WO2021251103A1 - ガラス繊維強化樹脂成形品、電子機器筐体、モビリティ製品用内装部品、及び、モビリティ製品用外装部品 - Google Patents

ガラス繊維強化樹脂成形品、電子機器筐体、モビリティ製品用内装部品、及び、モビリティ製品用外装部品 Download PDF

Info

Publication number
WO2021251103A1
WO2021251103A1 PCT/JP2021/019312 JP2021019312W WO2021251103A1 WO 2021251103 A1 WO2021251103 A1 WO 2021251103A1 JP 2021019312 W JP2021019312 W JP 2021019312W WO 2021251103 A1 WO2021251103 A1 WO 2021251103A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass fiber
resin molded
reinforced resin
molded product
woven fabric
Prior art date
Application number
PCT/JP2021/019312
Other languages
English (en)
French (fr)
Inventor
令佳 佐藤
秀明 門馬
千可子 松田
Original Assignee
日東紡績株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東紡績株式会社 filed Critical 日東紡績株式会社
Priority to EP21821854.3A priority Critical patent/EP4023700B1/en
Priority to CN202180006268.4A priority patent/CN114729134B/zh
Priority to US17/765,605 priority patent/US11591723B2/en
Priority to JP2021557255A priority patent/JP7014346B1/ja
Priority to KR1020227010737A priority patent/KR102459984B1/ko
Publication of WO2021251103A1 publication Critical patent/WO2021251103A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D13/00Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft
    • D03D13/008Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft characterised by weave density or surface weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/1095Coating to obtain coated fabrics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/22Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least two directions forming a two dimensional structure
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • C03C13/046Multicomponent glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • C08J5/08Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/248Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using pre-treated fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/242Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads inorganic, e.g. basalt
    • D03D15/267Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/06Unsaturated polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2201/00Chemical constitution of the fibres, threads or yarns
    • D06N2201/08Inorganic fibres
    • D06N2201/082Glass fibres
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/02Inorganic fibres based on oxides or oxide ceramics, e.g. silicates
    • D10B2101/06Glass
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/02Reinforcing materials; Prepregs

