WO2021229644A1 - 二酸化炭素の気相還元装置、および、二酸化炭素の気相還元方法 - Google Patents

二酸化炭素の気相還元装置、および、二酸化炭素の気相還元方法 Download PDF

Info

Publication number
WO2021229644A1
WO2021229644A1 PCT/JP2020/018835 JP2020018835W WO2021229644A1 WO 2021229644 A1 WO2021229644 A1 WO 2021229644A1 JP 2020018835 W JP2020018835 W JP 2020018835W WO 2021229644 A1 WO2021229644 A1 WO 2021229644A1
Authority
WO
WIPO (PCT)
Prior art keywords
reduction
carbon dioxide
electrode
tank
gas phase
Prior art date
Application number
PCT/JP2020/018835
Other languages
English (en)
French (fr)
Inventor
紗弓 里
裕也 渦巻
陽子 小野
武志 小松
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2020/018835 priority Critical patent/WO2021229644A1/ja
Priority to JP2022522104A priority patent/JP7356067B2/ja
Priority to US17/914,028 priority patent/US20230135736A1/en
Publication of WO2021229644A1 publication Critical patent/WO2021229644A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/23Carbon monoxide or syngas
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/042Electrodes formed of a single material
    • C25B11/049Photocatalysts
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/03Acyclic or carbocyclic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/07Oxygen containing compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/21Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • C25B3/26Reduction of carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/50Cells or assemblies of cells comprising photoelectrodes; Assemblies of constructional parts thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/65Means for supplying current; Electrode connections; Electric inter-cell connections
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/67Heating or cooling means

