WO2021250856A1 - 水平多関節ロボット - Google Patents
水平多関節ロボット Download PDFInfo
- Publication number
- WO2021250856A1 WO2021250856A1 PCT/JP2020/023053 JP2020023053W WO2021250856A1 WO 2021250856 A1 WO2021250856 A1 WO 2021250856A1 JP 2020023053 W JP2020023053 W JP 2020023053W WO 2021250856 A1 WO2021250856 A1 WO 2021250856A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- arm
- shaft
- base
- axis
- articulated robot
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/02—Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
- B25J9/04—Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical coordinate type or polar coordinate type
- B25J9/041—Cylindrical coordinate type
- B25J9/042—Cylindrical coordinate type comprising an articulated arm
- B25J9/044—Cylindrical coordinate type comprising an articulated arm with forearm providing vertical linear movement
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J19/00—Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
- B25J19/0025—Means for supplying energy to the end effector
Definitions
- This disclosure relates to a horizontal articulated robot in which the arm operates in the horizontal direction.
- the horizontal articulated robot has a base and a first arm and a second arm.
- the horizontal articulated robot has a first axis, which is the rotation axis of the first arm, on the base, and a second axis, which is the rotation axis of the second arm, on the first arm away from the first axis.
- the tip of the second arm has a third axis that moves up and down in the vertical direction and a fourth axis that rotates left and right in the rotation direction.
- Patent Document 1 discloses a horizontal articulated robot in which a base and a second arm are connected by a cable conduit and a motor cable is passed through the cable conduit. Since the horizontal articulated robot disclosed in Patent Document 1 does not pass the motor cable inside the first arm, the structure of the arm can be simplified.
- the first arm is installed on the base
- the second arm is installed on the first arm
- the cable conduit is connected to the upper surface of the second arm. Therefore, the height of the entire robot on the tip side of the first arm is higher than that on the first axis.
- the present disclosure has been made in view of the above, and is a horizontal articulated robot in which the height dimension of the entire robot on the tip side of the first arm is smaller than that of the first axis while the structure of the arm is simplified.
- the purpose is to get.
- the horizontal articulated robot includes a first arm, a base that rotatably supports the first arm, and rotatably supports the first arm.
- the second arm is provided with a hose accommodating at least one of the wiring and piping connecting the base and the second arm.
- the base is housed in the base housing and the first shaft motor whose shaft protrudes from the first surface of the base housing to the outside of the base housing, and faces the first surface of the base housing. It is equipped with a first rotation elbow whose end is oriented in a direction perpendicular to the rotation axis of the shaft of the first shaft motor.
- the second arm includes a second arm housing, a second shaft motor housed in the second arm housing, and a shaft protruding from the third surface of the second arm housing to the outside of the second arm housing. It is provided with a second rotating elbow which is installed on the fourth surface of the second arm housing facing the third surface and whose end is directed in a direction perpendicular to the rotation axis of the shaft of the second shaft motor.
- the hose connects the end of the first rotating elbow to the end of the second rotating elbow.
- the second and fourth surfaces are located on the same plane.
- the rotation shaft of at least one of the first rotation elbow and the second rotation elbow is the same as the rotation shaft of the shaft of the first shaft motor or the rotation shaft of the shaft of the second shaft motor.
- the horizontal articulated robot according to the present disclosure has the effect that the height dimension of the entire robot on the tip side of the first arm is smaller than that of the first axis, although the structure of the arm is simple.
- FIG. 1 Perspective view of the horizontal articulated robot according to the first embodiment Side view of the horizontal articulated robot according to the first embodiment Sectional drawing of the horizontal articulated robot which concerns on Embodiment 1.
- Top view of the horizontal articulated robot according to the second embodiment Sectional drawing of the horizontal articulated robot which concerns on Embodiment 2.
- FIG. 1 is a perspective view of the horizontal articulated robot according to the first embodiment.
- the horizontal articulated robot 10 according to the first embodiment has a base 9, a first arm 1 extending from the base 9, and a second arm 2 extending from the first arm 1.
- the first arm 1 and the second arm 2 are thinner than the base 9.
- a shaft 21 to which an end effector is attached is installed at the tip of the second arm 2.
- the horizontal articulated robot 10 has a first axis AX1 which is a rotation axis of the first arm 1 on the base 9, and a second axis AX2 which is a rotation axis of the second arm 2 on the first arm 1.
- a third axis AX3 for moving the shaft 21 up and down and a fourth axis AX4 for rotating the shaft 21 are provided at the tip of the second arm 2.
- FIG. 2 is a side view of the horizontal articulated robot according to the first embodiment.
- the base 9 of the horizontal articulated robot 10 is fixed to the wall surface 70 and installed.
- the horizontal articulated robot 10 is connected to the robot controller 30 by an inter-device cable 40.
- the robot controller 30 operates a motor and a brake arranged in the horizontal articulated robot 10.
- the robot controller 30 supplies signals and electric power to the horizontal articulated robot 10 through the device-to-device cable 40, and controls the horizontal articulated robot 10.
- the inter-device cable 40 is connected to the horizontal articulated robot 10 via a cable entry 91 installed on the upper surface of the base 9.
- FIG. 3 is a cross-sectional view of the horizontal articulated robot according to the first embodiment.
- the base 9 includes a base housing 9c.
- the base 9 includes a first shaft motor 92 housed in the base housing 9c.
- the shaft 93 of the first shaft motor 92 projects from the lower surface 9a of the base housing 9c to the outside of the base housing 9c.
- the base 9 has an opening 94 formed in the upper surface 9b of the base housing 9c.
