WO2022001880A1 - 硅氧复合负极材料、负极和锂离子电池及其制备方法 - Google Patents
硅氧复合负极材料、负极和锂离子电池及其制备方法 Download PDFInfo
- Publication number
- WO2022001880A1 WO2022001880A1 PCT/CN2021/102416 CN2021102416W WO2022001880A1 WO 2022001880 A1 WO2022001880 A1 WO 2022001880A1 CN 2021102416 W CN2021102416 W CN 2021102416W WO 2022001880 A1 WO2022001880 A1 WO 2022001880A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- silicon
- negative electrode
- lithium
- electrode material
- sio
- Prior art date
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 139
- 239000007773 negative electrode material Substances 0.000 title claims abstract description 131
- OBNDGIHQAIXEAO-UHFFFAOYSA-N [O].[Si] Chemical compound [O].[Si] OBNDGIHQAIXEAO-UHFFFAOYSA-N 0.000 title claims abstract description 122
- 238000002360 preparation method Methods 0.000 title claims abstract description 32
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 18
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 18
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 122
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 117
- 239000010703 silicon Substances 0.000 claims abstract description 117
- 239000000463 material Substances 0.000 claims abstract description 110
- 239000007789 gas Substances 0.000 claims abstract description 66
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 60
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 58
- 239000005543 nano-size silicon particle Substances 0.000 claims abstract description 57
- 229910052814 silicon oxide Inorganic materials 0.000 claims abstract description 55
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 54
- 239000000203 mixture Substances 0.000 claims abstract description 41
- PAZHGORSDKKUPI-UHFFFAOYSA-N lithium metasilicate Chemical compound [Li+].[Li+].[O-][Si]([O-])=O PAZHGORSDKKUPI-UHFFFAOYSA-N 0.000 claims abstract description 39
- 229910052912 lithium silicate Inorganic materials 0.000 claims abstract description 37
- 230000001681 protective effect Effects 0.000 claims abstract description 33
- 150000001875 compounds Chemical class 0.000 claims abstract description 27
- 239000012298 atmosphere Substances 0.000 claims abstract description 19
- 239000011246 composite particle Substances 0.000 claims abstract description 13
- 238000001354 calcination Methods 0.000 claims abstract description 7
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 claims description 154
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 102
- 229910052799 carbon Inorganic materials 0.000 claims description 93
- 229910004283 SiO 4 Inorganic materials 0.000 claims description 63
- 230000002209 hydrophobic effect Effects 0.000 claims description 50
- 238000000034 method Methods 0.000 claims description 38
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 claims description 34
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 26
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 24
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 18
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 18
- 229910052751 metal Inorganic materials 0.000 claims description 18
- 239000002184 metal Substances 0.000 claims description 18
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 17
- 239000005639 Lauric acid Substances 0.000 claims description 17
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 15
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 15
- 229910000676 Si alloy Inorganic materials 0.000 claims description 14
- 238000006243 chemical reaction Methods 0.000 claims description 14
- 229910052786 argon Inorganic materials 0.000 claims description 13
- 229910000103 lithium hydride Inorganic materials 0.000 claims description 11
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 claims description 10
- 235000021355 Stearic acid Nutrition 0.000 claims description 10
- -1 alkyl lithium Chemical compound 0.000 claims description 10
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 10
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 claims description 10
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 claims description 10
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 claims description 10
- 239000008117 stearic acid Substances 0.000 claims description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 9
- 239000011248 coating agent Substances 0.000 claims description 9
- 238000000576 coating method Methods 0.000 claims description 9
- 239000001307 helium Substances 0.000 claims description 9
- 229910052734 helium Inorganic materials 0.000 claims description 9
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 9
- 239000001257 hydrogen Substances 0.000 claims description 9
- 229910052739 hydrogen Inorganic materials 0.000 claims description 9
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 9
- 229910052743 krypton Inorganic materials 0.000 claims description 9
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 claims description 9
- 229910052754 neon Inorganic materials 0.000 claims description 9
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 claims description 9
- 229910052757 nitrogen Inorganic materials 0.000 claims description 9
- 229910021332 silicide Inorganic materials 0.000 claims description 9
- 229910052724 xenon Inorganic materials 0.000 claims description 9
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 claims description 9
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 claims description 8
- 229930195733 hydrocarbon Natural products 0.000 claims description 8
- 150000002430 hydrocarbons Chemical class 0.000 claims description 8
- 229930182817 methionine Natural products 0.000 claims description 8
- 239000002994 raw material Substances 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 claims description 7
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 claims description 7
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 7
- 229910052760 oxygen Inorganic materials 0.000 claims description 7
- 239000000126 substance Substances 0.000 claims description 7
- 239000013078 crystal Substances 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 6
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 claims description 6
- 150000004671 saturated fatty acids Chemical class 0.000 claims description 6
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims description 6
- 239000012448 Lithium borohydride Substances 0.000 claims description 5
- ZVLDJSZFKQJMKD-UHFFFAOYSA-N [Li].[Si] Chemical compound [Li].[Si] ZVLDJSZFKQJMKD-UHFFFAOYSA-N 0.000 claims description 5
- 150000001413 amino acids Chemical class 0.000 claims description 5
- 238000000498 ball milling Methods 0.000 claims description 5
- 238000007493 shaping process Methods 0.000 claims description 5
- 229910000838 Al alloy Inorganic materials 0.000 claims description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 4
- 239000005977 Ethylene Substances 0.000 claims description 4
- 229910000861 Mg alloy Inorganic materials 0.000 claims description 4
- MKPXGEVFQSIKGE-UHFFFAOYSA-N [Mg].[Si] Chemical compound [Mg].[Si] MKPXGEVFQSIKGE-UHFFFAOYSA-N 0.000 claims description 4
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 claims description 4
- 230000035484 reaction time Effects 0.000 claims description 4
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 claims description 3
- 229910000733 Li alloy Inorganic materials 0.000 claims description 3
- 229910000528 Na alloy Inorganic materials 0.000 claims description 3
- JCCZVLHHCNQSNM-UHFFFAOYSA-N [Na][Si] Chemical compound [Na][Si] JCCZVLHHCNQSNM-UHFFFAOYSA-N 0.000 claims description 3
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 claims description 3
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 3
- 229910021419 crystalline silicon Inorganic materials 0.000 claims description 3
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 claims description 3
- 235000019253 formic acid Nutrition 0.000 claims description 3
- 238000007654 immersion Methods 0.000 claims description 3
- 239000001989 lithium alloy Substances 0.000 claims description 3
- 239000012280 lithium aluminium hydride Substances 0.000 claims description 3
- AFRJJFRNGGLMDW-UHFFFAOYSA-N lithium amide Chemical compound [Li+].[NH2-] AFRJJFRNGGLMDW-UHFFFAOYSA-N 0.000 claims description 3
- 229910044991 metal oxide Inorganic materials 0.000 claims description 3
- 150000004706 metal oxides Chemical class 0.000 claims description 3
- 239000002904 solvent Substances 0.000 claims description 3
- 238000003756 stirring Methods 0.000 claims description 3
- 238000007598 dipping method Methods 0.000 claims description 2
- 230000004927 fusion Effects 0.000 claims 1
- 229910052909 inorganic silicate Inorganic materials 0.000 abstract 2
- 239000002245 particle Substances 0.000 description 20
- 239000000843 powder Substances 0.000 description 14
- 230000008569 process Effects 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 12
- 239000010439 graphite Substances 0.000 description 10
- 229910002804 graphite Inorganic materials 0.000 description 10
- 230000002829 reductive effect Effects 0.000 description 10
- 230000002441 reversible effect Effects 0.000 description 9
- 239000010405 anode material Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 238000009833 condensation Methods 0.000 description 7
- 230000005494 condensation Effects 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 239000011734 sodium Substances 0.000 description 7
- 239000012300 argon atmosphere Substances 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 6
- 239000006258 conductive agent Substances 0.000 description 6
- 239000011863 silicon-based powder Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000002002 slurry Substances 0.000 description 5
- 239000011149 active material Substances 0.000 description 4
- 235000001014 amino acid Nutrition 0.000 description 4
- 229940024606 amino acid Drugs 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 239000007772 electrode material Substances 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 238000011056 performance test Methods 0.000 description 4
- 150000004760 silicates Chemical class 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 229910004762 CaSiO Inorganic materials 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- 206010010144 Completed suicide Diseases 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910017625 MgSiO Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 239000006183 anode active material Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- GHVNFZFCNZKVNT-UHFFFAOYSA-N decanoic acid Chemical compound CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- UKMSUNONTOPOIO-UHFFFAOYSA-N docosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCC(O)=O UKMSUNONTOPOIO-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- VKOBVWXKNCXXDE-UHFFFAOYSA-N icosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCC(O)=O VKOBVWXKNCXXDE-UHFFFAOYSA-N 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 238000006138 lithiation reaction Methods 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- FBUKVWPVBMHYJY-UHFFFAOYSA-N nonanoic acid Chemical compound CCCCCCCCC(O)=O FBUKVWPVBMHYJY-UHFFFAOYSA-N 0.000 description 2
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000011856 silicon-based particle Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 229910016380 Al4Si3 Inorganic materials 0.000 description 1
- 235000021357 Behenic acid Nutrition 0.000 description 1
- 229910014526 Ca2Si Inorganic materials 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 239000005632 Capric acid (CAS 334-48-5) Substances 0.000 description 1
- 239000005635 Caprylic acid (CAS 124-07-2) Substances 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- 229910012032 Li4SiO Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 229910001290 LiPF6 Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910019018 Mg 2 Si Inorganic materials 0.000 description 1
- 229910019752 Mg2Si Inorganic materials 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- RXBBZJPEEIUBJG-UHFFFAOYSA-N [O].[Si].[Li] Chemical compound [O].[Si].[Li] RXBBZJPEEIUBJG-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 150000001345 alkine derivatives Chemical class 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 229940116226 behenic acid Drugs 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- RDYMFSUJUZBWLH-UHFFFAOYSA-N endosulfan Chemical compound C12COS(=O)OCC2C2(Cl)C(Cl)=C(Cl)C1(Cl)C2(Cl)Cl RDYMFSUJUZBWLH-UHFFFAOYSA-N 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 229910052634 enstatite Inorganic materials 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 150000002642 lithium compounds Chemical class 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 230000003446 memory effect Effects 0.000 description 1
- 239000011268 mixed slurry Substances 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 229960002446 octanoic acid Drugs 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 235000003441 saturated fatty acids Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/483—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present disclosure belongs to the technical field of energy storage materials, and relates to a negative electrode material, a preparation method thereof, and a lithium ion battery, in particular to a silicon-oxygen composite negative electrode material, a negative electrode, a lithium ion battery, and a preparation method thereof.