Definitions

  • the present invention relates to a carbon dioxide gas phase reducing device and a carbon dioxide gas phase reducing method.
  • Artificial photosynthesis is a technique that promotes the oxidation reaction of water and the reduction reaction of carbon dioxide by irradiating the oxidation electrode consisting of a photocatalyst with light. Further, the technique of advancing the oxidation reaction of water and the reduction reaction of carbon dioxide by applying a voltage between the oxidation electrode made of metal and the reduction electrode is called electrolytic reduction of carbon dioxide.
  • Non-Patent Documents 1 and 2 in artificial photosynthesis technology and carbon dioxide electrolytic reduction technology, a reduction electrode (Cu) is immersed in an aqueous solution, and carbon dioxide (CO 2 ) dissolved in the aqueous solution is used.
  • a reduction electrode Cu
  • CO 2 carbon dioxide
  • this method of reducing carbon dioxide has a problem that the amount of carbon dioxide supplied to the reducing electrode is limited because there is a limit to the concentration of carbon dioxide dissolved in the aqueous solution and the diffusion coefficient of carbon dioxide in the aqueous solution. be.
  • Non-Patent Document 3 when the reduction reaction of carbon dioxide as shown in the following formulas (1)-(4) proceeds, water (H 2 O) is used at the reducing electrode. ), Formic acid (HCOOH), methanol (CH 3 OH), ethanol (C 2 H 5 OH) and other liquid products are produced, and the liquid products adhere to the surface of the reducing electrode. Therefore, the carbon dioxide in the gas phase cannot be directly supplied to the surface of the reducing electrode, and the supply amount of carbon dioxide is reduced, so that the life of the carbon dioxide reduction reaction is shortened.
  • HCOOH Formic acid
  • CH 3 OH methanol
  • C 2 H 5 OH ethanol
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to improve the life of the carbon dioxide reduction reaction in a carbon dioxide gas phase reduction device and to obtain a liquid product adhering to the reduction electrode. It is to provide a technology that can be easily collected.
  • the carbon dioxide gas phase reduction device is a gas reduction sheet in which an oxide tank including an oxide electrode, a reduction tank to which carbon dioxide is supplied, an ion exchange film, and a reduction electrode are laminated.
  • the ion exchange film is directed toward the oxide tank
  • the reduction electrode is directed toward the reduction tank
  • the gas reduction sheet arranged between the oxide tank and the reduction tank is connected to the oxidation electrode and the reduction electrode. It is provided with a lead wire to be used and a heat source surrounding the reduction tank.
  • the carbon dioxide gas phase reduction method is the carbon dioxide gas phase reduction method performed by the carbon dioxide gas phase reduction device, wherein the carbon dioxide gas phase reduction device is an oxide tank including an oxidation electrode.
  • the carbon dioxide gas phase reduction device is an oxide tank including an oxidation electrode.
  • the ion exchange membrane is directed toward the oxide tank, and the reduction electrode is directed toward the reduction tank.
  • a gas reduction sheet arranged between the oxidation tank and the reduction tank, a lead wire connecting the oxidation electrode and the reduction electrode, and a heat source surrounding the reduction tank are provided, and an electrolytic solution is charged in the oxidation tank.
  • the first step of injecting water, the second step of applying heat to the reduction tank, the third step of inflowing the carbon dioxide into the reduction tank, and the oxidation electrode are irradiated with light or the oxidation is performed.
  • a fourth step of applying a voltage between the electrode and the reducing electrode is performed.
  • the present invention it is possible to provide a technique for improving the life of the carbon dioxide reduction reaction and easily recovering the liquid product adhering to the reduction electrode in the carbon dioxide gas phase reduction device.
  • FIG. 1 is a configuration diagram showing a configuration of a carbon dioxide gas phase reducing device according to Examples 1 to 4.
  • FIG. 2 is a diagram showing a method for producing a gas reduction sheet using an electroless plating method.
  • FIG. 3 is a block diagram showing the configuration of the carbon dioxide gas phase reducing device according to Examples 5 to 8.
  • FIG. 4 is a configuration diagram showing the configuration of a conventional carbon dioxide gas phase reducing device.
  • FIG. 5 is a configuration diagram showing the configuration of a conventional carbon dioxide gas phase reducing device.
  • the present invention is an invention relating to a carbon dioxide gas phase reducing device that induces a carbon dioxide reduction reaction by light irradiation or causes an electrolytic reduction reaction of carbon dioxide to improve the efficiency of the reduction reaction, and is a fuel generation technique. It belongs to the technical field of solar energy conversion technology.
  • the present invention uses a gas reduction sheet obtained by forming a reduction electrode on an ion exchange membrane, and directly supplies carbon dioxide in the gas phase to the surface of the reduction electrode for reduction. At this time, a liquid product is generated on the surface of the reduction electrode by the reduction reaction of carbon dioxide.
  • a heat source is arranged around the reduction tank, and the temperature of the reduction electrode is raised above the boiling point of the liquid product by the heat source. Alternatively, the liquid product is vaporized and removed by maintaining the temperature higher than the boiling point.
  • the liquid product generated on the surface of the reducing electrode can be removed, and carbon dioxide in the gas phase can always be directly supplied to the reducing electrode, so that the life of the carbon dioxide reduction reaction can be improved. .. Also, since the liquid product is vaporized, the recovery of the liquid product becomes easy.
  • FIG. 1 is a configuration diagram showing a configuration of a carbon dioxide gas phase reducing device according to the first embodiment.
  • the carbon dioxide gas phase reduction device 100 is a gas reduction sheet 20 in which an oxide tank 1 including an oxidation electrode 2, a reduction tank 4 to which carbon dioxide is supplied, an ion exchange film 6 and a reduction electrode 5 are laminated.
  • the gas reduction sheet 20 arranged between the oxidation tank 1 and the reduction tank 4, the oxidation electrode 2 and the reduction electrode 5 with the ion exchange film 6 directed toward the oxide tank 1 and the reducing electrode 5 directed toward the reducing tank 4. It is provided with a lead wire 7 for connecting the two, a heat conductive plate 40 surrounding the reduction tank 4, a heat source 41, a heat insulating material 42, and a light source 9 for irradiating the oxidation electrode 2 with light.
  • the oxide electrode 2 in the oxide tank 1 is immersed in the aqueous solution 3 injected into the oxide tank 1.
  • the oxide electrode 2 of Example 1 is an electrode made of a semiconductor or a metal complex, and is, for example, a nitride semiconductor.
  • the oxide electrode 2 of Example 1 may have a laminated structure in which different types of nitride semiconductors are laminated, or may have a different composition such as containing indium or aluminum.
  • a compound exhibiting photoactivity such as titanium oxide and amorphous silicon may be used.