- the lower surface 9a of the base housing 9c is the first surface on which the shaft 93 projects to the outside of the base housing 9c.
- the upper surface 9b of the base housing 9c is a second surface facing the lower surface 9a.
- the base 9 comprises a first bearing 95 installed in the opening 94.
- the base 9 includes a first rotating elbow 96 installed on the upper surface 9b via a first bearing 95.
- the end of the first rotation elbow 96 is oriented in a direction perpendicular to the rotation axis of the shaft 93 of the first shaft motor 92.
- the rotation axis of the shaft 93 is the same as that of the first axis AX1.
- the first arm 1 has a first arm housing 1c and speed reducers 11 and 13 housed in the first arm housing 1c.
- the shaft 93 is fitted to the input shaft of the speed reducer 11.
- the input shaft of the speed reducer 11 is fitted to the inner ring of the bearing 12 installed on the upper surface 1b of the first arm housing 1c.
- the outer ring of the bearing 12 is fixed to the first arm housing 1c.
- the output shaft of the speed reducer 11 is fixed to the first arm housing 1c. Therefore, the first arm 1 rotates with the rotation of the shaft 93.
- the outer ring of the first bearing 95 is fixed to the edge of the opening 94, and the inner ring of the first bearing 95 is fixed to the first rotating elbow 96. Therefore, the first rotating elbow 96 can rotate on the upper surface 9b of the base housing 9c on a rotation axis perpendicular to the upper surface 9b.
- the rotation axis of the first rotation elbow 96 is the same as that of the first axis AX1.
- the second arm 2 includes a second arm housing 2c. Further, the second arm 2 includes a second shaft motor 22 housed in the second arm housing 2c. The shaft 23 of the second shaft motor 22 projects from the lower surface 2a of the second arm housing 2c to the outside of the second arm housing 2c.
- the second arm 2 has an opening 25 formed in the upper surface 2b of the second arm housing 2c.
- the lower surface 2a of the second arm housing 2c is a third surface on which the shaft 23 projects to the outside of the second arm housing 2c.
- the upper surface 2b of the second arm housing 2c is a fourth surface facing the lower surface 2a.
- the second arm 2 includes a second bearing 26 installed in the opening 25.
- the second arm 2 includes a second rotating elbow 27 installed on the upper surface 2b via the second bearing 26.
- the end of the second rotating elbow 27 is oriented in a direction perpendicular to the axis of rotation of the shaft 23.
- the rotation axis of the shaft 23 is the same as that of the second axis AX2.
- the shaft 23 is fitted to the input shaft of the speed reducer 13.
- the input shaft of the speed reducer 13 is fitted to the inner ring of the bearing 14 installed on the upper surface 1b of the first arm housing 1c.
- the outer ring of the bearing 14 is fixed to the first arm housing 1c.
- the output shaft of the speed reducer 13 is fixed to the first arm housing 1c. Therefore, the second arm 2 rotates with the rotation of the shaft 23.
- the outer ring of the second bearing 26 is fixed to the edge of the opening 25, and the inner ring of the second bearing 26 is fixed to the second rotating elbow 27. Therefore, the second rotating elbow 27 can rotate on the upper surface 2b of the second arm housing 2c on a rotation axis perpendicular to the upper surface 2b.
- the rotation axis of the second rotation elbow 27 is the same as that of the second axis AX2.
- FIG. 4 is a top view of the horizontal articulated robot according to the first embodiment.
- the flexible hose 50 is longer than the distance between the first rotating elbow 96 and the second rotating elbow 27, causing bending. Since the first rotation elbow 96 and the second rotation elbow 27 can be oriented in the horizontal direction, the flexible hose 50 is bent in the horizontal direction.
- the arrow height H of the flexible hose 50 becomes half or less of the width of the base 9. Therefore, the flexible hose 50 does not protrude from the base 9 in the horizontal direction.
- the substrate 97 is installed inside the base 9.
- the connector 98b is mounted.
- the in-flight cables 61 for the second axis, the third axis, and the fourth axis are drawn from the base 9 to the second arm 2 through the flexible hose 50.
- the base 9 is provided with a first clamp 99 for fixing the in-flight cable 61 drawn from the base 9 to the second arm 2 through the flexible hose 50 to the side surface of the first shaft motor 92.
- the second arm 2 includes a second clamp 29 for fixing the in-flight cable 61 to the side surface of the second shaft motor 22. That is, the in-flight cables 61 for the second axis, the third axis, and the fourth axis are fixed to the side surface of the first axis motor 92 inside the base housing 9c. Further, the in-flight cables 61 for the second axis, the third axis, and the fourth axis are fixed to the side surface of the second axis motor 22 inside the second arm housing 2c.
- the portion between the fixed parts inside each of the base housing 9c and the second arm housing 2c is restrained.
- the in-flight cable 61 may be fixed to the end face of the first shaft motor 92 on the opposite side of the shaft. Further, the in-flight cable 61 may be fixed to the end face on the opposite side of the shaft of the second shaft motor 22.
- the upper surface 9b of the base housing 9c and the upper surface 2b of the second arm housing 2c are located on the same plane. Therefore, if the first rotating elbow 96 and the second rotating elbow 27 are the same parts, the heights of both ends of the flexible hose 50 are the same.
- the heights of both ends of the 50 can be made the same, but the fact that the first rotating elbow 96 and the second rotating elbow 27 are different parts hinders the reduction of the number of parts by standardizing the parts, and also At the time of assembly work, it becomes necessary to distinguish between the first rotating elbow 96 attached to the base housing 9c and the second rotating elbow 27 attached to the second arm housing 2c, which reduces the assembly workability.
