WO2023145022A1 - 筒状加熱部と該筒状加熱部を備えた排ガス処理装置 - Google Patents

筒状加熱部と該筒状加熱部を備えた排ガス処理装置 Download PDF

Info

Publication number
WO2023145022A1
WO2023145022A1 PCT/JP2022/003418 JP2022003418W WO2023145022A1 WO 2023145022 A1 WO2023145022 A1 WO 2023145022A1 JP 2022003418 W JP2022003418 W JP 2022003418W WO 2023145022 A1 WO2023145022 A1 WO 2023145022A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
holding
insulator
inner cylinder
heater
Prior art date
Application number
PCT/JP2022/003418
Other languages
English (en)
French (fr)
Inventor
秀治 大前
昌光 萩尾
啓志 今村
Original Assignee
カンケンテクノ株式会社
北京康肯▲環▼保▲設▼▲備▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カンケンテクノ株式会社, 北京康肯▲環▼保▲設▼▲備▼有限公司 filed Critical カンケンテクノ株式会社
Priority to CN202280007645.0A priority Critical patent/CN116963820A/zh
Priority to KR1020237008856A priority patent/KR102569040B1/ko
Priority to JP2022528148A priority patent/JP7140440B1/ja
Priority to PCT/JP2022/003418 priority patent/WO2023145022A1/ja
Priority to US18/247,127 priority patent/US20240082777A1/en
Priority to TW111120055A priority patent/TWI824541B/zh
Publication of WO2023145022A1 publication Critical patent/WO2023145022A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/061Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating
    • F23G7/063Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating electric heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/005Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • B01D53/70Organic halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/75Multi-step processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/62Heating elements specially adapted for furnaces
    • H05B3/64Heating elements specially adapted for furnaces using ribbon, rod, or wire heater
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0216Other waste gases from CVD treatment or semi-conductor manufacturing

