WO2023095203A1 - 多孔質電極支持型電解質膜の製造方法 - Google Patents

多孔質電極支持型電解質膜の製造方法 Download PDF

Info

Publication number
WO2023095203A1
WO2023095203A1 PCT/JP2021/042974 JP2021042974W WO2023095203A1 WO 2023095203 A1 WO2023095203 A1 WO 2023095203A1 JP 2021042974 W JP2021042974 W JP 2021042974W WO 2023095203 A1 WO2023095203 A1 WO 2023095203A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte membrane
porous
electrode
reduction
reduction electrode
Prior art date
Application number
PCT/JP2021/042974
Other languages
English (en)
French (fr)
Inventor
紗弓 里
裕也 渦巻
晃洋 鴻野
武志 小松
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/042974 priority Critical patent/WO2023095203A1/ja
Publication of WO2023095203A1 publication Critical patent/WO2023095203A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/23Carbon monoxide or syngas
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • C25B3/26Reduction of carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing a porous electrode-supported electrolyte membrane.
  • Devices related to the technology for reducing carbon dioxide include a reduction device using artificial photosynthesis technology and a reduction device using electrolytic reduction technology.
  • Artificial photosynthesis technology is a technology that advances the oxidation reaction of water and the reduction reaction of carbon dioxide by irradiating an oxidation electrode made of a photocatalyst with light.
  • the electrolytic reduction technique is a technique for advancing the oxidation reaction of water and the reduction reaction of carbon dioxide by applying a voltage between an oxidation electrode and a reduction electrode made of metal.
  • Artificial photosynthesis technology using sunlight and electrolytic reduction technology using electricity derived from renewable energy can recycle carbon dioxide into hydrocarbons such as carbon monoxide, formic acid, and ethylene, and alcohols such as methanol and ethanol. has attracted attention as a technology capable of
  • Non-Patent Document 1 In artificial photosynthesis technology and carbon dioxide electrolytic reduction technology, a reaction system has been used in which a reduction electrode is immersed in an aqueous solution, and carbon dioxide dissolved in the aqueous solution is supplied to the reduction electrode for reduction (Non-Patent Document 1 , 2).
  • this method for reducing carbon dioxide there are limits on the concentration of carbon dioxide dissolved in the aqueous solution and the diffusion coefficient of carbon dioxide in the aqueous solution, and the amount of carbon dioxide supplied to the reduction electrode is limited.
  • Non-Patent Document 3 by using a reaction apparatus having a structure that can supply gaseous carbon dioxide to the reduction electrode, the amount of carbon dioxide supplied to the reduction electrode increases, and the reduction reaction of carbon dioxide is promoted. be done.
  • the reduction electrode is made porous so that gaseous carbon dioxide can reach the reduction electrode. Allow access to the interface of the electrolyte membrane.
  • the electrolyte membrane is softened by applying heat of about 150° C., and the porous reduction electrode bites into the softened electrolyte membrane to deform the electrolyte membrane, which acts as an anchor effect and joins.
  • the temperature during thermocompression bonding is lowered (for example, 100°C or lower) in order to improve the efficiency of the manufacturing process, the deformation of the electrolyte membrane will be reduced and the anchoring effect will be reduced.
  • the contact resistance between the electrolyte membrane and the porous reduction electrode gradually increases during the progress of the gas phase reduction reaction of carbon dioxide, and there is a problem that the period (lifetime) in which the carbon dioxide reduction performance can be maintained decreases. .
  • the present invention has been made in view of the above, and suppresses the deterioration of the anchor effect between the electrolyte membrane and the porous reduction electrode, and extends the period in which the electrolyte membrane and the porous reduction electrode can maintain the performance of carbon dioxide reduction. Aim to improve.
  • One aspect of the present invention is a method for producing a porous electrode-supported electrolyte membrane used in a gas-phase reduction apparatus for reducing carbon dioxide, comprising the steps of: roughening a predetermined surface of the electrolyte membrane; placing the roughened surface facing the porous reduction electrode, and stacking the electrolyte membrane and the porous reduction electrode and bonding them by thermocompression.
  • One aspect of the present invention is a method for producing a porous electrode-supported electrolyte membrane used in a gas-phase reduction apparatus for reducing carbon dioxide, comprising: roughening a predetermined surface of a porous reduction electrode; a step of placing the roughened surface of the porous reduction electrode toward the electrolyte membrane, overlapping the electrolyte membrane and the porous reduction electrode, and bonding them by thermocompression.
  • the deterioration of the anchoring effect between the electrolyte membrane and the porous reduction electrode can be suppressed, and the period during which the electrolyte membrane and the porous reduction electrode can maintain the carbon dioxide reduction performance can be increased.
  • FIG. 1 is a cross-sectional view showing a configuration example of a porous electrode-supported electrolyte membrane of this embodiment.
  • FIG. 2 is a cross-sectional view showing a configuration example of another porous electrode-supported electrolyte membrane according to this embodiment.
  • FIG. 3 is a flow chart showing an example of a method for producing the porous electrode-supported electrolyte membrane of FIG.
  • FIG. 4 is a flow chart showing an example of a method for producing the porous electrode-supported electrolyte membrane of FIG.
  • FIG. 5 is a view showing an example of thermocompression bonding when manufacturing a porous electrode-supported electrolyte membrane.
  • FIG. 6 is a diagram showing a configuration example of a gas-phase reduction apparatus for carbon dioxide provided with a porous electrode-supported electrolyte membrane.
  • a porous electrode-supported electrolyte membrane 20 of this embodiment will be described with reference to the cross-sectional view of FIG.
  • the porous electrode-supported electrolyte membrane 20 of this embodiment includes an electrolyte membrane 6 and a porous reduction electrode 5 joined to the electrolyte membrane 6 .
  • the porous reduction electrode 5 is directly superimposed on the electrolyte membrane 6 and thermocompressed to be directly bonded.
  • the illustrated electrolyte membrane 6 has one surface 61 (predetermined surface) on the porous reduction electrode 5 side that is roughened.
  • the porous electrode-supporting electrolyte membrane 20 is arranged with the roughened surface 61 of the electrolyte membrane 6 facing the porous reduction electrode 5, and the electrolyte membrane 6 and the porous reduction electrode 5 are vertically stacked and thermocompression bonded. It is made by
  • the porous reduction electrode 5 is an electrode using a porous body (porous material).
  • the porous reduction electrode 5 includes, for example, a porous body containing copper, platinum, gold, silver, indium, palladium, gallium, nickel, tin, cadmium, or alloys thereof; silver oxide, copper oxide, copper (II) oxide, A porous body containing nickel oxide, indium oxide, tin oxide, tungsten oxide, tungsten (VI) oxide, copper oxide, or the like; or a porous body containing a porous metal complex having a metal ion and an anionic ligand may be used. .
  • electrolyte membrane 6 for example, Nafion (registered trademark), Phor Blue, Aquivion, etc., which are perfluorocarbon materials having a carbon-fluorine skeleton, can be used.
  • FIG. 2 is a cross-sectional view of another porous electrode-supported electrolyte membrane 20 of this embodiment.
  • the porous electrode-supported electrolyte membrane 20 shown in FIG. 2 includes an electrolyte membrane 6 and a porous reduction electrode 5 joined to the electrolyte membrane 6, as in FIG.