- the horizontal articulated robot 10 according to the first embodiment has the same parts as the first rotating elbow 96 attached to the base housing 9c and the second rotating elbow 27 attached to the second arm housing 2c. Can be reduced.
- the first arm 1 is installed under the base 9, and the second arm 2 is installed on the first arm 1. Therefore, the tip of the first arm 1 is higher than the first axis AX1 as compared with a horizontal articulated robot having a known structure in which the first arm is installed on the base and the second arm is installed on the first arm.
- the height dimension of the entire horizontal articulated robot 10 on the side can be reduced.
- the in-flight cable 61 is pulled into the second arm 2 through the flexible hose 50, it is not necessary to provide a structure for passing the in-flight cable 61 in the first arm 1, and the base 9 ,
- the structure of the first arm 1 and the second arm 2 can be simplified. Therefore, the weight of the entire horizontal articulated robot 10 can be reduced, and the operating speed of the horizontal articulated robot 10 can be increased.
- the rotation axis of the shaft 93 of the first axis motor 92 and the rotation axis of the first rotation elbow 96 are the same, and the rotation axis of the second axis motor 22 is the same.
- the rotation axis of the shaft 23 and the rotation axis of the second rotation elbow 27 are the same.
- the in-flight cable 61 is fixed in the base housing 9c and the second arm housing 2c, and the portion of the in-flight cable 61 that is passed through the flexible hose 50 is , Not restrained.
- the flexible hose 50 through which the in-flight cable 61 passes is a first rotation elbow from a direction perpendicular to each of the rotation shaft of the shaft 93 of the first shaft motor 92 and the rotation shaft of the shaft 23 of the second shaft motor 22. It is connected to 96 and the second rotating elbow 27. Therefore, since the flexible hose 50 moves in the same manner as the first arm 1 when the horizontal articulated robot 10 is operated, it is not necessary to set a margin length due to the robot operation in the in-flight cable 61, and the weight of the horizontal articulated robot 10 can be reduced. Cost reduction can be realized.
- the flexible hose 50 flexes freely to the left and right according to the robot operation. It is possible.
- the operating range of the horizontal articulated robot 10 is the path and length of the flexible hose 50. It can be set freely without being restricted by. Further, by changing the bending direction of the flexible hose 50 to the left and right, the twisted portion of the in-flight cable 61 is not fixed in one place, and the durability of the in-flight cable 61 is improved.
- the configuration in which the in-flight cable 61 is passed through the flexible hose 50 is taken as an example, but a pipe for transmitting hydraulic pressure or air pressure may be passed through the flexible hose 50. Further, both the wiring for transmitting electricity and the piping for transmitting hydraulic pressure or air pressure may be passed through the flexible hose 50.
- the configuration in which the rotation axis of the first rotation elbow 96 is the same as that of the first axis AX1 and the rotation axis of the second rotation elbow 27 is the same as that of the second axis AX2 is taken as an example. If the rotation axis of the first rotation elbow 96 is the same as the first axis AX1, the rotation axis of the second rotation elbow 27 does not have to be the same as the second axis AX2, and the rotation axis of the second rotation elbow 27 is the first. If it is the same as the two-axis AX2, the rotation axis of the first rotation elbow 96 does not have to be the same as the first-axis AX1.
- FIG. 5 is a side view of the horizontal articulated robot according to the modified example of the first embodiment.
- the base 9 may have a structure fixed to the floor surface 80.
- the horizontal articulated robot 10 according to the modification according to the first embodiment since a space is created below the first arm 1, the space can be effectively utilized by passing a conveyor under the first arm 1 or the like. ..
- FIG. 6 is a perspective view of the horizontal articulated robot according to the second embodiment.
- FIG. 7 is a top view of the horizontal articulated robot according to the second embodiment.
- FIG. 8 is a cross-sectional view of the horizontal articulated robot according to the second embodiment.
- the opening 94 in which the first bearing 95 on the upper surface 9b of the base housing 9c is installed and the second bearing 26 on the upper surface 2b of the second arm housing 2c are installed.
- the opening 25 is an elongated hole.
- the end portion of the first rotating elbow 96 and the end portion of the second rotating elbow 27 are connected by a pipe 51 having no flexibility.
- the elongated hole of the opening 94 of the base 9 extends toward the center of the movable range of the first axis AX1.
- the elongated hole of the opening 25 of the second arm 2 extends along the longitudinal direction of the second arm housing 2c.
- the opening 94 in which the first bearing 95 is installed and the opening 25 in which the second bearing 26 is installed are elongated holes, the mounting position of the first bearing 95 and the first By moving the mounting position of the two bearings 26 in the horizontal direction, the distance between the first bearing 95 and the second bearing 26 can be adjusted. Therefore, in the horizontal articulated robot 10 according to the second embodiment, the distance between the first axis AX1 and the second axis AX2 can be matched with the length of the pipe 51 through which the in-flight cable 61 is passed, and the pipe 51 is bent. There is no need. Since the horizontal articulated robot 10 according to the second embodiment does not need to use a flexible hose having flexibility, the manufacturing cost can be reduced.
- the configuration in which the opening 94 of the upper surface 9b of the base housing 9c and the opening 25 of the upper surface 2b of the second arm 2 are elongated holes is given as an example, but if the opening 94 is an elongated hole, the opening 25 is given. Does not have to be a long hole, and if the opening 25 is a long hole, the opening 94 does not have to be a long hole.
- the configuration shown in the above embodiment is an example of the content, can be combined with another known technique, and a part of the configuration is omitted or changed without departing from the gist. It is also possible.