Definitions

  • exhaust gas to be treated Various types of gases are used in industrial processes that manufacture and process things. For this reason, the types of gases emitted from industrial processes (hereinafter referred to as "exhaust gas to be treated") are very diverse, and various types of exhaust gas treatment methods and exhaust gas treatment systems are available according to the type of exhaust gas to be treated. is used.
  • gases such as monosilane (SiH 4 ), chlorine gas, and PFCs (perfluoro compounds) are used. Since these gases have an adverse effect on the human body and the global environment, they must be decomposed or removed by some means, and various treatment methods have been put into practical use. Representative examples include adsorption type, wet type, electrothermal oxidative decomposition type, and flame combustion type, each of which has advantages and problems.
  • the flame combustion method has a wide range of applications for exhaust gas to be treated (that is, there are many types of exhaust gas to be treated that can be decomposed), and it is possible to treat a large amount of air, but there are concerns about the safety of operation.
  • the flame combustion method basically uses a burner for combustion and introduces exhaust gas into the combustion atmosphere to thermally decompose it, so it is unsafe if the flame disappears (misfire) for some reason. It will lead to a serious situation.
  • This cylindrical heating part is erected in the center of the reactor, and the exhaust gas to be treated, which is introduced from the exhaust gas introduction port at the bottom of the cylindrical heating part, passes through the high-temperature internal space of the cylindrical heating part, It is designed to be discharged from the upper end opening into a high-temperature exhaust gas treatment space formed near the ceiling of the reactor.
  • the exhaust gas to be treated is heated at a high temperature (ambient temperature of 800 to 1150° C.) from the surroundings and decomposed while passing through the interior of the cylindrical heating part and further through the exhaust gas treatment space.
  • the high temperature lowers the electrical insulation of the ceramic powder or refractory material, which is an insulator. These declines in electrical insulation cause short-circuits between the electric heater and the structure of the device (metal inner cylinder and outer cylinder) due to electrical leakage, which also causes disconnection, which greatly affects the life of the heater.
  • the ceramic powder or refractory material which is an insulator.
  • the invention according to claim 1 is A cylindrical heating part 14 of an exhaust gas treatment apparatus 1 installed in a reactor 10 having an exhaust gas treatment space S and a cracked exhaust gas outlet 12 for the exhaust gas G treated in the exhaust gas treatment space S inside.
  • the cylindrical heating part 14 is provided with an exhaust gas introduction port 15 at the base for insertion into the reactor 10, and is open to the exhaust gas processing space S at the insertion end of the cylindrical heating part 14 into the reactor 10.
  • a heated exhaust gas outlet 16 is provided,
  • the cylindrical heating part 14 includes a hollow cylindrical body 20 having a double structure, which includes a metal inner cylinder 21 and a metal outer cylinder 22, and surrounds the inner cylinder 21 and separates the inner cylinder from each other.
  • the invention described in claim 3 (FIGS. 6 and 7) relates to the number of holding members 40 installed, In the cylindrical heating part 14 of the exhaust gas treatment device 1 according to claim 1 or 2,
  • the holding member 40 is a plate-like or block-like member, and is characterized by being installed in at least three positions with respect to the inner cylinder 21 or the outer cylinder 22 .
  • the invention described in claim 4 (Figs. 2(a) and 8(a)) relates to the material of the holding member 40 and the first mounting method.
  • the holding member 40 is made of a material (for example, Kanthal (registered trademark), nichrome, or ceramics) having a higher electrical resistance than the inner cylinder 21 or the outer cylinder 22.
  • Kanthal registered trademark
  • nichrome or ceramics
  • the holding member 40 is welded.
  • 40 is made of ceramics, it is characterized in that it is fixed to the inner cylinder 21 or the outer cylinder 22 with a bonding layer 42 provided with an inorganic adhesive.
  • the invention described in claim 5 (Figs. 2(b) and 8(b)) relates to the material of the holding member 40 and the second mounting method.
  • the holding member 40 is made of a material (for example, Kanthal (registered trademark), Nichrome (nickel-chromium alloy), or ceramics) having a higher electrical resistance than the inner cylinder 21 or the outer cylinder 22, It is made of the same material as the inner cylinder 21 or the outer cylinder 22 and is welded to the inner cylinder 21 or the outer cylinder 22 or both. is further provided with a support member 44 for supporting from above.
  • the sixth aspect of the invention is a method of holding the electric heater H by the insulator 30 .
  • the insulator 30 has a disk-like shape with a central hole 33 through which the inner cylinder 21 is inserted. is formed in the A support projection 32t that contacts the outer peripheral surface of the electric heater H is provided on the inner peripheral surface of the heater holding hole 32h.
  • FIG. 7 In the cylindrical heating part 14 of the exhaust gas treatment device 1 according to any one of claims 1 to 6, A notch 38 is provided between the adjacent heater holding holes 32h by cutting from the circumscribed circle 30e of the insulator 30 to a position exceeding the heater holding holes 32h and separating the adjacent heater holding holes 32h. do.
  • FIG. 10 The invention recited in claim 8 (FIGS. 10 to 12) relates to the second shape of the insulator 30.
  • FIG. 10 In the cylindrical heating part 14 of the exhaust gas treatment device 1 according to any one of claims 1 to 6, Between the adjacent heater holding holes 32h, a separate groove 36 is dug from the outer peripheral surface 30a of the insulator 30 to a position beyond the heater holding holes 32h, and the upper surface 35 of the insulator 30 separates the adjacent heater holding holes 32h. characterized by being provided in
  • the tenth aspect of the invention is an improvement of the insulator 30 of the ninth aspect.
  • the insulator 30 is held by holding members 40 on its upper and lower surfaces 34 and 35,
  • the ring-shaped concave groove is formed so that the distance from the heater holding hole 32h on the upper surface 35 to the holding member 40a on the upper surface side is equal to the distance from the heater holding hole 32h on the lower surface 34 to the holding member 40b on the lower surface side. 39 is formed.
  • the upper through hole 61h and the inner peripheral surface of the through hole 23h of the bottom plate 23 press one side surface of the temperature sensor 70, and the through hole 62h of the central sensor holding plate 62 is pressed.
  • the upper sensor holding plate 61 and the bottom plate 23 are made of a metal material having the same coefficient of thermal expansion, and the middle sensor holding plate 62 between the upper sensor holding plate 61 and the bottom plate 23 is used to hold the upper sensor. It is characterized by being made of a metal material having a thermal expansion coefficient different from that of the plate 61 .
  • the invention according to claim 13 (Figs. 2, 6, and 8(a)) A reactor 10 in which an exhaust gas processing space S and a cracked exhaust gas outlet 12 for the exhaust gas G processed in the exhaust gas processing space S are provided, and a cylindrical heating unit 14 installed in the reactor 10.
  • An exhaust gas treatment device 1 composed of An exhaust gas introduction port 15 is provided at the insertion base of the tubular heating unit 14 into the reactor 10, and the heated tubular heating unit 14 is opened to the exhaust gas processing space S at the insertion end of the tubular heating unit 14 into the reactor 10.
  • An exhaust gas outlet 16 is provided,
  • the cylindrical heating part 14 includes a hollow cylindrical body 20 having a double structure, which includes a metal inner cylinder 21 and a metal outer cylinder 22, and surrounds the inner cylinder 21 and separates the inner cylinder from each other.
  • a plurality of insulators 30 provided in a heater installation space P between 21 and the outer cylinder 22, an electric heater H attached to the insulators 30, and either the inner cylinder 21 or the outer cylinder 22, or and a holding member 40 attached to both 21 and 22 to support the insulator 30 and hold it in the heater installation space P,
  • the holding member 40 is installed in at least three positions with respect to the inner cylinder 21 or the outer cylinder 22 , and the contact surface 41 of the holding member 40 with the insulator 30 is the lower surface 34 or the lower surface 34 of the insulator 30 . and the upper surface 35 is formed on an inclined surface so as to be in point contact.
  • the tubular heating section 14 (exhaust gas treatment apparatus 1) of the present invention has the above configuration, so it has a small heat capacity and high heat transfer efficiency. Therefore, the heat generation temperature of the electric heater H could be kept low. Furthermore, it was possible to prevent a short circuit between the electric heater H and the metal inner cylinder 21 (or the metal outer cylinder 22) at high temperatures. As a result, the life of the heater could be significantly extended.
  • FIG. 4 is a cross-sectional view of Modification 2 of FIG. 3 ; 11 is a front view of FIG. 10; FIG. FIG. 11 is a partial perspective view showing a separate groove in FIG. 10 and a positional relationship of an insulator with respect to the separate groove; It is the perspective view which looked at the modification 3 of FIG. 3 from diagonally below. 14 is a partially enlarged sectional view of the insulator portion shown in FIG. 13; FIG.
  • FIG. 14 is a partially enlarged cross-sectional view of another example of the insulator portion shown in FIG. 13;
  • FIG. FIG. 4 is a partially enlarged cross-sectional view showing a first mounting state of the temperature sensor used in the present invention; 17 is a perspective view of FIG. 16;
  • FIG. FIG. 5 is a partially enlarged cross-sectional view showing a second attachment state when the temperature sensor is attached to the inner cylinder;
  • FIG. 11 is a partially enlarged cross-sectional view showing a second attachment state when the temperature sensor is attached to the outer cylinder;
  • FIG. 4 is a partially enlarged cross-sectional view when the tip of the temperature sensor is held by the uppermost sensor holding plate;
  • FIG. 1 is a schematic diagram showing an embodiment of an exhaust gas treatment system X using an exhaust gas treatment apparatus 1 of the present invention, which is an apparatus for thermally decomposing an exhaust gas E to be treated discharged from an industrial process.
  • the exhaust gas treatment system X of the present embodiment is generally composed of an exhaust gas treatment device 1, an inlet scrubber 2, an outlet scrubber 5, and their incidental equipment.
  • the exhaust gas treatment apparatus 1 includes an electrothermal oxidative decomposition method, a flame combustion method, and a combination method using both the electrothermal oxidative decomposition method and the flame combustion method.
  • the present invention is an electrothermal oxidative decomposition type exhaust gas treatment apparatus 1 .
  • the electrothermal oxidative decomposition type exhaust gas treatment apparatus 1 is generally composed of a reactor 10 , a cylindrical heating section 14 , and a chemical liquid tank 18 .
  • the inlet scrubber 2 is for removing (liquid washing) dust and water-soluble components contained in the exhaust gas E to be treated introduced into the exhaust gas treatment apparatus 1, and is composed of a straight pipe inlet scrubber main body 2a and the inlet It is installed in the vicinity of the top inside the scrubber main body 2a, and is composed of a spray nozzle 4 for spraying a chemical liquid Y such as water in the form of a spray.
  • the top of the inlet scrubber main body 2a communicates with an exhaust gas source (not shown) to be treated, such as a semiconductor manufacturing apparatus, through an exhaust gas duct 92. As shown in FIG.
  • the exhaust gas treatment device 1 is a device for thermally decomposing the target exhaust gas E, which is discharged from an industrial process and has passed through the inlet scrubber 2, by electrothermal oxidative decomposition. and a chemical liquid tank 18.
  • the tubular heating part 14 is a heat source that heats the internal space of the tubular heating part 14 and the exhaust gas treatment space S inside the reactor 10 .
  • the tubular heating portion 14 is formed in a cylindrical shape, but the tubular heating portion 14 may have any shape as long as it is a tubular shape with both ends opened. For example, it may have a rectangular tubular shape.
  • the inner cylinder 21, the outer cylinder 22, the ceiling plate 24, and the bottom plate 23 of the hollow cylinder 20 are made of a highly heat-resistant and highly corrosion-resistant alloy (eg, Hastelloy, Incoloy, Inconel (both registered trademarks)).
  • a steel type containing aluminum as an additive is preferable for the reasons described later.
  • the top opening of the hollow cylinder 20 is open toward the ceiling of the reactor 10 , and this top opening open to the exhaust gas processing space S is the heated exhaust gas outlet 16 .
  • An exhaust gas supply pipe 3 led out from the outlet of the inlet scrubber 2 is connected to the lower end, and the connecting opening of this exhaust gas supply pipe 3 is the exhaust gas introduction port 15 .
  • the space between the inner cylinder 21 and the outer cylinder 22 of the double-structured hollow cylinder 20 is the heater installation space P, and a plurality of insulators 30 are installed vertically at regular intervals in this space.
  • the insulator 30 holds the electric heater H in the installation space P with electrical insulation, and has various shapes.
  • the electric heater H is made of a metal wire such as a nichrome wire or a Kanthal wire (Kanthal is a registered trademark of Sandvik), or a long length made of a heating element such as SiC which is shaped like a rod or U-shaped. It is a heat-generating resistor, and the temperature is raised to about 800° C. to 1400° C. depending on the type of material, etc., by applying an electric current.
  • a metal wire such as a nichrome wire or a Kanthal wire (Kanthal is a registered trademark of Sandvik)
  • a heating element such as SiC which is shaped like a rod or U-shaped. It is a heat-generating resistor, and the temperature is raised to about 800° C. to 1400° C. depending on the type of material, etc., by applying an electric current.
  • a ring-shaped metal plate is attached to either the inner cylinder 21 or the outer cylinder 22, or both (not shown) by welding. and holds them in the heater installation space P by supporting the insulator 30 . If both the inner cylinder 21 and the outer cylinder 22 are welded, it is not applied to the removable hollow cylinder 20 .
  • the holding member 40 has a rectangular cross section or a right triangle (or wedge) cross section. A right-angled triangular (or wedge) cross section will be described later, and here, a ring-shaped holding member 40 with a square cross section will be described. In the case of FIG.
  • the insulator 30 is welded to the outer peripheral surface of the inner cylinder 21 and fixed to the inner cylinder 21 by sandwiching the insulator 30 from above and below.
  • the holding member 40 is directly welded to the inner cylinder 21 or the outer cylinder 22, the same material as the inner cylinder 21 or the outer cylinder 22 is used as the material of the holding member 40.
  • FIG. The welded portion is a bonding layer 42 (partially enlarged view in the circle (a) of FIG. 2).
  • FIG. 5 shows a case where the holding member 40 is attached to the inner peripheral surface of the outer cylinder 22.
  • the material of the holding member 40 and the use of the support member 44 are the same as above.
  • the insulator 30 is slightly different from the above case, and a cylindrical stepped portion 31 is provided on the outer peripheral portion of the upper surface 35 of the insulator 30 .
  • a plurality of circulation pipes 25 extending from the bottom plate 23 toward the ceiling are installed on the bottom plate 23 of the hollow cylindrical body 20 .
  • Various types of circulation pipes 25 are installed, ranging from long ones to short ones.
  • the long circulation pipe 25 supplies or exhausts the atmosphere gas Q near the ceiling of the heater installation space P, and the short circulation pipe 25 near the bottom. Atmospheric gas Q is supplied or exhausted.