- Lithium-ion batteries have been widely used in portable electronic products and electric vehicles due to their advantages of high operating voltage, long cycle life, no memory effect, small self-discharge, and environmental friendliness.
- commercial lithium-ion batteries mainly use graphite-based anode materials, but its theoretical specific capacity is only 372mAh/g, which cannot meet the demand for high energy density of future lithium-ion batteries.
- the theoretical capacity of the existing Si is as high as 4200mAh/g, its expansion reaches 300%, which affects the cycle performance and restricts the market promotion and application.
- the corresponding silicon-oxygen material has better cycle performance, but the first time efficiency is low. During the first charging, 20-50% of lithium needs to be consumed for SEI film formation, which greatly reduces the first Coulomb efficiency. Based on this, the most studied method to improve the first effect of silicon-oxygen materials is doping, among which lithium doping is more effective.
- the first-efficiency improvement after lithium doping will also bring about a decrease in the capacity of the silicon-oxygen material.
- Lithium doping consumes the irreversible phase in silicon and oxygen on the one hand, and also consumes part of the reversible phase. While improving the first effect of silicon-oxygen materials, reducing capacity loss is of great significance to the later use and commercialization of silicon-oxygen materials.
- back-end batteries need higher energy density to meet the needs of use and development. Therefore, it is particularly important to improve the gram capacity of the front-end material itself.
- the present disclosure provides a silicon-oxygen composite negative electrode material
- the silicon-oxygen composite negative electrode material includes composite particles
- the composite particles include lithium silicate and a silicon-containing material
- the lithium silicate is Li 4 SiO 4
- the silicon-containing material is A material is dispersed in the lithium silicate
- the silicon-containing material includes at least one of elemental silicon, silicon oxide (144), silicon alloy, metal silicide, and silicate.
- the grain size of Li 4 SiO 4 is below 60 nm.
- the silicon-oxygen composite negative electrode material further includes a carbon layer formed on the surface of the composite particles.
- the thickness of the carbon layer is 300nm-2000nm.
- the silicon-oxygen composite negative electrode material further includes a hydrophobic layer formed on the surface of the carbon layer.
- the hydrophobic layer has a thickness of 2 nm to 500 nm.
- the material of the hydrophobic layer includes at least one of saturated fatty acid and amino acid.
- the material of the hydrophobic layer includes at least one of lauric acid, stearic acid, leucine, methionine and phenylalanine.
- the silicon-containing material includes nano-silicon and silicon oxide, and the nano-silicon is dispersed within the silicon oxide in the form of nano-silicon aggregates.
- the nanosilicon aggregate includes a plurality of nanosilicon grains.
- the nano-silicon grain size ranges from 0 nm to 10 nm, excluding 0 nm.
- the chemical formula of the silicon oxide is SiO x, where 0 ⁇ x ⁇ 1.2.
- the mass ratio of the lithium silicate to the silicon-containing material is 0.05-1.1;
- the silicon alloy includes at least one of a silicon-lithium alloy, a silicon-sodium alloy, a silicon-magnesium alloy, and a silicon-aluminum alloy;
- the elemental silicon includes at least one of nano-silicon, amorphous silicon, and crystalline silicon.
- the present disclosure provides a preparation method of the silicon-oxygen composite negative electrode material, the method comprising the following steps:
- the mixture containing the silicon source and the lithium-containing compound is calcined in a protective gas atmosphere and at a temperature of 300° C. to 600° C. to obtain the silicon-oxygen composite negative electrode material, wherein the general formula of the silicon source is SiO y , the The molar ratio of the silicon source to the lithium-containing compound is 1:1.2-1:3.
- the silicon source is silicon monoxide.
- the lithium-containing compound is a reducing lithium-containing compound.
- the reducing lithium-containing compound includes at least one of lithium hydride, alkyl lithium, metallic lithium, lithium aluminum hydride, lithium amide, and lithium borohydride;
- the mixture further includes at least one of a metal element and a metal oxide
- the mixture is obtained by at least one of mixing, fusing and stirring in a VC mixer.
- the protective gas includes at least one of hydrogen, nitrogen, helium, neon, argon, krypton, and xenon.
- the roasting time is 2h-8h.
- the preparation method of the silicon source includes: heating a raw material capable of generating silicon oxide gas under vacuum conditions or a protective gas atmosphere, and then cooling and shaping to obtain the silicon source after generating the silicon oxide gas.
- the silicon oxide gas generating feedstock comprises a mixture of Si and SiO 2 .
- the raw material capable of producing silicon oxide gas comprises a mixture of Si and O 2 , or a mixture of SiO 2 and carbon, or a mixture of at least two of silicon and silicon-containing oxide SiO m , wherein 1 ⁇ m ⁇ 6.
- the shaping includes at least one of crushing, ball milling, and classification.
- the heating temperature is 900°C-1500°C.
- the protective gas includes at least one of hydrogen, nitrogen, helium, neon, argon, krypton, and xenon.
- the surface of the silicon source is coated with a carbon layer.
- the method for coating the surface of the silicon source with a carbon layer includes: reacting the silicon source with an organic carbon source gas under a protective gas atmosphere to obtain a silicon source coated with a carbon layer .
- the protective gas includes at least one of hydrogen, nitrogen, helium, neon, argon, krypton, and xenon.
- the organic carbon source gas is a hydrocarbon
- the hydrocarbons include, but are not limited to, at least one of methane, ethylene, acetylene, acetone, and benzene.
- the reaction temperature at which the reaction is performed is 600°C-1000°C.
- the reaction time for the reaction is 0.5h-10.0h.
- the preparation method further includes the step of: impregnating the silicon-oxygen composite negative electrode material in a hydrophobic solution.
- the solute of the hydrophobic solution includes at least one of lauric acid, stearic acid, leucine, methionine and phenylalanine
- the solvent of the hydrophobic solution includes water, At least one of methanol, ethanol, ether, benzene or formic acid.
