WO2022001599A1 - 黑矩阵结构及其制造方法、显示基板、显示装置 - Google Patents

黑矩阵结构及其制造方法、显示基板、显示装置 Download PDF

Info

Publication number
WO2022001599A1
WO2022001599A1 PCT/CN2021/098937 CN2021098937W WO2022001599A1 WO 2022001599 A1 WO2022001599 A1 WO 2022001599A1 CN 2021098937 W CN2021098937 W CN 2021098937W WO 2022001599 A1 WO2022001599 A1 WO 2022001599A1
Authority
WO
WIPO (PCT)
Prior art keywords
black matrix
matrix structure
initial
base substrate
initial black
Prior art date
Application number
PCT/CN2021/098937
Other languages
English (en)
French (fr)
Inventor
陈强
方业周
夏高飞
白夏红
Original Assignee
京东方科技集团股份有限公司
鄂尔多斯市源盛光电有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 鄂尔多斯市源盛光电有限责任公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/914,800 priority Critical patent/US11960164B2/en
Publication of WO2022001599A1 publication Critical patent/WO2022001599A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13394Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13396Spacers having different sizes

Definitions

  • the present application relates to the field of display technology, and in particular, to a black matrix structure and a method for manufacturing the same, a display substrate, and a display device.
  • a color filter substrate in a display device generally includes a base substrate, a BM structure formed by intersecting a plurality of black matrix (BM) strips on the base substrate, and a filter structure located in an opening area of the BM structure .
  • the BM strips are used to block light to avoid mutual interference of light passing through different filter structures.
  • the width of the BM strip is relatively large.
  • the minimum width of the BM strip in the industry is 2.5 microns, which makes it difficult for the current BM structure to be applied to displays with high resolution requirements such as virtual reality (VR) devices. device.
  • VR virtual reality
  • the present application provides a black matrix structure and a method for manufacturing the same, a display substrate, and a display device, which can be applied to display devices with high resolution requirements, such as VR equipment.
  • the technical solution of this application is as follows:
  • a black matrix structure comprising: a plurality of intersecting black matrix strips;
  • the width of the black matrix stripes ranges from 2 microns to 2.5 microns, and the distance between two adjacent black matrix strips among the plurality of black matrix strips ranges from 4 microns to 5 microns.
  • the slope angle of the black matrix strips ranges from 80 degrees to 85 degrees.
  • the shape of the first cross section of the black matrix strip is a chamfered isosceles trapezoid, and the first cross section is parallel to the width direction of the black matrix strip and perpendicular to the length direction of the black matrix strip.
  • the apex angle of the chamfered isosceles trapezoid is a circular arc chamfer
  • the apex angle of the chamfered isosceles trapezoid is the upper bottom of the chamfered isosceles trapezoid and the chamfered isosceles trapezoid. the angle between the waists.
  • the apex angle of the chamfered isosceles trapezoid ranges from 95 degrees to 100 degrees.
  • a display substrate including:
  • the display substrate further includes: a color filter layer, and the filter structure of the color filter layer is located in the opening area of the black matrix structure.
  • the display substrate further includes:
  • the spacer layer located on the side of the protective layer away from the base substrate, the spacer layer includes a main spacer and an auxiliary spacer, and the height of the main spacer is greater than that of the auxiliary spacer The height of the padding.
  • a display device including the display substrate according to the second aspect or any optional manner of the second aspect.
  • a fourth aspect provides a method for manufacturing a black matrix structure as described in the first aspect or any optional implementation manner of the first aspect, comprising:
  • An initial black matrix structure is formed on a base substrate, the initial black matrix structure includes a plurality of intersecting initial black matrix strips, and the initial black matrix strips are first ladders distributed in sequence along a direction away from the base substrate
  • An integrated structure formed by superimposing a platform, a rectangular parallelepiped and a second landing, the upper bottom surface of the first landing and the upper bottom surface of the second landing are respectively superimposed on the opposite sides of the rectangular parallelepiped, and the second landing
  • the area of the lower bottom surface is larger than the area of the lower bottom surface of the first terrace, and the side surface of the first terrace and the side surface of the second terrace respectively protrude from the side surface of the cuboid;
  • the part of the second terrace of the initial black matrix strip in the initial black matrix structure that protrudes from the cuboid structure is removed and partially collapsed, and the collapsed part makes the first terrace convex Due to the structural coverage of the cuboid, the final black matrix structure is obtained.
  • the part of the second terrace of the initial black matrix strip in the initial black matrix structure protruding out of the cuboid structure protruding out of the cuboid structure is removed and partially collapsed, and the collapsed part will The first terrace protrudes from the structure covering of the cuboid, including:
  • the initial black matrix structure is heated, and the initial black matrix structure is bombarded with plasma, so that the second terraces of the initial black matrix strips in the initial black matrix structure protrude out of the rectangular parallelepiped.
  • a part of the structure is removed and a part is collapsed, and the collapsed part covers the structure of the first terrace protruding from the cuboid.
  • the heating the initial black matrix structure and bombarding the initial black matrix structure with plasma includes: heating the initial black matrix structure from a side of the base substrate away from the initial black matrix structure The matrix structure is heated, and the initial black matrix structure is bombarded with plasma from a side of the initial black matrix structure remote from the base substrate.
  • the heating the initial black matrix structure and bombarding the initial black matrix structure with plasma includes: heating the initial black matrix structure with infrared rays, and using a mixed plasma of helium plasma and argon plasma. volume bombard the initial black matrix structure.
  • the heating temperature of the initial black matrix structure is greater than or equal to 230 degrees Celsius, and the vacuum pressure of the plasma is less than 100 Pa.
  • forming the initial black matrix structure on the base substrate includes:
  • the black matrix film layer is sequentially exposed and developed to obtain the initial black matrix structure.
  • the width of the black matrix strips ranges from 2 microns to 2.5 microns, the width of the black matrix strips is relatively small, and because the two adjacent black matrix strips in the black matrix structure have a small width
  • the distance between the black matrix stripes ranges from 4 microns to 5 microns, so the distance between the two adjacent black matrix strips is small, that is, in the black matrix structure provided by the present application, the black matrix strips
  • the width of the black matrix is small and the distance between two adjacent black matrix strips is small, so the black matrix structure can be suitable for display devices with high resolution requirements such as VR equipment.
  • FIG. 1 is a front view of a black matrix structure provided by an embodiment of the present application.
  • Fig. 2 is the sectional view of the A-A part of the black matrix structure shown in Fig. 1;
  • FIG. 3 is a schematic structural diagram of a display substrate provided by an embodiment of the present application.
  • FIG. 4 is a method flowchart of a method for manufacturing a black matrix structure provided by an embodiment of the present application
  • FIG. 5 is a method flowchart of another method for manufacturing a black matrix structure provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram after forming a black matrix film layer on a base substrate according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of sequentially exposing and developing a black matrix film layer provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of processing an initial black matrix structure provided by an embodiment of the present application.
  • FIG. 9 is another schematic diagram of processing an initial black matrix structure provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram after forming a black matrix structure on a base substrate according to an embodiment of the present application.
  • FIG. 11 is a method flowchart of a method for manufacturing a display substrate provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram after forming a color filter layer on a base substrate formed with a black matrix structure according to an embodiment of the present application
  • FIG. 13 is a schematic diagram after a protective layer is formed on the side of the color filter layer away from the base substrate provided by an embodiment of the present application.
  • a color filter substrate in a display device usually includes a BM structure composed of a plurality of intersecting BM strips, and the BM strips are used to block light to avoid light leakage from sub-pixels in the display device.
  • the BM structure easily affects the resolution of the display device.
  • the width of the BM strips in the current BM structure is relatively large, and the minimum width of the BM strips in the industry is 2.5 microns, which leads to a display device with a resolution of up to 1200 PPI (the number of pixels per inch, Pixels Per Inch), It is difficult to apply to display devices with high resolution requirements such as VR equipment, for example, it is difficult to apply to display devices with a resolution requirement of 1200PPI or higher.
  • the embodiments of the present application provide a black matrix structure and a method for manufacturing the same, a display substrate, and a display device.
  • the width of the black matrix bars is small, which is a breakthrough in the industry's BM bars.
  • the width limit (2.5 microns), and the distance between two adjacent black matrix strips is small, so the black matrix structure can be applied to display devices with high resolution requirements such as VR equipment, for example, it can be applied to A display device with a rate of 1200PPI or above is required.
  • FIG. 1 is a front view of a black matrix structure 01 provided by an embodiment of the present application
  • FIG. 2 is a cross-sectional view of the AA portion of the black matrix structure 01 shown in FIG. 2
  • the black matrix structure 01 includes a plurality of intersecting black matrix strips 011, the width w of the black matrix stripes 011 is in the range of 2 ⁇ m to 2.5 ⁇ m, and two adjacent black matrixes in the plurality of black matrix stripes 011
  • the distance d between the strips 011 is in the range of 4 micrometers to 5 micrometers.
  • the width w of the black matrix strips 011 is 2 microns, 2.1 microns or 2.3 microns, etc., and the distance d between the two adjacent black matrix strips 011 is 4 microns, 4.1 microns or 4.3 microns, etc., this application The embodiment does not limit this.
  • the black matrix structure 01 is a mesh structure formed by the intersecting multiple black matrix strips 011 , and the area enclosed by the multiple black matrix strips 011 is an opening area of the black matrix structure 01 .
  • the plurality of black matrix strips 011 cross vertically and horizontally, and the length directions of the crossed black matrix strips 011 are perpendicular to each other. Exemplarily, as shown in FIG.
  • the plurality of black matrix strips 011 include black matrix strips 011 arranged along the first direction x and black matrix strips 011 arranged along the second direction y (for the convenience of distinction, the black matrix strips 011 will be arranged along the first
  • the black matrix strip 011 arranged in the direction x is marked as the black matrix strip 011x
  • the black matrix strip 011 arranged in the second direction y is marked as the black matrix strip 011y.
  • the black matrix strip 011x and the black matrix strip 011y are both structured The same, the difference is only in that the two are arranged in different directions), the first direction x is perpendicular to the second direction y, and the width direction of each black matrix strip 011x arranged along the first direction x is parallel to the first direction x , the length direction is parallel to the second direction y, the width direction of each black matrix bar 011y arranged along the second direction y is parallel to the second direction y, and the length direction is parallel to the first direction x.
  • the area enclosed by the intersection of the black matrix stripes 011x arranged along the first direction x and the black matrix stripes 011y arranged along the second direction y is the opening area Q of the black matrix structure 01 .
  • the width w of the black matrix bar 011 may refer to the maximum width of the black matrix bar 011, and the distance d between two adjacent black matrix bars 011 may refer to the adjacent black matrix bar 011.
  • the shape of the first section of the black matrix strip 011 is a chamfered isosceles trapezoid
  • the width w of the black matrix strip 011 may refer to the width of the lower base of the chamfered isosceles trapezoid.
  • the distance d between two adjacent black matrix strips 011 may refer to the distance between the lower bases of the chamfered isosceles trapezoids of the first cross-sections of the two adjacent black matrix strips 011 .
  • the first cross section of each black matrix bar 011 is parallel to the width direction of the black matrix bar 011 and perpendicular to the length direction of the black matrix bar.
  • the first cross section of the black matrix bar 011x is parallel to the first direction x and Perpendicular to the second direction y
  • the first cross section of the black matrix bar 011y is parallel to the second direction y and perpendicular to the first direction x.
  • the gradient angle a of the black matrix bar 011 ranges from 80 degrees to 85 degrees, for example, the gradient angle a of the black matrix bar 011 is 80 degrees, 82 degrees, 83 degrees, or 85 degrees.
  • the shape of the first section of the black matrix strip 011 is a chamfered isosceles trapezoid
  • the slope angle a of the black matrix strip 011 may be the base angle of the chamfered isosceles trapezoid
  • the base angle of the chamfered isosceles trapezoid is the inverted The angle between the lower base of the angular isosceles trapezoid and the waist of the chamfered isosceles trapezoid.
  • the slope angle of the black matrix bars in the industry is generally about 70 degrees, and the slope angle of the black matrix bars is relatively small, which easily leads to a larger width of the black matrix bars. Therefore, the slope angle of the black matrix bar 011 is relatively small, which helps to reduce the width of the black matrix bar 011, thereby improving the resolution of the display device.
  • the apex angle b of the chamfered isosceles trapezoid is a circular arc chamfer
  • the apex angle b of the chamfered isosceles trapezoid is the upper base of the chamfered isosceles trapezoid and the waist of the chamfered isosceles trapezoid.