Definitions

  • the present invention relates to glass fiber reinforced resin molded products, electronic device housings, interior parts for mobility products, and exterior parts for mobility products.
  • glass fiber woven fabric has been widely used to impart strength, rigidity, insulation, nonflammability, etc. to a sheet-shaped resin material.
  • the woven pattern of the glass fiber woven fabric has a unique aesthetic appearance
  • the present inventors cannot visually recognize the texture of the glass fiber woven fabric in the transparent composite sheet, and the original design of the glass fiber woven fabric is obtained. I found that there is an inconvenience that is impaired.
  • the present inventors have a problem that the transparent resin does not sufficiently impregnate the glass fiber fabric during the production of the transparent composite sheet, the glass fiber fabric is not sufficiently impregnated with the transparent resin. Although the texture can be observed, it has been found that the inconvenience that the reinforcing effect of the glass fiber reinforced resin molded body by the glass fiber woven material is lost occurs.
  • the present invention has been made in view of the above circumstances, and the texture of the glass fiber woven fabric can be visually recognized, the design of the glass fiber woven fabric is exhibited, and the glass fiber woven fabric exhibits a sufficient reinforcing effect. It is an object of the present invention to provide a glass fiber reinforced resin molded product.
  • the glass fiber reinforced resin molded product of the present invention is a glass fiber reinforced resin molded product containing a glass fiber woven fabric and a transparent resin, and the glass fiber woven fabric is not impregnated with a resin near the filament.
  • the ratio is in the range of more than 2.0% and 50.0% or less, and the thread width Bt of the warp and the thread width By of the weft of the glass fiber woven fabric are in the range of 0.50 mm to 8.50 mm, respectively.
  • the weaving density Wt of the warp and the weft density Wy of the glass fiber woven fabric are in the range of 3.0 / 25 mm to 50.0 / 25 mm, respectively, and the Bt / of the glass fiber woven fabric.
  • the warp widening degree Et calculated at (25 / Wt) and the weft widening degree Ey calculated at By / (25 / Wy) are each in the range of 0.70 to 1.10. do.
  • the filament-near resin unimpregnated rate of the glass fiber woven fabric is in the range of more than 2.0% and 50.0% or less, and the Bt, By, Wt, and the like.
  • Wy, Et and Ey are in the above-mentioned range, the texture of the glass fiber woven fabric can be visually recognized, the design of the glass fiber woven fabric is exhibited, and the glass fiber woven fabric exhibits a sufficient reinforcing effect.
  • the fact that the glass fiber woven fabric exerts a sufficient reinforcing effect means that the flexural modulus of the glass fiber reinforced resin molded product is 10 GPa or more.
  • the resin non-impregnation rate in the vicinity of the average filament of the glass fiber woven fabric can be measured by the following method.
  • a glass fiber reinforced resin molded product is cut using a diamond cutter, a jigsaw, or the like, and the cut surface is mechanically polished to prepare a measurement sample.
  • the polished surface of the measurement sample was photographed at a magnification of 2500 times using a digital microscope (manufactured by Hirox Co., Ltd., model name: KH-8700), and the obtained image was taken.
  • image processing software WinRooF2013 binarization processing is performed so that the glass filament 1 becomes black.
  • a measurement region 2 is set in which 5 to 20 glass filaments 1 are included.
  • the white portion in the measurement region is specified as the void portion 3, and the area of each void portion 3 is obtained.
  • at least five measurement regions 2 having different numbers of glass filaments contained and not overlapping each other are set, and in each measurement region 2, the filament-neighboring resin non-impregnation rate is measured and the average is taken to obtain an average filament. Obtain the neighborhood resin non-impregnation rate.
  • the flexural modulus of the glass fiber reinforced resin molded product is measured in accordance with JIS K 7017: 1999 using a precision universal testing machine (manufactured by Shimadzu Corporation, model name: AG-X Plus 50KN). be able to.
  • the filament-near resin unimpregnated rate of the glass fiber woven fabric is in the range of 2.1% or more and 28.0% or less.
  • the glass fiber woven fabric is excellently reinforced when the filament-near resin unimpregnated rate of the glass fiber woven fabric is in the range of 2.1% or more and 28.0% or less. It is effective.
  • the fact that the glass fiber woven fabric exerts an excellent reinforcing effect means that the flexural modulus of the glass fiber reinforced resin molded product is 15 GPa or more.
  • the filament-near resin unimpregnated rate of the glass fiber woven fabric is in the range of 2.5% or more and 10.0% or less.
  • the glass fiber woven fabric is more excellent because the filament-near resin unimpregnated rate of the glass fiber woven fabric is in the range of 2.5% or more and 10.0% or less. Demonstrates a reinforcing effect.
  • the fact that the glass fiber woven fabric exerts a more excellent reinforcing effect means that the flexural modulus of the glass fiber reinforced resin molded product is 18 GPa or more.
  • the filament-near resin unimpregnated rate of the glass fiber woven fabric is in the range of 3.1% or more and 5.0% or less.
  • the glass fiber woven fabric is further excellent because the filament-near resin unimpregnated rate of the glass fiber woven fabric is in the range of 3.1% or more and 5.0% or less. Demonstrates a reinforcing effect.
  • the fact that the glass fiber woven fabric exerts a more excellent reinforcing effect means that the flexural modulus of the glass fiber reinforced resin molded product is 20 GPa or more.
  • the mass of the warp (mass per unit length) and the mass of the warp (mass per unit length) of the glass fiber woven fabric are 210 tex to 850 tex, respectively. It is preferable that it is in the range of. In addition, 1tex corresponds to 1g / 1000m.
  • the mass of the warp and the mass of the weft of the glass fiber woven fabric are in the range of 210 tex to 850 tex, respectively, so that the design of the glass fiber woven fabric is improved. It is more exhibited, and the smoothness of the glass fiber reinforced resin molded product becomes excellent.
  • the fact that the glass fiber reinforced resin molded product has excellent smoothness means that the central average roughness Ra of the surface of the glass fiber reinforced resin molded product is 1 ⁇ m or less.
  • the central average roughness Ra of the surface of the glass fiber reinforced resin molded product conforms to JIS B 0601: 2013 using a surface roughness measuring machine (manufactured by Mitutoyo Co., Ltd., model name: J? 47-2 to 0130). Can be measured.
  • the glass fiber reinforced resin molded product of the present invention preferably has a dielectric constant of 5.5 or less at a measurement frequency of 1 GHz for the glass fibers constituting the warp and weft of the glass fiber woven fabric.
  • the glass fiber reinforced resin molded product of the present invention has a dielectric constant of 5.5 or less at a measurement frequency of 1 GHz of the glass fibers constituting the warp and weft of the glass fiber woven fabric. It has excellent radio wave transmission.
  • the glass composition of the glass fibers constituting the warp and weft of the glass fiber woven fabric is 60.0% by mass to 70.0% by mass with respect to the total amount of the glass fibers. and SiO 2 range of the Al 2 O 3 of 20.0 wt% to 30.0 wt%, it is preferable that the glass composition containing MgO in the range of 5.0 wt% to 15.0 wt% ..
  • the glass composition of the glass fibers constituting the warp and weft of the glass fiber woven fabric has the above-mentioned glass composition, so that the glass fiber woven fabric has a particularly excellent reinforcing effect. Demonstrate.
  • the fact that the glass fiber woven fabric exerts a particularly excellent reinforcing effect means that the flexural modulus of the glass fiber reinforced resin molded product is 24 GPa or more.
  • the electronic device housing of the present invention includes the glass fiber reinforced resin molded product of the present invention.
  • the electronic device housing of the present invention by including the glass fiber reinforced resin molded product of the present invention, sufficient rigidity and excellent designability are provided.
  • the interior parts for mobility products of the present invention include the glass fiber reinforced resin molded product of the present invention.
  • the interior parts for mobility products of the present invention by including the glass fiber reinforced resin molded product of the present invention, sufficient rigidity and excellent designability are provided.
  • the exterior parts for mobility products of the present invention include the glass fiber reinforced resin molded products of the present invention.
  • the exterior parts for mobility products of the present invention by including the glass fiber reinforced resin molded product of the present invention, sufficient rigidity and excellent designability are provided.
  • the glass fiber reinforced resin molded product of the present embodiment is a glass fiber reinforced resin molded product containing a glass fiber woven fabric and a transparent resin, and the average filament-near resin non-impregnation rate of the glass fiber woven fabric is 2.0.
  • the warp yarn width Bt and the weft yarn width By of the glass fiber woven fabric are in the range of 0.50 mm to 8.50 mm, respectively, and the glass fiber woven fabric is in the range of more than 50.0%.
  • the weaving density Wt of the warp and the weaving density Wy of the weft are in the range of 3.0 / 25 mm to 50.0 / 25 mm, respectively, at Bt / (25 / Wt) of the glass fiber woven fabric.
  • the warp widening degree Et calculated and the weft widening degree Ey calculated by By / (25 / Wy) are each in the range of 0.70 to 1.10.
  • the average filament non-impregnated rate of the glass fiber woven fabric is in the range of more than 2.0% and 50.0% or less, and the Bt, By, and so on.
  • Wt, Wy, Et and Ey are in the above-mentioned range, the texture of the glass fiber woven fabric can be visually recognized, the design of the glass fiber woven fabric is exhibited, and the glass fiber woven fabric exhibits a sufficient reinforcing effect. ..
  • the fact that the glass fiber woven fabric exerts a sufficient reinforcing effect means that the flexural modulus of the glass fiber reinforced resin molded product is 10 GPa or more.
  • the glass fiber reinforced resin molded product of the present embodiment when the resin non-impregnation rate in the vicinity of the average filament of the glass fiber woven product is 2.0% or less, the texture of the glass fiber woven fabric in the state of the glass fiber reinforced resin molded product. Is not visible, and therefore the design of the glass fiber woven fabric is not exhibited. On the other hand, if the resin non-impregnation rate in the vicinity of the average filament of the glass fiber woven fabric is more than 50.0%, the reinforcing effect of the glass fiber woven fabric is not sufficiently exhibited.
  • the average filament non-impregnated rate of the glass fiber woven fabric is 2.1% or more and 28.0%. It is preferably in the following range. Further, since the glass fiber woven fabric exerts a more excellent reinforcing effect, the average filament non-impregnated rate of the glass fiber woven fabric is more preferably in the range of 2.5% or more and 10.0% or less. Further, since the glass fiber woven fabric exerts a more excellent reinforcing effect, the average filament non-impregnated rate of the glass fiber woven fabric is more preferably in the range of 3.1% or more and 5.0% or less.
  • the resin non-impregnation rate in the vicinity of the average filament of the glass fiber woven fabric may be in the range of 3.1% or more and 4.0% or less. Particularly preferably, it is particularly preferably in the range of 3.1% or more and 3.9% or less, particularly preferably in the range of 3.1% or more and 3.7% or less, and 3.1% or more and 3.4. Most preferably, it is in the range of% or less.
  • the unimpregnated rate of the resin near the filament of the glass fiber woven fabric can be controlled by the amount of the silane coupling agent and the dye or pigment other than the silane coupling agent adhering to the surface of the glass fiber woven fabric.
  • the resin non-impregnation rate near the average filament of the glass fiber woven fabric can be obtained. Can be reduced.
  • the amount of the silane coupling agent adhered to the surface of the glass fiber woven fabric may be, for example, 0.03% by mass or less, and the amount of the dye or pigment adhered may be. , 1.0% by mass or less.
  • the yarn width Bt of the warp and the yarn width By of the weft of the glass fiber woven fabric are less than 0.50 mm or more than 8.50 mm, respectively, the glass.
  • the design of the fiber woven fabric becomes insufficient.
  • the yarn width Bt of the warp and the yarn width By of the weft of the glass fiber woven fabric are set to 0. It is preferably in the range of 80 mm to 4.80 mm, more preferably in the range of 1.60 mm to 3.30 mm, and even more preferably in the range of 1.70 mm to 2.30 mm.
  • the thread widths Bt and By can be obtained by the following method. First, the surface of the glass fiber reinforced resin molded product is photographed with a digital microscope (manufactured by Hirox Co., Ltd., model name: KH-8700) at a magnification of 35 to 100 times. Next, for the obtained image, at least five warp threads are selected from one image or a plurality of images using the image processing software WinRooF2013, and one warp (weft) thread is selected for each warp (weft) thread. The warp (weft) thread width is measured at least 5 points from the region where the weft (warp) thread exists under the warp (weft) thread from the image of the above or a plurality of images. Bt (By) can be obtained by calculating the average of the warp (weft) yarn widths measured from one image.
  • the thread widths Bt and By of the glass fiber fabric are, for example, whether or not the warp and the weft are rewound and the conditions, the tension condition applied to the warp during weaving the glass fiber fabric, and the conditions. Adjusted the weft driving conditions, the conditions for opening the fiberglass fabric using high-pressure water flow or ultrasonic waves that may be performed after weaving the glass fiber fabric, and the press conditions for producing the glass fiber reinforced resin molded product. It can be controlled by doing. For example, when the fiber opening treatment is performed with a high-pressure water flow, Bt and By can be increased by setting the water flow pressure in the range of 0.1 MPa to 4.0 MPa.
  • the ratio of By to Bt (By / Bt) is, for example, in the range of 0.90 to 1.30 and in the range of 1.00 to 1.20. It is preferable, and it is more preferable that it is in the range of 1.00 to 1.05.
  • the weaving density Wt of the warp and the weaving density Wy of the weft of the glass fiber woven fabric are each less than 3.0 / 25 mm or 50.0 / 25 mm, respectively. If it is super, the design of the glass fiber woven fabric becomes insufficient.
  • the weaving density Wt of the warp and the weaving density Wy of the weft of the glass fiber fabric are set to 5. It is preferably in the range of 0/25 mm to 25.0 / 25 mm, more preferably in the range of 7.0 / 25 mm to 19.0 / 25 mm, and 7.5 / 25 mm to 17. It is more preferably in the range of 0/25 mm, particularly preferably in the range of 8.0 / 25 mm to 16.0 / 25 mm, and particularly preferably in the range of 11.0 / 25 mm to 14.0 / 25 mm. It is particularly preferable to be in.
  • the Wt and Wy can be obtained by the following method. First, observe the surface of the glass fiber reinforced resin molded product using a scale loupe 6 times, ⁇ 30 (manufactured by KOKUYO Co., Ltd.), set at least 5 points of 25 mm in the weft (warp) yarn direction, and set at least 5 points in each area. Visually measure the number of warp (weft) threads that exist. Next, the Wt (Wy) can be obtained by averaging the number of warp (weft) yarns visually measured.
  • the ratio of Wy to Wt is, for example, in the range of 0.85 to 1.20 and in the range of 0.95 to 1.15. It is preferably in the range of 1.00 to 1.10, more preferably in the range of 1.00 to 1.05, and particularly preferably in the range of 1.00 to 1.05.
  • the glass fiber reinforced resin molded product of the present embodiment is calculated by the warp widening degree Et and By (25 / Wy) calculated by Bt / (25 / Wt) based on the Bt, By, Wt and Wy.
  • Et and By 25 / Wy
  • Bt / (25 / Wt) based on the Bt, By, Wt and Wy.
  • Et and Ey are more than 1.10, respectively, the unevenness caused by the texture of the glass fiber woven fabric is reduced due to the overlap of the warp threads and the weft threads in the glass fiber woven fabric, and the unevenness is reduced.
  • the texture of the glass fiber woven fabric is not regularly arranged, so that the glass fiber woven fabric cannot sufficiently exhibit the design in the glass fiber reinforced resin molded product.
  • the Et is preferably in the range of 0.75 to 1.08, preferably 0.90 to 1.08, in order to more reliably exhibit the design of the glass fiber woven fabric. It is more preferably in the range of 1.07, further preferably in the range of 0.93 to 1.06, and particularly preferably in the range of 0.95 to 1.05. Further, the Ey is preferably in the range of 0.85 to 1.08, more preferably in the range of 0.90 to 1.07, and more preferably in the range of 0.95 to 1.06. It is more preferably in the range of 1.00 to 1.05, and particularly preferably in the range of 1.00 to 1.05.
  • the Et and Ey can be controlled by adjusting Bt and By by the method described above.
  • the glass composition of the glass fibers constituting the warp and weft of the glass fiber woven fabric is not particularly limited.
  • the glass composition that the glass fiber can take the most general-purpose E glass composition (SiO 2 in the range of 52.0% by mass to 56.0% by mass in terms of oxide with respect to the total amount of the glass fiber, and 12 and 2.0% to 16.0% by mass of Al 2 O 3 in the range, and MgO and CaO in the range of 20.0% to 25.0 wt% in total, 5.0% to 10.0 mass Composition containing B 2 O 3 in the range of% ), high-strength, high-elasticity glass composition (SiO 2 in the range of 60.0% by mass to 70.0% by mass with respect to the total amount of glass fibers, and 20.0% by mass.
  • MgO in the range of weight percent
  • CaO in the range of 10.0% to 13.0 wt%
  • B 2 O 3 in the range of 0.5 wt% to 1.5 wt%
  • SiO 2 in the range of 0% by mass
  • B 2 O 3 in the range of 17.0% by mass to 26.0% by mass
  • Al 2 O 3 in the range of 9.0% by mass to 18.0% by mass.
  • a composition containing F 2 and Cl 2 in the range of 0% by mass and P 2 O 5 in the range of 0% by mass to 6.0% by mass) can be mentioned.
  • the glass composition of the glass fibers constituting the warp and weft of the glass fiber woven fabric has high strength and high elasticity. and SiO 2 in the range of 60.0% to 70.0% by mass with respect to the glass composition (glass fiber based on the total amount of the Al 2 O 3 in the range of 20.0% to 30.0 wt%, 5.0 It is preferable that the composition contains MgO in the range of% by mass to 15.0% by mass).
  • the content of each component described above is measured by using an ICP emission spectrophotometer for Li, which is a light element, and wavelength dispersive for other elements. This can be done using a type fluorescent X-ray analyzer.
  • the glass fiber reinforced resin molded product is heated in a muffle furnace at 300 ° C. to 650 ° C. for about 2 hours to 24 hours to remove the transparent resin, and the glass fiber woven fabric is taken out. , The removed glass fiber woven fabric is crushed.
  • the obtained pulverized product is placed in a platinum crucible, kept at a temperature of 1550 ° C. for 6 hours in an electric furnace, and melted while stirring to obtain a homogeneous molten glass.
  • the obtained molten glass is poured onto a carbon plate to produce a glass cullet, which is then pulverized and pulverized.
  • Li which is a light element, is quantitatively analyzed using an ICP emission spectrophotometer after heat-decomposing the glass powder with an acid. Other elements are quantitatively analyzed using a wavelength dispersive fluorescent X-ray analyzer after the glass powder is formed into a disk shape by a press machine. The content and total amount of each component can be calculated by converting these quantitative analysis results into oxides, and the content (mass%) of each component described above can be obtained from these numerical values.
  • the glass fibers constituting the warp and weft of the glass fiber woven fabric have a unique dielectric constant depending on the glass composition. Since the glass fiber reinforced resin molded product has excellent radio wave transmission, the glass fibers constituting the warp and weft of the glass fiber woven fabric have a dielectric constant of 5.5 or less at a measurement frequency of 1 GHz. It is preferably 5.0 or less, and more preferably 5.0 or less.
  • the dielectric constant of the glass fiber constituting the warp and weft of the glass fiber woven fabric at a measurement frequency of 1 GHz can be obtained by the following method. First, at least 20 g of the glass fiber reinforced resin molded product is heated in a muffle furnace at 300 ° C. to 650 ° C. for about 2 hours to 24 hours to remove the transparent resin, and the glass fiber woven fabric is taken out and taken out. Crush the glass fiber woven fabric. Next, the obtained pulverized product is placed in a platinum crucible, kept at a temperature of 1550 ° C. for 6 hours in an electric furnace, and melted while stirring to obtain a homogeneous molten glass.
  • the obtained molten glass is poured onto a carbon plate and polished to obtain a disc-shaped glass having a diameter of 40 mm and a thickness of 1 mm to 1.5 mm.
  • the measurement frequency was set to 1 GHz, and the test method was based on ASTM test method D150 "Standard test method for AC loss characteristics and electric medium constant (dielectric constant) of solid electrical insulating material".
  • ASTM test method D150 Standard test method for AC loss characteristics and electric medium constant (dielectric constant) of solid electrical insulating material.
  • the warp and weft of the glass fiber woven fabric are manufactured as follows. First, the glass raw material (glass batch) prepared to have the above-mentioned composition is melted based on the components contained in the ore used as the glass raw material, the content of each component, and the volatilization amount of each component in the melting process. It is supplied to a furnace and melts at a temperature in the range of 1450 ° C to 1550 ° C, for example. Next, the molten glass batch (molten glass) is pulled out from 50 to 8000 nozzle tips of a bushing controlled to a predetermined temperature and rapidly cooled to form a glass filament.
  • a sizing agent or a binder is applied to the formed glass filaments using an applicator, which is a coating device, and a sizing shoe is used to squeeze 50 to 8000 glass filaments while using a winder.
  • Warp or weft can be obtained by winding on a tube at high speed.
  • the molten glass is pulled out from 50 to 8000 nozzle tips of the bushing and rapidly cooled to form a glass filament, and a sizing agent or a binder is applied to the glass filament to squeeze 50 to 8000 glass filaments.
  • a glass fiber strand is obtained by winding it around a tube, and the warp or weft can also be obtained by arranging 2 to 20 of the glass fiber strands while unwinding from the tube.
  • the filament diameter of the glass filament constituting the warp and weft of the glass fiber woven fabric is, for example, in the range of 3.0 ⁇ m to 30.0 ⁇ m, preferably 6.5 ⁇ m. It is in the range of ⁇ 18.0 ⁇ m.
  • the number of glass filaments constituting the warp and weft of the glass fiber woven fabric is, for example, in the range of 200 to 4000, preferably 800 to 2000. It is in the range.
  • the filament diameter of the warp or weft is such that the glass fiber reinforced resin molded product is heated in a muffle furnace at 300 ° C. to 650 ° C. for about 2 hours to 24 hours.
  • the transparent resin is removed, and the glass fiber woven fabric is taken out.
  • a scanning electron microscope manufactured by Hitachi High-Technologies Co., Ltd.
  • S-3400N magnification: 3000 times
  • the number of glass filaments constituting the warp or weft is a scanning electron microscope (manufactured by Hitachi High-Technologies Co., Ltd., trade name: S-3400N, magnification: 500 times) for each 50 cross sections of the warp or weft. ) Is the average value of the measured values when the number of the warp or the glass filament constituting the weft is measured.
  • the mass of the warp and weft of the glass fiber woven fabric is, for example, in the range of 120 tex to 1200 tex, the design of the glass fiber woven fabric is more exhibited, and the glass fiber is further exhibited.
  • the smoothness of the reinforced resin molded product is excellent, it is preferably in the range of 210 tex to 850 tex, more preferably in the range of 220 tex to 750 tex, and further preferably in the range of 230 tex to 700 tex. , 240 tex to 650 tex, particularly preferably 250 tex to 500 tex, particularly preferably 260 tex to 440 tex, and most preferably 270 tex to 390 tex.
  • the mass of the warp and weft of the glass fiber woven fabric is such that the glass fiber reinforced resin molded product is used in a muffle furnace at 300 ° C. to 650 ° C. for 2 hours to 24 hours.
  • the transparent resin is removed by heating to some extent, the glass fiber woven fabric is taken out, and the taken out glass fiber woven fabric can be used for measurement in accordance with JIS R 3420: 2013.
  • the warp and weft of the glass fiber woven fabric may be twisted in the range of 0.01 times / 25 mm to 4.0 times / 25 mm.