- the soaking time is 2h-6h.
- the method comprises the following steps:
- the mixture of Si and SiO 2 is heated at 900°C-1500°C under vacuum conditions or protective gas atmosphere to generate silicon oxide gas, then cooled and shaped to obtain silicon monoxide;
- the silicon monoxide is heated to 600°C-1000°C, an organic carbon source gas is introduced, the temperature is kept for 0.5-10.0 h, and then cooled to obtain silicon monoxide coated with a carbon layer;
- the carbon layer-coated silicon monoxide and the lithium-containing compound are mixed in a molar ratio of 1:1.2-1:3, calcined at 300°C-600°C for 2h-8h in a protective gas atmosphere, cooled to room temperature, and the The calcined product is immersed in a hydrophobic solution for 2h-6h to obtain the silicon-oxygen composite negative electrode material.
- the present disclosure provides a negative electrode comprising the silicon-oxygen composite negative electrode material.
- the present disclosure provides a lithium ion battery comprising the silicon-oxygen composite negative electrode material.
- FIG. 1 is the first charge-discharge curve of the silicon-oxygen composite negative electrode material provided in Embodiment 1 of the present disclosure
- Example 3 is an XRD image of the silicon-based composite material of Example 1 of the disclosure.
- Example 5 is a SEM photograph of the silicon-oxygen composite negative electrode material provided in Example 2 of the present disclosure.
- FIG. 8 is a schematic structural diagram of a silicon-oxygen composite negative electrode material in some embodiments of the disclosure.
- FIG. 9 is a schematic structural diagram of a silicon-oxygen composite negative electrode material in some embodiments of the disclosure.
- FIG. 10 is a schematic structural diagram of a silicon-oxygen composite negative electrode material in some embodiments of the disclosure.
- Reference numerals 100-composite particle; 120-lithium silicate; 140-silicon-containing material; 142-nano-silicon grain; 144-silicon oxide; 160-carbon layer; 180-hydrophobic layer.
- the silicon-oxygen composite negative electrode material includes composite particles 100, the composite particles 100 include lithium silicate 120 and a silicon-containing material 140, the lithium silicate 120 is Li 4 SiO 4 , and the silicon-containing material 140 is dispersed in In the lithium silicate 120, the silicon-containing material 140 includes at least one of elemental silicon, silicon oxide 144, silicon alloy, metal silicide and silicate.
- the silicon-containing material 140 is uniformly dispersed in the lithium silicate 120 , in other words, the lithium silicate 120 wraps the silicon-containing material 140 therein.
- the silicon-oxygen composite negative electrode material provided in this embodiment is a pre-lithium silicon negative electrode, which only contains Li 4 SiO 4 , a type of lithium silicate, so that the silicon-oxygen negative electrode material can still have a higher capacity after pre-lithiation, so that As a result, the silicon-oxygen composite negative electrode material provided by the embodiment of the present disclosure has the advantages of stable processing performance, high specific capacity, high initial efficiency, and long cycle life.
- Pre-lithiation of the silicon oxide 144 will bring about a certain capacity loss.
- Different types of lithium silicates are generated after pre-lithium, resulting in different capacity losses.
- the amount of silicon monoxide consumed by different lithium silicates will be different. Only when Li 4 SiO 4 is generated, the least amount of silicon monoxide is consumed, and the capacity loss is the least.
- the silicon-oxygen composite negative electrode material provided by the present disclosure only contains Li 4 SiO 4 , one type of lithium silicate, which can effectively reduce the capacity loss of the pre-lithium silicon-oxygen material.
- the grain size of Li 4 SiO 4 is below 60 nm, for example, 60 nm, 50 nm, 40 nm, 30 nm, 20 nm, or 10 nm.
- the grain size of Li 4 SiO 4 is in the range below 60 nm, which can further improve the good electrical conductivity of the negative electrode material, the cycle performance of the material, and the reversible capacity of the electrode material. The rate performance of the material is poor, the material cycle is poor, and the capacity decays quickly.
- the silicon-oxygen composite negative electrode material further includes a carbon layer 160 formed on the surface of the composite particles 100 .
- the surface of the composite particle 100 is coated with a carbon layer 160, which cooperates with the generation of only Li 4 SiO 4 , further improves the electrical conductivity of the material, and reduces the electronic conduction resistance between the particles.
- the carbon layer 160 includes, but is not limited to, the carbon layer 160 formed for pyrolysis carbon.
- the thickness of the carbon layer 160 is 300 nm-2000 nm, such as 300 nm, 500 nm, 1000 nm, 1500 nm or 2000 nm, and the like.
- the thickness of the carbon layer is in the range of 300nm-2000nm, which can synergize with Li 4 SiO 4 and its grain size to further improve the conductivity of the material without reducing the capacity of the molecular material. If the carbon layer 160 is too thin, the conductivity of the material is not significantly improved, and if the carbon layer 160 is too thick, the capacity of the molecular material is low.
- the silicon-oxygen composite negative electrode material further includes a hydrophobic layer 180 formed on the surface of the carbon layer 160 .
- the silicon-oxygen composite negative electrode material is coated with the hydrophobic layer 180, which improves the water-based processing performance of the material, and effectively reduces the probability of gas generation in the water-based slurry.
- the thickness of the hydrophobic layer 180 is 2 nm-500 nm, such as 2 nm, 5 nm, 10 nm, 50 nm, 100 nm, 200 nm, 300 nm, 400 nm, or 500 nm, and the like.
- the hydrophobic layer 180 in this range can tightly wrap the material, thereby further improving the processing performance of the negative electrode material. If the hydrophobic layer 180 is too thin, due to the uneven distribution of the hydrophobic layer 180, the internal coating is not tight, which will affect the processing performance of the material. .
- the constituent materials of the hydrophobic layer 180 include, but are not limited to, any one of saturated fatty acids and amino acids, or a combination of at least two of them.
- saturated fatty acid and amino acid are selected as the hydrophobic layer material, so that the coating integrity of the material to the electrode material is higher.
- the saturated fatty acid has 8 or more carbon atoms.
- the saturated fatty acid includes at least one of lauric acid, stearic acid, caprylic acid, nonanoic acid, capric acid, myristic acid, palmitic acid, pearlitic acid, stearic acid, arachidic acid, and behenic acid kind.
- the amino acid includes at least one of leucine, methionine, tryptophan, valine, isoleucine, alanine, phenylalanine, and methionine.
- the constituent material of the hydrophobic layer 180 includes at least one of lauric acid, stearic acid, leucine, methionine and phenylalanine.
- the silicon-containing material 140 may be dispersed in the lithium silicate 120 .
- the silicon-containing material 140 includes at least one of elemental silicon, silicon oxide 144, silicon alloys, metal suicides, and silicates.
- the silicon-containing material 140 is a non-metallic silicon-containing material.
- the non-metallic silicon-containing material includes at least one of elemental silicon, silicon oxide 144, silicon alloys, metal suicides, and silicates.
- the silicon-containing material (or non-metallic silicon-containing material) includes at least one of nano-silicon and silicon oxide.
- the elemental silicon includes at least one of nano-silicon, amorphous silicon, and crystalline silicon.
- the silicon-containing material 140 includes nano-silicon and silicon oxide 144 , and the nano-silicon is dispersed inside the silicon oxide 144 in the form of nano-silicon aggregates.
- the nano-silicon aggregate includes a plurality of nano-silicon crystal grains 142; the nano-silicon aggregate refers to an aggregate composed of several or even thousands of nano-silicon crystal grains 142 through physical or chemical binding force.
- the nano-silicon grains 142 have a size of 0 nm to 10 nm, excluding 0 nm, such as 10 nm, 9 nm, 8 nm, 7 nm, 6 nm, or 5 nm, and the like. If the size of the nano-silicon crystal grains 142 is too large, it will cause the expansion of the material, thereby affecting the cycle performance of the material. When the size of nano-silicon grains 142 is controlled below 10 nm, on the one hand, it is beneficial to improve the overall distribution uniformity of nano-silicon in the particles, and on the other hand, it can better control the overall silicon-oxygen ratio of nano-silicon and silicon oxide.
- the nano-silicon is not dispersed in the silicon oxide in the form of aggregates, its activity is high and it is more easily oxidized, resulting in a decrease in the specific capacity and first-efficiency of the material.
