WO2021229916A1 - Ldhセパレータ及び亜鉛二次電池 - Google Patents
Ldhセパレータ及び亜鉛二次電池 Download PDFInfo
- Publication number
- WO2021229916A1 WO2021229916A1 PCT/JP2021/011233 JP2021011233W WO2021229916A1 WO 2021229916 A1 WO2021229916 A1 WO 2021229916A1 JP 2021011233 W JP2021011233 W JP 2021011233W WO 2021229916 A1 WO2021229916 A1 WO 2021229916A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ldh
- separator
- ldh separator
- compound
- evaluation
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
- H01M50/451—Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/24—Alkaline accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/403—Manufacturing processes of separators, membranes or diaphragms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/417—Polyolefins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/431—Inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/443—Particulate material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/446—Composite material consisting of a mixture of organic and inorganic materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/491—Porosity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/497—Ionic conductivity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to an LDH separator and a zinc secondary battery.
- LDH layered double hydroxide
- Patent Document 1 International Publication No. 2013/118561 discloses that an LDH separator is provided between a positive electrode and a negative electrode in a nickel-zinc secondary battery.
- Patent Document 2 International Publication No.
- Patent Document 3 International Publication No. 2016/067884 discloses various methods for forming an LDH dense film on the surface of a porous substrate to obtain a composite material (LDH separator).
- a starting material that can give a starting point for LDH crystal growth is uniformly adhered to the porous base material, and the porous base material is subjected to hydrothermal treatment in an aqueous solution of the raw material to form an LDH dense film on the surface of the porous base material. It includes a step of forming the mixture.
- All of the LDHs disclosed in the examples of Patent Documents 1 to 3 are Mg and Al-LDH in which the hydroxide basic layer contains Mg and Al.
- Patent Document 4 International Publication No. 2017/221989 describes a plurality of hydroxide basic layers containing Ni, Al, Ti and OH groups, and anions and anions intervening between the plurality of hydroxide basic layers.
- H containing LDH composed to consist intermediate layer 2 O, LDH-containing functional layer and composites (i.e. LDH separator) is disclosed.
- Patent Document 5 International Publication No. 2019/131221) discloses that LDH containing Ni, Ti and Al can further contain Y with respect to LDH-containing functional layers and composite materials (that is, LDH separators). ing.
- the electrolytic solution of an alkaline secondary battery for example, a metal-air battery or a nickel-zinc battery
- an aqueous potassium oxide solution be used. Therefore, LDH is desired to have a high degree of alkali resistance such that it hardly deteriorates even in such a strongly alkaline electrolytic solution.
- the present inventors have now made hydroxides and / or oxides having a layered crystal structure containing at least Ti and Y and predetermined additive elements as hydroxide ion conductive substances instead of the conventional LDH. It has been found that the use of an LDH-like compound can provide an LDH separator having excellent alkali resistance and capable of more effectively suppressing short circuits caused by zinc dendrites.
- an object of the present invention is to provide an LDH separator which is excellent in alkali resistance and can suppress a short circuit caused by zinc dendrite more effectively.
- an LDH separator comprising a porous substrate and a layered double hydroxide (LDH) -like compound that closes the pores of the porous substrate.
- the LDH-like compound is at least one additive element M selected from the group consisting of (i) Ti, Y, and optionally Al and / or Mg, and (ii) In, Bi, Ca, Sr and Ba.
- LDH separators are provided which are hydroxides and / or oxides of a layered crystal structure comprising.
- a zinc secondary battery provided with the LDH separator is provided.
- a solid alkaline fuel cell provided with the LDH separator is provided.
- FIG. 2 is a schematic cross-sectional view of a sample holder used in the measurement system shown in FIG. 2A and its peripheral configuration. It is a schematic cross-sectional view which shows the electrochemical measurement system used in Examples 1-10.
- 6 is a surface SEM image of the LDH separator produced in Example 1. It is a surface SEM image of the LDH separator prepared in Example 10 (comparison).
- the LDH separator 10 of the present invention contains a porous substrate 12 and a layered double hydroxide (LDH) -like compound 14.
- LDH separator is defined as a separator containing an LDH-like compound, which selectively passes hydroxide ions by utilizing the hydroxide ion conductivity of the LDH-like compound.
- NS layered double hydroxide
- the region of the LDH-like compound 14 is drawn so as not to be connected between the upper surface and the lower surface of the LDH separator 10, because it is drawn two-dimensionally as a cross section and has a depth.
- LDH-like compound 14 is connected between the upper surface and the lower surface of the LDH separator 10, thereby ensuring the hydroxide ion conductivity of the LDH separator 10.
- the LDH-like compound 14 closes the pores of the porous substrate 12.
- the pores of the porous substrate 12 do not have to be completely closed, and the residual pores P may be slightly present.
- LDH-like compound 14 is a hydroxide and / or oxide having a layered crystal structure similar to LDH, although it cannot be called LDH, and (i) Ti, Y, and optionally Al and / or Mg, and (ii) In.
- an LDH-like compound which is a hydroxide and / or an oxide having a layered crystal structure containing at least Ti and Y and an additive element M is used as the hydroxide ion conductive substance. This makes it possible to provide an LDH separator having excellent alkali resistance and capable of more effectively suppressing short circuits caused by zinc dendrites.
- the LDH-like compound 14 is a hydroxide and / or oxide having a layered crystal structure containing (i) Ti, Y, and optionally Al and / or Mg, and (ii) the additive element M. be.
- a typical LDH-like compound 14 is a composite hydroxide and / or composite oxide of Ti, Y, additive element M, optionally Al and optionally Mg.
- the additive element M is In, Bi, Ca, Sr, Ba or a combination thereof.
- the element may be replaced with another element or ion to the extent that the basic properties of the LDH-like compound 14 are not impaired, but the LDH-like compound 14 preferably does not contain Ni.
- the LDH separator 10 preferably has an atomic ratio of Ti / (Mg + Al + Ti + Y + M) in the LDH-like compound 14 determined by energy dispersive X-ray analysis (EDS) of 0.50 to 0.85, more preferably 0. It is .56 to 0.81.
- the atomic ratio of Y / (Mg + Al + Ti + Y + M) in LDH-like compound 14 is preferably 0.03 to 0.20, more preferably 0.07 to 0.15.
- the atomic ratio of M / (Mg + Al + Ti + Y + M) in LDH-like compound 14 is preferably 0.03 to 0.35, more preferably 0.03 to 0.32.
- the atomic ratio of Mg / (Mg + Al + Ti + Y + M) in LDH-like compound 14 is preferably 0 to 0.10, more preferably 0 to 0.02.
- the atomic ratio of Al / (Mg + Al + Ti + Y + M) in the LDH-like compound 14 is preferably 0 to 0.05, more preferably 0 to 0.04.
- the alkali resistance is further excellent, and the effect of suppressing a short circuit caused by zinc dendrite (that is, dendrite resistance) can be more effectively realized.
- LDH conventionally known for LDH separators has a general formula: M 2+ 1-x M 3+ x (OH) 2 Ann- x / n ⁇ mH 2 O (in the formula, M 2+ is a divalent cation, M. 3+ is a trivalent cation, An- is an n-valent anion, n is an integer of 1 or more, x is 0.1 to 0.4, and m is 0 or more).
- M 2+ is a divalent cation
- M. 3+ is a trivalent cation
- An- is an n-valent anion
- n is an integer of 1 or more
- x is 0.1 to 0.4
- m is 0 or more
- the atomic ratio of LDH-like compound 14 generally deviates from the above general formula of LDH. Therefore, it can be said that the LDH-like compound 14 in the present invention generally has a composition ratio (atomic ratio) different from that of the conventional LDH.
- an EDS analyzer for example, X-act, manufactured by Oxford Instruments
- X-act for example, X-act, manufactured by Oxford Instruments
- the LDH separator 10 preferably has an ionic conductivity of 0.1 mS / cm or more, more preferably 1.0 mS / cm or more, still more preferably 1.5 mS / cm or more, and particularly preferably 2.0 mS / cm or more. be. Within such a range, it can exhibit a sufficient function as an LDH separator.
- the ionic conductivity is calculated based on the resistance of the LDH separator and the thickness and area of the LDH separator.
- the resistance of the LDH separator 10 is in the frequency range using an electrochemical measurement system (potential / galvanostat-frequency response analyzer) with respect to the LDH separator 10 immersed in a KOH aqueous solution having a predetermined concentration (for example, 5.4 M). It can be determined by measuring at 1 MHz to 0.1 Hz and an applied voltage of 10 mV, and determining the section of the real number axis as the resistance of the LDH separator.
- the LDH separator 10 is a separator containing a layered double hydroxide (LDH) -like compound 14, and when incorporated in a zinc secondary battery, separates a positive electrode plate and a negative electrode plate so that hydroxide ions can be conducted. be.
- the preferred LDH separator 10 has gas impermeable and / or water impermeable.
- the LDH separator 10 is preferably densified to have gas impermeableness and / or water impermeableness.
- "having gas impermeable" in the present specification means that helium gas is brought into contact with one side of an object to be measured in water with a differential pressure of 0.5 atm.
- the LDH separator 10 has gas impermeableness and / or water impermeability means that the LDH separator 10 has a high degree of porosity to the extent that gas or water does not pass through, and is water permeable or gas. It means that it is not a permeable porous film or other porous material.
- the LDH separator 10 selectively passes only hydroxide ions due to its hydroxide ion conductivity, and can exhibit a function as a battery separator. Therefore, the configuration is extremely effective in physically preventing the penetration of the separator by the zinc dendrite generated during charging to prevent a short circuit between the positive and negative electrodes. Since the LDH separator 10 has hydroxide ion conductivity, it is possible to efficiently move the required hydroxide ion between the positive electrode plate and the negative electrode plate, and to realize the charge / discharge reaction in the positive electrode plate and the negative electrode plate. Can be done.
- the LDH separator 10 preferably has a He permeability per unit area of 10 cm / min ⁇ atm or less, more preferably 5.0 cm / min ⁇ atm or less, and further preferably 1.0 cm / min ⁇ atm or less. .. It can be said that the LDH separator 10 having a He permeability within such a range has extremely high density. Therefore, a separator having a He permeability of 10 cm / min ⁇ atm or less can block the passage of substances other than hydroxide ions at a high level. For example, in the case of a zinc secondary battery, the permeation of Zn (typically the permeation of zinc ion or zincate ion) in the electrolytic solution can be suppressed extremely effectively.
- Zn typically the permeation of zinc ion or zincate ion
- the He permeability is measured through a step of supplying a He gas to one surface of the separator and allowing the He gas to permeate through the separator, and a step of calculating the He permeability and evaluating the density of the LDH separator.
- the He permeability is determined by the formula of F / (P ⁇ S) using the permeation amount F of the He gas per unit time, the differential pressure P applied to the separator when the He gas permeates, and the membrane area S through which the He gas permeates. calculate.
- He gas has the smallest structural unit among the various atoms or molecules that can compose the gas, and its reactivity is extremely low. That is, He constitutes He gas by a single He atom without forming a molecule. In this respect, since hydrogen gas is composed of H 2 molecules, the single He atom is smaller as a gas constituent unit. In the first place, H 2 gas is dangerous because it is a flammable gas. Then, by adopting the index of He gas permeability defined by the above formula, it is possible to easily perform an objective evaluation of the fineness regardless of the difference in various sample sizes and measurement conditions. In this way, it is possible to easily, safely and effectively evaluate whether or not the separator has sufficiently high density suitable for a separator for a zinc secondary battery.
- the measurement of He permeability can be preferably performed according to the procedure shown in Evaluation 5 of Examples described later.
- the LDH separator 10 is also immersed in a 5.4 M (mol / L) KOH aqueous solution containing zinc oxide at a concentration of 0.4 M (mol / L) at 90 ° C. for 1 week (that is, 168 hours).
- the He permeability per unit area is preferably 10 cm / min ⁇ atm or less, more preferably 5.0 cm / min ⁇ atm or less, still more preferably 1.0 cm / min ⁇ atm or less. It can be considered that the separator within the above range hardly changes the He permeability before and after the alkali immersion, and therefore, it can be said that the separator is extremely excellent in alkali resistance.
- the LDH-like compound 14 contains Ti, Y and the additive element M, so that the increase in He permeability after alkali immersion can be effectively suppressed. It can be said that the immersion in the potassium hydroxide aqueous solution having a high temperature of 90 ° C. is a harsher alkali resistance acceleration test as compared with the case of a low temperature (for example, 30 ° C.).
- the LDH separator 10 contains the LDH-like compound 14 and the porous substrate 12 (typically composed of the porous substrate 12 and the LDH-like compound 14), and the LDH separator 10 is hydroxide ion conductive. And the LDH-like compound closes the pores of the porous substrate so as to exhibit gas impermeableness (hence to function as a separator exhibiting hydroxide ion conductivity). It is particularly preferable that the LDH-like compound 14 is incorporated over the entire thickness direction of the porous substrate 12.
- the thickness of the LDH separator 10 is preferably 3 to 80 ⁇ m, more preferably 3 to 60 ⁇ m, and even more preferably 3 to 40 ⁇ m.
- the porous substrate 12 is preferably composed of at least one selected from the group consisting of a ceramic material, a metal material, and a polymer material, and more preferably selected from the group consisting of a ceramic material and a polymer material. It is composed of at least one kind.
- preferred examples of the ceramic material include alumina, zirconia, titania, magnesia, spinel, calcia, cordylite, zeolite, mullite, ferrite, zinc oxide, silicon carbide, and any combination thereof, more preferably.
- alumina e.g yttria-stabilized zirconia (YSZ)
- YSZ yttria-stabilized zirconia
- metallic materials include aluminum, zinc, and nickel.
- the porous base material 12 is made of a polymer material.
- the polymer porous substrate has 1) flexibility (hence, it is hard to break even if it is thinned), 2) easy to increase the porosity, and 3) easy to increase the conductivity (while increasing the porosity). It has the advantages of being easy to manufacture and handle) (because the thickness can be reduced). Further, taking advantage of the flexibility of 1) above, there is also an advantage that the LDH separator containing a porous substrate made of a polymer material can be easily bent or sealed and bonded.
- Preferred examples of the polymer material include polystyrene, polyether sulfone, polypropylene, epoxy resin, polyphenylene sulfide, fluororesin (tetrafluorinated resin: PTFE, etc.), cellulose, nylon, polyethylene, acrylonitrile styrene, polysulphon, acrylonitrile.
- Examples thereof include butadiene-styrene (ABS) resin, polyvinyl chloride, acetal resin, polyvinyl alcohol (PVA) resin, polyvinylidene chloride, polyvinylidene fluoride, phenol resin, allyl resin, furan resin and any combination thereof.
- All of the various preferable materials described above have alkali resistance as resistance to the electrolytic solution of the battery.
- Particularly preferable polymer materials are polyolefins such as polypropylene and polyethylene, and most preferably polypropylene or polyethylene, because they are excellent in heat resistance, acid resistance and alkali resistance and are low in cost.
- the porous substrate 12 is composed of a polymer material
- the LDH-like compound 14 is incorporated over the entire thickness direction of the porous substrate 12 (for example, most or almost all of the inside of the porous substrate 12).
- the pores are filled with LDH-like compound 14), which is particularly preferable.
- a commercially available polymer microporous membrane can be preferably used as such a polymer porous substrate.
- the manufacturing method of the LDH separator 10 is not particularly limited, and various conditions (particularly LDH raw material composition) of the already known LDH-containing functional layer and composite material manufacturing method (see, for example, Patent Documents 1 to 5) are appropriately changed. It can be produced by the above.