  • the illustrated porous reduction electrode 5 has one surface 51 (predetermined surface) on the electrolyte membrane 6 side that is roughened.
  • the porous electrode-supporting electrolyte membrane 20 is formed by arranging the roughened surface 51 of the porous reduction electrode 5 toward the electrolyte membrane 6, and stacking the electrolyte membrane 6 and the porous reduction electrode 5 vertically and thermocompression bonding. It is made by Others are the same as in FIG.
  • FIG. 3 is a flow chart of a method for manufacturing the porous electrode-supported electrolyte membrane 20 of FIG.
  • step S11 one surface 61 (single surface) of the electrolyte membrane 6 is roughened.
  • Techniques for roughening the electrolyte membrane 6 include polishing with abrasives (sandpaper, whetstone, etc.), sandblasting, chemical etching, laser processing, and the like.
  • step S12 the roughened surface 61 of the electrolyte membrane 6 is placed facing the porous reduction electrode 5, and the porous reduction electrode 5 is overlaid thereon and thermocompression bonded by a thermocompression bonding apparatus (for example, a hot press machine). .
  • a thermocompression bonding apparatus for example, a hot press machine.
  • the porous reduction electrode 5 is superimposed on the roughened surface 61 of the electrolyte membrane 6 and arranged between the two copper plates 40a and 40b.
  • the reduction electrode 5 and the copper plates 40a and 40b are vertically thermocompressed by a thermocompression bonding apparatus. After thermocompression bonding, the porous electrode-supported electrolyte membrane 20 in which the electrolyte membrane 6 and the porous reduction electrode 5 are joined can be obtained by cooling quickly.
  • the heating temperature during thermocompression bonding is preferably 180° C. or lower, which is the heat resistance temperature of the electrolyte membrane 6 .
  • FIG. 4 is a flow chart of a method for manufacturing the porous electrode-supported electrolyte membrane 20 of FIG.
  • step S21 one surface 51 (single surface) of the porous reduction electrode 5 is roughened.
  • Techniques for roughening the porous reduction electrode 5 include polishing with abrasives (sandpaper, whetstone, etc.), sandblasting, chemical etching, laser processing, and the like.
  • step S22 the roughened surface 51 of the porous reduction electrode 5 is placed facing the electrolyte membrane 6, and the electrolyte membrane 6 and the porous reduction electrode 5 are stacked one on top of the other and bonded by a thermocompression device (for example, a hot press machine). Press with heat. As a result, the roughened surface 51 of the porous reduction electrode 5 bites into the electrolyte membrane 6 .
  • the thermocompression bonding process in step S22 is the same as the thermocompression bonding process in step S12 of FIG. 2 (see FIG. 5).
  • the vapor-phase reduction apparatus 100 includes the porous electrode-supported electrolyte membrane 20 of this embodiment.
  • a vapor-phase reduction device 100 shown in FIG. 6 is a reduction device that uses artificial photosynthesis technology to reduce carbon dioxide by light irradiation.
  • the gas-phase reduction apparatus 100 includes an oxidation tank 1 and a reduction tank 4, which are formed by dividing the internal space in the housing into two by the porous electrode-supported electrolyte membrane 20. That is, the porous electrode-supported electrolyte membrane 20 is arranged between the oxidation tank 1 and the reduction tank 4 .
  • the porous electrode-supported electrolyte membrane 20 is arranged with the electrolyte membrane 6 facing the oxidation tank 1 and the porous reduction electrode 5 facing the reduction tank 4 .
  • the oxidation tank 1 is filled with an aqueous solution 3.
  • An oxidation electrode 2 made of a semiconductor or a metal complex is inserted into an aqueous solution 3 .
  • oxidation electrode 2 compounds exhibiting photoactivity and redox activity, such as nitride semiconductors, titanium oxide, amorphous silicon, ruthenium complexes, rhenium complexes, etc., can be used.
  • the oxidation electrode 2 is electrically connected to the porous reduction electrode 5 by a conductor 7 .
  • an aqueous potassium hydrogen carbonate solution for example, an aqueous potassium hydrogen carbonate solution, an aqueous sodium hydrogen carbonate solution, an aqueous potassium chloride solution, an aqueous sodium chloride solution, an aqueous sodium hydroxide solution, an aqueous potassium hydroxide solution, an aqueous rubidium hydroxide solution, an aqueous cesium hydroxide solution, or the like can be used.
  • Helium gas is supplied to the aqueous solution 3 from the tube 8 during the reduction reaction.
  • the reduction tank 4 is supplied with carbon dioxide from the gas inlet 10 and filled with carbon dioxide or a gas containing carbon dioxide.
  • the light source 9 is arranged facing the oxidation electrode 2 to drive the vapor phase reduction device 100 . That is, the light source 9 is arranged so that the oxidation electrode 2 is irradiated with light.
  • the light source 9 is, for example, a xenon lamp, a simulated solar light source, a halogen lamp, a mercury lamp, sunlight, or the like.
  • the light source 9 may be configured by combining these.
  • light energy is used as the energy for operating the gas phase reduction reactor 100, but it is not limited to this, and electrical energy, thermal energy, or renewable energy may be used.
  • Examples 1-10 in which the degree of roughening of the electrolyte membrane 6 or the porous reduction electrode 5 or the temperature at the time of thermocompression bonding was changed as the porous electrode-supported electrolyte membrane 20 arranged in the vapor phase reduction apparatus 100. was prepared, and a gas phase reduction test described later was performed.
  • the porous electrode-supported electrolyte membrane 20 of Examples 1-10 will be described below.
  • Example 1 a copper porous metal plate having a thickness of 0.2 mm and a porosity of 64% was used as the porous reduction electrode 5 .
  • Nafion which is a proton exchange membrane, was used for the electrolyte membrane 6 .
  • step S11 in FIG. 2 one side of Nafion was roughened with a No. 60 abrasive in random directions for 2 minutes. Using a confocal laser microscope, it was confirmed that the roughened surface had an arithmetic mean roughness Ra of 2.1 ⁇ m.
  • step S12 the porous reduction electrode 5 was placed on the roughened Nafion and placed between the two copper plates 40a and 40b. Then, as shown in FIG. 5, this sample was placed between a hot press and thermocompression bonding was performed by applying pressure perpendicularly to the surface of the porous reduction electrode 5 at a heating temperature of 50°C. , and left for 3 minutes. Thereafter, the sample was quickly cooled and taken out to obtain a porous electrode-supported electrolyte membrane 20 in which the electrolyte membrane 6 and the porous reduction electrode 5 were joined (see FIG. 1).
  • the thickness of the porous reduction electrode 5 after thermocompression bonding was 0.15 mm, and the average pore diameter was 51 ⁇ m.
  • Example 2 In Example 2, one side of Nafion (electrolyte membrane 6) was roughened with a No. 320 abrasive in random directions for 2 minutes. Using a confocal laser microscope, it was confirmed that the roughened surface had an arithmetic mean roughness Ra of 1.2 ⁇ m. All other conditions are the same as in Example 1.
  • Example 3 In Example 3, one side of Nafion (electrolyte membrane 6) was roughened in random directions for 2 minutes with a No. 1000 abrasive. Using a confocal laser microscope, it was confirmed that the roughened surface had an arithmetic mean roughness Ra of 0.73 ⁇ m. All other conditions are the same as in Example 1.
  • Example 4 In Example 4, one side of Nafion (electrolyte membrane 6) was roughened in random directions for 2 minutes with a No. 8000 abrasive. Using a confocal laser microscope, it was confirmed that the roughened surface had an arithmetic mean roughness Ra of 0.11 ⁇ m. All other conditions are the same as in Example 1.