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Manipulator (AREA)
Abstract
水平多関節ロボット(10)は、第一アーム(1)と、第一アーム(1)を回転可能に支持するベース(9)と、回動可能に第一アーム(1)に支持された第二アーム(2)と、ベース(9)と第二アーム(2)とを接続する配線及び配管の少なくとも一方を収容するフレキシブルホース(50)とを備え、ベース(9)は、端部が第一軸用モータ(92)のシャフト(93)の回転軸に垂直な方向に向けられた第一回転エルボ(96)を備え、第二アーム(2)は、端部が第二軸用モータ(22)のシャフト(23)の回転軸に垂直な方向に向けられた第二回転エルボ(27)を備え、第一回転エルボ(96)及び第二回転エルボ(27)の少なくとも一方の回転軸は、第一軸用モータ(92)のシャフト(93)の回転軸又は第二軸用モータ(22)のシャフト(23)の回転軸と同じである。
Description
本開示は、水平方向にアームが動作する水平多関節ロボットに関する。
水平多関節ロボットは、ベースと第一アーム及び第二アームを有する。水平多関節ロボットは、第一アームの回転軸となる第一軸をベース上に有し、第二アームの回転軸となる第二軸を第一軸から離れた第一アーム上に有し、垂直方向上下に移動する第三軸及び回転方向左右に回転する第四軸を第二アーム先端に有する。
水平多関節ロボットでは、第二軸、第三軸及び第四軸用のモータケーブルをベースから第二アームまで配線する必要がある。
特許文献1には、ベースと第二アームとをケーブルコンジットで接続し、ケーブルコンジット内にモータケーブルを通した水平多関節ロボットが開示されている。特許文献1に開示される水平多関節ロボットは、第一アームの内部にモータケーブルを通していないため、アームの構造を簡略化できる。
上記特許文献1に開示される水平多関節ロボットでは、ベース上に第一アームを設置し、第一アーム上に第二アームを設置し、さらに第二アームの上面にケーブルコンジットを接続しているため、第一軸よりも第一アームの先端側でのロボット全体の高さが高くなってしまう。
本開示は、上記に鑑みてなされたものであって、アームの構造が簡略でありながら第一軸よりも第一アームの先端側でのロボット全体での高さ寸法が小さい水平多関節ロボットを得ることを目的とする。
上述した課題を解決し、目的を達成するために、本開示に係る水平多関節ロボットは、第一アームと、第一アームを回転可能に支持するベースと、回動可能に第一アームに支持された第二アームと、ベースと第二アームとを接続する配線及び配管の少なくとも一方を収容するホースとを備える。ベースは、ベース筐体と、ベース筐体に収容され、ベース筐体の第一面からシャフトがベース筐体の外へ突出した第一軸用モータと、ベース筐体のうち第一面に対向する第二面に設置され、端部が第一軸用モータのシャフトの回転軸に垂直な方向に向けられた第一回転エルボとを備える。第二アームは、第二アーム筐体と、第二アーム筐体に収容され、第二アーム筐体の第三面からシャフトが第二アーム筐体の外へ突出した第二軸用モータと、第二アーム筐体のうち第三面に対向する第四面に設置され、端部が第二軸用モータのシャフトの回転軸に垂直な方向に向けられた第二回転エルボとを備える。ホースは、第一回転エルボの端部と第二回転エルボの端部とを接続している。第二面及び第四面は、同一平面に位置する。第一回転エルボ及び第二回転エルボの少なくとも一方の回転軸は、第一軸用モータのシャフトの回転軸又は第二軸用モータのシャフトの回転軸と同じである。
本開示に係る水平多関節ロボットは、アームの構造が簡略でありながら第一軸よりも第一アームの先端側でのロボット全体での高さ寸法が小さいという効果を奏する。
以下に、実施の形態に係る水平多関節ロボットを図面に基づいて詳細に説明する。
実施の形態1.
図1は、実施の形態1に係る水平多関節ロボットの斜視図である。実施の形態1に係る水平多関節ロボット10は、ベース9と、ベース9から延びる第一アーム1と、第一アーム1から延びる第二アーム2とを有する。第一アーム1及び第二アーム2は、ベース9よりも細い。第二アーム2の先端部には、エンドエフェクタが取り付けられるシャフト21が設置されている。水平多関節ロボット10は、第一アーム1の回転軸となる第一軸AX1をベース9上に有し、第二アーム2の回転軸となる第二軸AX2を第一アーム1上に有し、シャフト21を上下に移動させる第三軸AX3及びシャフト21を回転させる第四軸AX4を第二アーム2の先端部に有する。
図1は、実施の形態1に係る水平多関節ロボットの斜視図である。実施の形態1に係る水平多関節ロボット10は、ベース9と、ベース9から延びる第一アーム1と、第一アーム1から延びる第二アーム2とを有する。第一アーム1及び第二アーム2は、ベース9よりも細い。第二アーム2の先端部には、エンドエフェクタが取り付けられるシャフト21が設置されている。水平多関節ロボット10は、第一アーム1の回転軸となる第一軸AX1をベース9上に有し、第二アーム2の回転軸となる第二軸AX2を第一アーム1上に有し、シャフト21を上下に移動させる第三軸AX3及びシャフト21を回転させる第四軸AX4を第二アーム2の先端部に有する。