  • the circulation pipe 25 on the air supply side is connected to a supply source of an inert gas (nitrogen) or an inert gas (nitrogen) to which oxygen is regularly or irregularly added, depending on the type of the electric heater H. It is Then, the atmosphere gas Q that has circulated in the heater installation space P is taken out from the circulation pipe 25 on the exhaust side, cooled, and then released to the outside.
  • the electric heater H is a U-shaped rod-shaped member or simply a rod-shaped member (not shown). If the electric heater H is, for example, an Fe/Cr/Al metal heater, alumina is formed on the surface of the electric heater H, which inhibits the oxidation of the electric heater H. Therefore, oxygen is added regularly or irregularly.
  • An active gas nitrogen
  • the electric heater H is, for example, a SiC-based heater, if the atmosphere gas Q is mainly composed of nitrogen, a SiN protective film is formed on the surface thereof, so an atmosphere gas Q that does not contain oxygen is selected. If the atmosphere gas Q contains oxygen, Si is gradually oxidized to become SiO 2 , and electricity is no longer supplied.
  • the hollow cylindrical body 20 is also similarly exposed to high temperature by radiant heat from the electric heater H at all times. If an inert gas (nitrogen) to which oxygen is regularly or irregularly added is supplied as the atmosphere gas Q, a Cr 2 O 3 film (chromium oxide film) is formed on the surface. For steel grades containing Al, a protective coating of alumina is formed on the surface. These protective coatings prevent the hollow cylindrical body 20 from being damaged due to oxidation corrosion.
  • a temperature sensor 70 such as a thermocouple is installed on the bottom plate 23 of the hollow cylindrical body 20 in addition to the circulation pipe 25 extending from the bottom plate 23 toward the ceiling (Figs. 16 to 20).
  • This temperature sensor 70 measures the ambient temperature of the space P where the heater is installed, and the measured temperature data is provided to a power control device (not shown) comprising a sequencer or the like for controlling the output of the power supply device 75. It's becoming As a result, the amount of electric power supplied to the tubular heating portion 14 is controlled based on the temperature data measured by the temperature sensor 70 .
  • the method of holding the temperature sensor 70 is as follows. In the case of FIGS. 16 and 17, three sensor holding plates 61, 62, and 63 are used, and in the case of FIGS. 18 and 19, two sensor holding plates 61, 62 and the bottom plate 23 are used. The lowermost sensor holding plate 63 and the bottom plate 23 in FIGS. 16 and 17 have the same function. Further, the sensor holding plates 61 and 62 (63) are welded to the outer peripheral surface of the inner cylinder 21 and welded to the inner peripheral surface of the outer cylinder 22 in two ways. The case shown in FIG. 16 will be described below as a representative example.
  • Three sensor holding plates 61, 62, 63 are welded to the outer peripheral surface of the lower part of the inner cylinder 21, arranged vertically. Through holes 61h, 62h, and 63h are formed on the same line extending vertically in the three sensor holding plates 61, 62, and 63, respectively. However, the center of the middle through-hole 62h is slightly displaced from the upper and lower through-holes 61h and 63h.
  • the upper and lower sensor holding plates 61 and 63 are made of metal plates having the same thermal expansion coefficient, and the middle sensor holding plate 62 has a different thermal expansion coefficient from the upper and lower sensor holding plates 61 and 63.
  • FIG. 17 It is formed of a metal plate with This changes the elongation of the upper and lower sensor holding plates 61 and 63 and the elongation of the central sensor holding plate 62 during heating. Arrows in FIG. 17 indicate extension of the sensor holding plates 61, 62, 63. FIG.
  • the through holes 61h and 63h of the upper and lower sensor holding plates 61 and 63 press the inner cylinder side surface (or the outer cylinder side surface) of the temperature sensor 70, and the central sensor is held.
  • the through hole 62h of the plate 62 presses the outer cylinder side surface (or the inner cylinder side surface) of the temperature sensor 70 to vertically erect the temperature sensor 70 in the heater installation space P.
  • the three sensor holding plates 61, 62, 63 extend in the direction of the outer cylinder 22, and the diameters of the through holes 61h, 62h, 63h also expand.
  • the through holes 61h and 63h of the upper and lower sensor holding plates 61 and 63 are The through holes 61h and 63h of the upper and lower sensor holding plates 61 and 63 move toward the outer cylinder 22 more (or less) than the through hole 62h of the sensor holding plate 62 of the sensor holding plate 62, and the through holes 61h and 63h of the upper and lower sensor holding plates 61 and 63 move toward the inner cylinder side of the temperature sensor 70 ( The through hole 62h of the middle sensor holding plate 62 presses the outer cylinder side surface (or the inner cylinder side surface) of the temperature sensor 70, and the temperature sensor 70 is placed in the heater installation space even in a high temperature atmosphere. Maintain the state of standing vertically in P.
  • FIG. 18 is a modification of FIG. 16, using the two sensor holding plates 61 and 62 and the bottom plate 23 as described above.
  • the bottom plate 23 corresponds to the lowermost sensor holding plate 63 described above, and the effects are the same as described above.
  • the through hole 23h of the bottom plate 23 is provided at the same position as the through hole 63h of the lowermost sensor holding plate 63.
  • FIG. 20 shows an example in which the uppermost sensor holding plate 61 is provided at the tip of the temperature sensor 70, thereby vertically supporting the temperature sensor 70 over its entire length.
  • the chemical liquid tank 18 is a tank that stores the chemical liquid Y supplied to the inlet scrubber 2 as described above and collects the chemical liquid Y that is discharged from the inlet scrubber 2 and the outlet scrubber 5 . Since the new chemical Y sprayed by the spray nozzle 7 of the outlet scrubber 5 is always supplied to the chemical tank 18, the surplus chemical Y is allowed to overflow so as not to accumulate a predetermined amount or more of the chemical Y. It is sent to a device (not shown). There is a space between the ceiling surface of the chemical tank 18 and the stored chemical Y.
  • the outlet scrubber 5 finally removes (liquid washing) dust and water-soluble components in the exhaust gas G, which are by-produced when the exhaust gas E to be treated is thermally decomposed in the exhaust gas treatment device 1, and cools the exhaust gas G.
  • a straight pipe type scrubber body 5a a plurality of perforated plates 6 (four stages in this embodiment) installed at intervals in the vertical direction in the scrubber body 5a, and the top perforation It is attached directly above the plate 6 and is composed of a downward spray nozzle 7 for spraying a chemical liquid Y such as water from above so as to face the flow direction of the exhaust gas G.
  • the outlet scrubber 5 is erected on a chemical liquid tank 18 that stores a chemical liquid Y such as water. It is supposed to be sent.
  • the spray nozzle 7 is supplied not with the circulating chemical Y in the chemical tank 18 as described above, but with a new chemical Y such as fresh water.
  • a top outlet of the outlet scrubber 5 is connected to an exhaust fan 8 for releasing the treated exhaust gas G into the atmosphere.
  • an operation switch (not shown) of the exhaust gas treatment apparatus 1 is turned on to operate the tubular heating portion 14 to start heating the inside of the reactor 10 .
  • the temperature of the internal space of the reactor 10 (the temperature of the internal space of the cylindrical heating unit 14 and the temperature of the exhaust gas treatment space S of the reactor 10 in this embodiment) is the object to be processed by the heat of the tubular heating unit 14.
  • the exhaust fan 8 is operated to start introducing the exhaust gas E to the exhaust gas treatment system X.
  • the exhaust gas E to be treated is first introduced into the inlet scrubber 2, where it is washed with a chemical liquid Y such as water to remove dust, water-soluble components, and the like.
  • the exhaust gas E chemically cleaned by the inlet scrubber 2 is led from the exhaust gas supply pipe 3 led out from the lower part of the inlet scrubber 2 to the internal space of the cylindrical heating unit 14 through the exhaust gas introduction port 15, and the electric heating is performed. Most of it is thermally decomposed by the high-temperature atmosphere in the inner space heated by the inner cylinder 21 heated by the heater H and heated to a high temperature. Subsequently, the exhaust gas E to be treated moves from the tip opening (heated exhaust gas outlet 16 ) of the cylindrical heating part 14 into the high temperature region of the exhaust gas treatment space S located in the ceiling portion of the reactor 10 .
  • the moved gas stream that is, the high-temperature gas stream partly containing the undecomposed exhaust gas E to be treated moves to the cylindrical heating unit 14 while thermally decomposing the remaining undecomposed exhaust gas E to be treated in this high-temperature region. and move to the cracked exhaust gas discharge port 12 so as to wrap the outer circumference of the exhaust gas, and become the exhaust gas G in which the harmful components are completely decomposed. be done.
  • the exhaust gas G introduced into the outlet scrubber 5 is washed with a chemical solution Y such as water to remove dust and water-soluble components, and is cooled. released to During operation, the atmosphere gas Q is supplied to and discharged from the heater installation space P, and the electric heater H and the inner wall of the hollow cylindrical body 20 are protected.
  • a chemical solution Y such as water to remove dust and water-soluble components
  • the tubular heating unit 14 is a double-structured hollow tubular body 20 having a metal inner cylinder 21 and an outer cylinder 22, and the electric heater H is made of ceramic powder or refractory material as described in Background Art. It is only partially supported by the disk-shaped insulator 30. Therefore, since there is no excess heat storage due to ceramic powder or refractory material as compared with the conventional example, the accompanying excessive temperature rise of the electric heater H can be avoided. The temperature can be raised quickly because it is made of As a result, disconnection due to an overload of the electric heater H can be avoided.
  • the insulator 30 of the above embodiment is disk-shaped, and its upper and lower sides are supported by ring-shaped holding members 40 .
  • the ring-shaped holding member 40 has a rectangular cross section (FIG. 4(a)).
  • a sufficient gap K is provided between the insulator 30 and the inner cylinder 21 made of metal.
  • the ring-shaped holding member 40 having a square cross section has a large contact area with the insulator 30 .
  • the shape of the holding member 40 is devised. That is, the holding member 40 is formed of a ring-shaped member having a right-angled triangular (or wedge-shaped) cross section, and is arranged such that the inclined surfaces of the holding member 40 face each other vertically. It is welded to the outer peripheral surface of the inner cylinder 21, and the inner peripheral ridge lines of the lower surface 34 and the upper surface 35 of the insulator 30 are held by the inclined surface of the holding member 40 in "line contact”.
  • the contact surface 41 is the inclined surface of the holding member 40 that is in “line contact”.
  • the holding member 40 is welded to the inner cylinder 21 (outer cylinder 22), the same material as the inner cylinder 21 (outer cylinder 22) is used. It is also possible to use a material having a higher electric resistance value than the inner cylinder 21 (outer cylinder 22) for the material of 40 and having a different material.
  • a support member 44 can also be used as shown in FIG. 8(b). These points are the same as the example already described.
  • the holding member 40 is not a ring-shaped member but a right-angled triangular (or wedge-shaped) plate-shaped or block-shaped member.
  • the plate-shaped or block-shaped right-angled triangular holding members 40 are arranged at least three positions (of course, three or more positions may be used) at equal angles as shown in FIG. supported.
  • both sides of the narrow inclined surface come into "point contact" with the ridgeline of the arcuate inner peripheral surface 30b of the insulator 30 at two points.
  • the contact area is further reduced as compared with Modification 1, and electric leakage can be suppressed more effectively.
  • the lower surface 34 and the upper surface 35 of the insulator 30 are held by the inclined surface of the holding member 40 in "line contact” or "point contact". Alternatively, only the lower surface 34 of the insulator 30 may be held.
  • the leakage area can be extremely reduced, and even if the electrical insulation of the insulator 30 is reduced in a high-temperature atmosphere, The amount of electric leakage with the inner cylinder 21 (outer cylinder 22) can be greatly suppressed, and disconnection due to electric leakage or short circuit of the electric heater H can be avoided.
  • the holding member 40 is welded to the inner cylinder 21, it may be welded to the outer cylinder 22, or may be welded to both (not shown). This point also applies to any holding member 40 .
  • a support member 44 can also be used.
  • Modification 1 of insulator 13 to 15 show a modified example 1 of the insulator 30, in which a ring-shaped recessed groove 39 is formed all around the lower surface 34 or the upper surface 35 of the insulator 30 or the upper and lower surfaces 34 and 35 in accordance with the cylindrical stepped portion 31.
  • This is an example of An example in which ring-shaped grooves 39 are provided on both upper and lower surfaces 34 and 35 is not shown.
  • the distance from the heater holding hole 32h to the holding member 40a on the upper surface side and the lower surface 34 on the upper surface 35 of the insulator 30 3 it is preferable that the distance from the heater holding hole 32h to the holding member 40b on the lower surface side be equal.
  • the above distance includes the length of the surface of the ring-shaped groove 39 as well.
  • FIGS. 8(a) and 8(b) show a modification 2 of the insulator 30, in which a support protrusion 32t is provided in the center of the inner peripheral surface of the heater holding hole 32h over the entire circumference and is in contact with the outer peripheral surface of the electric heater H. be.
  • the support protrusion 32t has an inner peripheral surface facing the electric heater H formed in a convex mountain shape in cross section. It is the apex of the support projection 32t that contacts the outer peripheral surface of the electric heater H, and in this case as well, the leakage area of the insulator 30 can be reduced in the same manner as described above.
  • Modification 3 of insulator 6 6, 7, 9(a) and 9(b) show a third modification of the insulator 30.
  • FIG. Even if an inert gas or the like is supplied to the electric heater H of the tubular heating portion 14 and the hollow tubular body 20 to suppress oxidative consumption during heating, the surfaces thereof are gradually oxidized due to deterioration over time. The oxidized metal oxide powder flakes off the surface and falls.
  • the insulator 30 is used to support the electric heater H, most of the metal oxide powder accumulates on the upper surface 35 of the disk-shaped insulator 30. As shown in FIG. When the amount of the metal oxide powder increases, the metal oxide powder connects the adjacent electric heaters H or the electric heater H and the inner cylinder 21 (or the outer cylinder 22) to cause a short circuit, and the electric heater H is connected. Disconnect.
  • FIG. 9(a) shows an example in which the insulator 30 is cut to a position where it contacts the cylindrical stepped portion 31, and FIG. Part of the metal oxide powder that has fallen is collected on the cylindrical stepped portion 31, and the remainder falls further downward from the notch 38 between the adjacent heater holding holes 32h, and the adjacent electric heater H, electric heater H, and the inner wall. A short circuit of the cylinder 21 (or the outer cylinder 22) does not occur.
  • Exhaust gas to be treated G... Exhaust gas, H... Electric heater, Hw... Heater cross plate, K... Gap, P... Heater installation space, Q... Atmosphere gas, S... Exhaust gas treatment space, X... Exhaust gas treatment system, Y... chemical solution