  • the number of twists of the warp or weft is determined by removing the transparent resin by heating the glass fiber reinforced resin molded product in a muffle furnace at 300 ° C. to 650 ° C. for about 2 hours to 24 hours.
  • the fiberglass fabric is taken out, the glass fiberglass fabric taken out is used, and a twisting device is used in accordance with JIS R3912, under the number of turns required for untwisting the test piece and the standard tension before untwisting the test piece. It can be calculated from the length in.
  • the above-mentioned warp and weft are woven by a known loom such as a rapier loom under known conditions so as to have the above-mentioned weaving density. Can be manufactured.
  • the glass fiber woven fabric can adjust the Bt and By by rewinding the warp and weft using a rewinding device before weaving. Further, in order to set the Bt and By to desired values, the glass fiber woven fabric after weaving has, for example, a fiber-spreading treatment by water flow pressure, a fiber-spreading treatment by high-frequency vibration using a liquid as a medium, and a surface pressure. It is possible to perform the fiber-spreading process by the pressure of the fluid and the fiber-spreading process by the pressurization by the roll.
  • the woven glass fiber woven fabric in order to adjust the resin non-impregnation rate in the vicinity of the average filament of the glass fiber woven fabric, the woven glass fiber woven fabric is subjected to a temperature range of 200 ° C. to 650 ° C. and a temperature range of 200 ° C. to 650 ° C.
  • the heating temperature and heating time in the range of 2 hours to 24 hours and heating, the sizing agent adhering to the warp and weft or the silane coupling agent contained in the binder is incinerated to incinerate the glass fiber woven fabric.
  • the amount of the silane coupling agent adhering to the surface can be reduced to a desired amount.
  • the glass fiber woven fabric after the silane coupling agent contained in the sizing agent or the binder adhering to the warp and the weft is incinerated is subjected to the silane coupling agent solution by adjusting the silane coupling agent concentration and the immersion time.
  • the amount of the silane coupling agent adhering to the surface of the glass fiber woven fabric can be controlled to a desired value.
  • the glass fiber woven fabric can be colored by being immersed in a solution containing a dye or a pigment.
  • the weaving structure of the glass fiber woven fabric is not particularly limited, and plain weave, twill weave, satin weave and the like can be used. From the viewpoint of suppressing the occurrence of misalignment of the glass fiber woven fabric during the production of the glass fiber reinforced resin molded product, the woven structure of the glass fiber woven fabric is preferably plain weave.
  • the mass per unit area of the glass fiber woven fabric is, for example, in the range of 150 g / m 2 to 800 g / m 2 , preferably 210 g / m 2 to 650 g / m. It is in the range of m 2 , more preferably in the range of 240 g / m 2 to 500 g / m 2 , still more preferably in the range of 260 g / m 2 to 390 g / m 2 , and particularly preferably in the range of 265 to 340 g. It is in the range of / m 2.
  • the mass per unit area of the glass fiber woven fabric is 2 hours to 24 hours in a glass fiber reinforced resin molded product, for example, in a muffle furnace at 300 ° C to 650 ° C.
  • the transparent resin is removed by heating to some extent, and the glass fiber woven fabric is taken out.
  • a glass cloth cut into a size of 200 mm ⁇ 200 mm with a JIS R 3420 compliant scale. It is the average value of the values obtained by measuring the mass of 3 points and converting each into the mass per 1 m 2.
  • the thickness of the glass fiber woven fabric is, for example, in the range of 150 ⁇ m to 900 ⁇ m, preferably in the range of 250 ⁇ m to 700 ⁇ m, and more preferably in the range of 350 ⁇ m to 500 ⁇ m. It is in the range.
  • the thickness of the glass fiber woven fabric is such that the glass fiber reinforced resin molded product is heated in a muffle furnace at 300 ° C. to 650 ° C. for about 2 hours to 24 hours. Then, the transparent resin was removed, the glass fiber woven fabric was taken out, and the thickness of the taken out glass fiber woven fabric was measured with a micrometer at 15 points in the glass cloth in accordance with JIS R 3420. It is the average value of the measured values at the time.
  • the amount of the silane coupling agent attached to the surface of the glass fiber woven fabric is, for example, based on the mass of the glass fiber woven fabric to which no organic matter or the like adheres to the surface. It is 0.03% by mass or less, preferably 0.02% by mass or less.
  • silane coupling agent examples include aminosilane, vinylsilane, epoxysilane, methacrylsilane, cationicsilane, acrylicsilane, phenylsilane, halogenosilane, ureidosilane, mercaptosilane, sulfidesilane, isocyanatesilane, isocyanuratesilane, and styryl. Silane can be mentioned.
  • the silane coupling agents may be used alone or in combination of two or more.
  • aminosilane examples include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3- (2-aminoethyl) aminopropyltrimethoxysilane, ureidopropyltrimethoxysilane, ureidopropyltriethoxysilane, and N-.
  • Examples thereof include 2- (aminoethyl) -3-aminopropyltrimethoxysilane and N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane.
  • vinyl silane examples include vinyl trimethoxysilane, vinyl triethoxysilane, vinyl acetoxysilane, allyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, and 3-methacryloxypropylmethyldimethoxy.
  • examples thereof include silane, 3-methacryloxypropylmethyldiethoxysilane, and 3-acryloxypropyltrimethoxysilane.
  • epoxysilane examples include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 2-. (3,4-Epylcyclohexyl) ethyltrimethoxysilane can be mentioned.
  • methacrylsilane examples include 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, and 3-methacryloxypropyltriethoxysilane.
  • Examples of the cationic silane include N- ⁇ - (N-vinylbenzylaminoethyl) - ⁇ -aminopropyltrimethoxysilane hydrochloride, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane hydrochloride, and the like.
  • acrylic silane examples include 3-acryloxypropyltrimethoxysilane.
  • phenylsilane examples include trimethoxyphenylsilane and triethoxyphenylsilane.
  • halogenosilane examples include (3-chloropropyl) trimethoxysilane and (3-chloropropyl) triethoxysilane.
  • ureidosilane examples include 3-ureidopropyltriethoxysilane.
  • Examples of the mercaptosilane include ⁇ -mercaptopropyltrimethoxysilane.
  • sulfide silane examples include bis (3- (triethoxysilyl) propyl) disulfide and bis (3- (triethoxysilyl) propyl) tetrasulfide.
  • isocyanate silane examples include 3-isocyanate propyltriethoxysilane.
  • isocyanate silane examples include tris (trimethoxysilylpropyl) isocyanate.
  • styrylsilane examples include styryltrimethoxysilane.
  • the glass fiber woven fabric is usually white, but may be colored black, gold, silver, blue, or red with a dye or pigment.
  • the amount of the dye or pigment adhering to the surface of the glass fiber woven fabric is, for example, 1.0% by mass or less based on the weight of the glass fiber woven fabric.
  • Examples of the dye or pigment include carbon black, titanium oxide, zinc oxide, iron oxide, chromium oxide, synthetic silica, fired pigment, zinc sulfide and the like.
  • the glass fiber reinforced resin molded product of the present embodiment it is possible to print a pattern, a pattern, an image, letters, numbers, etc. on the surface of the glass fiber woven fabric, but the aesthetic appearance of the woven pattern of the glass fiber woven fabric can be obtained. In order to maximize the effect, it is preferable that the surface of the glass fiber woven fabric is not printed with a pattern, a pattern, an image, letters, numbers or the like.
  • the transparent resin means a resin having a total light transmittance of 85% or more measured in accordance with JIS K 7375: 2008.
  • the transparent resin include curable resins such as epoxy resin, unsaturated polyester resin, vinyl ester resin, polyisocyanate resin, and polyimide resin, polystyrene resin, acrylonitrile / butadiene / styrene (ABS) resin, and (meth).
  • Thermoplastic resins such as acrylic resin, polyacetal resin, polyethylene terephthalate (PET) resin, polycarbonate resin, and polyarylate (PAR) resin can be mentioned.
  • the glass fiber reinforced resin molded product of the present embodiment uses a press molding method, a hand lay-up molding method, a continuous panel molding method, an infusion molding method, an RTM molding method, or the like. It can be obtained by impregnating the glass fiber woven fabric with a curable resin and curing or semi-curing the curable resin by thermosetting or photocuring. Further, it is also possible to obtain a glass fiber reinforced resin molded product by using a press molding method for a glass fiber reinforced resin molded product (prepreg) in a state where the curable resin is semi-cured.
  • preg glass fiber reinforced resin molded product
  • the transparent resin is a thermoplastic resin
  • a press molding method or a double belt type is used for a laminated product of the thermoplastic resin film and the glass fiber woven fabric. It can be obtained by using the continuous press molding method or the like.
  • the glass fiber woven fabric may be used alone or may be used by laminating 2 to 5 sheets. Further, one or more of the glass fiber woven fabrics may be arranged on the surface layer portion, and a reinforcing fiber woven fabric other than the glass fiber woven fabric may be laminated on the lower layer portion of the glass fiber woven fabric.
  • the ratio of the glass fiber woven fabric (the total amount when a plurality of glass fiber woven fabrics are contained) to the total amount may be referred to as glass content).
  • glass content the ratio of the glass fiber woven fabric (the total amount when a plurality of glass fiber woven fabrics are contained) to the total amount (hereinafter, may be referred to as glass content).
  • glass content is in the range of 55% by mass to 80% by mass, preferably in the range of 60% by mass to 78% by mass, and more preferably in the range of 65% by mass to 75% by mass.
  • the glass content can be calculated in accordance with JIS K7052: 1999.
  • the transparent resin may be a transparent resin composition containing the transparent resin and an additive.
  • the additive include reinforcing fibers (for example, glass fiber, carbon fiber, metal fiber, etc.), fillers (for example, glass powder, talc, mica, etc.), curing agents, polymerization initiators, flame retardants, ultraviolet absorbers, and the like. Examples thereof include heat stabilizers, antioxidants, antistatic agents, fluidity improvers, antiblocking agents, lubricants, nucleating agents, antibacterial agents, pigments and the like.
  • these additives may be contained in the range of 0.1 to 50.0% by mass with respect to the total amount of the resin composition.
  • the glass fiber reinforced resin molded product of the present invention has sufficient rigidity and excellent designability, it can be suitably used for electronic device housings, interior parts for mobility products, exterior parts for mobility products, and the like. ..
  • Examples of the electronic device housing include a smartphone housing, a mobile personal computer housing, a notebook computer housing, a tablet housing, a WiFi router housing, a smart speaker housing, a television housing, a monitor housing, and a smart home appliance housing. And so on.
  • Examples of the interior parts for mobility products include automobile interior parts, aircraft interior parts, and railroad vehicle interior parts.
  • Examples of the automobile interior parts include a dash panel, a console box, an air conditioner louver, and the like.
  • aircraft interior parts examples include wall materials, trays, remote control housings, screen housings, and the like.
  • Examples of the interior parts for railway vehicles include wall materials, window frames, ceiling materials, and the like.
  • Examples of the exterior parts for mobility products include automobile exterior parts and railroad vehicle exterior parts.
  • Examples of the automobile exterior parts include fenders, doors, roofs, hoods, spoilers, and the like.
  • Examples of the exterior parts for railway vehicles include vehicle body outer panels and the like.
  • Example 1 The glass fiber yarns shown in Table 1 having a glass composition A and having a mass of 285 tex were used as warps and wefts.
  • the warp weft density Wt was 12.5 wefts / 25 mm
  • the weft weft density Wy was 12.5 wefts / 25 mm
  • weaving was performed into a plain weave using a rapier loom to obtain a glass fiber woven fabric of 275 g / m 2.
  • the glass fiber woven fabric was subjected to a fiber opening treatment by a water flow pressure set to 1.0 MPa. Next, after heating this glass fiber woven fabric at 600 ° C.
  • silane using 3-aminopropyltriethoxysilane as a silane coupling agent so that the amount of the silane coupling agent adhered is 0.02% by mass.
  • Immersed in an aqueous solution of the coupling agent Immersed in an aqueous solution of the coupling agent.
  • an unsaturated polyester resin composition (denoted as "polyester” in Table 2) was applied to the glass fiber woven fabric as a transparent resin and pressed at 100 ° C. and 20 MPa to reinforce the glass fiber of Example 1.
  • a molded product was obtained.
  • the unsaturated polyester resin composition contains 100 parts by mass of an unsaturated polyester resin (manufactured by Japan Composite Co., Ltd., trade name: Polyhope 6339) and 2 parts by mass of a curing agent (manufactured by Tokyo Kasei Kogyo Co., Ltd., trade name: BPO). , The total light transmittance of the resin composition is 94%.
  • the average filament near resin unimpregnated rate, the warp thread width Bt, the weft thread width By, and the glass content were measured by the above-mentioned method, and the warp widening degree Et and the weft were measured.
  • the widening degree Eye was calculated. The results are shown in Table 2.
  • the flexural modulus was measured by the above-mentioned method, and the texture visibility, design (texture unevenness), surface smoothness and surface smoothness were measured by the methods shown below.
  • the radio wave permeability was evaluated. The results are shown in Table 2.
  • the center average roughness Ra of the surface of the glass fiber reinforced resin molded product is measured according to JIS B 0601: 2013 using a surface roughness measuring machine (manufactured by Mitutoyo Co., Ltd., model name: J? 47-2 to 0130). The measurement was performed and evaluated as "A” when the central average roughness Ra was 1 ⁇ m or less, “B” when it was more than 1 ⁇ m and 10 ⁇ m or less, and “C” when it was more than 10 ⁇ m.
  • Example 2 The same as in Example 1 was carried out except that the glass fiber yarn having the glass composition B and the mass of 275 tex shown in Table 1 was used as the warp and the weft to obtain a glass fiber woven fabric of 270 g / m 2.
  • the glass fiber reinforced resin molded product of Example 2 was obtained.
  • the average filament near resin unimpregnated rate, the warp thread width Bt, the weft thread width By, and the glass content were measured by the above-mentioned method, and the warp widening degree Et and the weft were measured.
  • the widening degree Eye was calculated. The results are shown in Table 2.
  • the flexural modulus was measured by the above-mentioned method, and the texture visibility, designability (texture unevenness), surface smoothness and radio wave transmission were evaluated. .. The results are shown in Table 2.
  • Example 3 The same as in Example 1 was carried out except that the glass fiber yarn having the glass composition C and the mass of 295tex shown in Table 1 was used as the warp and the weft to obtain a glass fiber fabric of 280 g / m 2.
  • the glass fiber reinforced resin molded product of Example 3 was obtained.
  • the average filament near resin unimpregnated rate, the warp thread width Bt, the weft thread width By, and the glass content were measured by the above-mentioned method, and the warp widening degree Et and the weft were measured.
  • the widening degree Eye was calculated. The results are shown in Table 2.
  • the flexural modulus was measured by the above-mentioned method, and the texture visibility, designability (texture unevenness), surface smoothness and radio wave transmission were evaluated. .. The results are shown in Table 2.
  • Example 4 The glass fiber yarns having a glass composition C and having a mass of 600 tex shown in Table 1 are used as warp and weft, and the warp weaving density Wt is 9.0 / 25 mm and the weft density Wy is 8.0 / 25 mm. , A glass fiber reinforced resin molded product of Example 4 was obtained in exactly the same manner as in Example 1 except that a glass fiber woven fabric of 420 g / m 2 was obtained.
  • the average filament near resin unimpregnated rate, the warp thread width Bt, the weft thread width By, and the glass content were measured by the above-mentioned method, and the warp widening degree Et and the weft were measured.
  • the widening degree Eye was calculated. The results are shown in Table 2.
  • the flexural modulus was measured by the above-mentioned method, and the texture visibility, designability (texture unevenness), surface smoothness and radio wave transmission were evaluated. .. The results are shown in Table 2.
  • Example 5 The glass fiber yarns having a glass composition C and a mass of 1150 tex shown in Table 1 are used as warp and weft, and the warp weaving density Wt is 7.0 / 25 mm and the weft weaving density Wy is 6.5 / 25 mm. , A glass fiber reinforced resin molded product of Example 5 was obtained in exactly the same manner as in Example 1 except that a glass fiber woven fabric of 630 g / m 2 was obtained.
  • the average filament near resin unimpregnated rate, the warp thread width Bt, the weft thread width By, and the glass content were measured by the above-mentioned method, and the warp widening degree Et and the weft were measured.
  • the widening degree Eye was calculated. The results are shown in Table 2.
  • the flexural modulus was measured by the above-mentioned method, and the texture visibility, designability (texture unevenness), surface smoothness and radio wave transmission were evaluated. .. The results are shown in Table 2.
  • Example 6 The glass fiber yarns having a glass composition C and having a mass of 135 tex shown in Table 1 are used as warp yarns and weft yarns, and the warp weaving density Wt is 20.0 yarns / 25 mm and the weft weaving density Wy is 20.0 yarns / 25 mm.
  • a glass fiber reinforced resin molded product of Example 6 was obtained in exactly the same manner as in Example 1 except that a glass fiber woven fabric of 215 g / m 2 was obtained.
  • the average filament near resin unimpregnated rate, the warp thread width Bt, the weft thread width By, and the glass content were measured by the above-mentioned method, and the warp widening degree Et and the weft were measured.
  • the widening degree Eye was calculated. The results are shown in Table 3.
  • the flexural modulus was measured by the above-mentioned method, and the texture visibility, designability (texture unevenness), surface smoothness and radio wave transmission were evaluated. .. The results are shown in Table 3.
  • Example 7 The glass fiber reinforced resin molded product of Example 7 was obtained in exactly the same manner as in Example 5 except that it was immersed in the silane coupling agent aqueous solution so that the amount of the silane coupling agent adhered was 0.01% by mass.
  • the average filament near resin unimpregnated rate, the warp thread width Bt, the weft thread width By, and the glass content were measured by the above-mentioned method, and the warp widening degree Et and the weft were measured.
  • the widening degree Eye was calculated. The results are shown in Table 3.
  • the flexural modulus was measured by the above-mentioned method, and the texture visibility, design (texture unevenness), surface smoothness and radio wave transmission were evaluated. .. The results are shown in Table 3.
  • Example 8 The glass fiber reinforced resin molded product of Example 8 was obtained in exactly the same manner as in Example 5 except that it was immersed in the silane coupling agent aqueous solution so that the amount of the silane coupling agent adhered was 0.005% by mass.
  • the average filament near resin unimpregnated rate, the warp thread width Bt, the weft thread width By, and the glass content were measured by the above-mentioned method, and the warp widening degree Et and the weft were measured.
  • the widening degree Eye was calculated. The results are shown in Table 3.
  • the flexural modulus was measured by the above-mentioned method, and the texture visibility, design (texture unevenness), surface smoothness and radio wave transmission were evaluated. .. The results are shown in Table 3.
  • Example 9 A glass fiber reinforced resin molded product of Example 9 was obtained in exactly the same manner as in Example 3 except that an acrylic resin composition (denoted as “acrylic” in Table 3) was used as the transparent resin.
  • the acrylic resin composition includes an acrylic resin (manufactured by Osaka Organic Chemical Co., Ltd., trade name: Viscoat # 155), a photopolymerization initiator (manufactured by BASF, trade name: Irgacure 184, (1-hydroxy-cyclohexyl-phenyl-ketone)).
  • a solvent diethylene glycol monoethyl ether acetate manufactured by Shinko Organic Chemical Industry Co., Ltd.
  • the total light transmittance of the resin composition is 98%.
  • the average filament near resin unimpregnated rate, the warp thread width Bt, the weft thread width By, and the glass content were measured by the above-mentioned method, and the warp widening degree Et and the weft were measured.
  • the widening degree Eye was calculated. The results are shown in Table 3.
  • the flexural modulus was measured by the above-mentioned method, and the texture visibility, designability (texture unevenness), surface smoothness and radio wave transmission were evaluated. .. The results are shown in Table 3.
  • Comparative Example 1 A glass fiber reinforced resin molded product of Comparative Example 1 was obtained in exactly the same manner as in Example 3 except that it was immersed in an aqueous solution of a silane coupling agent so that the amount of the silane coupling agent adhered was 0.04% by mass.
  • the flexural modulus was measured by the above-mentioned method, and the texture visibility, designability (texture unevenness), surface smoothness and radio wave transmission were evaluated. .. The results are shown in Table 4.
  • Comparative Example 2 A glass fiber reinforced resin molded product of Comparative Example 2 was obtained in exactly the same manner as in Example 5 except that it was immersed in an aqueous solution of a silane coupling agent so that the amount of the silane coupling agent adhered was 0.04% by mass.
  • the flexural modulus was measured by the above-mentioned method, and the texture visibility, design (texture unevenness), surface smoothness and radio wave transmission were evaluated. .. The results are shown in Table 4.
  • Example 3 After immersing the glass fiber woven fabric in the silane coupling agent aqueous solution, the glass fiber woven fabric was immersed in a black dye (manufactured by DIC Corporation, trade name: Ryudai W Black B) solution so that the amount of the dye adhered was 2.0% by mass. Except for the above, the same as in Example 5 was used to obtain a glass fiber reinforced resin molded product of Comparative Example 3.
  • a black dye manufactured by DIC Corporation, trade name: Ryudai W Black B
  • the flexural modulus was measured by the above-mentioned method, and the texture visibility, designability (texture unevenness), surface smoothness and radio wave transmission were evaluated. .. The results are shown in Table 4.
  • Comparative Example 4 The glass fiber reinforced resin molded product of Comparative Example 4 was obtained in exactly the same manner as in Example 5 except that the fiber opening treatment was performed by the water flow pressure set to 0.1 MPa.
  • Comparative Example 5 A glass fiber reinforced resin molded product of Comparative Example 5 was obtained in exactly the same manner as in Example 5 except that the fiber opening treatment was performed by the water flow pressure set to 3.5 MPa.
  • the resin unimpregnated rate in the vicinity of the average filament of the glass fiber woven fabric is more than 2.0% and 50.0% or less, and the yarn width Bt of the warp of the glass fiber woven fabric and the yarn width Bt.
  • the thread width By of the weft is in the range of 0.50 to 8.50 mm, respectively, and the weaving density Wt of the warp of the glass fiber woven fabric and the weaving density Wy of the weft are 3.0 lines / 25 mm or more, respectively.
  • the warp widening degree Et calculated by Bt / (25 / Wt) and the weft widening degree Ey calculated by By / (25 / Wy) of the glass fiber woven fabric in the range of 50 threads / 25 mm.
  • the texture of the glass fiber woven fabric can be visually recognized, the design of the glass fiber woven fabric is exhibited, and the design is exhibited. , The glass fiber woven fabric exerts a sufficient reinforcing effect.
  • the glass fiber reinforced resin molded products of Comparative Examples 1 to 3 in which the unimpregnated rate of the resin near the average filament is outside the range of more than 2.0% and 50.0% or less The texture of the glass fiber fabric is not visible, or the glass fiber fabric does not exert a sufficient reinforcing effect.
  • the glass fiber reinforced resin molded products of Comparative Examples 4 and 5 in which the warp widening degree Et and the weft widening degree Ey are outside the range of 0.70 to 1.10 have sufficient designability of the glass fiber woven fabric. Not demonstrated in.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Textile Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Reinforced Plastic Materials (AREA)
  • Woven Fabrics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

