WO2021232668A1 - 一种生物可降解发泡鞋中底材料及其制备方法 - Google Patents

一种生物可降解发泡鞋中底材料及其制备方法 Download PDF

Info

Publication number
WO2021232668A1
WO2021232668A1 PCT/CN2020/121766 CN2020121766W WO2021232668A1 WO 2021232668 A1 WO2021232668 A1 WO 2021232668A1 CN 2020121766 W CN2020121766 W CN 2020121766W WO 2021232668 A1 WO2021232668 A1 WO 2021232668A1
Authority
WO
WIPO (PCT)
Prior art keywords
biodegradable
weight
parts
shoe midsole
present
Prior art date
Application number
PCT/CN2020/121766
Other languages
English (en)
French (fr)
Inventor
熊祖江
王有承
刘超
刘艺龙
Original Assignee
安踏(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安踏(中国)有限公司 filed Critical 安踏(中国)有限公司
Publication of WO2021232668A1 publication Critical patent/WO2021232668A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/02Soles; Sole-and-heel integral units characterised by the material
    • A43B13/04Plastics, rubber or vulcanised fibre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D35/00Producing footwear
    • B29D35/12Producing parts thereof, e.g. soles, heels, uppers, by a moulding technique
    • B29D35/122Soles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0023Use of organic additives containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • C08J9/0071Nanosized fillers, i.e. having at least one dimension below 100 nanometers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/02Cellulose; Modified cellulose
    • C08J2401/04Oxycellulose; Hydrocellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2433/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones

Definitions

  • the invention relates to the technical field of footwear manufacturing, and more specifically, to a biodegradable foamed shoe midsole material and a preparation method thereof.
  • common shoe midsole materials mainly include ethylene vinyl acetate (EVA), thermoplastic polyurethane (TPU), cast polyurethane (PU), and other thermoplastic elastomers (such as polyolefin elastomer POE, olefin block copolymer OBC, benzene Ethylene-butadiene-styrene block copolymer (SBS, etc.) and rubber and other materials.
  • EVA ethylene vinyl acetate
  • TPU thermoplastic polyurethane
  • PU cast polyurethane
  • other thermoplastic elastomers such as polyolefin elastomer POE, olefin block copolymer OBC, benzene Ethylene-butadiene-styrene block copolymer (SBS, etc.
  • SBS benzene Ethylene-butadiene-styrene block copolymer
  • the Chinese patent with publication number CN104788737A discloses a biodegradable sole material, including modified starch, EVA, glass fiber, biodegradable resin, biomass-based 1,4-butane diisocyanate, nano-filler, crosslinking agent, The foaming agent and stabilizer components are used to prepare foamed shoe soles through a chemical foaming process.
  • the Chinese patent with publication number CN107200911A discloses an ultra-light and high-elastic environmentally friendly shoe sole and its preparation method.
  • Its formula includes EVA, OBC, polyurethane rubber (PU), sarin resin, stearic acid, titanium dioxide, antioxidant,
  • the crosslinking agent and other components are blended by an internal mixer and then pelletized, injected into a shoe mold to obtain a pre-vulcanized sole, and the sole is put into a foaming device, and a foamed midsole is obtained by a pressure reduction method.
  • the above-mentioned patents still contain materials that cannot be degraded in a short time, such as EVA, OBC, and PU, and have undergone cross-linking treatment, so they are not truly biodegradable materials.
  • the Chinese patent with publication number CN102229707A discloses biodegradable polyadipate-butylene terephthalate microporous foamed particles with high expansion ratio and a preparation method thereof.
  • the process puts PBAT particles in a molded physical gas
  • the high-pressure mold of the foaming device is filled with carbon dioxide at a pressure of 8-20 MPa, and the pressure is maintained at a certain temperature and constant temperature for 5-20 minutes, and then the pressure is relieved at a speed of 5-30 MPa/s and the sample is cooled within 30 seconds to obtain raw materials.
  • the volume expansion is 10-30 times, the cell diameter is less than 100 ⁇ m, the cells are uniformly distributed, and the high expansion ratio microporous expanded particles without skin layer structure can be used in disposable catering and packaging industries.
  • biodegradable shoe sole materials also need to increase the melt strength by chain extension or adding a crosslinking agent to achieve a high volume expansion rate.
  • a crosslinking agent to achieve a high volume expansion rate.
  • the material is cross-linked, its biodegradable properties will be reduced; at the same time, the material is expanded particles, and the midsole of the shoe needs to be thermally bonded by water vapor, which requires a long process and will cause thermal degradation of the material.
  • the purpose of the present invention is to provide a biodegradable foam shoe midsole material and a preparation method thereof.
  • the biodegradable foam shoe midsole material provided by the present invention has ultra-light density and high resilience. Characteristics and good mechanical properties, fatigue resistance, and biodegradable properties, will not pollute the environment after being discarded.
  • the invention provides a biodegradable foam shoe midsole material, which is prepared from a biodegradable resin material; the biodegradable resin material includes the following components:
  • Color masterbatch 0.5 parts by weight to 5 parts by weight
  • nucleating agent 0.5 parts by weight to 10 parts by weight of nucleating agent
  • Antioxidant 0.2 part by weight to 1 part by weight
  • the biodegradable resin is selected from polybutylene succinate, polyadipate/butylene terephthalate, polybutylene succinate-co-butylene terephthalate Esters, polybutylene adipate succinate, poly-3-hydroxyacetate, polyhydroxyvalerate, 3-hydroxybutyrate-3-hydroxyvalerate copolymer, polycaprolactone and polylactic acid One or more of.
  • the masterbatch is a biodegradable masterbatch.
  • the nucleating agent is selected from one or more of montmorillonite, titanium dioxide, calcium carbonate, white carbon black, microcrystalline cellulose, carbon nanotubes and graphene.
  • the antioxidant is a hindered phenol antioxidant.
  • the cell stabilizer is an acrylic material.
  • the present invention also provides a method for preparing the biodegradable foamed shoe midsole material according to the above technical solution, which includes the following steps:
  • step b) The biodegradable material particles obtained in step a) are preheated and then loaded into the mold and closed, placed in a closed container, and gas is introduced into the container, and the temperature is raised, so that the gas reaching the supercritical state is effective for the biodegradable material.
  • the particles of the degradable material are impregnated and saturated, and finally the pressure is quickly released and the mold is opened to obtain the biodegradable foamed shoe midsole material.
  • the temperature of the melt mixing in step a) is 130° C. to 200° C., and the time is 1 min to 10 min.
  • the saturation temperature of the immersion in step b) is 80° C. to 170° C.
  • the pressure is 5 MPa to 50 MPa
  • the time is 3 min to 40 min.
  • the pressure relief rate of the rapid pressure relief in step b) is 5MPa/s-30MPa/s.
  • the present invention provides a biodegradable foam shoe midsole material, which is prepared from a biodegradable resin material; the biodegradable resin material includes the following components: 100 parts by weight of biodegradable resin; color masterbatch 0.5 Parts by weight to 5 parts by weight; 0.5 parts by weight to 10 parts by weight of nucleating agent; 0.2 parts by weight to 1 part by weight of antioxidant; 0 to 1.5 parts by weight of stearic acid; 0 to 1 part by weight of cell stabilizer.
  • the biodegradable foam shoe midsole material provided by the present invention adopts a specific content of specific components to achieve better interaction; on the one hand, the product has ultra-light density and higher resilience characteristics.
  • the preparation method provided by the present invention has simple process, mild conditions, short flow and high efficiency, and is suitable for large-scale industrial production.
  • Fig. 1 is a side view photo of the biodegradable foam shoe midsole material provided in Example 1 of the present invention
  • Example 2 is a side view photograph of the biodegradable material particles and the biodegradable foamed shoe midsole material obtained by foaming them in Example 4 of the present invention.
  • the invention provides a biodegradable foam shoe midsole material, which is prepared from a biodegradable resin material; the biodegradable resin material includes the following components:
  • Color masterbatch 0.5 parts by weight to 5 parts by weight
  • nucleating agent 0.5 parts by weight to 10 parts by weight of nucleating agent
  • Antioxidant 0.2 part by weight to 1 part by weight
  • the biodegradable resin is preferably selected from polybutylene succinate (PBS), polyadipate/butylene terephthalate (PBAT), polybutylene succinate- Co-butylene terephthalate (PBST), polybutylene succinate adipate (PBSA), poly-3-hydroxyacetate (PHB), polyhydroxyvalerate (PHV), 3- One or more of hydroxybutyrate-3-hydroxyvalerate copolymer (PHBV), polycaprolactone (PCL) and polylactic acid (PLA), more preferably polybutylene succinate ( One or both of PBS), polyadipate/butylene terephthalate (PBAT), and 3-hydroxybutyrate-3-hydroxyvalerate copolymer (PHBV).
  • PBS polybutylene succinate
  • PBAT polyadipate/butylene terephthalate
  • PBST polybutylene succinate- Co-butylene terephthalate
  • PBSA polybutylene succinate adipate
  • the present invention has no special limitation on the source of the biodegradable resin, and the above-mentioned polybutylene succinate (PBS) and polybutylene succinate (PBAT), which are well known to those skilled in the art, are used.
  • PBS polybutylene succinate
  • PBAT polybutylene succinate
  • PBSA polybutylene succinate adipate
  • PHB poly-3-hydroxyacetate
  • PV polyhydroxy Valerate
  • PHBV 3-hydroxybutyrate-3-hydroxyvalerate copolymer
  • PCL polycaprolactone
  • PLA polylactic acid
  • the present invention uses the above-mentioned biodegradable resin as the main raw material.
  • the hardness of the biodegradable resin is preferably Shore 50A to Shore 50D, and the melt index is preferably 1g/10min to 15g/10min (190°C/2.16kg).
  • the card softening temperature is preferably 90°C to 120°C; the biodegradable resin has higher mechanical properties, better elasticity and excellent fatigue resistance, and can be degraded by enzymes of natural microorganisms after being used and discarded. The degradation products can be absorbed and metabolized by microorganisms as a carbon source.
  • the biodegradable resin material includes 100 parts by weight of biodegradable resin.
  • the masterbatch is preferably a biodegradable masterbatch.
  • the type and source of the color masterbatch Toners of various colors well known to those skilled in the art are blended with the above-mentioned biodegradable resin.
  • the biodegradable resin material includes 0.5 parts by weight to 5 parts by weight of masterbatch, preferably 1 part by weight to 4 parts by weight.
  • the nucleating agent is preferably selected from one or more of montmorillonite, titanium dioxide, calcium carbonate, white carbon black, microcrystalline cellulose, carbon nanotubes and graphene, more preferably titanium dioxide and / Or microcrystalline cellulose.
  • the present invention has no special restrictions on the source of the nucleating agent, and the commercially available products of montmorillonite, titanium dioxide, calcium carbonate, white carbon black, microcrystalline cellulose, carbon nanotubes and graphene that are well known to those skilled in the art are used. That's it.
  • the nucleating agent is mainly used as a filler, and being dispersed in the matrix is beneficial to nucleation and crystallization and improving the strength of the resin.
  • the nucleating agent is preferably a nano-nucleating agent.
  • the energy barrier between the nano-nucleating agent particles and the polymer melt interface is relatively low, and cell nucleation is prone to occur around the particles, which promotes the nucleation process. Thereby, the cell size is greatly reduced and the cell density is increased; the size of the nano-nucleating agent is preferably less than 500nm, more preferably less than 200nm.
  • the biodegradable resin material includes 0.5 parts by weight to 10 parts by weight of the nucleating agent, preferably 1 parts by weight to 6 parts by weight, more preferably 5 parts by weight.
  • the antioxidant is preferably a hindered phenolic antioxidant, more preferably AT-10 and/or AT-3114; in a preferred embodiment of the present invention, the antioxidant is AT-10 .
  • the present invention does not have special restrictions on the source of the antioxidant, as long as the commercially available products of the hindered phenolic antioxidant well known to those skilled in the art can be used.
  • the biodegradable resin material includes 0.2 parts by weight to 1 part by weight of antioxidants, preferably 0.2 parts by weight to 0.8 parts by weight, more preferably 0.3 parts by weight.
  • the present invention has no special restrictions on the stearic acid, as long as the commercially available products are well known to those skilled in the art.
  • the biodegradable resin material includes 0 parts by weight to 1.5 parts by weight of stearic acid, preferably 0.4 parts by weight to 0.7 parts by weight, more preferably 0.5 parts by weight.
  • the cell stabilizer is preferably an acrylic substance, more preferably polyisobutyl methacrylate and/or polybutyl methacrylate; in a preferred embodiment of the present invention, the cell The stabilizer is polyisobutyl methacrylate.
  • the biodegradable resin material includes 0 parts by weight to 1 part by weight of cell stabilizer, preferably 0.1 parts by weight to 0.7 parts by weight, more preferably 0.3 parts by weight to 0.5 parts by weight.
  • the addition of the above-mentioned antioxidant, stearic acid and cell stabilizer is beneficial to molding processing and improving product performance; among them, the addition of antioxidant and stearic acid can improve the processing stability of the composite material;
  • the addition of the cell stabilizer can inhibit the shrinkage of the biodegradable resin foam material and increase the expansion ratio of the material, thereby ensuring that the manufactured shoe midsole material has better compression and permanent deformation resistance.
  • the biodegradable foamed shoe midsole material provided by the present invention adopts the above-mentioned specific content of specific components, neither adding a crosslinking agent nor pre-crosslinking the resin, and achieving better interaction;
  • the product has ultra-light density and high resilience characteristics, on the other hand, it has good mechanical properties and fatigue resistance, which can greatly reduce the weight of sports shoes while giving the wearer better wearing and running.
  • biodegradable characteristics after being used and discarded, it can be degraded by the enzymes of natural microorganisms, and the degradation products can be absorbed and metabolized by microorganisms as a carbon source, so it will not pollute the environment after being discarded.