  • the aqueous solution 3 is an electrolytic solution to be injected into the oxide tank 1.
  • the aqueous solution 3 is, for example, a potassium hydroxide aqueous solution.
  • aqueous solution 3 for example, a sodium hydroxide aqueous solution, a potassium chloride aqueous solution, a sodium chloride aqueous solution, or the like may be used instead of the potassium hydroxide aqueous solution.
  • the gas reduction sheet 20 has a structure in which an ion exchange membrane 6 and a reduction electrode 5 are laminated.
  • the ion exchange membrane 6 is, for example, Nafion (trademark registration), Foreblue S series, Aquivion, or the like, which is an electrolyte membrane having a skeleton composed of carbon-fluorine.
  • the reduction electrode 5 is, for example, copper. Instead of copper, the reducing electrode 5 may be gold, platinum, silver, palladium, gallium, indium, nickel, tin, cadmium, an alloy thereof, or a metal thereof or a mixture of metal oxides and carbon.
  • the reduction electrode 5 is connected to the oxidation electrode 2 by a lead wire 7.
  • the gas reduction sheet 20 is arranged between the oxidation tank 1 and the reduction tank 4, the ion exchange membrane 6 is arranged toward the oxidation tank 1, and the reduction electrode 5 is arranged toward the reduction tank 4.
  • the reduction tank 4 has a hollow inside and includes a gas input port 10 and a gas output port 11 for inflowing and outflowing carbon dioxide and the like.
  • a heat source 41 is arranged around the reduction tank 4.
  • a heat conductive plate 40 is arranged between the reduction tank 4 and the heat source 41.
  • the heat insulating material 42 is arranged so as to cover the heat source 41.
  • the heat source 41 may be a rubber heater, a hot plate, or the like operated by using electric power derived from renewable energy or energy derived from fossil fuel, or may use waste heat discharged from a plant, a waste treatment plant, or the like. ..
  • the heat conductive plate 40 is, for example, silver, copper, gold, aluminum, nickel, platinum or the like.
  • the light source 9 is a light source for operating the carbon dioxide gas phase reduction device 100, and is arranged to face the oxide electrode 2.
  • the light source 9 is, for example, a xenon lamp, a pseudo-solar light source, a halogen lamp, a mercury lamp, sunlight, a combination thereof, or the like.
  • FIG. 2 is a diagram showing a reaction system of an electroless plating method used as a method for producing a gas reduction sheet 20.
  • Nafion was used for the ion exchange membrane 6, and copper was used for the reducing electrode 5.
  • One side of the ion exchange membrane 6 is polished, and the ion exchange membrane 6 is immersed in boiling nitric acid and boiling pure water, respectively.
  • the two tanks 51 and 52 on the left and right are filled with the plating solution 71 and the reducing agent 72 shown in Table 1, respectively.
  • the tank 51 and the tank 52 are separated by an ion exchange membrane 6.
  • the ion exchange membrane 6 is arranged with the polishing surface facing the plating solution 71.
  • a gas reduction sheet in which a reduction electrode 5 is formed on the ion exchange membrane 6 by the following redox reaction occurring at the interface between the plating solution 71 and the polished surface of the ion exchange membrane 6 to precipitate copper (Cu). 20 is obtained.
  • the method for producing the gas reduction sheet 20 may be, for example, an electroplating method, a physical vapor deposition method, a chemical vapor deposition method, or the like, in addition to the electroless plating method.
  • Carbon dioxide gas phase reduction method Next, a carbon dioxide gas phase reduction method performed by the carbon dioxide gas phase reduction device 100 will be described. The electrochemical measurement results and gas / liquid production amount measurement results will also be described.
  • First step First, the aqueous solution 3 which is an electrolytic solution is poured into the oxidation tank 1, and the oxide electrode 2 is immersed in the aqueous solution 3.
  • n-GaN n-type gallium nitride
  • AlGaN aluminum gallium nitride
  • Ni nickel
  • a substrate on which a co-catalyst thin film of nickel oxide (NiO) was formed by heat treatment was used.
  • the aqueous solution 3 was a 1 mol / L potassium hydroxide (KOH) aqueous solution.
  • the light irradiation area (light receiving area) of the oxide electrode 2 was 2.5 cm 2 .
  • the light source 9 is fixed so that the oxidation auxiliary catalyst forming surface of the oxidation electrode 2 functioning as the semiconductor light electrode becomes the irradiation surface.
  • a 300 W high-voltage xenon lamp (wavelength 450 nm or more cut, illuminance 6.6 mW / cm2) was used.
  • the periphery of the reduction tank 4 is surrounded by the heat conductive plate 40, the heat source 41 is arranged around the heat conductive plate 40, and the periphery of the heat source 41 is further surrounded by the heat insulating material 42.
  • a copper plate was used as the heat conductive plate 40.
  • a rubber heater was used as the heat source 41.
  • Rigid urethane foam was used for the heat insulating material 42.
  • the reduction tank 4 is heated by the heat source 41 so that the temperature near the surface of the reduction electrode 5 becomes 60 ° C.
  • the temperature near the surface of the reduction electrode 5 can be measured using, for example, a thermocouple.
  • the gas flowing into the oxidation tank 1 may be an inert gas such as argon, nitrogen, or carbon dioxide.
  • the oxidation tank 1 and the reduction tank 4 are sufficiently replaced with helium and carbon dioxide, respectively, and then the oxide electrode 2 is uniformly irradiated with light using the light source 9. By this light irradiation, electricity flows between the oxidation electrode 2 and the reduction electrode 5.
  • An oxidation reaction of water occurs on the surface of the oxidation electrode 2, and a reduction reaction of carbon dioxide occurs at the three-phase interface composed of [ion exchange membrane 6-reduction electrode 5 (copper) -gas phase carbon dioxide] in the gas reduction sheet 20.
  • liquid products such as water (H 2 O), formic acid (HCOOH), methanol (CH 3 OH), and ethanol (C 2 H 5 OH) adhere to the surface of the reducing electrode 5, but the heat source 41 Since the reduction tank 4 is heated in, the attached liquid product is vaporized and removed from the surface of the reduction electrode 5, and a mixed gas of carbon dioxide in the gas phase and the vaporized liquid product is vaporized from the gas output port 11. leak.
  • each gas in the oxidation tank 1 and the reduction tank 4 is sampled at an arbitrary time during light irradiation, and the reaction product is analyzed by a gas chromatograph and a gas chromatograph mass spectrometer.
  • oxygen is generated by the oxidation reaction of water in the oxidation tank 1
  • hydrogen by the reduction reaction of protons and carbon monoxide by the reduction reaction of carbon dioxide are generated in the reduction tank 4. It was confirmed that formic acid, methane, methanol, ethanol and ethylene were produced.
  • the current value between the oxide electrode 2 and the reduction electrode 5 at the time of light irradiation was measured using an electrochemical measuring device (1287 type potency galvanostat manufactured by Solartron).
  • Example 2 In Example 2, the temperature near the surface of the reducing electrode 5 was set to 100 ° C.
  • the other methods and the configuration of the carbon dioxide gas phase reducing device 100 are the same as those in the first embodiment.