- the crystallization rate of the nanosilicon was faster during the sintering process with the addition of the lithium source. If it exists in the form of aggregates, the crystallization rate will delay the growth rate of crystal nucleus due to the existence of more grain boundaries and mutual interference.
- the silicon oxide 144 for the formula SiO x where 0 ⁇ x ⁇ 1.2, for example, x is 1.1 or the like 0.1,0.2,0.5,0.8,1.
- x is in the range of 0 ⁇ x ⁇ 1.2, the expansion rate of the electrode material can be further reduced, the cycle performance of the battery can be improved, and the first effect can be improved.
- x is 0, that is, there is no oxygen reaction, the expansion rate of the electrode material will increase, which will reduce the cycle performance of the material. If x is too large, the proportion of oxygen in the material will be large, and the material efficiency will be low, thereby reducing the initial efficiency.
- the mass ratio of Li 4 SiO 4 and the silicon-containing material 140 is 0.05-1.1, eg, 0.05, 0.1, 0.5, 1, or 1.1, or the like.
- the mass ratio is in the range of 0.05-1.1, which not only improves the first effect of the material, but also does not reduce the capacity of the material, thereby improving the rate of the material. If the proportion of Li 4 SiO 4 is too low, the first effect of the material will not be improved significantly. If the proportion of Li 4 SiO 4 is too high, the capacity of the material will be reduced, and the rate performance of the material will be reduced at the same time.
- silicon alloys include, but are not limited to, at least one of silicon-lithium alloys, silicon-sodium alloys, silicon-magnesium alloys, and silicon-aluminum alloys; metal silicides include, but are not limited to, Mg 2 Si, Ca 2 Si, and Al 4 At least one of Si 3 ; silicates include but are not limited to K 2 SiO 3 , K 4 SiO 4 , K 2 Si 2 O 5 , Na 2 SiO 3 , Na 4 SiO 4 , Na 2 Si 2 O 5 , Mg At least one of 2 SiO 4 , MgSiO 3 , Ca 2 SiO 4 , CaSiO 3 , Al 4 (SiO 4 ) 3 and Al 2 (SiO 3 ) 3 . Wherein, at least one of silicon alloy, metal silicide and silicate is dispersed in lithium silicate.
- One embodiment provides a method for preparing the silicon-oxygen composite negative electrode material, the method comprising the following steps:
- the mixture containing the silicon source and the lithium-containing compound is calcined in a protective gas atmosphere and at a temperature of 300° C. to 600° C. to obtain a silicon-oxygen composite negative electrode material, wherein the general formula of the silicon source is SiO y , and the silicon source and the The molar ratio of the lithium compound is 1:1.2-1:3.
- the molar ratio of silicon source to lithium-containing compound is 1:1.2, 1:1.23, 1:1.25, 1:1.27, 1:1.29, or 1:3, and the like.
- the generated product when the molar ratio of the silicon source to the lithium-containing compound is in the range of 1:1.2-1:3, the generated product only contains Li 4 SiO 4 , but does not contain other lithium silicate composite materials. Good stability.
- the molar ratio of silicon source SiO y to lithium-containing compounds is too high (that is, too much silicon source), which will lead to the formation of lithium-silicon alloys and reduce the stability of the material; the molar ratio of silicon source SiO y to lithium-containing compounds is too low (ie, lithium too much source), which will result in the inability to obtain Li 4 SiO 4 products.
- the calcination temperature is 300°C-600°C, such as 300°C, 400°C, 500°C, or 600°C, and the like. If the calcination temperature is too high, the silicon grains will grow sharply and the cycle performance will be reduced; if the calcination temperature is too low, the reaction between the lithium-containing compound and the silicon source will be incomplete, and the expected pre-lithium effect will not be achieved.
- the roasting time is 2h-8h, such as 2h, 3h, 4h, 5h, 6h, 7h or 8h, and the like.
- this time range not only can the reaction be fully reacted, but only only Li 4 SiO 4 can be obtained, and the volume is moderate, and the expansion rate of the negative electrode material is further reduced in synergy. If the reaction time is too short, the reaction will not be sufficient, and one type of lithium silicate containing only Li 4 SiO 4 will not be obtained. The expansion rate of the material increases.
- the molar ratio of the silicon source to the lithium-containing compound and the calcination temperature play a key role in obtaining a silicon-oxygen composite negative electrode material containing only Li 4 SiO 4 , a lithium silicate.
- the silicon source includes silicon monoxide, SiO.
- the lithium-containing compound is a reducing lithium-containing compound.
- the reducing lithium-containing compound includes, but is not limited to, any one or a combination of at least two of lithium hydride, lithium alkyl, lithium metal, lithium aluminum hydride, lithium amide, or lithium borohydride.
- the mixture is obtained by at least one of VC mixer, blending or stirring.
- the protective gas includes at least one of hydrogen, nitrogen, helium, neon, argon, krypton, and xenon.
- the mixture includes at least one of metal element and metal oxide; at this time, the obtained negative electrode material also contains at least one of silicon alloy, metal silicide and silicate;
- the metal can be magnesium, aluminum, calcium, sodium, etc.
- the silicon alloy can be silicon alloys such as silicon-magnesium alloys, silicon-aluminum alloys, etc.
- metal silicides can be metal silicides such as Mg2Si, Ca2Si, Al4Si3, etc.
- silicates can be K 2 SiO 3 , K 4 SiO 4 , K 2 Si 2 O 5 , Na 2 SiO 3 , Na 4 SiO 4 , Na 2 Si 2 O 5 , Mg 2 SiO 4 , MgSiO 3 , Ca 2 SiO 4 , CaSiO 3 , at least one of Al 4 (SiO 4 ) 3 or Al 2 (SiO 3 ) 3.
- at least one of silicon alloy, metal silicide and silicate is dispersed in lithium silicate.
- a method for preparing a silicon source includes: heating a raw material capable of generating silicon oxide gas under vacuum conditions or a protective gas atmosphere, generating silicon oxide gas, cooling and shaping to obtain a silicon source.
- the raw material to produce the silicon oxide gas comprises a mixture of Si and O 2, or a mixture of SiO 2 and carbon, silicon, oxide of a mixture of at least two silicon-containing S i O m in which 1 ⁇ m ⁇ 6.
- the silicon oxide gas generating feedstock includes a mixture of Si and SiO 2 .
- shaping includes at least one of crushing, ball milling, or classification.
- the heating temperature is 900°C-1500°C, such as 900°C, 1000°C, 1100°C, 1200°C, 1300°C, 1400°C or 1500°C, and the like.
- the protective gas includes at least one of hydrogen, nitrogen, helium, neon, argon, krypton, and xenon.
- the surface of the silicon source is coated with a carbon layer 160 .
- the method of coating the carbon layer 160 on the surface of the silicon source includes: reacting the silicon source with an organic carbon source gas under a protective gas atmosphere to obtain the silicon source coated with the carbon layer 160 .
- the protective gas includes at least one of hydrogen, nitrogen, helium, neon, argon, krypton, and xenon.
- the organic carbon source gas includes hydrocarbons.
- the organic carbon source gas includes at least one of hydrocarbons and ketones.
- the hydrocarbons include at least one of alkanes, alkenes, alkynes, and aromatic hydrocarbons.
- the hydrocarbons include, but are not limited to, at least one of methane, ethylene, acetylene, acetone, and benzene.
- the reaction temperature at which the reaction is performed is 600°C-1000°C, such as 600°C, 700°C, 800°C, 900°C, or 1000°C, and the like.
- the reaction time is 0.5h-10.0h, such as 0.5h, 1h, 2h, 3h, 4h, 5h, 6h, 7h, 8h, 9h, or 10h, and the like.
- the preparation method further includes the steps of: immersing the silicon-oxygen composite negative electrode material in a hydrophobic solution and separating solid-liquid.
- the solute of the hydrophobic solution includes at least one of lauric acid, stearic acid, leucine, methionine and phenylalanine
- the solvent of the hydrophobic solution includes water, methanol, ethanol, At least one of ether and formic acid.
- the time of immersion is 2h-6h, such as 2h, 3h, 4h, 5h or 6h, and the like.