  • the present invention also provides a method for preparing the biodegradable foamed shoe midsole material according to the above technical solution, which includes the following steps:
  • step b) The biodegradable material particles obtained in step a) are preheated and then loaded into the mold and closed, placed in a closed container, and gas is introduced into the container, and the temperature is raised, so that the gas reaching the supercritical state is effective for the biodegradable material.
  • the particles of the degradable material are impregnated and saturated, and finally the pressure is quickly released and the mold is opened to obtain the biodegradable foamed shoe midsole material.
  • the components in the biodegradable resin material are premixed, then melted and mixed, extruded and then pelletized to obtain biodegradable material particles.
  • the biodegradable resin material is the same as that in the above technical solution, so it will not be repeated here.
  • the melt-kneading and extrusion device is preferably an extruder, and the present invention has no special limitation on this.
  • the temperature of the melt-kneading is preferably from 130°C to 200°C, more preferably from 145°C to 180°C, and even more preferably from 150°C to 175°C; the time of the melt-kneading is preferably from 1 min to 10 minutes, more preferably 3 minutes to 5 minutes.
  • the method of pelletizing is preferably underwater pelletizing; the temperature of the water in the underwater pelletizing process is preferably 20°C to 30°C, more preferably 25°C.
  • the obtained biodegradable material particles are preheated and then loaded into a mold and closed, placed in a closed container, and gas is introduced into the container to increase the temperature to reach a supercritical state The gas immerses and saturates the biodegradable material particles, and finally quickly releases the pressure and opens the mold to obtain the biodegradable foamed shoe midsole material.
  • the preheating temperature is preferably 60°C to 120°C, more preferably 80°C to 100°C.
  • the mold is a midsole mold for preparing shoe midsole materials, and the present invention has no special limitation on this.
  • the present invention preferably further includes:
  • the mold is preheated to a temperature at which the biodegradable material particles are preheated.
  • the airtight container is preferably an autoclave; the present invention has no special limitation on this.
  • the gas is preferably carbon dioxide gas or nitrogen, more preferably carbon dioxide gas.
  • the impregnation saturation refers to immersion in a high-pressure fluid atmosphere until the high-pressure fluid and the blank reach a solution equilibrium.
  • the immersion saturation temperature is preferably 80°C to 170°C, more preferably 110°C to 160°C;
  • the immersion saturation pressure is preferably 5MPa-50MPa, more preferably 10MPa-40MPa, more preferably It is 15 MPa;
  • the saturated time of the immersion is preferably 3 min to 40 min, more preferably 5 min to 30 min.
  • the pressure relief rate of the rapid pressure relief is preferably 5 MPa/s to 30 MPa/s, more preferably 8 MPa/s to 25 MPa/s, and even more preferably 15 MPa/s.
  • the supercritical fluid kettle pressure method is used to immerse the biodegradable material particles in a high-pressure fluid atmosphere until the high-pressure fluid and the resin reach a dissolution balance, and the resin is rapidly expanded to a predetermined density through rapid pressure relief, so as to obtain a 3D Structured ultra-light high-elastic foam midsole.
  • supercritical fluid autoclave foaming is achieved by injecting carbon dioxide or nitrogen into the autoclave containing elastomeric composite materials, reaching a certain temperature and pressure to reach a supercritical state, and maintaining this state for a certain period of time. Supercritical fluid penetrates into the interior of the elastomer composite raw material to form a polymer/gas homogeneous system.
  • the equilibrium state of the polymer/gas homogeneous system inside the material is destroyed, and bubble nuclei are formed inside the material and grow and shape.
  • increasing the gas pressure can improve the solubility of the gas in the polymer, and then the number of bubble nucleation increases, and the cell density increases; the pressure drop increases, the faster the bubble nucleation rate, and the number of bubble nuclei The more; the gas concentration gradient inside and outside the bubble or the pressure difference between the inside and outside is the driving force for the growth of the bubble.
  • the pressure relief rate directly reflects the acceleration of the cell growth. Increasing the pressure relief rate is beneficial to the decrease of the cell diameter and the bubble growth. The increase in pore density; above the glass transition temperature, the lower the saturation temperature, the higher the solubility of carbon dioxide in the polymer, the higher the nucleation rate and the greater the nucleation density.
  • the present invention adopts the above-mentioned preparation method to prepare the biodegradable foamed shoe midsole material by subjecting the biodegradable material particles to the supercritical fluid foaming molding process (prepared by rapid pressure relief foaming after being impregnated with supercritical fluid).
  • the foamed shoe midsole material is a polymer foam material with a 3D structure, and its density is lower, less than 0.18g/cm 3 , which can make the shoe lighter, its rebound rate is more than 45%, and its resilience is high.
  • the preparation method has simple process, mild conditions, short production process, high efficiency, and is green and environmentally friendly. It can achieve personalized customization of shoe midsole materials and is suitable for large-scale industries. Production.
  • the present invention provides a biodegradable foam shoe midsole material, which is prepared from a biodegradable resin material; the biodegradable resin material includes the following components: 100 parts by weight of biodegradable resin; color masterbatch 0.5 Parts by weight to 5 parts by weight; 0.5 parts by weight to 10 parts by weight of nucleating agent; 0.2 parts by weight to 1 part by weight of antioxidant; 0 to 1.5 parts by weight of stearic acid; 0 to 1 part by weight of cell stabilizer.
  • the biodegradable foam shoe midsole material provided by the present invention adopts a specific content of specific components to achieve better interaction; on the one hand, the product has ultra-light density and higher resilience characteristics.
  • the preparation method provided by the present invention has simple process, mild conditions, short flow and high efficiency, and is suitable for large-scale industrial production.
  • the polyadipate/butylene terephthalate (PBAT) used in the following examples of the present invention has a hardness of 32D Shore, a melt flow rate of 3-5g/10min (190°C/2.16kg), and Vicat softening
  • the temperature is ⁇ 90°C, the elongation at break ⁇ 500%
  • the 3-hydroxybutyrate-3-hydroxyvalerate copolymer (PHBV) used has a hardness of Shore 50D and a melt flow rate of 3g/10min ( 190°C/2.16kg), the Vicat softening temperature is ⁇ 90°C, and the elongation at break ⁇ 400%
  • the used polybutylene succinate (PBS) has a hardness of 36D Shore and a melt flow rate ⁇ 5g /10min (190°C/2.16kg), Vicat softening temperature is ⁇ 80°C, elongation at break ⁇ 500%
  • PBAT Polyadipate/butylene terephthalate
  • Antioxidant 0.3 parts by weight
  • Stearic acid 0.5 parts by weight
  • the color masterbatch is a blend of white toner and PBAT; the antioxidant is AT-10; the nucleating agent is nano titanium dioxide; and the cell stabilizer is polyisobutyl methacrylate.
  • biodegradable resin material weigh the components of the above-mentioned biodegradable resin material as raw materials in parts by weight; pre-mix the weighed raw materials and then melt and knead them at 160°C for 3 minutes in an extruder. After extrusion, water at 25°C Cut pellets to obtain biodegradable material particles; then preheat the obtained biodegradable material particles to 80°C, pour them into a mid-bottom mold that is also preheated to 80°C, close the molds, and place them in a closed container.
  • Antioxidant 0.3 parts by weight
  • Stearic acid 0.5 parts by weight
  • the color masterbatch is a blend of white toner and PHBV; the antioxidant is AT-10; the nucleating agent is nano titanium dioxide; the cell stabilizer is polyisobutyl methacrylate.
  • biodegradable resin material weigh each component of the above-mentioned biodegradable resin material as raw materials in parts by weight; pre-mix the weighed raw materials and melt and knead them at 175°C for 3 minutes through an extruder. After extrusion, water at 25°C Cut the pellets to obtain biodegradable material particles; then preheat the obtained biodegradable material particles to 100°C, pour them into a mid-bottom mold that is also preheated to 100°C, close the mold, and place it in a closed container.
  • Polybutylene succinate (PBS) 100 parts by weight
  • Antioxidant 0.3 parts by weight
  • Stearic acid 0.5 parts by weight
  • the color masterbatch is a blend of white toner and PBS; the antioxidant is AT-10; the nucleating agent is nano titanium dioxide; and the cell stabilizer is polyisobutyl methacrylate.
  • biodegradable resin material weigh each component of the above-mentioned biodegradable resin material as raw materials in parts by weight; pre-mix the weighed raw materials and then melt and knead them in an extruder at 150°C for 3 minutes, and then water at 25°C after extrusion. Cut the pellets to obtain biodegradable material particles; then preheat the obtained biodegradable material particles to 80°C, pour it into a mid-bottom mold that is also preheated to 80°C, close the mold, and place it in a closed container.
  • PBAT Polyadipate/butylene terephthalate
  • Antioxidant 0.3 parts by weight
  • Stearic acid 0.5 parts by weight
  • the color masterbatch is a blend of red toner and PBAT; the antioxidant is AT-10; the nucleating agent is microcrystalline cellulose; and the cell stabilizer is polyisobutyl methacrylate.
  • biodegradable resin material weigh the components of the above-mentioned biodegradable resin material as raw materials in parts by weight; pre-mix the weighed raw materials and then melt and knead them at 160°C for 3 minutes in an extruder. After extrusion, water at 25°C Cut pellets to obtain biodegradable material particles (see Figure 2); then preheat the obtained biodegradable material particles to 80°C and pour them into a midsole mold that is also preheated to 80°C. After closing the mold, Put it in a closed container, and pass carbon dioxide gas into the container.
  • the temperature is raised to 120°C (pressure 15MPa), so that the gas reaching the supercritical state will immerse and saturate the biodegradable material particles for 25 minutes, and then quickly release the pressure (
  • the pressure relief rate is 15MPa/s) and the mold is opened to obtain the biodegradable foamed shoe midsole material; see Figure 2.
  • PBAT Polyadipate/butylene terephthalate
  • PBS polybutylene succinate
  • Antioxidant 0.3 parts by weight
  • Stearic acid 0.5 parts by weight
  • the color masterbatch is a blend of white toner and PBAT; the antioxidant is AT-10; the nucleating agent is nano titanium dioxide; and the cell stabilizer is polyisobutyl methacrylate.
  • biodegradable resin material weigh the components of the above-mentioned biodegradable resin material as raw materials in parts by weight; pre-mix the weighed raw materials and then melt and knead them at 160°C for 3 minutes in an extruder. After extrusion, water at 25°C Cut pellets to obtain biodegradable material particles; then preheat the obtained biodegradable material particles to 80°C, pour them into a mid-bottom mold that is also preheated to 80°C, close the molds, and place them in a closed container.
  • the biodegradable foamed shoe midsole materials provided by Examples 1 to 5 of the present invention have ultra-light density and high resilience rate, and at the same time have good mechanical properties and fatigue resistance characteristics, thereby greatly improving While reducing the weight of sports shoes, it can give the wearer a better wearing and running experience; in addition, comparing Example 1 and Example 4, it can be seen that increasing the content of masterbatch has a slight impact on the physical properties of the midsole, and the rebound rate , The compression set rate and tensile strength have decreased; comparing Example 1 and Example 5, it can be seen that blending different resins can obtain materials with lower density, and Example 5 has higher density and compression set changes;
  • the present invention specifically selects the composition of the raw materials, and all raw materials used are biodegradable materials (supercritical fluid autoclave foaming does not affect its biodegradable characteristics), and no other effects are added.
  • the materials with degradable characteristics make the prepared products have biodegradable characteristics, and can be degraded by the enzymes of natural microorganisms after being used and discarded.
  • the degradation products can be absorbed and metabolized by microorganisms as a carbon source, so they will not pollute the environment after being discarded.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Emergency Medicine (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本发明提供了一种生物可降解发泡鞋中底材料,由生物可降解树脂物料制备而成;所述生物可降解树脂物料包括以下组分:生物可降解树脂100重量份;色母粒0.5重量份~5重量份;成核剂0.5重量份~10重量份;抗氧剂0.2重量份~1重量份;硬脂酸0~1.5重量份;泡孔稳定剂0~1重量份。与现有技术相比,本发明提供的生物可降解发泡鞋中底材料采用特定含量的特定组分,实现较好的相互作用;产品既具有超轻的密度和较高的回弹特性,又具有良好的力学性能和耐疲劳特性,从而在大大降低运动鞋重量的同时,能给予穿着者较佳的穿着和跑步体验,并且具有生物可降解特性,在用过废弃后能被自然界微生物的酶降解,降解产物能被微生物作为碳源吸收代谢,因此丢弃后不会污染环境。