- the LDH-like compound-containing functional layer and composite material that is, LDH separator
- Ti, Y and the additive element M or Mg and / or Al
- the additive element M or Mg and / or Al
- (1) Prepare a porous base material.
- a solution containing titania sol and yttrium sol (or further alumina sol) is applied to the porous substrate and dried to form a titania and yttrium-containing layer.
- the above (2) it is preferable to apply the mixed sol solution to the substrate by a method in which the mixed sol solution permeates the entire or most of the inside of the substrate. By doing so, most or almost all the pores inside the porous substrate can be finally filled with the LDH-like compound.
- the preferred coating method include a dip coat, a filtration coat and the like, and a dip coat is particularly preferable. By adjusting the number of times of application of the dip coat or the like, the amount of adhesion of the mixed sol solution can be adjusted.
- the base material coated with the mixed sol solution by dip coating or the like may be dried and then the above steps (3) to (5) may be carried out.
- the pH value rises due to the generation of ammonia in the solution by utilizing the hydrolysis of urea, and the coexisting metal ions form hydroxides and / or oxides. It is considered that an LDH-like compound can be obtained by forming the compound. Further, in the above step (5), it is preferable to immerse the LDH separator in a predetermined solution at room temperature (for example, 30 ° C.) for 1 to 24 hours. By doing so, it becomes easy to form an LDH-like compound containing the additive element M at a desired atomic ratio (M / (Mg + Al + Ti + Y + M)).
- the pressing method may be, for example, a roll press, a uniaxial pressure press, a CIP (cold isotropic pressure press), or the like, and is not particularly limited, but is preferably a roll press. It is preferable to perform this pressing while heating because the pores of the porous substrate can be sufficiently closed with the LDH-like compound by softening the polymer porous substrate.
- a temperature for sufficient softening for example, in the case of polypropylene or polyethylene, it is preferable to heat at 60 to 200 ° C.
- the residual pores of the LDH separator can be significantly reduced.
- the LDH separator can be extremely densified and, therefore, short circuits due to zinc dendrites can be suppressed even more effectively.
- the morphology of the residual pores can be controlled by appropriately adjusting the roll gap and the roll temperature, whereby an LDH separator having a desired density can be obtained.
- Zinc secondary battery The LDH separator of the present invention is preferably applied to a zinc secondary battery. Therefore, according to a preferred embodiment of the present invention, a zinc secondary battery provided with an LDH separator is provided.
- a typical zinc secondary battery includes a positive electrode, a negative electrode, and an electrolytic solution, and the positive electrode and the negative electrode are separated from each other via an LDH separator.
- the zinc secondary battery of the present invention is not particularly limited as long as it is a secondary battery using zinc as a negative electrode and using an electrolytic solution (typically an alkali metal hydroxide aqueous solution).
- the positive electrode contains nickel hydroxide and / or nickel oxyhydroxide, whereby the zinc secondary battery forms a nickel-zinc secondary battery.
- the positive electrode may be an air electrode, whereby the zinc secondary battery may be a zinc air secondary battery.
- Solid Alkaline Fuel Cell The LDH separator of the present invention can also be applied to a solid alkaline fuel cell. That is, by using an LDH separator in which the pores of the porous substrate are closed with an LDH-like compound and highly densified, the electromotive force is reduced due to the permeation of fuel to the air electrode side (for example, crossover of methanol). It is possible to provide a solid alkaline fuel cell capable of effectively suppressing the above. This is because the permeation of the LDH separator of a fuel such as methanol can be effectively suppressed while exhibiting the hydroxide ion conductivity of the LDH separator. Therefore, according to another preferred embodiment of the present invention, there is provided a solid alkaline fuel cell with an LDH separator.
- a typical solid alkaline fuel cell according to this embodiment has an air electrode to which oxygen is supplied, a fuel electrode to which liquid fuel and / or gaseous fuel is supplied, and an LDH separator interposed between the fuel electrode and the air electrode. And prepare.
- the LDH separator of the present invention can be used not only for nickel-zinc batteries and solid alkaline fuel cells, but also for nickel-metal hydride batteries, for example.
- the LDH separator functions to block the nitride shuttle (movement of nitric acid groups between electrodes), which is a factor of self-discharge of the battery.
- the LDH separator of the present invention can also be used for a lithium battery (a battery having a negative electrode made of lithium metal), a lithium ion battery (a battery having a negative electrode made of carbon or the like), a lithium air battery, or the like.
- Evaluation 1 Observation of surface microstructure The surface microstructure of the LDH separator was observed with an acceleration voltage of 10 to 20 kV using a scanning electron microscope (SEM, JSM-6610LV, manufactured by JEOL Ltd.).
- Evaluation 2 STEM analysis of layered structure The layered structure of the LDH separator was observed at an acceleration voltage of 200 kV using a scanning transmission electron microscope (STEM) (product name: JEM-ARM200F, manufactured by JEOL).
- STEM scanning transmission electron microscope
- Evaluation 3 Elemental analysis evaluation (EDS) Composition analysis was performed on the surface of the LDH separator using an EDS analyzer (device name: X-act, manufactured by Oxford Instruments), and the composition ratio (atomic ratio) of Mg: Al: Ti: Y: additive element M was performed. ) was calculated. In this analysis, 1) an image is captured at an acceleration voltage of 20 kV and a magnification of 5,000 times, 2) three-point analysis is performed at intervals of about 5 ⁇ m in the point analysis mode, and 3) 1) and 2) above are performed once more. It was repeated, and 4) it was performed by calculating the average value of a total of 6 points.
- EDS Elemental analysis evaluation
- Evaluation 4 X-ray diffraction measurement With an X-ray diffractometer (Rigaku, RINT TTR III), the crystal phase of the LDH separator was measured under the measurement conditions of voltage: 50 kV, current value: 300 mA, and measurement range: 5 to 40 °. The measurement was performed to obtain an XRD profile.
- Evaluation 5 He Permeation Measurement A He permeation test was conducted as follows in order to evaluate the denseness of the LDH separator from the viewpoint of He permeability. First, the He permeability measuring system 310 shown in FIGS. 2A and 2B was constructed.
- He gas from a gas cylinder filled with He gas is supplied to the sample holder 316 via a pressure gauge 312 and a flow meter 314 (digital flow meter), and the LDH held in the sample holder 316.
- the separator 318 was configured to be permeated from one surface to the other surface and discharged.
- the sample holder 316 has a structure including a gas supply port 316a, a closed space 316b, and a gas discharge port 316c, and was assembled as follows. First, the adhesive 322 was applied along the outer circumference of the LDH separator 318 and attached to a jig 324 (made of ABS resin) having an opening in the center. Packing made of butyl rubber is arranged as sealing members 326a and 326b at the upper and lower ends of the jig 324, and support members 328a and 328b (manufactured by PTFE) having openings made of flanges from the outside of the sealing members 326a and 326b. ).
- the sealed space 316b was partitioned by the LDH separator 318, the jig 324, the sealing member 326a, and the support member 328a.
- the support members 328a and 328b were firmly fastened to each other by the fastening means 330 using screws so that the He gas did not leak from the portion other than the gas discharge port 316c.
- a gas supply pipe 334 was connected to the gas supply port 316a of the sample holder 316 thus assembled via a joint 332.
- He gas was supplied to the He permeability measuring system 310 via the gas supply pipe 334, and was permeated through the LDH separator 318 held in the sample holder 316.
- the gas supply pressure and the flow rate were monitored by the pressure gauge 312 and the flow meter 314.
- the He permeation was calculated.
- the He permeability is calculated by the permeation amount F (cm 3 / min) of the He gas per unit time, the differential pressure P (atm) applied to the LDH separator when the He gas permeates, and the film area S (cm) through which the He gas permeates. It was calculated by the formula of F / (P ⁇ S) using 2).
- the permeation amount F (cm 3 / min) of He gas was read directly from the flow meter 314. Further, as the differential pressure P, the gauge pressure read from the pressure gauge 312 was used. The He gas was supplied so that the differential pressure P was in the range of 0.05 to 0.90 atm.
- the measurement was performed under the conditions of a frequency range of 1 MHz to 0.1 Hz and an applied voltage of 10 mV, and a section of the real number axis. was taken as the resistance of the LDH separator sample S.
- the same measurement as above was performed without the LDH separator sample S, and the blank resistance was also determined.
- the difference between the resistance of the LDH separator sample S and the blank resistance was taken as the resistance of the LDH separator.
- the conductivity was determined using the resistance of the obtained LDH separator and the thickness and area of the LDH separator.
- Evaluation 7 Alkali resistance evaluation A 5.4 M KOH aqueous solution containing zinc oxide at a concentration of 0.4 M was prepared. 0.5 mL of the prepared KOH aqueous solution and an LDH separator sample having a size of 2 cm square were placed in a closed container made of Teflon (registered trademark). Then, after holding at 90 ° C. for 1 week (that is, 168 hours), the LDH separator sample was taken out from the closed container. The removed LDH separator sample was washed with 15 mL of ion-exchanged water and then dried overnight at room temperature. For the obtained sample, the He permeability was calculated by the same method as in Evaluation 5, and it was determined whether or not there was a change in the He permeability before and after the alkali immersion.
- Evaluation 8 Evaluation of dendrite resistance (cycle test) A cycle test was conducted as follows to evaluate the effect of suppressing the short circuit (dendrite resistance) caused by the zinc dendrite of the LDH separator. First, each of the positive electrode (containing nickel hydroxide and / or nickel oxyhydroxide) and the negative electrode (containing zinc and / or zinc oxide) was wrapped in a non-woven fabric, and the current extraction terminal was welded. The positive electrode and the negative electrode thus prepared were opposed to each other via the LDH separator, sandwiched between the laminated films provided with the current extraction ports, and the three sides of the laminated film were heat-sealed.
- An electrolytic solution (a solution in which 0.4 M zinc oxide is dissolved in a 5.4 M KOH aqueous solution) is added to the cell container with an open top thus obtained, and the electrolytic solution is sufficiently applied to the positive electrode and the negative electrode by vacuuming or the like. Infiltrated. Then, the remaining one side of the laminated film was also heat-sealed to form a simple sealed cell.
- a charging / discharging device TOSCAT3100, manufactured by Toyo System Co., Ltd.
- chemical conversion was carried out for a simple sealed cell by 0.1C charging and 0.2C discharging. Then, a 1C charge / discharge cycle was carried out.
- Example 1 Preparation of Polymer Porous Substrate A commercially available polyethylene microporous membrane having a porosity of 50%, an average pore diameter of 0.1 ⁇ m and a thickness of 20 ⁇ m was prepared as the polymer porous substrate, and 2.0 cm ⁇ 2. It was cut out to a size of 0 cm.
- the mixed solution was applied to the substrate prepared in (1) above by dip coating.
- the dip coating was carried out by immersing the substrate in 100 ml of the mixed solution, pulling it up vertically, and drying it at room temperature for 3 hours.
- magnesium nitrate hexahydrate Mg (NO 3) 2 ⁇ 6H 2 O, manufactured by Kanto Chemical Co., Inc.
- urea (NH 2) 2 CO, Sigma Aldrich )
- Magnesium nitrate hexahydrate was weighed to 0.015 mol / L and placed in a beaker, and ion-exchanged water was added thereto to make the total volume 75 ml.
- Preparation raw material for the raw solution (II) was prepared indium sulfate n-hydrate (In 2 (SO 4) 3 ⁇ nH 2 O, Fujifilm manufactured by Wako Pure Chemical Industries, Ltd.). Indium sulfate n hydrate was weighed to 0.0075 mol / L and placed in a beaker, and ion-exchanged water was added thereto to make the total volume 75 ml. The obtained solution was stirred to obtain a raw material aqueous solution (II).
- -Evaluation 1 The SEM image of the surface microstructure of the LDH separator (before roll press) obtained in Example 1 was as shown in FIG. -Evaluation 2: From the result that layered plaids could be confirmed, it was confirmed that the portion of the LDH separator other than the porous substrate was a compound having a layered crystal structure.
- -Evaluation 3 As a result of EDS elemental analysis, Al, Ti, Y and In, which are constituent elements of LDH-like compounds, were detected on the surface of the LDH separator. The composition ratios (atomic ratios) of Al, Ti, Y and In on the surface of the LDH separator calculated by EDS elemental analysis are as shown in Table 1.
- -Evaluation 5 As shown in Table 1, extremely high density of He permeability of 0.0 cm / min ⁇ atm was confirmed.
- -Evaluation 6 As shown in Table 1, high ionic conductivity was confirmed.
- -Evaluation 7 He permeability after alkali immersion is 0.0 cm / min ⁇ atm as in Evaluation 5, and excellent alkali resistance that the He permeability does not change even after alkali immersion at a high temperature of 90 ° C for one week. Was confirmed.
- -Evaluation 8 As shown in Table 1, excellent dendrite resistance was confirmed, with no short circuit due to zinc dendrite even after 300 cycles.
- Example 2 In the addition of indium by the dipping treatment of (6) above, LDH separators were prepared and evaluated in the same manner as in Example 1 except that the dipping treatment time was changed to 24 hours.
- -Evaluation 2 From the result that layered plaids could be confirmed, it was confirmed that the portion of the LDH separator other than the porous substrate was a compound having a layered crystal structure.
- -Evaluation 3 As a result of EDS elemental analysis, Al, Ti, Y and In, which are constituent elements of LDH-like compounds, were detected on the surface of the LDH separator. The composition ratios (atomic ratios) of Al, Ti, Y and In on the surface of the LDH separator calculated by EDS elemental analysis are as shown in Table 1.
- -Evaluation 5 As shown in Table 1, extremely high density of He permeability of 0.0 cm / min ⁇ atm was confirmed.
- -Evaluation 6 As shown in Table 1, high ionic conductivity was confirmed.
- -Evaluation 7 He permeability after alkali immersion is 0.0 cm / min ⁇ atm as in Evaluation 5, and excellent alkali resistance that the He permeability does not change even after alkali immersion at a high temperature of 90 ° C for one week. Was confirmed.
- -Evaluation 8 As shown in Table 1, excellent dendrite resistance was confirmed, with no short circuit due to zinc dendrite even after 300 cycles.
- Example 3 LDH separators were prepared and evaluated in the same manner as in Example 1 except that titania-itria sol coat was applied instead of (2) above.
- Titanium oxide sol solution M6, manufactured by Taki Chemical Co., Ltd.
- the obtained mixed solution was applied to the substrate prepared in (1) above by dip coating.
- the dip coating was carried out by immersing the substrate in 100 ml of the mixed solution, pulling it up vertically, and drying it at room temperature for 3 hours.
- -Evaluation 2 From the result that layered plaids could be confirmed, it was confirmed that the portion of the LDH separator other than the porous substrate was a compound having a layered crystal structure.
- -Evaluation 3 As a result of EDS elemental analysis, Ti, Y and In, which are constituent elements of LDH-like compounds, were detected on the surface of the LDH separator. The composition ratios (atomic ratios) of Ti, Y and In on the surface of the LDH separator calculated by EDS elemental analysis are as shown in Table 1.
- -Evaluation 5 As shown in Table 1, extremely high density of He permeability of 0.0 cm / min ⁇ atm was confirmed.
- -Evaluation 6 As shown in Table 1, high ionic conductivity was confirmed.
- Example 4 Same as Example 1 except that the raw material aqueous solution (II) of (5) was prepared as follows, and bismuth was added by dipping treatment instead of (6) as follows. LDH separators were prepared and evaluated.
- -Evaluation 2 From the result that layered plaids could be confirmed, it was confirmed that the portion of the LDH separator other than the porous substrate was a compound having a layered crystal structure.