- the parameters of the structure in which nano-silicon is formed in the form of nano-silicon aggregates dispersed inside the silicon oxide 144 in this embodiment include: (1) the molar ratio of the silicon source to the lithium-containing compound, and (2) the baking temperature and time after mixing with the lithium source. , 3 immersion time in hydrophobic solution.
- the synergy of these three elements to obtain the structure is indispensable.
- These parameters are within the disclosed range, which can prevent the size of the nano-silicon aggregates from being too large or too small, so as to form the above-mentioned structure and achieve the optimal technical effect. If the size of nano-silicon aggregates is too large, the volume expansion of the material will be large, and the capacity of the cell will decay rapidly.
- the preparation method of composite negative electrode material comprises the following steps:
- the mixture of Si and SiO 2 is heated at 900°C-1500°C under vacuum conditions or protective gas atmosphere to generate silicon oxide gas, then cooled and shaped to obtain silicon monoxide;
- the silicon monoxide is heated to 600°C-1000°C, an organic carbon source gas is introduced, the temperature is kept for 0.5-10.0 h and then cooled to obtain a silicon monoxide coated with a carbon layer 160;
- the silicon monoxide coated with the carbon layer 160 and the lithium-containing compound are mixed in a molar ratio of 1:1.2-1:3, calcined at 300-600° C. for 2-8 hours in a protective gas atmosphere, cooled to room temperature, and the calcined product It is immersed in a hydrophobic solution for 2h-6h to obtain a silicon-oxygen composite negative electrode material.
- the silicon-oxygen composite anode material can be used as an anode active material, such as an anode active material in a lithium ion battery.
- An embodiment provides a negative electrode material, and the negative electrode material includes the above-mentioned silicon-oxygen composite negative electrode material.
- the negative electrode material includes a silicon-oxygen composite negative electrode material, a conductive agent, and a binder.
- the negative electrode material further comprises graphite.
- graphite accounts for 20-97% of the total mass percentage of the silicon-oxygen composite negative electrode material and graphite.
- One embodiment provides a method for preparing a negative electrode material, comprising: mixing a silicon-oxygen composite negative electrode material, a conductive agent and a binder.
- One embodiment provides a negative electrode including a silicon-oxygen composite negative electrode material.
- One embodiment provides a lithium-ion battery, comprising the above-mentioned silicon-oxygen composite negative electrode material.
- the silicon-oxygen composite negative electrode material provided by some embodiments of the present disclosure only contains Li 4 SiO 4 , one type of lithium silicate, and does not contain other types of lithium silicate, which makes the silicon-oxygen composite negative electrode material provided by the present disclosure have The advantages of stable processing performance, high specific capacity, high first-time efficiency and long cycle life.
- the first reversible capacity of the silicon-oxygen composite negative electrode material provided by the present disclosure can reach 1540 mAh/g, the first coulombic efficiency can reach 87.2%, and the capacity retention rate for 50 deduction cycles can reach 89.2%.
- the preparation method provided by some embodiments of the present disclosure ensures that only Li 4 SiO 4 is contained in the product by controlling the molar ratio of the silicon source to the lithium-containing compound and the calcination temperature, and the preparation method is simple to operate. , the process is short, and it is easy to carry out industrialized large-scale production.
- the silicon-oxygen composite negative electrode material is coated with a carbon layer, so that the conductivity of the negative electrode material is enhanced, and the electron conduction resistance between particles is reduced.
- the silicon-oxygen composite negative electrode material is coated with a hydrophobic layer, so that the processing performance of the negative electrode material is improved, and the probability of gas generation in the aqueous slurry is reduced, thereby cooperating with the generation of only Li 4 SiO 4 in the embodiment of the present disclosure, and further improving the first time of the negative electrode material. Reversible capacity, first coulombic efficiency, and capacity retention over 50 electrical cycles.
- the surface of the silicon-oxygen composite negative electrode material is covered with a carbon layer, and the surface of the carbon layer also includes a lauric acid hydrophobic layer. The thickness of the carbon layer is 300 nm, the thickness of the hydrophobic layer is 2 nm, and the mass ratio of Li 4 SiO 4 and silicon-containing material is 1:1.0.
- FIG. 2 is an SEM photo of the silicon-oxygen composite negative electrode material provided in this example. From this figure, it can be seen that the particles of the composite material are evenly distributed, and there is no residual lithium source. At the same time, no other substances other than particles are found. The hydrophobic substances in the material are uniformly wrapped on the surface of the particles.
- the surface of the silicon-oxygen composite negative electrode material is covered with a carbon layer, and the surface of the carbon layer further includes a stearic acid hydrophobic layer.
- the thickness of the carbon layer is 800 nm
- the thickness of the hydrophobic layer is 500 nm
- the mass ratio of Li 4 SiO 4 and silicon-containing material is 1:1.1.
- FIG. 5 is an SEM photo of the silicon-oxygen composite negative electrode material provided in this example. From this figure, it can be seen that the composite material particles are also uniformly distributed, there is no residual lithium source, and other substances other than particles are not found.
- the surface of the silicon-oxygen composite negative electrode material is covered with a carbon layer, and the surface of the carbon layer further includes a phenylalanine hydrophobic layer.
- the thickness of the carbon layer is 2000 nm
- the thickness of the hydrophobic layer is 100 nm
- the mass ratio of Li 4 SiO 4 and silicon-containing material is 1:0.6.
- FIG. 7 is an SEM photo of the silicon-oxygen composite negative electrode material provided in this embodiment. From this figure, it can be seen that the composite material particles are also uniformly distributed, there is no residual lithium source, and other substances other than particles are not found.
- the method for preparing a silicon-oxygen composite negative electrode material provided in this example is the same as Example 1 except that the operation of step (2) is not performed, that is, the carbon layer coating is not performed.
- the silicon-oxygen composite negative electrode material provided in this example does not contain a carbon layer.
- the method for preparing a silicon-oxygen composite negative electrode material provided in this example is the same as Example 1 except that the dipping operation in step (3) is not performed.
- the silicon-oxygen composite negative electrode material provided in this example does not contain a hydrophobic layer.
- the method for preparing a silicon-oxygen composite negative electrode material provided in this example is the same as Example 1 except that the operation of step (2) and the impregnation operation of step (3) are not performed.
- the silicon-oxygen composite negative electrode material provided in this example does not contain a carbon layer and a hydrophobic layer.
- SiO2 and Si (1) take the Si powder 1kg, 2kg SiO 2 powder, VC into the mixer for 30 min; the mixture was put into a vacuum furnace; vacuum degree is under negative pressure 5Pa heated to 1300 °C And keep it for 18h, generate SiO vapor in the furnace and then rapidly condense (the condensation temperature is 950 °C) to generate SiOy block; the SiOy block is crushed, ball milled, classified and other processes to control the median particle size to 6 ⁇ m to obtain monoxide Silicon powder material;
- the silicon-oxygen composite negative electrode material provided in this embodiment includes Li4SiO4 and a silicon-containing material.
- the silicon-containing material is dispersed in Li4SiO4.
- the bulk form is dispersed inside the silicon oxide, and the grain size (average grain size) of the nano-silicon is 8.8 nm; the grain size (average grain size) of Li 4 SiO 4 is 500 nm.
- the surface of the silicon-oxygen composite negative electrode material is covered with a carbon layer, and the surface of the carbon layer also includes a lauric acid hydrophobic layer.
- the thickness of the carbon layer was 300nm, the thickness of the hydrophobic layer is 2nm, Li4SiO 4 and the mass ratio of silicon-containing material is 1: 1.0.
- Example 8 Compared with Example 8, the magnesium oxide was changed to Al, the added mass was 100 g, and other operations were the same as those of the newly added Example 1.
- the surface of the silicon-oxygen composite negative electrode material is covered with a carbon layer, and the surface of the carbon layer also includes a lauric acid hydrophobic layer.
- the thickness of the carbon layer is 300 nm
- the thickness of the hydrophobic layer is 2 nm
- the mass ratio of Li 4 SiO 4 and silicon-containing material is 1:1.0.
- This comparative example is the same as Example 1 except that the amount of lithium hydride used in step (3) is 120 g (the molar ratio of silicon monoxide containing carbon layer and lithium hydride is 1:0.4).