  • Example 3 In Example 3, the temperature near the surface of the reduction electrode 5 was set to 110 ° C.
  • the other methods and the configuration of the carbon dioxide gas phase reducing device 100 are the same as those in the first embodiment.
  • Example 4 In Example 4, the temperature near the surface of the reduction electrode 5 was set to 130 ° C.
  • the other methods and the configuration of the carbon dioxide gas phase reducing device 100 are the same as those in the first embodiment.
  • FIG. 3 is a block diagram showing the configuration of the carbon dioxide gas phase reducing device according to the fifth embodiment.
  • the power supply 12 is used instead of the light source 9.
  • the power supply 12 is inserted on the path of the conductor 7. Since it is not necessary for the oxide electrode 2 to receive light in Example 5, the oxide electrode 2 of Example 5 is configured by using platinum (manufactured by Niraco).
  • the oxide electrode 2 of Example 5 may be a metal such as gold, silver, copper, indium, nickel or the like instead of platinum.
  • the surface area of the oxide electrode 2 of Example 5 was set to about 0.55 cm 2 . Other configurations are the same as those in the first embodiment.
  • Second step Next, the periphery of the reduction tank 4 is surrounded by the heat conductive plate 40, the heat source 41 is arranged around the heat conductive plate 40, and the periphery of the heat source 41 is further surrounded by the heat insulating material 42. Then, the reduction tank 4 is heated by the heat source 41 so that the temperature near the surface of the reduction electrode 5 becomes 60 ° C.
  • the power supply 12 is connected between the oxidation electrode 2 and the reduction electrode 5 with a lead wire 7, and a voltage of 1.5 V is applied. do.
  • each gas in the oxidation tank 1 and the reduction tank 4 is sampled at an arbitrary time during light irradiation, and the reaction product is analyzed by a gas chromatograph and a gas chromatograph mass spectrometer.
  • Example 6 In Example 6, the temperature near the surface of the reduction electrode 5 was set to 100 ° C.
  • the other methods and the configuration of the carbon dioxide gas phase reducing device 100 are the same as those in the fifth embodiment.
  • Example 7 In Example 7, the temperature near the surface of the reducing electrode 5 was set to 110 ° C.
  • the other methods and the configuration of the carbon dioxide gas phase reducing device 100 are the same as those in the fifth embodiment.
  • Example 8 In Example 8, the temperature near the surface of the reduction electrode 5 was set to 130 ° C.
  • the other methods and the configuration of the carbon dioxide gas phase reducing device 100 are the same as those in the fifth embodiment.
  • FIG. 4 is a conventional configuration corresponding to Example 1-4 (FIG. 1), and is referred to as a comparison target example 1.
  • FIG. 5 is a conventional configuration corresponding to Example 5-8 (FIG. 3), and is referred to as a comparison target example 2.
  • the heat conductive plate 40, the heat source 41, and the heat insulating material 42 are not arranged around the reduction tank 4.
  • Table 2 is a table showing the Faraday efficiency of the carbon dioxide reduction reaction 10 minutes after the time of light irradiation or the time of voltage application with respect to Examples 1-10 and Comparative Examples 1 and 2.
  • the Faraday efficiency indicates the ratio of the current value used for each reduction reaction to the current value flowing between the electrodes during light irradiation or voltage application.
  • the "current value of each reduction reaction” in the formula (1) can be calculated by converting the measured value of the amount of each reduction product produced into the number of electrons required for the production reaction.
  • the concentration of the reduction reaction product is A [ppm]
  • the flow rate of the carrier gas is B [L / sec]
  • the number of electrons required for the reduction reaction is Z [mol]
  • the Faraday constant is F [C / mol]
  • the gas can be calculated using the formula (6), where Vm [L / mol] is used as the molar body of.
  • Example 4 and Example 8 the Faraday efficiency was 0%. It is considered that this is because the temperature near the surface of the reducing electrode 5 is as high as 130 ° C., so that the sulfonic acid group forming the ion exchange membrane is decomposed and the ion exchange membrane loses the ion exchange function.
  • the temperature near the surface of the reducing electrode 5 is preferably less than 130 ° C.
  • the usable temperature of Nafion and Foreblue S series mentioned as examples of the ion exchange membrane 6 is 110 ° C.
  • the usable temperature of Aquivion is 140 ° C., and it is necessary to use them at this temperature or lower.
  • Table 3 is a table showing the maintenance rate of the Faraday efficiency of the carbon dioxide reduction reaction 20 hours after the time of light irradiation or the time of voltage application for Examples 1-3, 5-7 and Comparative Examples 1 and 2.
  • the maintenance rate of the Faraday efficiency of the carbon dioxide reduction reaction was defined as the Faraday efficiency of the carbon dioxide reduction reaction after 20 hours with respect to the Faraday efficiency of the carbon dioxide reduction reaction after 10 minutes.
  • the maintenance rate of the Faraday efficiency of the carbon dioxide reduction reaction of Examples 1 and 5 is the same value as that of Comparative Example 1 and Comparative Example 2, and is higher than that of Examples 2, 3 and 6 and 7. It is a small value. This is because the temperature near the surface of the reducing electrode 5 is lower than the boiling points of water, formic acid, methanol, and ethanol, and the liquid product adhering to the reducing electrode 5 cannot be removed, so that the reaction field on the surface of the reducing electrode 5 is lost. It is thought that it was because it was damaged. Therefore, the temperature near the surface of the reducing electrode 5 is preferably a value larger than the boiling point of all liquid products. That is, the heating temperature of the heat source 41 is preferably a temperature higher than the boiling point of all the liquid products produced on the surface of the reducing electrode 5 by the reduction reaction of carbon dioxide generated on the surface of the reducing electrode 5.
  • the carbon dioxide gas phase reduction device 100 uses a heat source 41 arranged so as to surround the reduction tank 4 to generate a liquid product on the surface of the reduction electrode 5 by the reduction reaction of carbon dioxide. Since it is heated, the liquid product can be vaporized and removed from the surface of the reducing electrode 5. As a result, carbon dioxide in the gas phase can always be directly supplied to the reduction electrode 5, and the supply amount of carbon dioxide can be maintained, so that the life of the carbon dioxide reduction reaction can be improved. Further, since the liquid product is vaporized, all the reduction products can be collectively recovered as a gas, and the liquid product generated on the surface of the reduction electrode 5 can be easily recovered.
  • Oxidation tank 2 Oxidation electrode 3: Aqueous solution 4: Reduction tank 5: Reduction electrode 6: Ion exchange film 7: Conductor 8: Tube 9: Light source 10: Gas input port 11: Gas output port 12: Power supply 20: Gas reduction Sheet 40: Thermal conductive plate 41: Heat source 42: Insulation material 51: Tank 52: Tank 71: Plating liquid 72: Reducing agent 100: Gas phase reducing device for carbon dioxide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