- -Evaluation 3 As a result of EDS elemental analysis, Mg, Al, Ti, Y and Bi, which are constituent elements of LDH-like compounds, were detected on the surface of the LDH separator. The composition ratios (atomic ratios) of Mg, Al, Ti, Y and Bi on the surface of the LDH separator calculated by EDS elemental analysis are as shown in Table 1.
- -Evaluation 5 As shown in Table 1, extremely high density of He permeability of 0.0 cm / min ⁇ atm was confirmed.
- -Evaluation 6 As shown in Table 1, high ionic conductivity was confirmed.
- -Evaluation 7 He permeability after alkali immersion is 0.0 cm / min ⁇ atm as in evaluation 5, and excellent resistance to change in He permeability even after alkali immersion at a high temperature of 90 ° C for one week. Alkaline was confirmed.
- -Evaluation 8 As shown in Table 1, excellent dendrite resistance was confirmed, with no short circuit due to zinc dendrite even after 300 cycles.
- Example 5 In the addition of bismuth by the above dipping treatment, LDH separators were prepared and evaluated in the same manner as in Example 4 except that the dipping treatment time was changed to 12 hours.
- -Evaluation 2 From the result that layered plaids could be confirmed, it was confirmed that the portion of the LDH separator other than the porous substrate was a compound having a layered crystal structure.
- -Evaluation 3 As a result of EDS elemental analysis, Mg, Al, Ti, Y and Bi, which are constituent elements of LDH-like compounds, were detected on the surface of the LDH separator. The composition ratios (atomic ratios) of Mg, Al, Ti, Y and Bi on the surface of the LDH separator calculated by EDS elemental analysis are as shown in Table 1.
- -Evaluation 5 As shown in Table 1, extremely high density of He permeability of 0.0 cm / min ⁇ atm was confirmed.
- -Evaluation 6 As shown in Table 1, high ionic conductivity was confirmed.
- -Evaluation 7 He permeability after alkali immersion is 0.0 cm / min ⁇ atm as in evaluation 5, and excellent resistance to change in He permeability even after alkali immersion at a high temperature of 90 ° C for one week. Alkaline was confirmed.
- -Evaluation 8 As shown in Table 1, excellent dendrite resistance was confirmed, with no short circuit due to zinc dendrite even after 300 cycles.
- Example 6 In the addition of bismuth by the above dipping treatment, LDH separators were prepared and evaluated in the same manner as in Example 4 except that the dipping treatment time was changed to 24 hours.
- -Evaluation 2 From the result that layered plaids could be confirmed, it was confirmed that the portion of the LDH separator other than the porous substrate was a compound having a layered crystal structure.
- -Evaluation 3 As a result of EDS elemental analysis, Mg, Al, Ti, Y and Bi, which are constituent elements of LDH-like compounds, were detected on the surface of the LDH separator. The composition ratios (atomic ratios) of Mg, Al, Ti, Y and Bi on the surface of the LDH separator calculated by EDS elemental analysis are as shown in Table 1.
- -Evaluation 5 As shown in Table 1, extremely high density of He permeability of 0.0 cm / min ⁇ atm was confirmed.
- -Evaluation 6 As shown in Table 1, high ionic conductivity was confirmed.
- -Evaluation 7 He permeability after alkali immersion is 0.0 cm / min ⁇ atm as in evaluation 5, and excellent resistance to change in He permeability even after alkali immersion at a high temperature of 90 ° C for one week. Alkaline was confirmed.
- -Evaluation 8 As shown in Table 1, excellent dendrite resistance was confirmed, with no short circuit due to zinc dendrite even after 300 cycles.
- Example 7 Same as Example 1 except that the raw material aqueous solution (II) of (5) was prepared as follows, and calcium was added by dipping treatment instead of (6) as follows. LDH separators were prepared and evaluated.
- -Evaluation 2 From the result that layered plaids could be confirmed, it was confirmed that the portion of the LDH separator other than the porous substrate was a compound having a layered crystal structure.
- -Evaluation 3 As a result of EDS elemental analysis, Mg, Al, Ti, Y and Ca, which are constituent elements of the LDH-like compound, were detected on the surface of the LDH separator. The composition ratios (atomic ratios) of Mg, Al, Ti, Y and Ca on the surface of the LDH separator calculated by EDS elemental analysis are as shown in Table 1.
- -Evaluation 5 As shown in Table 1, extremely high density of He permeability of 0.0 cm / min ⁇ atm was confirmed.
- -Evaluation 6 As shown in Table 1, high ionic conductivity was confirmed.
- -Evaluation 7 He permeability after alkali immersion is 0.0 cm / min ⁇ atm as in evaluation 5, and excellent resistance to change in He permeability even after alkali immersion at a high temperature of 90 ° C for one week. Alkaline was confirmed.
- -Evaluation 8 As shown in Table 1, excellent dendrite resistance was confirmed, with no short circuit due to zinc dendrite even after 300 cycles.
- Example 8 Same as Example 1 except that the raw material aqueous solution (II) of (5) was prepared as follows, and strontium was added by dipping treatment instead of (6) as follows. LDH separators were prepared and evaluated.
- Strontium nitrate (Sr (NO 3 ) 2 ) was prepared as a raw material.
- Strontium nitrate was weighed to 0.015 mol / L and placed in a beaker, and ion-exchanged water was added thereto to make the total volume 75 ml. The obtained solution was stirred to obtain a raw material aqueous solution (II).
- -Evaluation 2 From the result that layered plaids could be confirmed, it was confirmed that the portion of the LDH separator other than the porous substrate was a compound having a layered crystal structure.
- -Evaluation 3 As a result of EDS elemental analysis, Mg, Al, Ti, Y and Sr, which are constituent elements of LDH-like compounds, were detected on the surface of the LDH separator. The composition ratios (atomic ratios) of Mg, Al, Ti, Y and Sr on the surface of the LDH separator calculated by EDS elemental analysis are as shown in Table 1.
- -Evaluation 5 As shown in Table 1, extremely high density of He permeability of 0.0 cm / min ⁇ atm was confirmed.
- -Evaluation 6 As shown in Table 1, high ionic conductivity was confirmed.
- -Evaluation 7 He permeability after alkali immersion is 0.0 cm / min ⁇ atm as in evaluation 5, and excellent resistance to change in He permeability even after alkali immersion at a high temperature of 90 ° C for one week. Alkaline was confirmed.
- -Evaluation 8 As shown in Table 1, excellent dendrite resistance was confirmed, with no short circuit due to zinc dendrite even after 300 cycles.
- Example 9 Same as Example 1 except that the raw material aqueous solution (II) of (5) was prepared as follows, and barium was added by dipping treatment instead of (6) as follows. LDH separators were prepared and evaluated.
- -Evaluation 2 From the result that layered plaids could be confirmed, it was confirmed that the portion of the LDH separator other than the porous substrate was a compound having a layered crystal structure.
- -Evaluation 3 As a result of EDS elemental analysis, Al, Ti, Y and Ba, which are constituent elements of LDH-like compounds, were detected on the surface of the LDH separator. The composition ratios (atomic ratios) of Al, Ti, Y and Ba on the surface of the LDH separator calculated by EDS elemental analysis are as shown in Table 1.
- -Evaluation 5 As shown in Table 1, extremely high density of He permeability of 0.0 cm / min ⁇ atm was confirmed.
- -Evaluation 6 As shown in Table 1, high ionic conductivity was confirmed.
- -Evaluation 7 He permeability after alkali immersion is 0.0 cm / min ⁇ atm as in evaluation 5, and excellent resistance to change in He permeability even after alkali immersion at a high temperature of 90 ° C for one week. Alkaline was confirmed.
- -Evaluation 8 As shown in Table 1, excellent dendrite resistance was confirmed, with no short circuit due to zinc dendrite even after 300 cycles.
- Example 10 (comparison) a) Alumina sol coating was applied instead of (2) above, b) Aqueous solution (II) of the raw material of (5) above was not prepared, and c) Immersion treatment of (6) above. LDH separators were prepared and evaluated in the same manner as in Example 1 except that indium was not added.
- Alumina sol coating on polymer porous substrate Amorphous alumina sol (Al-ML15, manufactured by TAKI CHEMICAL CO., LTD.) was applied to the substrate prepared in (1) above by dip coating. The dip coating was carried out by immersing the substrate in 100 ml of amorphous alumina sol, pulling it up vertically, and drying it at room temperature for 3 hours.