- silicon-oxygen composite anode materials prepared in each example and comparative example were tested by the following methods
- the silicon-oxygen composite negative electrode materials prepared in Examples and Comparative Examples were used as active materials; Homogeneous solution, the mass percentage is controlled to be 1.2%, as the binder; the conductive carbon black is used as the conductive agent; the active material, the conductive agent, and the binder are mixed in a mass ratio of 85:15:10, and the mixture is coated on the On the copper foil negative electrode current collector, the total solid content of the slurry is controlled to be 50%, and finally, a negative electrode pole piece is obtained by drying and rolling, and a negative electrode active material layer is formed on the upper layer of the negative electrode pole piece.
- metal lithium sheet (diameter 10cm, thickness 1.2cm, Jiangxi Ganfeng Lithium Industry) as the counter electrode (ie positive electrode), PP (polypropylene) (diaphragm thickness 16um, Shanghai Enjie) as the separator, LiPF6/EC+DEC+DMC (1:1:1 volume ratio of EC, DEC, and DMC) was used as the electrolyte, while a simulated battery was assembled in an argon-filled glove box (Braun glove box) using the outer casing.
- PP polypropylene
- LiPF6/EC+DEC+DMC (1:1:1 volume ratio of EC, DEC, and DMC
- the first reversible specific capacity (mAh/g) the data is obtained by the following blue power 5V/10mA battery tester;
- the test method is as follows: use the blue electric 5V/10mA battery tester (CT2001A, Wuhan Jinnuo Electronics Co., Ltd. LAND battery test system) to test the electrochemical performance of the button battery, the charging voltage is 1.5V, discharge to 0.01V, charge and discharge The rate was 0.1C, and the first charge specific capacity (mAh/g) when charged and discharged with a 0.1C rate current and the first discharge specific capacity (mAh/g) when charged and discharged with a 0.1C rate current were measured.
- the silicon-oxygen composite negative electrode material and graphite prepared by embodiment and comparative example are mixed as active material by mass ratio 1:9; SBR (styrene-butadiene rubber)+CMC (carboxymethyl cellulose) is equally mixed with mass ratio 1:9: 1 Mix, add water to dissolve to form a uniform solution, and control the mass percentage to 1.2% as a binder; use conductive carbon black as a conductive agent; where the active material, conductive agent, and binder are mixed in a mass ratio of 92:4:4 , Coating the mixed slurry on the copper foil negative current collector, controlling the total solid content of the slurry to be 50%, and finally drying and rolling to obtain a negative electrode sheet, and the upper layer of the negative electrode electrode sheet is the negative electrode active material layer.
- SBR styrene-butadiene rubber
- CMC carboxymethyl cellulose
- a metal lithium sheet (diameter 10cm, thickness 1.2cm, Jiangxi Ganfeng Lithium Industry) was used as the counter electrode, PP/PE (diaphragm thickness 16um, Shanghai Enjie) was used as the separator, LiPF 6 /EC+DEC+DMC (EC, DEC and The volume ratio of DMC was 1:1:1) as the electrolyte, and the coin cells were assembled in an argon-filled glove box (Braun glove box).
- 50-cycle cycle retention rate (%) discharge specific capacity in the 50th cycle/discharge specific capacity in the 1st cycle ⁇ 100% (Formula 1);
- the instrument setting parameters are: the charging voltage is 1.5V, the discharge is 0.01V, the charging and discharging rate is 0.1C, and the battery is measured. The discharge specific capacity at the 1st and 50th cycle of the cycle was calculated to calculate the electrochemical performance. .
- the test data of the silicon-oxygen composite negative electrode materials of Examples 1-7 and Comparative Example 1 are shown in Table 1.
- Figure 1 is the first charge-discharge curve of the silicon-oxygen composite negative electrode material provided in Example 1. From this figure, it can be seen that the specific charge capacity of the composite material is above 1700mAh/g, and the reversible specific capacity is above 1450mAh/g.
- Fig. 3 is the XRD image of the silicon-based composite material of Example 1. There are only peaks of Si and Li 4 SiO 4 in the image, and the peak positions of Li 4 SiO 4 are 23-26° and 36-38°.
- Example 2-9 is, XRD image, only image peaks of Si and Li4SiO4, and Li 4 SiO can get the same peak position 4.
- Figure 4 is the first charge-discharge curve of the silicon-oxygen composite negative electrode material provided in Example 2.
- Figure 6 is the first charge-discharge curve of the silicon-oxygen composite negative electrode material provided in Example 3. From this figure, it can be seen that the specific charge capacity of the composite material is above 1680mAh/g, and the reversible specific capacity is above 1450mAh/g.
- the silicon-oxygen composite negative electrode materials prepared in Examples 1-4 only contain Li 4 SiO 4 which is a kind of lithium silicate and do not contain other kinds of lithium silicates.
- the silicon-oxygen composite anode material has the advantages of stable processing performance, high specific capacity, high initial efficiency and long cycle life.
- Example 1 and Example 5 Compared with Example 1 and Example 5, a carbon layer is contained, so that compared with Example 1 and Example 5, the electrical conductivity of the material is improved, the electron conduction resistance between particles is reduced, and the Coulombic efficiency is improved.