ガラス繊維織物の織目が視認でき、ガラス繊維織物の備える意匠性が発揮され、ガラス繊維織物が十分な補強効果を発揮する、ガラス繊維強化樹脂成形品を提供する。ガラス繊維強化樹脂成形品は、ガラス繊維織物と、透明樹脂とを含み、ガラス繊維織物の平均フィラメント近傍樹脂未含浸率が、2.0%超50.0%以下であり、前記ガラス繊維織物の経糸の糸幅Bt、及び、緯糸の糸幅Byが、それぞれ、0.50~8.50mmであり、ガラス繊維織物の経糸の織密度Wt、及び、緯糸の織密度Wyが、それぞれ、3.0~50本/25mmであり、ガラス繊維織物の経糸拡幅度Et、及び、緯糸拡幅度Eyが、それぞれ、0.70~1.10である。

Description

ガラス繊維強化樹脂成形品、電子機器筐体、モビリティ製品用内装部品、及び、モビリティ製品用外装部品
 本発明は、ガラス繊維強化樹脂成形品、電子機器筐体、モビリティ製品用内装部品、及び、モビリティ製品用外装部品に関する。
 従来、ガラス繊維織物は、シート状の樹脂材料に、強度、剛性、絶縁性、不燃性等を付与するために広く用いられている。
 近年、透明樹脂と、当該透明樹脂と屈折率の近いガラス繊維織物とを組み合わせることで、透明樹脂中のガラス繊維織物の視認性を低下させ、全体として透明なガラス繊維強化樹脂成形品(透明複合シート)が提案されている(例えば、特許文献1参照)。
特開2005-319746号公報
 本発明者らは、ガラス繊維織物の織模様には独特の美観が存在するにもかかわらず、前記透明複合シートでは、ガラス繊維織物の織目が視認できず、ガラス繊維織物が本来持つ意匠性が損なわれているという不都合が存在していることを見出した。
 また、本発明者らは、透明複合シート作製時に、透明樹脂がガラス繊維織物に十分に含浸しないという不具合が生じた場合には、透明樹脂が十分に含浸していない部分では、ガラス繊維織物の織目が観察可能となるが、ガラス繊維織物によるガラス繊維強化樹脂成形体の補強効果が失われるという不都合が生じることを見出した。
 本発明は、上記事情に鑑みてなされたものであり、ガラス繊維織物の織目が視認でき、ガラス繊維織物の備える意匠性が発揮され、かつ、ガラス繊維織物が十分な補強効果を発揮する、ガラス繊維強化樹脂成形品を提供することを目的とする。
 かかる目的を達成するために、本発明のガラス繊維強化樹脂成形品は、ガラス繊維織物と、透明樹脂とを含む、ガラス繊維強化樹脂成形品であって、前記ガラス繊維織物のフィラメント近傍樹脂未含浸率が、2.0%超50.0%以下の範囲にあり、前記ガラス繊維織物の経糸の糸幅Bt、及び、緯糸の糸幅Byが、それぞれ、0.50mm~8.50mmの範囲にあり、前記ガラス繊維織物の経糸の織密度Wt、及び、緯糸の織密度Wyが、それぞれ、3.0本/25mm~50.0本/25mmの範囲にあり、前記ガラス繊維織物の、Bt/(25/Wt)で計算される経糸拡幅度Et、及び、By/(25/Wy)で計算される緯糸拡幅度Eyが、それぞれ、0.70~1.10の範囲にあることを特徴とする。
 本発明のガラス繊維強化樹脂成形品によれば、前記ガラス繊維織物のフィラメント近傍樹脂未含浸率が、2.0%超50.0%以下の範囲にあり、かつ、前記Bt、By、Wt、Wy、Et及びEyが上述した範囲にあることで、ガラス繊維織物の織目が視認でき、ガラス繊維織物の備える意匠性が発揮され、かつ、ガラス繊維織物が十分な補強効果を発揮する。ここで、ガラス繊維織物が十分な補強効果を発揮するとは、ガラス繊維強化樹脂成形品の曲げ弾性率が10GPa以上であることを意味する。
 なお、前記ガラス繊維織物の平均フィラメント近傍樹脂未含浸率は、以下の方法で測定することができる。まず、ガラス繊維強化樹脂成形品をダイヤモンドカッター、糸のこぎり等を使用して切断し、切断面を機械研磨して、測定サンプルを作製する。次いで、図1に示すように、デジタルマイクロスコープ(株式会社ハイロックス製、型式名:KH-8700)を用いて、倍率2500倍で、測定サンプルの研磨面を撮影し、得られた画像について、画像処理ソフトWinRooF2013を用いて、ガラスフィラメント1が黒色になるように2値化処理を行う。次いで、ガラスフィラメント1が5~20本含まれる、測定領域2を設定する。次いで、画像処理ソフトWinRooF2013を用いて、測定領域中の白色部分を空隙部3として特定し、各空隙部3の面積を求める。次いで、測定領域2のフィラメント樹脂近傍未含浸率を、フィラメント近傍樹脂未含浸率(%)=(空隙部3の合計面積)/(測定領域2の面積)×100、により求める。次いで、含まれるガラスフィラメントの本数が異なる、互いに重複しない、少なくとも5つの測定領域2を設定し、各測定領域2において、フィラメント近傍樹脂未含浸率を測定し、その平均をとることで、平均フィラメント近傍樹脂未含浸率を求める。
 また、前記ガラス繊維強化樹脂成形品の曲げ弾性率は、精密万能試験機(株式会社島津製作所製、型式名:AG-X Plus 50KN)を用いて、JIS K 7017:1999に準拠して測定することができる。
 また、本発明のガラス繊維強化樹脂成形品は、前記ガラス繊維織物のフィラメント近傍樹脂未含浸率が、2.1%以上28.0%以下の範囲にあることが好ましい。
 本発明のガラス繊維強化樹脂成形品によれば、前記ガラス繊維織物のフィラメント近傍樹脂未含浸率が、2.1%以上28.0%以下の範囲にあることで、ガラス繊維織物が優れた補強効果を発揮する。ここで、ガラス繊維織物が優れた補強効果を発揮するとは、ガラス繊維強化樹脂成形品の曲げ弾性率が15GPa以上であることを意味する。
 また、本発明のガラス繊維強化樹脂成形品は、前記ガラス繊維織物のフィラメント近傍樹脂未含浸率が、2.5%以上10.0%以下の範囲にあることが好ましい。
 本発明のガラス繊維強化樹脂成形品によれば、前記ガラス繊維織物のフィラメント近傍樹脂未含浸率が、2.5%以上10.0%以下の範囲にあることで、ガラス繊維織物がより優れた補強効果を発揮する。ここで、ガラス繊維織物がより優れた補強効果を発揮するとは、ガラス繊維強化樹脂成形品の曲げ弾性率が18GPa以上であることを意味する。
 また、本発明のガラス繊維強化樹脂成形品は、前記ガラス繊維織物のフィラメント近傍樹脂未含浸率が、3.1%以上5.0%以下の範囲にあることが好ましい。
 本発明のガラス繊維強化樹脂成形品によれば、前記ガラス繊維織物のフィラメント近傍樹脂未含浸率が、3.1%以上5.0%以下の範囲にあることで、ガラス繊維織物がさらに優れた補強効果を発揮する。ここで、ガラス繊維織物さらに優れた補強効果を発揮するとは、ガラス繊維強化樹脂成形品の曲げ弾性率が20GPa以上であることを意味する。
 また、本発明のガラス繊維強化樹脂成形品は、前記ガラス繊維織物の経糸の質量(単位長さ当たりの質量)、及び、緯糸の質量(単位長さ当たりの質量)が、それぞれ、210tex~850texの範囲にあることが好ましい。なお、1texは、1g/1000mに相当する。
 本発明のガラス繊維強化樹脂成形品によれば、前記ガラス繊維織物の経糸の質量、及び、緯糸の質量が、それぞれ、210tex~850texの範囲にあることで、ガラス繊維繊織物の備える意匠性がより発揮され、また、ガラス繊維強化樹脂成形品の平滑性が優れたものとなる。ここで、ガラス繊維強化樹脂成形品の平滑性が優れたものになるとは、ガラス繊維強化樹脂成形品表面の中心平均粗さRaが1μm以下であることを意味する。
 なお、ガラス繊維強化樹脂成形品表面の中心平均粗さRaは、表面粗さ測定機(株式会社ミツトヨ製、型式名:J?47?2?0130)を用いて、JIS B 0601:2013に準拠して測定することができる。
 また、本発明のガラス繊維強化樹脂成形品は、前記ガラス繊維織物の経糸及び緯糸を構成するガラス繊維の測定周波数1GHzにおける誘電率が5.5以下であることが好ましい。
 本発明のガラス繊維強化樹脂成形品によれば、前記ガラス繊維織物の経糸及び緯糸を構成するガラス繊維の測定周波数1GHzにおける誘電率が5.5以下であることで、ガラス繊維強化樹脂成形品が優れた電波透過性を備える。
 また、本発明のガラス繊維強化樹脂成形品は、前記ガラス繊維織物の経糸及び緯糸を構成するガラス繊維のガラス組成が、ガラス繊維の全量に対して、60.0質量%~70.0質量%の範囲のSiOと、20.0質量%~30.0質量%のAlと、5.0質量%~15.0質量%の範囲のMgOとを含むガラス組成であることが好ましい。
 本発明のガラス繊維強化樹脂成形品によれば、前記ガラス繊維織物の経糸及び緯糸を構成するガラス繊維のガラス組成が、上述のガラス組成であることで、ガラス繊維織物が特に優れた補強効果を発揮する。ここで、ガラス繊維織物が特に優れた補強効果を発揮するとは、ガラス繊維強化樹脂成形品の曲げ弾性率が24GPa以上であることを意味する。
 本発明の電子機器筐体は、本発明のガラス繊維強化樹脂成形品を含む。
 本発明の電子機器筐体によれば、本発明のガラス繊維強化樹脂成形品を含むことで、十分な剛性と、優れた意匠性を備える。
 本発明のモビリティ製品用内装部品は、本発明のガラス繊維強化樹脂成形品を含む。
 本発明のモビリティ製品用内装部品によれば、本発明のガラス繊維強化樹脂成形品を含むことで、十分な剛性と、優れた意匠性を備える。
 本発明のモビリティ製品用外装部品は、本発明のガラス繊維強化樹脂成形品を含む。
 本発明のモビリティ製品用外装部品によれば、本発明のガラス繊維強化樹脂成形品を含むことで、十分な剛性と、優れた意匠性を備える。
平均フィラメント近傍樹脂未含浸率を説明するための、デジタルマイクロスコープ画像。
 次に、本発明の実施の形態についてさらに詳しく説明する。
 本実施形態のガラス繊維強化樹脂成形品は、ガラス繊維織物と、透明樹脂とを含む、ガラス繊維強化樹脂成形品であって、前記ガラス繊維織物の平均フィラメント近傍樹脂未含浸率が、2.0%超50.0%以下の範囲にあり、前記ガラス繊維織物の経糸の糸幅Bt、及び、緯糸の糸幅Byが、それぞれ、0.50mm~8.50mmの範囲にあり、前記ガラス繊維織物の経糸の織密度Wt、及び、緯糸の織密度Wyが、それぞれ、3.0本/25mm~50.0本/25mmの範囲にあり、前記ガラス繊維織物の、Bt/(25/Wt)で計算される経糸拡幅度Et、及び、By/(25/Wy)で計算される緯糸拡幅度Eyが、それぞれ、0.70~1.10の範囲にあることを特徴とする。
 本実施形態のガラス繊維強化樹脂成形品によれば、前記ガラス繊維織物の平均フィラメント近傍樹脂未含浸率が、2.0%超50.0%以下の範囲にあり、かつ、前記Bt、By、Wt、Wy、Et及びEyが上述した範囲にあることで、ガラス繊維織物の織目が視認でき、ガラス繊維織物の備える意匠性が発揮され、かつ、ガラス繊維織物が十分な補強効果を発揮する。ここで、ガラス繊維織物が十分な補強効果を発揮するとは、ガラス繊維強化樹脂成形品の曲げ弾性率が10GPa以上であることを意味する。
 本実施形態のガラス繊維強化樹脂成形品において、前記ガラス繊維織物の平均フィラメント近傍樹脂未含浸率が、2.0%以下であると、ガラス繊維強化樹脂成形品の状態でガラス繊維織物の織目を視認できず、そのため、ガラス繊維織物が備える意匠性が発揮されない。一方、前記ガラス繊維織物の平均フィラメント近傍樹脂未含浸率が、50.0%超であると、ガラス繊維織物の補強効果が十分に発揮されない。
 本実施形態のガラス繊維強化樹脂成形品において、ガラス繊維織物がより優れた補強効果を発揮することから、前記ガラス繊維織物の平均フィラメント近傍樹脂未含浸率は、2.1%以上28.0%以下の範囲にあることが好ましい。また、ガラス繊維織物がより優れた補強効果を発揮することから、前記ガラス繊維織物の平均フィラメント近傍樹脂未含浸率は、2.5%以上10.0%以下の範囲にあることがより好ましい。また、ガラス繊維織物がさらに優れた補強効果を発揮することから、前記ガラス繊維織物の平均フィラメント近傍樹脂未含浸率は、3.1%以上5.0%以下の範囲にあることがさらに好ましい。また、ガラス繊維織物がさらに優れた補強効果をより確実に発揮することから、前記ガラス繊維織物の平均フィラメント近傍樹脂未含浸率は、3.1%以上4.0%以下の範囲にあることが特に好ましく、3.1%以上3.9%以下の範囲にあることがとりわけ好ましく、3.1%以上3.7%以下の範囲にあることが殊に好ましく、3.1%以上3.4%以下の範囲にあることが最も好ましい。
 前記ガラス繊維織物のフィラメント近傍樹脂未含浸率は、ガラス繊維織物の表面に付着する、シランカップリング剤、及び、シランカップリング剤以外の染料又は顔料の付着量により制御することができる。ガラス繊維織物の表面に付着するシランカップリング剤の付着量を多くし、シランカップリング剤以外の染料又は顔料の付着量を少なくすることで、前記ガラス繊維織物の平均フィラメント近傍樹脂未含浸率を低下させることができる。本実施形態のガラス繊維強化樹脂成形品において、ガラス繊維織物表面へのシランカップリング剤の付着量としては、例えば、0.03質量%以下を挙げることができ、染料又は顔料の付着量としては、1.0質量%以下を挙げることができる。
 本実施形態のガラス繊維強化樹脂成形品において、前記ガラス繊維織物の経糸の糸幅Bt、及び、緯糸の糸幅Byが、それぞれ、0.50mm未満、又は、8.50mm超であると、ガラス繊維織物が備える意匠性が不十分になる。
 本実施形態のガラス繊維強化樹脂成形品において、ガラス繊維織物が意匠性をより確実に備えるために、前記ガラス繊維織物の経糸の糸幅Bt、及び、緯糸の糸幅Byは、それぞれ、0.80mm~4.80mmの範囲にあることが好ましく、1.60mm~3.30mmの範囲にあることがより好ましく、1.70mm~2.30mmの範囲にあることがさらに好ましい。
 なお、前記糸幅Bt及びByは、以下の方法で求めることができる。まず、ガラス繊維強化樹脂成形品の表面をデジタルマイクロスコープ(株式会社ハイロックス製、型式名:KH-8700)を用いて、倍率35倍~100倍で撮影する。次いで、得られた画像について、画像処理ソフトWinRooF2013を用いて、1枚の画像又は複数枚の画像より、少なくとも5本の経(緯)糸を選択し、各経(緯)糸について、1枚の画像又は複数の画像より、経(緯)糸の下に緯(経)糸が存在する領域から少なくとも5点の経(緯)糸幅を測定する。1枚の画像から測定された経(緯)糸幅の平均を算出することで、Bt(By)を求めることができる。
 本実施形態のガラス繊維強化樹脂成形品において、ガラス繊維織物の糸幅Bt及びByは、例えば、経糸及び緯糸に対する巻き返しの実施有無及び実施条件、ガラス繊維織物の製織時に経糸に加えられる張力条件及び緯糸の打込み条件、ガラス繊維織物の製織後に行われてもよい高圧水流や超音波等を用いたガラス繊維織物への開繊処理条件、ガラス繊維強化樹脂成形品を作成する際のプレス条件を調整することで制御することができる。例えば、高圧水流で開繊処理を行う場合、水流圧力を0.1MPa~4.0MPaの範囲で高いものとすることで、Bt及びByを大きくすることができる。
 本実施形態のガラス繊維強化樹脂成形品において、前記Btに対するByの比(By/Bt)は、例えば、0.90~1.30の範囲にあり、1.00~1.20の範囲にあることが好ましく、1.00~1.05の範囲にあることがさらに好ましい。
 本実施形態のガラス繊維強化樹脂成形品において、前記ガラス繊維織物の経糸の織密度Wt、及び、緯糸の織密度Wyが、それぞれ、3.0本/25mm未満、又は、50.0本/25mm超であると、ガラス繊維織物が備える意匠性が不十分になる。
 本実施形態のガラス繊維強化樹脂成形品において、ガラス繊維織物が意匠性をより確実に備えるために、前記ガラス繊維織物の経糸の織密度Wt、及び、緯糸の織密度Wyは、それぞれ、5.0本/25mm~25.0本/25mmの範囲にあることが好ましく、7.0本/25mm~19.0本/25mmの範囲にあることがより好ましく、7.5本/25mm~17.0本/25mmの範囲にあることがさらに好ましく、8.0本/25mm~16.0本/25mmの範囲にあることが特に好ましく、11.0本/25mm~14.0本/25mmの範囲にあることが特に好ましい。
 なお、前記Wt及びWyは、以下の方法で求めることができる。まず、ガラス繊維強化樹脂成形品の表面をスケールルーペ6倍・φ30(コクヨ株式会社製)を用いて観察し、緯(経)糸方向の25mmの領域を少なくとも5点設定して、各領域に存在する経(緯)糸の数を目視計測する。次いで、目視計測された経(緯)糸の数の平均をとることで、前記Wt(Wy)を求めることができる。
 本実施形態のガラス繊維強化樹脂成形品において、前記Wtに対するWyの比(Wy/Wt)は、例えば、0.85~1.20の範囲にあり、0.95~1.15の範囲にあることが好ましく、1.00~1.10の範囲にあることがさらに好ましく、1.00~1.05の範囲にあることが特に好ましい。
 本実施形態のガラス繊維強化樹脂成形品において、前記Bt、By、Wt及びWyに基づき、Bt/(25/Wt)で計算される、経糸拡幅度Et、及び、By(25/Wy)で計算される、緯糸拡幅度Eyが、それぞれ、0.70未満であると、ガラス繊維織物中の経糸間及び緯糸間に存在する空隙に起因して、ガラス繊維織物の織目によってもたらされる凹凸が低減され、凹凸に起因する反射光による美観が損なわれるとともに、隙間があることにより、ガラス繊維織物の織目が規則正しく並ばなくなってしまうため、ガラス繊維織物が十分に意匠性を発揮できない。一方、前記Et及びEyが、それぞれ、1.10超であると、ガラス繊維織物中の経糸同士及び緯糸同士の重なりに起因して、ガラス繊維織物の織目によってもたらされる凹凸が低減され、凹凸に起因する反射光による美観が損なわれるとともに、ガラス繊維織物の織目が規則正しく配列しなくなるため、ガラス繊維強化樹脂成形品においてガラス繊維織物が十分に意匠性を発揮できない。