- -Evaluation 1 The SEM image of the surface microstructure of the LDH separator (before roll press) obtained in Example 10 was as shown in FIG. -Evaluation 2: From the result that layered plaids could be confirmed, it was confirmed that the portion of the LDH separator other than the porous substrate was a compound having a layered crystal structure.
- -Evaluation 3 As a result of EDS elemental analysis, Mg and Al, which are LDH constituent elements, were detected on the surface of the LDH separator. The composition ratios (atomic ratios) of Mg and Al on the surface of the LDH separator calculated by EDS elemental analysis are as shown in Table 1.
- -Evaluation 5 As shown in Table 1, extremely high density of He permeability of 0.0 cm / min ⁇ atm was confirmed.
- -Evaluation 6 As shown in Table 1, high ionic conductivity was confirmed.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Cell Separators (AREA)
Abstract
耐アルカリ性に優れ、かつ、亜鉛デンドライトに起因する短絡をより一層効果的に抑制可能なLDHセパレータが提供される。このLDHセパレータは、多孔質基材と、多孔質基材の孔を塞ぐ層状複水酸化物(LDH)様化合物とを含む。LDH様化合物は、(i)Ti、Y、及び所望によりAl及び/又はMgと、(ii)In、Bi、Ca、Sr及びBaからなる群から選択される少なくとも1種である添加元素Mとを含む、層状結晶構造の水酸化物及び/又は酸化物である。
Description
本発明はLDHセパレータ及び亜鉛二次電池に関する。
ニッケル亜鉛二次電池、空気亜鉛二次電池等の亜鉛二次電池では、充電時に負極から金属亜鉛がデンドライト状に析出し、不織布等のセパレータの空隙を貫通して正極に到達し、その結果、短絡を引き起こすことが知られている。このような亜鉛デンドライトに起因する短絡は繰り返し充放電寿命の短縮を招く。
上記問題に対処すべく、水酸化物イオンを選択的に透過させながら、亜鉛デンドライトの貫通を阻止する、層状複水酸化物(LDH)セパレータを備えた電池が提案されている。層状複水酸化物(LDH)は、積み重なった水酸化物基本層の間に、中間層として交換可能な陰イオン及びH2Oを有する物質である。例えば、特許文献1(国際公開第2013/118561号)には、ニッケル亜鉛二次電池においてLDHセパレータを正極及び負極間に設けることが開示されている。また、特許文献2(国際公開第2016/076047号)には、樹脂製外枠に嵌合又は接合されたLDHセパレータを備えたセパレータ構造体が開示されており、LDHセパレータがガス不透過性及び/又は水不透過性を有する程の高い緻密性を有することが開示されている。また、この文献にはLDHセパレータが多孔質基材と複合化されうることも開示されている。さらに、特許文献3(国際公開第2016/067884号)には多孔質基材の表面にLDH緻密膜を形成して複合材料(LDHセパレータ)を得るための様々な方法が開示されている。この方法は、多孔質基材にLDHの結晶成長の起点を与えうる起点物質を均一に付着させ、原料水溶液中で多孔質基材に水熱処理を施してLDH緻密膜を多孔質基材の表面に形成させる工程を含むものである。特許文献1~3の実施例に開示されるLDHはいずれも、水酸化物基本層がMg及びAlを含むMg,Al-LDHである。
一方、特許文献4(国際公開第2017/221989号)には、Ni、Al及びTi及びOH基を含む複数の水酸化物基本層と、複数の水酸化物基本層間に介在する、陰イオン及びH2Oで構成される中間層とから構成されるLDHを含む、LDH含有機能層及び複合材料(すなわちLDHセパレータ)が開示されている。また、特許文献5(国際公開第2019/131221号)には、LDH含有機能層及び複合材料(すなわちLDHセパレータ)に関して、Ni、Ti及びAlを含むLDHが、Yをさらに含みうることが開示されている。
上述したようなLDHセパレータを用いてニッケル亜鉛電池等の亜鉛二次電池を構成した場合、亜鉛デンドライトによる短絡等をある程度防止できる。しかしながら、デンドライト短絡防止効果の更なる改善が望まれる。また、LDHが適用されるアルカリ二次電池(例えば金属空気電池やニッケル亜鉛電池)の電解液には、高い水酸化物イオン伝導度が要求され、それ故、pHが14程度で強アルカリ性の水酸化カリウム水溶液が用いられることが望まれる。このため、LDHにはこのような強アルカリ性電解液中においても殆ど劣化しないといった高度な耐アルカリ性が望まれる。
本発明者らは、今般、従来のLDHの代わりに、水酸化物イオン伝導物質として、少なくともTi及びYと、所定の添加元素とを含む層状結晶構造の水酸化物及び/又は酸化物であるLDH様化合物を用いることにより、耐アルカリ性に優れ、かつ、亜鉛デンドライトに起因する短絡をより一層効果的に抑制可能なLDHセパレータを提供できるとの知見を得た。
したがって、本発明の目的は、耐アルカリ性に優れ、かつ、亜鉛デンドライトに起因する短絡をより一層効果的に抑制可能なLDHセパレータを提供することにある。
本発明の一態様によれば、多孔質基材と、前記多孔質基材の孔を塞ぐ層状複水酸化物(LDH)様化合物とを含む、LDHセパレータであって、
前記LDH様化合物が、(i)Ti、Y、及び所望によりAl及び/又はMgと、(ii)In、Bi、Ca、Sr及びBaからなる群から選択される少なくとも1種である添加元素Mとを含む、層状結晶構造の水酸化物及び/又は酸化物である、LDHセパレータが提供される。
前記LDH様化合物が、(i)Ti、Y、及び所望によりAl及び/又はMgと、(ii)In、Bi、Ca、Sr及びBaからなる群から選択される少なくとも1種である添加元素Mとを含む、層状結晶構造の水酸化物及び/又は酸化物である、LDHセパレータが提供される。
本発明の他の一態様によれば、前記LDHセパレータを備えた、亜鉛二次電池が提供される。
本発明の他の一態様によれば、前記LDHセパレータを備えた、固体アルカリ型燃料電池が提供される。
LDHセパレータ
図1に模式断面図が概念的に示されるように、本発明のLDHセパレータ10は、多孔質基材12と、層状複水酸化物(LDH)様化合物14とを含む。なお、本明細書において「LDHセパレータ」は、LDH様化合物を含むセパレータであって、専らLDH様化合物の水酸化物イオン伝導性を利用して水酸化物イオンを選択的に通すものとして定義される。なお、図1においてLDHセパレータ10の上面と下面の間でLDH様化合物14の領域が繋がっていないように描かれているが、これは断面として二次元的に描かれているためであり、奥行きを考慮した三次元的にはLDHセパレータ10の上面と下面の間でLDH様化合物14の領域が繋がっており、それによりLDHセパレータ10の水酸化物イオン伝導性が確保されている。LDHセパレータ10において、多孔質基材12の孔をLDH様化合物14が塞いでいる。もっとも、多孔質基材12の孔は完全に塞がれている必要はなく、残留気孔Pが僅かに存在していてもよい。LDH様化合物14は、LDHとは呼べないもののそれに類する層状結晶構造の水酸化物及び/又は酸化物であり、(i)Ti、Y、及び所望によりAl及び/又はMgと、(ii)In、Bi、Ca、Sr及びBaからなる群から選択される少なくとも1種である添加元素Mとを含む。このように、従来のLDHの代わりに、水酸化物イオン伝導物質として、少なくともTi及びYと、添加元素Mとを含む層状結晶構造の水酸化物及び/又は酸化物であるLDH様化合物を用いることにより、耐アルカリ性に優れ、かつ、亜鉛デンドライトに起因する短絡をより一層効果的に抑制可能なLDHセパレータを提供することができる。
図1に模式断面図が概念的に示されるように、本発明のLDHセパレータ10は、多孔質基材12と、層状複水酸化物(LDH)様化合物14とを含む。なお、本明細書において「LDHセパレータ」は、LDH様化合物を含むセパレータであって、専らLDH様化合物の水酸化物イオン伝導性を利用して水酸化物イオンを選択的に通すものとして定義される。なお、図1においてLDHセパレータ10の上面と下面の間でLDH様化合物14の領域が繋がっていないように描かれているが、これは断面として二次元的に描かれているためであり、奥行きを考慮した三次元的にはLDHセパレータ10の上面と下面の間でLDH様化合物14の領域が繋がっており、それによりLDHセパレータ10の水酸化物イオン伝導性が確保されている。LDHセパレータ10において、多孔質基材12の孔をLDH様化合物14が塞いでいる。もっとも、多孔質基材12の孔は完全に塞がれている必要はなく、残留気孔Pが僅かに存在していてもよい。LDH様化合物14は、LDHとは呼べないもののそれに類する層状結晶構造の水酸化物及び/又は酸化物であり、(i)Ti、Y、及び所望によりAl及び/又はMgと、(ii)In、Bi、Ca、Sr及びBaからなる群から選択される少なくとも1種である添加元素Mとを含む。このように、従来のLDHの代わりに、水酸化物イオン伝導物質として、少なくともTi及びYと、添加元素Mとを含む層状結晶構造の水酸化物及び/又は酸化物であるLDH様化合物を用いることにより、耐アルカリ性に優れ、かつ、亜鉛デンドライトに起因する短絡をより一層効果的に抑制可能なLDHセパレータを提供することができる。
前述のとおり、LDH様化合物14は、(i)Ti、Y、及び所望によりAl及び/又はMgと、(ii)添加元素Mとを含む、層状結晶構造の水酸化物及び/又は酸化物である。したがって、典型的なLDH様化合物14は、Ti、Y、添加元素M、所望によりAl及び所望によりMgの複合水酸化物及び/又は複合酸化物である。添加元素Mは、In、Bi、Ca、Sr、Ba又はそれらの組合せである。LDH様化合物14の基本的特性を損なわない程度に上記元素は他の元素又はイオンで置き換えられてもよいが、LDH様化合物14はNiを含まないのが好ましい。
LDHセパレータ10は、エネルギー分散型X線分析(EDS)により決定される、LDH様化合物14におけるTi/(Mg+Al+Ti+Y+M)の原子比が0.50~0.85であるのが好ましく、より好ましくは0.56~0.81である。LDH様化合物14におけるY/(Mg+Al+Ti+Y+M)の原子比は0.03~0.20であるのが好ましく、より好ましくは0.07~0.15である。LDH様化合物14におけるM/(Mg+Al+Ti+Y+M)の原子比は0.03~0.35であるのが好ましく、より好ましくは0.03~0.32である。LDH様化合物14におけるMg/(Mg+Al+Ti+Y+M)の原子比は0~0.10であるのが好ましく、より好ましくは0~0.02である。そして、LDH様化合物14におけるAl/(Mg+Al+Ti+Y+M)の原子比は0~0.05であるのが好ましく、より好ましくは0~0.04である。上記範囲内であると、耐アルカリ性により一層優れ、かつ、亜鉛デンドライトに起因する短絡の抑制効果(すなわちデンドライト耐性)をより効果的に実現することができる。ところで、LDHセパレータに関して従来から知られるLDHは一般式:M2+
1-xM3+
x(OH)2An-
x/n・mH2O(式中、M2+は2価の陽イオン、M3+は3価の陽イオンであり、An-はn価の陰イオン、nは1以上の整数、xは0.1~0.4であり、mは0以上である)なる基本組成で表しうる。これに対して、LDH様化合物14における上記原子比は、LDHの上記一般式から概して逸脱している。このため、本発明におけるLDH様化合物14は、概して、従来のLDHとは異なる組成比(原子比)を有するといえる。なお、EDS分析は、EDS分析装置(例えばX-act、オックスフォード・インストゥルメンツ社製)を用いて、1)加速電圧20kV、倍率5,000倍で像を取り込み、2)点分析モードで5μm程度間隔を空け、3点分析を行い、3)上記1)及び2)をさらに1回繰り返し行い、4)合計6点の平均値を算出することにより行うのが好ましい。
LDHセパレータ10はイオン伝導率が0.1mS/cm以上であるのが好ましく、より好ましくは1.0mS/cm以上、さらに好ましくは1.5mS/cm以上、特に好ましくは2.0mS/cm以上である。このような範囲内であるとLDHセパレータとしての十分な機能を呈することができる。イオン伝導率は高ければ高い方が良いため、その上限値は特に限定されないが、例えば10mS/cmである。イオン伝導率は、LDHセパレータの抵抗、並びにLDHセパレータの厚み及び面積に基づいて算出される。LDHセパレータ10の抵抗は、所定濃度(例えば5.4M)のKOH水溶液中に浸漬させたLDHセパレータ10に対して、電気化学測定システム(ポテンショ/ガルバノスタット-周波数応答アナライザ)を用いて、周波数範囲1MHz~0.1Hz及び印加電圧10mVで測定を行い、実数軸の切片をLDHセパレータの抵抗として求めることにより決定することができる。
LDHセパレータ10は層状複水酸化物(LDH)様化合物14を含むセパレータであり、亜鉛二次電池に組み込まれた場合に、正極板と負極板とを水酸化物イオン伝導可能に隔離するものである。好ましいLDHセパレータ10はガス不透過性及び/又は水不透過性を有する。換言すれば、LDHセパレータ10はガス不透過性及び/又は水不透過性を有するほどに緻密化されているのが好ましい。なお、本明細書において「ガス不透過性を有する」とは、特許文献2及び3に記載されるように、水中で測定対象物の一面側にヘリウムガスを0.5atmの差圧で接触させても他面側からヘリウムガスに起因する泡の発生がみられないことを意味する。また、本明細書において「水不透過性を有する」とは、特許文献2及び3に記載されるように、測定対象物の一面側に接触した水が他面側に透過しないことを意味する。すなわち、LDHセパレータ10がガス不透過性及び/又は水不透過性を有するということは、LDHセパレータ10が気体又は水を通さない程の高度な緻密性を有することを意味し、透水性又はガス透過性を有する多孔性フィルムやその他の多孔質材料ではないことを意味する。こうすることで、LDHセパレータ10は、その水酸化物イオン伝導性に起因して水酸化物イオンのみを選択的に通すものとなり、電池用セパレータとしての機能を呈することができる。このため、充電時に生成する亜鉛デンドライトによるセパレータの貫通を物理的に阻止して正負極間の短絡を防止するのに極めて効果的な構成となっている。LDHセパレータ10は水酸化物イオン伝導性を有するため、正極板と負極板との間で必要な水酸化物イオンの効率的な移動を可能として正極板及び負極板における充放電反応を実現することができる。
LDHセパレータ10は、単位面積あたりのHe透過度が10cm/min・atm以下であるのが好ましく、より好ましくは5.0cm/min・atm以下、さらに好ましくは1.0cm/min・atm以下である。このような範囲内のHe透過度を有するLDHセパレータ10は緻密性が極めて高いといえる。したがって、He透過度が10cm/min・atm以下であるセパレータは、水酸化物イオン以外の物質の通過を高いレベルで阻止することができる。例えば、亜鉛二次電池の場合、電解液中においてZnの透過(典型的には亜鉛イオン又は亜鉛酸イオンの透過)を極めて効果的に抑制することができる。He透過度は、セパレータの一方の面にHeガスを供給してセパレータにHeガスを透過させる工程と、He透過度を算出してLDHセパレータの緻密性を評価する工程とを経て測定される。He透過度は、単位時間あたりのHeガスの透過量F、Heガス透過時にセパレータに加わる差圧P、及びHeガスが透過する膜面積Sを用いて、F/(P×S)の式により算出する。このようにHeガスを用いてガス透過性の評価を行うことにより、極めて高いレベルでの緻密性の有無を評価することができ、その結果、水酸化物イオン以外の物質(特に亜鉛デンドライト成長を引き起こすZn)を極力透過させない(極微量しか透過させない)といった高度な緻密性を効果的に評価することができる。これは、Heガスが、ガスを構成しうる多種多様な原子ないし分子の中でも最も小さい構成単位を有しており、しかも反応性が極めて低いためである。すなわち、Heは、分子を形成することなく、He原子単体でHeガスを構成する。この点、水素ガスはH2分子により構成されるため、ガス構成単位としてはHe原子単体の方がより小さい。そもそもH2ガスは可燃性ガスのため危険である。そして、上述した式により定義されるHeガス透過度という指標を採用することで、様々な試料サイズや測定条件の相違を問わず、緻密性に関する客観的な評価を簡便に行うことができる。こうして、セパレータが亜鉛二次電池用セパレータに適した十分に高い緻密性を有するのか否かを簡便、安全かつ効果的に評価することができる。He透過度の測定は、後述する実施例の評価5に示される手順に従って好ましく行うことができる。
LDHセパレータ10は、0.4M(mol/L)の濃度で酸化亜鉛を含む5.4M(mol/L)のKOH水溶液中に90℃で1週間(すなわち168時間)浸漬させた場合においても、単位面積あたりのHe透過度が10cm/min・atm以下であるのが好ましく、より好ましくは5.0cm/min・atm以下、さらに好ましくは1.0cm/min・atm以下である。上記範囲内であるセパレータは、アルカリ浸漬前後におけるHe透過度の変化が殆ど生じないとみなすことができ、それ故、耐アルカリ性に極めて優れるといえる。この点、本発明においては、LDH様化合物14がTi、Y及び添加元素Mを含むことで、アルカリ浸漬後におけるHe透過度の上昇を効果的に抑制することができると考えられる。なお、90℃という高温の水酸化カリウム水溶液への浸漬は、低温(例えば30℃)の場合と比べて過酷な耐アルカリ性加速試験であるといえる。
前述したとおり、LDHセパレータ10はLDH様化合物14と多孔質基材12とを含み(典型的には多孔質基材12及びLDH様化合物14からなり)、LDHセパレータ10は水酸化物イオン伝導性及びガス不透過性を呈するように(それ故水酸化物イオン伝導性を呈するセパレータとして機能するように)LDH様化合物が多孔質基材の孔を塞いでいる。LDH様化合物14は多孔質基材12の厚さ方向の全域にわたって組み込まれているのが特に好ましい。LDHセパレータ10の厚さは、好ましくは3~80μmであり、より好ましくは3~60μm、さらに好ましくは3~40μmである。