Abstract

排ガス処理装置1の筒状加熱部14は反応器10内に設置されている。筒状加熱部14は、挿入基部に排ガス導入口15が設けられ、挿入端に被加熱排ガス出口16が設けられている。筒状加熱部14は中空筒体20、碍子30、電熱ヒータH、及び保持部材40とで構成されている。中空筒体20は金属製の内筒21と外筒22で構成された二重構造である。碍子30は複数で、内筒21を囲繞し且つ互いに間隔をあけて内筒21と外筒22との間のヒータ設置空間Pに設けられている。電熱ヒータHは碍子30に取り付けられている。保持部材40は内筒21又は前記外筒22のいずれか一方、或いはその両方に取着され、碍子30をヒータ設置空間Pに保持する。

Description

筒状加熱部と該筒状加熱部を備えた排ガス処理装置
 本発明は、工業プロセス等から排出される人体に有害なガスやオゾン層破壊ガスなどを熱分解処理する排ガス処理装置における筒状加熱部の改良に関し、更に前記筒状加熱部を備えた排ガス処理装置に係る。
 物を製造したり、処理したりする工業プロセスでは様々な種類のガスが使用されている。このため、工業プロセスから排出されるガス(以下、「処理対象排ガス」という。)の種類も非常に多岐にわたっており、処理対象排ガスの種類に応じて、様々な種類の排ガス処理方法および排ガス処理システムが用いられている。
 例えば、半導体製造プロセス一つを例にとっても、モノシラン(SiH)、塩素ガス、PFCs(パーフルオロコンパウンド)など様々な種類のガスが使用されている。これらのガスは人体や地球環境に対して悪影響を及ぼすことから、何らかの手段によって分解或いは除去する必要があり、種々の処理方法が実用化されている。その代表例として、吸着式、湿式、電熱酸化分解式、火炎燃焼式などがあるが、各々長所と問題点とを有している。
 このうち、火炎燃焼式は、処理対象排ガスの適用分野が広く(即ち、分解処理できる処理対象排ガスの種類が多い)、大風量処理が可能であるものの、稼働に当たっての安全性に不安を残している。というのも、火炎燃焼式は、基本的に燃焼にバーナーを使用し、その燃焼雰囲気に排ガスを導入して熱分解する方式であるので、何らかの原因により火炎消滅(失火)した場合には不安全な事態を招くこととなる。
 一方、電熱ヒータを用いる電熱酸化分解式は、半導体製造プロセスにおける排ガス処理方法として現在最も普及している分解処理方法であり、処理対象排ガスの分解処理に際して処理工程を制御しやすく、処理対象排ガスを安全に分解処理することができる。電熱ヒータを用いる排ガス処理システムとしては特許文献1に記載されたようなシステムがある。
WO2008/096466 A1
 特許文献1(段落番号0056)に記載された排ガス処理システムの排ガス処理装置は、その反応器内の排ガス処理空間にて、導入された処理対象該ガスを熱分解するための筒状加熱部を備えている。この筒状加熱部は、金属製の内筒と外筒で構成された二重管の管壁間に発熱抵抗体であるニクロム線やカンタル(サンドビックAB社登録商標)線などの電熱ヒータを螺旋状に巻回して配設すると共に、絶縁のために当該二重管の管壁間にセラミック粉末或いは耐火材を充填したものである。金属製の内筒と外筒は腐蝕性処理対象排ガス雰囲気から電熱ヒータを保護するためのものである。
 この筒状加熱部は、反応器の内部中央に立設されており、筒状加熱部の底部の排ガス導入口から投入された処理対象排ガスがこの筒状加熱部の高温の内部空間を通り、その上端開口から反応器の天井付近に形成される高温の排ガス処理空間に放出されるようになっている。
 処理対象排ガスは筒状加熱部の内部を通過する間、更には上記排ガス処理空間を通る間に周囲から高温(雰囲気温度で800~1150℃)で加熱されて分解される。
 このような高温を要求される筒状加熱部にあって、二重管に充填されたセラミック粉末或いは耐火材は熱容量が大きく、しかも金属に比べて熱伝導率が悪い。それ故、管壁から処理対象排ガスへの伝熱効率が悪い。上記のような高い温度を二重管の内・外壁面に発生させるには、上記雰囲気温度よりも遥かに高い温度(例えば、1400℃に近い温度)が電熱ヒータに要求される。このような高温は電熱ヒータや金属製の内・外筒の表面酸化を促進させ、金属酸化物を堆積させる。金属酸化物の堆積や電熱ヒータの酸化は断線の1つの要因となる。
 これに加えて、電熱ヒータから発した熱が電熱ヒータの周囲を取り巻く高温のセラミック粉末或いは耐火材によって電熱ヒータに反射され、この高温のセラミック粉末或いは耐火材からの放射熱が電熱ヒータの温度を制御温度以上に押し上げる。これも電熱ヒータの断線の要因となっていた。
 また、上記高温は絶縁体であるセラミック粉末或いは耐火材の電気絶縁性を低下させる。これらの電気絶縁性の低下は漏電による電熱ヒータと装置の構造物(金属製内筒や外筒)との短絡を発生させ、これも断線の要因となっており、これらがヒータ寿命に大きく影響していた。
 本発明はこのような従来例の問題に鑑みてなされたもので、本発明の第1の課題は、熱容量を小さく出来、且つ内・外筒への伝熱効率を向上させることによって電熱ヒータの発熱温度を低く抑え、電熱ヒータの寿命を大幅に伸ばすことが出来る排ガス処理装置の筒状加熱部を提供することにある。本発明の第2の課題は、前記筒状加熱部を備え、電熱ヒータの断線が大幅に抑制され、且つ熱効率に優れた排ガス処理装置を提供するにある。
 請求項1に記載の発明(図2)は、
 内部に排ガス処理空間Sと、前記排ガス処理空間Sで処理された排ガスGの分解排ガス排出口12が設けられている反応器10内に設置された排ガス処理装置1の筒状加熱部14であって、
 前記筒状加熱部14は、前記反応器10への挿入基部に排ガス導入口15が設けられ、前記筒状加熱部14の前記反応器10への挿入端に前記排ガス処理空間Sに開放した被加熱排ガス出口16が設けられており、
 前記筒状加熱部14は、金属製の内筒21と金属製の外筒22とを備えた二重構造の中空筒体20、前記内筒21を囲繞し且つ互いに間隔をあけて前記内筒21と前記外筒22との間のヒータ設置空間Pに設けられた複数の碍子30、前記碍子30に取り付けられた電熱ヒータH、及び前記内筒21又は前記外筒22のいずれか一方、或いはその両方21・22に取着され、前記碍子30の下面34、又は下面34及び上面35を支持して前記ヒータ設置空間Pに前記碍子30を保持する保持部材40とで構成されたことを特徴とする。
 請求項2に記載した発明(図4(b)、図8(a)(b))は、保持部材40の碍子30への保持の仕方(点接触)に関するもので、
 請求項1に記載の排ガス処理装置1の筒状加熱部14において、
 碍子30への保持部材40の接触面41は、前記碍子30の下面34、又は下面34及び上面35に対して傾斜面に形成されていることを特徴とする。
 請求項3に記載した発明(図6、図7)は、保持部材40の設置数に関するもので、
 請求項1又は2に記載の排ガス処理装置1の筒状加熱部14において、
 保持部材40は板状又はブロック状の部材で、内筒21又は外筒22に対して少なくとも3箇所に設置されてなることを特徴とする。
 請求項4に記載した発明(図2(a)、図8(a))は、保持部材40の材質と第1の取り付け方に関するもので、
 請求項1~3のいずれかに記載の排ガス処理装置1の筒状加熱部14において、
 保持部材40は、内筒21又は外筒22より電気抵抗値の高い素材(例えば、カンタル(登録商標)、ニクロム或いはセラミックス)で構成され、保持部材40が金属の場合は溶接にて、保持部材40がセラミックスの場合は無機接着剤にて設けられた接合層42で前記内筒21又は前記外筒22に固着されていることを特徴とする。
 請求項5に記載した発明(図2(b)、図8(b))は、保持部材40の材質と第2の取り付け方に関するもので、
 請求項1~3のいずれかに記載の排ガス処理装置1の筒状加熱部14において、
 保持部材40は、内筒21又は外筒22より電気抵抗値の高い素材(例えば、カンタル(登録商標)、ニクロム(ニッケルクロム合金)或いはセラミックス)で構成され、
 内筒21又は外筒22と同じ素材であって、内筒21又は外筒22或いはその両方に溶接され、下側の保持部材40bに対しては下側から、上側の保持部材40aに対しては上側から支持する支持部材44が更に設けられてなることを特徴とする。
 請求項6に記載した発明(図8(a)(b))は、碍子30による電熱ヒータHの保持の仕方である。
 請求項1~5のいずれかに記載の排ガス処理装置1の筒状加熱部14において、
 前記碍子30は中央に前記内筒21が挿通される中央孔33が穿設されたディスク状の形状であって、前記中央孔33の周囲に前記電熱ヒータHを保持するヒータ保持孔32hが複数箇所に形成されており、
 前記ヒータ保持孔32hの内周面に前記電熱ヒータHの外周面に接する支持凸部32tが設けられていることを特徴とする。
 請求項7に記載した発明(図6、図7、図9)は、碍子30の第1の形状に関するものである。
 請求項1~6のいずれかに記載の排ガス処理装置1の筒状加熱部14において、
 隣接するヒータ保持孔32hの間に前記碍子30の外接円30eから前記ヒータ保持孔32hを越える位置まで切り取られ、前記隣接するヒータ保持孔32h同士を隔てる切欠38が設けられていることを特徴とする。
 請求項8に記載した発明(図10~図12)は、碍子30の第2の形状に関するものである。
 請求項1~6のいずれかに記載の排ガス処理装置1の筒状加熱部14において、
 隣接するヒータ保持孔32hの間に前記碍子30の外周面30aから前記ヒータ保持孔32hを越える位置まで掘り込まれ、前記隣接するヒータ保持孔32h同士を隔てるセパレート溝36が前記碍子30の上面35に設けられていることを特徴とする。
 請求項9に記載した発明(図13~図15)は、碍子30の第3の形状に関するものである。
 請求項1~8のいずれかに記載の排ガス処理装置1の筒状加熱部14において、
 前記碍子30の下面34、または上面35、或いは上・下両面34・35において、ヒータ保持孔32hと前記碍子30の内周面30bとの間に前記内周面30bの周囲にリング状凹溝39が設けられていることを特徴とする。
 請求項10に記載した発明(図13~図15)は、請求項9に記載の碍子30の改良である。
 請求項9に記載の排ガス処理装置1の筒状加熱部14において、
 前記碍子30がその上・下両面34・35において保持部材40にて保持されており、
 前記上面35における前記ヒータ保持孔32hから上面側の保持部材40aまでの距離と、前記下面34における前記ヒータ保持孔32hから下面側の保持部材40bまでの距離が等しくなるように前記リング状凹溝39が形成されていることを特徴とする。
 請求項11に記載した発明(図16、図17)は、筒状加熱部14に装備される温度センサ70の第1の保持方法に関する。
 請求項1~10のいずれかに記載の排ガス処理装置1の筒状加熱部14において、
 内筒21の外周面又は外筒22の内周面に上下に並べて溶接され、温度センサ70を保持する通孔61h・62h・63hが同一線上に穿設された3枚のセンサ保持板61・62・63で構成されたセンサ保持部60が設けられており、
 前記通孔61h・62h・63hは、上段と下段のセンサ保持板61・63の前記通孔61h・63hの内周面が温度センサ70の一方の側面を押圧し、中段のセンサ保持板62の通孔62hが温度センサ70の反対側の側面を押圧するように設けられ、
 前記上段と下段のセンサ保持板61・63を同じ熱膨張係数を持つ金属板で構成し、中段のセンサ保持板62を前記上下のセンサ保持板61・63と異なる熱膨張係数を持つ金属板で形成してなることを特徴とする。
 請求項12に記載した発明(図18、図19)は、筒状加熱部14に装備される温度センサ70の第2の保持方法に関する。
 請求項1~10のいずれかに記載の排ガス処理装置1の筒状加熱部14において、
 内筒21の外周面又は外筒22の内周面に上下に並べて溶接され、温度センサ70を保持する通孔61h・62hが同一線上に穿設された2枚のセンサ保持板61・62と、内筒21と外筒22との間の底部に設けられ、前記通孔61h・62hを通る直線に一致して穿設された通孔23hを有する底板23とで構成されるセンサ保持部60が中空筒体20に設けられており、
 前記通孔61h・62h・23hの内、上段の通孔61hと底板23の通孔23hの内周面が温度センサ70の一方の側面を押圧し、中央のセンサ保持板62の通孔62hが温度センサ70の反対側の側面を押圧するように設けられ、
 前記上段のセンサ保持板61と前記底板23を同じ熱膨張係数を持つ金属素材で構成し、前記上段のセンサ保持板61と前記底板23の間の中段のセンサ保持板62を前記上段のセンサ保持板61と異なる熱膨張係数を持つ金属素材で形成してなることを特徴とする。
 請求項13に記載の発明(図2、図6、図8(a))は、
 内部に排ガス処理空間Sと、前記排ガス処理空間Sで処理された排ガスGの分解排ガス排出口12が設けられている反応器10と、前記反応器10内に設置された筒状加熱部14とで構成された排ガス処理装置1であって、
 前記筒状加熱部14の前記反応器10への挿入基部に排ガス導入口15が設けられ、前記筒状加熱部14の前記反応器10への挿入端に前記排ガス処理空間Sに開放した被加熱排ガス出口16が設けられており、
 前記筒状加熱部14は、金属製の内筒21と金属製の外筒22とを備えた二重構造の中空筒体20、前記内筒21を囲繞し且つ互いに間隔をあけて前記内筒21と前記外筒22との間のヒータ設置空間Pに設けられた複数の碍子30、前記碍子30に取り付けられた電熱ヒータH、及び前記内筒21又は前記外筒22のいずれか一方、或いはその両方21・22に取着され、前記碍子30を支持して前記ヒータ設置空間Pに保持する保持部材40とで構成され、
 前記保持部材40は、前記内筒21又は前記外筒22に対して少なくとも3箇所に設置され、前記碍子30への前記保持部材40の接触面41は、前記碍子30の下面34、又は下面34及び上面35に対して点接触するように傾斜面に形成されていることを特徴とする。
 本発明の筒状加熱部14(排ガス処理装置1)は上記のような構成であるから、熱容量を小さく、且つ高い伝熱効率を有する。従って、電熱ヒータHの発熱温度を低く抑えることが出来た。更に、高温化にあって、電熱ヒータHと金属製の内筒21(又は金属製の外筒22)との短絡を防止できた。その結果、ヒータ寿命を大幅に伸ばすことが出来た。
