WO2022009782A1 - ポリベンゾオキサゾール、ポリアミド、ポリアミド溶液、高周波電子部品用絶縁材、高周波電子部品、高周波機器、高周波電子部品製造用絶縁材料、ポリアミドの製造方法、ポリベンゾオキサゾールの製造方法、高周波電子部品用絶縁材の製造方法、および、ジアミンまたはその塩 - Google Patents
ポリベンゾオキサゾール、ポリアミド、ポリアミド溶液、高周波電子部品用絶縁材、高周波電子部品、高周波機器、高周波電子部品製造用絶縁材料、ポリアミドの製造方法、ポリベンゾオキサゾールの製造方法、高周波電子部品用絶縁材の製造方法、および、ジアミンまたはその塩 Download PDFInfo
- Publication number
- WO2022009782A1 WO2022009782A1 PCT/JP2021/025005 JP2021025005W WO2022009782A1 WO 2022009782 A1 WO2022009782 A1 WO 2022009782A1 JP 2021025005 W JP2021025005 W JP 2021025005W WO 2022009782 A1 WO2022009782 A1 WO 2022009782A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- general formula
- polyamide
- diamine
- insulating material
- frequency electronic
- Prior art date
Links
- GMCHZIMYWZFGJL-UHFFFAOYSA-N CC(C)c1cc(C(C(F)(F)F)c(cc2N)cc(C(C)C)c2O)cc(N)c1O Chemical compound CC(C)c1cc(C(C(F)(F)F)c(cc2N)cc(C(C)C)c2O)cc(N)c1O GMCHZIMYWZFGJL-UHFFFAOYSA-N 0.000 description 1
- IABSOJWYNKZOJM-UHFFFAOYSA-N Nc(cc(C(C(F)(F)F)C(CC1)=CC(N)=C1O)cc1)c1O Chemical compound Nc(cc(C(C(F)(F)F)C(CC1)=CC(N)=C1O)cc1)c1O IABSOJWYNKZOJM-UHFFFAOYSA-N 0.000 description 1
- FDQSRULYDNDXQB-UHFFFAOYSA-N O=C(c1cc(C(Cl)=O)ccc1)Cl Chemical compound O=C(c1cc(C(Cl)=O)ccc1)Cl FDQSRULYDNDXQB-UHFFFAOYSA-N 0.000 description 1
- CSQIEYPKOMCYEV-UHFFFAOYSA-N [O-][N+](c(cc(C(C(F)(F)F)C(CC1)=CC([N+]([O-])=O)=C1O)cc1)c1O)=O Chemical compound [O-][N+](c(cc(C(C(F)(F)F)C(CC1)=CC([N+]([O-])=O)=C1O)cc1)c1O)=O CSQIEYPKOMCYEV-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/22—Polybenzoxazoles
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C215/00—Compounds containing amino and hydroxy groups bound to the same carbon skeleton
- C07C215/74—Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
- C07C215/76—Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton of the same non-condensed six-membered aromatic ring
- C07C215/80—Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton of the same non-condensed six-membered aromatic ring containing at least two amino groups bound to the carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C213/00—Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
- C07C213/02—Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions involving the formation of amino groups from compounds containing hydroxy groups or etherified or esterified hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/40—Polyamides containing oxygen in the form of ether groups
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D177/00—Coating compositions based on polyamides obtained by reactions forming a carboxylic amide link in the main chain; Coating compositions based on derivatives of such polymers
- C09D177/06—Polyamides derived from polyamines and polycarboxylic acids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/307—Other macromolecular compounds
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0213—Electrical arrangements not otherwise provided for
- H05K1/0237—High frequency adaptations
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0313—Organic insulating material
- H05K1/032—Organic insulating material consisting of one material
- H05K1/0346—Organic insulating material consisting of one material containing N
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0313—Organic insulating material
- H05K1/0353—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
- H05K1/036—Multilayers with layers of different types
Definitions
- the present invention relates to polybenzoxazole, polyamide, polyamide solution, insulating material for high frequency electronic parts, high frequency electronic parts, high frequency equipment, insulating material for manufacturing high frequency electronic parts, method for manufacturing polyamide, method for manufacturing polybenzoxazole, high frequency electronic parts.
- the present invention relates to a method for producing an insulating material for use, and a diamine or a salt thereof.
- High-frequency electric signals are used in communication equipment (high-frequency equipment) represented by mobile phones and smartphones.
- communication equipment high-frequency equipment
- the propagation speed can also be increased by lowering the relative permittivity ( ⁇ r) of the material.
- a material having a low dielectric loss tangent may be required as an insulating material constituting a mounting substrate in a high-frequency device.
- Patent Document 1 describes a fluorine-containing polyimide film having a dielectric loss tangent of 0.007 or less, a water absorption of 0.8% or less, and a linear expansion coefficient of 30 ppm / ° C or less at 50 to 200 ° C. According to the description of Patent Document 1, this fluorine-containing polyimide film has characteristics such as low dielectric constant and low water absorption (and thus low permeability of water vapor and gas), and is particularly suitable for a high-frequency compatible substrate. Applies.
- insulating materials with a small relative permittivity and a small dielectric loss tangent are being sought after in the 5G frequency band.
- a fluorine-containing resin as described in Patent Document 1 is considered to be preferable from the viewpoint of low dielectric constant and low dielectric loss tangent (probably due to the specific electron-withdrawing property of the fluorine atom).
- the present invention was made in view of such circumstances.
- One of the objects of the present invention is to provide a fluorine-containing resin material having a small relative permittivity and dielectric loss tangent and capable of forming an insulating material by curing at a relatively low temperature.
- the present invention is a polybenzoxazole having a structural unit represented by the following general formula [1].
- R 1 is a tetravalent organic group represented by the following general formula [2].
- R 2 is a divalent organic group.
- the two ns are independently integers from 0 to 3 and R 3 represents a monovalent substituent case independently presence of a plurality of, * 1, * 2, * 3 and * 4 each independently represent a bond, one of * 1 and * 2 is bonded to the oxygen atom in the general formula [1], and the other is the general formula [1]. It is bonded to the nitrogen atom in, one of * 3 and * 4 is bonded to the oxygen atom in the general formula [1], and the other is bonded to the nitrogen atom in the general formula [1].
- the present invention is a polyamide having a structural unit represented by the following general formula [1A].
- R 1 represents a tetravalent organic group represented by the following general formula [2].
- R 2 represents a divalent organic group.
- the two ns are independently integers from 0 to 3 and R 3 represents a monovalent substituent case independently presence of a plurality of, * 1, * 2, * 3 and * 4 each independently represent a bond, one of * 1 and * 2 is bonded to the oxygen atom of the hydroxy group in the general formula [1A], and the other is the general formula. It is bonded to the nitrogen atom in [1A], one of * 3 and * 4 is bonded to the oxygen atom of the hydroxy group in the general formula [1A], and the other is bonded to the nitrogen atom in the general formula [1A]. do.
- the present invention is a polyamide solution containing the above-mentioned polyamide and an organic solvent.
- the present invention is an insulating material for high-frequency electronic components containing the above-mentioned polybenzoxazole.
- the present invention is a high frequency electronic component provided with the above-mentioned insulating material for high frequency electronic components.
- the present invention is a high frequency device provided with the above high frequency electronic components.
- the present invention is an insulating material for manufacturing high-frequency electronic components containing the above-mentioned polyamide.
- the present invention is the above-mentioned method for producing a polyamide.
- the method is The diamine or its salt represented by the general formula [DA] below and A dicarboxylic acid or a dicarboxylic acid derivative represented by the general formula [DC1] or [DC2] below, It is a method for producing a polyamide including a step of polycondensing.
- n and R 3 are the same as those in the general formula [2].
- R 2 has the same meaning as R 2 in the general formula [1A], each two A independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or C 6 -C It is an aromatic hydrocarbon group of 10.
- R 2 has the same meaning as R 2 in the general formula [1A], respectively two X independently, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom or an active ester group.
- the present invention is the above-mentioned method for producing polybenzoxazole.
- the present invention comprises a coating step of applying the above-mentioned polyamide solution to a supporting substrate, and a coating step.
- the present invention is a diamine represented by the following general formula [DA] or a salt thereof.
- the two n are each independently an integer of 0 ⁇ 3
- R 3 represents a monovalent substituent case independently presence of a plurality.
- the present invention is a method for producing the above-mentioned diamine or a salt thereof.
- a method for producing diamine or a salt thereof which comprises a step of reducing bisnitrophenol represented by the following general formula [DN].
- the definitions of the two n and R 3 are the same as those in the general formula [DA].
- a fluorine-containing resin material having a small relative permittivity and dielectric loss tangent and capable of forming an insulating material by curing at a relatively low temperature.
- the notation "XY” in the description of the numerical range indicates X or more and Y or less unless otherwise specified.
- “1 to 5% by mass” means “1% by mass or more and 5% by mass or less”.
- the notation that does not indicate whether it is substituted or unsubstituted includes both those having no substituent and those having a substituent.
- the "alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
- organic group as used herein means an atomic group obtained by removing one or more hydrogen atoms from an organic compound.
- the "monovalent organic group” represents an atomic group obtained by removing one hydrogen atom from an arbitrary organic compound.
- the notation “Me” represents a methyl group (CH 3 ).
- fluoral means trifluoroacetaldehyde.
- high frequency means, for example, a region having a frequency of 1 GHz or higher, preferably a frequency of 10 to 200 GHz, and more preferably a frequency of 28 to 100 GHz.
- the polybenzoxazole of the present embodiment has a structural unit represented by the following general formula [1].
- R 1 represents a tetravalent organic group represented by the following general formula [2]
- R 2 represents a divalent organic group.
- the two n are each independently an integer of 0 ⁇ 3
- R 3 in the presence of two or more are each independently a monovalent substituent.
- * 1, * 2, * 3 and * 4 each independently represent a bond, one of * 1 and * 2 is bonded to an oxygen atom in the general formula [1], and the other is a general formula [1]. It is bonded to the nitrogen atom in, one of * 3 and * 4 is bonded to the oxygen atom in the general formula [1], and the other is bonded to the nitrogen atom in the general formula [1].
- the polybenzoxazole of the present embodiment contains a fluorine atom.
- the relative permittivity and dielectric loss tangent are reduced, probably due to the presence of fluorine atoms (the presence of fluorine atoms in the -CH (CF 3) -part in the general formula [2]). Guessed.
- the polybenzoxazole of the present embodiment has high heat resistance, probably due to the rigid cyclic skeleton.
- the polybenzoxazole of the present embodiment can be typically obtained by heating a polyamide having a structural unit represented by the general formula [1A] described later to cause a ring closure reaction.
- the polyamide having the structural unit represented by the general formula [1A] undergoes a ring closure reaction at a relatively low temperature and is converted into polybenzoxazole having the structural unit represented by the general formula [1].
- the reason for this is not always clear, but it is presumed that the structure "-CH (CF 3 )-" is involved.
- the "-CH (CF 3 )-" structure has fewer fluorine atoms than the "-C (CF 3 ) 2- " structure considered common to those skilled in the art, but the packing of the polymer chains is looser. Therefore, it is presumed that it is excellent in low temperature curability while exhibiting almost the same dielectric properties.
- the monovalent substituent of R 3 is not particularly limited.
- Fluoro group and the like.
- These may further have a substituent such as a fluorine atom or a carboxyl group.
- an alkyl group an alkoxy group, a fluorinated alkyl group (for example, a trifluoromethyl group), a halogeno group (for example, a fluoro group) and a nitro group are preferable.
- alkyl group in R 3 examples include a linear or branched alkyl group having 1 to 6 carbon atoms. Of these, n-butyl group, s-butyl group, isobutyl group, t-butyl group, n-propyl group, i-propyl group, ethyl group and methyl group are preferable, and ethyl group and methyl group are more preferable.
- alkoxy group in R 3 include a linear or branched alkoxy group having 1 to 6 carbon atoms.
- n-butoxy group, s-butoxy group, isobutoxy group, t-butoxy group, n-propoxy group, i-propoxy group, ethoxy group and methoxy group are preferable, and ethoxy group and methoxy group are particularly preferable.
- the alkyl group or alkoxy group in R 3 may be, for example, a halogen atom, an alkoxy group, and a haloalkoxy group substituted on any carbon thereof in any number and in any combination. Furthermore, if the number of R 3 is 2 or more, two or more R 3 linked is saturated or unsaturated, monocyclic or polycyclic, form a cyclic group having 3 to 10 carbon atoms May be. In the general formula [2], n is preferably 0 to 2, more preferably 0 to 1, and even more preferably 0.
- R 1 can be mentioned below.
- the methyl group is specified as Me to distinguish it from a simple bond.
- the divalent organic group of R 2 is not particularly limited. From the viewpoint of heat resistance required for the insulating material and better dielectric properties, a divalent organic group containing an aromatic ring such as a benzene ring is preferable. More specifically, the divalent organic group of R 2 can be -Ph-, -Ph-X-Ph- or the like.
- Ph is a substituted or unsubstituted phenylene group
- X is a divalent linking group other than a single-bonded or phenylene group (for example, a linear or branched alkylene group having 1 to 3 carbon atoms, an ether group, a thioether group, etc. Carbonyl group, sulfon group, carbonyloxy group, oxycarbonyl group, etc.).
- R 2 Particularly preferred as R 2, it can include the following.
- the weight average molecular weight, number average molecular weight, and the like of the polybenzoxazole of the present embodiment are usually about the same as those of the polyamide described later.
- the polybenzoxazole of the present embodiment may have a structural unit different from the structural unit represented by the general formula [1]. However, in terms of particularly reducing the relative permittivity and dielectric loss tangent, and / or making it possible to form an insulating material by curing at a sufficiently low temperature, it is preferably 50 to 100 mol% in all structural units of polybenzoxazole. , More preferably 75 to 100 mol%, still more preferably 90 to 100 mol% is a structural unit represented by the general formula [1]. Virtually all structural units (100%) of the polybenzoxazole of the present embodiment may be structural units represented by the general formula [1].
- the polyamide (polyhydroxyamide) of the present embodiment has a structural unit represented by the following general formula [1A].
- R 1 represents a tetravalent organic group represented by the general formula [2]
- R 2 represents a divalent organic group.
- R 3 represents a monovalent substituent case independently presence of a plurality.
- * 1, * 2, * 3 and * 4 each independently represent a bond, one of * 1 and * 2 is bonded to the oxygen atom of the hydroxy group in the general formula [1A], and the other is the general formula. It is bonded to the nitrogen atom in [1A], one of * 3 and * 4 is bonded to the oxygen atom of the hydroxy group in the general formula [1A], and the other is bonded to the nitrogen atom in the general formula [1A].
- the weight average molecular weight of the polyamide of the present embodiment is not particularly limited. However, the weight average molecular weight of the polyamide is preferably 1,000 or more and 1,000,000 or less, more preferably 30,000, in view of the performance of the cured film and the ease of forming a film on the substrate. More than 500,000 or less. In particular, considering application to high-frequency electronic component manufacturing applications, the weight average molecular weight is preferably 500,000 or less.
- the weight average molecular weight and the number average molecular weight can be measured by gel permeation chromatography (GPC) using polystyrene as a standard substance.
- the polyamide of the present embodiment may have a structural unit different from the structural unit represented by the general formula [1A].
- the relative permittivity and dielectric loss tangent of polybenzoxazole obtained by the ring closure reaction are particularly small, and / or the insulating material can be formed by curing at a sufficiently low temperature.
- Preferably 50 to 100 mol%, more preferably 75 to 100 mol%, still more preferably 90 to 100 mol% is a structural unit represented by the general formula [1A].
- Virtually all structural units (100%) of the polyamide of the present embodiment may be structural units represented by the general formula [1A].
- the polyamide of this embodiment is preferably used as an insulating material for manufacturing high-frequency electronic components. The specific application will be described in detail later.
- the polyamide of the present embodiment (having a structural unit represented by the general formula [1A]) is usually applied to various uses in the form of being dissolved in an organic solvent.
- One of the applications preferably applied is for manufacturing high frequency electronic components. That is, the polyamide solution containing the polyamide and the organic solvent of this embodiment is preferably used as an insulating material for manufacturing high-frequency electronic components.