多孔質基材12は、セラミックス材料、金属材料、及び高分子材料からなる群から選択される少なくとも1種で構成されるのが好ましく、より好ましくはセラミックス材料及び高分子材料からなる群から選択される少なくとも1種で構成される。この場合、セラミックス材料の好ましい例としては、アルミナ、ジルコニア、チタニア、マグネシア、スピネル、カルシア、コージライト、ゼオライト、ムライト、フェライト、酸化亜鉛、炭化ケイ素、及びそれらの任意の組合せが挙げられ、より好ましくは、アルミナ、ジルコニア、チタニア、及びそれらの任意の組合せであり、特に好ましくはアルミナ、ジルコニア(例えばイットリア安定化ジルコニア(YSZ))、及びその組合せである。これらの多孔質セラミックスを用いると緻密性に優れたLDHセパレータを形成しやすい。金属材料の好ましい例としては、アルミニウム、亜鉛、及びニッケルが挙げられる。
多孔質基材12は、高分子材料で構成されるのが特に好ましい。高分子多孔質基材には、1)可撓性を有する(それ故薄くしても割れにくい)、2)気孔率を高くしやすい、3)伝導率を高くしやすい(気孔率を高めながら厚さを薄くできるため)、4)製造及びハンドリングしやすいといった利点がある。また、上記1)の可撓性に由来する利点を活かして、5)高分子材料製の多孔質基材を含むLDHセパレータを簡単に折り曲げる又は封止接合することができるとの利点もある。高分子材料の好ましい例としては、ポリスチレン、ポリエーテルサルフォン、ポリプロピレン、エポキシ樹脂、ポリフェニレンサルファイド、フッ素樹脂(四フッ素化樹脂:PTFE等)、セルロース、ナイロン、ポリエチレン、アクリロニトリルスチレン、ポリスルフォン、アクリロニトリル・ブタジエン・スチレン(ABS)樹脂、ポリ塩化ビニル、アセタール樹脂、ポリビニルアルコール(PVA)樹脂、ポリ塩化ビニリデン、ポリフッ化ビニリデン、フェノール樹脂、アリル樹脂、フラン樹脂及びそれらの任意の組合せが挙げられる。上述した各種の好ましい材料はいずれも電池の電解液に対する耐性として耐アルカリ性を有するものである。特に好ましい高分子材料は、耐熱水性、耐酸性及び耐アルカリ性に優れ、しかも低コストである点から、ポリプロピレン、ポリエチレン等のポリオレフィンであり、最も好ましくはポリプロピレン又はポリエチレンである。多孔質基材12が高分子材料で構成される場合、LDH様化合物14が多孔質基材12の厚さ方向の全域にわたって組み込まれている(例えば多孔質基材12内部の大半又はほぼ全部の孔がLDH様化合物14で埋まっている)のが特に好ましい。このような高分子多孔質基材として、市販の高分子微多孔膜を好ましく用いることができる。
製造方法
LDHセパレータ10の製造方法は特に限定されず、既に知られるLDH含有機能層及び複合材料の製造方法(例えば特許文献1~5を参照)の諸条件(特にLDH原料組成)を適宜変更することにより作製することができる。例えば、以下の手順(1)~(5)によりTi、Y及び添加元素M(あるいはさらにMg及び/又はAl)を含むLDH様化合物含有機能層及び複合材料(すなわちLDHセパレータ)を製造することができる。
(1)多孔質基材を用意する。
(2)多孔質基材に、チタニアゾル及びイットリウムゾル(あるいはさらにアルミナゾル)を含む溶液を塗布して乾燥することでチタニア及びイットリウム含有層を形成させる。
(3)マグネシウムイオン(Mg2+)及び尿素を含む原料水溶液に多孔質基材を浸漬させる。
(4)原料水溶液中で多孔質基材を水熱処理して、LDH様化合物含有機能層を多孔質基材上及び/又は多孔質基材中に形成させたLDHセパレータを得る。
(5)LDHセパレータを、添加元素Mのイオン(In3+、Bi3+、Ca2+、Sr2+及び/又はBa2+)を含む溶液に浸漬することで、LDH様化合物を構成するMgの一部又は全部を添加元素Mと置換させる。
LDHセパレータ10の製造方法は特に限定されず、既に知られるLDH含有機能層及び複合材料の製造方法(例えば特許文献1~5を参照)の諸条件(特にLDH原料組成)を適宜変更することにより作製することができる。例えば、以下の手順(1)~(5)によりTi、Y及び添加元素M(あるいはさらにMg及び/又はAl)を含むLDH様化合物含有機能層及び複合材料(すなわちLDHセパレータ)を製造することができる。
(1)多孔質基材を用意する。
(2)多孔質基材に、チタニアゾル及びイットリウムゾル(あるいはさらにアルミナゾル)を含む溶液を塗布して乾燥することでチタニア及びイットリウム含有層を形成させる。
(3)マグネシウムイオン(Mg2+)及び尿素を含む原料水溶液に多孔質基材を浸漬させる。
(4)原料水溶液中で多孔質基材を水熱処理して、LDH様化合物含有機能層を多孔質基材上及び/又は多孔質基材中に形成させたLDHセパレータを得る。
(5)LDHセパレータを、添加元素Mのイオン(In3+、Bi3+、Ca2+、Sr2+及び/又はBa2+)を含む溶液に浸漬することで、LDH様化合物を構成するMgの一部又は全部を添加元素Mと置換させる。
特に、多孔質基材12が高分子材料で構成され、LDH様化合物14が多孔質基材の厚さ方向の全域にわたって組み込まれている複合材料(すなわちLDHセパレータ)を作製する場合、上記(2)における混合ゾル溶液の基材への塗布を、混合ゾル溶液を基材内部の全体又は大部分に浸透させるような手法で行うのが好ましい。こうすることで最終的に多孔質基材内部の大半又はほぼ全部の孔をLDH様化合物で埋めることができる。好ましい塗布手法の例としては、ディップコート、ろ過コート等が挙げられ、特に好ましくはディップコートである。ディップコート等の塗布回数を調整することで、混合ゾル溶液の付着量を調整することができる。ディップコート等により混合ゾル溶液が塗布された基材は、乾燥させた後、上記(3)~(5)の工程を実施すればよい。
上記工程(3)において尿素が存在することで、尿素の加水分解を利用してアンモニアが溶液中に発生することによりpH値が上昇し、共存する金属イオンが水酸化物及び/又は酸化物を形成することによりLDH様化合物を得ることができるものと考えられる。また、上記工程(5)において、LDHセパレータを所定の溶液に室温(例えば30℃)で1~24時間浸漬するのが好ましい。こうすることで、添加元素Mを所望の原子比(M/(Mg+Al+Ti+Y+M))で含むLDH様化合物を形成しやすくなる。
多孔質基材12が高分子材料で構成される場合、上記方法等によって得られたLDHセパレータに対してプレス処理を施すのが好ましい。こうすることで、緻密性により一層優れたLDHセパレータを得ることができる。プレス手法は、例えばロールプレス、一軸加圧プレス、CIP(冷間等方圧加圧)等であってよく、特に限定されないが、好ましくはロールプレスである。このプレスは加熱しながら行うのが高分子多孔質基材を軟化させることで、多孔質基材の孔をLDH様化合物で十分に塞ぐことができる点で好ましい。十分に軟化する温度として、例えば、ポリプロピレンやポリエチレンの場合は60~200℃で加熱するのが好ましい。このような温度域でロールプレス等のプレスを行うことで、LDHセパレータの残留気孔を大幅に低減することができる。その結果、LDHセパレータを極めて高度に緻密化することができ、それ故、亜鉛デンドライトに起因する短絡をより一層効果的に抑制することができる。ロールプレスを行う際、ロールギャップ及びロール温度を適宜調整することで残留気孔の形態を制御することができ、それにより所望の緻密性のLDHセパレータを得ることができる。
亜鉛二次電池
本発明のLDHセパレータは亜鉛二次電池に適用されるのが好ましい。したがって、本発明の好ましい態様によれば、LDHセパレータを備えた、亜鉛二次電池が提供される。典型的な亜鉛二次電池は、正極と、負極と、電解液とを備え、LDHセパレータを介して正極と負極が互いに隔離されるものである。本発明の亜鉛二次電池は、亜鉛を負極として用い、かつ、電解液(典型的にはアルカリ金属水酸化物水溶液)を用いた二次電池であれば特に限定されない。したがって、ニッケル亜鉛二次電池、酸化銀亜鉛二次電池、酸化マンガン亜鉛二次電池、亜鉛空気二次電池、その他各種のアルカリ亜鉛二次電池であることができる。例えば、正極が水酸化ニッケル及び/又はオキシ水酸化ニッケルを含み、それにより亜鉛二次電池がニッケル亜鉛二次電池をなすのが好ましい。あるいは、正極が空気極であり、それにより亜鉛二次電池が亜鉛空気二次電池をなしてもよい。
本発明のLDHセパレータは亜鉛二次電池に適用されるのが好ましい。したがって、本発明の好ましい態様によれば、LDHセパレータを備えた、亜鉛二次電池が提供される。典型的な亜鉛二次電池は、正極と、負極と、電解液とを備え、LDHセパレータを介して正極と負極が互いに隔離されるものである。本発明の亜鉛二次電池は、亜鉛を負極として用い、かつ、電解液(典型的にはアルカリ金属水酸化物水溶液)を用いた二次電池であれば特に限定されない。したがって、ニッケル亜鉛二次電池、酸化銀亜鉛二次電池、酸化マンガン亜鉛二次電池、亜鉛空気二次電池、その他各種のアルカリ亜鉛二次電池であることができる。例えば、正極が水酸化ニッケル及び/又はオキシ水酸化ニッケルを含み、それにより亜鉛二次電池がニッケル亜鉛二次電池をなすのが好ましい。あるいは、正極が空気極であり、それにより亜鉛二次電池が亜鉛空気二次電池をなしてもよい。
固体アルカリ形燃料電池
本発明のLDHセパレータは固体アルカリ形燃料電池に適用することも可能である。すなわち、多孔質基材の孔をLDH様化合物で塞いで高度に緻密化させたLDHセパレータを用いることで、燃料の空気極側への透過(例えばメタノールのクロスオーバー)に起因する起電力の低下を効果的に抑制可能な、固体アルカリ形燃料電池を提供できる。LDHセパレータの有する水酸化物イオン伝導性を発揮させながら、メタノール等の燃料のLDHセパレータの透過を効果的に抑制できるためである。したがって、本発明の別の好ましい態様によれば、LDHセパレータを備えた、固体アルカリ形燃料電池が提供される。本態様による典型的な固体アルカリ形燃料電池は、酸素が供給される空気極と、液体燃料及び/又は気体燃料が供給される燃料極と、燃料極と空気極の間に介在されるLDHセパレータとを備える。
本発明のLDHセパレータは固体アルカリ形燃料電池に適用することも可能である。すなわち、多孔質基材の孔をLDH様化合物で塞いで高度に緻密化させたLDHセパレータを用いることで、燃料の空気極側への透過(例えばメタノールのクロスオーバー)に起因する起電力の低下を効果的に抑制可能な、固体アルカリ形燃料電池を提供できる。LDHセパレータの有する水酸化物イオン伝導性を発揮させながら、メタノール等の燃料のLDHセパレータの透過を効果的に抑制できるためである。したがって、本発明の別の好ましい態様によれば、LDHセパレータを備えた、固体アルカリ形燃料電池が提供される。本態様による典型的な固体アルカリ形燃料電池は、酸素が供給される空気極と、液体燃料及び/又は気体燃料が供給される燃料極と、燃料極と空気極の間に介在されるLDHセパレータとを備える。
その他の電池
本発明のLDHセパレータはニッケル亜鉛電池や固体アルカリ形燃料電池の他、例えばニッケル水素電池にも使用することができる。この場合、LDHセパレータは当該電池の自己放電の要因であるナイトライドシャトル(nitride shuttle)(硝酸基の電極間移動)をブロックする機能を果たす。また、本発明のLDHセパレータは、リチウム電池(リチウム金属が負極の電池)、リチウムイオン電池(負極がカーボン等の電池)あるいはリチウム空気電池等にも使用可能である。
本発明のLDHセパレータはニッケル亜鉛電池や固体アルカリ形燃料電池の他、例えばニッケル水素電池にも使用することができる。この場合、LDHセパレータは当該電池の自己放電の要因であるナイトライドシャトル(nitride shuttle)(硝酸基の電極間移動)をブロックする機能を果たす。また、本発明のLDHセパレータは、リチウム電池(リチウム金属が負極の電池)、リチウムイオン電池(負極がカーボン等の電池)あるいはリチウム空気電池等にも使用可能である。
本発明を以下の例によってさらに具体的に説明する。なお、以下の例で作製されるLDHセパレータの評価方法は以下のとおりとした。
評価1:表面微構造の観察
LDHセパレータの表面微構造を走査型電子顕微鏡(SEM、JSM-6610LV、JEOL社製)を用いて10~20kVの加速電圧で観察した。
LDHセパレータの表面微構造を走査型電子顕微鏡(SEM、JSM-6610LV、JEOL社製)を用いて10~20kVの加速電圧で観察した。
評価2:層状構造のSTEM解析
LDHセパレータの層状構造を走査透過電子顕微鏡(STEM)(製品名:JEM-ARM200F、JEOL社製)を用いて、200kVの加速電圧で観察した。
LDHセパレータの層状構造を走査透過電子顕微鏡(STEM)(製品名:JEM-ARM200F、JEOL社製)を用いて、200kVの加速電圧で観察した。
評価3:元素分析評価(EDS)
LDHセパレータ表面に対してEDS分析装置(装置名:X-act、オックスフォード・インストゥルメンツ社製)を用いて組成分析を行い、Mg:Al:Ti:Y:添加元素Mの組成比(原子比)を算出した。この分析は、1)加速電圧20kV、倍率5,000倍で像を取り込み、2)点分析モードで5μm程度間隔を空け、3点分析を行い、3)上記1)及び2)をさらに1回繰り返し行い、4)合計6点の平均値を算出することにより行った。
LDHセパレータ表面に対してEDS分析装置(装置名:X-act、オックスフォード・インストゥルメンツ社製)を用いて組成分析を行い、Mg:Al:Ti:Y:添加元素Mの組成比(原子比)を算出した。この分析は、1)加速電圧20kV、倍率5,000倍で像を取り込み、2)点分析モードで5μm程度間隔を空け、3点分析を行い、3)上記1)及び2)をさらに1回繰り返し行い、4)合計6点の平均値を算出することにより行った。
評価4:X線回折測定
X線回折装置(リガク社製、RINT TTR III)にて、電圧:50kV、電流値:300mA、測定範囲:5~40°の測定条件で、LDHセパレータの結晶相を測定してXRDプロファイルを得た。
評価5:He透過測定
He透過性の観点からLDHセパレータの緻密性を評価すべくHe透過試験を以下のとおり行った。まず、図2A及び図2Bに示されるHe透過度測定系310を構築した。He透過度測定系310は、Heガスを充填したガスボンベからのHeガスが圧力計312及び流量計314(デジタルフローメーター)を介して試料ホルダ316に供給され、この試料ホルダ316に保持されたLDHセパレータ318の一方の面から他方の面に透過させて排出させるように構成した。
X線回折装置(リガク社製、RINT TTR III)にて、電圧:50kV、電流値:300mA、測定範囲:5~40°の測定条件で、LDHセパレータの結晶相を測定してXRDプロファイルを得た。
評価5:He透過測定
He透過性の観点からLDHセパレータの緻密性を評価すべくHe透過試験を以下のとおり行った。まず、図2A及び図2Bに示されるHe透過度測定系310を構築した。He透過度測定系310は、Heガスを充填したガスボンベからのHeガスが圧力計312及び流量計314(デジタルフローメーター)を介して試料ホルダ316に供給され、この試料ホルダ316に保持されたLDHセパレータ318の一方の面から他方の面に透過させて排出させるように構成した。
試料ホルダ316は、ガス供給口316a、密閉空間316b及びガス排出口316cを備えた構造を有するものであり、次のようにして組み立てた。まず、LDHセパレータ318の外周に沿って接着剤322を塗布して、中央に開口部を有する治具324(ABS樹脂製)に取り付けた。この治具324の上端及び下端に密封部材326a,326bとしてブチルゴム製のパッキンを配設し、さらに密封部材326a,326bの外側から、フランジからなる開口部を備えた支持部材328a,328b(PTFE製)で挟持した。こうして、LDHセパレータ318、治具324、密封部材326a及び支持部材328aにより密閉空間316bを区画した。支持部材328a,328bを、ガス排出口316c以外の部分からHeガスの漏れが生じないように、ネジを用いた締結手段330で互いに堅く締め付けた。こうして組み立てられた試料ホルダ316のガス供給口316aに、継手332を介してガス供給管334を接続した。
次いで、He透過度測定系310にガス供給管334を経てHeガスを供給し、試料ホルダ316内に保持されたLDHセパレータ318に透過させた。このとき、圧力計312及び流量計314によりガス供給圧と流量をモニタリングした。Heガスの透過を1~30分間行った後、He透過度を算出した。He透過度の算出は、単位時間あたりのHeガスの透過量F(cm3/min)、Heガス透過時にLDHセパレータに加わる差圧P(atm)、及びHeガスが透過する膜面積S(cm2)を用いて、F/(P×S)の式により算出した。Heガスの透過量F(cm3/min)は流量計314から直接読み取った。また、差圧Pは圧力計312から読み取ったゲージ圧を用いた。なお、Heガスは差圧Pが0.05~0.90atmの範囲内となるように供給された。
評価6:イオン伝導率の測定
電解液中でのLDHセパレータの伝導率を図3に示される電気化学測定系を用いて以下のようにして測定した。LDHセパレータ試料Sを両側から厚み1mmシリコーンパッキン440で挟み、内径6mmのPTFE製フランジ型セル442に組み込んだ。電極446として、#100メッシュのニッケル金網をセル442内に直径6mmの円筒状にして組み込み、電極間距離が2.2mmになるようにした。電解液444として、5.4MのKOH水溶液をセル442内に充填した。電気化学測定システム(ポテンショ/ガルバノスタット -周波数応答アナライザ、ソーラトロン社製1287A型及び1255B型)を用い、周波数範囲は1MHz~0.1Hz、印加電圧は10mVの条件で測定を行い、実数軸の切片をLDHセパレータ試料Sの抵抗とした。上記同様の測定をLDHセパレータ試料S無しの構成で行い、ブランク抵抗も求めた。LDHセパレータ試料Sの抵抗とブランク抵抗の差をLDHセパレータの抵抗とした。得られたLDHセパレータの抵抗と、LDHセパレータの厚み及び面積を用いて伝導率を求めた。
電解液中でのLDHセパレータの伝導率を図3に示される電気化学測定系を用いて以下のようにして測定した。LDHセパレータ試料Sを両側から厚み1mmシリコーンパッキン440で挟み、内径6mmのPTFE製フランジ型セル442に組み込んだ。電極446として、#100メッシュのニッケル金網をセル442内に直径6mmの円筒状にして組み込み、電極間距離が2.2mmになるようにした。電解液444として、5.4MのKOH水溶液をセル442内に充填した。電気化学測定システム(ポテンショ/ガルバノスタット -周波数応答アナライザ、ソーラトロン社製1287A型及び1255B型)を用い、周波数範囲は1MHz~0.1Hz、印加電圧は10mVの条件で測定を行い、実数軸の切片をLDHセパレータ試料Sの抵抗とした。上記同様の測定をLDHセパレータ試料S無しの構成で行い、ブランク抵抗も求めた。LDHセパレータ試料Sの抵抗とブランク抵抗の差をLDHセパレータの抵抗とした。得られたLDHセパレータの抵抗と、LDHセパレータの厚み及び面積を用いて伝導率を求めた。
評価7:耐アルカリ性評価