本発明システムの概略図である。 図1の排ガス処理装置の拡大断面図である。 図2のA-A’断面矢視図である。 図2の碍子部分とその内周部分を保持する保持部材の分解斜視図である。 図2の碍子部分とその外周部分を保持する保持部材の分解斜視図である。 図3の変形例1の断面図である。 図6の丸枠部の拡大平面図である。 (a)図7のB-B’断面矢視図、(b)前記(a)の変形例である。 (a)図6における切欠と該切欠に関する碍子の位置関係を示す部分斜視図、(b)前記(a)の切欠の変形例である。 図3の変形例2の断面図である。 図10の正面図である。 図10におけるセパレート溝と該セパレート溝に関する碍子の位置関係を示す部分斜視図である。 図3の変形例3を斜め下から見た斜視図である。 図13に示す碍子部分の部分拡大断面図である。 図13に示す碍子部分の他の例の部分拡大断面図である。 本発明に使用される温度センサの第1の取付状態を示す部分拡大断面図である。 図16の斜視図である。 温度センサを内筒に装着した場合の第2の取付状態を示す部分拡大断面図である。 温度センサを外筒に装着した場合の第2の取付状態を示す部分拡大断面図である。 温度センサの先端を最上段のセンサ保持板で保持した場合の部分拡大断面図である。
発明の実施をする形態
 以下、本発明を図示実施例に従って説明する。図1は、本発明の排ガス処理装置1を用いた排ガス処理システムXの一実施例を示す概略図で、工業プロセスから排出される処理対象排ガスEを熱分解する装置である。本実施形態の排ガス処理システムXは、大略、排ガス処理装置1、入口スクラバー2及び出口スクラバー5並びにその付帯設備で構成されている。
 上記排ガス処理装置1には電熱酸化分解方式、火炎燃焼方式、及び電熱酸化分解方式と火炎燃焼方式とを併用した併用方式がある。本発明は電熱酸化分解方式の排ガス処理装置1である。電熱酸化分解方式の排ガス処理装置1は、大略、反応器10、筒状加熱部14、及び薬液タンク18で構成される。
 入口スクラバー2は、排ガス処理装置1に導入する処理対象排ガスEに含まれる粉塵や水溶性成分などを除去(液洗)するためのものであり、直管型の入口スクラバー本体2aと、前記入口スクラバー本体2a内部の頂部近傍に設置され、水などの薬液Yを噴霧状にして撒布するスプレーノズル4とで構成されている。この入口スクラバー本体2aの頂部には、排ガスダクト92を介して半導体製造装置などの処理対象排ガス発生源(図示せず)に連通している。
 上記入口スクラバー本体2aは薬液タンク18上に立設されており、その下端は薬液タンク18内に貯留された薬液Y内に浸漬されている。そして、スプレーノズル4と薬液タンク18との間には循環ポンプ19が設置されており、薬液タンク18内の貯留薬液Yをスプレーノズル4に揚水するようになっている。また、入口スクラバー2の下端部分は排ガス送給配管3を介して筒状加熱部14の排ガス導入口15に繋がっている。
 排ガス処理装置1は、工業プロセスから排出され、上記入口スクラバー2を通過した処理対象排ガスEを電熱酸化分解式で熱分解する装置であり、大略、筒状加熱部14、該筒状加熱部14を内蔵した反応器10及び薬液タンク18で構成されている。
 反応器10は、少なくともその内面がキャスタブルなどの耐火性材料で構成され、内部に排ガス処理空間Sが形成され、図1に示すように、反応器10の平面部分が天地を向くように薬液タンク18上に立設される。この反応器10は円筒状の容器で、その底部11には筒状加熱部14が取り付けられる開口が設けられ、該開口に取り付けられた筒状加熱部14が底部11から反応器10の天井に向けて立設されている。そして該筒状加熱部14に隣接して反応器10の底部11に分解排ガス排出口12が設けられている(図2、図3)。この分解排ガス排出口12から導出された分解排ガス排出配管13が薬液タンク18の上面に接続され、薬液タンク18内の上部空間介して出口スクラバー5に繋がっている。
 そして、排ガス送給配管3と分解排ガス排出配管13との間にはこれらを跨ぐように熱交換器50が取り付けられており、筒状加熱部14に導入する低温の処理対象排ガスEと反応器10で熱分解した処理後の高温の排ガスGとの間で熱交換するようになっている。
 筒状加熱部14は、筒状加熱部14の内部空間と反応器10内部の排ガス処理空間Sを加熱する熱源である。なお、本実施例では筒状加熱部14を円筒状に形成する場合を示しているが、この筒状加熱部14の形状は両端が開口した筒状であれば如何なるものであってもよく、例えば角筒状等であってもよい。
 上記筒状加熱部14は、既に述べたように、反応器10の底部11に設けられた開口から反応器10の内部に挿入され、反応器10の排ガス処理空間Sの中央に立設される。筒状加熱部14の上端開口(被加熱排ガス出口16)が反応器10の天井面に近接し、最も高温となる領域に配置される。
 上記筒状加熱部14は、金属製の内筒21、外筒22、両者の間に設けられた天井板24及び底板23とで構成された二重構造の中空筒体20、前記内筒21を囲繞し且つ互いに間隔をあけて内筒21と外筒22との間のヒータ設置空間Pに設けられた複数の碍子30、前記碍子30に取り付けられた電熱ヒータH、及び、内筒21と外筒22の少なくともいずれか一方に取着され、碍子30をヒータ設置空間Pに保持する保持部材40とで構成されている。保持部材40に付いては後述する。
 図2の実施例では、二重構造の中空筒体20の内筒21は、碍子30に装着された電熱ヒータH、後述する循環パイプ25や温度センサ70を底板23に装着した状態で外筒22の下面開口から挿脱出来るようになっている。これを挿脱式の中空筒体20とする。(中空筒体20は挿脱式でなく、内筒21、外筒22、天井板24及び底板23の接合部分を溶接した一体化したものでも良い。これを一体化した中空筒体20とする。)外筒22に内筒21を装着した状態ではヒータ設置空間Pは密閉され、循環パイプ25を通じて雰囲気ガスQがヒータ設置空間P内を循環するように給排気されるようになっている。
 中空筒体20の内筒21、外筒22、天井板24及び底板23は、高耐熱性及び高耐食性合金(例えば、ハステロイ、インコロイ、インコネル(いずれも登録商標))で形成されている。アルミニウムを添加物として含有する鋼種が後述する理由から好ましい。
 上記のように、中空筒体20の上面開口は反応器10の天井に向かって開放しており、排ガス処理空間Sに開放したこの上面開口が被加熱排ガス出口16である。そして、下端には入口スクラバー2の出口から導出された排ガス送給配管3が繋がっており、この排ガス送給配管3の接続開口が排ガス導入口15である。
 既に述べたように二重構造の中空筒体20の内筒21及び外筒22の間の空間はヒータ設置空間Pで、この空間に複数の碍子30が上下に一定間隔で設置されている。碍子30は、電熱ヒータHを設置空間P内において電気絶縁性を持って保持するもので、その形状にはさまざまなものがある。
 図4に示す碍子30はその1例で、ディスク状、即ち、平面視で平板リング状のセラミックス部材で構成されている。碍子30の中心に内筒21が挿通される中央孔33が形成されており、該中央孔33の周囲が一段と高くなっている。一段と高くなっている部分を円筒状段部31とし、その周囲の1段下がった円板状の部分をフランジ部32とする。フランジ部32の周縁は全周にわたって円弧状に面取りがされ、全周にわたって丸みが付与されている。また、フランジ部32には、中央孔33と同じ中心を持つ同心円周上に均等に分布された奇数または偶数(図3では12個、図6では24個)のヒータ保持孔32hが上下に貫通して穿設されている。
 上記ヒータ保持孔32hに付いて言えば、電熱ヒータHへ電力を導入する給電部位が図2のように、中空筒体20の底板23側に設置されている場合には、ヒータ保持孔32hは偶数個となる。図示しないが、給電部位の一方が天井板24側、他方が底板23側に設けた場合は奇数個になる。
 なお、このヒータ保持孔32hを流用して温度センサ70をこれに挿通し、電熱ヒータHと平行に立設させて取り付けることも出来る。
 この碍子30の外径は、外筒22の内径よりも小さく、内径は内筒21よりも大きく設定されており、電熱ヒータHを作動させた高温状態において、両者が接触しない大きさとなっている。碍子30の内周面30b(即ち、中央孔33)と内筒21の外周面との間には隙間Kが設けられている(図3)。なお、碍子30の形状にはさまざまのものがあり、その変形例については後述する。
 電熱ヒータHは、ニクロム線やカンタル線(カンタルはサンドビック社登録商標)などの金属線のほかに、例えばSiCなどの発熱体を棒状或いはこれをU形に成形したもの等からなる長尺の発熱抵抗体であって、電流を流すことにより材料の種類等に応じて概ね800℃~1400℃程度まで昇温する。ここでは図2に示すように、U形に曲げられた電熱ヒータHが、内筒21の軸周りに互いに等しい間隔をあけて碍子30のヒータ保持孔32hに複数本設置されると共に、Ni(ニッケル)などの導電性と耐食性とに優れた材料で形成されたヒータ渡りプレートHwを介して電気的に直列にて接続される(図2、図16)。そして、この電熱ヒータHの長手方向一端(図1の実施形態では下端)に電源装置75からの配線が接続されている。
 保持部材40には様々なものがあるが、図4、図5ではリング状の金属板で、内筒21又は外筒22のいずれか一方、図示していないがその両方に溶接にて取着され、前記碍子30を支持してヒータ設置空間Pにこれらを保持するものである。内筒21及び外筒22の両方に溶接する場合は、挿脱型の中空筒体20には適用されない。
 保持部材40の断面形状は、図4(a)に示すように、断面が四角形のものと、直角三角形(或いは楔)状のものがある。断面が直角三角形(或いは楔)状のものに付いては後述し、ここでは断面が四角形のリング状保持部材40に付いて説明する。
 図4の場合は内筒21の外周面に溶接され、碍子30を上下から挟み込んで内筒21に固定している。保持部材40を内筒21又は外筒22に、直接、溶接する場合、保持部材40の材質としては内筒21や外筒22の材質と同じものが用いられる。溶接部分を接合層42とする(図2の丸枠(a)内の部分拡大図)。
 保持部材40として、上記の場合と異なり、内筒21や外筒22の材質と異なる材質で、これらより電気抵抗値の高い金属またはセラミックスを用いることが出来る。その場合は、溶接の代わりに無機接着剤を用いて接合層42を形成する(図2(a)の丸枠内の部分拡大図)。
 或いは、無機接着剤の接合層42の代わりに、保持部材40の下又は上に内筒21や外筒22の材質と同じ材質の支持部材44を内筒21又は外筒22に溶接して保持部材40を固定してもよい(図2(b)の丸枠内の部分拡大図)。
 保持部材40の外径は電熱ヒータHから十分に離間するように円筒状段部31の外径を超えない大きさに作られている(図4)。
 図5は、保持部材40が外筒22の内周面に取り付けられている場合である。保持部材40の材質や支持部材44を用いる点は上記と同じである。
 碍子30は上記の場合と若干異なり、円筒状段部31が碍子30の上面35の外周部分に設けられている。
 中空筒体20の底板23には、底板23から天井に向かって伸びる循環パイプ25が複数本設置されている。循環パイプ25は長いものから短いものまでさまざまなものが設置されており、長い循環パイプ25はヒータ設置空間Pの天井付近で雰囲気ガスQを給気又は排気し、短い循環パイプ25は底部付近で雰囲気ガスQを給気又は排気する。これらの内、給気側の循環パイプ25は、電熱ヒータHの種類により、不活性ガス(窒素)或いは酸素を定期的に又は不定期に添加された不活性ガス(窒素)の供給源に接続されている。そして、ヒータ設置空間P内を循環した雰囲気ガスQは排気側の循環パイプ25から取り出され、冷却された後、外部に放出される。
 電熱ヒータHは、図2に示す実施例では、U形に成形された棒状の部材、或いは単なる棒状の部材(図示せず)である。電熱ヒータHが、例えば、Fe/Cr/Al系金属ヒータの場合は、ヒータ表面に電熱ヒータHの酸化を阻害するアルミナが形成されるので、酸素を定期的に又は不定期に添加される不活性ガス(窒素)が雰囲気ガスQとして選ばれる。
 電熱ヒータHが、例えば、SiC系ヒータの場合は、窒素主体の雰囲気ガスQであれば、SiN保護被膜がその表面に形成されるので、酸素が含まれない雰囲気ガスQが選ばれる。雰囲気ガスQに酸素が含まれているとSiが次第に酸化されてSiOとなり、通電しなくなる。
 中空筒体20も同様で、電熱ヒータHからの放射熱によって常時高温に曝されている。酸素を定期的に又は不定期に添加される不活性ガス(窒素)が雰囲気ガスQとして給気されれば、Cr被膜(酸化クロム被膜)がその表面に形成される。Alを含む鋼種の場合、アルミナの保護被膜がその表面に形成される。これらの保護被膜により、中空筒体20の酸化腐食による破損が抑制される。
 中空筒体20の底板23には、底板23から天井に向かって伸びる循環パイプ25以外に熱電対のような温度センサ70が設置されている(図16~図20)。この温度センサ70はヒータ設置空間Pの雰囲気温度を測定するもので、測定した温度データが、シーケンサーなどからなり、電源装置75の出力を制御する電力制御装置(図示せず)に与えられるようになっている。これにより温度センサ70で測定した温度データに基づいて筒状加熱部14に供給する電力量が制御されるようになっている。
 温度センサ70の保持の仕方は次の通りである。図16、図17の場合は、3枚のセンサ保持板61・62・63を使用し、図18、図19の場合は、2枚のセンサ保持板61・62と底板23を使用する。図16、図17の最下段のセンサ保持板63と底板23とは同じ働きをする。また、センサ保持板61・62(63)は内筒21の外周面に溶接される場合と、外筒22の内周面に溶接される場合の2通りがある。以下、図16に示す場合を代表例として説明する。
 内筒21の下部の外周面に上下に並べて3枚のセンサ保持板61・62・63が溶接されている。3枚のセンサ保持板61・62・63には上下方向に伸びた同一線上に通孔61h・62h・63hが穿設されている。ただし上・下段の通孔61h・63hに対して中段の通孔62hの中心は若干ずれている。材質的には上・下段のセンサ保持板61・63を同じ熱膨張係数を持つ金属板で構成し、中段のセンサ保持板62を前記上・下段のセンサ保持板61・63と異なる熱膨張係数を持つ金属板で形成してある。これによって、加熱時に上下のセンサ保持板61・63の伸びと中央のセンサ保持板62の伸びとが変わる。図17の矢印はセンサ保持板61・62・63の伸びを示す。