- the organic solvent is preferably at least one selected from the group consisting of an amide solvent, an ether solvent, an aromatic solvent, a halogen solvent and a lactone solvent. These solvents dissolve the polyamide of the present embodiment well. Specific examples of these solvents include the same organic solvents used for the reaction (condensation polymerization) described in the following ⁇ Method for producing polyamide>. Incidentally, when preparing the polyamide solution, it is preferable to use the same organic solvent as the organic solvent used for the reaction (condensation polymerization) from the viewpoint of simplification of the manufacturing process and the like.
- the concentration of the polyamide solution may be appropriately set according to the application and purpose. From the viewpoint of good film forming property, the concentration of the polyamide is preferably 0.1% by mass or more and 50% by mass or less, and more preferably 1% by mass or more and 30% by mass or less.
- the polyamide solution of the present embodiment may contain one or more additives in addition to the polyamide and the organic solvent.
- an additive such as a surfactant can be used for the purpose of improving coatability, leveling property, film forming property, storage stability, defoaming property and the like.
- Commercially available surfactants include Megafuck, F142D, F172, F173 or F183, trade name manufactured by DIC Co., Ltd., and Florard, product number, FC-135, FC-170C, FC-, manufactured by Sumitomo 3M Co., Ltd.
- FC-431 product name Surfron manufactured by AGC Seimi Chemical Co., Ltd., product number S-112, S-113, S-131, S-141 or S-145, or manufactured by Toray Dow Corning Silicone Co., Ltd., product name. , SH-28PA, SH-190, SH-193, SZ-6032 or SF-8428 (Megafuck is the trade name of fluorine-based additives (surfactants / surface modifiers) of DIC Co., Ltd., Florard. Is the trade name of the fluorine-based surfactant manufactured by Sumitomo 3M Co., Ltd.
- the polyamide solution of the present embodiment usually does not contain a photosensitizer such as a quinonediazide compound, or even if it contains a small amount.
- the amount of the photosensitizer in the polyamide solution of the present embodiment is, for example, 1 part by mass or less, specifically 0.1 part by mass or less, with respect to 100 parts by mass of the polyamide. If the polyamide solution of the present embodiment is used for applications that do not require patterning with light, no photosensitizer is required. In other words, the polyamide solution of this embodiment can be non-photosensitive.
- the polyamide of the present embodiment typically reacts (condensation polymerization) of a diamine compound (monomer) or a derivative thereof with another compound (monomer). ) Can be manufactured. In the reaction, a diamine compound (monomer) or a derivative thereof is usually reacted with another compound (monomer) in an organic solvent.
- diamine compound or its derivative preferably, a diamine represented by the following general formula [DA] or a salt thereof can be mentioned.
- Formula [DA] in the definition and specific aspects of n and R 3 are the same as n and R 3 in the general formula [2].
- the "salt" of the diamine represented by the general formula [DA] is considered to be a form in which an amino group is cationized under acidic conditions and a form in which a phenolic hydroxy group is anionized under basic conditions. As a reminder, both of these two forms are included in the "salt of diamine represented by the general formula [DA]”.
- the salt of diamine represented by the general formula [DA] is preferably in the form of a cationized amino group.
- Diamine represented by the general formula [DA] for example, (i) 2-Amino phenol or a derivative thereof (specifically, 2-amino phenol of general formula [2] and substitutions in [DA] group R 3 It can be obtained by reacting with (ii) fluoral (replaced with). The molar ratio of the reaction of (i) and (ii) is usually 2: 1. Further, the diamine represented by the general formula [DA] may be obtained by reducing the corresponding nitro group-containing compound (the amino group in the general formula [DA] is replaced with a nitro group). Further, a salt of diamine can be obtained by reacting the diamine obtained as described above with an acid. Examples of specific reaction conditions and fluores will be described later.
- diamine represented by the general formula [DA] are not limited to these.
- a diamine compound represented by the general formula [DA] or a salt thereof may be used in combination with another diamine compound or a salt thereof.
- Diamine compounds that can be used in combination include 5- (trifluoromethyl) -1,3-phenylenediamine, 2- (trifluoromethyl) -1,3-phenylenediamine, and 4- (trifluoromethyl) -1,3-phenylene.
- the general formula is preferably 50 to 100 mol%, more preferably 75 to 100 mol%, still more preferably 90 to 100 mol% in all diamine compounds used in polymer production. It is preferably a diamine compound represented by [DA] or a salt thereof. All of the diamine compounds used in polymer production may be diamine compounds represented by the general formula [DA] or salts thereof. In the production of the polyamide, (i) only one diamine compound corresponding to the general formula [DA] or a salt thereof may be used, or (ii) a diamine compound corresponding to the general formula [DA] or a salt thereof 2 may be used.
- More than one species may be used in combination, or (iii) one or more diamine compounds or salts thereof corresponding to the general formula [DA] and one or more diamines not corresponding to the general formula [DA]. It may be used in combination with a compound or a salt thereof.
- the diamine compound (monomer) or a salt thereof preferably, a dicarboxylic acid or a derivative thereof (diester, dicarboxylic acid halide, active ester compound, etc.) can be mentioned.
- a dicarboxylic acid or a derivative thereof preferably, a compound represented by the following general formula [DC-1] or [DC-2] can be mentioned.
- R 2 is R 2 as defined in the general formula [1A] (i.e. R 2 both synonymous in the general formula [1]), respectively two A independently represents a hydrogen atom, C 1 -C It represents an alkyl group of about 10 or an aromatic hydrocarbon group having 6 to 10 carbon atoms.
- R 2 is R 2 as defined in the general formula [1A] (i.e. R 2 both synonymous in the general formula [1]), respectively two X independently, a fluorine atom, a chlorine atom, Represents a bromine atom, an iodine atom or an active ester group.
- the compound in which X is an "active ester group” can be obtained, for example, by reacting a dicarboxylic acid with an active esterifying agent in the presence of a dehydration condensing agent.
- a dehydration condensing agent include, for example, dicyclohexylcarbodiimide, 1-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline, 1,1′-carbonyldioxy-di-1,2,3-benzotriazole, N, Examples thereof include N'-discusin imidazole carbonate.
- Preferred active esterifying agents include N-hydroxysuccinimide, 1-hydroxybenzotriazole, N-hydroxy-5-norbornen-2,3-dicarboxylic acidimide, 2-hydroxyimino-2-cyanoacetate ethyl, 2-hydroxyimino. -2-Cyanoacetic acid amide and the like can be mentioned.
- dicarboxylic acid itself or the dicarboxylic acid that is the source of the dicarboxylic acid derivative
- dicarboxylic acid derivative include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, and azelaic acid as aliphatic dicarboxylic acids.
- phthalic acid as aromatic dicarboxylic acid, isophthalic acid, terephthalic acid, 3,3'-dicarboxydiphenyl ether, 3,4-dicarboxydiphenyl ether, 4,4'-dicarboxydiphenyl ether, 3,3'- Dicarboxydiphenylmethane, 3,4-dicarboxydiphenylmethane, 4,4'-dicarboxydiphenylmethane, 3,3'-dicarboxydiphenyldifluoromethane, 3,4-dicarboxydiphenyldifluoromethane, 4,4'-dicarboxydiphenyl Difluoromethane, 3,3'-dicarboxydiphenylsulfone, 3,4-dicarboxydiphenylsulfone, 4,4'-dicarboxydiphenylsulfone, 3,3'-dicarboxydiphenylsulfide, 3,4-dicarboxy
- dicarboxylic acid or the dicarboxylic acid derivative include an aromatic dicarboxylic acid or a derivative thereof.
- particularly preferred dicarboxylic acids or dicarboxylic acid derivatives include: In the following, the definition and specific embodiment of A are the same as those of the general formula [DC-1], and the definition and specific embodiment of X are the same as those of the general formula [DC-2].
- a solvent in which the raw material compound is dissolved can be used without particular limitation. Specific examples thereof include amide solvents, ether solvents, aromatic solvents, halogen solvents, lactone solvents and the like.
- amide solvent N, N-dimethylformamide, N, N-dimethylacetamide, N-methylformamide, hexamethylphosphate triamide or N-methyl-2-pyrrolidone
- ether solvent Diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, cyclopentylmethyl ether, diphenyl ether, dimethoxyethane, diethoxyethane, tetrahydrofuran, dioxane or trioxane, as aromatic solvents, benzene, anisole, nitrobenzene or benzonitrile, halogen
- the system solvent is chloroform, dichloromethane, 1,2-dichloroethane or 1,1,2,2-tetrachloroethane
- lactone-based solvent is ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, ⁇ -caprolact
- the temperature at the time of reaction may be appropriately set between, for example, -100 to 100 ° C. Further, the reaction may be carried out in an environment of an inert gas such as nitrogen or argon.
- the addition-reactive group is not particularly limited as long as it is a group that undergoes an addition polymerization reaction (curing reaction) by heating. It is preferably any reaction group selected from the group consisting of a group containing an acetylene bond such as a phenylethynyl group, a nadic acid group, and a maleimide group, and more preferably a group containing an acetylene bond such as a phenylethynyl group. Yes, more preferably a phenylethynyl group.
- the addition-reactive group is introduced into the polymer terminal by reacting a compound having an acid anhydride group or an amino group together with the addition-reactive group in one molecule with the amino group or the acid anhydride group at the polymer terminal.
- This reaction is preferably a reaction that forms an imide ring.
- the compound having an acid anhydride group or an amino group together with an addition reactive group in the molecule include 4- (2-phenylethynyl) anhydrous phthalic acid, phenylethynyl trimellitic anhydride, and 4- (2-phenylethynyl).
- dicarboxylic acid anhydride such as maleic anhydride, phthalic anhydride, nadic acid anhydride, ethynyl phthalic anhydride, hydroxy phthalic anhydride, hydroxyaniline, aminobenzoic acid, dihydroxyaniline.
- dicarboxylic acid anhydride such as maleic anhydride, phthalic anhydride, nadic acid anhydride, ethynyl phthalic anhydride, hydroxy phthalic anhydride, hydroxyaniline, aminobenzoic acid, dihydroxyaniline.
- carbboxyhydroxyaniline dicarboxyaniline and the like.
- a reaction solution to a poor solvent (for example, water, alcohol, etc.) to precipitate, isolate and purify the polyamide for the purpose of removing residual monomers and low molecular weight substances.
- a poor solvent for example, water, alcohol, etc.
- the polyamide with reduced impurities may be dissolved again in an organic solvent. By doing so, it is possible to obtain a polyamide solution having a small amount of impurities.
- Polybenzoxazole can be produced using the polyamide produced as described above.
- -The first step of manufacturing polyamide by the above ⁇ method of manufacturing polyamide> and -The second step of dehydrating and ring-closing the polyamide obtained in the first step and thereby, the polybenzoxazole of the present embodiment (polybenzoxazole having the structural unit represented by the above-mentioned general formula [1]) can be produced.
- the dehydration ring closure reaction in the second step is usually carried out by a heating method. Specifically, the polyamide (polyhydroxyamide) obtained in the first step is heated to 100 to 350 ° C. As a result, dehydration cyclization in the polyamide proceeds. Then, the polybenzoxazole of the present embodiment can be obtained.
- the polyamide may be heated by heating the polyamide solution or by heating the solid (for example, film-like) polyamide, but the latter is preferable. This will be described in detail later as a method for manufacturing an insulating material for high-frequency electronic components.
- the insulating material for high-frequency electronic components containing polybenzoxazole can be typically obtained by heating the above-mentioned polyamide or a solution thereof. Specifically, by going through each of the following steps, an insulating material for high-frequency electronic components containing polybenzoxazole having a structural unit represented by the general formula [1] can be produced. Incidentally, the following drying step and heating step may be continuously carried out.
- the coating method in the coating step is not particularly limited, and a known method can be adopted.
- a known coating device such as a spin coater, a bar coater, a doctor blade coater, an air knife coater, a roll coater, a rotary coater, a flow coater, a die coater, and a lip coater can be appropriately used depending on the coating film thickness, the viscosity of the solution, and the like.
- the supporting base material is not particularly limited. Inorganic or organic substrates are suitable. Specifically, glass, silicon wafer, stainless steel, alumina, copper, nickel, etc., polyethylene terephthalate, polyethylene glycol terephthalate, polyethylene glycol naphthalate, polycarbonate, polyimide, polyamideimide, polyetherimide, polyetheretherketone, polypropylene, poly Examples thereof include ether sulfone, polyethylene terephthalate, polyphenylene sulfone, polyphenylene sulfide and the like. Of these, from the viewpoint of heat resistance, it is preferable to use an inorganic base material, and it is more preferable to use an inorganic base material such as glass, silicon wafer, or stainless steel.
- the thickness of the finally obtained film can be adjusted.
- the thickness of the finally obtained film is usually 1 ⁇ m or more and 1000 ⁇ m or less, preferably 5 ⁇ m or more and 500 ⁇ m or less.
- the thickness is 1 ⁇ m or more, the strength of the film itself can be made sufficient.
- the thickness is 1000 ⁇ m or less, it is easy to suppress defects such as cissing, dents, and cracks.
- the solvent in the applied polyamide solution is usually volatilized by heating with a hot plate.
- the heating temperature in the drying step is preferably 50 ° C. or higher and 250 ° C. or lower, and more preferably 80 ° C. or higher and 200 ° C. or lower, although it depends on the type of the solvent in which the polyamide is dissolved.
- the heating temperature in the drying step is usually lower than the temperature in the subsequent heating step. When the heating temperature in the drying step is 50 ° C. or higher, drying is more easily performed. Further, when the heating temperature in the drying step is 250 ° C. or lower, defects such as cissing, dents, and cracks due to rapid solvent evaporation are suppressed, and a uniform film can be easily formed.
- the resin film obtained in the drying step is cured by heat treatment at a high temperature.
- the ring closure reaction of the polyamide in the resin film proceeds, and an insulating material (cured film) for high-frequency electronic components containing polybenzoxazole can be obtained.
- the temperature of the heating step is preferably 100 ° C. or higher and 400 ° C. or lower, and more preferably 150 ° C. or higher and 350 ° C. or lower.
- the temperature of the heating step is 100 ° C. or higher, the cyclization reaction can easily proceed sufficiently.
- the temperature of the heating step is 400 ° C. or lower, it is easy to suppress the occurrence of defects such as cracks.
- the heating step is preferably performed using an inert gas oven, a hot plate, a box-type dryer, or a conveyor-type dryer, but is not limited to the use of these devices.
- the heating step is preferably performed under an inert gas stream from the viewpoint of suppressing oxidation of the resin film and removing the residual solvent.
- the inert gas include nitrogen and argon.
- the oxygen concentration in the inert gas is preferably 500 ppm or less, more preferably 100 ppm or less, and even more preferably 20 ppm or less. By lowering the oxygen concentration, it is easy to suppress coloring and deterioration of performance due to oxidation of the resin film during heating.
- a peeling step may be performed in which the cured film (containing polybenzoxazole) is peeled from the supporting substrate after the heating step and the cured film is used as a polybenzoxazole substrate.
- the peeling step can be carried out after cooling from room temperature (20 ° C.) to about 40 ° C. after the heating step.
- a peeling agent may be applied to the supporting base material in advance.
- the release agent at that time is not particularly limited, and examples thereof include a silicon-based or fluorine-based release agent.
- the insulating material for high-frequency electronic components of the present embodiment (hereinafter, also simply referred to as "insulating material”) contains polybenzoxazole having a structural unit represented by the above-mentioned general formula [1].
- the insulating material of the present embodiment may contain a polyamide having a structure represented by the above-mentioned general formula [1A].
- the insulating material of this embodiment is typically in the form of a film.
- the film-shaped insulating material can be obtained, for example, by using a polyamide solution and undergoing a coating step, a drying step, and a heating step, as described above.
- the insulating material of the present embodiment preferably has good heat resistance for the convenience of application to the manufacturing process of electronic devices.
- the 5% weight loss temperature (Td 5 ) can be used as an index.
- Td 5 can be quantified by reading the data when the temperature of the insulating material is raised at a constant rate by using a differential scanning calorimeter as described in Examples described later.