 本実施形態のガラス繊維強化樹脂成形品において、ガラス繊維織物がより確実に意匠性を発揮するために、前記Etは、0.75~1.08の範囲にあることが好ましく、0.90~1.07の範囲にあることがより好ましく、0.93~1.06の範囲にあることがさらに好ましく、0.95~1.05の範囲にあることが特に好ましい。また、前記Eyは、0.85~1.08の範囲にあることが好ましく、0.90~1.07の範囲にあることがより好ましく、0.95~1.06の範囲にあることがさらに好ましく、1.00~1.05の範囲にあることが特に好ましい。
 本実施形態のガラス繊維強化樹脂成形品において、前記Et及びEyは、前述した方法で、Bt及びByを調整することにより、制御することができる。
 本実施形態のガラス繊維強化樹脂成形品において、ガラス繊維織物の経糸及び緯糸を構成するガラス繊維のガラス組成は特に限定されない。ガラス繊維がとりうるガラス組成としては、最も汎用的であるEガラス組成(ガラス繊維の全量に対し、酸化物換算で、52.0質量%~56.0質量%の範囲のSiOと、12.0質量%~16.0質量%の範囲のAlと、合計で20.0質量%~25.0質量%の範囲のMgO及びCaOと、5.0質量%~10.0質量%の範囲のBとを含む組成)、高強度高弾性率ガラス組成(ガラス繊維の全量に対し60.0質量%~70.0質量%の範囲のSiOと、20.0質量%~30.0質量%の範囲のAlと、5.0質量%~15.0質量%の範囲のMgOとを含む組成)、高弾性率易製造性ガラス組成(ガラス繊維の全量に対し、57.0質量%~60.0質量%の範囲のSiOと、17.5質量%~20.0質量%の範囲のAlと、8.5質量%~12.0質量%の範囲のMgOと、10.0質量%~13.0質量%の範囲のCaOと、0.5質量%~1.5質量%の範囲のBとを含み、かつ、合計で98.0質量%以上のSiO、Al、MgO及びCaOを含む組成)、及び、低誘電率低誘電正接ガラス組成(ガラス繊維の全量に対し、48.0質量%~62.0質量%の範囲のSiOと、17.0質量%~26.0質量%の範囲のBと、9.0質量%~18.0質量%の範囲のAlと、0.1質量%~9.0質量%の範囲のCaOと、0質量%~6.0質量%の範囲のMgOと、合計で0.05質量%~0.5質量%の範囲のNaO、KO、LiOと、0質量%~5.0質量%の範囲のTiOと、0質量%~6.0質量%の範囲のSrOと、合計で0質量%~3.0質量%の範囲のF、Clと、0質量%~6.0質量%の範囲のPとを含む組成)を挙げることができる。
 本実施形態のガラス繊維強化樹脂成形品において、ガラス繊維織物が特に優れた補強効果を発揮することから、前記ガラス繊維織物の経糸及び緯糸を構成するガラス繊維のガラス組成は、高強度高弾性率ガラス組成(ガラス繊維の全量に対し60.0質量%~70.0質量%の範囲のSiOと、20.0質量%~30.0質量%の範囲のAlと、5.0質量%~15.0質量%の範囲のMgOとを含む組成)であることが好ましい。
 なお、前記ガラス繊維織物の経糸及び緯糸を構成するガラス繊維において、前述した各成分の含有量の測定は、軽元素であるLiについてはICP発光分光分析装置を用いて、その他の元素は波長分散型蛍光X線分析装置を用いて行うことができる。
 測定方法としては、まず、ガラス繊維強化樹脂成形品を、例えば、300℃~650℃のマッフル炉で2時間~24時間程度加熱する等して、透明樹脂を除去して、ガラス繊維織物を取り出し、取り出されたガラス繊維織物を粉砕する。次いで、得られた粉砕物を、白金ルツボに入れ、電気炉中で1550℃の温度に6時間保持して撹拌を加えながら溶融させることにより、均質な溶融ガラスを得る。次に、得られた溶融ガラスをカーボン板上に流し出してガラスカレットを作製した後、粉砕し粉末化する。軽元素であるLiについてはガラス粉末を酸で加熱分解した後、ICP発光分光分析装置を用いて定量分析する。その他の元素はガラス粉末をプレス機で円盤状に成形した後、波長分散型蛍光X線分析装置を用いて定量分析する。これらの定量分析結果を酸化物換算して各成分の含有量及び全量を計算し、これらの数値から前述した各成分の含有量(質量%)を求めることができる。
 本実施形態のガラス繊維強化樹脂成形品において、前記ガラス繊維織物の経糸及び緯糸を構成するガラス繊維は、そのガラス組成に応じて、固有の誘電率を有する。ガラス繊維強化樹脂成形品が優れた電波透過性を備えたものになることから、前記ガラス繊維織物の経糸及び緯糸を構成するガラス繊維は測定周波数1GHzにおける誘電率が5.5以下であることが好ましく、5.0以下であることがより好ましい。
 なお、前記ガラス繊維織物の経糸及び緯糸を構成するガラス繊維の測定周波数1GHzにおける誘電率は、以下の方法で求めることができる。まず、少なくとも20gのガラス繊維強化樹脂成形品を、例えば、300℃~650℃のマッフル炉で2時間~24時間程度加熱する等して、透明樹脂を除去して、ガラス繊維織物を取り出し、取り出されたガラス繊維織物を粉砕する。次いで、得られた粉砕物を、白金ルツボに入れ、電気炉中で1550℃の温度に6時間保持して撹拌を加えながら溶融させることにより、均質な溶融ガラスを得る。次に、得られた溶融ガラスをカーボン板上に流し出し、研磨することで、直径40mm、厚さ1mm~1.5mmのディスク状ガラスを得る。次いで、得られたディスク状ガラスを用いて、測定周波数を1GHzとして、ASTM試験法D150「固体電気絶縁材のA?C損失特性及び電媒定数(誘電率)の標準試験法」に準拠して誘電率を測定することで、前記ガラス繊維織物の経糸及び緯糸を構成するガラス繊維の測定周波数1GHzにおける誘電率を求めることができる。
 本実施形態のガラス繊維強化樹脂成形品において、前記ガラス繊維織物の経糸及び緯糸は、以下のように製造される。初めに、ガラス原料となる鉱石に含まれる成分と各成分の含有率、及び、溶融過程における各成分の揮発量に基づき、前述の組成となるように調合されたガラス原料(ガラスバッチ)を溶融炉に供給し、例えば、1450℃~1550℃の範囲の温度で溶融する。次に、溶融されたガラスバッチ(溶融ガラス)を所定の温度に制御された、ブッシングの50個~8000個のノズルチップから引き出して、急冷することで、ガラスフィラメントを形成する。次に、形成されたガラスフィラメントに、塗布装置であるアプリケーターを用いて集束剤又はバインダーを塗布し、集束シューを用いて、ガラスフィラメント50本~8000本を集束させながら、巻取り機を用いて、チューブに高速で巻取ることで、経糸又は緯糸が得られる。また、溶融ガラスをブッシングの50個~8000個のノズルチップから引き出し、急冷して、ガラスフィラメントを形成し、ガラスフィラメントに集束剤又はバインダーを塗布し、ガラスフィラメント50本~8000本を集束させて、チューブに巻き取ることでガラス繊維ストランドを得て、チューブから解舒しながら、このガラス繊維ストランド2本~20本を引き揃えることでも、経糸又は緯糸が得られる。
 本実施形態のガラス繊維強化樹脂成形品において、前記ガラス繊維織物の経糸及び緯糸を構成するガラスフィラメントのフィラメント径は、例えば、3.0μm~30.0μmの範囲にあり、好ましくは、6.5μm~18.0μmの範囲にある。
 本実施形態のガラス繊維強化樹脂成形品において、前記ガラス繊維織物の経糸及び緯糸を構成するガラスフィラメントの本数は、例えば、200本~4000本の範囲にあり、好ましくは、800本~2000本の範囲にある。
 なお、本実施形態のガラス繊維強化樹脂成形品において、前記経糸又は緯糸のフィラメント径は、ガラス繊維強化樹脂成形品を、例えば、300℃~650℃のマッフル炉で2時間~24時間程度加熱する等して、透明樹脂を除去して、ガラス繊維織物を取り出し、取り出されたガラス繊維織物を用いて、該経糸又は該緯糸の断面それぞれ50点について、走査型電子顕微鏡(株式会社日立ハイテクノロジーズ製、商品名:S-3400N、倍率:3000倍)で、該経糸又は該緯糸を構成するガラスフィラメントの直径を測定したときの測定値の平均値である。また、前記経糸又は緯糸を構成するガラスフィラメントの本数は、該経糸又は該緯糸の断面それぞれ50点について、走査型電子顕微鏡(株式会社日立ハイテクノロジーズ製、商品名:S-3400N、倍率:500倍)で、該経糸又は該緯糸を構成するガラスフィラメントの本数を計測したときの計測値の平均値である。
 本実施形態のガラス繊維強化樹脂成形品において、前記ガラス繊維織物の経糸及び緯糸の質量は、例えば、120tex~1200texの範囲にあり、ガラス繊維織物の備える意匠性がより発揮され、また、ガラス繊維強化樹脂成形品の平滑性が優れたものとなることから、210tex~850texの範囲にあることが好ましく、220tex~750texの範囲にあることがより好ましく、230tex~700texの範囲にあることがさらに好ましく、240tex~650texの範囲にあることが特に好ましく、250tex~500texの範囲にあることがとりわけ好ましく、260tex~440texの範囲にあることが殊に好ましく、270tex~390texの範囲にあることが最も好ましい。
 なお、本実施形態のガラス繊維強化樹脂成形品において、前記ガラス繊維織物の経糸及び緯糸の質量は、ガラス繊維強化樹脂成形品を、例えば、300℃~650℃のマッフル炉で2時間~24時間程度加熱する等して、透明樹脂を除去して、ガラス繊維織物を取り出し、取り出されたガラス繊維織物を用いて、JIS R 3420:2013に準拠して測定することができる。
 本実施形態のガラス繊維強化樹脂成形品において、前記ガラス繊維織物の経糸及び緯糸には、0.01回/25mm~4.0回/25mmの範囲の撚りがかけられていてもよい。
 また、前記経糸又は緯糸の撚数は、ガラス繊維強化樹脂成形品を、例えば、300℃~650℃のマッフル炉で2時間~24時間程度加熱する等して、透明樹脂を除去して、ガラス繊維織物を取り出し、取り出されたガラス繊維織物を用いて、JIS R 3912に準拠して、検撚器を用い、試験片の解撚に必要なターン数および試験片の解撚前の標準張力下での長さから算出して求めることができる。
 本実施形態のガラス繊維強化樹脂成形品において、前記ガラス繊維織物は、前述の経糸及び緯糸を、レピア織機等の公知の織機により、前述の織密度となるように、公知の条件で製織して製造することができる。
 本実施形態のガラス繊維強化樹脂成形品において、前記ガラス繊維織物は、製織前に、巻き返し装置を用いて経糸及び緯糸を巻き返すことで前記Bt及びByを調整することができる。また、前記Bt及びByを所望の値とするために、製織後の前記ガラス繊維織物に、例えば、水流圧力による開繊処理、液体を媒体とした高周波の振動による開繊処理、面圧を有する流体の圧力による開繊処理、ロールによる加圧での開繊処理を行うことができる。
 本実施形態のガラス繊維強化樹脂成形品において、前記ガラス繊維織物の平均フィラメント近傍樹脂未含浸率を調整するために、製織後の前記ガラス繊維織物を、200℃~650℃の温度範囲、及び、2時間~24時間の範囲で、加熱温度及び加熱時間を調整して加熱することで、前記経糸及び緯糸に付着した集束剤又はバインダーに含まれるシランカップリング剤を焼却し、前記ガラス繊維織物の表面に付着するシランカップリング剤の付着量を所望の量に低減することができる。また、前記経糸及び緯糸に付着した集束剤又はバインダーに含まれるシランカップリング剤を焼却された後の前記ガラス繊維織物を、シランカップリング剤濃度及び浸漬時間を調整して、シランカップリング剤溶液に浸漬することで、前記ガラス繊維織物の表面に付着するシランカップリング剤の付着量を所望の値に制御することができる。
 本実施形態のガラス繊維強化樹脂成形品において、前記ガラス繊維織物は、染料又は顔料を含む溶液中に浸漬されることで、着色することができる。
 本実施形態のガラス繊維強化樹脂成形品において、前記ガラス繊維織物の織組織は特に限定されず、平織、綾織、朱子織等を用いることができる。ガラス繊維強化樹脂成形品の製造時に、ガラス繊維織物の目ずれの発生を抑制することができるという観点からは、前記ガラス繊維織物の織組織は平織であることが好ましい。
 本実施形態のガラス繊維強化樹脂成形品において、前記ガラス繊維織物の単位面積当たりの質量は、例えば、150g/m~800g/mの範囲にあり、好ましくは、210g/m~650g/mの範囲にあり、より好ましくは、240g/m~500g/mの範囲にあり、さらに好ましくは、260g/m~390g/mの範囲にあり、特に好ましくは、265~340g/mの範囲にある。
 なお、本実施形態のガラス繊維強化樹脂成形品において、前記ガラス繊維織物の単位面積当たりの質量は、ガラス繊維強化樹脂成形品を、例えば、300℃~650℃のマッフル炉で2時間~24時間程度加熱する等して、透明樹脂を除去して、ガラス繊維織物を取り出し、取り出されたガラス繊維織物を用いて、JIS R 3420に準拠した秤で、200mm×200mmの大きさにカットしたガラスクロスの質量を3点測定し、それぞれを1m当たりの質量に換算した値の平均値である。
 本実施形態のガラス繊維強化樹脂成形品において、前記ガラス繊維織物の厚さは、例えば、150μm~900μmの範囲にあり、好ましくは、250μm~700μmの範囲にあり、より好ましくは、350μm~500μmの範囲にある。
 なお、本実施形態のガラス繊維強化樹脂成形品において、前記ガラス繊維織物の厚さは、ガラス繊維強化樹脂成形品を、例えば、300℃~650℃のマッフル炉で2時間~24時間程度加熱する等して、透明樹脂を除去して、ガラス繊維織物を取り出し、取り出されたガラス繊維織物を用いて、JIS R 3420に準拠して、ガラスクロス中15点でその厚さをマイクロメーターで測定したときの測定値の平均値である。
 本実施形態のガラス繊維強化樹脂成形品において、前記ガラス繊維織物の表面に付着するシランカップリング剤の付着量は、例えば、表面に有機物等の付着していないガラス繊維織物の質量を基準として、0.03質量%以下であり、好ましくは、0.02質量%以下である。
 前記シランカップリング剤としては、例えば、アミノシラン、ビニルシラン、エポキシシラン、メタクリルシラン、カチオニックシラン、アクリルシラン、フェニルシラン、ハロゲノシラン、ウレイドシラン、メルカプトシラン、スルフィドシラン、イソシアネートシラン、イソシアヌレートシラン、スチリルシランを挙げることができる。前記シランカップリング剤は、これらを単独で使用することもでき、又は、2種類以上を併用することもできる。
 アミノシランとしては、例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン、ウレイドプロピルトリメトキシシラン、ウレイドプロピルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシランを挙げることができる。
 ビニルシランとしては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルアセトキシシラン、アリルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-アクリロキシプロピルトリメトキシシラン等を挙げることができる。
 エポキシシランとしては、例えば、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランを挙げることができる。
 メタクリルシランとしては、例えば、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシランを挙げることができる。
 カチオニックシランとしては、例えば、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン塩酸塩、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン塩酸塩、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン塩酸塩、3-アミノプロピルトリメトキシシラン塩酸塩、3-アミノプロピルトリエトキシシラン塩酸塩、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン塩酸塩、N-フェニル-3-アミノプロピルトリメトキシシラン塩酸塩を挙げることができる。
 アクリルシランとしては、例えば、3-アクリロキシプロピルトリメトキシシランを挙げることができる。
 フェニルシランとしては、例えば、トリメトキシフェニルシラン、トリエトキシフェニルシランを挙げることができる。
 ハロゲノシランとしては、例えば、(3-クロロプロピル)トリメトキシシラン、(3-クロロプロピル)トリエトキシシランを挙げることができる。
 ウレイドシランとしては、例えば、3-ウレイドプロピルトリエトキシシランを挙げることができる。
 メルカプトシランとしては、例えば、γ-メルカプトプロピルトリメトキシシランを挙げることができる。
 スルフィドシランとしては、例えば、ビス(3-(トリエトキシシリル)プロピル)ジスルフィド、またはビス(3-(トリエトキシシリル)プロピル)テトラスルフィドを挙げることができる。
 イソシアネートシランとしては、例えば、3-イソシアネートプロピルトリエトキシシランを挙げることができる。
 イソシアヌレートシランとしては、例えば、トリス(トリメトキシシリルプロピル)イソシアヌレートを挙げることができる。
 スチリルシランとしては、例えば、スチリルトリメトキシシランを挙げることができる。
 本実施形態のガラス繊維強化樹脂成形品において、前記ガラス繊維織物は、通常、白色であるが、染料又は顔料で、黒色、金色、銀色、青色、赤色に着色されていてもよい。前記ガラス繊維織物の表面に付着する染料又は顔料の付着量は、ガラス繊維織物の重量を基準として、例えば、1.0質量%以下である。