二酸化炭素の気相還元装置100は、酸化電極2を含む酸化槽1と、二酸化炭素が供給される還元槽4と、イオン交換膜6と還元電極5とを積層したガス還元シート20であり、前記イオン交換膜6を前記酸化槽1に向け、前記還元電極5を前記還元槽4に向けて、前記酸化槽1と前記還元槽4との間に配置されたガス還元シート20と、前記酸化電極2と前記還元電極5とを接続する導線7と、前記還元槽4を囲む熱源41と、を備える。

Description

二酸化炭素の気相還元装置、および、二酸化炭素の気相還元方法
 本発明は、二酸化炭素の気相還元装置、および、二酸化炭素の気相還元方法に関する。
 従来、地球温暖化の防止やエネルギーの安定供給という観点から二酸化炭素を還元する技術が注目されており、近年盛んに研究されている。二酸化炭素を還元する技術としては、太陽光等の光エネルギーを印加して還元する人工光合成を利用した還元装置、外部から電気エネルギーを印加して還元する電解分解装置がある。
 光触媒からなる酸化電極への光照射により、水の酸化反応と二酸化炭素の還元反応を進行させる技術を人工光合成という。また、金属からなる酸化電極と還元電極の間への電圧印加により、水の酸化反応と二酸化炭素の還元反応を進行させる技術を二酸化炭素の電解還元という。太陽光を利用した人工光合成技術や、再生可能エネルギー由来の電力を利用した電解還元技術は、二酸化炭素を一酸化炭素、ギ酸、エチレン等の炭化水素やメタノール、エタノール等のアルコールに再資源化することが可能な技術として注目され、近年盛んに研究されている。
 従来、非特許文献1、2にあるように、人工光合成技術や二酸化炭素の電解還元技術では、還元電極(Cu)を水溶液中に浸漬させ、その水溶液中に溶解させた二酸化炭素(CO)を当該還元電極に供給し、還元する反応系が用いられてきた(非特許文献1の図2参照)。しかし、この二酸化炭素の還元方法では、水溶液への二酸化炭素の溶解濃度や水溶液中での二酸化炭素の拡散係数に限界があるため、還元電極への二酸化炭素の供給量が制限されるという問題がある。
 この問題に対し、還元電極への二酸化炭素の供給量を増加させるため、還元電極に対して気相の二酸化炭素を供給する研究が進められている。非特許文献3の図1に示された二酸化炭素の気相還元装置では、還元電極に対して気相の二酸化炭素を供給できる構造を有する反応装置を用いることで、還元電極への二酸化炭素の供給量が増大し、二酸化炭素の還元反応が促進する。
Satoshi Yotsuhashi、外6名、"CO2Conversion with Light and Water by GaN Photoelectrode"、Japanese Journal of Applied Physics、51、2012年、p.02BP07-1-p.02BP07-3 Yoshio Hori、外2名、"Formation of Hydrocarbons in the Electrochemical Reduction of Carbone Dioxide at a Copper Electrode in Aqueous Solution"、Journal of the Chemical Society、85(8)、1989年、p.2309-p.2326 Ichitaro Waki、外2名、"Direct Gas-phase CO2 Reduction for Solar Methane Generation Using a Gas Diffusion Electrode with a BiVO4:Mo and a Cu-In-Se Photoanode"、Chemistry Letter、47、2018年1月13日、p.436-p.439
 しかしながら、非特許文献3に開示された二酸化炭素の気相還元装置では、以下の式(1)-(4)に示すような二酸化炭素の還元反応が進行すると、還元電極では水(HO)、ギ酸(HCOOH)、メタノール(CHOH)、エタノール(COH)等の液体生成物が生成され、その液体生成物が還元電極の表面に付着してしまう。そのため、還元電極の表面に対して気相の二酸化炭素を直接供給できなくなり、二酸化炭素の供給量が減少することで、二酸化炭素の還元反応の寿命が低下してしまう。
  CO+2H+2e→CO+HO ・・・(1)
  CO+2H+2e→HCOOH ・・・(2)
  CO+6H+6e→CHOH+HO ・・・(3)
  2CO+12H+12e→COH+3HO ・・・(4)
 従って、二酸化炭素の還元反応により還元電極の表面に生成する液体生成物を除去して還元電極に対して常に気相の二酸化炭素を直接供給することで、二酸化炭素の供給量を維持し、二酸化炭素還元反応の寿命を向上させることが課題である。
 また、液体生成物が還元電極に付着していると、液体生成物を回収するために一度還元槽を開放する必要があり、その作業を行う間装置の運転が停止される。したがって、装置を停止させることなく、液体生成物を簡便に回収することが課題である。
 本発明は、上記事情に鑑みてなされたものであり、本発明の目的は、二酸化炭素の気相還元装置において、二酸化炭素の還元反応の寿命を改善し、還元電極に付着した液体生成物を簡便に回収可能な技術を提供することである。
 本発明の一態様の二酸化炭素の気相還元装置は、酸化電極を含む酸化槽と、二酸化炭素が供給される還元槽と、イオン交換膜と還元電極とを積層したガス還元シートであり、前記イオン交換膜を前記酸化槽に向け、前記還元電極を前記還元槽に向けて、前記酸化槽と前記還元槽との間に配置されたガス還元シートと、前記酸化電極と前記還元電極とを接続する導線と、前記還元槽を囲む熱源と、を備える。
 本発明の一態様の二酸化炭素の気相還元方法は、二酸化炭素の気相還元装置で行う二酸化炭素の気相還元方法において、前記二酸化炭素の気相還元装置は、酸化電極を含む酸化槽と、二酸化炭素が供給される還元槽と、イオン交換膜と還元電極とを積層したガス還元シートであり、前記イオン交換膜を前記酸化槽に向け、前記還元電極を前記還元槽に向けて、前記酸化槽と前記還元槽との間に配置されたガス還元シートと、前記酸化電極と前記還元電極とを接続する導線と、前記還元槽を囲む熱源と、を備え、前記酸化槽に電解液を注水する第1の工程と、前記還元槽に熱を加える第2の工程と、前記還元槽に前記二酸化炭素を流入する第3の工程と、前記酸化電極に光を照射し、又は、前記酸化電極と前記還元電極との間に電圧を印加する第4の工程と、を行う。
 本発明によれば、二酸化炭素の気相還元装置において、二酸化炭素の還元反応の寿命を向上し、還元電極に付着した液体生成物を簡便に回収可能な技術を提供できる。
図1は、実施例1~4に係る二酸化炭素の気相還元装置の構成を示す構成図である。 図2は、無電解めっき法を用いたガス還元シートの作製方法を示す図である。 図3は、実施例5~8に係る二酸化炭素の気相還元装置の構成を示す構成図である。 図4は、従来の二酸化炭素の気相還元装置の構成を示す構成図である。 図5は、従来の二酸化炭素の気相還元装置の構成を示す構成図である。
 以下、図面を参照して発明の実施形態を説明する。図面の記載において同一部分には同一の符号を付し説明を省略する。本発明は、下記実施例に限定されるものではなく、その要旨の範囲内で数々の変形が可能である。
 [発明の概要]
 本発明は、光照射による二酸化炭素の還元反応を引き起こし、又は、二酸化炭素の電解還元反応を引き起こし、当該還元反応の効率を向上させる二酸化炭素の気相還元装置に関する発明であり、燃料生成技術や太陽エネルギー変換技術の技術分野に属する。
 本発明は、イオン交換膜上に還元電極を形成して得られるガス還元シートを用いて、還元電極の表面に気相の二酸化炭素を直接供給して還元する。このとき、二酸化炭素の還元反応により還元電極の表面に液体生成物が生成するが、本発明では、還元槽の周りに熱源を配置し、その熱源によって還元電極の温度を液体生成物の沸点以上又は沸点よりも高い温度に維持することで、液体生成物を気化させて除去する。