- the Td 5 of the insulating material of the present embodiment is preferably 400 ° C. or higher, more preferably 410 ° C. or higher, and even more preferably 420 ° C. or higher.
- There is no particular upper limit for Td 5 but from the viewpoint of practical design, the upper limit for Td 5 is, for example, 600 ° C.
- the insulating material of the present embodiment includes a polybenzoxazole having a structural unit represented by the general formula [1], and thus is provided in a high frequency device (communication device or the like) used in 5G (fifth generation mobile communication system). It is preferably used as an insulating material.
- the dielectric loss tangent of the insulating material of the present embodiment at a frequency of 28 GHz is preferably 0.012 or less, more preferably 0.007 or less.
- the relative permittivity of the insulating material of the present embodiment at a frequency of 28 GHz is preferably 3.2 or less, more preferably 3.0 or less. The lower limit of the relative permittivity is practically 2.0.
- the transmission speed at 5 G can be increased. It is possible to sufficiently reduce the transmission loss.
- the high frequency electronic component of this embodiment includes the above-mentioned insulating material. Further, by using this high frequency electronic component, a high frequency device (communication terminal or the like) can be manufactured.
- the high-frequency electronic component of the present embodiment can be obtained by providing wiring portions on one side or both sides of a film-shaped insulating material. By doing so, the transmission speed can be increased and / or the transmission loss can be reduced.
- the above-mentioned insulating material may have good heat resistance. Therefore, even if a process (for example, drying, vapor deposition, plasma treatment, etc.) in which the temperature of the insulating material tends to rise is performed in the process of manufacturing the high-frequency electronic component, the performance of the insulating material does not change easily. This is preferable in the manufacture of electronic components.
- Examples of the method for forming the wiring portion on the film-shaped insulating material include copper, indium tin oxide (ITO), polythiophene, and the like by a laminating method, a metallizing method, a sputtering method, a vapor deposition method, a coating method, a printing method, and the like.
- a wiring portion can be formed by forming a conductive layer made of a conductive material such as polyaniline and polypyrrole and patterning the conductive layer.
- the surface of the film-shaped insulating material may be modified by plasma treatment or the like in order to improve the adhesive force between the insulating material and the conductive layer. Further, an adhesive may be used to improve the adhesive strength.
- a diamine having one trifluoromethyl group represented by the following general formula [DA] or a salt thereof, which can be used as a monomer for the synthesis of polybenzoxazole, is, for example, as shown in the following reaction formula, as follows. It can be obtained by reduction of bisnitrophenol represented by the general formula [DN] (specifically, hydrogenation, reduction using hydrazines, etc.). Further, for example, a salt of diamine can be obtained by reacting a diamine represented by the general formula [DA] with an acid.
- the type of salt is not particularly limited. For example, hydrochloride, sulfate, nitrate and the like can be mentioned.
- n and R 3 are the same as in the general formula [DA] (i.e. similar to n and R 3 in the general formula [2]).
- Bisnitrophenol represented by the general formula [DN] can be obtained by reacting a mixture of fluoral / hydrogen fluoride with nitrophenol as shown by the following reaction formula.
- n and R 3 in the general formula of the leftmost nitrophenol are the same as those in the general formula [DN] (that is, the same as n and R 3 in the general formula [2]). ..
- fluoral hydrates of commercial products manufactured by Tokyo Chemical Industry Co., Ltd.
- hemiacetals of fluoral can be used as equivalents thereof, while documents such as JP-A-5-97757 can be used.
- a fluoral hydrate or a fluoral hemiacetal can be prepared by the method described in 1.
- fluoral is often used as a hydrate or hemiacetal. Therefore, when fluoral is used under anhydrous conditions, anhydrous fluoral can be prepared by dehydrating the hydrate or hemiacetal form of fluoral.
- Fluoral is a low boiling point compound, which is generally highly self-reactive and difficult to handle, but Fluoral is very stable in a hydrogen fluoride solution. It can be handled and is preferably used.
- 1,2,2,2-tetrafluoroethanol which is an adduct consisting of fluoral and hydrogen fluoride, is produced as shown in the scheme below (also described later). See Preparation Example 1).
- 1,2,2,2-tetrafluoroethanol forms an equilibrium state between fluoral and hydrogen fluoride, and further, the excessive presence of hydrogen fluoride in the system causes the equilibrium state. It is thought to be kept. As a result, it is presumed that the decomposition of Fluoral is suppressed.
- the above-mentioned fluoral in hydrogen fluoride has been confirmed not only to improve the stability of the compound but also to increase the boiling point, and fluoral, which is a low boiling point compound, can be easily handled even near room temperature as an adduct of hydrogen fluoride. ..
- the amount of hydrogen fluoride added is usually 0.1 to 100 mol, preferably 1 to 75 mol, more preferably 1 to 75 mol, relative to 1 mol of the prepared fluoral. It is preferably 2 to 50 mol.
- the amount of hydrogen fluoride added is larger than 0.1 mol, it is easy to obtain a sufficient stabilizing effect. Further, even if 100 mol or more of hydrogen fluoride is added, the same stabilizing effect can be expected, but it is not preferable from the viewpoint of productivity and economy.
- the fluoral / hydrogen fluoride mixture used in this step may contain an excessive amount of hydrogen fluoride, but since it has a function as an acidic substance of hydrogen fluoride itself, it is an acid catalyst or dehydration. In some cases, it can be used as an additive that acts effectively as an agent and promotes the reaction. In other words, it can be said that there is an advantage in treating fluoral as a mixture of fluoral / hydrogen fluoride.
- the amount of the nitrophenol compound used as the raw material of bisnitrophenol may be 1 mol or more with respect to 1 mol of fluoral. Usually, 2 to 10 mol is preferable because the reaction proceeds smoothly, and 2 to 5 mol is particularly preferable in consideration of the post-treatment operation.
- the step of obtaining bisnitrophenol represented by the general formula [DN] can be performed in the presence of a reaction solvent.
- the reaction solvent include aliphatic hydrocarbons, aromatic hydrocarbons, halogenated hydrocarbons, ethers, esters, amides, nitriles, sulfoxides and the like.
- n-hexane cyclohexane, n-heptane, benzene, toluene, ethylbenzene, xylene, mesitylene, methylene chloride, chloroform, 1,2-dichloroethane, diethyl ether, tetrahydrofuran, diisopropyl ether, tert-butylmethyl ether, Ethyl acetate, n-butyl acetate, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone, acetonitrile, propionitrile, dimethyl sulfoxide and the like. Will be. These reaction solvents can be used alone or in combination.
- the reaction can also be carried out without using a solvent. As disclosed in Examples described later, it is preferable to carry out the reaction without a solvent from the viewpoint that the purification operation after the reaction becomes simple and a high-purity target product can be obtained only by a simple purification operation.
- Lewis acids that can be used include boron (III: oxidation number; the same applies hereinafter), tin (II), tin (IV), titanium (IV), zinc (II), and aluminum (III). , Antimony (III) and antimony (V), a metal halide containing at least one metal selected from the group.
- a metal halide having the maximum possible valence is usually preferable.
- boron trifluoride (III), aluminum trichloride (III), zinc dichloride (II), titanium tetrachloride (IV), tin tetrachloride (IV), and pentachloride Antimony (V) is particularly preferred.
- Lewis acid In order to make Lewis acid function as an additive, it is preferable to use 0.001 mol or more, usually 0.01 to 2.0 mol, with respect to 1 mol of Fluoral. However, Lewis acid is economically unfavorable when used in an amount exceeding 2.0 equivalents.
- Bronsted acid is an inorganic acid or an organic acid
- specific examples of the inorganic acid include phosphoric acid, hydrogen chloride, hydrogen bromide, concentrated nitric acid, concentrated sulfuric acid, fuming nitrate and fuming sulfuric acid, and specific examples of the organic acid.
- examples thereof include formic acid, acetic acid, oxalic acid, benzoic acid, methanesulfonic acid, benzenesulfonic acid, paratoluenesulfonic acid, trifluoromethanesulfonic acid and the like.
- the amount used should be 0.001 mol or more, usually 0.01 to 2.0 mol, per 1 mol of Fluoral.
- Bronsted acid is economically unfavorable when used in an amount exceeding 2.0 equivalents.
- the temperature condition may be in the range of ⁇ 20 to + 200 ° C., usually preferably ⁇ 10 to + 180 ° C., and particularly preferably 0 to + 160 ° C.
- the pressure condition may be in the range of atmospheric pressure to 4.0 MPa (absolute pressure, hereinafter the same), and is usually preferably atmospheric pressure to 2.0 MPa, and particularly preferably atmospheric pressure to 1.5 MPa.
- Usable reaction vessels include metal containers such as stainless steel, Monel TM, Hasteloy TM, and nickel, tetrafluoroethylene resin, chlorotrifluoroethylene resin, vinylidene fluoride resin, PFA resin, and propylene. Examples thereof include a resin and a polyethylene resin lined inside. It is preferable to use a reactor capable of sufficiently reacting under normal pressure or pressure.
- the reaction time is usually within 24 hours. It may be appropriately adjusted depending on the combination of the mixture of fluor / hydrogen fluoride and the aryl compound, and the difference in the reaction conditions due to the amount of the additives such as Lewis acid and Bronsted acid. It is preferable to track the progress of the reaction by analytical means such as gas chromatography, thin layer chromatography, liquid chromatography, nuclear magnetic resonance, etc., and set the end point of the reaction at the time when the starting substrate has almost disappeared.
- Post-treatment is performed, for example, by performing a normal purification operation on the reaction termination solution, for example, using water or an alkali metal inorganic base (eg, sodium hydroxide, potassium hydroxide, sodium hydrogencarbonate, hydrogen carbonate) for the reaction termination solution.
- an alkali metal inorganic base eg, sodium hydroxide, potassium hydroxide, sodium hydrogencarbonate, hydrogen carbonate
- an organic solvent eg, ethyl acetate, toluene, mesitylene, methylene chloride, etc.
- the step of obtaining the diamine represented by the general formula [DA] can be carried out by using a general reduction method of reducing a nitro group to an amino group.
- the reducing agent include hydrogen, hydrazine, tin, zinc, iron, lithium hydride, lithium borohydride, sodium borohydride, sodium borohydride, diisobutylaluminum hydride, borane, and allan. Alternatively, two or more can be used. Hydrogen and hydrazine are particularly preferred as reducing agents. Specific examples of the reduction method are given below.
- reaction solvents that can be used include aliphatic hydrocarbons, aromatic hydrocarbons, halogenated hydrocarbons, ethers, esters, amides, and sulfoxides. Can be mentioned.
- reaction solvent can be used alone or in combination.
- the amount used is 10 to 2000 parts by mass, more preferably 100 to 1000 parts by mass with respect to 100 parts by mass of the bisnitrophenol compound.
- the metal catalyst is, for example, at least one metal (transition metal) selected from the group consisting of ruthenium, palladium, rhodium, and platinum, or a metal compound-supporting catalyst in which a metal compound containing the metal is supported on a carrier.
- a carrier catalyst can be used.
- Preferred examples of the carrier include activated carbon and metal oxides. Specific examples thereof include activated carbon, alumina, zirconia, silica, zeolite, magnesium oxide, titanium oxide and the like.
- Examples of the metal compound in the carrying catalyst include various compounds such as acetates, sulfates, nitrates, chlorides, bromides, oxides and hydroxides of transition metals.
- the carrier catalyst of the transition metal compound can be prepared by a conventionally known method such as an impregnation method, or a commercially available product may be used.
- catalysts supported by transition metal compounds catalysts supported on carbon or alumina are preferable from the viewpoints of availability, economy, reactivity and selectivity.
- 5% palladium carbon STD type, 5% rhodium alumina powder, and 2% platinum carbon powder (hydrous product) manufactured by N.E.Chemcat can be preferably used.
- the amount of the transition metal catalyst used is usually 0.0001 to 10.00 parts by mass, preferably 0.001 to 5.00 parts by mass, more preferably 0.001 to 5.00 parts by mass, as the amount of metal with respect to 100 parts by mass of the bisnitrophenol compound. Is 0.01 to 2.50 parts by mass. Even if it is used in excess of 10.00 parts by mass, it does not affect the reactivity, but there is little merit from the viewpoint of productivity and economy.
- the temperature condition may be usually in the range of ⁇ 20 to + 200 ° C., preferably ⁇ 10 to + 180 ° C., and more preferably + 20 to + 90 ° C.
- the hydrogen pressure may be usually in the range of 0.2 to 4.0 MPa (absolute pressure, hereinafter the same), preferably 0.2 to 2.0 MPa, more preferably 0.4 to 1.0 MPa.
- Reaction containers include metal containers such as stainless steel, Monel (trademark), Hastelloy (trademark), nickel, tetrafluoroethylene resin, chlorotrifluoroethylene resin, vinylidene fluoride resin, PFA resin, propylene resin, and Examples thereof include those in which a polyethylene resin or the like is lined inside. It is preferable to use a reactor capable of sufficiently reacting under normal pressure or pressure.
- the reaction time is usually within 24 hours.
- the suitable reaction time varies depending on the amount of bisnitrophenol used, the amount of the reaction solvent and the metal catalyst used, and the reaction conditions due to the hydrogen pressure. It is preferable to follow the progress of the reaction by analytical means such as thin layer chromatography, liquid chromatography, nuclear magnetic resonance, etc., and set the time point at which the starting material has almost disappeared as the end point of the reaction.
- the reaction termination liquid is filtered to remove the metal catalyst, and then the solvent is distilled off to easily obtain the desired diamine simple substance represented by the general formula [DA]. Can be done.
- the target product can be purified to a higher chemical purity product by activated carbon treatment, distillation, recrystallization, column chromatography and the like, if necessary.
- hydrazines examples include hydrazine, hydrazine monohydrate, methylhydrazine, hydrazine salt, hydrazine hydrochloride, hydrazine sulfate and the like. These reducing agents can also be used as a solution, for example, as an aqueous solution, an alcohol solution, or an ether solution.
- the amount of hydrazines used per 1 mol of bisnitrophenol is 1.0 to 20.0 mol, more preferably 2.0 to 5.0 mol.
- reaction solvent examples include water-based, alcohol-based, nitrile-based, ester-based, amide-based, and sulfoxide-based. Specific examples include water, methanol, ethanol, 1-propal, 2-propanol, tetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, digrim, ethyl acetate, n-butyl acetate, N, N-dimethyl. Examples thereof include formamide, N, N-dimethylacetamide, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone, dimethyl sulfoxide and the like. These reaction solvents can be used alone or in combination. The amount used is 50 to 2000 parts by mass, more preferably 100 to 1000 parts by mass with respect to 100 parts by mass of bisnitrophenol.
- Examples of the catalyst that can be used include iron halides, Raney nickel, palladium carbon, ruthenium carbon and the like, and iron halides are particularly preferable.
- Examples of the iron halide catalyst include ferrous chloride, ferric chloride, ferrous bromide, ferric bromide hydrates and anhydrides.
- the amount of iron halide used is 0.01 to 100 parts by mass, preferably 0.10 to 20.0 parts by mass with respect to 100 parts by mass of bisnitrophenol.
- the temperature condition is usually ⁇ 20 to + 200 ° C., preferably ⁇ 10 to + 150 ° C., more preferably + 20 to + 100 ° C.
- the reaction time is usually within 24 hours. It depends on the amount of bisnitrophenol, reaction solvent, metal catalyst used, and the difference in reaction conditions due to the amount of hydrazines. It is preferable to track the progress of the reaction by analytical means such as thin layer chromatography, liquid chromatography, nuclear magnetic resonance, etc., and set the end point of the reaction at the time when the starting substrate has almost disappeared.
- a simple substance of diamine represented by the target general formula [DA] can be easily obtained by simply distilling off the solvent.
- the target product can be purified to a higher chemical purity product by activated carbon treatment, distillation, recrystallization, column chromatography and the like, if necessary. After the reaction, if it is in a uniform state, it can be purified by adding a poor solvent to the solution and reprecipitating.
- the concentration of fluorine ions contained in the diamine contained after the reduction reaction is 50 ppm or more. If this is subjected to polymerization as it is, it often causes an adverse effect on quality such as coloring. Therefore, it is preferable to perform a treatment for reducing the concentration of fluorine ions contained in the monomer raw material.