  • the included angle between the chamfered isosceles trapezoid, the vertex angle b of the chamfered isosceles trapezoid (that is, the arc-shaped chamfered angle) is in the range of 95 degrees to 100 degrees, for example, the vertex angle b of the chamfered isosceles trapezoid is 95 degrees, 98 degrees or 100 degrees, etc.
  • the arc-shaped chamfer and the slope angle a of the black matrix strip 011 may be complementary, and the sum of the two may be equal to 180 degrees, which is not limited in the embodiment of the present application.
  • the black matrix structure since in the black matrix structure, the width of the black matrix strips is small and the distance between two adjacent black matrix stripes is small, the black matrix The structure can be suitable for display devices with high resolution requirements such as VR equipment, and is especially suitable for display devices with ultra-high PPI requirements.
  • the technical solutions provided by the embodiments of the present application can realize the thinning of the black matrix strips, so that the resolution of the display device can reach 1000ppi-1500ppi.
  • an embodiment of the present application provides a display substrate, and the display substrate may include the black matrix structure 01 provided by the above embodiments.
  • FIG. 3 shows a schematic structural diagram of a display substrate provided by an embodiment of the present application.
  • the display substrate includes a base substrate 02 and a black matrix on the base substrate 02 Structure 01.
  • the black matrix structure 01 For the specific structure of the black matrix structure 01, reference may be made to the foregoing embodiments and FIG. 1 and FIG. 2 , and details are not described herein again in this embodiment of the present application.
  • the display substrate further includes: a color filter layer 03, the color filter layer 03 is a color filter pattern composed of a plurality of filter structures arranged in an array, each filter The structure is located in one opening region Q of the black matrix structure 01 .
  • the color filter layer 03 includes a red filter structure 031, a green filter structure 032, and a blue filter structure 033, and the red filter structure 031 is used to filter out light except red light in the incident light and The red light is transmitted, the green filter structure 032 is used to filter out the light except the green light in the incident light and the green light is transmitted, and the blue filter structure 033 is used to filter out the incident light except the blue light. external light and transmit blue light.
  • the display substrate further includes: a protective layer 04 located on the side of the color filter layer 03 away from the base substrate 02 , the protective layer 04 is used to protect the color filter layer 03 and the black matrix Structure 01, the protective layer 04 may also be called an upper cover (English: Over Cover; abbreviation: OC) layer.
  • a protective layer 04 located on the side of the color filter layer 03 away from the base substrate 02 , the protective layer 04 is used to protect the color filter layer 03 and the black matrix Structure 01, the protective layer 04 may also be called an upper cover (English: Over Cover; abbreviation: OC) layer.
  • the display substrate further includes: a spacer layer (English: Photo Spacer; abbreviation: PS) layer located on the side of the protective layer 04 away from the base substrate 02 .
  • the layer includes a primary spacer 051 and a secondary spacer 052, the height of the primary spacer 051 being greater than the height of the secondary spacer 052, each of the primary spacer 051 and the secondary spacer 052
  • the height of the spacer is the distance between the side of the spacer away from the protective layer 04 and the side of the spacer close to the protective layer 04 .
  • Both the main spacer 051 and the auxiliary spacer 052 may be in a table-like structure, and both the shape of the longitudinal section of the main spacer 051 and the shape of the longitudinal section of the auxiliary spacer 052 may be trapezoids, wherein, The longitudinal section of the main spacer 051 and the longitudinal section of the auxiliary spacer 052 are respectively perpendicular to the board surface of the base substrate 02 .
  • both the main spacer 051 and the auxiliary spacer 052 are in a truncated truncated structure, or both the main spacer 051 and the auxiliary spacer 052 are in a pyramid-shaped structure. This is not limited.
  • the display substrate may be a color filter substrate
  • the spacer layer is used to support the array substrate after the display substrate and the array substrate are assembled to form between the display substrate and the array substrate.
  • the spacer layer can improve the uniformity of the overall thickness of the display device formed by the display substrate and the array substrate in the cell, and the height of the main spacer 051 is greater than the height of the auxiliary spacer 052, so that the main spacer 051 There is a height difference between the spacer 051 and the auxiliary spacer 052.
  • the thickness of the display device can be fine-tuned.
  • the main spacer 051 first bears all the pressure and compresses, when the main spacer 051 is compressed until the height difference between the main spacer 051 and the auxiliary spacer 052 is 0 , the main spacer 051 and the auxiliary spacer 052 bear external pressure together.
  • the structure of the display substrate shown in FIG. 3 is only exemplary. In practical applications, the display substrate may include more or less structures than those shown in FIG. 3 .
  • the display substrate may also include an alignment layer. , common electrodes and other structures; for another example, the display substrate may not include the protective layer 04 , which is not limited in this embodiment of the present application.
  • the display substrate since in the display substrate, the width of the black matrix stripes is small and the distance between two adjacent black matrix stripes is small, the display substrate can be applied to the display substrate. It is suitable for display devices with high resolution requirements such as VR equipment, especially for display devices with ultra-high PPI requirements.
  • the technical solutions provided by the embodiments of the present application can realize the thinning of the black matrix strips, so that the resolution of the display device can reach 1000ppi-1500ppi.
  • the black matrix structure and the display substrate provided in the embodiments of the present application can be applied to the following methods.
  • For the manufacturing method and manufacturing principle of the black matrix structure and the display substrate in the embodiments of the present application reference may be made to the descriptions in the following embodiments.
  • FIG. 4 shows a method flowchart of a method for manufacturing a black matrix structure provided by an embodiment of the present application, and the method for manufacturing a black matrix structure can be used to manufacture the black matrix shown in FIG. 1 and FIG. 2 .
  • an initial black matrix structure is formed on a base substrate, the initial black matrix structure includes a plurality of intersecting initial black matrix strips, and the initial black matrix strips are the first black matrix strips distributed in sequence along a direction away from the base substrate.
  • An integrated structure formed by superimposing a landing, a rectangular parallelepiped and a second landing, the upper bottom surface of the first landing and the upper bottom surface of the second landing are respectively superimposed with the two opposite sides of the rectangular parallelepiped, and the lower surface of the second landing.
  • the area of the bottom surface is larger than the area of the lower bottom surface of the first terrace, and the side surface of the first terrace and the side surface of the second terrace respectively protrude from the side surface of the rectangular parallelepiped.
  • step 402 the part of the second terrace of the initial black matrix strip in the initial black matrix structure that protrudes out of the cuboid structure is removed and partially collapsed, and the collapsed part protrudes the first terrace Due to the structural coverage of the cuboid, the final black matrix structure is obtained.
  • the final black matrix structure includes a plurality of intersecting black matrix strips; the width of the black matrix strips ranges from 2 microns to 2.5 microns, and the distance between two adjacent black matrix strips ranges from 4 microns to 5 microns .
  • an initial black matrix structure is first formed on a base substrate, and then the second terraces of the initial black matrix strips in the initial black matrix structure are protruded Part of the cuboid structure of the initial black matrix strip is removed and partially collapsed, and the collapsed part covers the first terrace of the original black matrix strip protruding from the cuboid structure, thereby obtaining the final black matrix structure.
  • the part of the second terrace protruding from the cuboid structure of the initial black matrix strip is removed, the part of the second terrace that collapses and covers the first terrace is less, which is helpful for The width of the black matrix strips in the finally formed black matrix structure is reduced, so that the black matrix structure can be suitable for display devices with high resolution requirements such as VR equipment.
  • FIG. 5 shows a method flowchart of another method for manufacturing a black matrix structure provided by an embodiment of the present application.
  • the method for manufacturing a black matrix structure can be used to manufacture the black matrix structure shown in FIGS. 1 and 2 .
  • step 501 a negative photoresist material is used to form a black matrix film layer on the base substrate.
  • FIG. 6 shows a schematic diagram of forming a black matrix film layer Z on the base substrate 02 provided by an embodiment of the present application, and the black matrix film layer Z covers the base substrate 02 .
  • a layer of black negative photoresist material may be coated on the base substrate 02 as the black matrix film layer Z.
  • step 502 the black matrix film layer is baked to adhere the black matrix film layer to the base substrate.
  • a pre-bake (English: Prebake) process can be used to bake the black matrix film layer from the side of the substrate substrate away from the black matrix film layer, so that the black matrix film layer is in contact with the substrate.
  • the part in contact with the substrate is cured, so that the black matrix film layer is adhered to the base substrate.
  • the black matrix film layer Z is baked from the side of the base substrate 02 away from the black matrix film layer Z, so that the part of the black matrix film layer Z in contact with the base substrate 02 is cured, and the black matrix film layer Z is cured.
  • the film layer Z is adhered to the base substrate 02 .
  • the black matrix film layer is sequentially exposed and developed to obtain an initial black matrix structure, where the initial black matrix structure includes a plurality of intersecting initial black matrix strips, and the initial black matrix strips are formed along the lines away from the base substrate.
  • the first terrace, the rectangular parallelepiped and the second terrace are superimposed in order to form an integrated structure.
  • the upper bottom surface of the first terrace and the upper bottom surface of the second terrace are respectively superimposed on the opposite sides of the rectangular parallelepiped.
  • the area of the lower bottom surface of the second landing is larger than the area of the lower bottom surface of the first landing, and the side surface of the first landing and the side surface of the second landing respectively protrude from the side surface of the cuboid.
  • FIG. 7 shows a schematic diagram of sequentially exposing and developing the black matrix film layer Z provided by the embodiment of the present application.
  • the black matrix film layer Z is sequentially exposed. and after development, an initial black matrix structure 01a is obtained, and the initial black matrix structure 01a includes a plurality of intersecting initial black matrix strips 011a (the front view of the initial black matrix structure 01a is similar to FIG. distance between two adjacent black matrix strips), each initial black matrix strip 011a in the plurality of initial black matrix strips 011a is composed of first terraces 0111, An integrated structure formed by superimposing the rectangular parallelepiped 0112 and the second landing 0113.
  • the upper bottom surface of the first landing 0111 and the upper bottom surface of the second landing 0113 are respectively superimposed on the opposite sides of the rectangular parallelepiped 0112.
  • the second landing 0113 The area of the bottom surface of the first terrace 0111 is larger than the area of the lower bottom surface of the first terrace 0111 , and the side surface of the first terrace 0111 and the side surface of the second terrace 0113 respectively protrude from the side surface of the rectangular parallelepiped 0112 .
  • the terrace refers to a platform-like structure whose longitudinal section is a trapezoid.
  • the longitudinal section of the terrace is parallel to the height direction of the terrace.
  • the terrace includes two bottom surfaces that are parallel to each other and have unequal areas.
  • the bottom surface with the smaller area is the upper bottom surface of the platform
  • the bottom surface with a larger area is the lower bottom surface of the platform
  • the distance between the two bottom surfaces is the height of the platform
  • the side surface of the platform refers to the platform.
  • the side surfaces of the rectangular parallelepiped 0112 refer to the surfaces of the surfaces of the rectangular parallelepiped 0112 that are not overlapped with the first terraces 0111 and the second terraces 0113 .
  • the shape of the first cross-section of the initial black matrix strip 011a is a figure formed by superimposing a first trapezoid, a rectangle and a second trapezoid sequentially distributed along a direction away from the base substrate 02, and the first trapezoid is also the first trapezoid.
  • the shape of the first cross-section of the terrace 0111, the rectangle is the shape of the first cross-section of the cuboid 0112
  • the second trapezoid is the shape of the first cross-section of the second terrace 0113
  • the first cross-section is the same as the initial cross-section.
  • the width direction of the black matrix bar 011a is parallel and perpendicular to the length direction of the initial black matrix bar 011a.
  • a mask is used to expose the black matrix film layer Z, so that the black matrix film layer Z forms a fully exposed area and a non-exposed area.
  • the black matrix film layer Z is located in the fully exposed area.
  • the part of the exposed area is cured; then the exposed black matrix film layer Z is developed, so that the part of the black matrix film layer Z located in the non-exposed area is removed, and the part located in the fully exposed area is retained to obtain the initial Black matrix structure 01a.
  • a mask is firstly arranged on the side of the black matrix film layer Z away from the base substrate 02, and then a light source is arranged on the side of the mask away from the black matrix film layer Z, and the light source is used to pass the