  • Example 5 In Example 5, one side of Nafion (electrolyte membrane 6) was roughened with a No. 320 abrasive in random directions for 2 minutes. Using a confocal laser microscope, it was confirmed that the roughened surface had an arithmetic mean roughness Ra of 1.2 ⁇ m. The temperature during thermocompression bonding in step S12 was set to 80°C. All other conditions are the same as in Example 1.
  • Example 6 In Example 6, one side of Nafion (electrolyte membrane 6) was roughened with a No. 320 abrasive in random directions for 2 minutes. Using a confocal laser microscope, it was confirmed that the roughened surface had an arithmetic mean roughness Ra of 1.2 ⁇ m. The temperature during thermocompression bonding in step S12 was set to 100°C. All other conditions are the same as in Example 1.
  • Example 7 In Example 7, one side of Nafion (electrolyte membrane 6) was roughened with a No. 320 abrasive in random directions for 2 minutes. Using a confocal laser microscope, it was confirmed that the roughened surface had an arithmetic mean roughness Ra of 1.2 ⁇ m. The temperature during thermocompression bonding in step S12 was set to 150°C. All other conditions are the same as in Example 1.
  • Example 8 In Example 8, one side of the porous reduction electrode 5 was abraded in random directions for 2 minutes with a No. 80 abrasive. Using a confocal laser microscope, it was confirmed that the roughened surface had an arithmetic mean roughness Ra of 1.3 ⁇ m. With the roughened surface of the porous reduction electrode 5 facing Nafion (electrolyte membrane 6), the porous reduction electrode 5 and Nafion were overlapped and thermocompression bonded. All other conditions are the same as in Example 1.
  • Example 9 In Example 9, one side of the porous reduction electrode 5 was roughened with a No. 120 abrasive in random directions for 2 minutes. Using a confocal laser microscope, it was confirmed that the roughened surface had an arithmetic mean roughness Ra of 0.85 ⁇ m. With the roughened surface of the porous reduction electrode 5 facing Nafion (electrolyte membrane 6), the porous reduction electrode 5 and Nafion were overlapped and thermocompression bonded. All other conditions are the same as in Example 1.
  • Example 10 In Example 10, one side of the porous reduction electrode 5 was roughened with a #400 abrasive in random directions for 2 minutes. Using a confocal laser microscope, it was confirmed that the roughened surface had an arithmetic mean roughness Ra of 0.15 ⁇ m. With the roughened surface of the porous reduction electrode 5 facing Nafion (electrolyte membrane 6), the porous reduction electrode 5 and Nafion were overlapped and thermocompression bonded. All other conditions are the same as in Example 1.
  • the oxidation tank 1 was filled with the aqueous solution 3.
  • Aqueous solution 3 was a 1.0 mol/L potassium hydroxide aqueous solution.
  • the oxidation electrode 2 was installed in the oxidation tank 1 so as to be submerged in the aqueous solution 3.
  • a semiconductor photoelectrode manufactured as follows was used as the oxidation electrode 2 .
  • a thin film of GaN, which is an n-type semiconductor, and AlGaN were epitaxially grown in this order on a sapphire substrate, Ni was vacuum-deposited on AlGaN, and heat treatment was performed to form a NiO promoter thin film to produce a semiconductor photoelectrode.
  • a 300 W high pressure xenon lamp (wavelength of 450 nm or more was cut, illuminance 6.6 mW/cm 2 ) was used.
  • the light source 9 was fixed so that the surface of the oxidation electrode 2 on which the oxidation co-catalyst was formed became the irradiation surface.
  • the light irradiation area of the oxidation electrode 2 was set to 3.6 cm 2 .
  • He Helium
  • CO 2 carbon dioxide
  • the reduction reaction of carbon dioxide can proceed at the three-phase interface of [electrolyte membrane-copper-gas phase carbon dioxide] in the porous electrode-supported electrolyte membrane 20 .
  • the light source 9 was used to uniformly irradiate the oxidation electrode 2 with light. Electrons flow between the oxidation electrode 2 and the porous reduction electrode 5 due to light irradiation.
  • the current value between the oxidation electrode 2 and the porous reduction electrode 5 during light irradiation was measured using an electrochemical measuring device (1287 type potentiogalvanostat manufactured by Solartron). Further, the gas and liquid in the oxidation tank 1 and the reduction tank 4 were sampled at arbitrary times during the light irradiation, and the reaction products were analyzed with a gas chromatograph, a liquid chromatograph, and a gas chromatograph-mass spectrometer. As a result, it was confirmed that oxygen was produced in the oxidation tank 1, and hydrogen, carbon monoxide, formic acid, methanol and ethanol were produced in the reduction tank 4.
  • Comparative Example 1 a non-roughened electrolyte membrane 6 and a non-roughened porous reduction electrode 5 were thermo-compressed to produce a porous electrode-supported electrolyte membrane. Comparative Example 1 was arranged as the porous electrode-supported electrolyte membrane 20 of the gas phase reduction apparatus 100 of FIG. 6, and the same test as in Example 1-10 was conducted.
  • Comparative Example 1 In Comparative Example 1, without roughening one side of Nafion (electrolyte membrane 6), the non-roughened Nafion and the porous reduction electrode 5 were stacked one on top of the other and thermocompression bonded at 50°C. All other conditions are the same as in Example 1.
  • Table 1 shows the maintenance rate of the current value between the electrodes after 100 hours for Examples 1-10 and Comparative Example 1.
  • the current maintenance rate after 100 hours was defined and calculated according to the following formula (6).
  • the method for manufacturing the porous electrode-supported electrolyte membrane 20 used in the gas phase reduction apparatus 100 for reducing carbon dioxide includes the step of roughening the predetermined surface 61 of the electrolyte membrane 6 ( Step S11), and a step of placing the roughened surface 61 of the electrolyte membrane 6 toward the porous reduction electrode 5, overlapping the electrolyte membrane 6 and the porous reduction electrode 5, and bonding them by thermocompression (step S12); have
  • the method for manufacturing the porous electrode-supported electrolyte membrane 20 used in the gas phase reduction apparatus 100 for reducing carbon dioxide of the present embodiment includes the step of roughening the predetermined surface 51 of the porous reduction electrode 5 (Step S22 ), and a step of arranging the roughened surface 51 of the porous reduction electrode 5 toward the electrolyte membrane 6, overlapping the electrolyte membrane 6 and the porous reduction electrode 5, and bonding them by thermocompression (step S22). .
  • one surface of the electrolyte membrane 6 or the porous reduction electrode 5 is roughened.
  • the temperature at which the electrolyte membrane 6 and the porous reduction electrode 5 are thermocompression bonded is low (for example, 100° C. or lower), a high anchoring effect is achieved, and carbon dioxide reduction is reduced. Life can be improved.
  • the electrolyte membrane 6 can maintain a high anchoring effect (high adhesion).
  • Either one of the surface of and the surface of the porous reduction electrode 5 is roughened (roughened). That is, in the present embodiment, either the surface of the electrolyte membrane 6 or the surface of the porous reduction electrode 5 is formed into a shape that provides an anchor effect.
  • the present invention is not limited to the above embodiments, and many modifications are possible within the scope of the gist.
  • either one of the surface of the electrolyte membrane 6 and the surface of the porous reduction electrode 5 is roughened. good.
  • the electrolyte membrane 6 and the porous reduction electrode 5 are arranged and thermocompression bonded so that the roughened surface 61 of the electrolyte membrane 6 and the roughened surface 51 of the porous reduction electrode 5 correspond to each other.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