- the concentration of fluorine ions contained in the diamine is preferably less than 20 ppm, more preferably less than 10 ppm, still more preferably less than 2 ppm. The lower the concentration of fluorine ions, the better, but in reality, it is, for example, 0.1 ppm or more.
- a diamine having one trifluoromethyl group represented by the general formula [DA] or a salt thereof can be easily produced.
- Examples of the diamine represented by the general formula [DA] or a salt thereof include a diamine represented by the general formula [DA-2] or [DA-3] or a salt thereof, because of the cost of the raw material and the ease of synthesis. ..
- the two Rs independently represent an alkyl group or a halogen atom having 1 to 6 carbon atoms.
- the two Rs independently represent an alkyl group or a halogen atom having 1 to 6 carbon atoms.
- the compounds represented by the general formula [DA] are produced with high purity and high yield by the above-mentioned method. Can be done.
- the compound name of the diamine represented by the formula [DA-4] is 1,1,1-trifluoro-2,2-bis (3-amino-5-methyl-4-hydroxyphenyl) ethane.
- the compound name of the diamine represented by the formula [DA-5] is 1,1,1-trifluoro-2,2-bis (3-amino-5-fluoro-4-hydroxyphenyl) ethane.
- the compound name of the diamine represented by the formula [DA-6] is 1,1,1-trifluoro-2,2-bis (3-amino-5-isopropyl-4-hydroxyphenyl) ethane.
- the compound name of the diamine represented by the formula [DA-7] is 1,1,1-trifluoro-2,2-bis (3-amino-6-methyl-4-hydroxyphenyl) ethane.
- Examples of the diamine represented by the general formula [DA] or a salt thereof include a diamine represented by the following formula [DA-1] or a salt thereof. However, in some cases, the diamine represented by the following formula [DA-1] may be excluded from the present embodiment.
- [Fluorine ion concentration of diamine] A solution was prepared by dissolving 1 g of the sample to be measured for fluorine ion concentration with 20 g of ethyl acetate. After adding 10 g of ultrapure water to this solution and shaking well with a separating funnel, the aqueous layer was separated. To this aqueous layer, 10 mL of TISAB-II (manufactured by Thermo scientific) was added as an ionic strength adjusting liquid, and the fluorine ion concentration was measured using an ion electrode (manufactured by Thermo scientific, ORION VERSASTAR).
- composition analysis value indicates that the raw material or product is gas chromatographed (hereinafter referred to as GC; unless otherwise specified, the detector is FID) or liquid chromatography (hereinafter referred to as LC; detected unless otherwise specified).
- the vessel represents the "% of area" of the composition obtained as measured by UV).
- Weight average molecular weight (Mw) and number average molecular weight (Mn) The weight average molecular weight and the number average molecular weight were measured by gel permeation chromatography (GPC, HLC-8320 manufactured by Tosoh Corporation) using polystyrene as a standard substance. N, N-dimethylformamide (DMF) was used as the mobile phase, and TSKgel SuperHZM-H was used as the column.
- measuring temperature For the curing temperature, a differential scanning calorimetry device (manufactured by SII Nanotechnology Co., Ltd., model name X-DSC7000) was used, and the starting temperature was 30 ° C, the measurement temperature range was -40 ° C to 350 ° C, and the temperature rise rate was 10 ° C /. It was measured under the condition of minutes. Specifically, the temperature indicating the maximum value of the endothermic peak generated when the polyamide is ring-closed and converted to polybenzoxazole was defined as the curing temperature.
- the temperature was raised to 300 ° C. while flowing nitrogen gas in the reaction tube at a flow rate of about 20 mL / min.
- hydrogen fluoride was accompanied by nitrogen gas and the concentration was gradually increased.
- the reactor temperature was raised to 350 ° C. and the state was maintained for 5 hours.
- the catalyst was prepared as described above.
- a gas phase reaction device manufactured by SUS316L, diameter 2.5 cm, length 40 cm including a cylindrical reaction tube equipped with an electric furnace was filled with 125 mL of the catalyst prepared in the above catalyst preparation example as a catalyst.
- the hydrogen fluoride content, hydrogen chloride content, and organic matter content were calculated by titration of the 484.8 g of the fluoral-containing collected liquid obtained above.
- hydrogen fluoride was 40% by mass
- hydrogen chloride was 11% by mass
- the organic substance content was 49% by mass
- the recovery rate of the organic substance was 88% (based on the number of chloral moles of the feedstock).
- the degree of fluorination was confirmed by 19 F-NMR, low-order fluorinated substances were almost undetected, and fluorination proceeded quantitatively. I confirmed that.
- a part of the collected fluoral-containing mixture 450 g (hydrogen fluoride: 40% by mass, hydrogen chloride: 11% by mass, organic matter: 49% by mass) was cooled by passing a refrigerant at -15 ° C.
- the reactor was charged in a 500 ml SUS reactor equipped with a tube, a thermometer and a stirrer, and the reactor was heated to 25 ° C. While refluxing hydrogen fluoride in the cooling tube under normal pressure, hydrogen chloride passing through the top tower of the cooling tube was absorbed by water and removed. After 5 hours of reflux, sampling was performed from the reactor and the sampled mixture was titrated.
- the hydrogen fluoride content, hydrogen chloride content, and organic matter content were calculated by titration and found to be hydrogen fluoride: 44% by mass, hydrogen chloride: 1% by mass, and organic matter: 55% by mass.
- a part of the mixture was collected in a resin NMR tube and measured by 19 F-NMR. From the integral ratio calculated from the obtained chart, it was confirmed that fluoral in anhydrous hydrogen fluoride was converted to 1,2,2,2-tetrafluoroethanol, which is a composition of fluoral / hydrogen fluoride. Was done.
- the water used for absorbing hydrogen chloride was subjected to titration, the content of hydrogen fluoride due to the accompanying droplets was partially observed, but almost no organic matter was contained.
- the fluoral-containing mixture obtained in Preparation Example 1 (hydrogen fluoride: 44% by mass, hydrogen chloride:) was placed in a 200 mL stainless steel autoclave reactor equipped with a pressure gauge, a thermometer protection tube, an insertion tube, and a stirring motor. 39.2 g (fluoral: 220 mmol, hydrogen fluoride: 862 mmol), 74.3 g (3.72 mol) of hydrogen fluoride, 60.1 g (432 mmol) of 2-nitrophenol (1 mass%, organic substance: 55 mass%). The mixture was charged, heated in an oil bath at 120 ° C., and reacted at an absolute pressure of 1.2 MPa for 18 hours.
- the reaction solution was poured into a mixture of 200 g of ice water and 270 g of ethyl acetate.
- the separated organic layer was washed with 240 g of 10% by mass potassium carbonate water and 120 g of water, and then the organic layer was recovered by two-layer separation.
- the recovered organic layer is concentrated with an evaporator and then recrystallized from 67 g of ethyl acetate and 155 g of n-heptane to recrystallize the target product 1,1,1-trifluoro-2,2-bis (3-nitro-4-).
- Hydroxyphenyl) ethane was obtained as a yellow solid with 47.0 g, a yield of 61% and a purity of 99.8% (GC).
- the 1,1,1-trifluoro-2 obtained in Synthesis Example 1 was placed in a 200 mL stainless steel autoclave reactor equipped with a pressure gauge, a thermometer protection tube, a gas introduction tube connected to a hydrogen cylinder, and a stirring motor.
- 50% hydrous 5% by mass of N.E. Chemcat, 221 mg of palladium carbon, and 119 g of ethyl acetate were added at 70 ° C.
- the mixture was heated in an oil bath and reacted for 9 hours while continuously introducing hydrogen at an absolute pressure of 0.6 MPa.
- the fluorine ion concentration in the reaction solution was measured by an ion electrode method device, it was 80 ppm.
- the catalyst was removed by pressure filtration, and then the obtained filtrate was concentrated on an evaporator to 70 g.
- the target product 1,1,1-trifluoro-2,2-bis (3-amino-4-hydroxyphenyl) ethane, can be obtained. It was obtained as a white solid with 4 g, a yield of 84% and a purity of 99.6% (LC).
- the fluorine ion concentration of the target product obtained by purification was less than 1 ppm.
- the fluoral-containing mixture obtained in Preparation Example 1 (hydrogen fluoride: 44% by mass, hydrogen chloride:) was placed in a 200 mL stainless steel autoclave reactor equipped with a pressure gauge, a thermometer protection tube, an insertion tube, and a stirring motor. 1% by mass, organic matter: 55% by mass) 29.4 g (fluoral: 165 mmol, hydrogen fluoride: 647 mmol), hydrogen fluoride 49 g (2.45 mol), 2-methyl-6-nitrophenol 50.2 g (328 mmol). ) was put in, heated in an oil bath at 130 ° C., and reacted at an absolute pressure of 1.4 MPa for 19 hours.
- the reaction solution was poured into a mixture of 200 g of ice water, 135 g of ethyl acetate, and 135 g of methyl-t-butyl ether.
- the separated organic layer was washed with 240 g of saturated aqueous sodium hydrogen carbonate and 120 g of water, and then the organic layer was recovered by two-layer separation.
- the solid obtained by concentrating the recovered organic layer with an evaporator is subjected to dispersion washing with 113 g of ethyl acetate and 170 g of n-heptane to carry out 1,1,1-trifluoro-2,2-bis (the target product).
- 3-Methyl-5-nitro-4-hydroxyphenyl) ethane was obtained as a yellow solid in 39.0 g, yield 62% and purity 99.8% (GC).
- the 1,1,1-trifluoro-2 obtained in Synthesis Example 3 was placed in a 200 mL autoclave reactor equipped with a pressure gauge, a thermometer protection tube, a gas introduction tube connected to a hydrogen cylinder, and a stirring motor.
- the fluoral-containing mixture obtained in Preparation Example 1 (hydrogen fluoride: 44% by mass, hydrogen chloride:) was placed in a 200 mL stainless steel autoclave reactor equipped with a pressure gauge, a thermometer protection tube, an insertion tube, and a stirring motor. 1% by mass, organic matter: 55% by mass) 44.7 g (fluoral: 251 mmol, hydrogen fluoride: 983 mmol), hydrogen fluoride 59.8 g (2.99 mol), 3-methyl-6-nitrophenol 75.0 g (489 mmol) was added, the mixture was heated in an oil bath at 120 ° C., and reacted at an absolute pressure of 1.0 MPa for 17 hours.
- the reaction solution was poured into a mixture of 225 g of ice water and 405 g of ethyl acetate.
- the separated organic layer was washed with 300 g of a 10% potassium carbonate aqueous solution and 150 g of water, and then the organic layer was recovered by two-layer separation.
- the recovered organic layer is concentrated with an evaporator and then recrystallized from 135 g of ethyl acetate and 205 g of n-heptane to recrystallize the target product 1,1,1-trifluoro-2,2-bis (2-methyl-5-bis). 46.3 g of nitro-4-hydroxyphenyl) ethane was obtained as a brown solid with a yield of 49% and a purity of 92.6% (LC).
- the 1,1,1-trifluoro-2 obtained in Synthesis Example 5 was placed in a 200 mL stainless steel autoclave reactor equipped with a pressure gauge, a thermometer protection tube, a gas introduction tube connected to a hydrogen cylinder, and a stirring motor. , 2-bis (3-methyl-5-nitro-4-hydroxyphenyl) ethane 19.5 g (50.6 mmol) and N.E. Chemcat's 50% hydrous 5 mass% palladium carbon 195 mg, tetrahydrofuran 140 g. The reaction was carried out for 17 hours while continuously introducing hydrogen at an absolute pressure of 0.6 MPa by heating in an oil bath at 70 ° C.
- the fluorine ion concentration in the reaction solution was measured by an ion electrode method device, it was 55 ppm.
- the catalyst was removed by pressure filtration, and the filtrate was concentrated on an evaporator to 141 g.
- the target product, 1,1,1-trifluoro-2,2-bis (3-amino-6-methyl-4-hydroxyphenyl) ) Ethane was obtained as a white solid with 15.3 g, a yield of 93% and a purity of 99.8% (LC).
- the fluorine ion concentration of the target product was less than 1 ppm.
- the fluoral-containing mixture obtained in Preparation Example 1 (hydrogen fluoride: 44% by mass, hydrogen chloride:) was placed in a 200 mL stainless steel autoclave reactor equipped with a pressure gauge, a thermometer protection tube, an insertion tube, and a stirring motor. 16.9 g (fluoral: 95 mmol, hydrogen fluoride: 372 mmol), 29.7 g (1.48 mol) of hydrogen fluoride, 33.8 g of 2-isopropyl-6-nitrophenol (1% by mass, organic substance: 55% by mass). (187 mmol) was added, the mixture was heated in an oil bath at 130 ° C., and reacted at an absolute pressure of 1.4 MPa for 18 hours.
- the reaction solution was poured into a mixture of 200 g of ice water and 135 g of ethyl acetate.
- the separated organic layer was washed with 200 g of saturated aqueous sodium hydrogen carbonate and 100 g of water, and then the organic layer was recovered by two-layer separation.
- the recovered organic layer is concentrated with an evaporator and then recrystallized from 36 g of ethyl acetate and 82 g of n-heptane to recrystallize the target product 1,1,1-trifluoro-2,2-bis (3-isopropyl-5-).
- 27.2 g of nitro-4-hydroxyphenyl) ethane was obtained as a yellow solid with a yield of 66% and a purity of 97.2% (LC).
- the 1,1,1-trifluoro-2 obtained in Synthesis Example 7 was placed in a 200 mL autoclave reactor equipped with a pressure gauge, a thermometer protection tube, a gas introduction tube connected to a hydrogen cylinder, and a stirring motor.
- 50% hydrous product of N.E.Chemcat 50% hydrous product of N.E.Chemcat
- 5 mass% palladium carbon 140 mg
- ethyl acetate 75 g. Heated in an oil bath at 70 ° C. and reacted for 16 hours while continuously introducing hydrogen at an absolute pressure of 0.6 MPa.
- the fluorine ion concentration in the reaction solution was measured by an ion electrode method device, it was 70 ppm.
- the catalyst was removed by pressure filtration, and the filtrate was concentrated to 32 g with an evaporator.
- the target product 1,1-trifluoro-2,2-bis (3-amino-5-isopropyl-4-hydroxyphenyl) It was obtained as a white solid with 11.3 g of ethane, a yield of 85% and a purity of 99.4% (LC).
- the fluorine ion concentration of the target product was 1 ppm.
- the fluoral-containing mixture obtained in Preparation Example 1 (hydrogen fluoride: 44% by mass, hydrogen chloride:) was placed in a 300 mL stainless steel autoclave reactor equipped with a pressure gauge, a thermometer protection tube, an insertion tube, and a stirring motor. 47.8 g (fluoral: 268 mmol, hydrogen fluoride: 1.05 mol) and 83.7 g (1.48 mol) of hydrogen fluoride, 2-fluoro-6-nitrophenol 82 (1% by mass, organic matter: 55% by mass) .7 g (527 mmol) was added, the mixture was heated in an oil bath at 130 ° C., and reacted at an absolute pressure of 1.4 MPa for 18 hours.
- the reaction solution was poured into a mixture of 320 g of ice water and 288 g of ethyl acetate.
- the obtained organic layer was washed with 500 g of saturated aqueous sodium hydrogen carbonate and 250 g of water, and then the organic layer was recovered by two-layer separation.
- the recovered organic layer is concentrated with an evaporator and then recrystallized from 40 g of ethyl acetate and 104 g of methylcyclohexane to recrystallize the target product 1,1,1-trifluoro-2,2-bis (3-fluoro-5-nitro).
- -4-Hydroxyphenyl) ethane was obtained as a yellow solid with 62.9 g, a yield of 61% and a purity of 95.7% (LC).
- the 1,1,1-trifluoro-2 obtained in Synthesis Example 9 was placed in a 200 mL autoclave reactor equipped with a pressure gauge, a thermometer protection tube, a gas introduction tube connected to a hydrogen cylinder, and a stirring motor.
