WO2022009313A1 - ガス処理炉及びこれを用いた排ガス処理装置 - Google Patents

ガス処理炉及びこれを用いた排ガス処理装置 Download PDF

Info

Publication number
WO2022009313A1
WO2022009313A1 PCT/JP2020/026577 JP2020026577W WO2022009313A1 WO 2022009313 A1 WO2022009313 A1 WO 2022009313A1 JP 2020026577 W JP2020026577 W JP 2020026577W WO 2022009313 A1 WO2022009313 A1 WO 2022009313A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
exhaust gas
gas treatment
treatment furnace
heater body
Prior art date
Application number
PCT/JP2020/026577
Other languages
English (en)
French (fr)
Inventor
啓志 今村
Original Assignee
カンケンテクノ株式会社
北京康肯▲環▼保▲設▼▲備▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カンケンテクノ株式会社, 北京康肯▲環▼保▲設▼▲備▼有限公司 filed Critical カンケンテクノ株式会社
Priority to JP2022534538A priority Critical patent/JP7279985B2/ja
Priority to KR1020237001035A priority patent/KR20230025435A/ko
Priority to PCT/JP2020/026577 priority patent/WO2022009313A1/ja
Priority to US18/002,543 priority patent/US20230233982A1/en
Priority to CN202080102296.1A priority patent/CN115803102A/zh
Priority to TW110119012A priority patent/TWI793614B/zh
Publication of WO2022009313A1 publication Critical patent/WO2022009313A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/005Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • B01D53/185Liquid distributors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • B01D53/70Organic halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/061Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating
    • F23G7/063Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating electric heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/206Organic halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0216Other waste gases from CVD treatment or semi-conductor manufacturing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment

Definitions

  • the present invention relates to a gas treatment furnace suitable for abatement treatment of persistent exhaust gas containing, for example, PFCs (perfluorinated compounds), and an exhaust gas treatment apparatus using the gas treatment furnace.
  • PFCs perfluorinated compounds
  • exhaust gas to be treated gas emitted from such a wide variety of industrial processes
  • exhaust gas to be treated gas emitted from such a wide variety of industrial processes
  • exhaust gas treatment methods and exhaust gas treatment devices are used properly according to the type of exhaust gas to be treated discharged from the industrial process.
  • the electric thermal oxidative decomposition type exhaust gas treatment method using an electric heater is currently the most popular decomposition treatment method as an exhaust gas treatment method in the semiconductor manufacturing process, and is used for the decomposition treatment of the exhaust gas to be treated (gas to be abated).
  • the treatment process is easy to control, and the exhaust gas to be treated can be safely decomposed.
  • any of the harmful effects in the exhaust gas to be treated can be followed according to various conditions in semiconductor manufacturing.
  • the target component can also be detoxified to a concentration of TLV [Threshold Limit Value; exposure limit] or less (see, for example, Patent Document 1).
  • the main problem of the present invention is to have the advantages of the conventional electric thermal oxidative decomposition type gas treatment furnace as it is, and to reduce the size, reduce the power consumption, and efficiently use the energy. It is to provide a gas treatment furnace capable of this and an exhaust gas treatment device using the gas treatment furnace.
  • the gas treatment furnace is configured as follows. That is, it is characterized in that it is composed of a heater main body 12 filled with an electric heating body and a tubular gas passage 14 penetrating the heater main body 12.
  • the gas treatment furnace is composed of a heater main body 12 filled with an electric heater inside and a tubular gas passage 14 penetrating the heater main body 12, the heat treatment target to be passed through the gas passage 14. If the diameter and length of the gas passage 14 are set according to the flow rate of the gas, the gas flowing through the gas passage 14 can be sufficiently supplied with the heat generated by the electric heater. Further, instead of installing the heater main body in the furnace as in the conventional gas processing furnace, the gas flow path 14 is provided in the heater main body 12, and the heater main body 12 itself functions as a "fire pot". Therefore, the size of the entire gas treatment furnace can be significantly reduced.
  • the present invention can be configured, for example, as shown in FIGS. 2 to 3 based on the above-mentioned gas treatment furnace (FIG. 1). That is, a block-shaped heater main body 12 extending in the vertical direction and filled with an electric heating body inside, and a gas passage 14 that vertically penetrates the inside of the heater main body 12 in the front-rear direction in a plan view. A plurality of rows of gas passages 14 parallel to each other in the left-right direction and a communication space 16a attached to the upper end of the heater main body 12 and formed inside the heater main body 12 are provided. It is characterized by including a head box 16 that communicates the gas passages 14 with each other.
  • the present invention has the following effects, for example.
  • the gas passages 14 that vertically penetrate the inside of the heater main body 12 are continuously or extended in the front-rear direction in a plan view, and are provided in a plurality of rows so as to be parallel to each other in the left-right direction.
  • the heat generated by the electric heater can be sufficiently applied to each of the gas to be processed flowing through the large number of gas passages 14 without waste.
  • the gas passage 14 is formed of a perfectly circular thin tube in a plan view or is formed in an elongated slit shape in a plan view, the action becomes even more remarkable.
  • the gas passage 14 is provided in the heater main body 12, and the heater main body 12 itself is used as a "furnace". Because it functions, the size of the entire gas processing furnace can be significantly reduced.
  • the second invention in the present invention is an exhaust gas treatment apparatus using the above gas treatment furnace, in which any of the above gas treatment furnaces and the exhaust gas E to be treated to be introduced into the gas treatment furnace are washed in advance. It is characterized by comprising at least one of an inlet scrubber 20 to cool and liquid-wash the exhaust gas E thermally decomposed in the gas treatment furnace.
  • the inside of the furnace is not heated by a heating means such as a heater, but the heating means itself has a gas passage for heating the gas. Since it is provided, it has the advantages of the conventional electric thermal oxidative decomposition type gas treatment furnace as it is, and it can be miniaturized to reduce power consumption and efficiently use energy. It is possible to provide a gas treatment furnace capable of this and an exhaust gas treatment device using the same.
  • FIG. 2 is a cut end view of the XX'line in FIG. 2 (internal structure omitted). It is a horizontal cut end view (internal structure omitted) in the gas processing furnace of another embodiment (third embodiment) of this invention. It is a horizontal cut end view (internal structure omitted) in the gas processing furnace of another embodiment (fourth embodiment) of this invention.
  • FIG. 1 is a cross-sectional view showing an outline of the most basic embodiment (first embodiment) of the gas processing furnace 10 of the present invention.
  • the gas processing furnace 10 of the present invention includes a heater main body 12 and a tubular gas passage 14 penetrating the heater main body 12.
  • the heater body 12 is made of, for example, a highly heat-resistant material such as stainless steel or a metal such as Hastelloy (registered trademark of Haynes), or a refractory material such as a casing, and covers the outer periphery of the gas passage 14 over almost the entire length. It is configured by filling the inside of a casing formed so as to surround it with an electric heater.
  • Examples of the electric heating body include those made of metal wires such as nichrome wire and Kanthal (registered trademark of Sandvik AB), silicon carbide (SiC), molybdenum dissilicate (MoSi 2 ), lantern chromite (LaCrO 3 ), and the like.
  • the end portion of the electric heating body in the heater main body 12 is taken out from the side surface of the end portion in the longitudinal direction of the casing and is connected to a power supply device (not shown).
  • the gas flow path 14 is made of a highly heat-resistant material such as stainless steel or Hastelloy (registered trademark of Hastelloy) or a refractory material such as castable, and a tubular body through which the gas to be heat-treated passes. It is a member.
  • the cross-sectional shape of the gas passage 14 in the width direction is a perfect circle, and the diameter and length thereof are appropriately determined according to the flow rate of the gas to be heat-treated flowing through the gas passage 14. Set.
  • the diameter of the gas passage 14 is in the range of 80 mm to 150 mm and the length is 700 mm to 800 mm. It is preferable to set in the range of.
  • the electric heater to be used for the heater main body 12 is selected according to the type of the gas to be heat-treated to flow in the gas flow path 14, and the gas to be heat-treated is selected. If the diameter and length of the gas passage 14 are set according to the flow rate, the gas flowing through the gas passage 14 can be sufficiently supplied with the heat generated by the electric heater.
  • the gas passage 14 is provided with a dust removing means for scraping off dust and the like adhering to and accumulating inside, as will be described later.
  • the embodiment of FIG. 1 shows a case where the gas passage 14 is arranged so that the gas to be heat-treated such as exhaust gas E flows in the horizontal direction, but the gas to be heat-treated in the gas treatment furnace 10 is arranged.
  • the flow direction is not limited to this, and for example, the gas flow path 14 may be arranged so that the gas flows in the vertical direction.
  • FIG. 2 shows an outline of an exhaust gas treatment device X using the gas treatment furnace 10 of the second embodiment of the present invention.
  • the exhaust gas treatment device X is a device for detoxifying the exhaust gas E discharged from an exhaust source (not shown), and is generally composed of a gas treatment furnace 10, an inlet scrubber 20, and an outlet scrubber 22.
  • the exhaust gas treatment device X does not limit the type of the exhaust gas E to be treated, PFCs (perfluorocompounds), monosilane (SiH 4 ), chlorine-based gas, etc. discharged from the semiconductor manufacturing device are used.
  • the exhaust gas treatment device X will be described with the one used for the abatement treatment of the exhaust gas E discharged from the semiconductor manufacturing device in mind.
  • the gas treatment furnace 10 is a device for thermally decomposing harmful abatement target gas in the exhaust gas E discharged from a semiconductor manufacturing process or the like by using an electric thermal oxidative decomposition method, and is a heater main body 12, a gas flow path 14, and a head. It has a box 16.
  • the heater main body 12 has a block-shaped main body casing 24 extending in the vertical direction in which a highly heat-resistant material such as stainless steel or Hastelloy (registered trademark of Haynes) is formed in a square tube shape.
  • a highly heat-resistant material such as stainless steel or Hastelloy (registered trademark of Haynes) is formed in a square tube shape.
  • the inside of the main body casing 24 is a metal wire such as a nichrome wire or a cantal (registered trademark of Sandvik AB) wire, silicon carbide (SiC), molybdenum dissilicate (MoSi 2 ), or lantern chromite (LaCrO).
  • An electric heating body made of ceramics such as 3) is stretched (filled). Further, the gaps between the electric heating bodies are filled with ceramic powder to improve the heat conduction inside the main body casing 24.
  • the end portion of the electric heating body is taken out from the lower surface or the side surface of the main body casing 24 and connected to the power supply device.
  • the main body casing 24 is provided with a plurality of gas passages 14 that vertically penetrate the inside of the main body casing 24.
  • the gas passage 14 is partitioned by a highly heat-resistant material such as stainless steel or a metal such as Hastelloy (registered trademark of Hanes), and is true in a plan view as shown in FIG. It is formed of a circular tube.