二酸化炭素を還元する気相還元装置100に用いられる多孔質電極支持型電解質膜20の製造方法であって、電解質膜6の所定の面61を租化する工程(ステップS11)と、電解質膜6の租化された面61を多孔質還元電極5に向けて配置し、電解質膜6と多孔質還元電極5とを重ねて熱圧着する工程(ステップS12)と、を有する。

Description

多孔質電極支持型電解質膜の製造方法
 本発明は、多孔質電極支持型電解質膜の製造方法に関する。
 地球温暖化の防止およびエネルギーの安定供給という観点から、二酸化炭素を還元する技術が注目されている。二酸化炭素を還元する技術に関する装置としては、人工光合成技術を利用した還元装置と、電解還元技術を利用した還元装置とがある。人工光合成技術は、光触媒からなる酸化電極への光照射により、水の酸化反応と二酸化炭素の還元反応を進行させる技術である。電解還元技術は、金属からなる酸化電極と還元電極の間への電圧印加により、水の酸化反応と二酸化炭素の還元反応を進行させる技術である。太陽光を利用した人工光合成技術および再生可能エネルギー由来の電力を利用した電解還元技術は、二酸化炭素を一酸化炭素、ギ酸、エチレン等の炭化水素やメタノール、エタノール等のアルコールに再資源化することが可能な技術として注目され、近年盛んに研究されている。
 人工光合成技術および二酸化炭素の電解還元技術では、還元電極を水溶液に浸漬させて、水溶液中に溶解させた二酸化炭素を還元電極に供給し、還元する反応系が用いられてきた(非特許文献1,2参照)。しかし、この二酸化炭素の還元方法では、水溶液への二酸化炭素の溶解濃度および水溶液中での二酸化炭素の拡散係数に限界があり、還元電極への二酸化炭素の供給量が制限される。
 この問題に対し、還元電極への二酸化炭素の供給量を増加させるため、還元電極に対して気相の二酸化炭素を供給する研究が進められている。非特許文献3によると、還元電極に対して気相の二酸化炭素を供給できる構造を有する反応装置を用いることで、還元電極への二酸化炭素の供給量が増大し、二酸化炭素の還元反応が促進される。
Satoshi Yotsuhashi、外6名、"CO2 Conversion with Light and Water by GaN Photoelectrode"、Japanese Journal of Applied Physics、51、2012年、p.02BP07-1-p.02BP07-3 Yoshio Hori、外2名、"Formation of Hydrocarbons in the Electrochemical Reduction of Carbone Dioxide at a Copper Electrode in Aqueous Solution"、Journal of the Chemical Society、85(8)、1989年、p.2309-p.2326 Qingxin Jia、外2名、"Direct Gas-phase CO2Reduction for Solar Methane Generation Using a Gas Diffusion Electrode with a BiVO4:Mo and a Cu-In-Se Photoanode"、Chemistry Letter、47、2018、p.436-439
 式(1)から式(4)に示す二酸化炭素の還元反応は、式(5)に示す水の酸化反応との組み合わせで進行する。
 CO2 + 2H+ + 2e- → CO + H2O     (1) 
 CO2 + 2H+ + 2e- → HCOOH       (2) 
 CO2 + 6H+ + 6e- → CH3OH + H2O    (3) 
 CO2 + 8H+ + 8e- → CH4 + 2H2O     (4) 
 2H2O + 4h+ → O2 + 4H+        (5)
 二酸化炭素の気相還元装置では、還元槽内の水溶液を排除して気相の二酸化炭素を充填するが、気相の二酸化炭素を充填しただけではプロトン(H+)が気相中を移動できないため、電解質膜と還元電極を接合する必要がある。さらに、板状の還元電極を電解質膜に接合しただけでは気相の二酸化炭素が還元電極と電解質膜の界面に到達できないため、還元電極を多孔質にして、気相の二酸化炭素が還元電極と電解質膜の界面に到達できるようにする。
 この多孔質の還元電極と電解質膜とを重ねて熱圧着する手法について検討する。この手法では、150℃程度の熱を加えることで電解質膜が軟化し、そこに多孔質還元電極が食い込むことで電解質膜が変形してアンカー効果が働き接合される。
 しかし、作製工程の高効率化のために熱圧着時の温度を低くすると(例えば、100℃以下)、電解質膜の変形が小さくなり、アンカー効果が低下してしまう。これにより、二酸化炭素の気相還元反応進行時に、電解質膜と多孔質還元電極と間の接触抵抗が徐々に大きくなり、二酸化炭素還元の性能を維持できる期間(寿命)が低下するという問題がある。
 本発明は、上記に鑑みてなされたものであり、電解質膜と多孔質還元電極とのアンカー効果の低下を抑制し、電解質膜と多孔質還元電極とが二酸化炭素還元の性能を維持できる期間を向上させることを目的とする。
 本発明の一態様は、二酸化炭素を還元する気相還元装置に用いられる多孔質電極支持型電解質膜の製造方法であって、電解質膜の所定の面を租化する工程と、前記電解質膜の租化された面を多孔質還元電極に向けて配置し、前記電解質膜と前記多孔質還元電極とを重ねて熱圧着する工程と、を有する。
 本発明の一態様は、二酸化炭素を還元する気相還元装置に用いられる多孔質電極支持型電解質膜の製造方法であって、多孔質還元電極の所定の面を租化する工程と、前記多孔質還元電極の租化された面を電解質膜に向けて配置し、前記電解質膜と前記多孔質還元電極とを重ねて熱圧着する工程と、を有する。