- 50% hydrous product 5% by mass of N.E.Chemcat 292 mg of palladium carbon
- 108 g of ethyl acetate Heated in an oil bath at 70 ° C. and reacted for 16 hours while continuously introducing hydrogen at an absolute pressure of 0.6 MPa.
- the fluorine ion concentration in the reaction solution was measured by an ion electrode method device, it was 85 ppm.
- the catalyst was removed by pressure filtration, and then the obtained filtrate was concentrated with an evaporator to obtain 25 g of a solid.
- the obtained solid was dispersed and washed with 45 g of ethyl acetate and 39 g of methylcyclohexane to carry out the target product 1,1,1-trifluoro-2,2-bis (3-amino-5-fluoro-4-hydroxy). It was obtained as a white solid with 22.2 g of phenyl) ethane, a yield of 90%, and a purity of 99.7% (LC).
- the fluorine ion concentration of the target product was less than 1 ppm.
- the 1,1,1-trifluoro-2,2-bis (3-nitro-4) obtained in Synthesis Example 1 was placed in a 200 mL four-necked flask equipped with a thermometer, a cooler, a dropping funnel and a stirrer. Add 10.0 g (28.0 mmol) of -hydroxyphenyl) ethane, 50 mg of ferric chloride, and 25 g of acetonitrile, and add 4.9 g (98.0 mmol) of hydrazine monohydrate for 15 minutes while maintaining an internal temperature of 65-75 ° C. Dropped over. After the dropping, the reaction was carried out at an internal temperature of 75 ° C. for another 2 hours.
- the fluorine ion concentration in the reaction solution was measured by an ion electrode method device, it was 95 ppm.
- the reaction solution is cooled to 50 ° C., and 70 g of water is added dropwise to precipitate crystals, whereby 1,1,1-trifluoro-2,2-bis (3-amino-), which is the target product, is deposited.
- 4-Hydroxyphenyl) ethane was obtained as a white solid in 7.2 g, yield 86%, purity 99.9% (LC).
- the fluorine ion concentration of the target product was less than 1 ppm.
- the prepared solution of polyhydroxyamide was applied onto a glass substrate using a spin coater. Then, under a nitrogen atmosphere, a film (cured film) is obtained on a glass substrate by heating at a temperature of 110 ° C. for 10 minutes as a drying step, then heating at 200 ° C. for 30 minutes as a curing step, and then heating at 300 ° C. for 2 hours. rice field. Then, the film was cooled to room temperature, and the film was peeled off from the glass substrate to obtain a film-like cured film (insulating material). The film thickness of the cured film was measured and found to be 20 ⁇ m. From the measurement result of FT-IR of the cured film, there was absorption peculiar to oxazole in 1030-1100 cm-1. That is, it was confirmed that the cured film contained polybenzoxazole.
- Example 2 In a three-necked flask with a capacity of 500 mL equipped with a nitrogen introduction tube and a stirring blade, under ice-cooling, 2,2-bis (3-amino-4-hydroxyphenyl-5-methyl) -1,1, represented by the following formula
- the prepared solution of polyhydroxyamide was applied onto a glass substrate using a spin coater. Then, under a nitrogen atmosphere, a film (cured film) is obtained on a glass substrate by heating at a temperature of 110 ° C. for 10 minutes as a drying step, then heating at 200 ° C. for 30 minutes as a curing step, and then heating at 300 ° C. for 2 hours. rice field. Then, the film was cooled to room temperature, and the film was peeled off from the glass substrate to obtain a film-like cured film (insulating material). The film thickness of the cured film was measured and found to be 20 ⁇ m. From the measurement result of FT-IR of the cured film, there was absorption peculiar to oxazole in 1030-1100 cm-1. That is, it was confirmed that the cured film contained polybenzoxazole.
- the prepared solution of polyhydroxyamide was applied onto a glass substrate using a spin coater. Then, under a nitrogen atmosphere, a film (cured film) is obtained on a glass substrate by heating at a temperature of 110 ° C. for 10 minutes as a drying step, then heating at 200 ° C. for 30 minutes as a curing step, and then heating at 300 ° C. for 2 hours. rice field. Then, the film was cooled to room temperature, and the film was peeled off from the glass substrate to obtain a film-like cured film (insulating material). The film thickness of the cured film was measured and found to be 14 ⁇ m. From the measurement result of FT-IR of the cured film, there was absorption peculiar to oxazole in 1030-1100 cm-1. That is, it was confirmed that the cured film contained polybenzoxazole.
- Example 4 In a three-necked flask with a capacity of 500 mL equipped with a nitrogen introduction tube and a stirring blade, under ice-cooling, 2,2-bis (3-amino-4-hydroxyphenyl) -1,1,1-trifluoro represented by the following formula is shown. 2.8 g (10 mmol) of ethane (BIS-5-FAP-EF) and 3.7 g (10 mmol) of 2,2-bis (3-amino-4-hydroxyphenyl) -hexafluoropropane (BIS-AP-AF).
- the prepared solution of polyhydroxyamide was applied onto a glass substrate using a spin coater. Then, under a nitrogen atmosphere, a film (cured film) is obtained on a glass substrate by heating at a temperature of 110 ° C. for 10 minutes as a drying step, then heating at 200 ° C. for 30 minutes as a curing step, and then heating at 300 ° C. for 2 hours. rice field. Then, the film was cooled to room temperature, and the film was peeled off from the glass substrate to obtain a film-like cured film (insulating material). The film thickness of the cured film was measured and found to be 23 ⁇ m. From the measurement result of FT-IR of the cured film, there was absorption peculiar to oxazole in 1030-1100 cm-1. That is, it was confirmed that the cured film contained polybenzoxazole.
- the prepared solution of polyhydroxyamide was applied onto a glass substrate using a spin coater. Then, under a nitrogen atmosphere, a film (cured film) is obtained on a glass substrate by heating at a temperature of 110 ° C. for 10 minutes as a drying step, then heating at 200 ° C. for 30 minutes as a curing step, and then heating at 300 ° C. for 2 hours. rice field. Then, the film was cooled to room temperature, and the film was peeled off from the glass substrate to obtain a film-like cured film (insulating material). The film thickness of the cured film was measured and found to be 18 ⁇ m. From the measurement result of FT-IR of the cured film, there was absorption peculiar to oxazole in 1030-1100 cm-1. That is, it was confirmed that the cured film contained polybenzoxazole.
- the prepared solution of polyhydroxyamide was applied onto a glass substrate using a spin coater. Then, under a nitrogen atmosphere, a film (cured film) is obtained on a glass substrate by heating at a temperature of 110 ° C. for 10 minutes as a drying step, then heating at 200 ° C. for 30 minutes as a curing step, and then heating at 300 ° C. for 2 hours. rice field. Then, the film was cooled to room temperature, and the film was peeled off from the glass substrate to obtain a film-like cured film (insulating material). The film thickness of the cured film was measured and found to be 16 ⁇ m. From the measurement result of FT-IR of the cured film, there was absorption peculiar to oxazole in 1030-1100 cm-1. That is, it was confirmed that the cured film contained polybenzoxazole.
- the prepared solution of polyhydroxyamide was applied onto a glass substrate using a spin coater. Then, under a nitrogen atmosphere, the film (cured film) is formed on the glass substrate by heating at a temperature of 110 ° C. for 10 minutes as a drying step, then heating at 200 ° C. for 30 minutes as a curing step, and then heating at a temperature of 300 ° C. for 2 hours. Obtained. Then, the film was cooled to room temperature, and the film was peeled off from the glass substrate to obtain a film-like cured film (insulating material). The film thickness of the cured film was measured and found to be 21 ⁇ m. From the measurement result of FT-IR, there was absorption peculiar to oxazole in 1030-1100 cm-1. That is, it was confirmed that the cured film contained polybenzoxazole.
- the prepared solution of polyhydroxyamide was applied onto a glass substrate using a spin coater. Then, under a nitrogen atmosphere, the film was obtained on a glass substrate by heating at a temperature of 110 ° C. for 10 minutes as a drying step, then heating at 200 ° C. for 30 minutes as a curing step, and then heating at 300 ° C. for 2 hours. Then, the film was cooled to room temperature, and the film was peeled off from the glass substrate to obtain a film-like cured film (insulating material). The film thickness of the cured film was measured and found to be 17 ⁇ m. From the measurement result of FT-IR of the cured film, it was confirmed that the cured film was composed of polybenzoxazole with absorption peculiar to oxazole at 1030-1100 cm-1.
- the prepared solution of polyhydroxyamide was applied onto a glass substrate using a spin coater. Then, under a nitrogen atmosphere, the film was obtained on a glass substrate by heating at a temperature of 110 ° C. for 10 minutes as a drying step, then heating at 200 ° C. for 30 minutes as a curing step, and then heating at 300 ° C. for 2 hours. Then, the film was cooled to room temperature, and the film was peeled off from the glass substrate to obtain a film-like cured film (insulating material) made of polybenzoxazole. The film thickness of the cured film was measured and found to be 26 ⁇ m. From the measurement result of FT-IR, there was absorption peculiar to oxazole in 1030-1100 cm-1. That is, it was confirmed that the cured film contained polybenzoxazole.