図2は、実施の形態1に係る水平多関節ロボットの側面図である。水平多関節ロボット10は、壁面70にベース9が固定されて据え付けられる。水平多関節ロボット10は、ロボットコントローラ30に機器間ケーブル40で接続される。ロボットコントローラ30は、水平多関節ロボット10に配置されたモータ及びブレーキを動作させる。ロボットコントローラ30は、機器間ケーブル40を通じて水平多関節ロボット10に信号及び電力を供給し、水平多関節ロボット10を制御する。機器間ケーブル40は、ベース9の上面に設置されたケーブルエントリー91を介して水平多関節ロボット10に接続される。
図3は、実施の形態1に係る水平多関節ロボットの断面図である。ベース9は、ベース筐体9cを備える。ベース9は、ベース筐体9cに収容された第一軸用モータ92を備える。第一軸用モータ92のシャフト93は、ベース筐体9cの下面9aからベース筐体9cの外へ突出している。ベース9は、ベース筐体9cの上面9bに開口94が形成されている。ベース筐体9cの下面9aは、シャフト93がベース筐体9cの外へ突出する第一面である。ベース筐体9cの上面9bは、下面9aに対向する第二面である。ベース9は、開口94に設置された第一ベアリング95を備える。ベース9は、上面9bに第一ベアリング95を介して設置された第一回転エルボ96を備える。第一回転エルボ96は、端部が第一軸用モータ92のシャフト93の回転軸に垂直な方向に向けられている。シャフト93の回転軸は、第一軸AX1と同じである。
第一アーム1は、第一アーム筐体1cと、第一アーム筐体1cに収容された減速機11,13とを有する。シャフト93は、減速機11の入力軸に嵌合している。減速機11の入力軸は、第一アーム筐体1cの上面1bに設置されたベアリング12の内輪に嵌合している。ベアリング12の外輪は、第一アーム筐体1cに固定されている。減速機11の出力軸は、第一アーム筐体1cに固定されている。したがって、第一アーム1は、シャフト93の回転に伴って回動する。
第一ベアリング95の外輪は、開口94の縁に固定されており、第一ベアリング95の内輪は、第一回転エルボ96に固定されている。したがって、第一回転エルボ96は、ベース筐体9cの上面9bにおいて、上面9bに垂直な回転軸で回転可能となっている。第一回転エルボ96の回転軸は、第一軸AX1と同じである。
第二アーム2は、第二アーム筐体2cを備える。また第二アーム2は、第二アーム筐体2cに収容された第二軸用モータ22を備える。第二軸用モータ22のシャフト23は、第二アーム筐体2cの下面2aから第二アーム筐体2cの外へ突出している。第二アーム2は、第二アーム筐体2cの上面2bに開口25が形成されている。第二アーム筐体2cの下面2aは、シャフト23が第二アーム筐体2cの外へ突出する第三面である。第二アーム筐体2cの上面2bは、下面2aに対向する第四面である。第二アーム2は、開口25に設置された第二ベアリング26を備える。第二アーム2は、上面2bに第二ベアリング26を介して設置された第二回転エルボ27を備える。第二回転エルボ27は、端部がシャフト23の回転軸に垂直な方向に向けられている。シャフト23の回転軸は、第二軸AX2と同じである。シャフト23は、減速機13の入力軸に嵌合している。減速機13の入力軸は、第一アーム筐体1cの上面1bに設置されたベアリング14の内輪に嵌合している。ベアリング14の外輪は、第一アーム筐体1cに固定されている。減速機13の出力軸は、第一アーム筐体1cに固定されている。したがって、第二アーム2は、シャフト23の回転に伴って回動する。
第二ベアリング26の外輪は、開口25の縁に固定されており、第二ベアリング26の内輪は、第二回転エルボ27に固定されている。したがって、第二回転エルボ27は、第二アーム筐体2cの上面2bにおいて、上面2bに垂直な回転軸で回転可能となっている。第二回転エルボ27の回転軸は、第二軸AX2と同じである。
第一回転エルボ96の端部と第二回転エルボ27の端部とは、フレキシブルホース50で接続されている。図4は、実施の形態1に係る水平多関節ロボットの上面図である。フレキシブルホース50は、第一回転エルボ96と第二回転エルボ27との間の距離よりも長くなっており、撓みが生じている。第一回転エルボ96及び第二回転エルボ27は、水平方向において向きを変えることができるため、フレキシブルホース50は水平方向に撓みが生じる。フレキシブルホース50が円弧状に撓むとき、フレキシブルホース50の矢高Hは、ベース9の幅の半分以下となる。したがって、フレキシブルホース50は、水平方向においてベース9からはみ出ない。
図3に示すように、ベース9の内部には、基板97が設置されている。基板97には、第一軸から第四軸の各軸の駆動用のモータの各々に通じる配線である機内ケーブル61が接続されたコネクタ98aと、ケーブルエントリー91に通じるケーブル62とが接続されたコネクタ98bとが実装されている。第二軸用、第三軸用及び第四軸用の機内ケーブル61は、フレキシブルホース50を通してベース9から第二アーム2に引き込まれている。
ベース9は、フレキシブルホース50を通じてベース9から第二アーム2に引き込まれる機内ケーブル61を、第一軸用モータ92の側面に固定する第一クランプ99を備えている。また、第二アーム2は、機内ケーブル61を第二軸用モータ22の側面に固定する第二クランプ29を備えている。すなわち、第二軸用、第三軸用及び第四軸用の機内ケーブル61は、ベース筐体9cの内部において、第一軸用モータ92の側面に固定されている。また、第二軸用、第三軸用及び第四軸用の機内ケーブル61は、第二アーム筐体2cの内部において、第二軸用モータ22の側面に固定されている。第二軸用、第三軸用及び第四軸用の機内ケーブル61のうち、ベース筐体9c及び第二アーム筐体2cの各々の内部で固定された箇所の間の部分は、拘束されていない。なお、機内ケーブル61は、第一軸用モータ92の反シャフト側の端面に固定されてもよい。また、機内ケーブル61は、第二軸用モータ22の反シャフト側の端面に固定されてもよい。