 これにより、還元電極の表面に生成される液体生成物を除去可能となり、常に気相の二酸化炭素を還元電極に直接供給可能となることから、二酸化炭素の還元反応の寿命を向上させることができる。また、液体生成物を気化させるので、液体生成物の回収が簡便になる。
 [実施例1]
  [二酸化炭素の気相還元装置の構成]
 図1は、実施例1に係る二酸化炭素の気相還元装置の構成を示す構成図である。
 二酸化炭素の気相還元装置100は、酸化電極2を含む酸化槽1と、二酸化炭素が供給される還元槽4と、イオン交換膜6と還元電極5とを積層したガス還元シート20であり、イオン交換膜6を酸化槽1に向け、還元電極5を還元槽4に向けて、酸化槽1と還元槽4との間に配置されたガス還元シート20と、酸化電極2と還元電極5とを接続する導線7と、還元槽4を囲む熱伝導性板40、熱源41、断熱材42と、酸化電極2に光を照射する光源9と、を備える。
 酸化槽1には、電解液である水溶液3が注水される。酸化槽1内の酸化電極2は、酸化槽1内に注入された水溶液3に浸漬される。実施例1の酸化電極2は、半導体又は金属錯体からなる電極であり、例えば、窒化物半導体である。実施例1の酸化電極2は、異なる種類の窒化物半導体を積層した積層構造でもよく、インジウムやアルミニウムを含むような異なる組成で構成してもよい。実施例1の酸化電極2は、窒化物半導体の代わりに、酸化チタン、アモルファスシリコンのような光活性を示す化合物を用いてもよい。
 水溶液3は、酸化槽1に注水される電解液である。水溶液3は、例えば、水酸化カリウム水溶液である。水溶液3は、水酸化カリウム水溶液の代わりに、例えば、水酸化ナトリウム水溶液、塩化カリウム水溶液、塩化ナトリウム水溶液等を用いてもよい。
 ガス還元シート20は、イオン交換膜6と還元電極5とを積層した構造を備える。イオン交換膜6は、例えば、炭素-フッ素からなる骨格を持つ電解質膜であるナフィオン(商標登録)、フォアブルーSシリーズ、アクイヴィオン等である。還元電極5は、例えば、銅である。還元電極5は、銅の代わりに、金、白金、銀、パラジウム、ガリウム、インジウム、ニッケル、スズ、カドニウム、それらの合金でもよく、それらの金属及び金属酸化物とカーボンとの混合物質でもよい。還元電極5は、導線7で酸化電極2に接続される。このガス還元シート20は、酸化槽1と還元槽4との間に配置され、イオン交換膜6は酸化槽1に向けて配置され、還元電極5は還元槽4に向けて配置される。
 還元槽4は、内部が空洞であり、二酸化炭素等を流入・流出する気体入力口10及び気体出力口11を備える。還元槽4の周囲には熱源41が配置される。熱源41の還元槽4に対する熱効率を高めるため、還元槽4と熱源41との間に熱伝導性板40が配置される。熱源41からの放熱を防止するため、熱源41を覆うように断熱材42が配置される。熱源41は、再生可能エネルギー又は化石燃料由来のエネルギー由来の電力を利用して運転するラバーヒーター、ホットプレート等でもよいし、プラントやごみ処理場等から排出される廃熱を利用してもよい。熱伝導性板40は、例えば、銀、銅、金、アルミ、ニッケル、白金等である。
 光源9は、二酸化炭素の気相還元装置100を運転するための光源であり、酸化電極2に対して対向配置される。光源9は、例えば、キセノンランプ、擬似太陽光源、ハロゲンランプ、水銀ランプ、太陽光、これらの組み合わせ等である。
  [ガス還元シートの作製方法]
 図2は、ガス還元シート20を作製する方法として用いた無電解めっき法の反応系を示す図である。イオン交換膜6にはナフィオンを用い、還元電極5には銅を用いた。イオン交換膜6の片面を研磨し、イオン交換膜6を沸騰硝酸と沸騰純水とにそれぞれ漬け込む。左右2つの槽51,52に、表1に示すめっき液71と還元剤72とをそれぞれ満たす。
Figure JPOXMLDOC01-appb-T000001
 槽51と槽52とは、イオン交換膜6によって隔てられている。イオン交換膜6は、研磨面をめっき液71側にして配置する。めっき液71とイオン交換膜6の研磨面との界面において、下記の酸化還元反応が起きて銅(Cu)が析出することで、イオン交換膜6上に還元電極5が形成されたガス還元シート20が得られる。
 BH +4OH→BO +2HO+2H+4e
 Cu2++2e→Cu
 尚、ガス還元シート20の作製方法は、無電解めっき法以外に、例えば、電気めっき法、物理蒸着法、化学蒸着法等でもよい。
  [二酸化炭素の気相還元方法]
 次に、二酸化炭素の気相還元装置100で行う二酸化炭素の気相還元方法について説明する。電気化学測定結果、ガス・液体生成量測定結果も併せて説明する。
 第1の工程;
 まず、酸化槽1に電解液である水溶液3を注水し、その水溶液3に酸化電極2を浸水させる。酸化電極2には、サファイア基板上にn型半導体であるn型窒化ガリウム(n-GaN)の薄膜と窒化アルミニウムガリウム(AlGaN)とをその順にエピタキシャル成長させ、その上にニッケル(Ni)を真空蒸着して熱処理を行うことで酸化ニッケル(NiO)の助触媒薄膜を形成した基板を用いた。水溶液3は、1mol/Lの水酸化カリウム(KOH)水溶液とした。酸化電極2の光照射面積(受光面積)は2.5cmとした。
 第2の工程;
 次に、半導体光電極として機能する酸化電極2の酸化助触媒形成面が照射面となるように光源9を固定する。光源9には、300Wの高圧キセノンランプ(波長450nm以上をカット、照度6.6mW/cm2)を用いた。
 第3の工程;
 次に、還元槽4の周囲を熱伝導性板40で囲い、その熱伝導性板40の周囲に熱源41を配置し、更に熱源41の周囲を断熱材42で囲う。熱効率を高めるため、それぞれは密着させることが好ましい。熱伝導性板40には、銅板を用いた。熱源41には、ラバーヒーターを用いた。断熱材42には、硬質ウレタンフォームを用いた。そして、還元電極5の表面近傍温度が60℃となるように熱源41で還元槽4を加熱する。尚、還元電極5の表面近傍温度は、例えば熱電対を用いて測定可能である。
 第4の工程;
 次に、酸化槽1に対してはチューブ8からヘリウム(He)を、還元槽4に対しては気体入力口10から二酸化炭素(CO)を、それぞれ流量5ml/minかつ圧力0.18MPaで流入する。酸化槽1に流入する気体は、アルゴン、窒素、二酸化炭素等の不活性ガスでもよい。
 第5の工程;
 次に、酸化槽1と還元槽4とをヘリウムと二酸化炭素とでそれぞれ十分に置換した後、光源9を用いて酸化電極2に均一に光を照射する。この光照射により、酸化電極2と還元電極5との間に電気が流れる。酸化電極2の表面では水の酸化反応が起こり、ガス還元シート20内の[イオン交換膜6-還元電極5(銅)-気相の二酸化炭素]からなる三相界面では、二酸化炭素の還元反応が進行する。このとき、還元電極5の表面には、水(HO)、ギ酸(HCOOH)、メタノール(CHOH)、エタノール(COH)等の液体生成物が付着するが、熱源41で還元槽4を加熱しているため、付着した液体生成物は気化して還元電極5の表面から除去され、気相の二酸化炭素と気化した液体生成物との混合気体が気体出力口11から流出する。
 第6の工程;
 最後に、光照射中の任意の時刻に酸化槽1及び還元槽4の各気体を採取し、ガスクロマトグラフ及びガスクロマトグラフ質量分析計にて反応生成物を分析する。その反応生成物を分析した結果、酸化槽1内では、水の酸化反応による酸素が生成され、還元槽4内では、プロトンの還元反応による水素、及び、二酸化炭素の還元反応による一酸化炭素、ギ酸、メタン、メタノール、エタノール、エチレンが生成していることを確認した。また、光照射時の酸化電極2と還元電極5との間の電流値を、電気化学測定装置(Solartron社製、1287型ポテンショガルバノスタット)を用いて測定した。
 [実施例2]
 実施例2では、還元電極5の表面近傍温度を100℃とした。これ以外の方法及び二酸化炭素の気相還元装置100の構成は、実施例1と同様である。
 [実施例3]
 実施例3では、還元電極5の表面近傍温度を110℃とした。これ以外の方法及び二酸化炭素の気相還元装置100の構成は、実施例1と同様である。
 [実施例4]
 実施例4では、還元電極5の表面近傍温度を130℃とした。これ以外の方法及び二酸化炭素の気相還元装置100の構成は、実施例1と同様である。