  • a highly heat-resistant material such as stainless steel or a metal such as Hastelloy (registered trademark of Hanes)
  • Hastelloy registered trademark of Hanes
  • the gas passage 14 is connected in the front-rear direction, and a plurality of gas flow paths 14 connected in this way are parallel to each other in the left-right direction. Rows (4 rows in the case of the illustrated embodiment, but may be 2 rows or 3 rows, or 5 or more rows) are provided. Then, the gas passage 14 is provided, and the head box 16 is attached to the upper end of the main body casing 24.
  • the head box 16 is a rectangular container body having an open bottom surface, which is made of a highly heat-resistant material such as stainless steel or a metal such as Hastelloy (registered trademark of Hastelloy), like the main body casing 24.
  • a highly heat-resistant material such as stainless steel or a metal such as Hastelloy (registered trademark of Hastelloy), like the main body casing 24.
  • Hastelloy registered trademark of Hastelloy
  • the two rows on the left side of the figure are streams for supplying the exhaust gas E to be treated to the communication space 16a. It is a road, and the two rows on the right side of the figure are flow paths for discharging the exhaust gas E passing through the communication space 16a from the gas treatment furnace 10. Therefore, the lower end opening of the gas passage 14 in the left two rows on the bottom surface of the main body casing 24 becomes the gas introduction port 14a, and the lower end opening of the gas passage 14 in the right two rows becomes the gas discharge port 14b. Become.
  • the downstream end of the gas introduction port 14a described above is connected to an exhaust gas generation source such as a semiconductor manufacturing apparatus, and the tip (upstream end) of the inflow piping system 26 for supplying the exhaust gas E into the communication space 16a is connected.
  • the gas discharge port 14b is connected to the rear end (downstream end) of the discharge pipe system 28 that discharges the treated exhaust gas E thermally decomposed in the gas treatment furnace 10 into the atmosphere.
  • a partition wall 30 is provided to increase the number of the space.
  • a shaft 18a and a brush 18b attached to the tip of the shaft 18a are formed, and the brush 18b moves freely in the gas passage 14 in the gas passage 14.
  • a dust removing means 18 for scraping off dust and the like adhering to and accumulating in the gas passage 14 is provided.
  • the dust removing means 18 is not limited to the above-mentioned one, and may be, for example, an air blow method or the like.
  • a temperature measuring means composed of, for example, a thermocouple for detecting the temperature of the communication space 16a is attached, and the temperature data detected by the temperature measuring means is attached.
  • (Temperature signal) is given to a control means including a CPU [Central Processing Unit], a memory, an input device, a display device, and the like via a signal line.
  • the power supply device described above is also connected to this control means.
  • the surface of the gas treatment furnace 10 is covered with a jacket made of a heat insulating material, a refractory material, or the like, if necessary. (The same applies to the gas treatment furnace 10 of the first embodiment described above in this respect.)
  • the gas treatment furnace 10 of the present embodiment configured as described above is erected on the storage tank 32 described later.
  • the inlet scrubber 20 is for removing dust and water-soluble components contained in the exhaust gas E introduced into the gas treatment furnace 10, and is located near the straight pipe type scrubber body 20a and the top of the inside of the scrubber body 20a. It is composed of a spray nozzle 20b that is installed and sprays a chemical solution such as water in the form of a spray, and a filler 20c for promoting gas-liquid contact between the chemical solution sprayed from the spray nozzle 20b and the exhaust gas E.
  • the inlet scrubber 20 is provided in the middle of the inflow piping system 26 and is erected on a storage tank 32 for storing a chemical solution such as water.
  • a circulation pump 34 is installed between the spray nozzle 20b and the storage tank 32 so that the stored chemical solution in the storage tank 32 is lifted to the spray nozzle 20b.
  • the outlet scrubber 22 is for cooling the exhaust gas E after thermal decomposition that has passed through the gas treatment furnace 10 and finally removing dust and water-soluble components produced by the thermal decomposition from the exhaust gas E.
  • the outlet scrubber 22 is provided in the middle of the discharge piping system 28 and is erected on a storage tank 32 for storing a chemical solution such as water. Further, similarly to the above-mentioned inlet scrubber 20, in the illustrated embodiment, a circulation pump 34 is installed between the spray nozzle 22b and the storage tank 32, and the stored chemical liquid in the storage tank 32 is lifted to the spray nozzle 22b. However, the spray nozzle 22b may be supplied with a new chemical solution such as fresh water instead of the stored chemical solution in the storage tank 32.
  • an exhaust fan 36 that discharges the treated exhaust gas E into the atmosphere is connected on the exhaust piping system 28 near the top outlet of the outlet scrubber 22.
  • the other parts other than the gas treatment furnace 10 are provided with each part from the corrosion caused by the corrosive component such as hydrofluoric acid contained in the exhaust gas E or generated by the decomposition of the exhaust gas E.
  • Corrosion-resistant linings and coatings such as vinyl chloride, polyethylene, unsaturated polyester resin and fluororesin are applied to protect it.
  • the operation switch (not shown) of the exhaust gas treatment device X is turned on to gas.
  • the electric heating body of the processing furnace 10 is operated, and the heating in the gas processing furnace 10 is started.
  • the exhaust fan 36 operates and the exhaust gas treatment device X The introduction of exhaust gas E to the vehicle is started.
  • the exhaust gas E passes through the inlet scrubber 20, the gas treatment furnace 10, and the outlet scrubber 22 in this order, and the components to be harmed in the exhaust gas E are detoxified. Further, the amount of electric power supplied to the electric heating body of the gas processing furnace 10 is controlled by a control means (not shown) so that the temperature in the communication space 16a maintains a predetermined temperature.
  • the gas flow path 14 that vertically penetrates the inside of the heater main body 12 in the gas treatment furnace 10 is formed by a thin tube having a perfect circular shape in a plan view.
  • the heat generated by the electric heater can be applied to the entire gas to be processed flowing through the flow path 14 without waste.
  • the gas passage 14 is formed in four rows so as to be parallel to each other in the left-right direction in a plan view and is provided with two rows on each of the entry side and the exit side, the flow rate of the gas that can be heat-treated. Can be increased.
  • the exhaust gas treatment device X of the present embodiment since the inlet scrubber 20 and the outlet scrubber 22 are provided, the exhaust gas E to be introduced into the gas treatment furnace 10 is washed in advance and the inflow piping system 26 is clogged or the like.
  • the gas treatment furnace 10 can be operated continuously more stably, and the cleanliness of the treated exhaust gas E after thermal decomposition can be improved.
  • FIGS. 2 and 3 can be changed as follows. That is, in the gas treatment furnace 10 of the second embodiment described above, the case where thin tubes formed in a perfect circular shape in a plan view are continuously provided in the front-rear direction as the gas flow path 14, has been shown. As shown in FIG. 4, for example, the path 14 is formed in the shape of an elongated slit extending in the front-rear direction in a plan view, and the gas passage 14 extending in the same shape as the slit is formed in the left-right direction. A plurality of rows (4 rows in the case of the embodiment of FIG. 4) may be provided so as to be parallel to each other.
  • the gas flow path 14 has such a shape, it is inferior to the one formed in a perfect circular shape in the above-mentioned plan view in terms of the heat stress dispersion performance when the gas treatment furnace 10 is in operation.
  • the gas processing furnace 10 can be manufactured economically and efficiently.
  • the main body casing 24 of the heater main body 12 is formed in the shape of a square cylinder is shown, but the shape of the main body casing 24 is not limited to this.
  • the main body casing 24 may be formed of a perfectly circular cylinder in a plan view, similar to the gas flow path 14. By doing so, the main body casing 24 itself can also improve the heat stress dispersion performance during operation of the gas treatment furnace 10.
  • the gas flow paths 14 of the gas treatment furnace 10 are formed in four rows so as to be parallel to each other in the left-right direction in a plan view, and enter the communication space 16a.
  • the gas flow path in the heater main body 12 is not limited to this, and is, for example, a processing target.
  • the gas to be treated is directly supplied into the communication space 16a of the head box 16 and the gas is configured to pass (flow down) through the entire gas passage 14 in one pass. May be good.
  • the exhaust gas treatment device X of the above-described embodiment shows the case where both the inlet scrubber 20 and the outlet scrubber 22 are provided, but one of them may be provided depending on the type of the exhaust gas E to be treated. .. Further, although the case where the inlet scrubber 20 and the outlet scrubber 22 are erected on the storage tank 32 is shown, the inlet scrubber 20 and the outlet scrubber 22 are arranged separately from the storage tank 32, and both are connected by piping. , The drainage from the scrubbers 20 and 22 may be sent to the storage tank 32.
  • the exhaust gas treatment apparatus of the present invention can reliably thermally decompose various types of exhaust gas to be treated, has extremely high treatment efficiency, is extremely safe, and can be miniaturized. Therefore, it can be used not only for the thermal decomposition treatment of the exhaust gas discharged from the semiconductor manufacturing process described above, but also for the decomposition treatment of the exhaust gas discharged from any industrial process such as the heat treatment of the exhaust gas in the chemical plant. Further, the gas treatment furnace of the present invention can be used not only for pyrolysis treatment of exhaust gas but also for heat treatment of various gases in an industrial process.

