입자, 복합 입자, 및 그들의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21845792

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022537944

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237005491

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021845792

Country of ref document: EP

Effective date: 20230221