ベース筐体9cの上面9bと第二アーム筐体2cの上面2bとは同一平面に位置している。このため、第一回転エルボ96と第二回転エルボ27とが同じ部品であれば、フレキシブルホース50の両端の高さは同じ高さとなる。
フレキシブルホース50の両端の高さが異なる場合、第一アーム1及び第二アーム2が動作する際に、第一回転エルボ96及び第二回転エルボ27に水平軸回りのモーメントが働き、第一ベアリング95及び第二ベアリング26の摩耗が促進されてしまう。ベース筐体9cの上面9bの高さと第二アーム筐体2cの上面2bの高さとが異なっていても、高さ寸法が異なる第一回転エルボ96及び第二回転エルボ27を用いれば、フレキシブルホース50の両端の高さを同じにすることができるが、第一回転エルボ96と第二回転エルボ27とが異なる部品であることにより、部品の共通化による部品種類の低減の妨げになるとともに、組立作業時にベース筐体9cに取り付ける第一回転エルボ96と第二アーム筐体2cに取り付ける第二回転エルボ27とを区別する必要が生じ、組立作業性が低下してしまう。実施の形態1に係る水平多関節ロボット10は、ベース筐体9cに取り付ける第一回転エルボ96と第二アーム筐体2cに取り付ける第二回転エルボ27とを同一部品とすることで、部品種類を低減できる。また、実施の形態1に係る水平多関節ロボット10は、ベース筐体9cに取り付ける第一回転エルボ96と第二アーム筐体2cに取り付ける第二回転エルボ27とを区別する必要がなく、組立作業性が損なわれることがない。
実施の形態1に係る水平多関節ロボット10は、ベース9の下に第一アーム1が設置され、第一アーム1の上に第二アーム2が設置されている。したがって、ベースの上に第一アームが設置され、第一アームの上に第二アームが設置される公知構造の水平多関節ロボットと比較して、第一軸AX1よりも第一アーム1の先端側での水平多関節ロボット10全体での高さ寸法を小さくできる。
実施の形態1に係る水平多関節ロボット10は、機内ケーブル61がフレキシブルホース50を通じて第二アーム2に引き込まれるため、第一アーム1内に機内ケーブル61を通す構造を設ける必要がなく、ベース9、第一アーム1及び第二アーム2の構造を簡略化できる。したがって、水平多関節ロボット10全体の重量を低減させることができ、水平多関節ロボット10の動作速度を高速化できる。
また、実施の形態1に係る水平多関節ロボット10は、第一軸用モータ92のシャフト93の回転軸と第一回転エルボ96の回転軸とが同じであり、かつ第二軸用モータ22のシャフト23の回転軸と第二回転エルボ27の回転軸とが同じである。実施の形態1に係る水平多関節ロボット10は、ベース筐体9c内及び第二アーム筐体2c内で機内ケーブル61が固定されており、機内ケーブル61のうちフレキシブルホース50に通される部分は、拘束されていない。そして、機内ケーブル61が通るフレキシブルホース50は、第一軸用モータ92のシャフト93の回転軸及び第二軸用モータ22のシャフト23の回転軸の各々に対して垂直な方向から第一回転エルボ96及び第二回転エルボ27に接続されている。したがって、水平多関節ロボット10の動作時に、フレキシブルホース50が第一アーム1と同様に動くため、ロボット動作による余裕長を機内ケーブル61に設定する必要がなく、水平多関節ロボット10の軽量化及び低コスト化を実現できる。
また、実施の形態1に係る水平多関節ロボット10は、フレキシブルホース50の両端が第一回転エルボ96及び第二回転エルボ27に接続されているため、ロボット動作に従い左右自由にフレキシブルホース50がたわむことが可能である。実施の形態1に係る水平多関節ロボット10は、フレキシブルホース50のたわみが第一アーム1から横方向にはみ出さないため、水平多関節ロボット10の動作範囲は、フレキシブルホース50の経路及び長さによる制約を受けずに自由に設定することができる。また、フレキシブルホース50のたわみ方向が左右に変わることで、機内ケーブル61のねじれ箇所が一か所に固定されることがなくなり、機内ケーブル61の耐久性が向上する。
なお、上記の説明において、フレキシブルホース50に機内ケーブル61を通す構成を例に挙げたが、油圧又は空気圧を伝える配管をフレキシブルホース50に通してもよい。また、電気を伝える配線と油圧又は空気圧を伝える配管との両方をフレキシブルホース50に通してもよい。
また、上記の説明において、第一回転エルボ96の回転軸が第一軸AX1と同じであり、第二回転エルボ27の回転軸が第二軸AX2と同じである構成を例に挙げたが、第一回転エルボ96の回転軸が第一軸AX1と同じであれば、第二回転エルボ27の回転軸は第二軸AX2と同じでなくてもよく、第二回転エルボ27の回転軸が第二軸AX2と同じであれば、第一回転エルボ96の回転軸は第一軸AX1と同じでなくてもよい。
図5は、実施の形態1の変形例に係る水平多関節ロボットの側面図である。ベース9は、床面80に固定される構造であってもよい。実施の形態1に変形例に係る水平多関節ロボット10は、第一アーム1の下方に空間が生まれるため、第一アーム1の下方にコンベヤを通すなどして、スペースを有効活用することができる。
実施の形態2.