Abstract

本発明のガス処理炉(10)は、内部に電熱体が充填されたヒータ本体(12)と、そのヒータ本体(12)を貫通する管状のガス通流路(14)とで構成されることを特徴とする。また、上下方向に延び、内部に電熱体が充填されたブロック状のヒータ本体(12)と、上記ヒータ本体(12)の内部を上下に貫通するガス通流路(14)であって、平面視において、前後方向にて連設または延設されると共に、左右方向にて互いに平行する複数列のガス通流路(14)と、上記ヒータ本体(12)の上端部に取り付けられ、その内部に形成される連通空間(16a)を介して上記ガス通流路(14)同士を互いに連通するヘッドボックス(16)とを具備することを特徴とする。

Description

ガス処理炉及びこれを用いた排ガス処理装置
 本発明は、例えばPFCs(パーフルオロコンパウンド)などを含む難分解性排ガスの除害処理に好適なガス処理炉と、そのガス処理炉を用いた排ガス処理装置とに関する。
 現在、物を製造したり、処理したりする工業プロセスとして、多種多様のものが開発・実施されており、このような多種多様の工業プロセスから排出されるガス(以下、「処理対象排ガス」と云う。)の種類も非常に多岐に亘っている。このため、工業プロセスから排出される処理対象排ガスの種類に応じて、様々な種類の排ガス処理方法および排ガス処理装置が使い分けられている。
 このうち、電熱ヒータを用いる電熱酸化分解式の排ガス処理方法は、半導体製造プロセスにおける排ガス処理方法として現在最も普及している分解処理方法であり、処理対象排ガス(除害対象ガス)の分解処理に際して処理工程を制御しやすく、処理対象排ガスを安全に分解処理することができる。とりわけ、電熱ヒータを用いた加熱分解装置(ガス処理炉)の前後に湿式のスクラバを設けた排ガス処理装置では、半導体製造における多種多様な条件に追従して、処理対象排ガス中における何れの除害対象成分についてもTLV[Threshold Limit Value;暴露限界]以下の濃度まで除害処理することができる(例えば、特許文献1参照。)。
特開平7-323211号公報
 ところで、2015年9月の国連サミットで「持続可能な開発のための2030アジェンダ」が採択され、それ以降、今後のエネルギーの効率的な利用等に関して様々な議論や検討が行われている。このような状況の下、加熱の際のエネルギーとして比較的多量の電力を消費する上記従来の電熱酸化分解式のガス処理炉を備えた排ガス処理装置においても、省エネ化や省スペース化のニーズが益々高まってくることが予想される。
 それゆえに、本発明の主たる課題は、従来の電熱酸化分解式のガス処理炉の利点をそのままの形で有すると共に、小型化が可能であり、電力消費量を低減させてエネルギーの効率利用を図ることが可能なガス処理炉と、これを用いた排ガス処理装置とを提供することである。
 上記の目的を達成するため、本発明は、例えば、図1に示すように、ガス処理炉を次のように構成した。
 すなわち、内部に電熱体が充填されたヒータ本体12と、そのヒータ本体12を貫通する管状のガス通流路14とで構成されることを特徴とする。
 本発明は、例えば、次の作用を奏する。
 ガス処理炉が、内部に電熱体が充填されたヒータ本体12と、そのヒータ本体12を貫通する管状のガス通流路14とで構成されているので、ガス通流路14に流す熱処理対象のガスの流量に応じてガス通流路14の口径及びその長さを設定すれば、当該ガス通流路14を流れるガスに、電熱体が発する熱を余すことなく十分に与えることができる。また、従来のガス処理炉のように炉内にヒータ本体を設置するのではなく、ヒータ本体12内にガス通流路14が設けられた形となり、ヒータ本体12それ自身が「炉」として機能するため、ガス処理炉全体のサイズを著しく小型化することができる。
 本発明は、上述(図1)のガス処理炉をベースとして、例えば、図2~3に示すように構成することができる。
 すなわち、上下方向に延び、内部に電熱体が充填されたブロック状のヒータ本体12と、そのヒータ本体12の内部を上下に貫通するガス通流路14であって、平面視において、前後方向にて連設または延設されると共に、左右方向にて互いに平行する複数列のガス通流路14と、上記ヒータ本体12の上端部に取り付けられ、その内部に形成される連通空間16aを介して上記ガス通流路14同士を互いに連通するヘッドボックス16とを具備することを特徴とする。
 この発明は、例えば、次の作用を奏する。
 ヒータ本体12の内部を上下に貫通するガス通流路14が、平面視において、前後方向に連設または延設されると共に、左右方向にて互いに平行するよう複数列設けられているので、そのような多数のガス通流路14を流れる処理対象ガスそれぞれに対して、電熱体が発する熱を無駄なく十分に与えることができる。とりわけ、ガス通流路14を、平面視において真円形状の細管で形成した場合や、平面視において細長のスリット状に形成した場合には、その作用がより一層顕著なものとなる。加えて、従来のガス処理炉のように炉内にヒータ本体を設置するのではなく、ヒータ本体12内にガス通流路14が設けられた形となり、ヒータ本体12それ自身が「炉」として機能するため、ガス処理炉全体のサイズを著しく小型化することができる。
 本発明には、上記の各構成に加えて、前記ガス通流路14内に堆積した粉塵を除去するための粉塵除去手段18を設けるのが好ましい。
 この場合、処理対象のガスが持ち込む粉塵や加熱処理によって副生する粉塵によってガス通流路14が閉塞するのを防止して長時間の連続運転が可能となる。
 本発明における第2の発明は、上記のガス処理炉を使用した排ガス処理装置であって、上記の何れかのガス処理炉と、上記ガス処理炉へ導入する処理対象の排ガスEを予め液洗する入口スクラバ20、または、上記ガス処理炉で熱分解させた排ガスEを冷却および液洗する出口スクラバ22の少なくとも一方とを備えることを特徴とする。
 本発明によれば、従来の電熱酸化分解式のガス処理炉のように炉内をヒータなどの加熱手段で加熱するものではなく、加熱手段それ自体にガスを加熱するためのガス通流路が設けられた形となっているので、従来の電熱酸化分解式のガス処理炉の利点をそのままの形で有すると共に、小型化が可能であり、電力消費量を低減させてエネルギーの効率利用を図ることが可能なガス処理炉と、これを用いた排ガス処理装置とを提供することができる。
本発明のガス処理炉における最も基本的な形態(第1実施形態)の概略を示す断面図である。 本発明における第2実施形態のガス処理炉を用いた排ガス処理装置の概略を示す説明図である。 図2におけるX-X’線切断端面図(内部構造を省略)である。 本発明の他の実施形態(第3実施形態)のガス処理炉における水平方向切断端面図(内部構造を省略)である。 本発明の他の実施形態(第4実施形態)のガス処理炉における水平方向切断端面図(内部構造を省略)である。
 以下、本発明のガス処理炉及びこれを用いた排ガス処理装置の実施形態について図面を参照しつつ説明する。
 図1は、本発明のガス処理炉10における最も基本的な形態(第1実施形態)の概略を示す断面図である。この図が示すように、本発明のガス処理炉10は、ヒータ本体12と、そのヒータ本体12を貫通する管状のガス通流路14とを備える。