 前記染料又は顔料としては、例えば、カーボンブラック、酸化チタン、酸化亜鉛、酸化鉄、酸化クロム、合成シリカ、焼成顔料、硫化亜鉛などを挙げることができる。
 本実施形態のガラス繊維強化樹脂成形品において、前記ガラス繊維織物の表面に、模様、柄、画像、文字、数字等を印刷することは可能であるが、ガラス繊維織物の織模様が有する美観を最大限発揮させるために、前記ガラス繊維織物の表面には、模様、柄、画像、文字、数字等が印刷されていないことが好ましい。
 本実施形態のガラス繊維強化樹脂成形品において、前記透明樹脂は、JIS K 7375:2008に準拠して測定した全光線透過率が85%以上の樹脂を意味する。前記透明樹脂としては、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、ポリイソシアネート樹脂、及びポリイミド樹脂のような硬化性樹脂や、ポリスチレン樹脂、アクリロニトリル/ブタジエン/スチレン(ABS)樹脂、(メタ)アクリル樹脂、ポリアセタール樹脂、ポリエチレンテレフタレート(PET)樹脂、ポリカーボネート樹脂、及びポリアリレート(PAR)樹脂のような熱可塑性樹脂を挙げることができる。
 本実施形態のガラス繊維強化樹脂成形品は、前記透明樹脂が硬化性樹脂の場合は、プレス成形法、ハンドレイアップ成形法、連続パネル成形法、インフュージョン成形法、RTM成形法等を用いて、前記ガラス繊維織物に、硬化性樹脂を含浸させ、熱硬化又は光硬化により、硬化性樹脂を硬化又は半硬化させることで得ることができる。また、硬化性樹脂が半硬化された状態のガラス繊維強化樹脂成形品(プリプレグ)に対して、プレス成形法を用いて、ガラス繊維強化樹脂成形品を得ることもできる。また、本実施形態のガラス繊維強化樹脂成形品は、前記透明樹脂が熱可塑性樹脂の場合は、熱可塑性樹脂フィルムと前記ガラス繊維織物とを積層したものに対して、プレス成形法やダブルベルト型の連続プレス成形法等を用いることで得ることができる。
 本実施形態のガラス繊維強化樹脂成形品において、前記ガラス繊維織物は1枚で用いられても、2枚~5枚が積層されて用いられてもよい。また、表層部に前記ガラス繊維織物1枚以上が配置され、前記ガラス繊維織物より下層部に、前記ガラス繊維織物以外の強化繊維織物が積層されて用いられてもよい。
 本実施形態のガラス繊維強化樹脂成形品において、その全量に対する、前記ガラス繊維織物(ガラス繊維織物が複数枚含まれる場合にはその合計量)の割合(以下、ガラス含有率ということもある)は、例えば、55質量%~80質量%の範囲にあり、好ましくは、60質量%~78質量%の範囲にあり、より好ましくは、65質量%~75質量%の範囲にある。ここで、ガラス含有率は、JIS K 7052:1999に準拠して算出することができる。
 本実施形態のガラス繊維強化樹脂成形品において、前記透明樹脂は、前記透明樹脂と添加剤を含む透明樹脂組成物であってもよい。前記添加剤としては、強化繊維(例えば、ガラス繊維、炭素繊維、金属繊維等)、充填剤(例えば、ガラスパウダー、タルク、マイカ等)、硬化剤、重合開始剤、難燃剤、紫外線吸収剤、熱安定剤、酸化防止剤、帯電防止剤、流動性改良剤、アンチブロッキング剤、潤滑剤、核剤、抗菌剤、顔料等を挙げることができる。前記透明樹脂組成物中に、これらの添加剤は、樹脂組成物の全量に対して、0.1~50.0質量%の範囲で含まれうる。
 本発明のガラス繊維強化樹脂成形品は、十分な剛性を備え、優れた意匠性を備えることから、電子機器筐体、モビリティ製品用内装部品、モビリティ製品用外装部品等に好適に用いることができる。
 前記電子機器筐体としては、例えば、スマートフォン筐体、モバイルパソコン筐体、ノートパソコン筐体、タブレット筐体、WiFiルーター筐体、スマートスピーカー筐体、テレビ筐体、モニター筐体、スマート家電筐体等を挙げることができる。
 前記モビリティ製品用内装部品としては、自動車内装部品、航空機内装部品、鉄道車輛用内装部品を挙げることができる。
 前記自動車内装部品としては、ダッシュパネル、コンソールボックス、エアコンルーバー等を挙げることができる。
 前記航空機内装部品としては、壁材、トレイ、リモコン筐体、画面筐体等を挙げることができる。
 前記鉄道車両用内装部品としては、壁材、窓枠、天井材等を挙げることができる。
 前記モビリティ製品用外装部品としては、自動車外装部品、鉄道車輛用外装部品を挙げることができる。
 前記自動車外装部品としては、フェンダー、ドア、ルーフ、フード、スポイラー等を挙げることができる。
 前記鉄道車両用外装部品としては、車体外板等を挙げることができる。
 以下、実施例を挙げて本発明についてさらに具体的に説明する。ただし、本発明はこれら実施例に限定されるものではない。
 [実施例1]
 表1に示す、ガラス組成Aを備える、285texの質量を備えるガラス繊維糸を経糸及び緯糸として用いた。経糸織密度Wtを12.5本/25mm、緯糸織密度Wyを12.5本/25mmとし、レピア織機を用いて、平織に製織して、275g/mのガラス繊維織物を得た。このガラス繊維織物に対して、水流圧力を1.0MPaに設定した水流圧力による開繊処理を行った。次いで、このガラス繊維織物を、600℃で、2時間加熱した後に、3-アミノプロピルトリエトキシシランをシランカップリング剤として、シランカップリング剤の付着量が0.02質量%となるようにシランカップリング剤水溶液に浸漬した。
 次いで、ガラス繊維織物に、透明樹脂として、不飽和ポリエステル樹脂組成物(表2中「ポリエステル」と表記する)を塗布し、100℃、20MPaでプレス加工して、実施例1のガラス繊維強化樹脂成形品を得た。前記不飽和ポリエステル樹脂組成物は、不飽和ポリエステル樹脂(ジャパンコンポジット株式会社製、商品名:ポリホープ6339)100質量部、硬化剤(東京化成工業株式会社製、商品名:BPO)2質量部を含み、樹脂組成物の全光線透過率が94%である。
 実施例1のガラス繊維強化樹脂成形品において、前述の方法で、平均フィラメント近傍樹脂未含浸率、経糸の糸幅Bt、緯糸の糸幅By、ガラス含有率を測定し、経糸拡幅度Et及び緯糸拡幅度Eyを算出した。結果を表2に示す。
 また、実施例1のガラス繊維強化樹脂成形品について、前述の方法で、曲げ弾性率を測定し、以下に示す方法で、織目視認性、意匠性(織目凹凸感)、表面平滑性及び電波透過性を評価した。結果を表2に示す。
 [織目視認性の評価方法]
 10cm×10cmのサイズのガラス繊維強化樹脂成形品を目視で観察し、ガラス繊維強化樹脂成形品中に含まれるガラス繊維糸全本数に対して、ガラス繊維糸に光が反射して、その存在を確認できるガラス繊維糸の数が50%以上である場合を「可」、50%未満である場合を「不可」と評価した。
 [意匠性(反射光による美観)の評価方法]
 ガラス繊維強化樹脂成形品を目視で観察し、視野を上下(経糸方向)、又は、左右(緯糸方向)に移動した際に、それぞれの場合において、視野の動きと垂直に配置されているガラス繊維織物の織目に沿っては、視野の動きに追随した、反射光の移動が起きず、織目における反射光による美観が損なわれない場合に「A」、視野の動きと垂直に配置されているガラス繊維織物の織目の一部に沿って、視野の動きに追随した反射光の移動が生じ、織目における反射光による美観がわずかに損なわれる場合に「B」、視野の動きと垂直に配置されているガラス繊維織物の織目に沿って、視野の動きに追随した反射光の移動が生じ、織目における反射光による美観が損なわれる場合に「C」と評価した。
 [表面平滑性の評価方法] 
 ガラス繊維強化樹脂成形品表面の中心平均粗さRaを、表面粗さ測定機(株式会社ミツトヨ製、型式名:J?47?2?0130)を用いて、JIS B 0601:2013に準拠して測定し、中心平均粗さRaが1μm以下の場合に「A」、1μm超10μm以下の場合に「B」、10μm超の場合に「C」と評価した。
 [電波透過性の評価方法]
 ガラス繊維強化樹脂成形品を、1.5mm×80mm以上のサイズに切断した測定試料について、ネットワークアナライザ(アジレント・テクノロジー株式会社製、商品名:PNA-LネットワークアナライザN5230A)、及び、空洞共振器(株式会社関東電子応用開発製、型式名:CP431)を用いて、JIS C 2138:2007に準拠して、測定周波数1GHzの誘電率を測定し、誘電率が5.0未満の場合を「A」、誘電率が5.0以上の場合を「B」と評価した。
 [実施例2]
 表1に示す、ガラス組成Bを備える、275texの質量を備えるガラス繊維糸を経糸及び緯糸として用い、270g/mのガラス繊維織物を得た以外は、実施例1と全く同一にして、実施例2のガラス繊維強化樹脂成形品を得た。
 実施例2のガラス繊維強化樹脂成形品において、前述の方法で、平均フィラメント近傍樹脂未含浸率、経糸の糸幅Bt、緯糸の糸幅By、ガラス含有率を測定し、経糸拡幅度Et及び緯糸拡幅度Eyを算出した。結果を表2に示す。
 また、実施例2のガラス繊維強化樹脂成形品について、前述の方法で、曲げ弾性率を測定し、織目視認性、意匠性(織目凹凸感)、表面平滑性及び電波透過性を評価した。結果を表2に示す。
 [実施例3]
 表1に示す、ガラス組成Cを備える、295texの質量を備えるガラス繊維糸を経糸及び緯糸として用い、280g/mのガラス繊維織物を得た以外は、実施例1と全く同一にして、実施例3のガラス繊維強化樹脂成形品を得た。
 実施例3のガラス繊維強化樹脂成形品において、前述の方法で、平均フィラメント近傍樹脂未含浸率、経糸の糸幅Bt、緯糸の糸幅By、ガラス含有率を測定し、経糸拡幅度Et及び緯糸拡幅度Eyを算出した。結果を表2に示す。
 また、実施例3のガラス繊維強化樹脂成形品について、前述の方法で、曲げ弾性率を測定し、織目視認性、意匠性(織目凹凸感)、表面平滑性及び電波透過性を評価した。結果を表2に示す。
 [実施例4]
 表1に示す、ガラス組成Cを備える、600texの質量を備えるガラス繊維糸を経糸及び緯糸として用い、経糸織密度Wtを9.0本/25mm、緯糸織密度Wyを8.0本/25mmとし、420g/mのガラス繊維織物を得た以外は、実施例1と全く同一にして、実施例4のガラス繊維強化樹脂成形品を得た。
 実施例4のガラス繊維強化樹脂成形品において、前述の方法で、平均フィラメント近傍樹脂未含浸率、経糸の糸幅Bt、緯糸の糸幅By、ガラス含有率を測定し、経糸拡幅度Et及び緯糸拡幅度Eyを算出した。結果を表2に示す。
 また、実施例4のガラス繊維強化樹脂成形品について、前述の方法で、曲げ弾性率を測定し、織目視認性、意匠性(織目凹凸感)、表面平滑性及び電波透過性を評価した。結果を表2に示す。
 [実施例5]
 表1に示す、ガラス組成Cを備える、1150texの質量を備えるガラス繊維糸を経糸及び緯糸として用い、経糸織密度Wtを7.0本/25mm、緯糸織密度Wyを6.5本/25mmとし、630g/mのガラス繊維織物を得た以外は、実施例1と全く同一にして、実施例5のガラス繊維強化樹脂成形品を得た。
 実施例5のガラス繊維強化樹脂成形品において、前述の方法で、平均フィラメント近傍樹脂未含浸率、経糸の糸幅Bt、緯糸の糸幅By、ガラス含有率を測定し、経糸拡幅度Et及び緯糸拡幅度Eyを算出した。結果を表2に示す。
 また、実施例5のガラス繊維強化樹脂成形品について、前述の方法で、曲げ弾性率を測定し、織目視認性、意匠性(織目凹凸感)、表面平滑性及び電波透過性を評価した。結果を表2に示す。
 [実施例6]
 表1に示す、ガラス組成Cを備える、135texの質量を備えるガラス繊維糸を経糸及び緯糸として用い、経糸織密度Wtを20.0本/25mm、緯糸織密度Wyを20.0本/25mmとし、215g/mのガラス繊維織物を得た以外は、実施例1と全く同一にして、実施例6のガラス繊維強化樹脂成形品を得た。
 実施例6のガラス繊維強化樹脂成形品において、前述の方法で、平均フィラメント近傍樹脂未含浸率、経糸の糸幅Bt、緯糸の糸幅By、ガラス含有率を測定し、経糸拡幅度Et及び緯糸拡幅度Eyを算出した。結果を表3に示す。
 また、実施例6のガラス繊維強化樹脂成形品について、前述の方法で、曲げ弾性率を測定し、織目視認性、意匠性(織目凹凸感)、表面平滑性及び電波透過性を評価した。結果を表3に示す。
 [実施例7]
 シランカップリング剤付着量が0.01質量%となるようにシランカップリング剤水溶液に浸漬した以外は、実施例5と全く同一にして、実施例7のガラス繊維強化樹脂成形品を得た。
 実施例7のガラス繊維強化樹脂成形品において、前述の方法で、平均フィラメント近傍樹脂未含浸率、経糸の糸幅Bt、緯糸の糸幅By、ガラス含有率を測定し、経糸拡幅度Et及び緯糸拡幅度Eyを算出した。結果を表3に示す。
 また、実施例7のガラス繊維強化樹脂成形品について、前述の方法で、曲げ弾性率を測定し、織目視認性、意匠性(織目凹凸感)、表面平滑性及び電波透過性を評価した。結果を表3に示す。
 [実施例8]
 シランカップリング剤付着量が0.005質量%となるようにシランカップリング剤水溶液に浸漬した以外は、実施例5と全く同一にして、実施例8のガラス繊維強化樹脂成形品を得た。
 実施例8のガラス繊維強化樹脂成形品において、前述の方法で、平均フィラメント近傍樹脂未含浸率、経糸の糸幅Bt、緯糸の糸幅By、ガラス含有率を測定し、経糸拡幅度Et及び緯糸拡幅度Eyを算出した。結果を表3に示す。
 また、実施例8のガラス繊維強化樹脂成形品について、前述の方法で、曲げ弾性率を測定し、織目視認性、意匠性(織目凹凸感)、表面平滑性及び電波透過性を評価した。結果を表3に示す。
 [実施例9]
 透明樹脂として、アクリル樹脂組成物(表3中「アクリル」と表記する)を用いた以外は、実施例3と全く同一にして、実施例9のガラス繊維強化樹脂成形品を得た。前記アクリル樹脂組成物は、アクリル樹脂(大阪有機化学株式製、商品名:ビスコート#155)、光重合開始剤(BASF社製、商品名:イルガキュア184、(1-ヒドロキシ-シクロヘキシル-フェニル-ケトン)、溶媒(神港有機化学工業株式会社製ジエチレングリコールモノエチルエーテルアセテート)を含み、樹脂組成物の全光線透過率が98%である。
 実施例9のガラス繊維強化樹脂成形品において、前述の方法で、平均フィラメント近傍樹脂未含浸率、経糸の糸幅Bt、緯糸の糸幅By、ガラス含有率を測定し、経糸拡幅度Et及び緯糸拡幅度Eyを算出した。結果を表3に示す。
 また、実施例9のガラス繊維強化樹脂成形品について、前述の方法で、曲げ弾性率を測定し、織目視認性、意匠性(織目凹凸感)、表面平滑性及び電波透過性を評価した。結果を表3に示す。
 [比較例1]
 シランカップリング剤付着量が0.04質量%となるようにシランカップリング剤水溶液に浸漬した以外は、実施例3と全く同一にして、比較例1のガラス繊維強化樹脂成形品を得た。
 比較例1のガラス繊維強化樹脂成形品において、前述の方法で、平均フィラメント近傍樹脂未含浸率、経糸の糸幅Bt、緯糸の糸幅By、ガラス含有率を測定し、経糸拡幅度Et及び緯糸拡幅度Eyを算出した。結果を表4に示す。
 また、比較例1のガラス繊維強化樹脂成形品について、前述の方法で、曲げ弾性率を測定し、織目視認性、意匠性(織目凹凸感)、表面平滑性及び電波透過性を評価した。結果を表4に示す。
 [比較例2]
 シランカップリング剤付着量が0.04質量%となるようにシランカップリング剤水溶液に浸漬した以外は、実施例5と全く同一にして、比較例2のガラス繊維強化樹脂成形品を得た。
 比較例2のガラス繊維強化樹脂成形品において、前述の方法で、平均フィラメント近傍樹脂未含浸率、経糸の糸幅Bt、緯糸の糸幅By、ガラス含有率を測定し、経糸拡幅度Et及び緯糸拡幅度Eyを算出した。結果を表4に示す。
 また、比較例2のガラス繊維強化樹脂成形品について、前述の方法で、曲げ弾性率を測定し、織目視認性、意匠性(織目凹凸感)、表面平滑性及び電波透過性を評価した。結果を表4に示す。
 [比較例3]
 ガラス繊維織物を、シランカップリング剤水溶液に浸漬した後に、染料の付着量が2.0質量%となるように、黒色染料(DIC株式会社製、商品名:リューダイWブラックB)溶液に浸漬した以外は、実施例5と全く同一にして、比較例3のガラス繊維強化樹脂成形品を得た。
 比較例3のガラス繊維強化樹脂成形品において、前述の方法で、平均フィラメント近傍樹脂未含浸率、経糸の糸幅Bt、緯糸の糸幅By、ガラス含有率を測定し、経糸拡幅度Et及び緯糸拡幅度Eyを算出した。結果を表4に示す。
 また、比較例3のガラス繊維強化樹脂成形品について、前述の方法で、曲げ弾性率を測定し、織目視認性、意匠性(織目凹凸感)、表面平滑性及び電波透過性を評価した。結果を表4に示す。
 [比較例4]
 水流圧力を0.1MPaに設定した水流圧力による開繊処理を行った以外は、実施例5と全く同一にして、比較例4のガラス繊維強化樹脂成形品を得た。
 比較例4のガラス繊維強化樹脂成形品において、前述の方法で、平均フィラメント近傍樹脂未含浸率、経糸の糸幅Bt、緯糸の糸幅By、ガラス含有率を測定し、経糸拡幅度Et及び緯糸拡幅度Eyを算出した。結果を表4に示す。
 また、比較例4のガラス繊維強化樹脂成形品について、前述の方法で、曲げ弾性率を測定し、織目視認性、意匠性(織目凹凸感)、表面平滑性及び電波透過性を評価した。結果を表4に示す。
 [比較例5]
 水流圧力を3.5MPaに設定した水流圧力による開繊処理を行った以外は、実施例5と全く同一にして、比較例5のガラス繊維強化樹脂成形品を得た。
 比較例5のガラス繊維強化樹脂成形品において、前述の方法で、平均フィラメント近傍樹脂未含浸率、経糸の糸幅Bt、緯糸の糸幅By、ガラス含有率を測定し、経糸拡幅度Et及び緯糸拡幅度Eyを算出した。結果を表4に示す。
 また、比較例5のガラス繊維強化樹脂成形品について、前述の方法で、曲げ弾性率を測定し、織目視認性、意匠性(織目凹凸感)、表面平滑性及び電波透過性を評価した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 
 