図6は、実施の形態2に係る水平多関節ロボットの斜視図である。図7は、実施の形態2に係る水平多関節ロボットの上面図である。図8は、実施の形態2に係る水平多関節ロボットの断面図である。実施の形態2に係る水平多関節ロボット10は、ベース筐体9cの上面9bの第一ベアリング95が設置される開口94及び第二アーム筐体2cの上面2bの第二ベアリング26が設置される開口25が長穴となっている。また、第一回転エルボ96の端部と第二回転エルボ27の端部とは、可撓性を持たないパイプ51で接続されている。
図6は、実施の形態2に係る水平多関節ロボットの斜視図である。図7は、実施の形態2に係る水平多関節ロボットの上面図である。図8は、実施の形態2に係る水平多関節ロボットの断面図である。実施の形態2に係る水平多関節ロボット10は、ベース筐体9cの上面9bの第一ベアリング95が設置される開口94及び第二アーム筐体2cの上面2bの第二ベアリング26が設置される開口25が長穴となっている。また、第一回転エルボ96の端部と第二回転エルボ27の端部とは、可撓性を持たないパイプ51で接続されている。
ベース9の開口94の長穴は、第一軸AX1の可動範囲の中心方向に延びている。第二アーム2の開口25の長穴は、第二アーム筐体2cの長手方向に沿って伸びている。
実施の形態2に係る水平多関節ロボット10は、第一ベアリング95が設置される開口94及び第二ベアリング26が設置される開口25が長穴であるため、第一ベアリング95の取り付け位置及び第二ベアリング26の取り付け位置を水平方向に動かすことにより、第一ベアリング95と第二ベアリング26との距離が調整可能である。したがって、実施の形態2に係る水平多関節ロボット10は、第一軸AX1と第二軸AX2との距離を機内ケーブル61を通すパイプ51の長さに一致させることができ、パイプ51を撓ませる必要がない。実施の形態2に係る水平多関節ロボット10は、可撓性を有するフレキシブルホースを用いる必要がないため、製造コストを低減することができる。
上記の説明において、ベース筐体9cの上面9bの開口94及び第二アーム2の上面2bの開口25が長穴である構成を例に挙げたが、開口94が長穴であれば、開口25は長穴でなくてもよく、開口25が長穴であれば、開口94は長穴でなくてもよい。
以上の実施の形態に示した構成は、内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
1 第一アーム、1b,2b,9b 上面、1c 第一アーム筐体、2 第二アーム、2a,9a 下面、2c 第二アーム筐体、9 ベース、9c ベース筐体、10 水平多関節ロボット、11,13 減速機、12,14 ベアリング、21,23,93 シャフト、22 第二軸用モータ、25,94 開口、26 第二ベアリング、27 第二回転エルボ、29 第二クランプ、30 ロボットコントローラ、40 機器間ケーブル、50 フレキシブルホース、51 パイプ、61 機内ケーブル、62 ケーブル、70 壁面、80 床面、91 ケーブルエントリー、92 第一軸用モータ、95 第一ベアリング、96 第一回転エルボ、97 基板、98a,98b コネクタ、99 第一クランプ。
Claims (4)
- 第一アームと、
前記第一アームを回転可能に支持するベースと、
回動可能に前記第一アームに支持された第二アームと、
前記ベースと前記第二アームとを接続する配線及び配管の少なくとも一方を収容するホースとを備え、
前記ベースは、
ベース筐体と、
前記ベース筐体に収容され、前記ベース筐体の第一面からシャフトが前記ベース筐体の外へ突出した第一軸用モータと、
前記ベース筐体のうち前記第一面に対向する第二面に設置され、端部が前記第一軸用モータのシャフトの回転軸に垂直な方向に向けられた第一回転エルボとを備え、
前記第二アームは、
第二アーム筐体と、
前記第二アーム筐体に収容され、前記第二アーム筐体の第三面からシャフトが前記第二アーム筐体の外へ突出した第二軸用モータと、
前記第二アーム筐体のうち前記第三面に対向する第四面に設置され、端部が前記第二軸用モータのシャフトの回転軸に垂直な方向に向けられた第二回転エルボとを備え、
前記ホースは、前記第一回転エルボの端部と前記第二回転エルボの端部とを接続しており、
前記第二面及び前記第四面は、同一平面に位置し、
前記第一回転エルボ及び前記第二回転エルボの少なくとも一方の回転軸は、前記第一軸用モータのシャフトの回転軸又は前記第二軸用モータのシャフトの回転軸と同じであることを特徴とする水平多関節ロボット。 - 前記ホースは、可撓性を有するフレキシブルホースであり、
前記フレキシブルホースの長さは、前記第一軸と前記第二軸との距離よりも長いことを特徴とする請求項1に記載の水平多関節ロボット。 - 前記第一回転エルボと前記第二回転エルボとの間での前記フレキシブルホースの撓みが円弧状であるとき、前記フレキシブルホースの弧の矢高は、前記ベースの半幅以下であることを特徴とする請求項2に記載の水平多関節ロボット。
- 前記第一回転エルボは、前記第二面に形成された開口に設置された第一ベアリングを介して前記第二面に設置されており、
前記第二回転エルボは、前記第四面に形成された開口に設置された第二ベアリングを介して前記第四面に設置されており、
前記第二面の開口及び前記第四面の開口の少なくとも一方は長穴であり、前記第一ベアリングと前記第二ベアリングとの距離が調整可能であることを特徴とする請求項1に記載の水平多関節ロボット。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021500750A JP6887581B1 (ja) | 2020-06-11 | 2020-06-11 | 水平多関節ロボット |
PCT/JP2020/023053 WO2021250856A1 (ja) | 2020-06-11 | 2020-06-11 | 水平多関節ロボット |
CN202080101756.9A CN115697651B (zh) | 2020-06-11 | 2020-06-11 | 水平多关节机器人 |
DE112020007042.5T DE112020007042T5 (de) | 2020-06-11 | 2020-06-11 | Horizontaler Gelenkroboter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/023053 WO2021250856A1 (ja) | 2020-06-11 | 2020-06-11 | 水平多関節ロボット |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021250856A1 true WO2021250856A1 (ja) | 2021-12-16 |
Family
ID=76310240
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/023053 WO2021250856A1 (ja) | 2020-06-11 | 2020-06-11 | 水平多関節ロボット |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6887581B1 (ja) |
CN (1) | CN115697651B (ja) |
DE (1) | DE112020007042T5 (ja) |