 ヒータ本体12は、例えば、ステンレスやハステロイ(ヘインズ社登録商標)と言った金属などの高耐熱材料、或いはキャスタブルなどの耐火物等からなり、ガス通流路14の外周をほぼその全長に亘って囲繞するよう形成されたケーシングの内部に、電熱体を充填することによって構成される。その電熱体としては、例えばニクロム線やカンタル(サンドビックAB社登録商標)線などの金属線からなる物、或いは炭化ケイ素(SiC)や二珪化モリブデン(MoSi2)やランタンクロマイト(LaCrO3)などのセラミックスで構成された物などが挙げられ、ガス処理炉10として必要な温度(熱量)等に応じて適宜選択される。
 なお、図示しないが、このヒータ本体12における電熱体の端部は、ケーシングの長手方向端部側面等から外部へと取り出されて電源装置(図示せず)に接続される。
 ガス通流路14は、例えば、ステンレスやハステロイ(ヘインズ社登録商標)と言った金属などの高耐熱材料、或いはキャスタブルなどの耐火物で構成され、その内部を熱処理対象のガスが通流する管状部材である。図1の実施形態では、このガス通流路14の幅方向断面形状が真円形状となっており、その口径及び長さはガス通流路14に流す熱処理対象のガスの流量に応じて適宜設定される。例えば、図1に示すガス処理炉10を半導体製造装置から排出される排ガスEの除害処理に用いる場合には、ガス通流路14の口径を80mm~150mmの範囲、長さを700mm~800mmの範囲で設定するのが好ましい。
 以上のように構成された本実施形態のガス処理炉10では、ガス通流路14に流す熱処理対象のガスの種類に応じてヒータ本体12に用いる電熱体を選択すると共に、熱処理対象のガスの流量に応じてガス通流路14の口径と長さとを設定すれば、ガス通流路14を流れるガスに、電熱体が発する熱を余すことなく十分に与えることができる。
 なお、図示しないが、上記ガス通流路14には、後述のように、内部に付着・堆積する粉塵などを掻き落とすための粉塵除去手段を設けるのが好ましい。
 また、図1の実施形態は、排ガスEなどの熱処理対象のガスが水平方向に流れるようにガス通流路14を配設する場合を示しているが、ガス処理炉10における熱処理対象のガスの通流方向はこれに限定されるものではなく、例えば当該ガスが上下方向に流れるようにガス通流路14を配設してもよい。
 次に、本発明の一実施形態の排ガス処理装置Xを図2及び図3によって説明する。
 図2は、本発明における第2実施形態のガス処理炉10を用いた排ガス処理装置Xの概略を示すものである。この排ガス処理装置Xは、図示しない排出源より排出される排ガスEを除害処理する装置であり、大略、ガス処理炉10,入口スクラバ20および出口スクラバ22で構成されている。
 なお、この排ガス処理装置Xは、処理対象となる排ガスEの種類を限定するものではないが、半導体製造装置から排出されたPFCs(パーフルオロコンパウンド),モノシラン(SiH),塩素系ガスなどのようにその排出基準が定められている難分解性の排ガスEを除害処理するのに特に好適である。したがって、以下では、この排ガス処理装置Xについて、半導体製造装置から排出された排ガスEの除害処理に用いるものを念頭に置いて説明する。
 ガス処理炉10は、半導体製造プロセスなどから排出される排ガスE中の有害な除害対象ガスを電熱酸化分解式を用いて熱分解する装置であり、ヒータ本体12,ガス通流路14及びヘッドボックス16を有する。
 ヒータ本体12は、例えばステンレスやハステロイ(ヘインズ社登録商標)と言った金属などの高耐熱材料を角筒形状に形成した上下方向に延びるブロック状の本体ケーシング24を有する。この本体ケーシング24の内部には、図示しないが、ニクロム線やカンタル(サンドビックAB社登録商標)線などの金属線、或いは炭化ケイ素(SiC)や二珪化モリブデン(MoSi2)やランタンクロマイト(LaCrO3)などのセラミックス等からなる電熱体が張り巡らされて(充填されて)いる。また、その電熱体の隙間がセラミック粉末で埋められており、本体ケーシング24内部での熱伝導の向上が図られている。
 なお、図示しないが、電熱体の端部は、本体ケーシング24の下面あるいは側面などから外部へと取り出されて電源装置に接続されている。
 そして、この本体ケーシング24には、その内部を上下に貫通するガス通流路14が複数本設けられる。
 ガス通流路14は、本体ケーシング24と同様に、例えばステンレスやハステロイ(ヘインズ社登録商標)と言った金属などの高耐熱材料で区画されており、図3に示すように、平面視において真円形状の細管で形成される。このようにガス通流路14を平面視で真円形状とすることによって、ガス処理炉10の稼働時などにおける熱応力がガス通流路14管壁の或る特定の箇所に集中することなく分散させることができるので、ガス通流路14の変形等を効果的に抑えることができる。
 また、このガス通流路14は、平面視において同じ形状のものが前後方向に連設されると共に、そのように連設されたガス通流路14が左右方向にて互いに平行するように複数列(図示実施形態の場合は4列であるが、2列あるいは3列であってもよいし、5列以上であってもよい。)設けられる。そして、ガス通流路14が設けられて本体ケーシング24の上端部に、ヘッドボックス16が取り付けられる。
 ヘッドボックス16は、本体ケーシング24などと同様に、例えばステンレスやハステロイ(ヘインズ社登録商標)と言った金属などの高耐熱材料で形成され、下面が開口した矩形の容器体である。このヘッドボックス16が本体ケーシング24の上端部に取着されることにより、ヘッドボックス16の内部に形成される連通空間16aを介してガス通流路14同士が互いに連通される。なお、図2の実施形態の場合、この連通空間16aがガス処理空間として機能する。
 図2に示す実施形態のガス処理炉10の場合、ガス通流路14が4列設けられており、そのうち図の左側の2列が連通空間16aへと処理対象の排ガスEを送給する流路となっており、図の右側の2列が連通空間16aを経由した排ガスEをガス処理炉10から排出するための流路となっている。このため、本体ケーシング24の底面における上記の左側2列のガス通流路14の下端開口がガス導入口14aとなり、上記の右側2列のガス通流路14の下端開口がガス排出口14bとなる。
 また、上述したガス導入口14aには、下流端が半導体製造装置などの排ガス発生源に接続され、連通空間16a内に排ガスEを送給する流入配管系26の先端(上流端)が接続されており、ガス排出口14bには、ガス処理炉10内で熱分解した処理済の排ガスEを大気中へと排出する排出配管系28の後端(下流端)が接続されている。
 また、本体ケーシング24の天井面における左から2列目のガス通流路14と右から2列目のガス通流路14との間には、連通空間16aへ送られた排ガスEの滞留時間を増大させるための隔壁30が設けられている。
 さらに、ヘッドボックス16内における各ガス通流路14の直上には、シャフト18aと、そのシャフト18aの先端に取り付けられたブラシ18bとからなり、ガス通流路14内を進退自在に移動して、当該ガス通流路14内に付着・堆積した粉塵などを掻き落とす粉塵除去手段18が設けられる。なお、この粉塵除去手段18は、上述のものに限定されるものではなく、例えば、エアブロー方式などのようなものであってもよい。
 ここで、本実施形態のガス処理炉10では、図示しないが、例えば連通空間16aの温度を検出する熱電対などで構成された温度計測手段が取り付けられると共に、この温度計測手段で検出した温度データ(温度信号)が、信号線を介して、CPU[Central Processing Unit;中央処理装置],メモリ,入力装置および表示装置などからなる制御手段へと与えられるようになっている。なお、この制御手段には、上記の電源装置も接続される。