Description

一种生物可降解发泡鞋中底材料及其制备方法
本申请要求于2020年05月20日提交中国专利局、申请号为202010429599.6、发明名称为“一种生物可降解发泡鞋中底材料及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及鞋品制造技术领域,更具体地说,是涉及一种生物可降解发泡鞋中底材料及其制备方法。
背景技术
随着石油资源的日益枯竭和地球环境的日趋恶化,人们对于环保技术和材料的关注度也逐渐提高。鞋子作为人们生活中的日常必需品,有着巨大的需求量。近年来,全球鞋子产量已超过了200亿双,仅中国每年就生产100多亿双鞋。目前常见的鞋中底材料主要包括乙烯醋酸乙烯酯(EVA)、热塑性聚氨酯(TPU)、浇筑聚氨酯(PU)、其他的热塑性弹性体(如聚烯烃弹性体POE、烯烃嵌段共聚物OBC、苯乙烯-丁二烯-苯乙烯嵌段共聚物SBS等)和橡胶等材质。然而,大部分的聚合物材料都来源于石油基,不仅消耗了大量的有限的石化资源,而且在自然界中短时间内无法分解,被丢弃后成为了“白色垃圾”或者被焚烧造成了空气污染,对环境是个潜在的威胁。因此,开发出生物可降解的鞋材势在必行。
公开号为CN104788737A的中国专利公开了一种可生物降解鞋底材料,包括改性淀粉、EVA、玻璃纤维、生物全降解树脂、生物质基1,4-丁二异氰酸酯、纳米填料、交联剂、发泡剂和稳定剂组分,通过化学发泡工艺制备出发泡鞋底。公开号为CN107200911A的中国专利公开了一种超轻高弹环保鞋底及其制备方法,其配方包括EVA、OBC、聚氨酯橡胶(PU)、沙林树脂、硬脂酸、钛白粉、抗氧剂、交联剂等组分,经密炼机共混后造粒,注入鞋模得到预硫化鞋底,将鞋底放入发泡装置中,采用降压法得到发泡中底。但是,上述专利仍然含有EVA、OBC、PU等无法短时间降解的材料,且经过了交联处理,并不属于真正意义的生物可降解材料。
公开号为CN102229707A的中国专利公开了生物可降解的聚己二酸-对苯二甲酸-丁二醇酯高发泡倍率微孔发泡粒子及其制备方法,该工艺将PBAT粒子置于模压物理气体发泡装置的高压模具中,充入8-20MPa压力的二氧化碳,在一定温度小恒温保压5-20min,然后以5-30MPa/s速度卸压并在30s以内取样冷却,即可获得较原材料体积膨胀10-30倍、泡孔直径小于100μm、泡孔均匀分布、无皮层结构的高发泡倍率微孔发泡粒子,该粒子可用于一次性使用的餐饮和包装行业。上述的生物降解鞋底材料同样需要通过扩链或者添加交联剂来提高熔体强度,以实现高的体积膨胀率。但是,材料经交联后,其生物可降解特性就会降低;同时该材料为发泡粒子,制作成鞋中底还需要通过水蒸气热粘合,流程长,且会造成材料的热降解。
发明内容
有鉴于此,本发明的目的在于提供一种生物可降解发泡鞋中底材料及其制备方法,本发明提供的生物可降解发泡鞋中底材料具有超轻的密度、较高的回弹特性及良好的力学性能和耐疲劳特性,并且具有生物可降解特性,丢弃后不会污染环境。
本发明提供了一种生物可降解发泡鞋中底材料,由生物可降解树脂物料制备而成;所述生物可降解树脂物料包括以下组分:
生物可降解树脂100重量份;
色母粒0.5重量份~5重量份;
成核剂0.5重量份~10重量份;
抗氧剂0.2重量份~1重量份;
硬脂酸0~1.5重量份;
泡孔稳定剂0~1重量份。
优选的,所述生物可降解树脂选自聚丁二酸丁二醇酯、聚己二酸/对苯二甲酸丁二酯、聚丁二酸丁二醇-共-对苯二甲酸丁二醇酯、聚丁二酸己二酸丁二酯、聚3-羟基乙酸酯、聚羟基戊酸酯、3-羟基丁酸酯-3-羟基戊酸酯共聚物、聚己内酯和聚乳酸中的一种或多种。
优选的,所述色母粒为生物可降解色母粒。
优选的,所述成核剂选自蒙脱土、二氧化钛、碳酸钙、白炭黑、微晶纤维素、碳纳米管和石墨烯中的一种或多种。
优选的,所述抗氧剂为受阻酚类抗氧剂。
优选的,所述泡孔稳定剂为丙烯酸类物质。
本发明还提供了一种上述技术方案所述的生物可降解发泡鞋中底材料的制备方法,包括以下步骤:
a)将生物可降解树脂物料中各组分进行预混后,进行熔融混炼,挤出后再切粒,得到生物可降解物料粒子;
b)将步骤a)得到的生物可降解物料粒子预热后装入模具合模,置于密闭容器内,并向容器中通入气体,升温,使达到超临界状态的气体对所述生物可降解物料粒子进行浸渍饱和,最后快速泄压并开模,得到生物可降解发泡鞋中底材料。
优选的,步骤a)中所述熔融混炼的温度为130℃~200℃,时间为1min~10min。
优选的,步骤b)中所述浸渍饱和的温度为80℃~170℃,压力为5MPa~50MPa,时间为3min~40min。
优选的,步骤b)中所述快速泄压的泄压速率为5MPa/s~30MPa/s。
本发明提供了一种生物可降解发泡鞋中底材料,由生物可降解树脂物料制备而成;所述生物可降解树脂物料包括以下组分:生物可降解树脂100重量份;色母粒0.5重量份~5重量份;成核剂0.5重量份~10重量份;抗氧剂0.2重量份~1重量份;硬脂酸0~1.5重量份;泡孔稳定剂0~1重量份。与现有技术相比,本发明提供的生物可降解发泡鞋中底材料采用特定含量的特定组分,实现较好的相互作用;产品一方面具有超轻的密度和较高的回弹特性,另一方面具有良好的力学性能和耐疲劳特性,从而在大大降低运动鞋重量的同时,能给予穿着者较佳的穿着和跑步体验,并且具有生物可降解特性,在用过废弃后能被自然界微生物的酶降解,降解产物能被微生物作为碳源吸收代谢,因此丢弃后不会污染环境。
此外,本发明提供的制备方法工艺简单、条件温和,流程短、效率高,适合大规模工业生产。
附图说明
图1为本发明实施例1提供的生物可降解发泡鞋中底材料的侧视照片;
图2为本发明实施例4中生物可降解物料粒子及其发泡得到的生物可降解发泡鞋中底材料的侧视照片。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员经改进或润饰的所有其它实例,都属于本发明保护的范围。
本发明提供了一种生物可降解发泡鞋中底材料,由生物可降解树脂物料制备而成;所述生物可降解树脂物料包括以下组分:
生物可降解树脂100重量份;
色母粒0.5重量份~5重量份;
成核剂0.5重量份~10重量份;
抗氧剂0.2重量份~1重量份;
硬脂酸0~1.5重量份;
泡孔稳定剂0~1重量份。
在本发明中,所述生物可降解树脂优选选自聚丁二酸丁二醇酯(PBS)、聚己二酸/对苯二甲酸丁二酯(PBAT)、聚丁二酸丁二醇-共-对苯二甲酸丁二醇酯(PBST)、聚丁二酸己二酸丁二酯(PBSA)、聚3-羟基乙酸酯(PHB)、聚羟基戊酸酯(PHV)、3-羟基丁酸酯-3-羟基戊酸酯共聚物(PHBV)、聚己内酯(PCL)和聚乳酸(PLA)中的一种或多种,更优选为聚丁二酸丁二醇酯(PBS)、聚己二酸/对苯二甲酸丁二酯(PBAT)和3-羟基丁酸酯-3-羟基戊酸酯共聚物(PHBV)中的一种或两种。本发明对所述生物可降解树脂的来源没有特殊限制,采用本领域技术人员熟知的上述聚丁二酸丁二醇酯(PBS)、聚己二酸/对苯二甲酸丁二酯(PBAT)、聚丁二酸丁二醇-共-对苯二甲酸丁二醇酯(PBST)、聚丁二酸己二酸丁二酯(PBSA)、聚3-羟基乙酸酯(PHB)、聚羟基戊酸酯(PHV)、3-羟基丁酸酯-3-羟基戊酸酯共聚物(PHBV)、聚己内酯(PCL)和 聚乳酸(PLA)的市售商品或自制品均可。本发明采用上述生物可降解树脂为主原料,所述生物可降解树脂的硬度优选为邵氏50A~邵氏50D,熔融指数优选为1g/10min~15g/10min(190℃/2.16kg),维卡软化温度优选为90℃~120℃;所述生物可降解树脂具有较高的力学性能、较佳的弹性和上佳的耐疲劳特性,且在用过废弃后能被自然界微生物的酶降解,降解产物能被微生物作为碳源吸收代谢。在本发明中,所述生物可降解树脂物料包括100重量份的生物可降解树脂。