0.4Mの濃度で酸化亜鉛を含む5.4MのKOH水溶液を用意した。用意したKOH水溶液0.5mLと、2cm四方のサイズのLDHセパレータ試料をテフロン(登録商標)製密閉容器に入れた。その後、90℃で1週間(すなわち168時間)保持した後、LDHセパレータ試料を密閉容器から取り出した。取り出したLDHセパレータ試料を15mLのイオン交換水で洗浄した後、室温で1晩乾燥させた。得られた試料について、評価5と同様の方法でHe透過度を算出し、アルカリ浸漬前後におけるHe透過度の変化の有無を判定した。
0.4Mの濃度で酸化亜鉛を含む5.4MのKOH水溶液を用意した。用意したKOH水溶液0.5mLと、2cm四方のサイズのLDHセパレータ試料をテフロン(登録商標)製密閉容器に入れた。その後、90℃で1週間(すなわち168時間)保持した後、LDHセパレータ試料を密閉容器から取り出した。取り出したLDHセパレータ試料を15mLのイオン交換水で洗浄した後、室温で1晩乾燥させた。得られた試料について、評価5と同様の方法でHe透過度を算出し、アルカリ浸漬前後におけるHe透過度の変化の有無を判定した。
評価8:デンドライト耐性の評価(サイクル試験)
LDHセパレータの亜鉛デンドライトに起因する短絡の抑制効果(デンドライト耐性)を評価すべくサイクル試験を以下のとおり行った。まず、正極(水酸化ニッケル及び/又はオキシ水酸化ニッケルを含む)と負極(亜鉛及び/又は酸化亜鉛を含む)の各々を不織布で包むとともに、電流取り出し端子を溶接した。こうして準備された正極及び負極を、LDHセパレータを介して対向させ、電流取り出し口が設けられたラミネートフィルムに挟んで、ラミネートフィルムの3辺を熱融着した。こうして得られた上部開放されたセル容器に電解液(5.4MのKOH水溶液中に0.4Mの酸化亜鉛を溶解させたもの)を加え、真空引き等により電解液を十分に正極及び負極に浸透させた。その後、ラミネートフィルムの残りの1辺も熱融着して、簡易密閉セルとした。充放電装置(東洋システム株式会社製、TOSCAT3100)を用いて、簡易密閉セルに対し、0.1C充電及び0.2C放電で化成を実施した。その後、1C充放電サイクルを実施した。同一条件で繰り返し充放電サイクルを実施しながら、正極及び負極間の電圧を電圧計でモニタリングし、正極及び負極間における亜鉛デンドライトに起因する短絡に伴う急激な電圧低下(具体的には直前にプロットされた電圧に対して5mV以上の電圧低下)の有無を調べ、以下の基準で評価した。
・短絡なし:300サイクル後も充電中に上記急激な電圧低下が見られなかった。
・短絡あり:300サイクル未満で充電中に上記急激な電圧低下が見られた。
LDHセパレータの亜鉛デンドライトに起因する短絡の抑制効果(デンドライト耐性)を評価すべくサイクル試験を以下のとおり行った。まず、正極(水酸化ニッケル及び/又はオキシ水酸化ニッケルを含む)と負極(亜鉛及び/又は酸化亜鉛を含む)の各々を不織布で包むとともに、電流取り出し端子を溶接した。こうして準備された正極及び負極を、LDHセパレータを介して対向させ、電流取り出し口が設けられたラミネートフィルムに挟んで、ラミネートフィルムの3辺を熱融着した。こうして得られた上部開放されたセル容器に電解液(5.4MのKOH水溶液中に0.4Mの酸化亜鉛を溶解させたもの)を加え、真空引き等により電解液を十分に正極及び負極に浸透させた。その後、ラミネートフィルムの残りの1辺も熱融着して、簡易密閉セルとした。充放電装置(東洋システム株式会社製、TOSCAT3100)を用いて、簡易密閉セルに対し、0.1C充電及び0.2C放電で化成を実施した。その後、1C充放電サイクルを実施した。同一条件で繰り返し充放電サイクルを実施しながら、正極及び負極間の電圧を電圧計でモニタリングし、正極及び負極間における亜鉛デンドライトに起因する短絡に伴う急激な電圧低下(具体的には直前にプロットされた電圧に対して5mV以上の電圧低下)の有無を調べ、以下の基準で評価した。
・短絡なし:300サイクル後も充電中に上記急激な電圧低下が見られなかった。
・短絡あり:300サイクル未満で充電中に上記急激な電圧低下が見られた。
例1
(1)高分子多孔質基材の準備
気孔率50%、平均気孔径0.1μm及び厚さ20μmの市販のポリエチレン微多孔膜を高分子多孔質基材として用意し、2.0cm×2.0cmの大きさになるように切り出した。
(1)高分子多孔質基材の準備
気孔率50%、平均気孔径0.1μm及び厚さ20μmの市販のポリエチレン微多孔膜を高分子多孔質基材として用意し、2.0cm×2.0cmの大きさになるように切り出した。
(2)高分子多孔質基材へのチタニア・イットリア・アルミナゾルコート
酸化チタンゾル溶液(M6、多木化学株式会社製)、イットリウムゾル、及び無定形アルミナ溶液(Al-ML15、多木化学株式会社製)をTi/(Y+Al)(モル比)=2、及びY/Al(モル比)=8となるように混合した。混合溶液を、上記(1)で用意された基材にディップコートにより塗布した。ディップコートは、混合溶液100mlに基材を浸漬させてから垂直に引き上げ、室温で3時間乾燥させることにより行った。
酸化チタンゾル溶液(M6、多木化学株式会社製)、イットリウムゾル、及び無定形アルミナ溶液(Al-ML15、多木化学株式会社製)をTi/(Y+Al)(モル比)=2、及びY/Al(モル比)=8となるように混合した。混合溶液を、上記(1)で用意された基材にディップコートにより塗布した。ディップコートは、混合溶液100mlに基材を浸漬させてから垂直に引き上げ、室温で3時間乾燥させることにより行った。
(3)原料水溶液(I)の作製
原料として、硝酸マグネシウム六水和物(Mg(NO3)2・6H2O、関東化学株式会社製)及び尿素((NH2)2CO、シグマアルドリッチ製)を用意した。硝酸マグネシウム六水和物を0.015mol/Lとなるように秤量してビーカーに入れ、そこにイオン交換水を加えて全量を75mlとした。得られた溶液を攪拌した後、溶液中に尿素/NO3 -(モル比)=48の割合で秤量した尿素を加え、更に攪拌して原料水溶液(I)を得た。
原料として、硝酸マグネシウム六水和物(Mg(NO3)2・6H2O、関東化学株式会社製)及び尿素((NH2)2CO、シグマアルドリッチ製)を用意した。硝酸マグネシウム六水和物を0.015mol/Lとなるように秤量してビーカーに入れ、そこにイオン交換水を加えて全量を75mlとした。得られた溶液を攪拌した後、溶液中に尿素/NO3 -(モル比)=48の割合で秤量した尿素を加え、更に攪拌して原料水溶液(I)を得た。
(4)水熱処理による成膜
テフロン(登録商標)製密閉容器(オートクレーブ容器、内容量100ml、外側がステンレス製ジャケット)に原料水溶液(I)とディップコートされた基材を共に封入した。このとき、基材はテフロン(登録商標)製密閉容器の底から浮かせて固定し、基材両面に溶液が接するように垂直に設置した。その後、水熱温度120℃で22時間水熱処理を施すことにより基材表面と内部にLDH様化合物の形成を行った。所定時間の経過後、基材を密閉容器から取り出し、イオン交換水で洗浄し、70℃で10時間乾燥させて、多孔質基材の孔内にLDH様化合物を形成させた。
テフロン(登録商標)製密閉容器(オートクレーブ容器、内容量100ml、外側がステンレス製ジャケット)に原料水溶液(I)とディップコートされた基材を共に封入した。このとき、基材はテフロン(登録商標)製密閉容器の底から浮かせて固定し、基材両面に溶液が接するように垂直に設置した。その後、水熱温度120℃で22時間水熱処理を施すことにより基材表面と内部にLDH様化合物の形成を行った。所定時間の経過後、基材を密閉容器から取り出し、イオン交換水で洗浄し、70℃で10時間乾燥させて、多孔質基材の孔内にLDH様化合物を形成させた。
(5)原料水溶液(II)の作製
原料として、硫酸インジウムn水和物(In2(SO4)3・nH2O、富士フイルム和光純薬株式会社製)を用意した。硫酸インジウムn水和物を0.0075mol/Lとなるように秤量してビーカーに入れ、そこにイオン交換水を加えて全量を75mlとした。得られた溶液を攪拌して原料水溶液(II)を得た。
原料として、硫酸インジウムn水和物(In2(SO4)3・nH2O、富士フイルム和光純薬株式会社製)を用意した。硫酸インジウムn水和物を0.0075mol/Lとなるように秤量してビーカーに入れ、そこにイオン交換水を加えて全量を75mlとした。得られた溶液を攪拌して原料水溶液(II)を得た。
(6)浸漬処理によるインジウム添加
テフロン(登録商標)製密閉容器(オートクレーブ容器、内容量100ml、外側がステンレス製ジャケット)に原料水溶液(II)と上記(4)で得たLDHセパレータを共に封入した。このとき、基材はテフロン(登録商標)製密閉容器の底から浮かせて固定し、基材両面に溶液が接するように垂直に設置した。その後、30℃で1時間浸漬処理を施すことによりインジウム添加を行った。所定時間の経過後、基材を密閉容器から取り出し、イオン交換水で洗浄し、70℃で10時間乾燥させて、インジウムが添加されたLDHセパレータを得た。
テフロン(登録商標)製密閉容器(オートクレーブ容器、内容量100ml、外側がステンレス製ジャケット)に原料水溶液(II)と上記(4)で得たLDHセパレータを共に封入した。このとき、基材はテフロン(登録商標)製密閉容器の底から浮かせて固定し、基材両面に溶液が接するように垂直に設置した。その後、30℃で1時間浸漬処理を施すことによりインジウム添加を行った。所定時間の経過後、基材を密閉容器から取り出し、イオン交換水で洗浄し、70℃で10時間乾燥させて、インジウムが添加されたLDHセパレータを得た。
(7)ロールプレスによる緻密化
上記LDHセパレータを、1対のPETフィルム(東レ株式会社製、ルミラー(登録商標)、厚さ40μm)で挟み、ロール回転速度3mm/s、ローラ加熱温度70℃、ロールギャップ70μmにてロールプレスを行い、さらに緻密化されたLDHセパレータを得た。
上記LDHセパレータを、1対のPETフィルム(東レ株式会社製、ルミラー(登録商標)、厚さ40μm)で挟み、ロール回転速度3mm/s、ローラ加熱温度70℃、ロールギャップ70μmにてロールプレスを行い、さらに緻密化されたLDHセパレータを得た。
(8)評価結果
得られたLDHセパレータに対して各種評価を行った。結果は以下のとおりであった。
得られたLDHセパレータに対して各種評価を行った。結果は以下のとおりであった。
‐評価1:例1で得られたLDHセパレータ(ロールプレス前)の表面微構造のSEM画像は図4に示されるとおりであった。
‐評価2:層状の格子縞が確認できるという結果からLDHセパレータの多孔質基材以外の部分が層状結晶構造の化合物であることが確認された。
‐評価3:EDS元素分析の結果、LDHセパレータ表面において、LDH様化合物の構成元素であるAl、Ti、Y及びInが検出された。また、EDS元素分析により算出された、LDHセパレータ表面のAl、Ti、Y及びInの組成比(原子比)は表1に示されるとおりであった。
‐評価5:表1に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表1に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・atmであり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度が変化しないという優れた耐アルカリ性が確認された。
‐評価8:表1に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
‐評価2:層状の格子縞が確認できるという結果からLDHセパレータの多孔質基材以外の部分が層状結晶構造の化合物であることが確認された。
‐評価3:EDS元素分析の結果、LDHセパレータ表面において、LDH様化合物の構成元素であるAl、Ti、Y及びInが検出された。また、EDS元素分析により算出された、LDHセパレータ表面のAl、Ti、Y及びInの組成比(原子比)は表1に示されるとおりであった。
‐評価5:表1に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表1に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・atmであり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度が変化しないという優れた耐アルカリ性が確認された。
‐評価8:表1に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
例2
上記(6)の浸漬処理によるインジウム添加において、浸漬処理の時間を24時間に変更したこと以外は、例1と同様にしてLDHセパレータの作製及び評価を行った。
上記(6)の浸漬処理によるインジウム添加において、浸漬処理の時間を24時間に変更したこと以外は、例1と同様にしてLDHセパレータの作製及び評価を行った。
‐評価2:層状の格子縞が確認できるという結果からLDHセパレータの多孔質基材以外の部分が層状結晶構造の化合物であることが確認された。
‐評価3:EDS元素分析の結果、LDHセパレータ表面において、LDH様化合物の構成元素であるAl、Ti、Y及びInが検出された。また、EDS元素分析により算出された、LDHセパレータ表面のAl、Ti、Y及びInの組成比(原子比)は表1に示されるとおりであった。
‐評価5:表1に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表1に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・atmであり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度が変化しないという優れた耐アルカリ性が確認された。
‐評価8:表1に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
‐評価3:EDS元素分析の結果、LDHセパレータ表面において、LDH様化合物の構成元素であるAl、Ti、Y及びInが検出された。また、EDS元素分析により算出された、LDHセパレータ表面のAl、Ti、Y及びInの組成比(原子比)は表1に示されるとおりであった。
‐評価5:表1に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表1に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・atmであり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度が変化しないという優れた耐アルカリ性が確認された。
‐評価8:表1に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
例3
上記(2)の代わりにチタニア・イットリアゾルコートを以下のように行ったこと以外は、例1と同様にしてLDHセパレータの作製及び評価を行った。
上記(2)の代わりにチタニア・イットリアゾルコートを以下のように行ったこと以外は、例1と同様にしてLDHセパレータの作製及び評価を行った。
(高分子多孔質基材へのチタニア・イットリアゾルコート)
酸化チタンゾル溶液(M6、多木化学株式会社製)及びイットリウムゾルをTi/Y(モル比)=2となるように混合した。得られた混合溶液を、上記(1)で用意された基材にディップコートにより塗布した。ディップコートは、混合溶液100mlに基材を浸漬させてから垂直に引き上げ、室温で3時間乾燥させることにより行った。
酸化チタンゾル溶液(M6、多木化学株式会社製)及びイットリウムゾルをTi/Y(モル比)=2となるように混合した。得られた混合溶液を、上記(1)で用意された基材にディップコートにより塗布した。ディップコートは、混合溶液100mlに基材を浸漬させてから垂直に引き上げ、室温で3時間乾燥させることにより行った。
‐評価2:層状の格子縞が確認できるという結果からLDHセパレータの多孔質基材以外の部分が層状結晶構造の化合物であることが確認された。
‐評価3:EDS元素分析の結果、LDHセパレータ表面において、LDH様化合物の構成元素であるTi、Y及びInが検出された。また、EDS元素分析により算出された、LDHセパレータ表面のTi、Y及びInの組成比(原子比)は表1に示されるとおりであった。
‐評価5:表1に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表1に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・atm未満であり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度が変化しないという優れた耐アルカリ性が確認された。
‐評価8:表1に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
‐評価3:EDS元素分析の結果、LDHセパレータ表面において、LDH様化合物の構成元素であるTi、Y及びInが検出された。また、EDS元素分析により算出された、LDHセパレータ表面のTi、Y及びInの組成比(原子比)は表1に示されるとおりであった。
‐評価5:表1に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表1に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・atm未満であり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度が変化しないという優れた耐アルカリ性が確認された。
‐評価8:表1に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
例4
上記(5)の原料水溶液(II)の作製を以下のように行ったこと、及び上記(6)の代わりに浸漬処理によるビスマス添加を以下のように行ったこと以外は、例1と同様にしてLDHセパレータの作製及び評価を行った。
上記(5)の原料水溶液(II)の作製を以下のように行ったこと、及び上記(6)の代わりに浸漬処理によるビスマス添加を以下のように行ったこと以外は、例1と同様にしてLDHセパレータの作製及び評価を行った。
(原料水溶液(II)の作製)
原料として、硝酸ビスマス五水和物(Bi(NO3)3・5H2O)を用意した。硝酸ビスマス五水和物を0.00075mol/Lとなるように秤量してビーカーに入れ、そこにイオン交換水を加えて全量を75mlとした。得られた溶液を攪拌して原料水溶液(II)を得た。
原料として、硝酸ビスマス五水和物(Bi(NO3)3・5H2O)を用意した。硝酸ビスマス五水和物を0.00075mol/Lとなるように秤量してビーカーに入れ、そこにイオン交換水を加えて全量を75mlとした。得られた溶液を攪拌して原料水溶液(II)を得た。
(浸漬処理によるビスマス添加)
テフロン(登録商標)製密閉容器(オートクレーブ容器、内容量100ml、外側がステンレス製ジャケット)に原料水溶液(II)と上記(4)で得たLDHセパレータを共に封入した。このとき、基材はテフロン(登録商標)製密閉容器の底から浮かせて固定し、基材両面に溶液が接するように垂直に設置した。その後、30℃で1時間浸漬処理を施すことによりビスマス添加を行った。所定時間の経過後、基材を密閉容器から取り出し、イオン交換水で洗浄し、70℃で10時間乾燥させて、ビスマスが添加されたLDHセパレータを得た。