 [実施例5]
  [二酸化炭素の気相還元装置の構成]
 図3は、実施例5に係る二酸化炭素の気相還元装置の構成を示す構成図である。
 実施例5では、光源9の代わりに、電源12を用いる。電源12は、導線7の経路上に挿入される。実施例5では酸化電極2で光を受光する必要がないので、実施例5の酸化電極2は、白金(ニラコ製)を用いて構成した。実施例5の酸化電極2は、白金の代わりに、例えば、金、銀、銅、インジウム、ニッケル等の金属でもよい。実施例5の酸化電極2の表面積は、約0.55cmとした。その他の構成は、実施例1と同様である。
  [ガス還元シートの作製方法]
 ガス還元シートの作製方法は、実施例1と同様である。
  [二酸化炭素の気相還元方法]
 第1の工程;
 まず、酸化槽1に電解液である水溶液3を注水し、その水溶液3に酸化電極2(白金)を浸水させる。
 第2の工程;
 次に、還元槽4の周囲を熱伝導性板40で囲い、その熱伝導性板40の周囲に熱源41を配置し、更に熱源41の周囲を断熱材42で囲う。そして、還元電極5の表面近傍温度が60℃となるように熱源41で還元槽4を加熱する。
 第3の工程;
 次に、酸化槽1に対してはチューブ8からヘリウム(He)を、還元槽4に対しては気体入力口10から二酸化炭素(CO)を、それぞれ流量5ml/minかつ圧力0.18MPaで流入する。
 第4の工程;
 次に、酸化槽1と還元槽4とをヘリウムと二酸化炭素とでそれぞれ十分に置換した後、酸化電極2と還元電極5との間に電源12を導線7でつなぎ、電圧1.5Vを印加する。
 第5の工程;
 最後に、光照射中の任意の時刻に酸化槽1及び還元槽4の各気体を採取し、ガスクロマトグラフ及びガスクロマトグラフ質量分析計にて反応生成物を分析する。
 [実施例6]
 実施例6では、還元電極5の表面近傍温度を100℃とした。これ以外の方法及び二酸化炭素の気相還元装置100の構成は、実施例5と同様である。
 [実施例7]
 実施例7では、還元電極5の表面近傍温度を110℃とした。これ以外の方法及び二酸化炭素の気相還元装置100の構成は、実施例5と同様である。
 [実施例8]
 実施例8では、還元電極5の表面近傍温度を130℃とした。これ以外の方法及び二酸化炭素の気相還元装置100の構成は、実施例5と同様である。
 [実施例1-8の効果]
 次に、実施例1-8の効果を説明する。ここでは、従来構成の効果と比較する。図4は、実施例1-4(図1)に対応する従来構成であり、比較対象例1という。図5は、実施例5-8(図3)に対応する従来構成であり、比較対象例2という。比較対象例1、2は、いずれも、還元槽4の周囲に、熱伝導性板40、熱源41、断熱材42が配置されていない。
 表2は、実施例1-10及び比較対象例1、2に関して、光照射時又は電圧印加時から10分後の二酸化炭素還元反応のファラデー効率を示す表である。
Figure JPOXMLDOC01-appb-T000002
 ファラデー効率とは、式(5)に示すように、光照射時又は電圧印加時に電極間に流れた電流値に対して、各還元反応に使われた電流値の割合を示すものである。
  各還元反応のファラデー効率=(各還元反応の電流値)/(酸化電極-還元電極間の電流値) ・・・(5)
 式(1)の「各還元反応の電流値」は、各還元生成物の生成量の測定値を、その生成反応に必要な電子数に換算することで算出可能である。例えば、還元反応生成物の濃度をA[ppm]、キャリアガスの流量をB[L/sec]、還元反応に必要な電子数をZ[mol]、ファラデー定数をF[C/mol]、気体のモル体をVm[L/mol]としたとき、式(6)を用いて算出可能である。
  各還元反応の電流値[A]=(A×B×Z×F×10-6)/Vm ・・・(6)
 表2より、実施例1-3と比較対象例1とのファラデー効率は同程度の値であり、実施例5-7と比較対象例2とのファラデー効率も同程度の値である。これは、光照射時又は電圧印加時から10分後では還元電極5の表面に付着する液体生成物が極微量であり、反応面が失われていないためと考えられる。
 一方で、実施例4及び実施例8では、ファラデー効率が0%であった。これは、還元電極5の表面近傍温度が130℃と高いため、イオン交換膜を形成するスルホン酸基が分解され、イオン交換膜がイオン交換機能を失ったことが原因と考えられる。
 以上より、還元電極5の表面近傍温度は130℃未満であることが好ましいと考えられる。尚、イオン交換膜6の例として挙げたナフィオンやフォアブルーSシリーズの使用可能温度は110℃、アクイヴィオンの使用可能温度は140℃であり、この温度以下で使用する必要がある。
 表3は、実施例1―3、5-7及び比較対象例1、2に関して、光照射時又は電圧印加時から20時間後の二酸化炭素還元反応のファラデー効率の維持率を示す表である。
Figure JPOXMLDOC01-appb-T000003
 二酸化炭素還元反応のファラデー効率の維持率とは、式(7)に示すように、10分後の二酸化炭素還元反応のファラデー効率に対する20時間後の二酸化炭素還元反応のファラデー効率と定義した。
  二酸化炭素還元反応のファラデー効率の維持率=(20時間後の二酸化炭素還元反応のファラデー効率)/(10分後の二酸化炭素還元反応のファラデー効率) ・・・(7)
 表3より、比較対象例1及び比較対象例2に対して、実施例2、3及び実施例6、7は、それぞれ、二酸化炭素還元反応のファラデー効率の維持率が向上しており、二酸化炭素還元反応の寿命が向上したことがわかる。これは、実施例3及び実施例7において、還元電極5の表面近傍温度を110℃にすることで、還元電極5に付着した液体生成物である水(沸点100℃)、ギ酸(沸点100.8℃)、メタノール(沸点64.7℃)、エタノール(沸点78.37)がすべて気化し、実施例2及び実施例6において、還元電極5の表面近傍の温度を100℃にすることで水、メタノール、エタノールが気化し、還元電極5の表面から除去されたことにより、還元電極5の表面に気相の二酸化炭素を常に供給できるようになったことが要因と想定される。実施例2及び実施例6よりも実施例3及び実施例7の方が、二酸化炭素還元反応のファラデー効率の維持率が高いのは、ギ酸が気化したことによると考えられる。
 更に、実施例1及び実施例5の二酸化炭素還元反応のファラデー効率の維持率は、比較対象例1及び比較対象例2と同様の値で、実施例2、3及び実施例6、7よりも小さい値である。これは、還元電極5の表面近傍温度が水、ギ酸、メタノール、エタノールの沸点より低く、還元電極5に付着した液体生成物が除去できなかったことにより、還元電極5の表面の反応場が失われてしまったためと考えられる。したがって、還元電極5の表面近傍温度は、全ての液体生成物の沸点よりも大きい値であることが好ましい。すなわち、熱源41の加熱温度は、還元電極5の表面で起きた二酸化炭素の還元反応により還元電極5の表面に生成される全ての液体生成物の沸点よりも高い温度であることが好ましい。
 [本発明の効果]
 本発明によれば、二酸化炭素の気相還元装置100は、還元槽4を囲むように配置された熱源41を用いて、二酸化炭素の還元反応により還元電極5の表面に生成する液体生成物を加熱するので、その液体生成物を気化させ、還元電極5の表面から除去できる。これにより、還元電極5に対して常に気相の二酸化炭素を直接供給可能となり、二酸化炭素の供給量を維持可能となるので、二酸化炭素還元反応の寿命を向上させることができる。更に、その液体生成物を気化させるので、すべての還元生成物を気体としてまとめて回収可能となり、還元電極5の表面に生じた液体生成物の回収が簡便になる。
 1:酸化槽
 2:酸化電極
 3:水溶液
 4:還元槽
 5:還元電極
 6:イオン交換膜
 7:導線
 8:チューブ
 9:光源
 10:気体入力口
 11:気体出力口
 12:電源
 20:ガス還元シート
 40:熱伝導性板
 41:熱源
 42:断熱材
 51:槽
 52:槽
 71:めっき液
 72:還元剤
 100:二酸化炭素の気相還元装置