在本发明中,所述色母粒优选为生物可降解色母粒。本发明对所述色母粒的种类和来源没有特殊限制,采用本领域技术人员熟知的各种颜色的色粉与上述生物可降解树脂共混而成。在本发明中,所述生物可降解树脂物料包括0.5重量份~5重量份的色母粒,优选为1重量份~4重量份。
在本发明中,所述成核剂优选选自蒙脱土、二氧化钛、碳酸钙、白炭黑、微晶纤维素、碳纳米管和石墨烯中的一种或多种,更优选为二氧化钛和/或微晶纤维素。本发明对所述成核剂的来源没有特殊限制,采用本领域技术人员熟知的上述蒙脱土、二氧化钛、碳酸钙、白炭黑、微晶纤维素、碳纳米管和石墨烯的市售商品即可。在本发明中,所述成核剂主要作为填料,分散在基体中有利于成核结晶和提高树脂的强度。在本发明中,所述成核剂优选采用纳米成核剂,纳米成核剂粒子与聚合物熔体界面之间的能垒较低,粒子周围容易发生泡孔成核,促进成核过程,从而大大降低泡孔尺寸,提高泡孔密度;所述纳米成核剂的尺寸优选低于500nm,更优选低于200nm。在本发明中,所述生物可降解树脂物料包括0.5重量份~10重量份的成核剂,优选为1重量份~6重量份,更优选为5重量份。
在本发明中,所述抗氧剂优选为受阻酚类抗氧剂,更优选为AT-10和/或AT-3114;在本发明优选的实施例中,所述抗氧剂为AT-10。本发明对所述抗氧剂的来源没有特殊限制,采用本领域技术人员熟知的上述受阻酚类抗氧剂的市售商品即可。在本发明中,所述生物可降解树脂物料包括0.2重量份~1重量份的抗氧剂,优选为0.2重量份~0.8重量份,更优选为0.3重量份。
本发明对所述硬脂酸没有特殊限制,采用本领域技术人员熟知的市售商品即可。在本发明中,所述生物可降解树脂物料包括0重量份~1.5重量份的硬脂 酸,优选为0.4重量份~0.7重量份,更优选为0.5重量份。
在本发明中,所述泡孔稳定剂优选为丙烯酸类物质,更优选为聚甲基丙烯酸异丁酯和/或聚甲基丙烯酸丁酯;在本发明优选的实施例中,所述泡孔稳定剂为聚甲基丙烯酸异丁酯。本发明对所述泡孔稳定剂的来源没有特殊限制,采用本领域技术人员熟知的上述丙烯酸类物质的市售商品即可。在本发明中,所述生物可降解树脂物料包括0重量份~1重量份的泡孔稳定剂,优选为0.1重量份~0.7重量份,更优选为0.3重量份~0.5重量份。
在本发明中,上述抗氧剂、硬脂酸及泡孔稳定剂的加入,利于成型加工、提高产品性能;其中,抗氧剂和硬脂酸的加入,可以改善复合物料的加工稳定性;泡孔稳定剂的加入,可以抑制生物可降解树脂发泡材料的收缩,提高材料的膨胀倍率,从而保证所制得的鞋中底材料具有较好的抗压缩永久形变性能。
本发明提供的生物可降解发泡鞋中底材料,采用上述特定含量的特定组分,既未添加交联剂,也未事先对树脂做交联处理,并且实现较好的相互作用;制备得到的产品一方面具有超轻的密度和较高的回弹特性,另一方面具有良好的力学性能和耐疲劳特性,从而在大大降低运动鞋重量的同时,能给予穿着者较佳的穿着和跑步体验,并且具有生物可降解特性,在用过废弃后能被自然界微生物的酶降解,降解产物能被微生物作为碳源吸收代谢,因此丢弃后不会污染环境。
本发明还提供了一种上述技术方案所述的生物可降解发泡鞋中底材料的制备方法,包括以下步骤:
a)将生物可降解树脂物料中各组分进行预混后,进行熔融混炼,挤出后再切粒,得到生物可降解物料粒子;
b)将步骤a)得到的生物可降解物料粒子预热后装入模具合模,置于密闭容器内,并向容器中通入气体,升温,使达到超临界状态的气体对所述生物可降解物料粒子进行浸渍饱和,最后快速泄压并开模,得到生物可降解发泡鞋中底材料。
本发明首先将生物可降解树脂物料中各组分进行预混后,进行熔融混炼,挤出后再切粒,得到生物可降解物料粒子。在本发明中,所述生物可降解树脂物料与上述技术方案中的相同,在此不再赘述。
在本发明中,所述熔融混炼及挤出的装置优选为挤出机,本发明对此没有特殊限制。在本发明中,所述熔融混炼的温度优选为130℃~200℃,更优选为145℃~180℃,更更优选为150℃~175℃;所述熔融混炼的时间优选为1min~10min,更优选为3min~5min。
在本发明中,所述切粒的方式优选为水下切粒;所述水下切粒过程中的水的温度优选为20℃~30℃,更优选为25℃。
得到所述生物可降解物料粒子后,本发明将得到的生物可降解物料粒子预热后装入模具合模,置于密闭容器内,并向容器中通入气体,升温,使达到超临界状态的气体对所述生物可降解物料粒子进行浸渍饱和,最后快速泄压并开模,得到生物可降解发泡鞋中底材料。在本发明中,所述预热的温度优选为60℃~120℃,更优选为80℃~100℃。
在本发明中,所述模具即为制备鞋中底材料的中底模具,本发明对此没有特殊限制。本发明将得到的生物可降解物料粒子装入模具前,优选还包括:
将所述模具预热至所述生物可降解物料粒子预热的温度。
在本发明中,所述密闭容器优选为高压釜;本发明对此没有特殊限制。
在本发明中,所述气体优选为二氧化碳气体或氮气,更优选为二氧化碳气体。在本发明中,所述浸渍饱和是指在具有高压流体氛围下浸渍至高压流体和坯件达到溶解平衡。在本发明中,所述浸渍饱和的温度优选为80℃~170℃,更优选为110℃~160℃;所述浸渍饱和的压力优选为5MPa~50MPa,更优选为10MPa~40MPa,更更优选为15MPa;所述浸渍饱和的时间优选为3min~40min,更优选为5min~30min。
在本发明中,所述快速泄压的泄压速率优选为5MPa/s~30MPa/s,更优选为8MPa/s~25MPa/s,更更优选为15MPa/s。
本发明利用超临界流体釜压法,将所述生物可降解物料粒子在高压流体氛围下浸渍,直至高压流体和树脂达到溶解平衡,通过快速泄压使树脂迅速膨胀至预定密度,制得具有3D结构的超轻高弹发泡中底。在本发明中,超临界流体釜压法发泡,通过将二氧化碳或氮气注入放有弹性体复合物料的釜内,达到一定温度和压力后使其达到超临界状态,维持此状态一定时间,将超临界流体渗透到弹性体复合物原材料内部,形成聚合物/气体均相体系,利用快速降压 法,破坏材料内部聚合物/气体均相体系的平衡状态,材料内部形成气泡核并长大定型,得到发泡材料;其中,增加气体压力可提升气体在聚合物中的溶解度,进而气泡成核数量增加,泡孔密度增大;压力降增大,气泡成核的速率越快,气泡核数量就越多;气泡内外的气体浓度梯度或者内外的压力差是驱动泡孔长大的原动力,泄压速率直接反映的是泡孔生长的加速度,增加泄压速率有利于泡孔直径的减少和泡孔密度的增加;玻璃化转变温度之上,饱和温度越低,二氧化碳在聚合物中的溶解度越高,成核速率越高且成核密度也越大。
本发明采用上述制备方法,将生物可降解物料粒子经超临界流体发泡成型工艺(超临界流体浸渍后快速泄压发泡一步制得),制备得到生物可降解发泡鞋中底材料,该发泡鞋中底材料为具有3D结构的聚合物泡沫材料,其密度较低,低于0.18g/cm 3,可使鞋具有较轻的重量,其回弹率在45%以上,回弹性高,可给予鞋穿着者较好的舒适性体验;同时,该制备方法工艺简单、条件温和,生产流程短、效率高,并且绿色环保,可实现鞋中底材料的个性化定制,适合大规模工业生产。