 本発明によれば、電解質膜と多孔質還元電極とのアンカー効果の低下を抑制し、電解質膜と多孔質還元電極とが二酸化炭素還元の性能を維持できる期間を向上させることができる。
図1は、本実施形態の多孔質電極支持型電解質膜の構成例を示す断面図である。 図2は、本実施形態の他の多孔質電極支持型電解質膜の構成例を示す断面図である。 図3は、図1の多孔質電極支持型電解質膜の製造方法の一例を示すフローチャートである。 図4は、図2の多孔質電極支持型電解質膜の製造方法の一例を示すフローチャートである。 図5は、多孔質電極支持型電解質膜を製造する際に熱圧着する様子の一例を示す図である。 図6は、多孔質電極支持型電解質膜を備える二酸化炭素の気相還元装置の構成例を示す図である。
 以下、本発明の実施の形態について図面を用いて説明する。本発明は、以下に記載の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において変更を加えてもよい。
 [多孔質電極支持型電解質膜の構成]
 図1の断面図を参照し、本実施形態の多孔質電極支持型電解質膜20について説明する。本実施形態の多孔質電極支持型電解質膜20は、電解質膜6と、当該電解質膜6に接合される多孔質還元電極5とを備える。例えば、多孔質還元電極5は、電解質膜6に直接重ねて熱圧着されて、直接接合される。
 図示する電解質膜6は、多孔質還元電極5側の一方の面61(所定の面)が租化されている。多孔質電極支持型電解質膜20は、この電解質膜6の租化された面61を多孔質還元電極5に向けて配置し、電解質膜6と多孔質還元電極5とを上下に重ねて熱圧着することで作製される。
 多孔質還元電極5は、多孔体(多孔質材料)を用いた電極である。多孔質還元電極5には、例えば、銅、白金、金、銀、インジウム、パラジウム、ガリウム、ニッケル、スズ、カドミウムまたはそれらの合金を含む多孔体;酸化銀、酸化銅、酸化銅(II)、酸化ニッケル、酸化インジウム、酸化スズ、酸化タングステン、酸化タングステン(VI)、酸化銅などを含む多孔体;もしくは金属イオンとアニオン性配位子を有する多孔性金属錯体を含む多孔体を用いてもよい。
 電解質膜6には、例えば、炭素-フッ素からなる骨格を持つパーフルオロカーボン材料であるナフィオン(商標登録)、フォアブルー、アクイヴィオンなどを用いることができる。
 図2は、本実施形態の他の多孔質電極支持型電解質膜20の断面図である。図2に示す多孔質電極支持型電解質膜20は、図1と同様に、電解質膜6と、当該電解質膜6に接合される多孔質還元電極5とを備える。図示する多孔質還元電極5は、電解質膜6側の一方の面51(所定の面)が租化されている。多孔質電極支持型電解質膜20は、この多孔質還元電極5の租化された面51を電解質膜6に向けて配置し、電解質膜6と多孔質還元電極5とを上下に重ねて熱圧着することで作製される。その他については、図1と同様である。
 [多孔質電極支持型電解質膜の製造方法]
 図3および図4のフローチャートを参照し、本実施形態の多孔質電極支持型電解質膜20の製造方法について説明する。
 図3は、図1の多孔質電極支持型電解質膜20の製造方法のフローチャートである。ステップS11にて、電解質膜6の一方の面61(片面)を粗化する。電解質膜6を粗化する手法には、研磨材(サンドペーパー、砥石等)による研磨、サンドブラスト法、化学エッチング、レーザー加工などがある。
 ステップS12にて、電解質膜6の租化した面61を多孔質還元電極5に向けて配置し、その上に多孔質還元電極5を重ねて熱圧着装置(例えばホットプレス機)で熱圧着する。これにより、電解質膜6の租化した面61が多孔質還元電極5に食い込む。
 具体的には、図5に示すように、電解質膜6の租化した面61上に多孔質還元電極5を重ねて2枚の銅板40a,40bの間に配置し、電解質膜6と多孔質還元電極5とを銅板40a,40bとともに熱圧着装置で垂直方向に熱圧着する。熱圧着後に、素早く冷却して、電解質膜6と多孔質還元電極5とが接合した多孔質電極支持型電解質膜20を得ることができる。
 熱圧着時の加熱温度は、電解質膜6の耐熱温度である180℃以下であることが好ましい。
 図4は、図2の多孔質電極支持型電解質膜20の製造方法のフローチャートである。ステップS21にて、多孔質還元電極5の一方の面51(片面)を租化する。多孔質還元電極5を粗化する手法には、研磨材(サンドペーパー、砥石等)による研磨、サンドブラスト法、化学エッチング、レーザー加工などがある。
 ステップS22にて、多孔質還元電極5の租化した面51を電解質膜6に向けて配置し、電解質膜6と多孔質還元電極5とを上下に重ねて熱圧着装置(例えばホットプレス機)で熱圧着する。これにより、多孔質還元電極5の租化した面51が電解質膜6に食い込む。ステップS22の熱圧着処理は、図2のステップS12の熱圧着処理と同様である(図5参照)。
 [気相還元装置(人工光合成)]
 次に、図6を参照し、二酸化炭素の気相還元装置100について説明する。気相還元装置100は、本実施形態の多孔質電極支持型電解質膜20を備える。図6に示す気相還元装置100は、光照射により二酸化炭素を還元する人工光合成技術を利用した還元装置である。
 気相還元装置100は、筐体内の内部空間を多孔質電極支持型電解質膜20で二分して形成された酸化槽1と還元槽4とを備える。すなわち、酸化槽1と還元槽4との間に多孔質電極支持型電解質膜20が配置される。多孔質電極支持型電解質膜20は、電解質膜6を酸化槽1に向け、多孔質還元電極5を還元槽4に向けて配置される。
 酸化槽1は水溶液3で満たされる。水溶液3中に半導体または金属錯体からなる酸化電極2が挿入される。
 酸化電極2には、例えば、窒化物半導体、酸化チタン、アモルファスシリコン、ルテニウム錯体、レニウム錯体などのような光活性およびレドックス活性を示す化合物を用いることができる。酸化電極2は、導線7によって多孔質還元電極5と電気的に接続される。