テフロン(登録商標)製密閉容器(オートクレーブ容器、内容量100ml、外側がステンレス製ジャケット)に原料水溶液(II)と上記(4)で得たLDHセパレータを共に封入した。このとき、基材はテフロン(登録商標)製密閉容器の底から浮かせて固定し、基材両面に溶液が接するように垂直に設置した。その後、30℃で1時間浸漬処理を施すことによりビスマス添加を行った。所定時間の経過後、基材を密閉容器から取り出し、イオン交換水で洗浄し、70℃で10時間乾燥させて、ビスマスが添加されたLDHセパレータを得た。
‐評価2:層状の格子縞が確認できるという結果からLDHセパレータの多孔質基材以外の部分が層状結晶構造の化合物であることが確認された。
‐評価3:EDS元素分析の結果、LDHセパレータ表面において、LDH様化合物の構成元素であるMg、Al、Ti、Y及びBiが検出された。また、EDS元素分析により算出された、LDHセパレータ表面のMg、Al、Ti、Y及びBiの組成比(原子比)は表1に示されるとおりであった。
‐評価5:表1に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表1に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・atmであり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度の変化が無いという優れた耐アルカリ性が確認された。
‐評価8:表1に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
‐評価3:EDS元素分析の結果、LDHセパレータ表面において、LDH様化合物の構成元素であるMg、Al、Ti、Y及びBiが検出された。また、EDS元素分析により算出された、LDHセパレータ表面のMg、Al、Ti、Y及びBiの組成比(原子比)は表1に示されるとおりであった。
‐評価5:表1に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表1に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・atmであり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度の変化が無いという優れた耐アルカリ性が確認された。
‐評価8:表1に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
例5
上記浸漬処理によるビスマス添加において、浸漬処理の時間を12時間に変更したこと以外は、例4と同様にしてLDHセパレータの作製及び評価を行った。
上記浸漬処理によるビスマス添加において、浸漬処理の時間を12時間に変更したこと以外は、例4と同様にしてLDHセパレータの作製及び評価を行った。
‐評価2:層状の格子縞が確認できるという結果からLDHセパレータの多孔質基材以外の部分が層状結晶構造の化合物であることが確認された。
‐評価3:EDS元素分析の結果、LDHセパレータ表面において、LDH様化合物の構成元素であるMg、Al、Ti、Y及びBiが検出された。また、EDS元素分析により算出された、LDHセパレータ表面のMg、Al、Ti、Y及びBiの組成比(原子比)は表1に示されるとおりであった。
‐評価5:表1に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表1に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・atmであり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度の変化が無いという優れた耐アルカリ性が確認された。
‐評価8:表1に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
‐評価3:EDS元素分析の結果、LDHセパレータ表面において、LDH様化合物の構成元素であるMg、Al、Ti、Y及びBiが検出された。また、EDS元素分析により算出された、LDHセパレータ表面のMg、Al、Ti、Y及びBiの組成比(原子比)は表1に示されるとおりであった。
‐評価5:表1に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表1に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・atmであり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度の変化が無いという優れた耐アルカリ性が確認された。
‐評価8:表1に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
例6
上記浸漬処理によるビスマス添加において、浸漬処理の時間を24時間に変更したこと以外は、例4と同様にしてLDHセパレータの作製及び評価を行った。
上記浸漬処理によるビスマス添加において、浸漬処理の時間を24時間に変更したこと以外は、例4と同様にしてLDHセパレータの作製及び評価を行った。
‐評価2:層状の格子縞が確認できるという結果からLDHセパレータの多孔質基材以外の部分が層状結晶構造の化合物であることが確認された。
‐評価3:EDS元素分析の結果、LDHセパレータ表面において、LDH様化合物の構成元素であるMg、Al、Ti、Y及びBiが検出された。また、EDS元素分析により算出された、LDHセパレータ表面のMg、Al、Ti、Y及びBiの組成比(原子比)は表1に示されるとおりであった。
‐評価5:表1に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表1に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・atmであり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度の変化が無いという優れた耐アルカリ性が確認された。
‐評価8:表1に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
‐評価3:EDS元素分析の結果、LDHセパレータ表面において、LDH様化合物の構成元素であるMg、Al、Ti、Y及びBiが検出された。また、EDS元素分析により算出された、LDHセパレータ表面のMg、Al、Ti、Y及びBiの組成比(原子比)は表1に示されるとおりであった。
‐評価5:表1に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表1に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・atmであり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度の変化が無いという優れた耐アルカリ性が確認された。
‐評価8:表1に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
例7
上記(5)の原料水溶液(II)の作製を以下のように行ったこと、及び上記(6)の代わりに浸漬処理によるカルシウム添加を以下のように行ったこと以外は、例1と同様にしてLDHセパレータの作製及び評価を行った。
上記(5)の原料水溶液(II)の作製を以下のように行ったこと、及び上記(6)の代わりに浸漬処理によるカルシウム添加を以下のように行ったこと以外は、例1と同様にしてLDHセパレータの作製及び評価を行った。
(原料水溶液(II)の作製)
原料として、硝酸カルシウム四水和物(Ca(NO3)2・4H2O)を用意した。硝酸カルシウム四水和物を0.015mol/Lとなるように秤量してビーカーに入れ、そこにイオン交換水を加えて全量を75mlとした。得られた溶液を攪拌して原料水溶液(II)を得た。
原料として、硝酸カルシウム四水和物(Ca(NO3)2・4H2O)を用意した。硝酸カルシウム四水和物を0.015mol/Lとなるように秤量してビーカーに入れ、そこにイオン交換水を加えて全量を75mlとした。得られた溶液を攪拌して原料水溶液(II)を得た。
(浸漬処理によるカルシウム添加)
テフロン(登録商標)製密閉容器(オートクレーブ容器、内容量100ml、外側がステンレス製ジャケット)に原料水溶液(II)と上記(4)で得たLDHセパレータを共に封入した。このとき、基材はテフロン(登録商標)製密閉容器の底から浮かせて固定し、基材両面に溶液が接するように垂直に設置した。その後、30℃で6時間浸漬処理を施すことによりカルシウム添加を行った。所定時間の経過後、基材を密閉容器から取り出し、イオン交換水で洗浄し、70℃で10時間乾燥させて、カルシウムが添加されたLDHセパレータを得た。
テフロン(登録商標)製密閉容器(オートクレーブ容器、内容量100ml、外側がステンレス製ジャケット)に原料水溶液(II)と上記(4)で得たLDHセパレータを共に封入した。このとき、基材はテフロン(登録商標)製密閉容器の底から浮かせて固定し、基材両面に溶液が接するように垂直に設置した。その後、30℃で6時間浸漬処理を施すことによりカルシウム添加を行った。所定時間の経過後、基材を密閉容器から取り出し、イオン交換水で洗浄し、70℃で10時間乾燥させて、カルシウムが添加されたLDHセパレータを得た。
‐評価2:層状の格子縞が確認できるという結果からLDHセパレータの多孔質基材以外の部分が層状結晶構造の化合物であることが確認された。
‐評価3:EDS元素分析の結果、LDHセパレータ表面において、LDH様化合物の構成元素であるMg、Al、Ti、Y及びCaが検出された。また、EDS元素分析により算出された、LDHセパレータ表面のMg、Al、Ti、Y及びCaの組成比(原子比)は表1に示されるとおりであった。
‐評価5:表1に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表1に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・atmであり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度の変化が無いという優れた耐アルカリ性が確認された。
‐評価8:表1に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
‐評価3:EDS元素分析の結果、LDHセパレータ表面において、LDH様化合物の構成元素であるMg、Al、Ti、Y及びCaが検出された。また、EDS元素分析により算出された、LDHセパレータ表面のMg、Al、Ti、Y及びCaの組成比(原子比)は表1に示されるとおりであった。
‐評価5:表1に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表1に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・atmであり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度の変化が無いという優れた耐アルカリ性が確認された。
‐評価8:表1に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
例8
上記(5)の原料水溶液(II)の作製を以下のように行ったこと、及び上記(6)の代わりに浸漬処理によるストロンチウム添加を以下のように行ったこと以外は、例1と同様にしてLDHセパレータの作製及び評価を行った。
上記(5)の原料水溶液(II)の作製を以下のように行ったこと、及び上記(6)の代わりに浸漬処理によるストロンチウム添加を以下のように行ったこと以外は、例1と同様にしてLDHセパレータの作製及び評価を行った。
(原料水溶液(II)の作製)
原料として、硝酸ストロンチウム(Sr(NO3)2)を用意した。硝酸ストロンチウムを0.015mol/Lとなるように秤量してビーカーに入れ、そこにイオン交換水を加えて全量を75mlとした。得られた溶液を攪拌して原料水溶液(II)を得た。
原料として、硝酸ストロンチウム(Sr(NO3)2)を用意した。硝酸ストロンチウムを0.015mol/Lとなるように秤量してビーカーに入れ、そこにイオン交換水を加えて全量を75mlとした。得られた溶液を攪拌して原料水溶液(II)を得た。
(浸漬処理によるストロンチウム添加)
テフロン(登録商標)製密閉容器(オートクレーブ容器、内容量100ml、外側がステンレス製ジャケット)に原料水溶液(II)と上記(4)で得たLDHセパレータを共に封入した。このとき、基材はテフロン(登録商標)製密閉容器の底から浮かせて固定し、基材両面に溶液が接するように垂直に設置した。その後、30℃で6時間浸漬処理を施すことによりストロンチウム添加を行った。所定時間の経過後、基材を密閉容器から取り出し、イオン交換水で洗浄し、70℃で10時間乾燥させて、ストロンチウムが添加されたLDHセパレータを得た。
テフロン(登録商標)製密閉容器(オートクレーブ容器、内容量100ml、外側がステンレス製ジャケット)に原料水溶液(II)と上記(4)で得たLDHセパレータを共に封入した。このとき、基材はテフロン(登録商標)製密閉容器の底から浮かせて固定し、基材両面に溶液が接するように垂直に設置した。その後、30℃で6時間浸漬処理を施すことによりストロンチウム添加を行った。所定時間の経過後、基材を密閉容器から取り出し、イオン交換水で洗浄し、70℃で10時間乾燥させて、ストロンチウムが添加されたLDHセパレータを得た。
‐評価2:層状の格子縞が確認できるという結果からLDHセパレータの多孔質基材以外の部分が層状結晶構造の化合物であることが確認された。
‐評価3:EDS元素分析の結果、LDHセパレータ表面において、LDH様化合物の構成元素であるMg、Al、Ti、Y及びSrが検出された。また、EDS元素分析により算出された、LDHセパレータ表面のMg、Al、Ti、Y及びSrの組成比(原子比)は表1に示されるとおりであった。
‐評価5:表1に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表1に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・atmであり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度の変化が無いという優れた耐アルカリ性が確認された。
‐評価8:表1に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
‐評価3:EDS元素分析の結果、LDHセパレータ表面において、LDH様化合物の構成元素であるMg、Al、Ti、Y及びSrが検出された。また、EDS元素分析により算出された、LDHセパレータ表面のMg、Al、Ti、Y及びSrの組成比(原子比)は表1に示されるとおりであった。
‐評価5:表1に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表1に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・atmであり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度の変化が無いという優れた耐アルカリ性が確認された。
‐評価8:表1に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
例9
上記(5)の原料水溶液(II)の作製を以下のように行ったこと、及び上記(6)の代わりに浸漬処理によるバリウム添加を以下のように行ったこと以外は、例1と同様にしてLDHセパレータの作製及び評価を行った。
上記(5)の原料水溶液(II)の作製を以下のように行ったこと、及び上記(6)の代わりに浸漬処理によるバリウム添加を以下のように行ったこと以外は、例1と同様にしてLDHセパレータの作製及び評価を行った。
(原料水溶液(II)の作製)
原料として、硝酸バリウム(Ba(NO3)2)を用意した。硝酸バリウムを0.015mol/Lとなるように秤量してビーカーに入れ、そこにイオン交換水を加えて全量を75mlとした。得られた溶液を攪拌して原料水溶液(II)を得た。
原料として、硝酸バリウム(Ba(NO3)2)を用意した。硝酸バリウムを0.015mol/Lとなるように秤量してビーカーに入れ、そこにイオン交換水を加えて全量を75mlとした。得られた溶液を攪拌して原料水溶液(II)を得た。
(浸漬処理によるバリウム添加)
テフロン(登録商標)製密閉容器(オートクレーブ容器、内容量100ml、外側がステンレス製ジャケット)に原料水溶液(II)と上記(4)で得たLDHセパレータを共に封入した。このとき、基材はテフロン(登録商標)製密閉容器の底から浮かせて固定し、基材両面に溶液が接するように垂直に設置した。その後、30℃で6時間浸漬処理を施すことによりバリウム添加を行った。所定時間の経過後、基材を密閉容器から取り出し、イオン交換水で洗浄し、70℃で10時間乾燥させて、バリウムが添加されたLDHセパレータを得た。
テフロン(登録商標)製密閉容器(オートクレーブ容器、内容量100ml、外側がステンレス製ジャケット)に原料水溶液(II)と上記(4)で得たLDHセパレータを共に封入した。このとき、基材はテフロン(登録商標)製密閉容器の底から浮かせて固定し、基材両面に溶液が接するように垂直に設置した。その後、30℃で6時間浸漬処理を施すことによりバリウム添加を行った。所定時間の経過後、基材を密閉容器から取り出し、イオン交換水で洗浄し、70℃で10時間乾燥させて、バリウムが添加されたLDHセパレータを得た。
‐評価2:層状の格子縞が確認できるという結果からLDHセパレータの多孔質基材以外の部分が層状結晶構造の化合物であることが確認された。
‐評価3:EDS元素分析の結果、LDHセパレータ表面において、LDH様化合物の構成元素であるAl、Ti、Y及びBaが検出された。また、EDS元素分析により算出された、LDHセパレータ表面のAl、Ti、Y及びBaの組成比(原子比)は表1に示されるとおりであった。
‐評価5:表1に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表1に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・atmであり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度の変化が無いという優れた耐アルカリ性が確認された。
‐評価8:表1に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
‐評価3:EDS元素分析の結果、LDHセパレータ表面において、LDH様化合物の構成元素であるAl、Ti、Y及びBaが検出された。また、EDS元素分析により算出された、LDHセパレータ表面のAl、Ti、Y及びBaの組成比(原子比)は表1に示されるとおりであった。