 常温状態では、図17のように、上・下段のセンサ保持板61・63の通孔61h・63hが温度センサ70の内筒側側面(或いは外筒側側面)を押圧し、中央のセンサ保持板62の通孔62hが温度センサ70の外筒側側面(或いは内筒側側面)を押圧して温度センサ70をヒータ設置空間P内に垂直に立設させている。
 この状態で加熱状態になると3枚のセンサ保持板61・62・63は外筒22方向に伸びると同時に通孔61h・62h・63hの孔径も拡大する。
 この時、上・下段のセンサ保持板61・63の伸びが中段のセンサ保持板62の伸びを越える(或いは下回る)と、上・下段のセンサ保持板61・63の通孔61h・63hは中段のセンサ保持板62の通孔62hに比べて外筒22側に大きく(或いは小さく)動き、上・下段のセンサ保持板61・63の通孔61h・63hが温度センサ70の内筒側側面(或いは外筒側側面)を押圧し、中段のセンサ保持板62の通孔62hが温度センサ70の外筒側側面(或いは内筒側側面)を押圧し、高温雰囲気中でも温度センサ70をヒータ設置空間P内に垂直に立設させる状態を保つ。
 図18は図16の変形例で、上記のように2枚のセンサ保持板61・62と底板23を使用する。底板23が上記の最下段のセンサ保持板63に相当し、作用効果は上記と同じである。
 底板23の通孔23hは、最下段のセンサ保持板63の通孔63hと同じ位置に設けられる。
 図20は最上段のセンサ保持板61を温度センサ70の先端に設けた例で、これにより温度センサ70が全長にわたって垂直に支持されることになる。
 薬液タンク18は、上述したように入口スクラバー2に供給する薬液Yを貯留し、また、入口スクラバー2および出口スクラバー5から排出される薬液Yを回収するタンクである。この薬液タンク18には、出口スクラバー5のスプレーノズル7にて噴霧された新しい薬液Yが常に供給されているので、所定量以上の薬液Yが貯留しないように余剰薬液Yをオーバーフローさせて排水処理装置(図示せず)へ送るようにしている。薬液タンク18の天井面と貯留薬液Yとの間には空間がある。
 なお、本実施例の排ガス処理システムXにおける高温となる排ガス処理装置1を除く他の部分には、処理対象排ガスEに含まれる、或いは当該ガスEの分解によって生じるフッ酸などの腐食性成分による腐蝕から各部を守るため、塩化ビニル、ポリエチレン、不飽和ポリエステル樹脂およびフッ素樹脂などによる耐蝕性ライニングやコーティングが施されている。
 出口スクラバー5は、処理対象排ガスEを排ガス処理装置1で熱分解した際に副生する排ガスG中の粉塵や水溶性成分を最終的に除去(液洗)すると共に、当該排ガスGを冷却するためのものであり、直管型のスクラバー本体5aと、このスクラバー本体5a内にて垂直方向に間隔を隔てて複数(本実施例では4段)設置された穿孔プレート6と、最上部の穿孔プレート6の直上部に取り付けられ、排ガスGの通流方向に対向するように上方から水などの薬液Yを噴霧する下向きのスプレーノズル7とで構成されている。
 この出口スクラバー5は、水などの薬液Yを貯留する薬液タンク18上に立設されており、下端が薬液タンク18の上面に開放し、スプレーノズル7から噴霧された薬液Yが薬液タンク18に送り込まれるようになっている。なお、スプレーノズル7には、上記のように薬液タンク18内の循環薬液Yではなく、新水などの新しい薬液Yが供給されている。そして出口スクラバー5の頂部出口には処理済みの排ガスGを大気中へ放出する排気ファン8に接続されている。
 以上のように構成された排ガス処理システムXおよび排ガス処理装置1の作用について説明する。まず、始めに排ガス処理装置1の運転スイッチ(図示せず)をオンにして筒状加熱部14を作動させ、反応器10内の加熱を開始する。続いて、筒状加熱部14の熱により、反応器10の内部空間の温度(本実施例では筒状加熱部14の内部空間の温度や反応器10の排ガス処理空間Sの温度)が処理対象排ガスEの熱分解温度以上になると、排気ファン8を作動させて、排ガス処理システムXへの処理対象排ガスEの導入を開始する。すると、処理対象排ガスEは、まず始めに入口スクラバー2に導入され、この入口スクラバー2内において水などの薬液Yで洗浄され、粉塵や水溶性成分などが除去される。
 入口スクラバー2で薬洗された処理対象排ガスEは、入口スクラバー2の下部から導出された排ガス送給配管3から排ガス導入口15を通って筒状加熱部14の内部空間に導かれ、当該電熱ヒータHにより加熱され、高温となった内筒21によって熱せられた内部空間の高温雰囲気によりその大部分が熱分解される。続いて、処理対象排ガスEは筒状加熱部14の先端開口(被加熱排ガス出口16)から反応器10の天井部分に位置する排ガス処理空間Sの高温領域内へと移動する。移動したガス流、すなわち未分解の処理対象排ガスEを一部に含む高温のガス流は、この高温領域内で残留した未分解の処理対象排ガスEの熱分解を進めながら、筒状加熱部14の外周を包み込むようにして分解排ガス排出口12へと移動し、有害成分が完全に分解された排ガスGとなって分解排ガス排出配管13及び薬液タンク18の内部空間を通って出口スクラバー5に導入される。
 そして、出口スクラバー5に導入された排ガスGは、水などの薬液Yで洗浄され、粉塵や水溶性成分などが除去されると共に冷却された後、排気ファン8を介して系外(大気中)に放出される。なお、操業中、ヒータ設置空間Pへの雰囲気ガスQの給排が行われ、電熱ヒータHと中空筒体20の内壁の保護がなされている。
 ここで、本筒状加熱部14は、金属製の内筒21と外筒22を備えた二重構造の中空筒体20であって、電熱ヒータHは背景技術で述べたセラミックス粉や耐火材に埋設されておらず、ディスク状の碍子30で部分的に支持されているだけである。それ故、従来例に比べてセラミックス粉や耐火材による余分な熱量の蓄熱がないので、これに伴う電熱ヒータHの過剰な昇温を避けることができ、しかも内筒21と外筒22は金属製なので迅速な昇温が可能となる。これによって電熱ヒータHの過負荷による断線が回避できる。
 (保持部材の変形例1:図4(b)、図5、図8(a)(b))
 上記実施例の碍子30はディスク状のもので、その上下がリング状の保持部材40で支持されている。上記リング状の保持部材40の断面は四角形である(図4(a))。碍子30と金属製の内筒21との間には十分な隙間Kが設けられている。しかしながら、上記のような高温雰囲気では碍子30の電気絶縁性が低下する。断面四角形のリング状の保持部材40は、碍子30との接触面積が大である。そのため高温雰囲気ではこの断面四角形のリング状の保持部材40を介して碍子30に保持されている電熱ヒータHと金属製の内筒21との間で漏電による短絡が発生し、これが電熱ヒータHの断線事故を引き起こすことがあった。
 そこで、このような場合には、図4(b)に示すように、保持部材40の形状を工夫することで対処した。即ち、保持部材40の断面が直角三角形(或いは楔状)のリング状部材で構成し、この保持部材40の傾斜面が上下にて対向するように配置し図8(a)、その内周面を内筒21の外周面に溶接し、碍子30の下面34及び上面35の内周稜線を保持部材40の傾斜面で「線接触」で保持するようにした。「線接触」する保持部材40の傾斜面が接触面41になる。これにより、碍子30と保持部材40の接触が碍子30の下面34及び上面35の内周稜線だけの「線接触」となり、保持部材40を介した漏電を大幅に減らすことが出来る。
 上記の場合は、保持部材40を内筒21(外筒22)に溶接する関係から、内筒21(外筒22)と同じ材質のものが使用されるが、既に述べたように、保持部材40の材質を内筒21(外筒22)より電気抵抗値の高く材質の異なるものを使用することも出来る。また、図8(b)のように支持部材44を使用することも出来る。これらの点は既に述べた例と同じである。
 (保持部材の変形例2:図6、図7、図8(a)(b))
 この場合は、保持部材40をリング状部材でなく、直角三角形(或いは楔状)の板状又はブロック状の部材とした点である。この直角三角形の板状又はブロック状の保持部材40を図6のように等角度で少なくとも3箇所(勿論、3箇所以上でも良い)に配置し、保持部材40の幅の狭い傾斜面で碍子30を支持した。これにより、幅の狭い傾斜面の両辺が碍子30の円弧状の内周面30bの稜線に2点で「点接触」することになる。この場合は、変形例1に比べて接触面積が更に減少し、漏電をより効果的に抑制できる。
 上記では、碍子30の下面34及び上面35を保持部材40の傾斜面で「線接触」又は「点接触」で保持する例を示したが、碍子30の脱落を防ぐことが出来ればよいので、碍子30の下面34だけを保持するようにしてもよい。
 このように碍子30の保持を「線接触」又は「点接触」とすることで、漏電面積を極端に絞ることができ、仮に碍子30の電気絶縁性が高温雰囲気で低下したとしても碍子30と内筒21(外筒22)との漏電量を大幅に抑制でき、電熱ヒータHの漏電・短絡による断線を回避できる。
 図では保持部材40を内筒21に溶接する場合を示したが、外筒22に溶接してもよいし、図示しないが、両者に溶接してもよい。この点はいずれの保持部材40においても該当する。また、支持部材44を使用することも可能である。
 (碍子の変形例1)
 図13~図15は、碍子30の変形例1で、碍子30の下面34又は上面35或いは上・下両面34・35に円筒状段部31に合わせて全周にリング状凹溝39を形成した例である。上・下両面34・35にリング状凹溝39を設けた例は図示していない。このようにリング状凹溝39と円筒状段部31の境界部分39aの幅を小さくすることで、碍子30の漏電面積を絞ることができる。
 また、碍子30がその上・下両面34・35において保持部材40にて保持されている場合、碍子30の上面35において、ヒータ保持孔32hから上面側の保持部材40aまでの距離と、下面34において、ヒータ保持孔32hから下面側の保持部材40bまでの距離が等しくなるように形成しておくことが好ましい。
 リング状凹溝39が存在する場合は、上記距離はリング状凹溝39の表面の長さも含める。このようにしておけば、高温化で碍子30の表面を流れる沿面漏電が発生した場合、表裏両短絡路の抵抗値が等価になり、一方が優先して沿面漏電を生じるようなことがない。また、上記距離を長くすることで抵抗値が上昇し、沿面漏電を抑制することが出来る。
 (碍子の変形例2)
 図8(a)(b)は、碍子30の変形例2で、ヒータ保持孔32hの内周面中央に全周にわたって電熱ヒータHの外周面に接する支持凸部32tが設けられている例である。支持凸部32tは電熱ヒータHに面する内周面が断面凸山形に形成されている。電熱ヒータHの外周面に接触するのは支持凸部32tの頂部であり、この場合も上記同様、碍子30の漏電面積を絞ることができる。
 (碍子の変形例3)
 図6、図7、図9(a)(b)は、碍子30の変形例3である。筒状加熱部14の電熱ヒータHや中空筒体20に対して不活性ガスなどを供給して加熱時の酸化消耗を抑制していても経年劣化により次第にその表面は酸化される。酸化された金属酸化物粉は表面から剥がれて落下する。電熱ヒータHの支持に碍子30を使用するとこの金属酸化物粉の大半はディスク状の碍子30の上面35に溜まる。金属酸化物粉の量が増えて来ると隣接する電熱ヒータH同士或いは電熱ヒータHと内筒21(又は外筒22)とを金属酸化物粉が連結させて短絡を生じさせ、電熱ヒータHを断線させる。
 この場合は、隣接するヒータ保持孔32hの間に碍子30の外接円30eからヒータ保持孔32hを越えて碍子30の内周面30bに近接する位置まで切り込まれ、前記隣接するヒータ保持孔32hを隔てる切欠38が設けられている例である。図9(a)は、碍子30の円筒状段部31に接する位置まで切り込まれ、図9(b)は、円筒状段部31に入り込む位置まで切り込まれている例である。落下した金属酸化物粉の一部は円筒状段部31の上に溜まり、残余は隣接するヒータ保持孔32h間の切欠38から更に下に落下し、隣接する電熱ヒータH、電熱ヒータHと内筒21(又は外筒22)の短絡が生じない。
 (碍子の変形例4)
 図10~図12は碍子30の変形例4で、隣接するヒータ保持孔32hの間に碍子30の外周面30aから前記ヒータ保持孔32hを越えて前記碍子30の内周面30bに近接する位置まで掘り込まれ、隣接するヒータ保持孔32hを隔てるセパレート溝36が碍子30の上面35に設けられている例である。
 隣接するヒータ保持孔32hを隔てるセパレート溝36が前記碍子30の上面35に設けられておれば、隣接するヒータ保持孔32h間に落下した金属酸化物粉はセパレート溝36内に落下し、セパレート溝36が金属酸化物粉で埋まるまで隣接する電熱ヒータHの短絡が生じない。
 1…排ガス処理装置、2…入口スクラバー、2a…スクラバー本体、3…排ガス送給配管、4…スプレーノズル、5…出口スクラバー、5a…出口スクラバー本体、6…穿孔プレート、7…スプレーノズル、8…排気ファン、10…反応器、11…底部、12…分解排ガス排出口、13…分解排ガス排出配管、14…筒状加熱部、15…排ガス導入口、16…被加熱排ガス出口、18…薬液タンク、19…循環ポンプ、20…中空筒体、21…内筒、22…外筒、23…底板、23h…通孔、24…天井板、25…循環パイプ、30…碍子、30a…外周面、30b…内周面、30e…外接円、31…円筒状段部、32…フランジ部、32h…ヒータ保持孔、32t…支持凸部、33…中央孔、34…下面、35…上面、36…セパレート溝、38…切欠、39…リング状凹溝、39a…境界部分、40…保持部材、40a…上側の保持部材、40b…下側の保持部材、41…接触面、42…接合層、44…支持部材、50…熱交換器、60…センサ保持部、61…(最上段の)センサ保持板、61h…(最上段のセンサ保持板の)通孔、62…(中段の)センサ保持板、62h…(中段のセンサ保持板の)通孔、63…(最下段の)センサ保持板、63h…(最下段のセンサ保持板の)通孔、70…温度センサ、75…電源装置、92…排ガスダクト、
 E…処理対象排ガス、G…排ガス、H…電熱ヒータ、Hw…ヒータ渡りプレート、K…隙間、P…ヒータ設置空間、Q…雰囲気ガス、S…排ガス処理空間、X…排ガス処理システム、Y…薬液
 