 水溶液3は、例えば、炭酸水素カリウム水溶液、炭酸水素ナトリウム水溶液、塩化カリウム水溶液、塩化ナトリウム水溶液、水酸化ナトリウム水溶液、水酸化カリウム水溶液、水酸化ルビジウム水溶液、水酸化セシウム水溶液などを用いることができる。還元反応中、水溶液3には、チューブ8からヘリウムガスが供給される。
 還元槽4は、気体入力口10から二酸化炭素が供給されて、二酸化炭素または二酸化炭素を含む気体で満たされる。
 光源9は、気相還元装置100を駆動するために酸化電極2に対向して配置される。すなわち、光源9は、酸化電極2に光が照射されるように配置される。光源9は、例えば、キセノンランプ、擬似太陽光源、ハロゲンランプ、水銀ランプ、太陽光などである。光源9は、これら組み合わせて構成してもよい。
 なお、図6では、気相還元反応装置100を運転するエネルギーとして、光エネルギーを用いているが、これに限定されず、電気エネルギー、熱エネルギー、再生可能エネルギーを用いてもよい。
 [多孔質電極支持型電解質膜の実施例]
 上記の気相還元装置100に配置する多孔質電極支持型電解質膜20として、電解質膜6または多孔質還元電極5の租化の程度、または、熱圧着時の温度を変えた実施例1-10を作製し、後述の気相還元試験を行った。以下、実施例1-10の多孔質電極支持型電解質膜20について説明する。
 <実施例1>
 実施例1では、多孔質還元電極5には、厚み0.2mm、気孔率64%の銅の多孔質金属板を用いた。電解質膜6には、プロトン交換膜であるナフィオンを用いた。
 図2のステップS11として、ナフィオンの片面を60番の研磨材でランダムな方向に2分間粗化した。共焦点レーザー顕微鏡を用いて、租化した面の算術平均粗さRaが2.1μmであることを確認した。
 ステップS12として、租化したナフィオンの上に、多孔質還元電極5を重ねて、2枚の銅板40a、40bの間に配置した。そして、図5に示すように、このサンプルをホットプレス機の間に設置して、加熱温度50℃の条件で、多孔質還元電極5の面に対して垂直方向に圧力を加えて熱圧着し、3分放置した。その後、サンプルを素早く冷却して取り出し、電解質膜6と多孔質還元電極5とが接合した多孔質電極支持型電解質膜20を得た(図1参照)。
 熱圧着後の多孔質還元電極5の厚みは0.15mm、平均気孔径は51μmであった。
 <実施例2>
 実施例2では、ナフィオン(電解質膜6)の片面を320番の研磨材でランダムな方向に2分間粗化した。共焦点レーザー顕微鏡を用いて、租化した面の算術平均粗さRaが1.2μmであることを確認した。それ以外の条件は全て実施例1と同様である。
 <実施例3>
 実施例3では、ナフィオン(電解質膜6)の片面を1000番の研磨材でランダムな方向に2分間粗化した。共焦点レーザー顕微鏡を用いて、租化した面の算術平均粗さRaが0.73μmであることを確認した。それ以外の条件は全て実施例1と同様である。
 <実施例4>
 実施例4では、ナフィオン(電解質膜6)の片面を8000番の研磨材でランダムな方向に2分間粗化した。共焦点レーザー顕微鏡を用いて、租化した面の算術平均粗さRaが0.11μmであることを確認した。それ以外の条件は全て実施例1と同様である。
 <実施例5>
 実施例5では、ナフィオン(電解質膜6)の片面を320番の研磨材でランダムな方向に2分間粗化した。共焦点レーザー顕微鏡を用いて、租化した面の算術平均粗さRaが1.2μmであることを確認した。ステップS12の熱圧着時の温度は80℃とした。それ以外の条件は全て実施例1と同様である。
 <実施例6>
 実施例6では、ナフィオン(電解質膜6)の片面を320番の研磨材でランダムな方向に2分間粗化した。共焦点レーザー顕微鏡を用いて、租化した面の算術平均粗さRaが1.2μmであることを確認した。ステップS12の熱圧着時の温度は100℃とした。以外の条件は全て実施例1と同様である。
 <実施例7>
 実施例7では、ナフィオン(電解質膜6)の片面を320番の研磨材でランダムな方向に2分間粗化した。共焦点レーザー顕微鏡を用いて、租化した面の算術平均粗さRaが1.2μmであることを確認した。ステップS12の熱圧着時の温度は150℃とした。以外の条件は全て実施例1と同様である。
 <実施例8>
 実施例8では、多孔質還元電極5の片面を80番の研磨材でランダムな方向に2分間した。共焦点レーザー顕微鏡を用いて、租化した面の算術平均粗さRaが1.3μmであることを確認した。この多孔質還元電極5の粗化面をナフィオン(電解質膜6)に向けて、多孔質還元電極5とナフィオンとを重ねて熱圧着した。それ以外の条件は全て実施例1と同様である。
 <実施例9>
 実施例9では、多孔質還元電極5の片面を120番の研磨材でランダムな方向に2分間粗化した。共焦点レーザー顕微鏡を用いて、租化した面の算術平均粗さRaが0.85μmであることを確認した。この多孔質還元電極5の粗化面をナフィオン(電解質膜6)に向けて、多孔質還元電極5とナフィオンとを重ねて熱圧着した。それ以外の条件は全て実施例1と同様である。
 <実施例10>
 実施例10では、多孔質還元電極5の片面を400番の研磨材でランダムな方向に2分間粗化した。共焦点レーザー顕微鏡を用いて、租化した面の算術平均粗さRaが0.15μmであることを確認した。この多孔質還元電極5の粗化面をナフィオン(電解質膜6)に向けて、多孔質還元電極5とナフィオンとを重ねて熱圧着した。それ以外の条件は全て実施例1と同様である。
 [電気化学測定およびガス・液体生成量測定]
 実施例1-10の多孔質電極支持型電解質膜20のそれぞれを、図6の気相還元装置100に取り付けて以下の還元反応試験を行った。
 酸化槽1を水溶液3で満たした。水溶液3は、1.0mol/Lの水酸化カリウム水溶液とした。
 酸化電極2を水溶液3に浸水するように酸化槽1内に設置した。酸化電極2には、次のように作製した半導体光電極を用いた。サファイア基板上にn型半導体であるGaNの薄膜とAlGaNとを順にエピタキシャル成長させ、AlGaN上にNiを真空蒸着して熱処理を行ってNiOの助触媒薄膜を形成した半導体光電極を作製した。