本发明提供了一种生物可降解发泡鞋中底材料,由生物可降解树脂物料制备而成;所述生物可降解树脂物料包括以下组分:生物可降解树脂100重量份;色母粒0.5重量份~5重量份;成核剂0.5重量份~10重量份;抗氧剂0.2重量份~1重量份;硬脂酸0~1.5重量份;泡孔稳定剂0~1重量份。与现有技术相比,本发明提供的生物可降解发泡鞋中底材料采用特定含量的特定组分,实现较好的相互作用;产品一方面具有超轻的密度和较高的回弹特性,另一方面具有良好的力学性能和耐疲劳特性,从而在大大降低运动鞋重量的同时,能给予穿着者较佳的穿着和跑步体验,并且具有生物可降解特性,在用过废弃后能被自然界微生物的酶降解,降解产物能被微生物作为碳源吸收代谢,因此丢弃后不会污染环境。
此外,本发明提供的制备方法工艺简单、条件温和,流程短、效率高,适合大规模工业生产。
为了进一步说明本发明,下面通过以下实施例进行详细说明。本发明以下实施例所用的聚己二酸/对苯二甲酸丁二酯(PBAT),硬度为邵氏32D,熔体流动速率为3-5g/10min(190℃/2.16kg),维卡软化温度为≥90℃,断裂伸长率 ≥500%;所用的3-羟基丁酸酯-3-羟基戊酸酯共聚物(PHBV),硬度为邵氏50D,熔体流动速率为3g/10min(190℃/2.16kg),维卡软化温度为≥90℃,断裂伸长率≥400%;所用的聚丁二酸丁二醇酯(PBS),硬度为邵氏36D,熔体流动速率≤5g/10min(190℃/2.16kg),维卡软化温度为≥80℃,断裂伸长率≥500%;所用的泡孔稳定剂的粘度为0.6Pa·s~1.2Pa·s;所用的成核剂的尺寸低于200nm。
实施例1
(1)生物可降解树脂物料的配方组成:
聚己二酸/对苯二甲酸丁二酯(PBAT):100重量份;
色母粒:1重量份
抗氧剂:0.3重量份;
成核剂:5重量份;
硬脂酸:0.5重量份;
泡孔稳定剂:0.5重量份;
其中,色母粒为白色色粉和PBAT共混而成;抗氧剂为AT-10;成核剂为纳米二氧化钛;泡孔稳定剂为聚甲基丙烯酸异丁酯。
(2)制备方法:
按重量份数称取上述生物可降解树脂物料中各组分作为原料;将称取好的各原料进行预混后经挤出机在160℃下熔融混炼3min,挤出后在25℃水下切粒,得到生物可降解物料粒子;然后将得到的生物可降解物料粒子预热到80℃,倒入同样预热到80℃的中底模具中,合模后,置入密闭容器内,并向容器中通入二氧化碳气体,升温至120℃(压力为15MPa),使达到超临界状态的气体对所述生物可降解物料粒子进行浸渍饱和25min,然后快速泄压(泄压速率15MPa/s)并开模,得到生物可降解发泡鞋中底材料;参见图1所示。
实施例2
(1)生物可降解树脂物料的配方组成:
3-羟基丁酸酯-3-羟基戊酸酯共聚物(PHBV):100重量份;
色母粒:1重量份
抗氧剂:0.3重量份;
成核剂:5重量份;
硬脂酸:0.5重量份;
泡孔稳定剂:0.5重量份;
其中,色母粒为白色色粉和PHBV共混而成;抗氧剂为AT-10;成核剂为纳米二氧化钛;泡孔稳定剂为聚甲基丙烯酸异丁酯。
(2)制备方法:
按重量份数称取上述生物可降解树脂物料中各组分作为原料;将称取好的各原料进行预混后经挤出机在175℃下熔融混炼3min,挤出后在25℃水下切粒,得到生物可降解物料粒子;然后将得到的生物可降解物料粒子预热到100℃,倒入同样预热到100℃的中底模具中,合模后,置入密闭容器内,并向容器中通入二氧化碳气体,升温至160℃(压力为15MPa),使达到超临界状态的气体对所述生物可降解物料粒子进行浸渍饱和25min,然后快速泄压(泄压速率15MPa/s)并开模,得到生物可降解发泡鞋中底材料。
实施例3
(1)生物可降解树脂物料的配方组成:
聚丁二酸丁二醇酯(PBS):100重量份;
色母粒:1重量份
抗氧剂:0.3重量份;
成核剂:5重量份;
硬脂酸:0.5重量份;
泡孔稳定剂:0.5重量份;
其中,色母粒为白色色粉和PBS共混而成;抗氧剂为AT-10;成核剂为纳米二氧化钛;泡孔稳定剂为聚甲基丙烯酸异丁酯。
(2)制备方法:
按重量份数称取上述生物可降解树脂物料中各组分作为原料;将称取好的各原料进行预混后经挤出机在150℃下熔融混炼3min,挤出后在25℃水下切粒,得到生物可降解物料粒子;然后将得到的生物可降解物料粒子预热到80℃,倒入同样预热到80℃的中底模具中,合模后,置入密闭容器内,并向容器中通入二氧化碳气体,升温至110℃(压力为15MPa),使达到超临界状态的气体对所述生物可降解物料粒子进行浸渍饱和25min,然后快速泄压(泄 压速率15MPa/s)并开模,得到生物可降解发泡鞋中底材料。
实施例4
(1)生物可降解树脂物料的配方组成:
聚己二酸/对苯二甲酸丁二酯(PBAT):100重量份;
色母粒:4重量份
抗氧剂:0.3重量份;
成核剂:5重量份;
硬脂酸:0.5重量份;
泡孔稳定剂:0.3重量份;
其中,色母粒为红色色粉和PBAT共混而成;抗氧剂为AT-10;成核剂为微晶纤维素;泡孔稳定剂为聚甲基丙烯酸异丁酯。
(2)制备方法:
按重量份数称取上述生物可降解树脂物料中各组分作为原料;将称取好的各原料进行预混后经挤出机在160℃下熔融混炼3min,挤出后在25℃水下切粒,得到生物可降解物料粒子(参见图2所示);然后将得到的生物可降解物料粒子预热到80℃,倒入同样预热到80℃的中底模具中,合模后,置入密闭容器内,并向容器中通入二氧化碳气体,升温至120℃(压力为15MPa),使达到超临界状态的气体对所述生物可降解物料粒子进行浸渍饱和25min,然后快速泄压(泄压速率15MPa/s)并开模,得到生物可降解发泡鞋中底材料;参见图2所示。
实施例5
(1)生物可降解树脂物料的配方组成:
质量比为70:30的聚己二酸/对苯二甲酸丁二酯(PBAT)和聚丁二酸丁二醇酯(PBS):100重量份;
色母粒:1重量份
抗氧剂:0.3重量份;
成核剂:5重量份;
硬脂酸:0.5重量份;
泡孔稳定剂:0.5重量份;
其中,色母粒为白色色粉和PBAT共混而成;抗氧剂为AT-10;成核剂为纳米二氧化钛;泡孔稳定剂为聚甲基丙烯酸异丁酯。
(2)制备方法:
按重量份数称取上述生物可降解树脂物料中各组分作为原料;将称取好的各原料进行预混后经挤出机在160℃下熔融混炼3min,挤出后在25℃水下切粒,得到生物可降解物料粒子;然后将得到的生物可降解物料粒子预热到80℃,倒入同样预热到80℃的中底模具中,合模后,置入密闭容器内,并向容器中通入二氧化碳气体,升温至120℃(压力为15MPa),使达到超临界状态的气体对所述生物可降解物料粒子进行浸渍饱和25min,然后快速泄压(泄压速率15MPa/s)并开模,得到生物可降解发泡鞋中底材料。
对实施例1~5提供的生物可降解发泡鞋中底材料的各项性能进行测试,结果参见表1所示。
表1实施例1~5提供的生物可降解发泡鞋中底材料的各项性能数据
Figure PCTCN2020121766-appb-000001
由表1可知,本发明实施例1~5提供的生物可降解发泡鞋中底材料具有超轻的密度和较高的回弹率,同时具有良好的力学性能和耐疲劳特性,从而在大大降低运动鞋重量的同时,能给予穿着者较佳的穿着和跑步体验;此外,比较实施例1和实施例4可知,增加色母粒含量后对于中底的物性有细微的影响, 回弹率、压缩永久变形率和拉伸强度都有所下降;比较实施例1和实施例5可知,共混不同的树脂可获得密度更低的材料,实施例5在密度和压缩永久形变更高;
更重要的是,本发明通过对原料组成进行特定选择,所用的各原料均为生物可降解材料(超临界流体釜压法发泡,不会影响其生物可降解特性),未添加其他影响可降解特性的材料,使制备得到的产品具有生物可降解特性,在用过废弃后能被自然界微生物的酶降解,降解产物能被微生物作为碳源吸收代谢,因此丢弃后不会污染环境。
以上所述仅是本发明的优选实施方式,应当指出,对于使本技术领域的专业技术人员,在不脱离本发明技术原理的前提下,是能够实现对这些实施例的多种修改的,而这些修改也应视为本发明应该保护的范围。