  • the mask plate irradiates the black matrix film layer Z, so that the part of the black matrix film layer Z corresponding to the opening area of the mask plate is photosensitive to form a fully exposed area, and the light-shielding area of the mask plate (that is, the mask plate) is exposed.
  • the part corresponding to the area on the stencil is the non-exposed area.
  • the base substrate 02 including the exposed black matrix film layer Z is placed in the developing solution, so that the developing solution and the black matrix film layer Z are not exposed to light.
  • the region reacts, so that the portion of the black matrix film layer Z located in the non-exposed region is removed.
  • the degree of exposure in the black matrix film layer Z decreases sequentially from the direction away from the base substrate 02 to the direction close to the base substrate 02, that is, , the exposure degree of the part farthest from the base substrate 02 in the black matrix film layer Z is the largest, the exposure degree of the part in contact with the base substrate 02 is the smallest, and the exposure degree of the middle part is smaller than the exposure degree of the part farthest from the base substrate 02
  • the exposure degree of the part of 02 is greater than the exposure degree of the part in contact with the base substrate 02, and since the black matrix film layer Z is baked in step 502, the black matrix film layer Z and the base substrate 02 are exposed.
  • the contact part has been cured, so generally speaking, after the exposure in step 503, in the black matrix film layer Z, the part farthest from the base substrate 02 and the part in contact with the base substrate 02 are more cured. large, the curing degree of the middle part is small, so the initial black matrix structure 01a as shown in FIG. 7 is obtained after development.
  • step 504 the initial black matrix structure is heated, and the initial black matrix structure is bombarded with plasma, so that the part of the second terrace of the initial black matrix strip in the initial black matrix structure protruding from the cuboid structure is removed and partially collapsed, and the collapsed part covers the first terrace of the initial black matrix strip protruding from the cuboid structure to obtain the final black matrix structure.
  • the initial black matrix structure can be heated from the side of the base substrate away from the initial black matrix structure, and the initial black matrix structure can be bombarded with plasma from the side of the initial black matrix structure away from the base substrate.
  • infrared rays are used to heat the initial black matrix structure from a side of the base substrate away from the initial black matrix structure
  • a mixed plasma of helium plasma and argon plasma is used to heat the initial black matrix structure from a side of the initial black matrix structure away from the base substrate. side bombard the initial black matrix structure.
  • the heating temperature of the initial black matrix structure is greater than or equal to 230 degrees Celsius, and the vacuum pressure of the plasma is less than 100 Pa.
  • FIG. 8 and FIG. 9 show schematic diagrams of heating the initial black matrix structure 01 a and bombarding the initial black matrix structure 01 a with plasma provided by the embodiments of the present application.
  • the infrared light source 10 , the plasma source 20 and the base substrate 02 including the initial black matrix structure 01 a are all set in a closed chamber (not shown in FIG.
  • the infrared light source 10 is located below the base substrate 02 (that is, the side of the base substrate 02 away from the initial black matrix structure 01 a ), and the plasma source 20 is located above the initial black matrix structure 01 a (that is, the initial black matrix structure 01 a ) 01a is away from the side of the base substrate 02); then, the infrared light source 10 is controlled to emit infrared rays to the base substrate 02 side, so that the infrared rays emitted by the infrared light source 10 pass through the base substrate 02 to heat the initial black matrix structure 01a, and control the infrared
  • the heating temperature of the light source 10 to the initial black matrix structure 01a is above 230 degrees Celsius; finally, the plasma source 20 is controlled to emit plasma to the initial black matrix structure 01a to bombard the initial black matrix structure 01a.
  • FIG. 10 is a schematic diagram of a black matrix structure 01 formed on a base substrate 02 provided by an embodiment of the present application.
  • the black matrix structure 01 intersects with a plurality of black matrix stripes.
  • the width of the black matrix strips 011 ranges from 2 microns to 2.5 microns, and the distance between two adjacent black matrix strips among the plurality of black matrix strips ranges from 4 microns to 5 microns.
  • an electric field can also be applied to the plasma to control the emission direction of the plasma, so that the plasma can more effectively bombard the initial black matrix structure 01a.
  • a high-frequency alternating current can be applied to the side of the plasma source 20 away from the initial black matrix structure 01a, and a low-frequency alternating current can be applied to the side of the base substrate 02 that is far away from the initial black matrix structure 01a.
  • an electric field is formed around the initial black matrix structure 01a to apply an electric field to the plasma emitted by the plasma source 20 .
  • the bombardment duration of 01a controls the width of the black matrix bar 011.
  • the following table 1 shows the inventor's evaluation of the initial black matrix structure with a thickness of 1.05 microns (the thickness of the initial black matrix structure refers to the side of the initial black matrix structure that is far away from the base substrate and the initial black matrix structure is close.
  • the distance between one side of the substrate and the substrate is the data obtained from the plasma bombardment experiment, where the reduction in the width of one side refers to the reduction in the width of one side of the initial black matrix stripe, and the reduction in the overall width refers to Sum of reductions in width on both sides of the initial black matrix bar:
  • the oven process high temperature process
  • the oven process is used to process the initial black matrix structure, so that the second terrace of the initial black matrix stripe protrudes from the entire structure of the cuboid. It collapses onto the base substrate, which results in a larger width of the black matrix strips of the final black matrix structure, and the industry's minimum width of the black matrix strips is 2.5 microns.
  • the manufacturing method of the black matrix structure provided by the embodiment of the present application can improve the resolution of the display device, and can be suitable for display devices with high resolution requirements such as VR equipment.
  • the method for manufacturing a black matrix structure firstly forms an initial black matrix structure on a base substrate, and then heats the initial black matrix structure and plasma bombards the initial black matrix structure to make the initial black matrix structure.
  • the second terrace of the initial black matrix strip in the initial black matrix strip is partially removed and partially collapsed in the cuboid structure of the initial black matrix strip, and the collapsed part protrudes from the first terrace of the initial black matrix strip.
  • the structure of the cuboid is covered to obtain the final black matrix structure.
  • the part of the second terrace protruding from the cuboid structure of the initial black matrix strip is removed, the part of the second terrace that collapses and covers the first terrace is less, which is helpful for The width of the black matrix strips in the finally formed black matrix structure is reduced, so that the black matrix structure can be suitable for display devices with high resolution requirements such as VR equipment.
  • FIG. 11 shows a method flowchart of a method for manufacturing a display substrate provided by an embodiment of the present application, and the method for manufacturing a display substrate can be used to manufacture the display substrate shown in FIG. 3 .
  • the method may include the following steps:
  • a black matrix structure is formed on a base substrate, and the black matrix structure includes a plurality of intersecting black matrix strips.
  • FIG. 10 For the process of forming the black matrix structure on the base substrate, reference may be made to the embodiments shown in FIG. 4 and FIG. 5 , and the schematic diagram after forming the black matrix structure on the base substrate is shown in FIG. 10 , which is not repeated in this embodiment of the present application. .
  • step 1102 a color filter layer is formed on the base substrate on which the black matrix structure is formed, and the filter structure of the color filter layer is located in the opening area of the black matrix structure.
  • FIG. 12 shows a schematic diagram of a color filter layer 03 formed on a base substrate 02 formed with a black matrix structure 01 according to an embodiment of the present application.
  • the color filter layer 03 includes a red filter
  • the structure 031 , the green filter structure 032 and the blue filter structure 033 , the red filter structure 031 , the green filter structure 032 and the blue filter structure 033 are located in different opening areas of the black matrix structure 01 .
  • the material of the red filter structure 031 may be a red resin material
  • the material of the green filter structure 032 may be a green resin material
  • the material of the blue filter structure 033 may be a blue resin material.
  • forming the color filter layer 03 on the base substrate 02 formed with the black matrix structure 01 includes: first, coating a layer of red resin material on the base substrate 02 formed with the black matrix structure 01 to obtain a red color
  • the red resin material layer is processed through a patterning process to obtain a red filter structure 031
  • a layer of green resin material is coated on the base substrate 02 formed with the red filter structure 031 to obtain a green resin material layer
  • the green resin material layer is processed through a patterning process to obtain a green filter structure 032
  • a layer of blue resin material is coated on the base substrate 02 formed with the green filter structure 032 to obtain a blue resin material layer
  • the blue resin material layer is processed through a patterning process to obtain the blue filter structure 033, and thus, the color filter layer 03 is obtained.
  • one patterning process may include: photoresist coating, exposure, development, etching, and photoresist stripping. Therefore, processing the material layer (for example, the red resin material layer) by one patterning process includes: first, in the material A layer of photoresist is coated on the layer (such as a red resin material layer), and then, the photoresist is exposed by a mask, so that the photoresist forms a fully exposed area and a non-exposed area, and then is processed by a developing process , so that the photoresist in the fully exposed area is removed, and the photoresist in the non-exposed area is retained.
  • the corresponding area of the fully exposed area on the material layer (such as the red resin material layer) is etched, and finally, the non-exposed area is stripped.
  • the corresponding structure (for example, the red filter structure 031) can be obtained by removing the photoresist in the region.
  • a positive photoresist is used as an example to describe the one-time patterning process.
  • the photoresist used in the one-time patterning process may also be a negative photoresist, which will not be repeated in the embodiments of the present application. .
  • the process of forming the filter structures of different colors in the color filter layer 03 can be adjusted.
  • the red filter structure 031 can be formed first, then the green filter structure 032 can be formed, and finally the blue filter can be formed.
  • the green filter structure 032 can also be formed first, then the red filter structure 031 can be formed, and finally the blue filter structure 033 can be formed, or the blue filter structure 033 can be formed first, and then the red filter structure can be formed.
  • the green filter structure 032 is formed, which is not limited in the embodiments of the present application.
  • the red filter structure 031, the green filter structure 032 and the blue filter can also be formed through a patterning process.
  • the optical structure 033 is not limited in this embodiment of the present application.
  • a protective layer is formed on the side of the color filter layer away from the base substrate.
  • FIG. 13 shows a schematic diagram of forming a protective layer 04 on the side of the color filter layer 03 away from the base substrate 02 provided by an embodiment of the present application.
  • the protective layer 04 covers Color filter layer 03 and black matrix structure 01.
  • the material of the protective layer 04 can be resin material.
  • a layer of resin material may be coated on the side of the color filter layer 03 away from the base substrate 02 as the protective layer 04 .
  • a spacer layer is formed on the side of the protective layer away from the base substrate, the spacer layer includes a main spacer and an auxiliary spacer, and the height of the main spacer is greater than that of the auxiliary spacer .
  • the spacer layer includes a main spacer 051 and an auxiliary spacer 052 .
  • the height of the main spacer 051 is greater than the height of the auxiliary spacer 052.
  • Both the main spacer 051 and the auxiliary spacer 052 may be in a table-like structure.
  • the shape of the longitudinal section of the main spacer 051 and the The shape of the longitudinal section of the auxiliary spacer 052 may be a trapezoid.
  • both the main spacer 051 and the auxiliary spacer 052 are in a truncated truncated structure, or both the main spacer 051 and the auxiliary spacer 052 are in a pyramid-shaped structure. This is not limited.
  • both the material of the main spacer 051 and the material of the auxiliary spacer 052 may be resin materials.
  • a layer of resin material is coated on the side of the protective layer 04 away from the base substrate 02 to obtain a resin film; then, a halftone mask is used to expose the resin film, so that the resin film forms a fully exposed area , Partial exposure area and non-exposed area; finally, develop the exposed resin film, so that the resin film in the fully exposed area is completely removed, the resin film in the partially exposed area is partially removed, and the resin film in the non-exposed area is completely retained,
  • the main spacer 051 is formed in the non-exposed area
  • the auxiliary spacer 052 is formed in the partially exposed area.
  • the width of the black matrix stripes is small and the distance between two adjacent black matrix stripes is small, so
  • the display substrate can be applied to display devices with high resolution requirements, such as VR equipment.
  • an embodiment of the present application further provides a display device including the above-mentioned display substrate.
  • the display device may be: liquid crystal panel, electronic paper, mobile phone, tablet computer, television, monitor, notebook computer, digital photo frame, navigator, VR equipment, augmented reality (English: Augmented Reality; abbreviation: AR) equipment , wearable devices and any other product or component with display function.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Optical Filters (AREA)