 光源9には、300Wの高圧キセノンランプ(波長450nm以上をカット、照度6.6mW/cm)を用いた。光源9は、酸化電極2の酸化助触媒が形成されている面が照射面となるように固定した。酸化電極2の光照射面積を3.6cmとした。
 酸化槽1に対してはチューブ8からヘリウム(He)を、還元槽4に対しては気体入力口10から二酸化炭素(CO)を、それぞれ流量5ml/minで流した。この系では、多孔質電極支持型電解質膜20内の[電解質膜-銅-気相の二酸化炭素]からなる三相界面において、二酸化炭素の還元反応を進行させることができる。
 酸化槽1および還元槽4をヘリウムと二酸化炭素で十分に置換した後、光源9を用いて酸化電極2に均一に光を照射した。光照射により、酸化電極2と多孔質還元電極5との間に電子が流れる。
 光照射時の酸化電極2と多孔質還元電極5との間の電流値を、電気化学測定装置(Solartron社製、1287型ポテンショガルバノスタット)を用いて測定した。また、光照射中の任意の時間に、酸化槽1および還元槽4内のガスと液体とを採取し、ガスクロマトグラフ、液体クロマトグラフ、およびガスクロマトグラフ質量分析計にて反応生成物を分析した。その結果、酸化槽1内では酸素が、還元槽4内では、水素、一酸化炭素、ギ酸、メタノールおよびエタノールが生成していることを確認した。
 なお、実施例1-10の試験結果は、比較対象例1の試験結果とともに後述する。
 [比較対象例]
 比較対象例1では、租化していない電解質膜6と、租化していない多孔質還元電極5とを熱圧着して多孔質電極支持型電解質膜を作製した。この比較対象例1を、図6の気相還元装置100の多孔質電極支持型電解質膜20として配置し、実施例1-10と同様の試験を行った。
 <比較対象例1>
 比較対象例1では、ナフィオン(電解質膜6)の片面を粗化する工程を行わずに、粗化していないナフィオンと多孔質還元電極5とを上下に重ねて、50℃で熱圧着した。それ以外の条件は全て実施例1と同様である。
 [実施例と比較対象例の評価]
 次に、実施例1-10と比較対象例1との試験結果について説明する。表1に、実施例1-10および比較対象例1に関して、100時間後の電極間の電流値の維持率を示す。
Figure JPOXMLDOC01-appb-T000001
 100時間後の電流維持率は下記の式(6)の通り定義し、算出した。
 100時間後の電流維持率 [%] =
 (100時間後の電極間の電流値)/(1時間後の電極間の電流値)×100  ・・・(6)
 100時間後の電流維持率について、実施例1-4、8-10と、比較対象例1とを比較した。実施例の電流維持率の方が、比較対象例1の電流維持率よりも高く、二酸化炭素還元反応の寿命が向上したことを確認した。
 これは、熱圧着温度50℃において、比較対象例1では電解質膜6または多孔質還元電極5を粗化していないから、電解質膜6と多孔質還元電極5との間のアンカー効果が小さい。これに対し、実施例1-4、8-10では、電解質膜6または多孔質還元電極5の片面を粗化することで大きなアンカー効果が得られ、電解質膜6と多孔質還元電極5の剥離を抑制できたことが要因と考えられる。
 また、実施例1-7の100時間後の電流維持率を比較すると、これらの電流維持率は同程度であることが分かる。このことから、電解質膜6を粗化してから多孔質還元電極5と熱圧着させると、熱圧着時の温度に関わらず同程度の寿命向上効果が得られると分かった。
 以上説明したように、本実施形態の二酸化炭素を還元する気相還元装置100に用いられる多孔質電極支持型電解質膜20の製造方法は、電解質膜6の所定の面61を租化する工程(ステップS11)と、電解質膜6の租化された面61を多孔質還元電極5に向けて配置し、電解質膜6と多孔質還元電極5とを重ねて熱圧着する工程(ステップS12)と、を有する。
 また、本実施形態の二酸化炭素を還元する気相還元装置100に用いられる多孔質電極支持型電解質膜20の製造方法は、多孔質還元電極5の所定の面51を租化する工程(ステップS22)と、多孔質還元電極5の租化された面51を電解質膜6に向けて配置し、電解質膜6と多孔質還元電極5とを重ねて熱圧着する工程(ステップS22)と、を有する。
 このように、本実施形態では、電解質膜6または多孔質還元電極5の一方の面を粗化する。これにより、本実施形態では、電解質膜6および多孔質還元電極5を熱圧着する際の温度が低い場合(例えば、100℃以下)であっても、高いアンカー効果を実現し、二酸化炭素還元の寿命を向上させることができる。
 また、本実施形態では、電解質膜6と多孔質還元電極5とを物理的に接合する際の温度を低くしても、高いアンカー効果(高密着性)が維持されるように、電解質膜6の表面および多孔質還元電極5の表面のいずれか一方を粗化(凹凸化)する。すなわち、本実施形態では、電解質膜6の表面および多孔質還元電極5の表面のいずれか一方を、アンカー効果をもたらす形状に形成する。このような電解質膜6と多孔質還元電極5とを接合することで得られる多孔質電極支持型電解質膜20を用いることで、多孔質還元電極5の電解質膜6からの剥離、および、アンカー効果の低下を抑制して、二酸化炭素還元の寿命を向上させることができる。
 なお、本発明は上記実施形態に限定されるものではなく、その要旨の範囲内で数々の変形が可能である。例えば、上記実施形態では、電解質膜6の表面および多孔質還元電極5の表面のいずれか一方を粗化したが、電解質膜6の表面および多孔質還元電極5の表面の両方を租化してもよい。この場合、電解質膜6の租化した面61および多孔質還元電極5の租化した面51が対応するように、電解質膜6および多孔質還元電極5を配置し熱圧着する。
 20:多孔質電極支持型電解質膜
 5 :多孔質還元電極
 6 :電解質膜