- Example 1 and Example 6 Compared with Example 1 and Example 6, the hydrophobic layer is contained, so that compared with Example 1 and Example 6, the processability of the material is improved, and the probability of gas generation in the aqueous slurry is reduced.
- Example 7 does not contain a carbon layer and a hydrophobic layer, so that compared to Example 1, the material has poor electrical conductivity and processability.
- Comparative Example 1 because the amount of added lithium source is small, it is not enough to generate Li 4 SiO 4 , resulting in no Li 4 SiO 4 in the prepared negative electrode material.
- the lithium silicate in the product of this comparative example is Li 2 SiO 3 , which is obviously reduced.
- the first reversible capacity of the product of Comparative Example 1 was obtained.
- the present disclosure illustrates the detailed process equipment and process flow of the present disclosure through the above-mentioned embodiments, but the present disclosure is not limited to the above-mentioned detailed process equipment and process flow, that is, it does not mean that the present disclosure must rely on the above-mentioned detailed process equipment and process flow. Process flow can be implemented. Those skilled in the art should understand that any improvement of the present disclosure, equivalent replacement of each raw material of the disclosed product, addition of auxiliary components, selection of specific methods, etc., all fall within the protection scope and disclosure scope of the present disclosure.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
Claims (14)
- 一种硅氧复合负极材料,所述硅氧复合负极材料包括复合粒子(100),所述复合粒子(100)包括硅酸锂(120)和含硅材料(140),所述硅酸锂(120)为Li 4SiO 4,所述含硅材料分散在所述硅酸锂(120)中,所述含硅材料(140)包括单质硅、硅氧化物(144)、、硅合金、金属硅化物及硅酸盐中的至少一种。
- 根据权利要求1所述的硅氧复合负极材料,其中,所述硅氧复合负极材料包括以下特征(1)~(5)中的至少一个:(1)所述硅酸锂(120)的晶粒尺寸在60nm以下;(2)所述硅氧复合负极材料还包括形成于所述复合粒子(100)表面的碳层(160);(3)所述碳层(160)的厚度为300nm-2000nm;(4)所述硅氧复合负极材料还包括形成于所述碳层(160)的表面的疏水层(180);(5)所述疏水层(180)的厚度为2nm-500nm。
- 根据权利要求2所述的硅氧复合负极材料,其中,所述疏水层(180)的材料包括饱和脂肪酸及氨基酸中的至少一种;及/或所述疏水层(180)的材料包括月桂酸、硬脂酸、亮氨酸、甲硫氨酸及苯丙氨酸中的至少一种。
- 根据权利要求1-3任一所述的硅氧复合负极材料,其中,所述硅氧复合负极材料包括以下特征(1)~(7)中的至少一个:(1)所述含硅材料(140)包括纳米硅和硅氧化物(144),所述纳米硅以纳米硅聚集体形式分散在硅氧化物(144)内部;(2)所述纳米硅是以纳米硅聚集体的形式分散在硅氧化物内部,所述纳米硅聚集体包括多个纳米硅晶粒(142);(3)所述纳米硅晶粒(142)尺寸在0nm~10nm,且不包括0nm;(4)所述硅氧化物(144)的化学式为SiO x,其中0<x<1.2;(5)所述硅酸锂(120)和含硅材料(140)的质量比为0.05-1.1;(6)所述硅合金包括硅锂合金、硅钠合金、硅镁合金及硅铝合金中的至少一种;(7)所述单质硅包括纳米硅、非晶硅及结晶硅中的至少一种。
- 一种如权利要求1-4任一项所述的硅氧复合负极材料的制备方法,其中,所述方法包括以下步骤:将含有硅源与含锂化合物的混合物,在保护性气体气氛及温度为300℃-600℃下焙烧,得到所述硅氧复合负极材料,其中所述硅源的通式为SiO y,所述硅源与含锂化合物的摩尔比为1:1.2-1:3。
- 根据权利要求5所述的硅氧复合负极材料的制备方法,其中,所述制备方法包括以下特征(1)~(8)中的至少一个:(1)0<y<2;(2)所述硅源为一氧化硅;(3)所述含锂化合物为还原性含锂化合物;(4)所述还原性含锂化合物包括氢化锂、烷基锂、金属锂、氢化铝锂、氨基锂及硼氢化锂中的至少一种;(5)所述混合物还包括金属单质及金属氧化物中的至少一种;(6)所述混合物包括VC混合机、融合或搅拌中的至少一种方法混合得到;(7)所述保护性气体包括氢气、氮气、氦气、氖气、氩气、氪气及氙气中至少一种;(8)所述焙烧的时间为2h-8h。
- 根据权利要求5-6任一所述的制备方法,其中,所述硅源的制备方法包括:在真空条件或保护性气体气氛下对能产生硅氧化物气体的原料进行加热,产生硅氧化物气体后冷却、整形得到硅源。
- 根据权利要求7所述的制备方法,其中,所述制备方法包括以下特征(1)~(5)中的至少一个:(1)所述能产生硅氧化物气体的原料包括Si和SiO 2的混合物;(2)所述能产生硅氧化物气体的原料包括下述混合中的至少一种:Si和O 2的混合物,或者SiO 2和碳的混合物,或者硅、含有硅的氧化物SiO m中的至少两种混合物,其中1≤m≤6;(3)所述整形包括破碎、球磨或分级中的任意一种或至少两种的组合;(4)所述加热的温度为900℃-1500℃;(5)所述保护性气体包括氢气、氮气、氦气、氖气、氩气、氪气及氙气中至少一种。
- 根据权利要求5-8任一项所述的制备方法,其中,所述硅源的表面包覆有碳层(160);及/或在所述硅源的表面包覆碳层(160)的方法包括:在保护性气体气氛下,将所述硅源与有机碳源气体进行反应,得到包覆有碳层(160)的硅源。
- 根据权利要求9所述的制备方法,所述制备方法包括以下特征(1)~(5)中的至少一个:(1)所述保护性气体包括氢气、氮气、氦气、氖气、氩气、氪气及氙气中至少一种;(2)所述有机碳源气体为烃类;(3)所述烃类包括甲烷、乙烯、乙炔、丙酮及苯中的至少一种;(4)所述进行反应的反应温度为600℃-1000℃;(5)所述进行反应的反应时间为0.5h-10.0h。
- 根据权利要求5-10任一项所述的制备方法,其中,所述制备方法还包括步骤:将所述硅氧复合负极材料在疏水性溶液中进行浸渍;及/或所述疏水性溶液的溶质包括月桂酸、硬脂酸、亮氨酸、甲硫氨酸或苯丙氨酸中的至少一种;所述疏水性溶液的溶剂包括水、甲醇、乙醇、乙醚、苯或甲酸中的至少一种;及/或所述浸渍的时间为2-6h。
- 根据权利要求5-11任一项所述的制备方法,其中,所述方法包括以下步骤:在真空条件或保护性气体气氛下对Si和SiO 2的混合物进行900-1500℃加热,产生硅氧化物气体后冷却、整形得到一氧化硅;在保护性气体氛围下,将所述一氧化硅升温至600-1000℃,通入有机碳源气体,保温0.5-10.0h后冷却,得到包覆有碳层(160)的一氧化硅;将所述包覆有碳层(160)的一氧化硅与含锂化合物以摩尔比1:1.2-1:3进行混合,在保护性气体气氛下300-600℃焙烧2-8h,冷却至室温,将焙烧产物置于疏水性溶液中浸渍2-6h,得到所述硅氧复合负极材料。
- 一种负极,所述负极包括:如权利要求1-4任一所述的硅氧复合负极材料。
- 一种锂离子电池,所述锂离子电池包含如权利要求1-4任一项所述的硅氧复合负极材料。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010597112.5 | 2020-06-28 | ||
CN202010597112.5A CN111710845A (zh) | 2020-06-28 | 2020-06-28 | 硅氧复合负极材料及其制备方法和锂离子电池 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022001880A1 true WO2022001880A1 (zh) | 2022-01-06 |
Family
ID=72543628
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/102416 WO2022001880A1 (zh) | 2020-06-28 | 2021-06-25 | 硅氧复合负极材料、负极和锂离子电池及其制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111710845A (zh) |
WO (1) | WO2022001880A1 (zh) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114744166A (zh) * | 2022-02-25 | 2022-07-12 | 深圳市翔丰华科技股份有限公司 | 预锂化硅氧复合材料的制备方法 |
CN114759180A (zh) * | 2022-04-28 | 2022-07-15 | 中南大学 | SiOx/锂硅酸盐复合材料及其制备方法和应用 |
CN114835131A (zh) * | 2022-03-21 | 2022-08-02 | 湖北钛时代新能源有限公司 | 硅酸锂负极材料的制备方法以及锂离子电池 |
CN114864887A (zh) * | 2022-04-07 | 2022-08-05 | 湖南金硅科技有限公司 | 一种氧化亚硅流动性的改性方法 |
CN114975967A (zh) * | 2022-06-29 | 2022-08-30 | 宁波杉杉新材料科技有限公司 | 一种预锂化硅氧复合材料及其制备方法、负极极片、电池和应用 |
CN115557505A (zh) * | 2022-09-23 | 2023-01-03 | 合肥国轩高科动力能源有限公司 | 一种预锂化硅基负极材料及其制备方法 |
CN115621534A (zh) * | 2022-12-16 | 2023-01-17 | 宁德新能源科技有限公司 | 一种电化学装置和电子装置 |
CN116544381A (zh) * | 2023-05-30 | 2023-08-04 | 广东凯金新能源科技股份有限公司 | 预镁硅氧负极材料及其制备方法、及二次电池 |
EP4365980A1 (en) * | 2022-10-06 | 2024-05-08 | SK On Co., Ltd. | Silicon oxide-based negative electrode active material for secondary battery, method of producing the same, and negative electrode for secondary battery including the same |