Abstract

本申请公开一种黑矩阵结构及其制造方法、显示基板、显示装置,属于显示技术领域。该黑矩阵结构包括:交叉的多个黑矩阵条,该黑矩阵条的宽度的范围为2微米~2.5微米,该多个黑矩阵条中相邻的两个黑矩阵条之间的距离的范围为4微米~5微米。本申请提供的黑矩阵结构中黑矩阵条的宽度较小,能够适用于分辨率要求较高的显示装置。

Description

黑矩阵结构及其制造方法、显示基板、显示装置
本申请要求于2020年07月03日提交的申请号为202010637458.3、发明名称为“黑矩阵结构及其制造方法、显示基板、显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,特别涉及一种黑矩阵结构及其制造方法、显示基板、显示装置。
背景技术
显示装置中的彩膜基板通常包括衬底基板,位于衬底基板上的由交叉的多个黑矩阵(Black Matrix,BM)条构成的BM结构,以及位于BM结构的开口区域中的滤光结构。BM条用于遮挡光线,避免通过不同滤光结构的光线相互干扰。
在目前BM结构中,BM条的宽度较大,例如业界BM条的宽度最小为2.5微米,这导致目前BM结构难以适用于诸如虚拟现实(Virtual Reality,VR)设备等分辨率要求较高的显示装置。
发明内容
本申请提供一种黑矩阵结构及其制造方法、显示基板、显示装置,能够适用于诸如VR设备等分辨率要求较高的显示装置。本申请的技术方案如下:
第一方面,提供一种黑矩阵结构,包括:交叉的多个黑矩阵条;
所述黑矩阵条的宽度的范围为2微米~2.5微米,所述多个黑矩阵条中相邻的两个黑矩阵条之间的距离的范围为4微米~5微米。
可选地,所述黑矩阵条的坡度角的范围为80度~85度。
可选地,所述黑矩阵条的第一截面的形状为倒角等腰梯形,所述第一截面与所述黑矩阵条的宽度方向平行且与所述黑矩阵条的长度方向垂直。
可选地,所述倒角等腰梯形的顶角为圆弧形倒角,所述倒角等腰梯形的顶角为所述倒角等腰梯形的上底与所述倒角等腰梯形的腰之间的夹角。
可选地,所述倒角等腰梯形的顶角的范围为95度~100度。
第二方面,提供一种显示基板,包括:
衬底基板;以及,
位于所述衬底基板上的如第一方面或第一方面的任一可选方式所述的黑矩阵结构。
可选地,所述显示基板还包括:彩色滤光层,所述彩色滤光层的滤光结构位于所述黑矩阵结构的开口区域中。
可选地,所述显示基板还包括:
位于所述彩色滤光层远离所述衬底基板的一侧的保护层;以及,
位于所述保护层远离所述衬底基板的一侧的隔垫物层,所述隔垫物层包括主隔垫物和辅隔垫物,所述主隔垫物的高度大于所述辅隔垫物的高度。
第三方面,提供一种显示装置,包括如第二方面或第二方面的任一可选方式所述的显示基板。
第四方面,提供一种如第一方面或第一方面的任一可选实现方式所述的黑矩阵结构的制造方法,包括:
在衬底基板上形成初始黑矩阵结构,所述初始黑矩阵结构包括交叉的多个初始黑矩阵条,所述初始黑矩阵条为由沿远离所述衬底基板的方向依次分布的第一梯台、长方体和第二梯台叠加形成的一体结构,所述第一梯台的上底面和所述第二梯台的上底面分别与所述长方体的相对的两面叠加,所述第二梯台的下底面的面积大于所述第一梯台的下底面的面积,所述第一梯台的侧面和所述第二梯台的侧面分别凸出于所述长方体的侧面;
使所述初始黑矩阵结构中的所述初始黑矩阵条的所述第二梯台凸出于所述长方体的结构中的部分去除且部分塌落,塌落部分将所述第一梯台凸出于所述长方体的结构覆盖,得到最终的所述黑矩阵结构。
可选地,所述使所述初始黑矩阵结构中的所述初始黑矩阵条的所述第二梯台凸出于所述长方体的结构中的部分去除且部分塌落,塌落部分将所述第一梯台凸出于所述长方体的结构覆盖,包括:
对所述初始黑矩阵结构加热,并采用等离子体轰击所述初始黑矩阵结构,使所述初始黑矩阵结构中的所述初始黑矩阵条的所述第二梯台凸出于所述长方体的结构中的部分去除且部分塌落,塌落部分将所述第一梯台凸出于所述长方体的结构覆盖。
可选地,所述对所述初始黑矩阵结构加热,并采用等离子体轰击所述初始黑矩阵结构,包括:从所述衬底基板远离所述初始黑矩阵结构的一侧对所述初始黑矩阵结构加热,并采用等离子体从所述初始黑矩阵结构远离所述衬底基板的一侧轰击所述初始黑矩阵结构。
可选地,所述对所述初始黑矩阵结构加热,并采用等离子体轰击所述初始黑矩阵结构,包括:采用红外线对所述初始黑矩阵结构加热,并采用氦等离子和氩等离子的混合等离子体轰击所述初始黑矩阵结构。
可选地,对所述初始黑矩阵结构的加热温度大于或等于230摄氏度,所述等离子体的真空压力小于100帕。
可选地,所述在衬底基板上形成初始黑矩阵结构,包括:
采用负性光刻胶材料在所述衬底基板上形成黑矩阵膜层;
对所述黑矩阵膜层进行烘烤使所述黑矩阵膜层与所述衬底基板粘连;
对所述黑矩阵膜层依次进行曝光和显影,得到所述初始黑矩阵结构。
本申请提供的技术方案带来的有益效果是:
本申请提供的技术方案,由于在黑矩阵结构中,黑矩阵条的宽度的范围为2微米~2.5微米,因此该黑矩阵条的宽度较小,又由于该黑矩阵结构中的相邻的两个黑矩阵条之间的距离的范围为4微米~5微米,因此该相邻的两个黑矩阵条之间的距离较小,也即是,本申请提供的黑矩阵结构中,黑矩阵条的宽度较小且相邻的两个黑矩阵条之间的距离较小,因此该黑矩阵结构能够适用于VR设备等分辨率要求较高的显示装置。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本申请。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种黑矩阵结构的正视图;
图2是图1所示的黑矩阵结构的A-A部位的截面图;
图3是本申请实施例提供的一种显示基板的结构示意图;
图4是本申请实施例提供的一种黑矩阵结构的制造方法的方法流程图;
图5是本申请实施例提供的另一种黑矩阵结构的制造方法的方法流程图;
图6是本申请实施例提供的一种在衬底基板上形成黑矩阵膜层后的示意图;
图7是本申请实施例提供的一种对黑矩阵膜层依次进行曝光和显影后的示意图;
图8是本申请实施例提供的一种对初始黑矩阵结构进行处理的示意图;
图9是本申请实施例提供的另一种对初始黑矩阵结构进行处理的示意图;
图10是本申请实施例提供的一种在衬底基板上形成黑矩阵结构后的示意图;
图11是本申请实施例提供的一种显示基板的制造方法的方法流程图;
图12是本申请实施例提供的一种在形成有黑矩阵结构的衬底基板上形成彩色滤光层后的示意图;
图13是本申请实施例提供的一种在彩色滤光层远离衬底基板的一侧形成保护层后的示意图。
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
具体实施方式
为了使本申请的原理、技术方案和优点更加清楚,下面将结合附图对本申请作详细描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
显示装置中的彩膜基板通常包括由交叉的多个BM条构成的BM结构,BM条用于遮挡光线,避免显示装置中的子像素漏光。可以理解的是,BM结构容易影响显示装置的分辨率。然而,目前BM结构中的BM条的宽度较大,业界BM条的宽度最小为2.5微米,这导致显示装置的分辨率最多只能达到1200PPI(每英寸所拥有的像素数目,Pixels Per Inch),难以适用于诸如VR设备等分辨率要求较高的显示装置,例如难以适用于分辨率要求在1200PPI以上的显示装置。
有鉴于此,本申请实施例提供一种黑矩阵结构及其制造方法、显示基板、显示装置,在本申请实施例提供的黑矩阵结构中,黑矩阵条的宽度较小,突破的业界BM条的宽度极限(2.5微米),并且相邻的两个黑矩阵条之间的距离较 小,因此该黑矩阵结构能够适用于诸如VR设备等分辨率要求较高的显示装置,例如可以适用于分辨率要求在1200PPI以上的显示装置。下面结合附图对本申请实施例提供的技术方案进行详细说明。
请参考图1和图2,图1是本申请实施例提供的一种黑矩阵结构01的正视图,图2是图1所示的黑矩阵结构01的A-A部位的截面图,参见图1和图2,该黑矩阵结构01包括交叉的多个黑矩阵条011,该黑矩阵条011的宽度w的范围为2微米~2.5微米,该多个黑矩阵条011中相邻的两个黑矩阵条011之间的距离d的范围为4微米~5微米。示例地,该黑矩阵条011的宽度w为2微米,2.1微米或2.3微米等,该相邻的两个黑矩阵条011之间的距离d为4微米,4.1微米或4.3微米等,本申请实施例对此不做限定。
可选地,该黑矩阵结构01是由该交叉的多个黑矩阵条011构成的网状结构,该多个黑矩阵条011交叉围成的区域为该黑矩阵结构01的开口区域。可选地,该多个黑矩阵条011纵横交叉,相互交叉的黑矩阵条011的长度方向相互垂直。示例地,如图1所示,该多个黑矩阵条011包括沿第一方向x排布的黑矩阵条011和沿第二方向y排布的黑矩阵条011(为了便于区分将沿第一方向x排布的黑矩阵条011标记为黑矩阵条011x,沿第二方向y排布的黑矩阵条011标记为黑矩阵条011y,可以理解的是黑矩阵条011x和黑矩阵条011y都结构相同,区别仅在于二者的排布方向不同),该第一方向x与第二方向y垂直,沿第一方向x排布的每个黑矩阵条011x的宽度方向与该第一方向x平行,长度方向与该第二方向y平行,沿第二方向y排布的每个黑矩阵条011y的宽度方向与该第二方向y平行,长度方向与该第一方向x平行。沿第一方向x排布的黑矩阵条011x和沿第二方向y排布的黑矩阵条011y交叉围成的区域为该黑矩阵结构01的开口区域Q。
可选地,在本申请实施例中,黑矩阵条011的宽度w可以是指该黑矩阵条011的最大宽度,相邻的两个黑矩阵条011之间的距离d可以是指该相邻的两个黑矩阵条011之间的最小距离。示例地,如图2所示,黑矩阵条011的第一截面的形状为倒角等腰梯形,该黑矩阵条011的宽度w可以是指该倒角等腰梯形的下底的宽度,相邻的两个黑矩阵条011之间的距离d可以是指该相邻的两个黑矩阵条011的第一截面的倒角等腰梯形的下底之间的距离。其中,每个黑矩阵条011的第一截面与该黑矩阵条011的宽度方向平行且与该黑矩阵条的长度 方向垂直,例如,黑矩阵条011x的第一截面与第一方向x平行且与第二方向y垂直,黑矩阵条011y的第一截面与第二方向y平行且与第一方向x垂直。
可选地,该黑矩阵条011的坡度角a的范围为80度~85度,例如,黑矩阵条011的坡度角a为80度,82度,83度或85度等。黑矩阵条011的第一截面的形状为倒角等腰梯形,该黑矩阵条011的坡度角a可以是该倒角等腰梯形的底角,该倒角等腰梯形的底角为该倒角等腰梯形的下底与该倒角等腰梯形的腰之间的夹角。业界黑矩阵条的坡度角一般为70度左右,黑矩阵条的坡度角较小,容易导致黑矩阵条的宽度较大,在本申请实施例中,由于黑矩阵条011的坡度角的范围为80度~85度,因此该黑矩阵条011的坡度角较小,有助于减小黑矩阵条011的宽度,从而提高显示装置的分辨率。可选地,该倒角等腰梯形的顶角b为圆弧形倒角,该倒角等腰梯形的顶角b为该倒角等腰梯形的上底与该倒角等腰梯形的腰之间的夹角,该倒角等腰梯形的顶角b(也即是该圆弧形倒角)的范围为95度~100度,例如,该倒角等腰梯形的顶角b为95度,98度或100度等。本领域技术人员容易理解,该圆弧形倒角与黑矩阵条011的坡度角a可以互补,二者之和可以等于180度,本申请实施例对此不做限定。