 表2、表3に示されるように、ガラス繊維織物の平均フィラメント近傍樹脂未含浸率が、2.0%超50.0%以下であり、前記ガラス繊維織物の経糸の糸幅Bt、及び、緯糸の糸幅Byが、それぞれ、0.50~8.50mmの範囲にあり、前記ガラス繊維織物の経糸の織密度Wt、及び、緯糸の織密度Wyが、それぞれ、3.0本/25mm~50本/25mmの範囲にあり、前記ガラス繊維織物の、Bt/(25/Wt)で計算される経糸拡幅度Et、及び、By/(25/Wy)で計算される緯糸拡幅度Eyが、それぞれ、0.70~1.10の範囲にある、実施例1~9のガラス繊維強化樹脂成形品では、ガラス繊維織物の織目が視認でき、ガラス繊維織物の備える意匠性が発揮され、かつ、ガラス繊維織物が十分な補強効果を発揮している。
 一方、表4に示されるように、前記平均フィラメント近傍樹脂未含浸率が、2.0%超50.0%以下の範囲外である、比較例1~3のガラス繊維強化樹脂成形品では、ガラス繊維織物の織目が視認できないか、ガラス繊維織物が十分な補強効果を発揮していない。
 また、前記経糸拡幅度Et及び緯糸拡幅度Eyが、0.70~1.10の範囲外である、比較例4及び5のガラス繊維強化樹脂成形品では、ガラス繊維織物の備える意匠性が十分に発揮されていない。
 1…ガラスフィラメント、2…測定領域、3…空隙部。