- the cured film (insulating material) of the example was superior in dielectric constant and dielectric loss tangent at a frequency condition of 28 GHz as compared with the polyimide film of Comparative Example 1. From this result, it is understood that the cured film (insulating material) of the examples is preferably used for manufacturing high-frequency electronic components included in 5G communication equipment.
- Example 2 The solution of the polyhydroxyamide obtained in Example 1 was applied onto a glass substrate using a spin coater. Then, it was heated at a temperature of 110 ° C. for 10 minutes in a nitrogen atmosphere (drying step) to obtain a polyhydroxyamide film (not ring-closed) on a glass substrate. The curing temperature of the obtained polyhydroxyamide was 275 ° C.
- polybenzoxazole having a " -CH (CF 3 )-” structure cures at a lower temperature than polybenzoxazole having a " -C (CF 3 ) 2-" structure. Obtained at. Further, the polybenzoxazole having the "-CH (CF 3 )-” structure is equivalently superior to the polybenzoxazole having the "-C (CF 3 ) 2- " structure, although it has fewer fluorine atoms. It is understood that it exhibits low dielectric properties.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Materials Engineering (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
Abstract
Description
R1は以下一般式[2]で表される4価の有機基であり、
R2は2価の有機基である。
2つのnはそれぞれ独立して0~3の整数であり、
R3は複数存在する場合はそれぞれ独立して1価の置換基を表し、
*1、*2、*3および*4はそれぞれ独立に結合手を表し、*1および*2の一方は前記一般式[1]中の酸素原子と結合し、他方は前記一般式[1]中の窒素原子と結合し、*3および*4の一方は前記一般式[1]中の酸素原子と結合し、他方は前記一般式[1]中の窒素原子と結合する。
R1は以下一般式[2]で表される4価の有機基を表し、
R2は2価の有機基を表す。
2つのnはそれぞれ独立して0~3の整数であり、
R3は複数存在する場合はそれぞれ独立して1価の置換基を表し、
*1、*2、*3および*4はそれぞれ独立に結合手を表し、*1および*2の一方は前記一般式[1A]中のヒドロキシ基の酸素原子と結合し、他方は前記一般式[1A]中の窒素原子と結合し、*3および*4の一方は前記一般式[1A]中のヒドロキシ基の酸素原子と結合し、他方は前記一般式[1A]中の窒素原子と結合する。
当該方法は、
以下一般式[DA]で表されるジアミンまたはその塩と、
以下一般式[DC1]または[DC2]で表される、ジカルボン酸またはジカルボン酸誘導体と、
を縮重合する工程を含むポリアミドの製造方法である。
上記のポリアミドを製造する方法によりポリアミドを製造する第一工程と、
前記第一工程で得られた前記ポリアミドを脱水閉環する第二工程と、
を含むポリベンゾオキサゾールの製造方法である。
塗布されたポリアミド溶液中に含まれる溶媒を乾燥させることにより、ポリアミドを含む樹脂膜を得る乾燥工程と、
前記樹脂膜を加熱処理して硬化膜とする加熱工程と、
を含む、高周波電子部品用絶縁材の製造方法である。
本明細書における基(原子団)の表記において、置換か無置換かを記していない表記は、置換基を有しないものと置換基を有するものの両方を包含するものである。例えば「アルキル基」とは、置換基を有しないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。
本明細書における「有機基」の語は、特に断りが無い限り、有機化合物から1つ以上の水素原子を除いた原子団のことを意味する。例えば、「1価の有機基」とは、任意の有機化合物から1つの水素原子を除いた原子団のことを表す。
本明細書中の化学式において、「Me」の表記は、メチル基(CH3)を表す。
本明細書中、「フルオラール」の語は、トリフルオロアセトアルデヒドを意味する。
本明細書における「高周波」とは、例えば周波数1GHz以上、好ましくは周波数10~200GHz、さらに好ましくは周波数28~100GHzの領域を意味する。
本実施形態のポリベンゾオキサゾールは、以下一般式[1]で表される構造単位を有する。
また、本実施形態のポリベンゾオキサゾールは、おそらくは剛直な環状骨格に起因して、高い耐熱性を有する。
すなわち、「-CH(CF3)-」構造は、当業者にとって一般的と考えられる「-C(CF3)2-」構造よりもフッ素原子が少ないが、ポリマー鎖のパッキングがより疎であることにより、ほぼ同等の誘電特性を示しつつ、低温硬化性に優れる、と推測される。
R3の一価の置換基としては、アルキル基、アルコキシ基、フッ素化アルキル基(例えば、トリフルオロメチル基)、ハロゲノ基(例えば、フルオロ基)およびニトロ基が好ましい。
R3におけるアルコキシ基としては、炭素数1~6の直鎖または分岐のアルコキシ基が具体的に挙げられる。中でも、n-ブトキシ基、s-ブトキシ基、イソブトキシ基、t-ブトキシ基、n-プロポキシ基、i-プロポキシ基、エトキシ基およびメトキシ基が好ましく、エトキシ基とメトキシ基が特に好ましい。
一般式[2]において、nは好ましくは0~2、より好ましくは0~1、さらに好ましくは0である。
本実施形態のポリベンゾオキサゾールは、一般式[1]で表される構造単位とは異なる構造単位を有していてもよい。ただし、比誘電率や誘電正接を特に小さくする、かつ/または、十二分に低温の硬化で絶縁材を形成可能とする点では、ポリベンゾオキサゾールの全構造単位中、好ましくは50~100mol%、より好ましくは75~100mol%、さらに好ましくは90~100mol%が一般式[1]で表される構造単位である。本実施形態のポリベンゾオキサゾールの実質上全ての構造単位(100%)が一般式[1]で表される構造単位であってもよい。
本実施形態のポリアミド(ポリヒドロキシアミド)は、以下一般式[1A]で表される構造単位を有する。
本実施形態のポリアミドは、一般式[1A]で表される構造単位とは異なる構造単位を有していてもよい。ただし、閉環反応により得られるポリベンゾオキサゾールの比誘電率や誘電正接を特に小さくする、かつ/または、十二分に低温の硬化で絶縁材を形成可能とする点では、ポリアミドの全構造単位中、好ましくは50~100mol%、より好ましくは75~100mol%、さらに好ましくは90~100mol%が一般式[1A]で表される構造単位である。本実施形態のポリアミドの実質上全ての構造単位(100%)が一般式[1A]で表される構造単位であってもよい。
本実施形態のポリアミド(一般式[1A]で表される構造単位を有する)は、通常、有機溶媒に溶解させた形で、種々の用途に適用される。好ましく適用される用途の1つは、高周波電子部品製造用途である。つまり、本実施形態のポリアミドと有機溶媒とを含むポリアミド溶液は、高周波電子部品製造用絶縁材料として好ましく用いられる。
界面活性剤の市販品としては、DIC株式会社製の商品名メガファック、品番F142D、F172、F173もしくはF183、住友スリーエム株式会社製の商品名フロラード、品番、FC-135、FC-170C、FC-430もしくはFC-431、AGCセイミケミカル株式会社製の商品名サーフロン、品番S-112、S-113、S-131、S-141もしくはS-145、または東レ・ダウコーニングシリコーン株式会社製、商品名、SH-28PA、SH-190、SH-193、SZ-6032もしくはSF-8428が挙げられる(メガファックはDIC株式会社のフッ素系添加剤(界面活性剤・表面改質剤)の商品名、フロラードは住友スリーエム株式会社製のフッ素系界面活性剤の商品名およびサーフロンはAGCセイミケミカル株式会社のフッ素系界面活性剤の商品名であり、各々商標登録されている)。
界面活性剤を用いる場合、その量は、ポリアミド100質量部に対して、通常、0.001~10質量部である。
ちなみに、本実施形態のポリアミド溶液は、通常、キノンジアジド化合物などの感光剤を含まないか、含むとしても少量である。具体的には、本実施形態のポリアミド溶液中の感光剤の量は、ポリアミド100質量部に対して例えば1質量部以下、具体的には0.1質量部以下である。本実施形態のポリアミド溶液を、光によるパターニングが不要な用途に用いるならば、感光剤は不要である。換言すると、本実施形態のポリアミド溶液は、非感光性であることができる。
本実施形態のポリアミド(一般式[1A]で表される構造単位を有する)は、典型的には、ジアミン化合物(モノマー)またはその誘導体と、その他の化合物(モノマー)と、を反応(縮重合)させることで製造することができる。反応は、通常、ジアミン化合物(モノマー)またはその誘導体と、その他の化合物(モノマー)とを、有機溶媒中で反応させる。
ちなみに、一般式[DA]で表されるジアミンの「塩」は、酸性条件ではアミノ基がカチオン化した形態であり、塩基性条件ではフェノール性ヒドロキシ基がアニオン化した形態であると考えられる。念のため述べておくと、これら2つの形態は両方とも「一般式[DA]で表されるジアミンの塩」に含まれる。ちなみに、一般式[DA]で表されるジアミンの塩は、好ましくはアミノ基がカチオン化した形態である。
また、一般式[DA]で表されるジアミンは、対応するニトロ基含有化合物(一般式[DA]におけるアミノ基がニトロ基に置き換わったもの)を還元することで得てもよい。
また、上記のようにして得られたジアミンと酸とを反応させることで、ジアミンの塩を得ることができる。
具体的な反応条件の例およびフルオラールについては後述する。
ポリアミドの製造に際しては、(i)一般式[DA]に該当するジアミン化合物またはその塩を1種のみ用いてもよいし、(ii)一般式[DA]に該当するジアミン化合物またはその塩を2種以上併用してもよいし、(iii)1種または2種以上の一般式[DA]に該当するジアミン化合物またはその塩と、1種または2種以上の一般式[DA]に該当しないジアミン化合物またはその塩とを併用してもよい。
ジカルボン酸またはその誘導体は、単独で用いられてもよく、2種以上が併用されてもよい。
付加反応性基は、加熱によって付加重合反応(硬化反応)を行う基であれば特に限定されない。好ましくは、フェニルエチニル基等のアセチレン結合を含む基、ナジック酸基、および、マレイミド基からなる群から選ばれるいずれかの反応基であり、より好ましくはフェニルエチニル基等のアセチレン結合を含む基であり、更に好ましくはフェニルエチニル基である。
付加反応性基は、1分子中に付加反応性基と共に酸無水物基又はアミノ基を有する化合物が、ポリマー末端のアミノ基又は酸無水物基と反応することによって、ポリマー末端に導入される。この反応は、好ましくはイミド環を形成する反応である。分子内に付加反応性基と共に酸無水物基又はアミノ基を有する化合物としては、例えば、4-(2-フェニルエチニル)無水フタル酸、フェニルエチニルトリメリット酸無水物、4-(2-フェニルエチニル)アニリン、4-エチニル-無水フタル酸、4-エチニルアニリン、ナジック酸無水物、マレイン酸無水物が挙げられる。
不純物が低減されたポリアミドを、再度、有機溶媒に溶解させてもよい。こうすることで、不純物量が少ないポリアミド溶液を得ることができる。
上記のようにして製造されたポリアミドを用いて、ポリベンゾオキサゾールを製造することができる。
具体的には、
・上記<ポリアミドを製造する方法>によりポリアミドを製造する第一工程と、
・その第一工程で得られたポリアミドを脱水閉環する第二工程と、
により、本実施形態のポリベンゾオキサゾール(前述の一般式[1]で表される構造単位を有するポリベンゾオキサゾール)を製造することができる。
ポリアミドの加熱は、ポリアミド溶液を加熱してもよいし、固形状(例えば膜状)としたポリアミドを加熱してもよいが、好ましくは後者である。これについては、高周波電子部品用絶縁材の製造方法として追って詳述する。
本実施形態において、ポリベンゾオキサゾールを含む高周波電子部品用絶縁材は、典型的には上述のポリアミドまたはその溶液を加熱することで得ることができる。
具体的には、以下の各工程を経ることで、一般式[1]で表される構造単位を有するポリベンゾオキサゾールを含む高周波電子部品用絶縁材を製造することができる。ちなみに、以下の乾燥工程と加熱工程は、連続的に実施されてもよい。
・上述のポリアミド溶液を支持基材に塗布する工程(塗布工程)
・塗布されたポリアミド溶液中に含まれる溶媒を乾燥させることにより、ポリアミドを含む樹脂膜を得る工程(乾燥工程)
・得られた樹脂膜を加熱処理して硬化膜とする工程(加熱工程)
塗布工程における塗布方法は、特に制限されず、公知の方法を採用することができる。塗布膜厚や溶液の粘度等に応じて、スピンコーター、バーコーター、ドクターブレードコーター、エアナイフコーター、ロールコーター、ロータリーコーター、フローコーター、ダイコーター、リップコーター等の公知塗布装置を適宜使用できる。
これらのうち、耐熱性の観点から、無機基材を用いることが好ましく、ガラス、シリコンウェハ、ステンレス等の無機基材を用いることがより好ましい。
最終的に得られる膜(硬化膜、高周波電子部品用絶縁材)の厚みは、通常1μm以上1000μm以下、好ましくは5μm以上500μm以下である。厚みが1μm以上であることで、膜自体の強度を十分なものとすることができる。厚みが1000μm以下であることで、ハジキ、ヘコミ、ワレ等の欠陥を抑えやすい。
乾燥工程においては、通常、ホットプレートを用いた加熱により、塗布されたポリアミド溶液中の溶媒を揮発させる。乾燥工程における加熱温度は、ポリアミドを溶解させた溶媒の種類にもよるが、50℃以上250℃以下が好ましく、80℃以上200℃以下がより好ましい。乾燥工程における加熱温度は、通常は後の加熱工程の温度よりも低い温度である。
乾燥工程における加熱温度が50℃以上であることで乾燥が十二分に行われやすくなる。また、乾燥工程における加熱温度が250℃以下であることで、急激な溶媒蒸発によるハジキ、ヘコミ、ワレ等の欠陥が抑えられ、均一な膜を形成しやすい。
加熱工程では、乾燥工程で得られた樹脂膜を高温で熱処理することで硬化させる。加熱により、樹脂膜中のポリアミドの閉環反応が進行し、ポリベンゾオキサゾールを含む高周波電子部品用絶縁材(硬化膜)を得ることができる。加熱工程では、乾燥工程で取り除くことができなかった残存溶媒の除去、環化率の向上、物理特性の改善も期待される。加熱工程の温度は、100℃以上400℃以下が好ましく、150℃以上350℃以下がより好ましい。加熱工程の温度が100℃以上であることにより、環化反応を十二分に進行させやすい。また、加熱工程の温度が400℃以下であることにより、ひび割れ等の欠陥発生を抑えやすい。
本実施形態の絶縁材のTd5は400℃以上が好ましく、410℃以上がより好ましく、420℃以上がさらに好ましい。Td5の上限は特に無いが、現実的な設計の観点から、Td5の上限は例えば600℃である。
具体的には、本実施形態の絶縁材の、周波数28GHzにおける誘電正接は、好ましくは0.012以下、より好ましくは0.007以下である。また、本実施形態の絶縁材の、周波数28GHzにおける比誘電率は、好ましくは3.2以下、より好ましくは3.0以下である。比誘電率の下限値は、現実的には2.0である。
周波数28GHzにおける誘電正接が3.2以下となるように、かつ/または、周波数28GHzにおける比誘電率が0.012以下となるように絶縁材を設計することで、5Gにおける伝送速度の高速化や伝送損失の十二分な低減を図りうる。
本実施形態の高周波電子部品は、上述の絶縁材を備える。また、この高周波電子部品を用いることで、高周波機器(通信端末など)を製造することができる。
また、上述の絶縁材は、良好な耐熱性を有し得る。そのため、高周波電子部品を製造するプロセスの中で、絶縁材の温度が上昇し易い処理(例えば、乾燥、蒸着、プラズマ処理等)が行われても、絶縁材の性能が変わりにくい。このことは電子部品の製造上好ましい。
ポリベンゾオキサゾールの合成のためのモノマーとして使用可能な、以下一般式[DA]で表されるトリフルオロメチル基を1つ有するジアミンまたはその塩は、例えば、下記の反応式で示すように、以下一般式[DN]で表されるビスニトロフェノールの還元(具体的には水素添加やヒドラジン類を用いた還元など)により得ることができる。また、例えば一般式[DA]で表されるジアミンと酸とを作用させることで、ジアミンの塩を得ることができる。塩の種類は特に限定されない。例えば塩酸塩、硫酸塩、硝酸塩などを挙げることができる。
還元方法の具体例を以下に挙げる。
使用可能な反応溶剤としては、脂肪族炭化水素系、芳香族炭化水素系、ハロゲン化炭化水素系、エーテル系、エステル系、アミド系、スルホキシド系等が挙げられる。具体例としては、n-ヘキサン、シクロヘキサン、n-ヘプタン、ベンゼン、トルエン、エチルベンゼン、キシレン、メシチレン、塩化メチレン、クロロホルム、1,2-ジクロロエタン、ジエチルエーテル、テトラヒドロフラン、ジイソプロピルエーテル、tert-ブチルメチルエーテル、1,2-メトキシエタン、ジグリム、酢酸エチル、酢酸n-ブチル、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノン、ジメチルスルホキシド等が挙げられる。反応溶媒は、単独または組み合わせて用いることができる。使用量はビスニトロフェノール化合物100質量部に対し、10~2000質量部、より好ましくは100~1000質量部である。
使用可能なヒドラジン類としては、例えばヒドラジン、ヒドラジン一水和物、メチルヒドラジン、ヒドラジウム塩、塩酸ヒドラジン、または硫酸ヒドラジン等が挙げられる。これら還元剤は、溶液として、例えば水溶液、アルコール溶液、エーテル溶液として用いることもできる。
ビスニトロフェノール1mol当たり、ヒドラジン類の使用量は1.0~20.0mol、より好ましくは2.0~5.0mol使用される。
式[DA-4]で表されるジアミンの化合物名は、1,1,1-トリフルオロ-2,2-ビス(3-アミノ-5-メチル-4-ヒドロキシフェニル)エタンである。
式[DA-5]で表されるジアミンの化合物名は、1,1,1-トリフルオロ-2,2-ビス(3-アミノ-5-フルオロ-4-ヒドロキシフェニル)エタンである。
式[DA-6]表されるジアミンの化合物名は、1,1,1-トリフルオロ-2,2-ビス(3-アミノ-5-イソプロピル-4-ヒドロキシフェニル)エタンである。
式[DA-7]で表されるジアミンの化合物名は、1,1,1-トリフルオロ-2,2-ビス(3-アミノ-6-メチル-4-ヒドロキシフェニル)エタンである。
まず、各種測定・評価法について説明する。