Claims (7)

  1.  酸化電極を含む酸化槽と、
     二酸化炭素が供給される還元槽と、
     イオン交換膜と還元電極とを積層したガス還元シートであり、前記イオン交換膜を前記酸化槽に向け、前記還元電極を前記還元槽に向けて、前記酸化槽と前記還元槽との間に配置されたガス還元シートと、
     前記酸化電極と前記還元電極とを接続する導線と、
     前記還元槽を囲む熱源と、
     を備える二酸化炭素の気相還元装置。
  2.  前記酸化電極に光を照射する光源を更に備える請求項1に記載の二酸化炭素の気相還元装置。
  3.  前記導線に接続された電源を更に備える請求項1に記載の二酸化炭素の気相還元装置。
  4.  前記酸化電極は、
     n型半導体である請求項1又は2に記載の二酸化炭素の気相還元装置。
  5.  前記還元槽を囲む熱伝導性板及び断熱材を更に備える請求項1乃至4のいずれかに記載の二酸化炭素の気相還元装置。
  6.  二酸化炭素の気相還元装置で行う二酸化炭素の気相還元方法において、
     前記二酸化炭素の気相還元装置は、
     酸化電極を含む酸化槽と、
     二酸化炭素が供給される還元槽と、
     イオン交換膜と還元電極とを積層したガス還元シートであり、前記イオン交換膜を前記酸化槽に向け、前記還元電極を前記還元槽に向けて、前記酸化槽と前記還元槽との間に配置されたガス還元シートと、
     前記酸化電極と前記還元電極とを接続する導線と、
     前記還元槽を囲む熱源と、を備え、
     前記酸化槽に電解液を注水する第1の工程と、
     前記還元槽に熱を加える第2の工程と、
     前記還元槽に前記二酸化炭素を流入する第3の工程と、
     前記酸化電極に光を照射し、又は、前記酸化電極と前記還元電極との間に電圧を印加する第4の工程と、
     を行う二酸化炭素の気相還元方法。
  7.  前記第2の工程では、
     前記還元電極の表面で起きた前記二酸化炭素の還元反応により前記還元電極の表面に生成される液体の沸点よりも高い温度の熱を加える請求項6に記載の二酸化炭素の気相還元方法。
PCT/JP2020/018835 2020-05-11 2020-05-11 二酸化炭素の気相還元装置、および、二酸化炭素の気相還元方法 WO2021229644A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2020/018835 WO2021229644A1 (ja) 2020-05-11 2020-05-11 二酸化炭素の気相還元装置、および、二酸化炭素の気相還元方法
JP2022522104A JP7356067B2 (ja) 2020-05-11 2020-05-11 二酸化炭素の気相還元装置、および、二酸化炭素の気相還元方法
US17/914,028 US20230135736A1 (en) 2020-05-11 2020-05-11 Carbon Dioxide Gas Phase Reduction Device and Carbon Dioxide Gas Phase Reduction Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/018835 WO2021229644A1 (ja) 2020-05-11 2020-05-11 二酸化炭素の気相還元装置、および、二酸化炭素の気相還元方法

Publications (1)

Publication Number Publication Date
WO2021229644A1 true WO2021229644A1 (ja) 2021-11-18

Family

ID=78525437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018835 WO2021229644A1 (ja) 2020-05-11 2020-05-11 二酸化炭素の気相還元装置、および、二酸化炭素の気相還元方法

Country Status (3)

Country Link
US (1) US20230135736A1 (ja)
JP (1) JP7356067B2 (ja)
WO (1) WO2021229644A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017210666A (ja) * 2016-05-27 2017-11-30 パナソニックIpマネジメント株式会社 二酸化炭素の還元方法、及び二酸化炭素の還元装置
US20180202056A1 (en) * 2015-07-14 2018-07-19 Korea Institute Of Energy Research Method and apparatus for preparing reduction product of carbon dioxide by electrochemically reducing carbon dioxide
JP2018519418A (ja) * 2015-05-22 2018-07-19 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft 二酸化炭素の電気化学的有効利用のためのプロトン供与体ユニットを有する電解システム及び還元方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018519418A (ja) * 2015-05-22 2018-07-19 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft 二酸化炭素の電気化学的有効利用のためのプロトン供与体ユニットを有する電解システム及び還元方法
US20180202056A1 (en) * 2015-07-14 2018-07-19 Korea Institute Of Energy Research Method and apparatus for preparing reduction product of carbon dioxide by electrochemically reducing carbon dioxide
JP2017210666A (ja) * 2016-05-27 2017-11-30 パナソニックIpマネジメント株式会社 二酸化炭素の還元方法、及び二酸化炭素の還元装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MERINO-GARCIA, IVAN ET AL.: "Productivity and Selectivity of Gas-Phase C02 Electroreduction to Methane at Copper Nanoparticle-Based Electrodes", ENERGY TECHNOLOGY, vol. 5, 2017, pages 922 - 928, XP055473033, DOI: 10.1002/ente.201600616 *

Also Published As

Publication number Publication date
JP7356067B2 (ja) 2023-10-04
US20230135736A1 (en) 2023-05-04
JPWO2021229644A1 (ja) 2021-11-18

Similar Documents

Publication Publication Date Title
JP7121318B2 (ja) 二酸化炭素の気相還元装置及び二酸化炭素の気相還元方法
JP5236125B1 (ja) 二酸化炭素を還元する方法
US8709227B2 (en) Method for reducing carbon dioxide
JP5636139B2 (ja) 二酸化炭素還元用光化学電極、および該光化学電極を用いて二酸化炭素を還元する方法
JP5641489B2 (ja) アルコールを生成する方法
JP6474000B2 (ja) 二酸化炭素の還元方法、及び二酸化炭素の還元装置
JP7273346B2 (ja) 二酸化炭素の気相還元方法
JP2020090690A (ja) 窒化物半導体光電極の製造方法
WO2021229644A1 (ja) 二酸化炭素の気相還元装置、および、二酸化炭素の気相還元方法
US20230416933A1 (en) Carbon Dioxide Gas Phase Reduction Apparatus and Method for Manufacturing a Porous Reducing Electrode-Supported Electrolyte Membrane
US20240183046A1 (en) Porous Electrode-Supported Electrolyte Membrane and Method for Manufacturing Same
WO2021234908A1 (ja) 二酸化炭素の気相還元装置、および、多孔質電極支持型電解質膜の製造方法
US20240124996A1 (en) Carbon Dioxide Gas-Phase Reduction Device And Carbon Dioxide Gas-Phase Reduction Method
JP2017020094A (ja) 反応処理方法および装置
WO2023238387A1 (ja) 窒化物半導体光電極およびその製造方法
WO2023095203A1 (ja) 多孔質電極支持型電解質膜の製造方法
WO2023095201A1 (ja) 多孔質電極支持型電解質膜および多孔質電極支持型電解質膜の製造方法
JP2019151877A (ja) 二酸化炭素の還元方法および二酸化炭素還元装置
WO2022249314A1 (ja) 二酸化炭素還元装置
WO2022118364A1 (ja) 電解質膜支持型還元電極の製造方法
WO2023238394A1 (ja) 窒化物半導体光電極
WO2024116235A1 (ja) 二酸化炭素の気相還元装置
KR20150032433A (ko) 광전극과 그 제조방법 및 이를 이용한 광전기화학 셀

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022522104

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20935272

Country of ref document: EP

Kind code of ref document: A1