 

Claims (13)

  1.  内部に排ガス処理空間Sと、前記排ガス処理空間Sで処理された排ガスGの分解排ガス排出口12が設けられている反応器10内に設置された排ガス処理装置1の筒状加熱部14において、
     前記筒状加熱部14は、前記反応器10への挿入基部に排ガス導入口15が設けられ、前記筒状加熱部14の前記反応器10への挿入端に前記排ガス処理空間Sに開放した被加熱排ガス出口16が設けられており、
     前記筒状加熱部14は、金属製の内筒21と金属製の外筒22とを備えた二重構造の中空筒体20、前記内筒21を囲繞し且つ互いに間隔をあけて前記内筒21と前記外筒22との間のヒータ設置空間Pに設けられた複数の碍子30、前記碍子30に取り付けられた電熱ヒータH、及び前記内筒21又は前記外筒22のいずれか一方、或いはその両方21・22に取着され、前記碍子30の下面34、又は下面34及び上面35を支持して前記ヒータ設置空間Pに前記碍子30を保持する保持部材40とで構成されたことを特徴とする排ガス処理装置の筒状加熱部。
  2.  碍子30への保持部材40の接触面41は、前記碍子30の下面34、又は下面34及び上面35に対して傾斜面に形成されていることを特徴とする請求項1に記載の排ガス処理装置の筒状加熱部。
  3.  保持部材40は板状又はブロック状の部材で、内筒21又は外筒22に対して少なくとも3箇所に設置されてなることを特徴とする請求項1又は2に記載の排ガス処理装置の筒状加熱部。
  4.  保持部材40は内筒21又は外筒22より電気抵抗値の高い素材で構成され、溶接又は無機接着剤にて設けられた接合層42で前記内筒21又は前記外筒22に固着されていることを特徴とする請求項1~3のいずれかに記載の排ガス処理装置の筒状加熱部。
  5.  保持部材40は、内筒21又は外筒22より電気抵抗値の高い素材で構成され、
     内筒21又は外筒22と同じ素材であって、内筒21又は外筒22或いはその両方21・22に溶接され、下側の保持部材40bに対しては下側から、上側の保持部材40aに対しては上側から支持する支持部材44が更に設けられてなることを特徴とする請求項1~3のいずれかに記載の排ガス処理装置の筒状加熱部。
  6.  碍子30は中央に前記内筒21が挿通される中央孔33が穿設されたディスク状の形状であって、前記中央孔33の周囲に前記電熱ヒータHを保持するヒータ保持孔32hが複数箇所に形成されており、
     前記ヒータ保持孔32hの内周面に前記電熱ヒータHの外周面に接する支持凸部32tが設けられていることを特徴とする請求項1~5のいずれかに記載の排ガス処理装置の筒状加熱部。
  7.  隣接するヒータ保持孔32hの間に碍子30の外接円30eから前記ヒータ保持孔32hを越える位置まで切り取られ、前記隣接するヒータ保持孔32h同士を隔てる切欠38が設けられていることを特徴とする請求項1~6のいずれかに記載の排ガス処理装置の筒状加熱部。
     