综上所述,本申请实施例提供的黑矩阵结构,由于在该黑矩阵结构中,黑矩阵条的宽度较小且相邻的两个黑矩阵条之间的距离较小,因此该黑矩阵结构能够适用于VR设备等分辨率要求较高的显示装置,尤其适用于超高PPI要求的显示装置。本申请实施例提供的技术方案能够实现黑矩阵条的细线化,使显示装置的分辨率达到1000ppi~1500ppi。
基于同样的发明构思,本申请实施例提供了一种显示基板,该显示基板可以包括上述实施例提供的黑矩阵结构01。
示例地,请参考图3,其示出了本申请实施例提供的一种显示基板的结构示意图,如图3所示,该显示基板包括衬底基板02以及位于衬底基板02上的黑矩阵结构01,该黑矩阵结构01的具体结构可以参考前述实施例以及图1和图2,本申请实施例在此不再赘述。
可选地,如图3所示,该显示基板还包括:彩色滤光层03,该彩色滤光层03为由阵列排布的多个滤光结构组成的彩色滤光图形,每个滤光结构位于黑矩阵结构01的一个开口区域Q中。示例地,该彩色滤光层03包括红色滤光结构031、绿色滤光结构032和蓝色滤光结构033,该红色滤光结构031用于滤除入 射光中除红色光线之外的光线并使红色光线透射,该绿色滤光结构032用于滤除入射光中除绿色光线之外的光线并使绿色光线透射,该蓝色滤光结构033用于滤除入射光中除蓝色光线之外的光线并使蓝色光线透射。
可选地,如图3所示,该显示基板还包括:位于彩色滤光层03远离衬底基板02的一侧的保护层04,该保护层04用于保护彩色滤光层03和黑矩阵结构01,该保护层04又可以称为上层覆盖(英文:Over Cover;简称:OC)层。
可选地,如图3所示,该显示基板还包括:位于该保护层04远离衬底基板02的一侧的隔垫物层(英文:Photo Spacer;简称:PS)层,该隔垫物层包括主隔垫物051和辅隔垫物052,该主隔垫物051的高度大于该辅隔垫物052的高度,该主隔垫物051和辅隔垫物052中的每个隔垫物的高度为该隔垫物远离保护层04的一面与该隔垫物靠近该保护层04的一面之间的距离。该主隔垫物051和该辅隔垫物052均可以为台状结构,该主隔垫物051的纵截面的形状和该辅隔垫物052的纵截面的形状均可以为梯形,其中,该主隔垫物051的纵截面和该辅隔垫物052的纵截面分别与衬底基板02的板面垂直。可选地,该主隔垫物051和该辅隔垫物052都为圆台状结构,或者,该主隔垫物051和该辅隔垫物052都为棱台状结构,本申请实施例对此不做限定。
可选地,该显示基板可以是彩膜基板,该隔垫物层用于在该显示基板与阵列基板对盒后,对该阵列基板进行支撑,以在该显示基板与该阵列基板之间形成用于容纳液晶的空间。其中,该隔垫物层可以提高由该显示基板和阵列基板对盒形成的显示装置的整体厚度的均一性,该主隔垫物051的高度大于该辅隔垫物052的高度,使得该主隔垫物051与该辅隔垫物052存在高度差,通过调节该主隔垫物051与该辅隔垫物052的高度差可以对显示装置的厚度进行微调,本领域技术人员容易理解,当显示装置受到外界压力时,该主隔垫物051先承受所有压力并压缩,当该主隔垫物051压缩至该主隔垫物051与该辅隔垫物052之间的高度差为0时,该主隔垫物051与该辅隔垫物052共同承受外界压力。
本领域技术人员容易理解,图3所示的显示基板的结构仅仅是示例性的,实际应用中,显示基板可以包括比图3更多或更少的结构,例如,显示基板还可以包括配向层、公共电极等结构;再例如,显示基板可以不包括保护层04,本申请实施例对此不做限定。
综上所述,本申请实施例提供的显示基板,由于在该显示基板中,黑矩阵条的宽度较小且相邻的两个黑矩阵条之间的距离较小,因此该显示基板能够适 用于VR设备等分辨率要求较高的显示装置,尤其适用于超高PPI要求的显示装置。本申请实施例提供的技术方案能够实现黑矩阵条的细线化,使显示装置的分辨率达到1000ppi~1500ppi。
本申请实施例提供的黑矩阵结构和显示基板可以应用于下文的方法,本申请实施例中黑矩阵结构和显示基板的制造方法和制造原理可以参见下文各实施例中的描述。
请参考图4,其示出了本申请实施例提供的一种黑矩阵结构的制造方法的方法流程图,该黑矩阵结构的制造方法可以用于制造如图1和图2所示的黑矩阵结构01。参见图4,该方法可以包括如下几个步骤:
在步骤401中,在衬底基板上形成初始黑矩阵结构,该初始黑矩阵结构包括交叉的多个初始黑矩阵条,该初始黑矩阵条为由沿远离该衬底基板的方向依次分布的第一梯台、长方体和第二梯台叠加形成的一体结构,该第一梯台的上底面和该第二梯台的上底面分别与该长方体的相对的两面叠加,该第二梯台的下底面的面积大于该第一梯台的下底面的面积,该第一梯台的侧面和该第二梯台的侧面分别凸出于该长方体的侧面。
在步骤402中,使该初始黑矩阵结构中的该初始黑矩阵条的该第二梯台凸出于该长方体的结构中的部分去除且部分塌落,塌落部分将该第一梯台凸出于该长方体的结构覆盖,得到最终的黑矩阵结构。
该最终的黑矩阵结构包括交叉的多个黑矩阵条;该黑矩阵条的宽度的范围为2微米~2.5微米,相邻的两个黑矩阵条之间的距离的范围为4微米~5微米。
综上所述,本申请实施例提供的黑矩阵结构的制造方法,首先在衬底基板上形成初始黑矩阵结构,然后使该初始黑矩阵结构中的初始黑矩阵条的第二梯台凸出于该初始黑矩阵条的长方体的结构中的部分去除且部分塌落,塌落部分将该初始黑矩阵条的第一梯台凸出于该长方体的结构覆盖,从而得到最终的黑矩阵结构。由于对初始黑矩阵条的第二梯台凸出于该初始黑矩阵条的长方体的结构中的部分去除,因此该第二梯台塌落并覆盖第一梯台的部分较少,有助于减小最终形成的黑矩阵结构中的黑矩阵条的宽度,使得该黑矩阵结构能够适用于VR设备等分辨率要求较高的显示装置。
请参考图5,其示出了本申请实施例提供的另一种黑矩阵结构的制造方法的 方法流程图,该黑矩阵结构的制造方法可以用于制造如图1和图2所示的黑矩阵结构01。参见图5,该方法可以包括如下几个步骤:
在步骤501中,采用负性光刻胶材料在衬底基板上形成黑矩阵膜层。
示例地,请参考图6,其示出了本申请实施例提供的一种在衬底基板02上形成黑矩阵膜层Z后的示意图,该黑矩阵膜层Z覆盖衬底基板02。可选地,可以在衬底基板02上涂覆一层黑色的负性光刻胶材料作为黑矩阵膜层Z。
在步骤502中,对黑矩阵膜层进行烘烤使该黑矩阵膜层与衬底基板粘连。
可选地,可以采用预烘烤(英文:Prebake)工艺,从衬底基板远离该黑矩阵膜层的一侧对该黑矩阵膜层进行烘烤,使该黑矩阵膜层中与该衬底基板接触的部分被固化,从而该黑矩阵膜层与衬底基板粘连。示例地,从衬底基板02远离该黑矩阵膜层Z的一侧对该黑矩阵膜层Z进行烘烤,使该黑矩阵膜层Z与衬底基板02接触的部分被固化,该黑矩阵膜层Z与衬底基板02粘连。
在步骤503中,对黑矩阵膜层依次进行曝光和显影,得到初始黑矩阵结构,该初始黑矩阵结构包括交叉的多个初始黑矩阵条,该初始黑矩阵条为由沿远离衬底基板的方向依次分布的第一梯台、长方体和第二梯台叠加形成的一体结构,该第一梯台的上底面和该第二梯台的上底面分别与该长方体的相对的两面叠加,该第二梯台的下底面的面积大于该第一梯台的下底面的面积,该第一梯台的侧面和该第二梯台的侧面分别凸出于该长方体的侧面。
示例地,请参考图7,其示出了本申请实施例提供的一种对黑矩阵膜层Z依次进行曝光和显影后的示意图,如图7所示,对黑矩阵膜层Z依次进行曝光和显影后得到初始黑矩阵结构01a,该初始黑矩阵结构01a包括交叉的多个初始黑矩阵条011a(该初始黑矩阵结构01a的正视图与图1类似,区别仅在于黑矩阵条的宽度以及相邻的两个黑矩阵条之间的距离),该多个初始黑矩阵条011a中的每个初始黑矩阵条011a为由沿远离衬底基板02的方向依次分布的第一梯台0111、长方体0112和第二梯台0113叠加形成的一体结构,该第一梯台0111的上底面和该第二梯台0113的上底面分别与该长方体0112的相对的两面叠加,该第二梯台0113的下底面的面积大于该第一梯台0111的下底面的面积,该第一梯台0111的侧面和该第二梯台0113的侧面分别凸出于该长方体0112的侧面。在本申请实施例中,梯台是指纵截面为梯形的台状结构,梯台的纵截面与梯台的高度方向平行,梯台包括相互平行且面积不等的两个底面,该两个底面中面积较小的底面为该梯台的上底面,面积较大的底面为该梯台的下底面,该两个 底面之间的距离为该梯台的高度,梯台的侧面是指该梯台的表面中除两个底面之外的表面,该长方体0112的侧面指的是该长方体0112的表面中未与第一梯台0111和第二梯台0113叠加的表面。示例地,初始黑矩阵条011a的第一截面的形状为由沿远离衬底基板02的方向依次分布的第一梯形、长方形和第二梯形叠加形成的图形,该第一梯形也即是第一梯台0111的第一截面的形状,该长方形也即是长方体0112的第一截面的形状,该第二梯形也即是第二梯台0113的第一截面的形状,该第一截面与该初始黑矩阵条011a的宽度方向平行且与该初始黑矩阵条011a的长度方向垂直。
可选地,首先采用掩膜版对黑矩阵膜层Z进行曝光,使该黑矩阵膜层Z形成完全曝光区和非曝光区,在曝光的过程中,该黑矩阵膜层Z中位于该完全曝光区的部分被固化;然后对曝光后的黑矩阵膜层Z进行显影,使该黑矩阵膜层Z中位于该非曝光区的部分被去除,位于该完全曝光区的部分保留,得到该初始黑矩阵结构01a。示例地,在曝光时,首先在黑矩阵膜层Z远离衬底基板02的一侧设置掩膜版,然后在掩膜版远离该黑矩阵膜层Z的一侧设置光源,采用该光源通过该掩膜版照射该黑矩阵膜层Z,使该黑矩阵膜层Z中与该掩膜版的开口区域对应的部分感光形成完全曝光区,与该掩膜版的遮光区域(也即是该掩膜版上除该开口区域之外的区域)对应的部分为非曝光区。在对曝光后的黑矩阵膜层Z进行显影时,将包括该曝光后的黑矩阵膜层Z的衬底基板02放置在显影液中,使该显影液与该黑矩阵膜层Z的非曝光区发生反应,从而将该黑矩阵膜层Z中位于该非曝光区的部分被去除。
本领域技术人员容易理解,在对黑矩阵膜层Z进行曝光时,该黑矩阵膜层Z中按照从远离衬底基板02到靠近衬底基板02的方向的曝光程度依次减小,也即是,该黑矩阵膜层Z中距离衬底基板02最远的部分的曝光程度最大,与该衬底基板02接触的部分的曝光程度最小,中间部分的曝光程度小于该距离衬底基板02最远的部分的曝光程度且大于与该衬底基板02接触的部分的曝光程度,而由于在步骤502中对黑矩阵膜层Z进行烘烤时,该黑矩阵膜层Z中与该衬底基板02接触的部分已被固化,所以总体上来讲,经过该步骤503的曝光,该黑矩阵膜层Z中,距离衬底基板02最远的部分以及与该衬底基板02接触的部分的固化程度较大,中间部分的固化程度较小,所以在显影后得到如图7所示的初始黑矩阵结构01a。