フッ素イオン濃度測定対象のサンプル1gを20gの酢酸エチルで溶解して溶液を調製した。この溶液へ10gの超純水を添加し、分液漏斗でよく振り混ぜた後、水層を分取した。この水層に、イオン強度調整液としてTISAB-II(Thermo scientific社製)10mLを加え、イオン電極(Thermo scientific社製、ORION VERSASTAR)を用いてフッ素イオン濃度を測定した。
組成分析値の「%」は、原料または生成物をガスクロマトグラフィー(以下GCと記す。特に記述のない場合、検出器はFID)もしくは液体クロマトグラフィー(以下LCと示す。特に記述のない場合検出器はUV)によって測定して得られた組成の「面積%」を表す。
重量平均分子量および数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC、東ソー株式会社製HLC-8320)を用いて、ポリスチレンを標準物質として用いて測定した。移動相はN,N-ジメチルホルムアミド(DMF)、カラムはTSKgel SuperHZM-Hを用いた。
化合物または膜の赤外線吸収スペクトルは、NicoletNEXUS470FT-IR(サーモフィッシャーサイエンティフィック社製、)を用いて測定した。
5%重量減少温度(Td5)は、示差熱熱重量同時測定装置(株式会社日立ハイテクサイエンス社製、機種名STA7200)を用い、開始温度の30℃から昇温速度10℃/分の条件で測定した。
後掲の実施例で得られた硬化膜または比較例のフィルムの、周波数条件28GHz、温度23℃および相対湿度50%RHにおける比誘電率(εr)および誘電正接(tanδ)を、スプリットシリンダ共振器法により測定した。測定装置としては、キーサイト・テクノロジー社製ネットワークアナライザ装置名「N5290A」および関東電子応用開発社製スプリットシリンダ共振器(28GHzCR-728)を用いた。
硬化温度については、示差走査熱量測定装置(エスアイアイ・ナノテクノロジー株式会社製、機種名X-DSC7000)を用い、開始温度30℃、測定温度範囲-40℃~350℃、昇温速度10℃/分の条件で測定した。具体的には、ポリアミドが閉環してポリベンゾオキサゾールに転化する際に生じる吸熱ピークの極大値を示す温度を硬化温度とした。
[触媒調製例]
896gの特級試薬CrCl3・6H2Oを純水に溶かして3.0Lの溶液を調製した。この溶液に粒状アルミナ400gを浸漬し、一昼夜放置した。放置後、溶液を濾過してアルミナを取り出し、熱風循環式乾燥器中で100℃に保ち、さらに一昼夜乾燥した。このようにしてクロム担持アルミナを得た。
得られたクロム担持アルミナを、電気炉を備えた直径4.2cm長さ60cmの円筒形SUS316L製反応管に充填した。そして、その反応管内に窒素ガスを約20mL/分の流量で流しながら300℃まで昇温した。水の流出が見られなくなった時点で、窒素ガスにフッ化水素を同伴させ、その濃度を徐々に高めた。充填されたクロム担持アルミナのフッ素化によるホットスポットが反応管出口端に達したところで反応器温度を350℃に上げ、その状態を5時間保った。以上により触媒を調製した。
1,2,2,2-テトラフルオロエタノール:
19F-NMR(400MHz,CFCl3)δ(ppm):-85.8(3F,s),-137.8(1F,d,J=54.9Hz)
フッ化水素:
19F-NMR(400MHz,CFCl3)δ(ppm):-193.4(1F,s)
1,1,1-トリフルオロ-2,2-ビス(3-ニトロ-4-ヒドロキシフェニル)エタン:
1H-NMR(400MHz,CDCl3)δ(ppm):4.69(1H,q,J=9.4Hz),7.20(2H,d,J=8.9Hz),7.55(2H,dd,J=8.7,2.3Hz),8.09(2H,d,J=2.3Hz),10.57(2H,s)
19F-NMR(400MHz,CDCl3)δ(ppm):-66.9(3F,d,J=8.7Hz)
反応終了後、加圧濾過により触媒を除去し、その後、得られた濾液をエバポレーターで70gになるまで濃縮した。この濃縮液へトルエン80gを滴下して結晶を析出させることで、目的物である1,1,1-トリフルオロ-2,2-ビス(3-アミノ-4-ヒドロキシフェニル)エタンを、15.4g、収率84%、純度99.6%(LC)で白色固体として得た。また、精製して得られた目的物のフッ素イオン濃度は1ppm未満であった。
1,1,1-トリフルオロ-2,2-ビス(3-アミノ-4-ヒドロキシフェニル)エタン:
1H-NMR(400MHz,CD3CN)δ(ppm):4.03(4H,br-s),4.45(1H,q,J=10.2Hz),6.51(2H,d,J=8.1Hz),6.63(2H,d,J=8.7Hz),6.67(2H,s),6.88(2H,br-s)
19F-NMR(400MHz,CD3CN)δ(ppm):-66.1(3F,d,J=8.7Hz)
1,1,1-トリフルオロ-2,2-ビス(3-メチル-5-ニトロ-4-ヒドロキシフェニル)エタン:
1H-NMR(400MHz,CDCl3)δ(ppm):2.33 (6H,s)4.58(1H,q,J=9.3Hz),7.37(2H,d,J=1.8Hz),7.95(2H,d,J=1.8Hz),10.9(2H,s)
19F-NMR(400MHz,CDCl3)δ(ppm):-66.9(3F,d,J=8.7Hz)
反応終了後、加圧濾過により触媒を除去し、その後、濾液をエバポレーターで濃縮した。これにより、目的物である1,1,1-トリフルオロ-2,2-ビス(3-アミノ-5-メチル-4-ヒドロキシフェニル)エタンを28.8g、収率94%、純度98.2%(LC)で得た。
1,1,1-トリフルオロ-2,2-ビス(3-アミノ-5-メチル-4-ヒドロキシフェニル)エタン:
1H-NMR(400MHz,CD3CN)δ(ppm):2.12(6H,s),2.50(6H,br-s),4.34(1H,q,J=10.9Hz),6.45(2H,s),6.57(2H,s)
19F-NMR(400MHz,CD3CN)δ(ppm):-64.5(3F,d,J=8.7Hz)
1,1,1-トリフルオロ-2,2-ビス(3-メチル-5-ニトロ-4-ヒドロキシフェニル)エタン:
1H-NMR(400MHz,CDCl3)δ(ppm):2.33 (6H,s)4.89(1H,q,J=8.7Hz),7.03(2H,d,s),8.07(2H,s),10.5(2H,s)
19F-NMR(400MHz,CDCl3)δ(ppm):-65.5(3F,d,J=8.7Hz)
反応終了後、加圧濾過により触媒を除去し、濾液をエバポレーターで141gになるまで濃縮した。この濃縮液へn-ヘプタン95gを滴下して結晶を析出させることで、目的物である1,1,1-トリフルオロ-2,2-ビス(3-アミノ-6-メチル-4-ヒドロキシフェニル)エタンを15.3g、収率93%、純度99.8%(LC)で白色固体として得た。また、目的物のフッ素イオン濃度は1ppm未満であった。
1,1,1-トリフルオロ-2,2-ビス(3-アミノ-6-メチル-4-ヒドロキシフェニル)エタン:
1H-NMR(400MHz,CD3CN)δ(ppm):2.08(6H, s),3.78(4H, br-s),4.80(1H,q,J=10.1Hz),6.49(2H,s),6.69(2H,s),6.84(2H,br-s)
19F-NMR(400MHz,CD3CN)δ(ppm):-63.5(3F,d,J=8.7Hz)
1,1,1-トリフルオロ-2,2-ビス(3-イソプロピル-5-ニトロ-4-ヒドロキシフェニル)エタン:
1H-NMR(400MHz,CDCl3)δ(ppm):1.25(12H,d,J=6.9Hz), 3.42(2H,sept,J=6.9Hz),4.63(1H,q,J=9.4Hz),7.47(2H,d,J=2.3Hz),7.95(2H,d,J=2.3Hz),11.1(2H,s)
19F-NMR(400MHz,CDCl3)δ(ppm):-66.3(3F,d,J=8.7Hz)
反応終了後、加圧濾過により触媒を除去し、濾液をエバポレーターで32gになるまで濃縮した。この濃縮液へn-ヘプタン18gを滴下して結晶を析出させることで、目的物である,1,1-トリフルオロ-2,2-ビス(3-アミノ-5-イソプロピル-4-ヒドロキシフェニル)エタン11.3g、収率85%、純度99.4%(LC)で白色固体として得た。また、目的物のフッ素イオン濃度は1ppmであった。
1,1,1-トリフルオロ-2,2-ビス(3-アミノ-5-イソプロピル-4-ヒドロキシフェニル)エタン:
1H-NMR(400MHz,CD3OD)δ(ppm):1.15(12H,d,J=6.9Hz),3.22(2H,sept,J=7.1Hz),4.38(1H,q,J=10.3Hz),6.62(2H,s),6.64(2H,s)
19F-NMR(400MHz,CD3OD)δ(ppm):-66.6(3F,d,J=8.7Hz)
1,1,1-トリフルオロ-2,2-ビス(3-フルオロ-5-ニトロ-4-ヒドロキシフェニル)エタン:
1H-NMR(400MHz,CDCl3)δ(ppm):4.67(1H,q,J=8.9Hz),7.40(2H,dd,J=10.3,1.8Hz),7.91(2H,d,J=1.8Hz),10.5(2H,s)
19F-NMR(400MHz,CDCl3)δ(ppm):-66.3(3F,d,J=8.7Hz),-128.0(3F,d,J=11.6Hz)
反応終了後、加圧濾過により触媒を除去し、その後、得られた濾液をエバポレーターで濃縮して25gの固体を得た。得られた固体は、酢酸エチル45gとメチルシクロヘキサン39gで分散洗浄することで、目的物である1,1,1-トリフルオロ-2,2-ビス(3-アミノ-5-フルオロ-4-ヒドロキシフェニル)エタン22.2g、収率90%、純度99.7%(LC)で白色固体として得た。また、目的物のフッ素イオン濃度は1ppm未満であった。
1,1,1-トリフルオロ-2,2-ビス(3-アミノ-5-フルオロ-4-ヒドロキシフェニル)エタン:
1H-NMR(400MHz,CD3CN)δ(ppm):1.91(2H,br-s),4.22(2H,br-s),4.44(1H,q,J=10.3Hz),6.43(2H,d,J=11.4Hz),6.49(2H,s)
19F-NMR(400MHz,CD3CN)δ(ppm):-66.9(3F,d,J=10.6Hz), -138.7(2F,d,J=11.6Hz)
反応終了後、反応溶液を50℃まで冷却し、70gの水を滴下して結晶を析出させることで、目的物である1,1,1-トリフルオロ-2,2-ビス(3-アミノ-4-ヒドロキシフェニル)エタンを7.2g、収率86%、純度99.9%(LC)で白色固体として得た。目的物のフッ素イオン濃度は1ppm未満であった。
[実施例1]
窒素導入管および攪拌翼を備えた容量500mLの三口フラスコに、氷冷下、以下の式に示す、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)-1,1,1-トリフルオロエタン(BIS-AP-EF)を6.0g(20mmol)、および4,4'-オキシビス(ベンゾイルクロリド)(以下、OBBCと表すことがある)を5.9g(20mmol)加え、さらに、塩基としてピリジンを3.6g(46mmol)、有機溶剤としてNMP(N-メチルピロリドン)を75g加えた。そして、窒素雰囲気下、室温(25℃)で5時間攪拌して反応液を得た。その後、反応液を加圧濾過することで、ポリヒドロキシアミドの溶液を調製した。溶液のGPC測定の結果、Mw=88044、Mw/Mn=2.2であった。
硬化膜のFT-IRの測定結果から、1030~1100cm-1にオキサゾール固有の吸収があった。つまり、硬化膜はポリベンゾオキサゾールを含むことを確認した。
窒素導入管および攪拌翼を備えた容量500mLの三口フラスコに、氷冷下、以下の式に示す、2,2-ビス(3-アミノ-4-ヒドロキシフェニル-5-メチル)-1,1,1-トリフルオロエタン塩酸塩(BIS-5-MAP-EF・2HCl、合成例4で得られたジアミンを塩酸塩化したもの)を8.0g(20mmol)、およびOBBCを5.9g(20mmol)加え、さらに、塩基としてピリジンを7.9g(100mmol)、有機溶剤としてNMPを105g加えた。そして、窒素雰囲気下、室温(25℃)で5時間攪拌して反応液を得た。その後、反応液を加圧濾過することで、ポリヒドロキシアミドの溶液を調製した。溶液のGPC測定の結果、Mw=97141、Mw/Mn=1.7であった。
硬化膜のFT-IRの測定結果から、1030~1100cm-1にオキサゾール固有の吸収があった。つまり、硬化膜はポリベンゾオキサゾールを含むことを確認した。
窒素導入管および攪拌翼を備えた容量500mLの三口フラスコに、氷冷下、以下の式に示す、2,2-ビス(3-アミノ-4-ヒドロキシフェニル-6-メチル)-1,1,1-トリフルオロエタン(BIS-6-MAP-EF)を5.4g(20mmol)、およびOBBCを5.9g(20mmol)加え、さらに、塩基としてピリジンを3.6g(46mmol)、有機溶剤としてNMPを55g加えた。そして、窒素雰囲気下、室温(25℃)で5時間攪拌して反応液を得た。その後、反応液を加圧濾過することで、ポリヒドロキシアミドの溶液を調製した。溶液のGPC測定の結果、Mw=63438、Mw/Mn=2.2であった。
硬化膜のFT-IRの測定結果から、1030~1100cm-1にオキサゾール固有の吸収があった。つまり、硬化膜はポリベンゾオキサゾールを含むことを確認した。
窒素導入管および攪拌翼を備えた容量500mLの三口フラスコに、氷冷下、以下の式に示す、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)-1,1,1-トリフルオロエタン(BIS-5-FAP-EF)を2.8g(10mmol)、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)-ヘキサフルオロプロパン(BIS-AP-AF)を3.7g(10mmol)およびOBBCを5.9g(20mmol)加え、さらに、塩基としてピリジンを3.6g(46mmol)、有機溶剤としてNMPを145g加えた。そして、窒素雰囲気下、室温(25℃)で5時間攪拌して反応液を得た。その後、反応液を加圧濾過することで、ポリヒドロキシアミドの溶液を調製した。溶液のGPC測定の結果、Mw=85147、Mw/Mn=1.9であった。
硬化膜のFT-IRの測定結果から、1030~1100cm-1にオキサゾール固有の吸収があった。つまり、硬化膜はポリベンゾオキサゾールを含むことを確認した。
窒素導入管および攪拌翼を備えた容量500mLの三口フラスコに、氷冷下、以下の式に示す、2,2-ビス(3-アミノ-4-ヒドロキシフェニル-5-イソプロピル)-1,1,1-トリフルオロエタン(BIS-5-IAP-EF)を3.8g(10mmol)およびOBBCを3.0g(10mmol)加え、さらに、塩基としてピリジンを1.8g(23mmol)、有機溶剤としてNMPを33g加えた。そして、窒素雰囲気下、室温(25℃)で5時間攪拌して反応液を得た。その後、反応液を加圧濾過することで、ポリヒドロキシアミドの溶液を調製した。溶液のGPC測定の結果、Mw=110813、Mw/Mn=1.9であった。
硬化膜のFT-IRの測定結果から、1030~1100cm-1にオキサゾール固有の吸収があった。つまり、硬化膜はポリベンゾオキサゾールを含むことを確認した。
窒素導入管および攪拌翼を備えた容量500mLの三口フラスコに、氷冷下、以下の式に示す、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)-1,1,1-トリフルオロエタン(BIS-AP-EF)を6.0g(20mmol)およびイソフタロイルクロリド(以下、IPCとあらわす場合がある)を4.1g(20mmol)加え、さらに、塩基としてピリジンを3.6g(46mmol)、有機溶剤としてNMPを70g加えた。そして、窒素雰囲気下、室温(25℃)で5時間攪拌して反応液を得た。その後、反応液を加圧濾過することで、ポリヒドロキシアミドの溶液を調製した。溶液のGPC測定の結果、Mw=39967、Mw/Mn=1.9であった。
硬化膜のFT-IRの測定結果から、1030~1100cm-1にオキサゾール固有の吸収があった。つまり、硬化膜はポリベンゾオキサゾールを含むことを確認した。
窒素導入管および攪拌翼を備えた容量500mLの三口フラスコに、氷冷下、以下の式に示す、2,2-ビス(3-アミノ-4-ヒドロキシフェニル-5-メチル)-1,1,1-トリフルオロエタン塩酸塩(BIS-5-MAP-EF・2HCl)を8.0g(20mmol)、およびIPCを4.1g(20mmol)加え、さらに、塩基としてピリジンを7.9g(100mmol)、有機溶剤としてNMPを100g加えた。そして、窒素雰囲気下、室温(25℃)で5時間攪拌して反応液を得た。その後、反応液を加圧濾過することで、ポリヒドロキシアミドの溶液を調製した。溶液のGPC測定の結果、Mw=45077、Mw/Mn=1.8であった。
FT-IRの測定結果から、1030~1100cm-1にオキサゾール固有の吸収があった。つまり、硬化膜はポリベンゾオキサゾールを含むことを確認した。
窒素導入管および攪拌翼を備えた容量500mLの三口フラスコに、氷冷下、以下の式に示す、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)-1,1,1-トリフルオロエタン(BIS-5-FAP-EF)を2.8g(10mmol)およびIPCを2.0g(10mmol)加え、さらに、塩基としてピリジンを1.8g(23mmol)、有機溶剤としてNMPを60g加えた。そして、窒素雰囲気下、室温(25℃)で5時間攪拌して反応液を得た。その後、反応液を加圧濾過することで、ポリヒドロキシアミドの溶液を調製した。溶液のGPC測定の結果、Mw=50057、Mw/Mn=2.3であった。
硬化膜のFT-IRの測定結果から、1030~1100cm-1にオキサゾール固有の吸収があり、ポリベンゾオキサゾールからなる硬化膜であることを確認した。
窒素導入管および攪拌翼を備えた容量500mLの三口フラスコに、氷冷下、以下の式に示す、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)-1,1,1-トリフルオロエタン(BIS-AP-EF)を6.0g(20mmol)、OBBCを3.0g(10mmol)およびテレフタロイルクロリド(以下、TPCとあらわす場合がある)を2.0g(10mmol)加え、さらに、塩基としてピリジンを3.6g(46mmol)、有機溶剤としてNMPを75g加えた。そして、窒素雰囲気下、室温(25℃)で5時間攪拌して反応液を得た。その後、反応液を加圧濾過することで、ポリヒドロキシアミドの溶液を調製した。溶液のGPC測定の結果、Mw=30917、Mw/Mn=2.4であった。
FT-IRの測定結果から、1030~1100cm-1にオキサゾール固有の吸収があった。つまり、硬化膜はポリベンゾオキサゾールを含むことを確認した。
東レ・デュポン社製、膜厚25μmのポリイミドフィルム(カプトン100H/V、フッ素原子を含まない)を評価用サンプルとして準備した。
[誘電特性]
実施例および比較例で得られたフィルム状の硬化膜(絶縁材)を評価サンプルとして用い、前述の[誘電特性]に記載の条件/装置で誘電特性を評価した。実施例1、2、5および比較例1の評価結果を表1に示す。
実施例で得られたフィルム状の硬化膜(絶縁材)を評価サンプルとして用い、前述の[耐熱性]に記載の条件/装置で5%重量減少温度(Td5)を評価した。評価結果を表2に示す。
(実施例)
実施例1で得られたポリヒドロキシアミドの溶液を、ガラス基板上にスピンコーターを用いて塗布した。その後、窒素雰囲気下、温度110℃で10分加熱することで(乾燥工程)、ガラス基板上にポリヒドロキシアミド膜(閉環されていない)を得た。
得られたポリヒドロキシアミドの硬化温度は275℃であった。
2,2-ビス(3-アミノ-4-ヒドロキシフェニル)-1,1,1-トリフルオロエタン(BIS-AP-EF)の代わりに、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン(BIS-AP-AF)を用いること以外は、実施例1と同様の手法にて、ポリヒドロキシアミドとポリベンゾオキサゾールを得た(反応スキームを以下に載せた)。
得られたポリヒドロキシアミドの硬化温度は289℃であった。
参考までに、得られたポリベンゾオキサゾール硬化膜の誘電率は2.9、誘電正接は0.0055であった。
Claims (35)
- 請求項4~6のいずれか1項に記載のポリアミドであって、
重量平均分子量が、1,000以上1,000,000以下であるポリアミド。 - 請求項4~7のいずれかに記載のポリアミドと、有機溶媒とを含む、ポリアミド溶液。
- 請求項8に記載のポリアミド溶液であって、
前記有機溶媒が、アミド系溶媒、エーテル系溶媒、芳香族系溶媒、ハロゲン系溶媒及びラクトン系溶媒からなる群より選ばれる少なくとも1種を含むポリアミド溶液。 - 請求項8または9に記載のポリアミド溶液であって、