Claims (2)

  1.  二酸化炭素を還元する気相還元装置に用いられる多孔質電極支持型電解質膜の製造方法であって、
     電解質膜の所定の面を租化する工程と、
     前記電解質膜の租化された面を多孔質還元電極に向けて配置し、前記電解質膜と前記多孔質還元電極とを重ねて熱圧着する工程と、を有する
     多孔質電極支持型電解質膜の製造方法。
  2.  二酸化炭素を還元する気相還元装置に用いられる多孔質電極支持型電解質膜の製造方法であって、
     多孔質還元電極の所定の面を租化する工程と、
     前記多孔質還元電極の租化された面を電解質膜に向けて配置し、前記電解質膜と前記多孔質還元電極とを重ねて熱圧着する工程と、を有する
     多孔質電極支持型電解質膜の製造方法。
PCT/JP2021/042974 2021-11-24 2021-11-24 多孔質電極支持型電解質膜の製造方法 WO2023095203A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/042974 WO2023095203A1 (ja) 2021-11-24 2021-11-24 多孔質電極支持型電解質膜の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/042974 WO2023095203A1 (ja) 2021-11-24 2021-11-24 多孔質電極支持型電解質膜の製造方法

Publications (1)

Publication Number Publication Date
WO2023095203A1 true WO2023095203A1 (ja) 2023-06-01

Family

ID=86539062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042974 WO2023095203A1 (ja) 2021-11-24 2021-11-24 多孔質電極支持型電解質膜の製造方法

Country Status (1)

Country Link
WO (1) WO2023095203A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03167752A (ja) * 1989-11-28 1991-07-19 Mitsubishi Heavy Ind Ltd ガス拡散電極及びそれを用いた固体高分子電解質燃料電池本体
JP2003068328A (ja) * 2001-08-29 2003-03-07 Toagosei Co Ltd 表面が粗面化された高分子電解質膜の製造方法並びに当該膜を用いた電気化学デバイスおよび燃料電池
WO2012118065A1 (ja) * 2011-02-28 2012-09-07 国立大学法人長岡技術科学大学 二酸化炭素の還元固定化システム、二酸化炭素の還元固定化方法、及び有用炭素資源の製造方法
US20190292668A1 (en) * 2018-03-22 2019-09-26 Sekisui Chemical Co., Ltd. Carbon dioxide reduction apparatus and method of producing organic compound
US20200216968A1 (en) * 2019-01-07 2020-07-09 Opus 12 Inc. System and method for methane production
JP2020128330A (ja) * 2016-11-24 2020-08-27 旭化成株式会社 炭素フォーム、膜電極複合体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03167752A (ja) * 1989-11-28 1991-07-19 Mitsubishi Heavy Ind Ltd ガス拡散電極及びそれを用いた固体高分子電解質燃料電池本体
JP2003068328A (ja) * 2001-08-29 2003-03-07 Toagosei Co Ltd 表面が粗面化された高分子電解質膜の製造方法並びに当該膜を用いた電気化学デバイスおよび燃料電池
WO2012118065A1 (ja) * 2011-02-28 2012-09-07 国立大学法人長岡技術科学大学 二酸化炭素の還元固定化システム、二酸化炭素の還元固定化方法、及び有用炭素資源の製造方法
JP2020128330A (ja) * 2016-11-24 2020-08-27 旭化成株式会社 炭素フォーム、膜電極複合体
US20190292668A1 (en) * 2018-03-22 2019-09-26 Sekisui Chemical Co., Ltd. Carbon dioxide reduction apparatus and method of producing organic compound
US20200216968A1 (en) * 2019-01-07 2020-07-09 Opus 12 Inc. System and method for methane production

Similar Documents

Publication Publication Date Title
JP7121318B2 (ja) 二酸化炭素の気相還元装置及び二酸化炭素の気相還元方法
JP5236125B1 (ja) 二酸化炭素を還元する方法
JP5753641B2 (ja) 二酸化炭素還元装置および二酸化炭素を還元する方法
JP5636139B2 (ja) 二酸化炭素還元用光化学電極、および該光化学電極を用いて二酸化炭素を還元する方法
JP5641489B2 (ja) アルコールを生成する方法
JP5236124B1 (ja) 二酸化炭素を還元する方法
WO2019225494A1 (ja) 二酸化炭素還元装置
JP2013532228A (ja) 太陽光燃料電池
WO2015001729A1 (ja) 二酸化炭素を還元する方法
JP2020090693A (ja) 半導体光電極
WO2023095203A1 (ja) 多孔質電極支持型電解質膜の製造方法
WO2022113277A1 (ja) 二酸化炭素の気相還元装置、および、多孔質還元電極支持型電解質膜の製造方法
WO2022244234A1 (ja) 多孔質電極支持型電解質膜および多孔質電極支持型電解質膜の製造方法
WO2023095201A1 (ja) 多孔質電極支持型電解質膜および多孔質電極支持型電解質膜の製造方法
WO2023095193A1 (ja) 多孔質電極支持型電解質膜および多孔質電極支持型電解質膜の製造方法
WO2022249276A1 (ja) 二酸化炭素の気相還元装置および二酸化炭素の気相還元方法
WO2021234908A1 (ja) 二酸化炭素の気相還元装置、および、多孔質電極支持型電解質膜の製造方法
WO2024116235A1 (ja) 二酸化炭素の気相還元装置
US20230135736A1 (en) Carbon Dioxide Gas Phase Reduction Device and Carbon Dioxide Gas Phase Reduction Method
WO2023238394A1 (ja) 窒化物半導体光電極
WO2023084683A1 (ja) 電解質膜
WO2022249314A1 (ja) 二酸化炭素還元装置
WO2022118364A1 (ja) 電解質膜支持型還元電極の製造方法
US20170335468A1 (en) Fuel production method and fuel production apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965577

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023563380

Country of ref document: JP

Kind code of ref document: A