在步骤504中,对初始黑矩阵结构加热,并采用等离子体轰击该初始黑矩 阵结构,使该初始黑矩阵结构中的初始黑矩阵条的第二梯台凸出于长方体的结构中的部分去除且部分塌落,塌落部分将该初始黑矩阵条的第一梯台凸出于该长方体的结构覆盖,得到最终的黑矩阵结构。
可选地,可以从衬底基板远离初始黑矩阵结构的一侧对该初始黑矩阵结构加热,并采用等离子体从该初始黑矩阵结构远离该衬底基板的一侧轰击该初始黑矩阵结构。可选地,采用红外线从衬底基板远离初始黑矩阵结构的一侧对该初始黑矩阵结构加热,并采用氦等离子和氩等离子的混合等离子体从该初始黑矩阵结构远离该衬底基板的一侧轰击该初始黑矩阵结构。其中,对该初始黑矩阵结构的加热温度大于或等于230摄氏度,该等离子体的真空压力小于100帕。
示例地,请参考图8和图9,其示出了本申请实施例提供的对初始黑矩阵结构01a加热,并采用等离子体轰击该初始黑矩阵结构01a的示意图。如图8所示,首先,将红外光源10、等离子源20以及包括该初始黑矩阵结构01a的衬底基板02均设置在密闭腔室(图8中未示出)内,使该红外光源10位于该衬底基板02的下方(也即是该衬底基板02远离初始黑矩阵结构01a的一侧),该等离子源20位于该初始黑矩阵结构01a的上方(也即是该初始黑矩阵结构01a远离衬底基板02的一侧);然后,控制红外光源10向衬底基板02侧发射红外线,使红外光源10发出的红外线穿过衬底基板02对初始黑矩阵结构01a加热,并控制红外光源10对初始黑矩阵结构01a的加热温度在230摄氏度以上;最后,控制等离子源20向初始黑矩阵结构01a发射等离子体轰击该初始黑矩阵结构01a。如图9所示,在对初始黑矩阵结构01a加热以及采用等离子体轰击该初始黑矩阵结构01a的过程中,初始黑矩阵条011a的第二梯台0113凸出于长方体0112的结构中的部分被等离子体轰击去除,部分在红外加热的作用下塌落,该第二梯台0113中塌落的部分将该初始黑矩阵条011a的第一梯台011凸出于该长方体012的结构覆盖,得到最终的黑矩阵结构如图10所示,图10是本申请实施例提供的一种在衬底基板02上形成黑矩阵结构01后的示意图,该黑矩阵结构01交叉的多个黑矩阵条011,该黑矩阵条011的宽度的范围为2微米~2.5微米,该多个黑矩阵条中相邻的两个黑矩阵条之间的距离的范围为4微米~5微米。可选地,在控制等离子源20向初始黑矩阵结构01a发射等离子体时,还可以向等离子体施加电场来控制等离子体的发射方向,以使等离子体能够更有效的对初始黑矩阵结构01a轰击。示例地,可以在等离子源20远离初始黑矩阵结构01a的一侧施加高频交流电,在衬底基板02远离初始黑矩阵结构01a的一侧施加低频交流 电,在该高频交流电和低频交流电的作用下,该初始黑矩阵结构01a周围形成电场,以对等离子源20发射出的等离子体施加电场。
发明人通过实验发现,最终的黑矩阵结构中的黑矩阵条的宽度与等离子体对初始黑矩阵结构的轰击时长正相关,因此在本申请实施例中,可以通过控制等离子体对初始黑矩阵结构01a的轰击时长来控制黑矩阵条011的宽度。示例地,下表1示出的是发明人对厚度为1.05微米的初始黑矩阵结构(初始黑矩阵结构的厚度指的是该初始黑矩阵结构远离衬底基板的一面与该初始黑矩阵结构靠近衬底基板的一面之间的距离)进行等离子轰击实验得出的数据,其中,单侧宽度减少量指的是初始黑矩阵条的一侧的宽度的减小量,整体宽度减少量指的是初始黑矩阵条的两侧的宽度的减小量之和:
表1
Figure PCTCN2021098937-appb-000001
由表1可以看出,初始黑矩阵条的宽度的减小量与离子体对初始黑矩阵结构的轰击时长正相关,且在采用离子体轰击初始黑矩阵结构时,初始黑矩阵条的两侧的宽度的减小量相等。
目前制造黑矩阵结构的工艺中,通常在得到初始黑矩阵结构后,采用oven工艺(高温工艺)对初始黑矩阵结构进行处理,使初始黑矩阵条的第二梯台凸出于长方体的结构全部塌落至衬底基板上,这导致最终制成的黑矩阵结构的黑矩阵条的宽度较大,业界黑矩阵条的宽度最小为2.5微米。本申请实施例提供的黑矩阵结构的制造方法,通过对初始黑矩阵结构加热并采用等离子体轰击该初始黑矩阵结构,使该初始黑矩阵结构中的初始黑矩阵条的第二梯台凸出于长方体的结构中的部分去除且部分塌落,最终制成的黑矩阵结构的黑矩阵条的宽度较小,该黑矩阵条的宽度的范围为2微米~2.5微米,小于业界黑矩阵条的宽度,因此本申请实施例提供的黑矩阵结构的制造方法能够提高显示装置的分辨率,能够适用于VR设备等分辨率要求较高的显示装置。
综上所述,本申请实施例提供的黑矩阵结构的制造方法,首先在衬底基板上形成初始黑矩阵结构,然后通过对该初始黑矩阵结构进行加热以及等离子轰击,使该初始黑矩阵结构中的初始黑矩阵条的第二梯台凸出于该初始黑矩阵条的长方体的结构中的部分去除且部分塌落,塌落部分将该初始黑矩阵条的第一梯台凸出于该长方体的结构覆盖,从而得到最终的黑矩阵结构。由于对初始黑矩阵条的第二梯台凸出于该初始黑矩阵条的长方体的结构中的部分去除,因此该第二梯台塌落并覆盖第一梯台的部分较少,有助于减小最终形成的黑矩阵结构中的黑矩阵条的宽度,使得该黑矩阵结构能够适用于VR设备等分辨率要求较高的显示装置。
请参考图11,其示出了本申请实施例提供的一种显示基板的制造方法的方法流程图,该显示基板的制造方法可以用于制造如图3所示的显示基板。参见图11,该方法可以包括如下几个步骤:
在步骤1101中,在衬底基板上形成黑矩阵结构,该黑矩阵结构包括交叉的多个黑矩阵条。
在衬底基板上形成黑矩阵结构的过程可以参考图4和图5所示实施例,在衬底基板上形成黑矩阵结构后的示意图如图10所示,本申请实施例在此不再赘述。
在步骤1102中,在形成有黑矩阵结构的衬底基板上形成彩色滤光层,彩色滤光层的滤光结构位于黑矩阵结构的开口区域中。
请参考图12,其示出了本申请实施例提供的一种在形成有黑矩阵结构01的衬底基板02上形成彩色滤光层03后的示意图,该彩色滤光层03包括红色滤光结构031、绿色滤光结构032和蓝色滤光结构033,红色滤光结构031、绿色滤光结构032和蓝色滤光结构033位于黑矩阵结构01的不同开口区域中。可选地,红色滤光结构031的材料可以为红色树脂材料,绿色滤光结构032的材料可以为绿色树脂材料,蓝色滤光结构033的材料可以为蓝色树脂材料。示例地,在形成有黑矩阵结构01的衬底基板02上形成彩色滤光层03包括:首先,采用在形成有黑矩阵结构01的衬底基板02上涂覆一层红色树脂材料,得到红色树脂材质层,通过一次构图工艺对红色树脂材质层进行处理得到红色滤光结构031;然后,在形成有红色滤光结构031的衬底基板02上涂覆一层绿色树脂材料,得到绿色树脂材质层,通过一次构图工艺对绿色树脂材质层进行处理得到绿色滤 光结构032;最后,在形成有绿色滤光结构032的衬底基板02上涂覆一层蓝色树脂材料,得到蓝色树脂材质层,通过一次构图工艺对蓝色树脂材质层进行处理得到蓝色滤光结构033,至此,便得到了彩色滤光层03。
其中,一次构图工艺可以包括:光刻胶涂覆、曝光、显影、刻蚀和光刻胶剥离,因此,通过一次构图工艺对材质层(例如红色树脂材质层)进行处理包括:首先,在材质层(例如红色树脂材质层)上涂覆一层光刻胶,然后,采用掩膜版对光刻胶进行曝光,使光刻胶形成完全曝光区和非曝光区,接着,采用显影工艺进行处理,使完全曝光区的光刻胶被去除,非曝光区的光刻胶保留,之后,对完全曝光区在材质层(例如红色树脂材质层)上的对应区域进行刻蚀,最后,剥离非曝光区的光刻胶即可得到相应的结构(例如红色滤光结构031)。本领域技术人员容易理解,此处是以正性光刻胶为例描述一次构图工艺,一次构图工艺中使用的光刻胶还可以是负性光刻胶,本申请实施例在此不再赘述。
本领域技术人员容易理解,形成彩色滤光层03中的不同颜色的滤光结构的过程可以调整,比如,可以先形成红色滤光结构031,再形成绿色滤光结构032,最后形成蓝色滤光结构033,也可以先形成绿色滤光结构032、再形成红色滤光结构031,最后形成蓝色滤光结构033,或者,还可以先形成蓝色滤光结构033,再形成红色滤光结构031,最后形成绿色滤光结构032,本申请实施例对此不做限定,此外,在一些实施例中,还可以通过一次构图工艺形成红色滤光结构031、绿色滤光结构032和蓝色滤光结构033,本申请实施例对此不做限定。
在步骤1103中,在彩色滤光层远离衬底基板的一侧形成保护层。
请参考图13,其示出了本申请实施例提供的一种在彩色滤光层03远离衬底基板02的一侧形成保护层04后的示意图,如图13所示,该保护层04覆盖彩色滤光层03和黑矩阵结构01。可选地,该保护层04的材料可以为树脂材料。示例地,可以在彩色滤光层03远离衬底基板02的一侧涂覆一层树脂材料作为保护层04。
在步骤1104中,在保护层远离衬底基板的一侧形成隔垫物层,该隔垫物层包括主隔垫物和辅隔垫物,主隔垫物的高度大于辅隔垫物的高度。
在保护层04远离衬底基板02的一侧形成隔垫物层后的示意图可以参考图3,如图3所示,该隔垫物层包括主隔垫物051和辅隔垫物052,该主隔垫物051的高度大于该辅隔垫物052的高度,该主隔垫物051和该辅隔垫物052均可以为台状结构,该主隔垫物051的纵截面的形状和该辅隔垫物052的纵截面的形 状均可以为梯形。可选地,该主隔垫物051和该辅隔垫物052都为圆台状结构,或者,该主隔垫物051和该辅隔垫物052都为棱台状结构,本申请实施例对此不做限定。
可选地,主隔垫物051的材料和辅隔垫物052的材料均可以为树脂材料。示例地,首先,在保护层04远离衬底基板02的一侧涂覆一层树脂材料得到树脂薄膜;然后,采用半色调掩膜版对该树脂薄膜进行曝光,使该树脂薄膜形成完全曝光区、部分曝光区和非曝光区;最后,对曝光后的树脂薄膜进行显影,使完全曝光区的树脂薄膜被完全去除,部分曝光区的树脂薄膜被部分去除,非曝光区的树脂薄膜全部保留,在该非曝光区形成主隔垫物051,在该部分曝光区形成辅隔垫物052。
本领域技术人员容易理解,本申请实施例提供的显示基板的制造方法步骤的先后顺序可以进行适当调整,步骤也可以根据情况进行相应增减,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本申请的保护范围之内,因此不再赘述。
综上所述,本申请实施例提供的阵列基板的制造方法,由于该方法制造的显示基板中,黑矩阵条的宽度较小且相邻的两个黑矩阵条之间的距离较小,因此该显示基板能够适用于VR设备等分辨率要求较高的显示装置。
基于同样的发明构思,本申请实施例还提供一种显示装置,该显示装置包括上述显示基板。示例地,该显示装置可以为:液晶面板、电子纸、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪、VR设备、增强现实(英文:Augmented Reality;简称:AR)设备、可穿戴设备等任何具有显示功能的产品或部件。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的示例性实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (15)