 また、このガス処理炉10の表面は、必要に応じて、断熱材や耐火材などで構成されたジャケットで被覆される。(この点については、上述の第1実施形態のガス処理炉10でも同様である。)
 そして、以上のように構成された本実施形態のガス処理炉10は、後述する貯留タンク32上に立設される。
 入口スクラバ20は、ガス処理炉10に導入する排ガスEに含まれる粉塵や水溶性成分などを除去するためのものであり、直管型のスクラバ本体20aと、このスクラバ本体20a内部の頂部近傍に設置され、水などの薬液を噴霧状にして撒布するスプレーノズル20bと、スプレーノズル20bから撒布された薬液と排ガスEとの気液接触を促進させるための充填材20cとで構成される。
 この入口スクラバ20は、流入配管系26の途中に設けられると共に、水などの薬液を貯留する貯留タンク32上に立設される。
 そして、スプレーノズル20bと貯留タンク32との間には循環ポンプ34が設置されており、貯留タンク32内の貯留薬液をスプレーノズル20bに揚上するようになっている。
 出口スクラバ22は、ガス処理炉10を通過した熱分解後の排ガスEを冷却すると共に、熱分解によって副成した粉塵や水溶性成分等を最終的に排ガスE中から除去するためのものであり、直管型のスクラバ本体22aと、このスクラバ本体22a内部の頂部近傍に設置され、排ガスE通流方向に対向するように上方から水などの薬液を噴霧する下向きのスプレーノズル22bと、スプレーノズル22bから撒布された薬液と排ガスEとの気液接触を促進させるための充填材22cとで構成される。
 この出口スクラバ22は、排出配管系28の途中に設けられると共に、水などの薬液を貯留する貯留タンク32上に立設される。
 また、上述した入口スクラバ20と同様に、図示実施形態では、スプレーノズル22bと貯留タンク32との間には循環ポンプ34が設置されており、貯留タンク32内の貯留薬液をスプレーノズル22bに揚上するようになっているが、このスプレーノズル22bには、貯留タンク32内の貯留薬液ではなく、新水などの新しい薬液を供給するようにしてもよい。
 そして、出口スクラバ22の頂部出口近傍の排出配管系28上には、処理済みの排ガスEを大気中へと放出する排気ファン36が接続される。
 なお、本実施形態の排ガス処理装置Xにおけるガス処理炉10を除く他の部分には、排ガスEに含まれる、或いは、当該排ガスEの分解によって生じるフッ酸などの腐食性成分による腐蝕から各部を守るため、塩化ビニル,ポリエチレン,不飽和ポリエステル樹脂およびフッ素樹脂などによる耐蝕性のライニングやコーティングが施されている。
 次に、以上のように構成された排ガス処理装置Xを用いて排ガスEの除害処理を行う際には、まず始めに、排ガス処理装置Xの運転スイッチ(図示せず)をオンにしてガス処理炉10の電熱体を作動させ、ガス処理炉10内の加熱を開始する。
 そして、連通空間16a内の温度が、800℃~1400℃の範囲内であって、処理対象の排ガスEの種類に応じた所定の温度に達すると、排気ファン36が作動し、排ガス処理装置Xへの排ガスEの導入が開始される。すると、排ガスEは、入口スクラバ20、ガス処理炉10及び出口スクラバ22をこの順に通過して排ガスE中の除害対象成分が除害される。また、図示しない制御手段によって、連通空間16a内の温度が所定の温度を保持するようにガス処理炉10の電熱体に供給する電力量が制御される。
 本実施形態の排ガス処理装置Xによれば、ガス処理炉10におけるヒータ本体12の内部を上下に貫通するガス通流路14が、平面視において真円形状の細管で形成されているので、ガス通流路14を流れる処理対象のガス全体に対して、電熱体が発する熱を無駄なく与えることができる。また、このガス通流路14は、平面視において、左右方向にて互いに平行するよう4列形成され、入側および出側それぞれに2列ずつ与えられているため、熱処理が可能なガスの流量を増やすことができる。
 また、本実施形態の排ガス処理装置Xによれば、入口スクラバ20及び出口スクラバ22を備えているので、ガス処理炉10に導入する排ガスEを予め液洗して流入配管系26の目詰まり等を防止し、より安定してガス処理炉10を連続運転できると共に、熱分解後の処理済の排ガスEの清浄度を向上させることができる。
 なお、上記の図2及び図3に示す実施形態は、次のように変更可能である。
 すなわち、上述の第2実施形態のガス処理炉10では、ガス通流路14として、平面視で真円形状に形成された細管を前後方向に連設する場合を示したが、このガス通流路14は、例えば図4に示すように、平面視において前後方向に延設された細長のスリット状に形成すると共に、スリット状の同じ形状に延設されたガス通流路14を左右方向にて互いに平行するよう複数列(図4の実施形態の場合は4列)設けるようにしてもよい。ガス通流路14を係る形状とした場合、ガス処理炉10の稼働時などにおける熱応力の分散性能と言った点では、上述の平面視で真円形状に形成された物よりも劣るようになるが、その一方でガス処理炉10を経済的且つ効率的に製造することができるようになる。
 また、上述の第2実施形態のガス処理炉10では、ヒータ本体12の本体ケーシング24を、角筒形状に形成する場合を示しているが、本体ケーシング24の形状はこれに限定されるものではなく、例えば、図5に示すように、この本体ケーシング24を、ガス通流路14と同様に平面視で真円形状の円筒体で形成するようにしてもよい。こうすることにより、本体ケーシング24自身もガス処理炉10の稼働時などにおける熱応力の分散性能を向上させることができるようになる。
 更に、上述の実施形態の排ガス処理装置Xでは、ガス処理炉10のガス通流路14が、平面視において、左右方向にて互いに平行するよう4列形成されると共に、連通空間16aへの入側および連通空間16aからの出側のそれぞれに2列ずつ与えられた構成のものを示しているが、ヒータ本体12内におけるガスの流路はこれに限定されるものではなく、例えば、処理対象のガスの性状などによっては、処理対象のガスを直接、ヘッドボックス16の連通空間16a内へ供給すると共に、当該ガスが全ガス通流路14をワンパスで通過(流下)するように構成してもよい。
 そして、上述の実施形態の排ガス処理装置Xでは、入口スクラバ20と出口スクラバ22の両方を備える場合を示したが、処理する排ガスEの種類によってはこれらの何れか一方を備えるようにしてもよい。また、入口スクラバ20及び出口スクラバ22を貯留タンク32上に立設する場合を示したが、入口スクラバ20及び出口スクラバ22を貯留タンク32とは別個に配設すると共に、両者を配管で接続し、各スクラバ20,22からの排水が貯留タンク32に送り込まれるようにしてもよい。
 本発明の排ガス処理装置は、様々な種類の処理対象の排ガスを確実に熱分解できるのはもとより、処理効率が極めて高く、しかも安全性にも非常に優れ、小型化が可能なものであることから、上述した半導体製造プロセスから排出される排ガスの熱分解処理のみならず、化学プラントにおける排ガスの加熱処理など、あらゆる工業プロセスより排出される排ガスの分解処理に利用することができる。また、本発明のガス処理炉は、排ガスの熱分解処理のみならず、工業プロセスにおける様々なガスの熱処理に利用することができる。
10:ガス処理炉,12:ヒータ本体,14:ガス通流路,16:ヘッドボックス,16a:連通空間,18:粉塵除去手段,20:入口スクラバ,22:出口スクラバ,E:排ガス,X:排ガス処理装置.