Claims (10)

  1.  ガラス繊維織物と、透明樹脂とを含む、ガラス繊維強化樹脂成形品であって、
     前記ガラス繊維織物の平均フィラメント近傍樹脂未含浸率が、2.0%超50.0%以下であり、
     前記ガラス繊維織物の経糸の糸幅Bt、及び、緯糸の糸幅Byが、それぞれ、0.50~8.50mmの範囲にあり、
     前記ガラス繊維織物の経糸の織密度Wt、及び、緯糸の織密度Wyが、それぞれ、3.0本/25mm~50本/25mmの範囲にあり、
     前記ガラス繊維織物の、Bt/(25/Wt)で計算される経糸拡幅度Et、及び、By/(25/Wy)で計算される緯糸拡幅度Eyが、それぞれ、0.70~1.10の範囲にあることを特徴とする、ガラス繊維強化樹脂成形品。
  2.  請求項1に記載のガラス繊維強化樹脂成形品において、前記ガラス繊維織物の平均フィラメント近傍樹脂未含浸率が、2.1%以上28.0%以下であることを特徴とすることを特徴とする、ガラス繊維強化樹脂成形品。
  3.  請求項1に記載のガラス繊維強化樹脂成形品において、前記ガラス繊維織物のフィラメント平均近傍樹脂未含浸率が、2.5%以上10.0%以下であることを特徴とすることを特徴とする、ガラス繊維強化樹脂成形品。
  4.  請求項1に記載のガラス繊維強化樹脂成形品において、前記ガラス繊維織物のフィラメント近傍樹脂未含浸率が、平均3.1%以上5.0%以下であることを特徴とすることを特徴とする、ガラス繊維強化樹脂成形品。
  5.  請求項1~4のいずれか1項に記載のガラス繊維強化樹脂成形品において、前記ガラス繊維織物の経糸の重量、及び、緯糸の重量が、それぞれ、210tex~850texの範囲にあることを特徴とする、ガラス繊維強化樹脂成形品。
  6.  請求項1~5のいずれか1項に記載のガラス繊維強化樹脂成形品において、前記ガラス繊維織物の経糸及び緯糸を構成するガラス繊維の測定周波数1GHzにおける誘電率が5.5以下であることを特徴とする、ガラス繊維強化樹脂成形品。
  7.  請求項1~6のいずれか1項に記載のガラス繊維強化樹脂成形品において、前記ガラス繊維織物の経糸及び緯糸を構成するガラス繊維のガラス組成が、ガラス繊維の全量に対して、60.0質量%~70.0質量%の範囲のSiOと、20.0質量%~30.0質量%のAlと、5.0質量%~15.0質量%の範囲のMgOとを含むガラス組成であることを特徴とする、ガラス繊維強化樹脂成形品。
  8.  請求項1~7のいずれか1項に記載のガラス繊維強化樹脂成形品を含むことを特徴とする、電子機器筐体。
  9.  請求項1~7のいずれか1項に記載のガラス繊維強化樹脂成形品を含むことを特徴とする、モビリティ製品用内装部品。
  10.  請求項1~7のいずれか1項に記載のガラス繊維強化樹脂成形品を含むことを特徴とする、モビリティ製品用外装部品。
PCT/JP2021/019312 2020-06-10 2021-05-21 ガラス繊維強化樹脂成形品、電子機器筐体、モビリティ製品用内装部品、及び、モビリティ製品用外装部品 WO2021251103A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21821854.3A EP4023700B1 (en) 2020-06-10 2021-05-21 Glass fiber-reinforced resin molded article, housing of electronic device, interior component for mobility product and exterior component for mobility product
CN202180006268.4A CN114729134B (zh) 2020-06-10 2021-05-21 玻璃纤维强化树脂成型品、电子设备壳体、移动产品用内饰部件及移动产品用外饰部件
US17/765,605 US11591723B2 (en) 2020-06-10 2021-05-21 Glass fiber-reinforced resin molded article, housing of electronic device, interior component for mobility product and exterior component for mobility product
JP2021557255A JP7014346B1 (ja) 2020-06-10 2021-05-21 ガラス繊維強化樹脂成形品、電子機器筐体、モビリティ製品用内装部品、及び、モビリティ製品用外装部品
KR1020227010737A KR102459984B1 (ko) 2020-06-10 2021-05-21 유리섬유 강화 수지 성형품, 전자기기 하우징, 모빌리티 제품용 내장부품, 및 모빌리티 제품용 외장부품

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-100877 2020-06-10
JP2020100877 2020-06-10

Publications (1)

Publication Number Publication Date
WO2021251103A1 true WO2021251103A1 (ja) 2021-12-16

Family

ID=78845984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019312 WO2021251103A1 (ja) 2020-06-10 2021-05-21 ガラス繊維強化樹脂成形品、電子機器筐体、モビリティ製品用内装部品、及び、モビリティ製品用外装部品

Country Status (7)

Country Link
US (1) US11591723B2 (ja)
EP (1) EP4023700B1 (ja)
JP (1) JP7014346B1 (ja)
KR (1) KR102459984B1 (ja)
CN (1) CN114729134B (ja)
TW (1) TWI768943B (ja)
WO (1) WO2021251103A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023153127A1 (ja) * 2022-02-08 2023-08-17 日東紡績株式会社 繊維強化樹脂シート
WO2023167283A1 (ja) * 2022-03-02 2023-09-07 旭化成株式会社 ガラスクロス、ガラスクロスの製造方法、プリプレグ、プリント配線板
WO2023238763A1 (ja) * 2022-06-08 2023-12-14 日東紡績株式会社 ガラスクロス、プリプレグ、及び、プリント配線板

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0226733A (ja) * 1988-07-18 1990-01-29 Kanebo Ltd プリント配線基板
JPH06248572A (ja) * 1993-02-19 1994-09-06 Kanebo Ltd 繊維強化複合材料用ガラス織物
JPH07195361A (ja) * 1993-12-28 1995-08-01 Nitto Boseki Co Ltd 繊維で強化された熱可塑性樹脂シート
JPH11320737A (ja) * 1998-05-14 1999-11-24 Toyobo Co Ltd 繊維強化熱可塑性樹脂成形用材料及びそれを用いた電子・電気機器用筐体
JP2000054258A (ja) * 1998-08-06 2000-02-22 Asahi Schwebel Co Ltd ガラスクロス
JP2005319746A (ja) 2004-05-11 2005-11-17 Nitto Boseki Co Ltd 透明不燃性シート及びその製造方法
JP2009241476A (ja) * 2008-03-31 2009-10-22 Nitto Boseki Co Ltd 積層シート及び積層シートの製造方法
JP2012144830A (ja) * 2011-01-14 2012-08-02 Nitto Boseki Co Ltd ガラス繊維織物及び照明装置
WO2015079820A1 (ja) * 2013-11-29 2015-06-04 日東紡績株式会社 ガラス繊維織物-樹脂組成物積層体
WO2016175248A1 (ja) * 2015-04-27 2016-11-03 旭化成株式会社 ガラスクロス
WO2017038240A1 (ja) * 2015-08-28 2017-03-09 ユニチカ株式会社 ガラスクロス
WO2018150978A1 (ja) * 2017-02-17 2018-08-23 日東紡績株式会社 樹脂付着強化繊維織物、及び繊維強化樹脂成形品の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102834561B (zh) 2010-04-05 2015-02-04 日东纺绩株式会社 保持有二氧化硅微粒的玻璃纤维织物的制造方法、保持有二氧化硅微粒的玻璃纤维织物及纤维增强树脂成型体
JP6790812B2 (ja) * 2016-12-26 2020-11-25 日東紡績株式会社 ガラス繊維強化樹脂成形品
CN108411446B (zh) 2017-02-10 2021-08-27 旭化成株式会社 玻璃布、预浸料、及印刷电路板
WO2019116432A1 (ja) * 2017-12-11 2019-06-20 日東紡績株式会社 ガラス繊維糸連結体
US10934640B2 (en) 2018-02-22 2021-03-02 Nitto Boseki Co., Ltd. Glass cloth, prepreg, and glass fiber reinforced resin molded product

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0226733A (ja) * 1988-07-18 1990-01-29 Kanebo Ltd プリント配線基板
JPH06248572A (ja) * 1993-02-19 1994-09-06 Kanebo Ltd 繊維強化複合材料用ガラス織物
JPH07195361A (ja) * 1993-12-28 1995-08-01 Nitto Boseki Co Ltd 繊維で強化された熱可塑性樹脂シート
JPH11320737A (ja) * 1998-05-14 1999-11-24 Toyobo Co Ltd 繊維強化熱可塑性樹脂成形用材料及びそれを用いた電子・電気機器用筐体
JP2000054258A (ja) * 1998-08-06 2000-02-22 Asahi Schwebel Co Ltd ガラスクロス
JP2005319746A (ja) 2004-05-11 2005-11-17 Nitto Boseki Co Ltd 透明不燃性シート及びその製造方法
JP2009241476A (ja) * 2008-03-31 2009-10-22 Nitto Boseki Co Ltd 積層シート及び積層シートの製造方法
JP2012144830A (ja) * 2011-01-14 2012-08-02 Nitto Boseki Co Ltd ガラス繊維織物及び照明装置
WO2015079820A1 (ja) * 2013-11-29 2015-06-04 日東紡績株式会社 ガラス繊維織物-樹脂組成物積層体
WO2016175248A1 (ja) * 2015-04-27 2016-11-03 旭化成株式会社 ガラスクロス
JP2020002520A (ja) * 2015-04-27 2020-01-09 旭化成株式会社 ガラスクロス
WO2017038240A1 (ja) * 2015-08-28 2017-03-09 ユニチカ株式会社 ガラスクロス
WO2018150978A1 (ja) * 2017-02-17 2018-08-23 日東紡績株式会社 樹脂付着強化繊維織物、及び繊維強化樹脂成形品の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023153127A1 (ja) * 2022-02-08 2023-08-17 日東紡績株式会社 繊維強化樹脂シート
WO2023167283A1 (ja) * 2022-03-02 2023-09-07 旭化成株式会社 ガラスクロス、ガラスクロスの製造方法、プリプレグ、プリント配線板
JP7432797B2 (ja) 2022-03-02 2024-02-16 旭化成株式会社 ガラスクロス、ガラスクロスの製造方法、プリプレグ、プリント配線板
WO2023238763A1 (ja) * 2022-06-08 2023-12-14 日東紡績株式会社 ガラスクロス、プリプレグ、及び、プリント配線板
JP7425393B1 (ja) 2022-06-08 2024-01-31 日東紡績株式会社 ガラスクロス、プリプレグ、及び、プリント配線板

Also Published As

Publication number Publication date
CN114729134B (zh) 2022-11-15
KR102459984B1 (ko) 2022-10-27
KR20220047390A (ko) 2022-04-15
CN114729134A (zh) 2022-07-08
JPWO2021251103A1 (ja) 2021-12-16
EP4023700B1 (en) 2023-10-18
TW202204503A (zh) 2022-02-01
TWI768943B (zh) 2022-06-21
EP4023700A1 (en) 2022-07-06
EP4023700A4 (en) 2022-12-14
US11591723B2 (en) 2023-02-28
JP7014346B1 (ja) 2022-02-01
US20220356609A1 (en) 2022-11-10

Similar Documents

Publication Publication Date Title
JP7014346B1 (ja) ガラス繊維強化樹脂成形品、電子機器筐体、モビリティ製品用内装部品、及び、モビリティ製品用外装部品
US10647610B2 (en) Low density and high strength fiber glass for reinforcement applications
Wallenberger et al. Glass fibers
KR20140005876A (ko) 강화 용도를 위한 저밀도 및 고강도 섬유 유리
US20180208499A1 (en) Glass Compositions, Fiberizable Glass Compositions, and Glass Fibers Made Therefrom
WO2015009686A1 (en) Glass compositions, fiberizable glass compositions, and glass fibers made therefrom
JP2011068549A (ja) ガラス繊維、ガラス繊維の製造方法及びガラス繊維シート状物
WO2013084897A1 (ja) ガラス織物及びそれを用いるガラス繊維シート材
US11920011B2 (en) Resin substrate having dielectric characteristics with little frequency dependence
JP7406131B2 (ja) ガラスロービングクロス及びガラス繊維強化樹脂シート
TWI785369B (zh) 玻璃布、預浸體及玻璃纖維強化樹脂成形品
KR20140054572A (ko) 절연체를 이용한 전자파 차폐재 및 이의 제조방법
JP2001055642A (ja) 樹脂補強用クロス及びそれを用いた積層板
KR101385198B1 (ko) 디스플레이용 광학 투명 복합필름 및 제조방법
JPH10226941A (ja) ガラス繊維織物及びそれを用いた繊維強化樹脂成型品
CN114746238A (zh) 具有改进的疲劳性能的纤维增强材料
JPS61258043A (ja) プリント回路基板
WO2016069670A1 (en) Fiber-reinforced composite preform
CN116732678A (zh) 玻璃布
JP2023172651A (ja) ガラス繊維強化熱可塑性樹脂基板、及びプリント配線板
EP4289801A1 (en) Glass composition and glass fiber and method for producing same
JP2022063847A (ja) 低誘電ガラスクロス、プリプレグ、及びプリント配線板
JPWO2019163159A1 (ja) ガラスクロス、プリプレグ、及び、ガラス繊維強化樹脂成形品
CN116397361A (zh) 玻璃布的制造方法及玻璃布、玻璃丝、以及玻璃丝的筛选方法
DE10214482A1 (de) Präparation und Verfahren zum Behandeln von Hybridgarnen

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021557255

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21821854

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227010737

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021821854

Country of ref document: EP

Effective date: 20220329

NENP Non-entry into the national phase

Ref country code: DE