  1. 一种黑矩阵结构,其特征在于,包括:交叉的多个黑矩阵条;
    所述黑矩阵条的宽度的范围为2微米~2.5微米,所述多个黑矩阵条中相邻的两个黑矩阵条之间的距离的范围为4微米~5微米。
  2. 根据权利要求1所述的黑矩阵结构,其特征在于,
    所述黑矩阵条的坡度角的范围为80度~85度。
  3. 根据权利要求2所述的黑矩阵结构,其特征在于,
    所述黑矩阵条的第一截面的形状为倒角等腰梯形,所述第一截面与所述黑矩阵条的宽度方向平行且与所述黑矩阵条的长度方向垂直。
  4. 根据权利要求3所述的黑矩阵结构,其特征在于,
    所述倒角等腰梯形的顶角为圆弧形倒角,所述倒角等腰梯形的顶角为所述倒角等腰梯形的上底与所述倒角等腰梯形的腰之间的夹角。
  5. 根据权利要求4所述的黑矩阵结构,其特征在于,
    所述倒角等腰梯形的顶角的范围为95度~100度。
  6. 一种显示基板,其特征在于,包括:
    衬底基板;以及,
    位于所述衬底基板上的如权利要求1至5任一所述的黑矩阵结构。
  7. 根据权利要求6所述的显示基板,其特征在于,所述显示基板还包括:
    彩色滤光层,所述彩色滤光层的滤光结构位于所述黑矩阵结构的开口区域中。
  8. 根据权利要求7所述的显示基板,其特征在于,所述显示基板还包括:
    位于所述彩色滤光层远离所述衬底基板的一侧的保护层;以及,
    位于所述保护层远离所述衬底基板的一侧的隔垫物层,所述隔垫物层包括 主隔垫物和辅隔垫物,所述主隔垫物的高度大于所述辅隔垫物的高度。
  9. 一种显示装置,其特征在于,包括如权利要求6至8任一所述的显示基板。
  10. 一种如权利要求1至5任一所述的黑矩阵结构的制造方法,其特征在于,包括:
    在衬底基板上形成初始黑矩阵结构,所述初始黑矩阵结构包括交叉的多个初始黑矩阵条,所述初始黑矩阵条为由沿远离所述衬底基板的方向依次分布的第一梯台、长方体和第二梯台叠加形成的一体结构,所述第一梯台的上底面和所述第二梯台的上底面分别与所述长方体的相对的两面叠加,所述第二梯台的下底面的面积大于所述第一梯台的下底面的面积,所述第一梯台的侧面和所述第二梯台的侧面分别凸出于所述长方体的侧面;
    使所述初始黑矩阵结构中的所述初始黑矩阵条的所述第二梯台凸出于所述长方体的结构中的部分去除且部分塌落,塌落部分将所述第一梯台凸出于所述长方体的结构覆盖,得到最终的所述黑矩阵结构。
  11. 根据权利要求10所述的方法,其特征在于,
    所述使所述初始黑矩阵结构中的所述初始黑矩阵条的所述第二梯台凸出于所述长方体的结构中的部分去除且部分塌落,塌落部分将所述第一梯台凸出于所述长方体的结构覆盖,包括:
    对所述初始黑矩阵结构加热,并采用等离子体轰击所述初始黑矩阵结构,使所述初始黑矩阵结构中的所述初始黑矩阵条的所述第二梯台凸出于所述长方体的结构中的部分去除且部分塌落,塌落部分将所述第一梯台凸出于所述长方体的结构覆盖。
  12. 根据权利要求11所述的方法,其特征在于,
    所述对所述初始黑矩阵结构加热,并采用等离子体轰击所述初始黑矩阵结构,包括:
    从所述衬底基板远离所述初始黑矩阵结构的一侧对所述初始黑矩阵结构加热,并采用等离子体从所述初始黑矩阵结构远离所述衬底基板的一侧轰击所述 初始黑矩阵结构。
  13. 根据权利要求11或12所述的方法,其特征在于,
    所述对所述初始黑矩阵结构加热,并采用等离子体轰击所述初始黑矩阵结构,包括:
    采用红外线对所述初始黑矩阵结构加热,并采用氦等离子和氩等离子的混合等离子体轰击所述初始黑矩阵结构。
  14. 根据权利要求11至13任一所述的方法,其特征在于,
    对所述初始黑矩阵结构的加热温度大于或等于230摄氏度,所述等离子体的真空压力小于100帕。
  15. 根据权利要求10至14任一所述的方法,其特征在于,
    所述在衬底基板上形成初始黑矩阵结构,包括:
    采用负性光刻胶材料在所述衬底基板上形成黑矩阵膜层;
    对所述黑矩阵膜层进行烘烤使所述黑矩阵膜层与所述衬底基板粘连;
    对所述黑矩阵膜层依次进行曝光和显影,得到所述初始黑矩阵结构。
PCT/CN2021/098937 2020-07-03 2021-06-08 黑矩阵结构及其制造方法、显示基板、显示装置 WO2022001599A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/914,800 US11960164B2 (en) 2020-07-03 2021-06-08 Black matrix structure and manufacturing method therefor, display substrate, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010637458.3A CN113885246B (zh) 2020-07-03 2020-07-03 黑矩阵结构及其制造方法、显示基板、显示装置
CN202010637458.3 2020-07-03