WO (1) | WO2021250856A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10264074A (ja) * | 1997-03-22 | 1998-10-06 | Toyoda Mach Works Ltd | ロボットの配線構造 |
JP2012000740A (ja) * | 2010-06-21 | 2012-01-05 | Mitsubishi Electric Corp | スカラロボット |
JP2013252611A (ja) * | 2013-09-24 | 2013-12-19 | Seiko Epson Corp | アーム及びロボット |
JP2016198881A (ja) * | 2016-09-08 | 2016-12-01 | セイコーエプソン株式会社 | 水平多関節ロボット |
JP2017213670A (ja) * | 2016-05-26 | 2017-12-07 | セイコーエプソン株式会社 | 水平多関節型ロボット |
JP2018051682A (ja) * | 2016-09-28 | 2018-04-05 | 株式会社デンソーウェーブ | 水平多関節型ロボット |
JP2018130796A (ja) * | 2017-02-15 | 2018-08-23 | ファナック株式会社 | 水平多関節型ロボット |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0630852B2 (ja) * | 1985-09-10 | 1994-04-27 | 株式会社三協精機製作所 | 多関節ロボット |
JPH08112797A (ja) * | 1994-10-18 | 1996-05-07 | Toshiba Corp | 産業用ロボット |
JP5817142B2 (ja) * | 2011-02-22 | 2015-11-18 | セイコーエプソン株式会社 | 水平多関節ロボット |
CN107972020A (zh) * | 2017-11-30 | 2018-05-01 | 珠海格力节能环保制冷技术研究中心有限公司 | 水平多关节工业机器人 |
-
2020
- 2020-06-11 WO PCT/JP2020/023053 patent/WO2021250856A1/ja active Application Filing
- 2020-06-11 CN CN202080101756.9A patent/CN115697651B/zh active Active
- 2020-06-11 DE DE112020007042.5T patent/DE112020007042T5/de active Pending
- 2020-06-11 JP JP2021500750A patent/JP6887581B1/ja active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10264074A (ja) * | 1997-03-22 | 1998-10-06 | Toyoda Mach Works Ltd | ロボットの配線構造 |
JP2012000740A (ja) * | 2010-06-21 | 2012-01-05 | Mitsubishi Electric Corp | スカラロボット |
JP2013252611A (ja) * | 2013-09-24 | 2013-12-19 | Seiko Epson Corp | アーム及びロボット |
JP2017213670A (ja) * | 2016-05-26 | 2017-12-07 | セイコーエプソン株式会社 | 水平多関節型ロボット |
JP2016198881A (ja) * | 2016-09-08 | 2016-12-01 | セイコーエプソン株式会社 | 水平多関節ロボット |
JP2018051682A (ja) * | 2016-09-28 | 2018-04-05 | 株式会社デンソーウェーブ | 水平多関節型ロボット |
JP2018130796A (ja) * | 2017-02-15 | 2018-08-23 | ファナック株式会社 | 水平多関節型ロボット |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021250856A1 (ja) | 2021-12-16 |
DE112020007042T5 (de) | 2023-05-25 |
JP6887581B1 (ja) | 2021-06-16 |
CN115697651A (zh) | 2023-02-03 |
CN115697651B (zh) | 2023-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4520268B2 (ja) | ロボット | |
US6250174B1 (en) | Robot construction | |
US7513174B2 (en) | Industrial robot | |
US7253578B2 (en) | Pivoting apparatus of industrial robot | |
CN100374258C (zh) | 工业用机器人的管线处理构造 | |
US8863606B2 (en) | Robot wrist structure and robot | |
KR100638078B1 (ko) | 관절부의 케이블 가이드 | |
US8347753B2 (en) | Industrial robot with tubular member for a cable harness | |
JP3987845B2 (ja) | 産業用ロボットの線条体処理構造 | |
CN104245249B (zh) | 机器人关节构造 | |
JP6277850B2 (ja) | 天吊りロボット | |
JP6670455B2 (ja) | ロボット及びロボットシステム | |
CN107538477B (zh) | 机器人、控制装置及机器人系统 | |
JP6229779B2 (ja) | 水平多関節型ロボット | |
CN104440937A (zh) | 工业机器人 | |
JP5026292B2 (ja) | 設備機器 | |
WO2021250856A1 (ja) | 水平多関節ロボット | |
JP2006525130A (ja) | 産業用ロボット | |
JP2007237342A (ja) | 水平多関節ロボット | |
JP2012000740A (ja) | スカラロボット | |
JP2017131969A (ja) | ロボット | |
JP4270041B2 (ja) | ロボットの手首装置とこれを備えたロボット | |
JP2013006243A (ja) | 水平多関節ロボット | |
JP2003275987A (ja) | スカラ型ロボット | |
JP7069757B2 (ja) | 水平多関節ロボット |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2021500750 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20940017 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20940017 Country of ref document: EP Kind code of ref document: A1 |