Claims (6)

  1.  内部に電熱体が充填されたヒータ本体(12)と、
     そのヒータ本体(12)を貫通する管状のガス通流路(14)とで構成される、
    ことを特徴とするガス処理炉。
  2.  上下方向に延び、内部に電熱体が充填されたブロック状のヒータ本体(12)と、
     上記ヒータ本体(12)の内部を上下に貫通するガス通流路(14)であって、平面視において、前後方向にて連設または延設されると共に、左右方向にて互いに平行する複数列のガス通流路(14)と、
     上記ヒータ本体(12)の上端部に取り付けられ、その内部に形成される連通空間(16a)を介して上記ガス通流路(14)同士を互いに連通するヘッドボックス(16)とを具備する、
    ことを特徴とするガス処理炉。
  3.  請求項1又は2のガス処理炉において、
     前記ガス通流路(14)が、平面視において真円形状の細管で形成される、ことを特徴とするガス処理炉。
  4.  請求項1又は2のガス処理炉において、
     前記ガス通流路(14)が、平面視において細長のスリット状に形成される、ことを特徴とするガス処理炉。
  5.  請求項1乃至4の何れかのガス処理炉において、
     前記ガス通流路(14)内に堆積した粉塵を除去するための粉塵除去手段(18)が設けられる、ことを特徴とするガス処理炉。
  6.  請求項1乃至5の何れかのガス処理炉と、
     上記ガス処理炉へ導入する処理対象の排ガス(E)を予め液洗する入口スクラバ(20)、または、上記ガス処理炉で熱分解させた排ガス(E)を冷却および液洗する出口スクラバ(22)の少なくとも一方とを備える、ことを特徴とする排ガス処理装置。
PCT/JP2020/026577 2020-07-07 2020-07-07 ガス処理炉及びこれを用いた排ガス処理装置 WO2022009313A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2022534538A JP7279985B2 (ja) 2020-07-07 2020-07-07 ガス処理炉及びこれを用いた排ガス処理装置
KR1020237001035A KR20230025435A (ko) 2020-07-07 2020-07-07 가스 처리로 및 이것을 사용한 배기 가스 처리 장치
PCT/JP2020/026577 WO2022009313A1 (ja) 2020-07-07 2020-07-07 ガス処理炉及びこれを用いた排ガス処理装置
US18/002,543 US20230233982A1 (en) 2020-07-07 2020-07-07 Gas processing furnace and exhaust gas processing device in which same is used
CN202080102296.1A CN115803102A (zh) 2020-07-07 2020-07-07 气体处理炉以及使用气体处理炉的排出气体处理装置
TW110119012A TWI793614B (zh) 2020-07-07 2021-05-26 氣體處理爐及使用其之廢氣處理裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/026577 WO2022009313A1 (ja) 2020-07-07 2020-07-07 ガス処理炉及びこれを用いた排ガス処理装置

Publications (1)

Publication Number Publication Date
WO2022009313A1 true WO2022009313A1 (ja) 2022-01-13

Family

ID=79552353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026577 WO2022009313A1 (ja) 2020-07-07 2020-07-07 ガス処理炉及びこれを用いた排ガス処理装置

Country Status (6)