‐評価5:表1に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表1に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・atmであり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度の変化が無いという優れた耐アルカリ性が確認された。
‐評価8:表1に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
例10(比較)
a)上記(2)の代わりにアルミナゾルコートを以下のように行ったこと、b)上記(5)の原料水溶液(II)の作製を行わなかったこと、及びc)上記(6)の浸漬処理によるインジウム添加を行わなかったこと以外は、例1と同様にしてLDHセパレータの作製及び評価を行った。
a)上記(2)の代わりにアルミナゾルコートを以下のように行ったこと、b)上記(5)の原料水溶液(II)の作製を行わなかったこと、及びc)上記(6)の浸漬処理によるインジウム添加を行わなかったこと以外は、例1と同様にしてLDHセパレータの作製及び評価を行った。
(高分子多孔質基材へのアルミナゾルコート)
無定形アルミナゾル(Al-ML15、多木化学株式会社製)を、上記(1)で用意された基材にディップコートにより塗布した。ディップコートは、無定形アルミナゾル100mlに基材を浸漬させてから垂直に引き上げ、室温で3時間乾燥させることにより行った。
無定形アルミナゾル(Al-ML15、多木化学株式会社製)を、上記(1)で用意された基材にディップコートにより塗布した。ディップコートは、無定形アルミナゾル100mlに基材を浸漬させてから垂直に引き上げ、室温で3時間乾燥させることにより行った。
‐評価1:例10で得られたLDHセパレータ(ロールプレス前)の表面微構造のSEM画像は図5に示されるとおりであった。
‐評価2:層状の格子縞が確認できるという結果からLDHセパレータの多孔質基材以外の部分が層状結晶構造の化合物であることが確認された。
‐評価3:EDS元素分析の結果、LDHセパレータ表面において、LDH構成元素であるMg及びAlが検出された。また、EDS元素分析により算出された、LDHセパレータ表面のMg及びAlの組成比(原子比)は表1に示されるとおりであった。
‐評価4:得られたXRDプロファイルにおける2θ=11.5°付近のピークから、例10で得られたLDHセパレータは、LDH(ハイドロタルサイト類化合物)であることが同定された。この同定は、JCPDSカードNO.35-0964に記載されるLDH(ハイドロタルサイト類化合物)の回折ピークを用いて行った。
‐評価5:表1に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表1に示されるとおり、高いイオン伝導率が確認された。
‐評価7:90℃もの高温で1週間にわたるアルカリ浸漬の結果、評価5で0.0cm/min・atmであったHe透過度が10cm/min・atmを超えてしまったことから、耐アルカリ性に劣ることが判明した。
‐評価8:表1に示されるとおり、300サイクル未満で亜鉛デンドライトに起因する短絡が生じたことから、デンドライト耐性に劣ることが判明した。
‐評価2:層状の格子縞が確認できるという結果からLDHセパレータの多孔質基材以外の部分が層状結晶構造の化合物であることが確認された。
‐評価3:EDS元素分析の結果、LDHセパレータ表面において、LDH構成元素であるMg及びAlが検出された。また、EDS元素分析により算出された、LDHセパレータ表面のMg及びAlの組成比(原子比)は表1に示されるとおりであった。
‐評価4:得られたXRDプロファイルにおける2θ=11.5°付近のピークから、例10で得られたLDHセパレータは、LDH(ハイドロタルサイト類化合物)であることが同定された。この同定は、JCPDSカードNO.35-0964に記載されるLDH(ハイドロタルサイト類化合物)の回折ピークを用いて行った。
‐評価5:表1に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表1に示されるとおり、高いイオン伝導率が確認された。
‐評価7:90℃もの高温で1週間にわたるアルカリ浸漬の結果、評価5で0.0cm/min・atmであったHe透過度が10cm/min・atmを超えてしまったことから、耐アルカリ性に劣ることが判明した。
‐評価8:表1に示されるとおり、300サイクル未満で亜鉛デンドライトに起因する短絡が生じたことから、デンドライト耐性に劣ることが判明した。
Claims (13)
- 多孔質基材と、前記多孔質基材の孔を塞ぐ層状複水酸化物(LDH)様化合物とを含む、LDHセパレータであって、
前記LDH様化合物が、(i)Ti、Y、及び所望によりAl及び/又はMgと、(ii)In、Bi、Ca、Sr及びBaからなる群から選択される少なくとも1種である添加元素Mとを含む、層状結晶構造の水酸化物及び/又は酸化物である、LDHセパレータ。 - エネルギー分散型X線分析(EDS)により決定される、前記LDH様化合物におけるTi/(Mg+Al+Ti+Y+M)の原子比が0.50~0.85である、請求項1に記載のLDHセパレータ。
- エネルギー分散型X線分析(EDS)により決定される、前記LDH様化合物におけるY/(Mg+Al+Ti+Y+M)の原子比が0.03~0.20である、請求項1又は2に記載のLDHセパレータ。
- エネルギー分散型X線分析(EDS)により決定される、前記LDH様化合物におけるM/(Mg+Al+Ti+Y+M)の原子比が0.03~0.35である、請求項1~3のいずれか一項に記載のLDHセパレータ。
- エネルギー分散型X線分析(EDS)により決定される、前記LDH様化合物におけるMg/(Mg+Al+Ti+Y+M)の原子比が0~0.10である、請求項1~4のいずれか一項に記載のLDHセパレータ。
- エネルギー分散型X線分析(EDS)により決定される、前記LDH様化合物におけるAl/(Mg+Al+Ti+Y+M)の原子比が0~0.05である、請求項1~5のいずれか一項に記載のLDHセパレータ。
- 前記多孔質基材が高分子材料で構成される、請求項1~6のいずれか一項に記載のLDHセパレータ。
- 前記高分子材料が、ポリスチレン、ポリエーテルサルフォン、ポリプロピレン、エポキシ樹脂、ポリフェニレンサルファイド、フッ素樹脂、セルロース、ナイロン、ポリエチレン、アクリロニトリルスチレン、ポリスルフォン、アクリロニトリル・ブタジエン・スチレン(ABS)樹脂、ポリ塩化ビニル、アセタール樹脂、ポリビニルアルコール(PVA)樹脂、ポリ塩化ビニリデン、ポリフッ化ビニリデン、フェノール樹脂、アリル樹脂、及びフラン樹脂からなる群から選択される、請求項7に記載のLDHセパレータ。
- 前記LDHセパレータのイオン伝導度が2.0mS/cm以上である、請求項1~8のいずれか一項に記載のLDHセパレータ。
- 前記LDHセパレータの単位面積あたりのHe透過度が10cm/min・atm以下である、請求項1~9のいずれか一項に記載のLDHセパレータ。
- 前記LDHセパレータは、0.4Mの濃度で酸化亜鉛を含む5.4MのKOH水溶液中に90℃で1週間浸漬させた場合においても、単位面積あたりのHe透過度が10cm/min・atm以下である、請求項10に記載のLDHセパレータ。
- 請求項1~11のいずれか一項に記載のLDHセパレータを備えた、亜鉛二次電池。
- 請求項1~11のいずれか一項に記載のLDHセパレータを備えた、固体アルカリ形燃料電池。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022522537A JP7441308B2 (ja) | 2020-05-11 | 2021-03-18 | Ldhセパレータ及び亜鉛二次電池 |
CN202180025328.7A CN115461923B (zh) | 2020-05-11 | 2021-03-18 | Ldh隔板及锌二次电池 |
DE112021001633.4T DE112021001633T5 (de) | 2020-05-11 | 2021-03-18 | Ldh-separator und zinksekundärelement |
US17/936,962 US20230045074A1 (en) | 2020-05-11 | 2022-09-30 | Ldh separator and zinc secondary battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020083517 | 2020-05-11 | ||
JP2020-083517 | 2020-05-11 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/936,962 Continuation US20230045074A1 (en) | 2020-05-11 | 2022-09-30 | Ldh separator and zinc secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021229916A1 true WO2021229916A1 (ja) | 2021-11-18 |
Family
ID=78525652
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/011233 WO2021229916A1 (ja) | 2020-05-11 | 2021-03-18 | Ldhセパレータ及び亜鉛二次電池 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230045074A1 (ja) |
JP (1) | JP7441308B2 (ja) |
CN (1) | CN115461923B (ja) |
DE (1) | DE112021001633T5 (ja) |
WO (1) | WO2021229916A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114243215A (zh) * | 2021-12-17 | 2022-03-25 | 蜂巢能源科技股份有限公司 | 一种涂层浆料及其制备方法以及复合隔膜和锂离子电池 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017221497A1 (ja) * | 2016-06-24 | 2017-12-28 | 日本碍子株式会社 | 層状複水酸化物を含む機能層及び複合材料 |
WO2019131221A1 (ja) * | 2017-12-27 | 2019-07-04 | 日本碍子株式会社 | 層状複水酸化物を含む機能層及び複合材料 |
WO2020255856A1 (ja) * | 2019-06-19 | 2020-12-24 | 日本碍子株式会社 | 水酸化物イオン伝導セパレータ及び亜鉛二次電池 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5600815B2 (ja) | 2012-02-06 | 2014-10-01 | 日本碍子株式会社 | 亜鉛二次電池 |
EP2843753B1 (en) * | 2012-04-26 | 2017-06-28 | NGK Insulators, Ltd. | Lithium air secondary cell |
JP6244174B2 (ja) * | 2013-11-08 | 2017-12-06 | 株式会社日本触媒 | アニオン伝導膜及び電池 |
JP6735530B2 (ja) * | 2014-08-22 | 2020-08-05 | 株式会社日本触媒 | 亜鉛負極 |
JP6615111B2 (ja) | 2014-10-28 | 2019-12-04 | 日本碍子株式会社 | 層状複水酸化物緻密膜の形成方法 |
WO2016076047A1 (ja) | 2014-11-13 | 2016-05-19 | 日本碍子株式会社 | 亜鉛二次電池に用いられるセパレータ構造体 |
JP6275662B2 (ja) * | 2015-03-12 | 2018-02-07 | 日本碍子株式会社 | 亜鉛二次電池用セパレータの評価方法、及び亜鉛二次電池用セパレータ |
WO2017221451A1 (ja) * | 2016-06-24 | 2017-12-28 | 日本碍子株式会社 | 層状複水酸化物を含む機能層及び複合材料 |
WO2017221988A1 (ja) * | 2016-06-24 | 2017-12-28 | 日本碍子株式会社 | 層状複水酸化物を含む機能層及び複合材料 |
WO2018091892A1 (en) * | 2016-11-15 | 2018-05-24 | Scg Chemicals Co., Ltd. | Coating method and product thereof |
WO2018135117A1 (ja) * | 2017-01-19 | 2018-07-26 | 日本碍子株式会社 | セパレータ構造体、ニッケル亜鉛二次電池及び亜鉛空気二次電池 |
JP6993422B2 (ja) * | 2017-10-03 | 2022-01-13 | 日本碍子株式会社 | 亜鉛二次電池用負極構造体 |
WO2019124212A1 (ja) * | 2017-12-18 | 2019-06-27 | 日本碍子株式会社 | Ldhセパレータ及び亜鉛二次電池 |
CN111566841A (zh) * | 2017-12-18 | 2020-08-21 | 日本碍子株式会社 | Ldh隔离件以及锌二次电池 |
EP3534432B1 (en) * | 2017-12-27 | 2023-10-25 | NGK Insulators, Ltd. | Ldh separator and zinc secondary battery |
-
2021
- 2021-03-18 WO PCT/JP2021/011233 patent/WO2021229916A1/ja active Application Filing
- 2021-03-18 JP JP2022522537A patent/JP7441308B2/ja active Active
- 2021-03-18 CN CN202180025328.7A patent/CN115461923B/zh active Active
- 2021-03-18 DE DE112021001633.4T patent/DE112021001633T5/de active Pending
-
2022
- 2022-09-30 US US17/936,962 patent/US20230045074A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017221497A1 (ja) * | 2016-06-24 | 2017-12-28 | 日本碍子株式会社 | 層状複水酸化物を含む機能層及び複合材料 |
WO2017221989A1 (ja) * | 2016-06-24 | 2017-12-28 | 日本碍子株式会社 | 層状複水酸化物を含む機能層及び複合材料 |
WO2019131221A1 (ja) * | 2017-12-27 | 2019-07-04 | 日本碍子株式会社 | 層状複水酸化物を含む機能層及び複合材料 |
WO2020255856A1 (ja) * | 2019-06-19 | 2020-12-24 | 日本碍子株式会社 | 水酸化物イオン伝導セパレータ及び亜鉛二次電池 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114243215A (zh) * | 2021-12-17 | 2022-03-25 | 蜂巢能源科技股份有限公司 | 一种涂层浆料及其制备方法以及复合隔膜和锂离子电池 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021229916A1 (ja) | 2021-11-18 |
JP7441308B2 (ja) | 2024-02-29 |
US20230045074A1 (en) | 2023-02-09 |
CN115461923A (zh) | 2022-12-09 |
CN115461923B (zh) | 2024-02-06 |
DE112021001633T5 (de) | 2022-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6889340B1 (ja) | 水酸化物イオン伝導セパレータ及び亜鉛二次電池 | |
WO2017221497A1 (ja) | 層状複水酸化物を含む機能層及び複合材料 | |
US11211672B2 (en) | LDH separator and zinc secondary battery | |
JP6905086B2 (ja) | Ldhセパレータ及び亜鉛二次電池 | |
WO2021229916A1 (ja) | Ldhセパレータ及び亜鉛二次電池 | |
WO2023058268A1 (ja) | Ldhセパレータ及びその製造方法、並びに亜鉛二次電池 | |
WO2021229917A1 (ja) | Ldhセパレータ及び亜鉛二次電池 | |
JP7057867B1 (ja) | Ldh様化合物セパレータ及び亜鉛二次電池 | |
JP7057866B1 (ja) | Ldh様化合物セパレータ及び亜鉛二次電池 | |
JP7048830B1 (ja) | Ldh様化合物セパレータ及び亜鉛二次電池 | |
JP7048831B1 (ja) | Ldh様化合物セパレータ及び亜鉛二次電池 | |
WO2022113448A1 (ja) | Ldh様化合物セパレータ及び亜鉛二次電池 | |
WO2022118503A1 (ja) | Ldh様化合物セパレータ及び亜鉛二次電池 | |
JP7381764B2 (ja) | Ldhセパレータ | |
WO2022113446A1 (ja) | Ldh様化合物セパレータ及び亜鉛二次電池 | |
WO2022118504A1 (ja) | Ldh様化合物セパレータ及び亜鉛二次電池 | |
WO2022107568A1 (ja) | Ldhセパレータ及び亜鉛二次電池 | |
WO2024202370A1 (ja) | Ldhセパレータ及び亜鉛二次電池 | |
JP6905085B2 (ja) | Ldhセパレータ及び亜鉛二次電池 | |
JP2024140384A (ja) | Ldhセパレータ及び亜鉛二次電池 | |
JP2024140241A (ja) | Ldhセパレータ及び亜鉛二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21803792 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022522537 Country of ref document: JP Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21803792 Country of ref document: EP Kind code of ref document: A1 |