Publications (1)

Publication Number Publication Date
WO2022001599A1 true WO2022001599A1 (zh) 2022-01-06

Family

ID=79012013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098937 WO2022001599A1 (zh) 2020-07-03 2021-06-08 黑矩阵结构及其制造方法、显示基板、显示装置

Country Status (3)

Country Link
US (1) US11960164B2 (zh)
CN (1) CN113885246B (zh)
WO (1) WO2022001599A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111769141A (zh) * 2020-06-23 2020-10-13 武汉华星光电半导体显示技术有限公司 彩色滤光片、彩色滤光片的制备方法及显示面板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000111724A (ja) * 1998-10-02 2000-04-21 Sharp Corp カラーフィルター、カラーフィルターの製造方法、および、それを用いた液晶表示装置
CN202306065U (zh) * 2011-11-11 2012-07-04 京东方科技集团股份有限公司 一种液晶显示器及其彩膜基板
TWM593565U (zh) * 2019-10-15 2020-04-11 恆煦電子材料股份有限公司 具量子點的畫素基板
CN111161632A (zh) * 2020-01-22 2020-05-15 京东方科技集团股份有限公司 彩膜基板、其制造方法、显示面板及显示装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7310124B2 (en) 2003-05-09 2007-12-18 Sharp Kabushiki Kaisha Color filter substrate, method of manufacturing the color filter and display device
US20060159843A1 (en) * 2005-01-18 2006-07-20 Applied Materials, Inc. Method of substrate treatment for manufacturing of color filters by inkjet printing systems
KR20070079879A (ko) * 2006-02-04 2007-08-08 삼성전자주식회사 컬러 필터용 블랙 매트릭스의 제조방법
US20090174036A1 (en) 2008-01-04 2009-07-09 International Business Machines Corporation Plasma curing of patterning materials for aggressively scaled features
TWI370270B (en) * 2008-08-06 2012-08-11 Au Optronics Corp Color filter sustrate and fabricating method thereof
JP2010096856A (ja) * 2008-10-14 2010-04-30 Sony Corp 液晶表示装置
CN102117737B (zh) 2009-12-30 2015-01-07 中国科学院微电子研究所 减小半导体器件中ler的方法及半导体器件
JP5056908B2 (ja) * 2010-06-18 2012-10-24 凸版印刷株式会社 半透過型液晶表示装置用基板および液晶表示装置
JP5771931B2 (ja) * 2010-09-29 2015-09-02 大日本印刷株式会社 カラーフィルタ、それを用いた液晶表示装置及びカラーフィルタの製造方法
CN102629016A (zh) * 2011-05-19 2012-08-08 京东方科技集团股份有限公司 彩膜结构及其制造方法、和应用该彩膜结构的液晶显示器
JP2014126674A (ja) * 2012-12-26 2014-07-07 Japan Display Inc 液晶表示装置
CN103117219B (zh) * 2013-01-30 2015-08-26 常州同泰光电有限公司 一种可控形貌的刻蚀方法
JP2014153420A (ja) * 2013-02-05 2014-08-25 Dainippon Printing Co Ltd カラーフィルタ及びその製造方法、並びに表示装置
JP6334179B2 (ja) * 2014-01-23 2018-05-30 株式会社ジャパンディスプレイ 表示装置
JP2016200645A (ja) * 2015-04-07 2016-12-01 株式会社ジャパンディスプレイ 表示装置
CN106526946A (zh) * 2015-09-14 2017-03-22 四川虹视显示技术有限公司 一种黑矩阵制造方法
CN105093760A (zh) * 2015-09-18 2015-11-25 京东方科技集团股份有限公司 Coa基板及其制备方法、显示装置
CN105785658B (zh) * 2016-05-13 2018-03-30 深圳市华星光电技术有限公司 液晶面板结构及制作方法
CN107065292A (zh) 2017-06-12 2017-08-18 京东方科技集团股份有限公司 黑矩阵及其制备方法和系统、显示基板和显示装置
CN107390419A (zh) * 2017-07-31 2017-11-24 京东方科技集团股份有限公司 彩膜基板的制备方法及喷墨打印装置
US10754212B2 (en) * 2017-09-21 2020-08-25 Apple Inc. Liquid crystal display
CN108761893B (zh) * 2018-06-21 2021-10-29 京东方科技集团股份有限公司 显示基板及制备方法、黑矩阵材料的制备方法和显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000111724A (ja) * 1998-10-02 2000-04-21 Sharp Corp カラーフィルター、カラーフィルターの製造方法、および、それを用いた液晶表示装置
CN202306065U (zh) * 2011-11-11 2012-07-04 京东方科技集团股份有限公司 一种液晶显示器及其彩膜基板
TWM593565U (zh) * 2019-10-15 2020-04-11 恆煦電子材料股份有限公司 具量子點的畫素基板
CN111161632A (zh) * 2020-01-22 2020-05-15 京东方科技集团股份有限公司 彩膜基板、其制造方法、显示面板及显示装置

Also Published As

Publication number Publication date
CN113885246A (zh) 2022-01-04
US11960164B2 (en) 2024-04-16
CN113885246B (zh) 2023-02-28
US20230333424A1 (en) 2023-10-19

Similar Documents

Publication Publication Date Title
US8724058B2 (en) Color filter substrate with black matrix on undercut groove and fabricating method thereof
US6022652A (en) High resolution flat panel phosphor screen with tall barriers
WO2020224317A1 (zh) 彩膜基板、液晶显示装置、彩膜基板的制备方法以及液晶显示装置的制备方法
WO2022001599A1 (zh) 黑矩阵结构及其制造方法、显示基板、显示装置
JP2002117756A (ja) 隔壁転写用元型の作製方法及び隔壁形成方法
CN108919550A (zh) 彩膜基板及其制作方法、液晶面板
JP4604752B2 (ja) フラットディスプレイパネルの製造に用いるフォトマスクおよびフラットディスプレイパネルの製造方法
CN115981036B (zh) 显示面板的制备方法及显示面板
KR100197130B1 (ko) 플라즈마 디스플레이 패널 및 그의 제조방법
US11513384B2 (en) Black matrix structure, method for manufacturing same, display substrate, and display device
KR101192752B1 (ko) 인쇄판 및 이를 이용한 패터닝 방법
KR100197131B1 (ko) 플라즈마 디스플레이 패널 및 그의 제조방법
KR100630415B1 (ko) 플라즈마 디스플레이 패널의 제조 방법
WO2019242117A1 (zh) 彩色滤光结构、彩色滤光结构的制造方法及光刻制程
JP2004342348A (ja) プラズマディスプレイパネルの製造方法
KR20050009707A (ko) 플라즈마 디스플레이 패널의 제조 방법
JP2004281389A (ja) プラズマディスプレイパネルの製造方法及びプラズマディスプレイパネル
JP5034450B2 (ja) カラーフィルタの製造方法
US6737806B2 (en) Plasma display panel including transparent electrode layer
US20070292634A1 (en) Plasma display panel and method of manufacturing the same
JP3033356B2 (ja) 陽極基板の製造方法
WO2021189551A1 (zh) 一种彩膜基板、显示面板及电子装置
JP2001066588A (ja) 液晶表示パネル
JPH10308171A (ja) シャドウマスクおよび表示装置の製造方法、および、露光用マスク
JP2000021308A (ja) Crt蛍光面の形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21831754

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21831754

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07.09.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21831754

Country of ref document: EP

Kind code of ref document: A1