Claims (10)

  1. 一种生物可降解发泡鞋中底材料,由生物可降解树脂物料制备而成;所述生物可降解树脂物料包括以下组分:
    生物可降解树脂100重量份;
    色母粒0.5重量份~5重量份;
    成核剂0.5重量份~10重量份;
    抗氧剂0.2重量份~1重量份;
    硬脂酸0~1.5重量份;
    泡孔稳定剂0~1重量份。
  2. 根据权利要求1所述的生物可降解发泡鞋中底材料,其特征在于,所述生物可降解树脂选自聚丁二酸丁二醇酯、聚己二酸/对苯二甲酸丁二酯、聚丁二酸丁二醇-共-对苯二甲酸丁二醇酯、聚丁二酸己二酸丁二酯、聚3-羟基乙酸酯、聚羟基戊酸酯、3-羟基丁酸酯-3-羟基戊酸酯共聚物、聚己内酯和聚乳酸中的一种或多种。
  3. 根据权利要求1所述的生物可降解发泡鞋中底材料,其特征在于,所述色母粒为生物可降解色母粒。
  4. 根据权利要求1所述的生物可降解发泡鞋中底材料,其特征在于,所述成核剂选自蒙脱土、二氧化钛、碳酸钙、白炭黑、微晶纤维素、碳纳米管和石墨烯中的一种或多种。
  5. 根据权利要求1所述的生物可降解发泡鞋中底材料,其特征在于,所述抗氧剂为受阻酚类抗氧剂。
  6. 根据权利要求1所述的生物可降解发泡鞋中底材料,其特征在于,所述泡孔稳定剂为丙烯酸类物质。
  7. 一种权利要求1~6任一项所述的生物可降解发泡鞋中底材料的制备方法,包括以下步骤:
    a)将生物可降解树脂物料中各组分进行预混后,进行熔融混炼,挤出后再切粒,得到生物可降解物料粒子;
    b)将步骤a)得到的生物可降解物料粒子预热后装入模具合模,置于密 闭容器内,并向容器中通入气体,升温,使达到超临界状态的气体对所述生物可降解物料粒子进行浸渍饱和,最后快速泄压并开模,得到生物可降解发泡鞋中底材料。
  8. 根据权利要求7所述的制备方法,其特征在于,步骤a)中所述熔融混炼的温度为130℃~200℃,时间为1min~10min。
  9. 根据权利要求7所述的制备方法,其特征在于,步骤b)中所述浸渍饱和的温度为80℃~170℃,压力为5MPa~50MPa,时间为3min~40min。
  10. 根据权利要求7所述的制备方法,其特征在于,步骤b)中所述快速泄压的泄压速率为5MPa/s~30MPa/s。
PCT/CN2020/121766 2020-05-20 2020-10-19 一种生物可降解发泡鞋中底材料及其制备方法 WO2021232668A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010429599.6A CN111440423B (zh) 2020-05-20 2020-05-20 一种生物可降解发泡鞋中底材料及其制备方法
CN202010429599.6 2020-05-20

Publications (1)

Publication Number Publication Date
WO2021232668A1 true WO2021232668A1 (zh) 2021-11-25

Family

ID=71656885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121766 WO2021232668A1 (zh) 2020-05-20 2020-10-19 一种生物可降解发泡鞋中底材料及其制备方法

Country Status (2)