Country Link
US (1) US20230233982A1 (ja)
JP (1) JP7279985B2 (ja)
KR (1) KR20230025435A (ja)
CN (1) CN115803102A (ja)
TW (1) TWI793614B (ja)
WO (1) WO2022009313A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7140440B1 (ja) * 2022-01-28 2022-09-21 カンケンテクノ株式会社 筒状加熱部と該筒状加熱部を備えた排ガス処理装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0221121A (ja) * 1988-03-24 1990-01-24 Polska An Inst Katalizy I Fizykochem Powiel 有機化合物の触媒による燃焼方法および有機化合物の触媒による燃焼装置
JPH04215853A (ja) * 1990-04-03 1992-08-06 Ngk Insulators Ltd 耐熱性金属質モノリス及びその製造方法
JPH0712321A (ja) * 1993-06-14 1995-01-17 Yutaka Kimoto 焼却排ガス有害物質熱分解炉
JPH08318164A (ja) * 1995-03-17 1996-12-03 Hideo Kameyama 触媒構造体、及びそれを用いたガス燃焼分解装置
JPH10263355A (ja) * 1997-03-27 1998-10-06 Toshio Awaji 半導体製造工程の排ガス処理方法及び半導体製造工程の排ガス処理装置
US5871349A (en) * 1997-10-16 1999-02-16 Smith Engineering Company Rotary valve thermal oxidizer
WO2000013769A1 (fr) * 1998-09-03 2000-03-16 Kyowa Co.,Ltd. Four de decomposition thermique pour gaz d'emission
JP2002326018A (ja) * 2001-05-08 2002-11-12 Ryoji Watabe 焼却炉の排ガス処理装置
JP2004156862A (ja) * 2002-11-07 2004-06-03 Kaoru Maruta 火炎の制御方法、小型パルス燃焼器、並びにヒータ
JP2006156792A (ja) * 2004-11-30 2006-06-15 Kanken Techno Co Ltd 半導体製造装置の排ガス除害装置
JP2015178938A (ja) * 2014-03-19 2015-10-08 株式会社ビッグバイオ 排ガス処理器及び熱分解装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3016690B2 (ja) 1994-05-30 2000-03-06 カンケンテクノ株式会社 半導体製造排ガス除害方法とその装置
JPWO2008096466A1 (ja) * 2007-02-07 2010-05-20 カンケンテクノ株式会社 ガス処理装置及び該装置を用いたガス処理システムとガス処理方法
TWM333948U (en) * 2007-12-24 2008-06-11 Green Energy And Resource Tech Co Ltd An electric heated oxidizer, cylindrical dust/powder filtration and dust/powder collecting device
JP2009299947A (ja) * 2008-06-11 2009-12-24 Chugai Ro Co Ltd 蓄熱式ガス処理炉
CN202087224U (zh) * 2011-04-28 2011-12-28 上海盛大环保科技有限公司 除尘、除湿、降温、除恶臭、降解VOCs多效净化机
WO2015181846A1 (ja) * 2014-05-26 2015-12-03 カンケンテクノ株式会社 熱交換器及び該熱交換器を用いた排ガス処理装置
CN206355806U (zh) * 2016-12-16 2017-07-28 广西红润化工科技有限公司 湿法‑加热法联合处理的复合式多级废气处理装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0221121A (ja) * 1988-03-24 1990-01-24 Polska An Inst Katalizy I Fizykochem Powiel 有機化合物の触媒による燃焼方法および有機化合物の触媒による燃焼装置
JPH04215853A (ja) * 1990-04-03 1992-08-06 Ngk Insulators Ltd 耐熱性金属質モノリス及びその製造方法
JPH0712321A (ja) * 1993-06-14 1995-01-17 Yutaka Kimoto 焼却排ガス有害物質熱分解炉
JPH08318164A (ja) * 1995-03-17 1996-12-03 Hideo Kameyama 触媒構造体、及びそれを用いたガス燃焼分解装置
JPH10263355A (ja) * 1997-03-27 1998-10-06 Toshio Awaji 半導体製造工程の排ガス処理方法及び半導体製造工程の排ガス処理装置
US5871349A (en) * 1997-10-16 1999-02-16 Smith Engineering Company Rotary valve thermal oxidizer
WO2000013769A1 (fr) * 1998-09-03 2000-03-16 Kyowa Co.,Ltd. Four de decomposition thermique pour gaz d'emission
JP2002326018A (ja) * 2001-05-08 2002-11-12 Ryoji Watabe 焼却炉の排ガス処理装置
JP2004156862A (ja) * 2002-11-07 2004-06-03 Kaoru Maruta 火炎の制御方法、小型パルス燃焼器、並びにヒータ
JP2006156792A (ja) * 2004-11-30 2006-06-15 Kanken Techno Co Ltd 半導体製造装置の排ガス除害装置
JP2015178938A (ja) * 2014-03-19 2015-10-08 株式会社ビッグバイオ 排ガス処理器及び熱分解装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7140440B1 (ja) * 2022-01-28 2022-09-21 カンケンテクノ株式会社 筒状加熱部と該筒状加熱部を備えた排ガス処理装置
WO2023145022A1 (ja) * 2022-01-28 2023-08-03 カンケンテクノ株式会社 筒状加熱部と該筒状加熱部を備えた排ガス処理装置

Also Published As

Publication number Publication date
KR20230025435A (ko) 2023-02-21
JPWO2022009313A1 (ja) 2022-01-13
TW202216272A (zh) 2022-05-01
JP7279985B2 (ja) 2023-05-23
TWI793614B (zh) 2023-02-21
CN115803102A (zh) 2023-03-14
US20230233982A1 (en) 2023-07-27

Similar Documents

Publication Publication Date Title
JP5952984B1 (ja) 排ガス処理装置
US7976807B2 (en) Method for detoxifying HCD gas and apparatus therefor
US20100116140A1 (en) Exhaust gas cleaning apparatus
JP6336059B2 (ja) 熱交換器及び該熱交換器を用いた排ガス処理装置
JP5623676B1 (ja) 排ガス処理用バーナー及び該バーナーを用いた排ガス処理装置
WO2022009313A1 (ja) ガス処理炉及びこれを用いた排ガス処理装置
JP2017124345A (ja) 排ガス除害装置
JPWO2008096466A1 (ja) ガス処理装置及び該装置を用いたガス処理システムとガス処理方法
JP4174396B2 (ja) 排ガス導入構造および該構造を用いた排ガス処理装置
JP7021730B1 (ja) 半導体製造排ガスの処理装置
KR100743399B1 (ko) 반도체 제조공정에서 발생하는 염소가스와 과불화물의처리장치
JP2009034636A (ja) 排ガス処理方法およびその装置
WO2022101981A1 (ja) ガス処理炉及びこれを用いた排ガス処理装置
JP4342427B2 (ja) 半導体製造装置の排ガス除害装置
WO2022208848A1 (ja) PFCs含有排ガス処理装置
WO2017068609A1 (ja) 排ガス処理装置
WO2023084595A1 (ja) ガス処理炉及びこれを用いた排ガス処理装置
KR100840481B1 (ko) 반도체공정장비 배기라인의 파우더 제거장치
JP2013166146A (ja) 排ガス洗浄方法
JP2006150282A (ja) 半導体製造装置の排ガス除害装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944132

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022534538

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237001035

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20944132

Country of ref document: EP

Kind code of ref document: A1