WO2024183705A1 (zh) * | 2023-03-09 | 2024-09-12 | 深圳市德方创域新能源科技有限公司 | 一种复合补锂材料及其制备方法与应用 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111710845A (zh) * | 2020-06-28 | 2020-09-25 | 贝特瑞新材料集团股份有限公司 | 硅氧复合负极材料及其制备方法和锂离子电池 |
CN114079050A (zh) * | 2020-08-31 | 2022-02-22 | 贝特瑞新材料集团股份有限公司 | 硅氧复合材料、其制备方法、负极材料及锂离子电池 |
CN116210097A (zh) * | 2020-11-12 | 2023-06-02 | 宁德时代新能源科技股份有限公司 | 硅基材料、其制备方法及其相关的二次电池、电池模块、电池包和装置 |
CN113130872B (zh) * | 2021-04-14 | 2022-12-13 | 贝特瑞新材料集团股份有限公司 | 一种复合材料及其制备方法、负极材料、负极片和锂离子电池 |
CN113745465B (zh) * | 2021-08-31 | 2023-01-24 | 长沙矿冶研究院有限责任公司 | 一种硅碳复合材料的制备方法 |
CN114050269A (zh) * | 2021-11-29 | 2022-02-15 | 上海兰钧新能源科技有限公司 | 一种负极材料及其制备方法和应用 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007059213A (ja) * | 2005-08-24 | 2007-03-08 | Toshiba Corp | 非水電解質電池および負極活物質 |
CN106816594A (zh) * | 2017-03-06 | 2017-06-09 | 深圳市贝特瑞新能源材料股份有限公司 | 一种复合物、其制备方法及在锂离子二次电池中的用途 |
CN107210436A (zh) * | 2015-01-28 | 2017-09-26 | 三洋电机株式会社 | 非水电解质二次电池用负极活性物质及非水电解质二次电池 |
CN110710033A (zh) * | 2017-06-02 | 2020-01-17 | 信越化学工业株式会社 | 非水电解质二次电池用负极活性物质及非水电解质二次电池、以及非水电解质二次电池用负极材料的制备方法 |
CN111293284A (zh) * | 2018-12-07 | 2020-06-16 | 贝特瑞新材料集团股份有限公司 | 一种负极材料、及其制备方法和用途 |
CN111710845A (zh) * | 2020-06-28 | 2020-09-25 | 贝特瑞新材料集团股份有限公司 | 硅氧复合负极材料及其制备方法和锂离子电池 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6474548B2 (ja) * | 2014-01-16 | 2019-02-27 | 信越化学工業株式会社 | 非水電解質二次電池用負極材及び負極活物質粒子の製造方法 |
WO2016035290A1 (ja) * | 2014-09-03 | 2016-03-10 | 三洋電機株式会社 | 非水電解質二次電池用負極活物質及び非水電解質二次電池 |
CN110970600B (zh) * | 2018-09-28 | 2023-06-30 | 贝特瑞新材料集团股份有限公司 | 一种锂离子二次电池负极材料及其制备方法和应用 |
EP3879605A4 (en) * | 2018-11-24 | 2022-01-05 | Huawei Technologies Co., Ltd. | NEGATIVE ELECTRODE MATERIAL MADE OF SILICON-OXYGEN COMPOSITE AND MANUFACTURING PROCESS FOR IT |
CN109950510A (zh) * | 2019-04-10 | 2019-06-28 | 珠海冠宇电池有限公司 | 一种负极极片及含有该极片的锂离子电池 |
CN111180693B (zh) * | 2019-12-31 | 2021-06-04 | 安普瑞斯(南京)有限公司 | 负极活性材料及其制备方法和应用 |
-
2020
- 2020-06-28 CN CN202010597112.5A patent/CN111710845A/zh active Pending
-
2021
- 2021-06-25 WO PCT/CN2021/102416 patent/WO2022001880A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007059213A (ja) * | 2005-08-24 | 2007-03-08 | Toshiba Corp | 非水電解質電池および負極活物質 |
CN107210436A (zh) * | 2015-01-28 | 2017-09-26 | 三洋电机株式会社 | 非水电解质二次电池用负极活性物质及非水电解质二次电池 |
CN106816594A (zh) * | 2017-03-06 | 2017-06-09 | 深圳市贝特瑞新能源材料股份有限公司 | 一种复合物、其制备方法及在锂离子二次电池中的用途 |
CN110710033A (zh) * | 2017-06-02 | 2020-01-17 | 信越化学工业株式会社 | 非水电解质二次电池用负极活性物质及非水电解质二次电池、以及非水电解质二次电池用负极材料的制备方法 |
CN111293284A (zh) * | 2018-12-07 | 2020-06-16 | 贝特瑞新材料集团股份有限公司 | 一种负极材料、及其制备方法和用途 |
CN111710845A (zh) * | 2020-06-28 | 2020-09-25 | 贝特瑞新材料集团股份有限公司 | 硅氧复合负极材料及其制备方法和锂离子电池 |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114744166A (zh) * | 2022-02-25 | 2022-07-12 | 深圳市翔丰华科技股份有限公司 | 预锂化硅氧复合材料的制备方法 |
CN114835131A (zh) * | 2022-03-21 | 2022-08-02 | 湖北钛时代新能源有限公司 | 硅酸锂负极材料的制备方法以及锂离子电池 |
CN114864887B (zh) * | 2022-04-07 | 2023-09-22 | 湖南金硅科技有限公司 | 一种氧化亚硅流动性的改性方法 |
CN114864887A (zh) * | 2022-04-07 | 2022-08-05 | 湖南金硅科技有限公司 | 一种氧化亚硅流动性的改性方法 |
CN114759180A (zh) * | 2022-04-28 | 2022-07-15 | 中南大学 | SiOx/锂硅酸盐复合材料及其制备方法和应用 |
CN114975967A (zh) * | 2022-06-29 | 2022-08-30 | 宁波杉杉新材料科技有限公司 | 一种预锂化硅氧复合材料及其制备方法、负极极片、电池和应用 |
CN115557505B (zh) * | 2022-09-23 | 2024-02-06 | 合肥国轩高科动力能源有限公司 | 一种预锂化硅基负极材料及其制备方法 |
CN115557505A (zh) * | 2022-09-23 | 2023-01-03 | 合肥国轩高科动力能源有限公司 | 一种预锂化硅基负极材料及其制备方法 |
EP4365980A1 (en) * | 2022-10-06 | 2024-05-08 | SK On Co., Ltd. | Silicon oxide-based negative electrode active material for secondary battery, method of producing the same, and negative electrode for secondary battery including the same |
CN115621534A (zh) * | 2022-12-16 | 2023-01-17 | 宁德新能源科技有限公司 | 一种电化学装置和电子装置 |
WO2024183705A1 (zh) * | 2023-03-09 | 2024-09-12 | 深圳市德方创域新能源科技有限公司 | 一种复合补锂材料及其制备方法与应用 |
CN116544381A (zh) * | 2023-05-30 | 2023-08-04 | 广东凯金新能源科技股份有限公司 | 预镁硅氧负极材料及其制备方法、及二次电池 |
CN116544381B (zh) * | 2023-05-30 | 2024-04-05 | 广东凯金新能源科技股份有限公司 | 预镁硅氧负极材料及其制备方法、及二次电池 |
Also Published As
Publication number | Publication date |
---|---|
CN111710845A (zh) | 2020-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022001880A1 (zh) | 硅氧复合负极材料、负极和锂离子电池及其制备方法 | |
WO2022088543A1 (zh) | 用于电池的负极活性材料及其制备方法、电池负极、电池 | |
CN111342030B (zh) | 一种多元复合高首效锂电池负极材料及其制备方法 | |
WO2021128603A1 (zh) | 一种用于锂离子电池负极的改性一氧化硅材料及其制备方法 | |
CN110556529A (zh) | 具有多层核壳结构的负极复合材料及其制备方法和应用 | |
WO2022002057A1 (zh) | 硅氧复合负极材料、负极和锂离子电池及其制备方法 | |
JP7288059B2 (ja) | シリコン酸素複合負極材料、その調製方法及びリチウムイオン電池 | |
JP2022518585A (ja) | シリコン複合物負極材料、その調製方法及びリチウムイオン電池 | |
WO2022016951A1 (zh) | 硅基负极材料、负极和锂离子电池及其制备方法 | |
CN108306009B (zh) | 一种氧化硅碳复合负极材料、其制备方法及锂离子电池 | |
WO2022199389A1 (zh) | 硅氧复合负极材料及其制备方法、锂离子电池 | |
WO2021120155A1 (zh) | 一种纳米锡硅复合负极材料及其制备方法和应用 | |
WO2021093865A1 (zh) | 一种负极材料及其制备方法和锂离子电池 | |
CN113764642A (zh) | 一种含锂硅氧化物复合负极材料及其制备方法和锂离子电池 | |
WO2022236985A1 (zh) | 一种均匀改性的氧化亚硅负极材料及其制备方法和应用 | |
CN111056555B (zh) | 一种锂化的硅基复合材料及其制备方法和应用 | |
CN111180692A (zh) | 一种用于电池的负极活性材料及其制备方法 | |
WO2022041831A1 (zh) | 硅氧复合材料、负极材料、负极和锂离子电池及其制备方法 | |
CN112661163B (zh) | 一种氧化亚硅基复合负极材料及其制备方法、以及锂离子电池 | |
WO2022042266A1 (zh) | 硅氧复合负极材料、其制备方法及锂离子电池 | |
CN111162269B (zh) | 一种用于电池的负极活性材料及其制备方法 | |
CN116565174A (zh) | 一种硅碳复合材料、制备方法、硅基负极及锂离子电池 | |
US20230034396A1 (en) | Anode active material for batteries, and method for preparing same | |
WO2023142675A1 (zh) | 硅碳负极材料的制备方法及其应用 | |
CN111129455A (zh) | 一种高首效硅基负极材料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21832067 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21832067 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/06/2023) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21832067 Country of ref document: EP Kind code of ref document: A1 |