Country Link
CN (1) CN111440423B (zh)
WO (1) WO2021232668A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115260717A (zh) * 2022-05-17 2022-11-01 万华化学(宁波)有限公司 一种聚乳酸发泡材料及其制备方法和制备聚乳酸发泡珠粒的方法
CN117534948A (zh) * 2023-11-22 2024-02-09 东莞市森宏新材料科技有限公司 高弹性环保轻质舒适发泡鞋底及其制备方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111440423B (zh) * 2020-05-20 2021-10-15 安踏(中国)有限公司 一种生物可降解发泡鞋中底材料及其制备方法
CN112048122A (zh) * 2020-09-18 2020-12-08 泉州师范学院 一种可生物降解pbst/eva中底鞋材及其制备方法
CZ309038B6 (cs) * 2021-03-12 2021-12-15 Univerzita Tomáše Bati ve Zlíně Biodegradabilní vycházková obuv
CZ2021123A3 (cs) * 2021-03-12 2021-12-15 Univerzita Tomáše Bati ve Zlíně Biodegradabilní sandálová obuv typu žabky
CZ2021122A3 (cs) * 2021-03-12 2021-12-15 Univerzita Tomáše Bati ve Zlíně Biodegradabilní sportovní obuv
CN113583409A (zh) * 2021-08-11 2021-11-02 福建斯达新材料科技有限公司 一种注塑鞋底材料、包含其的鞋底及其制备方法和应用
CN113583333A (zh) * 2021-09-06 2021-11-02 东莞兆阳兴业塑胶制品有限公司 一种可降解发泡鞋材的制备方法
CN113912999A (zh) * 2021-11-17 2022-01-11 江苏集萃先进高分子材料研究所有限公司 一种可生物降解的pbat/pbs共混超临界固态发泡材料及制备方法和应用
CN114316181B (zh) * 2022-01-24 2024-03-26 美瑞新材料创新中心(山东)有限公司 一种高回弹生物降解聚氨酯发泡材料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016165638A1 (en) * 2015-04-17 2016-10-20 Polyone-Shanghai, China Masterbatch containing carbon nanotubes as black pigment
CN109206892A (zh) * 2018-10-23 2019-01-15 安踏(中国)有限公司 一种高弹发泡鞋中底材料及其制备方法和应用
CN109385097A (zh) * 2018-10-23 2019-02-26 安踏(中国)有限公司 一种鞋用泡沫材料、其制备方法及其应用
US20190351592A1 (en) * 2018-05-21 2019-11-21 Robert Falken Biodegradable and industrially compostable injection moulded microcellular flexible foams, and a method of manufacturing the same
CN111440423A (zh) * 2020-05-20 2020-07-24 安踏(中国)有限公司 一种生物可降解发泡鞋中底材料及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102051031B (zh) * 2009-11-11 2013-07-17 深圳市意可曼生物科技有限公司 可完全生物降解发泡材料及其应用
CN102127245B (zh) * 2011-01-19 2012-05-30 中国科学院宁波材料技术与工程研究所 一种生物可降解聚合物发泡粒子的制备方法
KR101223219B1 (ko) * 2011-01-20 2013-01-17 주식회사 컴테크케미칼 폴리락틱엑시드를 이용한 신발 중창용 생분해성 발포체 조성물 및 이의 제조방법
CN105802143A (zh) * 2015-01-01 2016-07-27 晋江凯基高分子材料有限公司 一种pbat发泡体及其制备方法与应用
CN106633335B (zh) * 2016-09-27 2019-03-15 茂泰(福建)鞋材有限公司 一种含聚碳酸酯合金的可降解发泡鞋底及其制备方法
CN106398086B (zh) * 2016-09-27 2018-11-13 茂泰(福建)鞋材有限公司 一种含聚碳酸酯合金的可降解热塑性鞋底及其制备方法
CN106751611A (zh) * 2016-12-08 2017-05-31 吉林中粮生化有限公司 一种高熔体强度聚乳酸发泡专用树脂及其制备方法
CN108239385B (zh) * 2016-12-26 2021-01-29 万华化学集团股份有限公司 一种热塑性聚氨酯发泡粒子及其制备方法
CN108659486A (zh) * 2018-04-09 2018-10-16 广东国立科技股份有限公司 一种可降解的eva发泡鞋材及其制备方法
CN109111720B (zh) * 2018-06-29 2021-02-26 安踏(中国)有限公司 一种超轻高回弹etpu复合减震鞋中底材料及其成型方法
CN109824972A (zh) * 2019-03-08 2019-05-31 安踏(中国)有限公司 一种环保发泡中底材料及其制备方法
CN110193931A (zh) * 2019-06-10 2019-09-03 安踏(中国)有限公司 一种3d打印高性能泡沫鞋中底的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016165638A1 (en) * 2015-04-17 2016-10-20 Polyone-Shanghai, China Masterbatch containing carbon nanotubes as black pigment
US20190351592A1 (en) * 2018-05-21 2019-11-21 Robert Falken Biodegradable and industrially compostable injection moulded microcellular flexible foams, and a method of manufacturing the same
CN109206892A (zh) * 2018-10-23 2019-01-15 安踏(中国)有限公司 一种高弹发泡鞋中底材料及其制备方法和应用
CN109385097A (zh) * 2018-10-23 2019-02-26 安踏(中国)有限公司 一种鞋用泡沫材料、其制备方法及其应用
CN111440423A (zh) * 2020-05-20 2020-07-24 安踏(中国)有限公司 一种生物可降解发泡鞋中底材料及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115260717A (zh) * 2022-05-17 2022-11-01 万华化学(宁波)有限公司 一种聚乳酸发泡材料及其制备方法和制备聚乳酸发泡珠粒的方法
CN115260717B (zh) * 2022-05-17 2023-12-19 万华化学(宁波)有限公司 一种聚乳酸发泡材料及其制备方法和制备聚乳酸发泡珠粒的方法
CN117534948A (zh) * 2023-11-22 2024-02-09 东莞市森宏新材料科技有限公司 高弹性环保轻质舒适发泡鞋底及其制备方法

Also Published As

Publication number Publication date
CN111440423B (zh) 2021-10-15
CN111440423A (zh) 2020-07-24

Similar Documents

Publication Publication Date Title
WO2021232668A1 (zh) 一种生物可降解发泡鞋中底材料及其制备方法
CN109385097B (zh) 一种鞋用泡沫材料、其制备方法及其应用
CN111393830A (zh) 一种彩色高弹发泡鞋中底材料及其制备方法
JP7430176B2 (ja) 生分解性で産業的に堆肥化可能な射出成形の微細軟質発泡体およびその製造方法
Huang et al. Improving polypropylene microcellular foaming through blending and the addition of nano‐calcium carbonate
CN103304857B (zh) 一种改性丁腈橡胶的制备方法及改性丁腈橡胶
CN112745681B (zh) 一种可注塑发泡的tpv材料及其制备方法和应用
CN112646282A (zh) 发泡光扩散板及其制备方法与应用
CN102174209B (zh) 一种可控降解聚丙烯发泡粒子的制备方法
CN111073156B (zh) 一种微交联发泡大输液软袋用连接体材料及制备方法与应用
CN103242632A (zh) 一种聚乳酸可降解发泡材料及其制备方法
CN110283438B (zh) 一种吹塑成型可降解薄膜的基础树脂及吹塑成型可降解薄膜
CN110343323B (zh) 开孔eva发泡复合鞋材及其制造方法
CN110724375A (zh) 一种tpu/eva超临界发泡复合材料及其制备方法
CN111978644A (zh) 一种聚丙烯透气膜及其制备方法
CN108892853A (zh) 一种抗热收缩橡塑共混发泡中底及其配方
CN113402876B (zh) 一种超弹耐疲劳发泡材料及其制备方法和应用
CN111016043A (zh) 一种热塑性弹性体共混物超临界发泡材料的制备方法
US20200094440A1 (en) Composition for low specific gravity molded foam and method for producing molded foam using the composition
Zou et al. Micro/nanocellular polyprolene/trans‐1, 4‐polyisomprene (PP/TPI) blend foams by using supercritical nitrogen as blowing agent
CN114835971A (zh) 一种高弹、透气艾草粉发泡复合材料及其制备方法、应用
KR102611165B1 (ko) 생분해성이고 산업적으로 퇴비화 가능하고 재활용 가능한 사출 성형된 초미세 가요성 발포체
CN108017889B (zh) 一种刚韧均衡的聚乳酸/天甲橡胶复合材料及其制备方法
JP2013014681A (ja) 自動車装備部品
JP4966087B2 (ja) 光反射体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20936779

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20936779

Country of ref document: EP

Kind code of ref document: A1