前記ポリアミドの濃度は、0.1質量%以上50質量%以下であるポリアミド溶液。 - 請求項1~3のいずれか1項に記載のポリベンゾオキサゾールを含む高周波電子部品用絶縁材。
- 請求項11に記載の高周波電子部品用絶縁材であって、
5%重量減少温度Td5が400℃以上である絶縁材。 - 請求項11または12に記載の高周波電子部品用絶縁材であって、
周波数28GHzにおける誘電正接が0.012以下である絶縁材。 - 請求項11~13のいずれか1項に記載の高周波電子部品用絶縁材であって、
周波数28GHzにおける比誘電率が3.2以下である絶縁材。 - 請求項11~14のいずれか1項に記載の高周波電子部品用絶縁材を備える高周波電子部品。
- 請求項15に記載の高周波電子部品を備える高周波機器。
- 請求項4~7のいずれか1項に記載のポリアミドを含む高周波電子部品製造用絶縁材料。
- 請求項17に記載の高周波電子部品製造用絶縁材料であって、
前記ポリアミドの重量平均分子量が500,000以下である絶縁材料。 - 請求項4~7のいずれか1項に記載のポリアミドの製造方法であって、
当該方法は、
以下一般式[DA]で表されるジアミンまたはその塩と、
以下一般式[DC1]または[DC2]で表される、ジカルボン酸またはジカルボン酸誘導体と、
を縮重合する工程を含むポリアミドの製造方法。
- 請求項1~3のいずれか1項に記載のポリベンゾオキサゾールの製造方法であって、
請求項19に記載のポリアミドを製造する方法によりポリアミドを製造する第一工程と、
前記第一工程で得られた前記ポリアミドを脱水閉環する第二工程と、
を含むポリベンゾオキサゾールの製造方法。 - 請求項8~10のいずれか1項に記載のポリアミド溶液を支持基材に塗布する塗布工程と、
塗布されたポリアミド溶液中に含まれる溶媒を乾燥させることにより、ポリアミドを含む樹脂膜を得る乾燥工程と、
前記樹脂膜を加熱処理して硬化膜とする加熱工程と、
を含む、高周波電子部品用絶縁材の製造方法。 - 請求項21に記載の高周波電子部品用絶縁材の製造方法であって、
前記支持基材が、ガラス、シリコンウェハ、ステンレス、アルミナ、銅、ニッケル、ポリエチレンテレフタレート、ポリエチレングリコールテレフタレート、ポリエチレングリコールナフタレート、ポリカーボネート、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリプロピレン、ポリエーテルスルホン、ポリエチレンテレフタレート、ポリフェニレンスルホンおよびポリフェニレンスルフィドからなる群より選ばれる少なくとも1種である、高周波電子部品用絶縁材の製造方法。 - 請求項21または22に記載の高周波電子部品用絶縁材の製造方法であって、
前記硬化膜の膜厚が1μm以上1000μm以下である、高周波電子部品用絶縁材の製造方法。 - 請求項21~23のいずれか1項に記載の高周波電子部品用絶縁材の製造方法であって、
前記乾燥工程は、50℃以上250℃以下の温度で実施される、高周波電子部品用絶縁材の製造方法。 - 請求項21~24のいずれか1項に記載の高周波電子部品用絶縁材の製造方法であって、
前記硬化工程は、150℃以上400℃以下の温度で実施される、高周波電子部品用絶縁材の製造方法。 - 請求項26~33のいずれか1項に記載のジアミンまたはその塩であって、
フッ素イオン濃度が5ppm以下であるジアミンまたはその塩。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020237004509A KR20230035390A (ko) | 2020-07-10 | 2021-07-01 | 폴리벤조옥사졸, 폴리아미드, 폴리아미드 용액, 고주파 전자 부품용 절연재, 고주파 전자 부품, 고주파 기기, 고주파 전자 부품 제조용 절연 재료, 폴리아미드의 제조 방법, 폴리벤조옥사졸의 제조 방법, 고주파 전자 부품용 절연재의 제조 방법, 및, 디아민 또는 그 염 |
CN202180049034.8A CN116075424A (zh) | 2020-07-10 | 2021-07-01 | 聚苯并恶唑、聚酰胺、聚酰胺溶液、高频电子部件用绝缘材料、高频电子部件、高频设备、高频电子部件制造用绝缘材料、聚酰胺的制造方法、聚苯并恶唑的制造方法、高频电子部件用绝缘材料的制造方法、及二胺或其盐 |
JP2022535286A JPWO2022009782A1 (ja) | 2020-07-10 | 2021-07-01 | |
US18/015,300 US20230303480A1 (en) | 2020-07-10 | 2021-07-01 | Polybenzoxazole, Polyamide, Polyamide Solution, Insulating Material for High-Frequency Electronic Component, High-Frequency Electronic Component, High-Frequency Equipment, Insulating Material for Producing High-Frequency Electronic Component, Method for Producing Polyamide, Method for Producing Polybenzoxazole, Method for Producing Insulating Material for High-Frequency Electronic Component, and Diamine or Salt Thereof |
EP21837851.1A EP4194482A4 (en) | 2020-07-10 | 2021-07-01 | POLYBENZOXAZOLE, POLYAMIDE, POLYAMIDE SOLUTION, INSULATOR FOR HIGH FREQUENCY ELECTRONIC COMPONENT, HIGH FREQUENCY ELECTRONIC COMPONENT, HIGH FREQUENCY EQUIPMENT, INSULATION MATERIAL FOR PRODUCING HIGH FREQUENCY ELECTRONIC COMPONENT, PROCESS FOR PRODUCING POLYAMIDE, PROCESS FOR PRODUCING POLYBENZOXAZOLE, PROCESS FOR PRODUCING INSULATION FOR HIGH FREQUENCY ELECTRONIC COMPONENT, AND DIAMINE OR SALT THEREOF |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020119001 | 2020-07-10 | ||
JP2020-119001 | 2020-07-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022009782A1 true WO2022009782A1 (ja) | 2022-01-13 |
Family
ID=79552563
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/025005 WO2022009782A1 (ja) | 2020-07-10 | 2021-07-01 | ポリベンゾオキサゾール、ポリアミド、ポリアミド溶液、高周波電子部品用絶縁材、高周波電子部品、高周波機器、高周波電子部品製造用絶縁材料、ポリアミドの製造方法、ポリベンゾオキサゾールの製造方法、高周波電子部品用絶縁材の製造方法、および、ジアミンまたはその塩 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20230303480A1 (ja) |
EP (1) | EP4194482A4 (ja) |
JP (1) | JPWO2022009782A1 (ja) |
KR (1) | KR20230035390A (ja) |
CN (1) | CN116075424A (ja) |
TW (1) | TW202206504A (ja) |
WO (1) | WO2022009782A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023182141A1 (ja) * | 2022-03-25 | 2023-09-28 | セントラル硝子株式会社 | エポキシ化合物、エポキシ樹脂、エポキシ樹脂組成物、硬化物、プリプレグ、繊維強化複合材料、およびこれらの製造方法、封止材、半導体装置、半導体素子を封止する方法、並びに封止材として使用する方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03184933A (ja) | 1989-12-13 | 1991-08-12 | Central Glass Co Ltd | ヘミアセタール化合物の製造方法 |
JPH0597757A (ja) | 1991-10-07 | 1993-04-20 | Central Glass Co Ltd | トリフルオロアセトアルデヒドの製造方法 |
JPH07228837A (ja) * | 1994-02-15 | 1995-08-29 | Hitachi Chem Co Ltd | 含フッ素コーティング剤 |
KR101906064B1 (ko) * | 2017-07-25 | 2018-10-08 | 송기용 | 저온경화 가능한 유기절연체 조성물 및 이를 이용한 유기절연막 제조방법 |
JP2018165346A (ja) | 2017-03-28 | 2018-10-25 | 東レ・デュポン株式会社 | ポリイミドフィルム |
WO2019013240A1 (ja) * | 2017-07-14 | 2019-01-17 | 富士フイルム株式会社 | 熱硬化性樹脂組成物、およびその硬化膜、積層体、半導体デバイス、ならびにそれらの製造方法 |
JP2019026628A (ja) | 2017-08-04 | 2019-02-21 | セントラル硝子株式会社 | フルオロアセトアルデヒド類の保存方法 |
JP2020119001A (ja) | 2019-01-18 | 2020-08-06 | 株式会社パン・パシフィック・インターナショナルホールディングス | 情報処理装置、情報処理方法、及びプログラム |
WO2020162408A1 (ja) * | 2019-02-06 | 2020-08-13 | セントラル硝子株式会社 | 1,1,1-トリフルオロ-2,2-ビスアリールエタンの製造方法、および1,1,1-トリフルオロ-2,2-ビスアリールエタン |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000128984A (ja) * | 1998-10-28 | 2000-05-09 | Sumitomo Bakelite Co Ltd | ポリベンゾオキサゾール前駆体及び樹脂 |
-
2021
- 2021-07-01 EP EP21837851.1A patent/EP4194482A4/en active Pending
- 2021-07-01 WO PCT/JP2021/025005 patent/WO2022009782A1/ja unknown
- 2021-07-01 JP JP2022535286A patent/JPWO2022009782A1/ja active Pending
- 2021-07-01 KR KR1020237004509A patent/KR20230035390A/ko active Search and Examination
- 2021-07-01 CN CN202180049034.8A patent/CN116075424A/zh active Pending
- 2021-07-01 US US18/015,300 patent/US20230303480A1/en active Pending
- 2021-07-09 TW TW110125358A patent/TW202206504A/zh unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03184933A (ja) | 1989-12-13 | 1991-08-12 | Central Glass Co Ltd | ヘミアセタール化合物の製造方法 |
JPH0597757A (ja) | 1991-10-07 | 1993-04-20 | Central Glass Co Ltd | トリフルオロアセトアルデヒドの製造方法 |
JPH07228837A (ja) * | 1994-02-15 | 1995-08-29 | Hitachi Chem Co Ltd | 含フッ素コーティング剤 |
JP2018165346A (ja) | 2017-03-28 | 2018-10-25 | 東レ・デュポン株式会社 | ポリイミドフィルム |
WO2019013240A1 (ja) * | 2017-07-14 | 2019-01-17 | 富士フイルム株式会社 | 熱硬化性樹脂組成物、およびその硬化膜、積層体、半導体デバイス、ならびにそれらの製造方法 |
KR101906064B1 (ko) * | 2017-07-25 | 2018-10-08 | 송기용 | 저온경화 가능한 유기절연체 조성물 및 이를 이용한 유기절연막 제조방법 |
JP2019026628A (ja) | 2017-08-04 | 2019-02-21 | セントラル硝子株式会社 | フルオロアセトアルデヒド類の保存方法 |
JP2020119001A (ja) | 2019-01-18 | 2020-08-06 | 株式会社パン・パシフィック・インターナショナルホールディングス | 情報処理装置、情報処理方法、及びプログラム |
WO2020162408A1 (ja) * | 2019-02-06 | 2020-08-13 | セントラル硝子株式会社 | 1,1,1-トリフルオロ-2,2-ビスアリールエタンの製造方法、および1,1,1-トリフルオロ-2,2-ビスアリールエタン |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023182141A1 (ja) * | 2022-03-25 | 2023-09-28 | セントラル硝子株式会社 | エポキシ化合物、エポキシ樹脂、エポキシ樹脂組成物、硬化物、プリプレグ、繊維強化複合材料、およびこれらの製造方法、封止材、半導体装置、半導体素子を封止する方法、並びに封止材として使用する方法 |
Also Published As
Publication number | Publication date |
---|---|
EP4194482A1 (en) | 2023-06-14 |
EP4194482A4 (en) | 2024-10-23 |
JPWO2022009782A1 (ja) | 2022-01-13 |
CN116075424A (zh) | 2023-05-05 |
TW202206504A (zh) | 2022-02-16 |
KR20230035390A (ko) | 2023-03-13 |
US20230303480A1 (en) | 2023-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7343794B2 (ja) | ポリアミド酸およびポリイミド、光学フィルムおよび表示装置、ならびにそれらの製造方法 | |
EP1810963B1 (en) | Fluorine-containing polymerizable monomer and polymer compound using same | |
KR100872676B1 (ko) | 불소 함유 디아민 및 이를 사용한 중합체 | |
Yan et al. | Soluble polyimides based on a novel pyridine-containing diamine m, p-PAPP and various aromatic dianhydrides | |
US20140148548A1 (en) | Fluorine-Containing Polymerizable Monomer And Polymer Compound Using Same | |
JPH06510319A (ja) | フッ素含有ジアミン類、ポリアミド類およびポリイミド類 | |
Wu et al. | Synthesis and characterization of high fluorine‐containing polyimides with low‐dielectric constant | |
EP0565352A2 (en) | Aromatic diamine and polyimde, and preparation process of same | |
WO2022009782A1 (ja) | ポリベンゾオキサゾール、ポリアミド、ポリアミド溶液、高周波電子部品用絶縁材、高周波電子部品、高周波機器、高周波電子部品製造用絶縁材料、ポリアミドの製造方法、ポリベンゾオキサゾールの製造方法、高周波電子部品用絶縁材の製造方法、および、ジアミンまたはその塩 | |
WO2022014425A1 (ja) | ポリアミド、ポリアミドイミド及びこれらの誘導体、光学フィルム及び表示装置、ならびにこれらの製造方法 | |
JP2003183387A (ja) | 含フッ素脂環族ジアミンおよびこれを用いた重合体 | |
WO2022030447A1 (ja) | 含フッ素ジアミンまたはその塩、含フッ素ジアミンまたはその塩の製造方法、ポリアミド、ポリアミドの製造方法、ポリアミド溶液、ポリアミド環化体、ポリアミド環化体の製造方法、高周波電子部品用絶縁材、高周波電子部品用絶縁材の製造方法、高周波電子部品、高周波機器および高周波電子部品製造用絶縁材料 | |
JP4679357B2 (ja) | 含フッ素ジアミンおよびそれを用いた重合体 | |
JP7359602B2 (ja) | ジアミン化合物及びその製造方法 | |
WO2006085493A1 (ja) | 芳香族ジアミン及びその製造方法 | |
JP6268959B2 (ja) | 含フッ素重合性単量体およびそれを用いた高分子化合物 | |
WO2022030429A1 (ja) | 感光性樹脂組成物、感光性樹脂膜、パターン樹脂膜、硬化物、パターン硬化物、電子装置の製造方法、および電子装置 | |
KR101472328B1 (ko) | 유기 용매에 가용인, PMDA (pyromellitic dianhydride), DADE (diaminodiphenyl ether), DA (carboxylic dianhydride), 비스(아미노-4-하이드록시페닐)술폰 성분을 함유하는 폴리이미드 및 그 제조 방법 | |
JP3804180B2 (ja) | 芳香族ジアミン化合物 | |
Saeed Butt et al. | Synthesis and characterization of some Schiff-base-containing polyimides | |
JP4176074B2 (ja) | ビスフェニル−2,3,5,6−テトラフルオロ−4−トリフルオロメチルフェニルホスフィンオキシド誘導体およびその製造方法 | |
JP7320334B1 (ja) | 新規なジアミン及びその製造方法、並びに該ジアミンより製造されるポリアミック酸及びポリイミド | |
TWI853070B (zh) | 樹脂原料用組成物 | |
JP2960255B2 (ja) | 新規なジアミン化合物およびそれを用いた新規なポリイミドおよびその製造方法 | |
JP2019059701A (ja) | 新規な含フッ素ジアミンおよび含フッ素ジニトロ化合物、それを用いた含フッ素ポリアミック酸および含フッ素ポリイミド |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21837851 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022535286 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20237004509 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021837851 Country of ref document: EP Effective date: 20230207 |