  8.  隣接するヒータ保持孔32hの間に前記碍子30の外周面30aから前記ヒータ保持孔32hを越える位置まで掘り込まれ、前記隣接するヒータ保持孔32h同士を隔てるセパレート溝36が前記碍子30の上面35に設けられていることを特徴とする請求項1~6のいずれかに記載の排ガス処理装置の筒状加熱部。
     
  9.  碍子30の下面34、または上面35、或いは上・下両面34・35において、ヒータ保持孔32hと前記碍子30の内周面30bとの間に前記内周面30bの周囲にリング状凹溝39が設けられていることを特徴とする請求項1~8のいずれかに記載の排ガス処理装置の筒状加熱部。
  10.  碍子30がその上・下両面34・35において保持部材40にて保持されており、
     前記上面35におけるヒータ保持孔32hから上面側の保持部材40aまでの距離と、前記下面34におけるヒータ保持孔32hから下面側の保持部材40bまでの距離が等しくなるように前記リング状凹溝39が形成されていることを特徴とする請求項9に記載の排ガス処理装置の筒状加熱部。
  11.  内筒21の外周面又は外筒22の内周面に上下に並べて溶接され、温度センサ70を保持する通孔61h・62h・63hが同一線上に穿設された3枚のセンサ保持板61・62・63で構成されたセンサ保持部60が設けられており、
     前記通孔61h・62h・63hは、上段と下段のセンサ保持板61・63の前記通孔61h・63hの内周面が温度センサ70の一方の側面を押圧し、中段のセンサ保持板62の通孔62hが温度センサ70の反対側の側面を押圧するように設けられ、
     前記上段と下段のセンサ保持板61・63を同じ熱膨張係数を持つ金属板で構成し、中段のセンサ保持板62を前記上下のセンサ保持板61・63と異なる熱膨張係数を持つ金属板で形成してなることを特徴とする請求項1~10のいずれかに記載の排ガス処理装置の筒状加熱部。
  12.  内筒21の外周面又は外筒22の内周面に上下に並べて溶接され、温度センサ70を保持する通孔61h・62hが同一線上に穿設された2枚のセンサ保持板61・62と、内筒21と外筒22との間の底部に設けられ、前記通孔61h・62hを通る直線に一致して穿設された通孔23hを有する底板23とで構成されるセンサ保持部60が中空筒体20設けられており、
     前記通孔61h・62h・23hの内、上段の通孔61hと底板23の通孔23hの内周面が温度センサ70の一方の側面を押圧し、中央のセンサ保持板62の通孔62hが温度センサ70の反対側の側面を押圧するように設けられ、
     前記上段のセンサ保持板61と前記底板23を同じ熱膨張係数を持つ金属素材で構成し、前記上段のセンサ保持板61と前記底板23の間の中段のセンサ保持板62を前記上段のセンサ保持板61と異なる熱膨張係数を持つ金属素材で形成してなることを特徴とする請求項1~10のいずれかに記載の排ガス処理装置の筒状加熱部。
     
  13.  内部に排ガス処理空間Sと、前記排ガス処理空間Sで処理された排ガスGの分解排ガス排出口12が設けられている反応器10と、前記反応器10内に設置された筒状加熱部14とで構成された排ガス処理装置1であって、
     前記筒状加熱部14の前記反応器10への挿入基部に排ガス導入口15が設けられ、前記筒状加熱部14の前記反応器10への挿入端に前記排ガス処理空間Sに開放した被加熱排ガス出口16が設けられており、
     前記筒状加熱部14は、金属製の内筒21と金属製の外筒22とを備えた二重構造の中空筒体20、前記内筒21を囲繞し且つ互いに間隔をあけて前記内筒21と前記外筒22との間のヒータ設置空間Pに設けられた複数の碍子30、前記碍子30に取り付けられた電熱ヒータH、及び前記内筒21又は前記外筒22のいずれか一方、或いはその両方21・22に取着され、前記碍子30を支持して前記ヒータ設置空間Pに保持する保持部材40とで構成され、
     前記保持部材40は、前記内筒21又は前記外筒22に対して少なくとも3箇所に設置され、前記碍子30への前記保持部材40の接触面41は、前記碍子30の下面34、又は下面34及び上面35に対して点接触するように傾斜面に形成されていることを特徴とする排ガス処理装置。
PCT/JP2022/003418 2022-01-28 2022-01-28 筒状加熱部と該筒状加熱部を備えた排ガス処理装置 WO2023145022A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202280007645.0A CN116963820A (zh) 2022-01-28 2022-01-28 筒状加热部和具备该筒状加热部的废气处理装置
KR1020237008856A KR102569040B1 (ko) 2022-01-28 2022-01-28 통형상 가열부와 상기 통형상 가열부를 구비한 배기 가스 처리 장치
JP2022528148A JP7140440B1 (ja) 2022-01-28 2022-01-28 筒状加熱部と該筒状加熱部を備えた排ガス処理装置
PCT/JP2022/003418 WO2023145022A1 (ja) 2022-01-28 2022-01-28 筒状加熱部と該筒状加熱部を備えた排ガス処理装置
US18/247,127 US20240082777A1 (en) 2022-01-28 2022-01-28 Cylindrical heating unit and exhaust gas processing device including the cylindrical heating unit
TW111120055A TWI824541B (zh) 2022-01-28 2022-05-30 筒狀加熱部及具備筒狀加熱部之廢氣處理裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/003418 WO2023145022A1 (ja) 2022-01-28 2022-01-28 筒状加熱部と該筒状加熱部を備えた排ガス処理装置

Publications (1)

Publication Number Publication Date
WO2023145022A1 true WO2023145022A1 (ja) 2023-08-03

Family

ID=83354826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003418 WO2023145022A1 (ja) 2022-01-28 2022-01-28 筒状加熱部と該筒状加熱部を備えた排ガス処理装置

Country Status (6)

Country Link
US (1) US20240082777A1 (ja)
JP (1) JP7140440B1 (ja)
KR (1) KR102569040B1 (ja)
CN (1) CN116963820A (ja)
TW (1) TWI824541B (ja)
WO (1) WO2023145022A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7325151B1 (ja) 2023-04-10 2023-08-14 カンケンテクノ株式会社 筒状加熱部と該筒状加熱部を備えた排ガス処理装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1085555A (ja) * 1996-09-12 1998-04-07 Kanken Techno Kk 半導体排ガスの除害方法及び除害装置
WO2008096466A1 (ja) * 2007-02-07 2008-08-14 Kanken Techno Co., Ltd. ガス処理装置及び該装置を用いたガス処理システムとガス処理方法
JP2011029028A (ja) * 2009-07-27 2011-02-10 Mikuni Kiko Kk 炉内加熱ヒータ用碍子およびそれを用いた炉内加熱ヒータ
WO2021255893A1 (ja) * 2020-06-18 2021-12-23 カンケンテクノ株式会社 電熱装置
WO2022009313A1 (ja) * 2020-07-07 2022-01-13 カンケンテクノ株式会社 ガス処理炉及びこれを用いた排ガス処理装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002153726A (ja) * 2000-11-21 2002-05-28 Akiji Nishiwaki 排ガス処理装置
JP2009008333A (ja) * 2007-06-28 2009-01-15 Nissei Sangyo Kk 排ガス処理装置
CN107073392B (zh) * 2014-10-06 2020-08-25 北京康肯环保设备有限公司 废气处理装置
JP6126068B2 (ja) * 2014-12-02 2017-05-10 トヨタ自動車株式会社 排ガス浄化装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1085555A (ja) * 1996-09-12 1998-04-07 Kanken Techno Kk 半導体排ガスの除害方法及び除害装置
WO2008096466A1 (ja) * 2007-02-07 2008-08-14 Kanken Techno Co., Ltd. ガス処理装置及び該装置を用いたガス処理システムとガス処理方法
JP2011029028A (ja) * 2009-07-27 2011-02-10 Mikuni Kiko Kk 炉内加熱ヒータ用碍子およびそれを用いた炉内加熱ヒータ
WO2021255893A1 (ja) * 2020-06-18 2021-12-23 カンケンテクノ株式会社 電熱装置
WO2022009313A1 (ja) * 2020-07-07 2022-01-13 カンケンテクノ株式会社 ガス処理炉及びこれを用いた排ガス処理装置

Also Published As

Publication number Publication date
JP7140440B1 (ja) 2022-09-21
JPWO2023145022A1 (ja) 2023-08-03
US20240082777A1 (en) 2024-03-14
TWI824541B (zh) 2023-12-01
CN116963820A (zh) 2023-10-27
KR102569040B1 (ko) 2023-08-22
KR20230117326A (ko) 2023-08-08
TW202331149A (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
CN1685180A (zh) 气体加热方法和气体加热设备
JP7140440B1 (ja) 筒状加熱部と該筒状加熱部を備えた排ガス処理装置
JP2009034682A (ja) 熱交換器の管束を内蔵した触媒燃焼反応器及び触媒構造体
KR101688611B1 (ko) 플라즈마-촉매 방식의 스크러버
TWI429477B (zh) A gas treatment device, a gas treatment system using the apparatus, and a gas treatment method
TWI435021B (zh) Piping and handling systems with heating devices
JP2007059061A (ja) 電気ヒータおよび該ヒータを用いた半導体排ガス処理装置
JP5848468B2 (ja) 反応装置
JP7325151B1 (ja) 筒状加熱部と該筒状加熱部を備えた排ガス処理装置
TWI793614B (zh) 氣體處理爐及使用其之廢氣處理裝置
JP3171636B2 (ja) 液体加熱装置
KR20230116036A (ko) 반도체 제조 배기가스 처리 장치
KR100188311B1 (ko) 소각설비에 사용되는 배기가스 처리장치
JP2000342931A (ja) パーフルオロカーボンガスの除去方法及び除去装置
JP3936455B2 (ja) 高温腐食性ガス体の除害装置及び除害方法
JP4480949B2 (ja) 反応装置及び反応方法
WO2022101981A1 (ja) ガス処理炉及びこれを用いた排ガス処理装置
CA2271153A1 (en) Deodorizing apparatus and deodorizing method
KR20200092046A (ko) 수소제거용 촉매체 및 이를 포함하는 피동형 촉매 수소제거장치
US7078000B2 (en) Apparatus and method for mat protection of non-thermal plasma reactor
KR20230128229A (ko) 가스 처리 시스템 및 이를 이용한 가스 처리 방법
CN116459640A (zh) 一种气体处理炉及排气处理装置
KR20090019291A (ko) 히터 및 이를 이용한 폐가스 처리장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022528148

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280007645.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18247127

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22923886

Country of ref document: EP

Kind code of ref document: A1