WO2022113277A1 - 二酸化炭素の気相還元装置、および、多孔質還元電極支持型電解質膜の製造方法 - Google Patents

二酸化炭素の気相還元装置、および、多孔質還元電極支持型電解質膜の製造方法 Download PDF

Info

Publication number
WO2022113277A1
WO2022113277A1 PCT/JP2020/044254 JP2020044254W WO2022113277A1 WO 2022113277 A1 WO2022113277 A1 WO 2022113277A1 JP 2020044254 W JP2020044254 W JP 2020044254W WO 2022113277 A1 WO2022113277 A1 WO 2022113277A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
reduction
electrolyte membrane
porous
carbon dioxide
Prior art date
Application number
PCT/JP2020/044254
Other languages
English (en)
French (fr)
Inventor
紗弓 里
裕也 渦巻
晃洋 鴻野
武志 小松
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2022564940A priority Critical patent/JPWO2022113277A1/ja
Priority to US18/254,087 priority patent/US20230416933A1/en
Priority to PCT/JP2020/044254 priority patent/WO2022113277A1/ja
Publication of WO2022113277A1 publication Critical patent/WO2022113277A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • C25B11/032Gas diffusion electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/02Diaphragms; Spacing elements characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • C25B3/26Reduction of carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/21Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms two or more diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/50Cells or assemblies of cells comprising photoelectrodes; Assemblies of constructional parts thereof

Definitions

  • the present invention relates to a carbon dioxide gas phase reducing device and a method for producing a porous reducing electrode-supported electrolyte membrane.
  • the carbon dioxide to be reduced dissolves in the aqueous solution in the reduction tank, reaches the reduction electrode, and is reduced on the surface of the reduction electrode.
  • an aqueous solution is used as a medium for carbon dioxide, there is a limit to the concentration of carbon dioxide that can be dissolved in the aqueous solution, and the diffusion resistance of carbon dioxide in the aqueous solution is large, so that it can be supplied to the reducing electrode.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a technique capable of improving the efficiency of a carbon dioxide reduction reaction in a carbon dioxide gas phase reduction device.
  • the carbon dioxide gas phase reduction device includes an oxide tank including an oxidation electrode, a reduction tank adjacent to the oxide tank and supplying carbon dioxide to the inside of the empty space, the oxide tank and the reduction.
  • the porous reduction electrode-supporting electrolyte membrane is provided with a porous reduction electrode-supporting electrolyte membrane arranged between the tank and the porous reduction electrode-supporting electrolyte membrane, and the porous reduction electrode-supporting electrolyte membrane is formed by dispersing the first electrolyte membrane inside the voids.
  • the porous reducing electrode support is arranged between an oxide tank including an oxide electrode and a reduction tank in which carbon dioxide is supplied to the inside of the empty space.
  • a step of impregnating a porous reducing electrode into an electrolyte dispersion in which a polymer material constituting the electrolyte membrane is dispersed, and the porous reducing electrode impregnated in the electrolyte dispersion is performed.
  • FIG. 1 is a diagram showing a configuration example of a carbon dioxide gas phase reducing device according to Example 1.
  • FIG. 2 is a diagram showing a method for producing a porous reducing electrode-supported electrolyte membrane.
  • FIG. 3 is a diagram showing a state in which an electrolyte membrane is dispersed and formed in the porous reducing electrode.
  • FIG. 4 is a diagram showing a configuration example of a carbon dioxide gas phase reducing device according to Example 9.
  • FIG. 5 is a diagram showing a configuration example of a carbon dioxide gas phase reducing device according to Comparative Example 1.
  • FIG. 6 is a diagram showing a configuration example of a carbon dioxide gas phase reducing device according to Comparative Example 2.
  • FIG. 7 is a diagram showing a state in which the electrolyte membrane is dispersed and formed in an island shape in the porous reducing electrode.
  • An object of the present invention is to provide a technique capable of improving the efficiency of a carbon dioxide reduction reaction in a carbon dioxide gas phase reduction device.
  • the present invention has the following features as compared with the conventional carbon dioxide gas phase reducing device.
  • the first feature is that the inside of the reduction tank is filled with carbon dioxide in the gas phase, and the carbon dioxide in the gas phase is directly supplied to the reduction electrode.
  • the concentration of carbon dioxide increases in the reduction tank, and the diffusion resistance of carbon dioxide decreases.
  • the amount of carbon dioxide supplied to the reducing electrode is increased, and the efficiency of the carbon dioxide reduction reaction on the reducing electrode can be improved.
  • the three-phase interface consisting of [electrolyte membrane-porous reducing electrode-gas phase carbon dioxide] is the bonding surface between the electrolyte membrane and the porous reducing electrode. It will be limited to the top only. Therefore, it is further provided with a third feature.
  • the third feature is that the electrolyte membrane is dispersed and formed inside the voids of the porous reducing electrode. As a result, the reaction field of the carbon dioxide gas phase reduction reaction is increased, so that the efficiency of the carbon dioxide reduction reaction on the porous reducing electrode can be improved.
  • the present invention directly supplies carbon dioxide in the gas phase to the porous reducing electrode-supported electrolyte membrane in which the electrolyte membrane is bonded to the porous reducing electrode formed by dispersing the electrolyte membrane inside the voids. It is characterized by. Due to this feature, it is possible to improve the efficiency of the reduction reaction of carbon dioxide on the reduction electrode.
  • FIG. 1 is a diagram showing a configuration example of the carbon dioxide gas phase reducing device 100 according to the first embodiment.
  • the gas phase reduction device 100 is a reduction device (artificial photosynthesis device) that causes a reduction reaction of carbon dioxide at the reduction electrode by irradiating the oxidation electrode with light.
  • a gas phase reducing device 100 it is simply referred to as a gas phase reducing device 100.
  • the gas phase reducing device 100 includes an oxidation tank 1 and a reduction tank 4 formed by dividing the internal space of one housing into two.
  • the oxide tank 1 is filled with the aqueous solution 3, and the oxide electrode 2 made of a semiconductor or a metal complex is inserted into the aqueous solution 3.
  • the reduction tank 4 adjacent to the oxidation tank 1 is filled with carbon dioxide gas or a gas containing carbon dioxide in the empty space.
  • the oxide electrode 2 is a compound that exhibits photoactivity and redox activity, such as a nitride semiconductor, titanium oxide, amorphous silicon, a ruthenium complex, and a rhenium complex.
  • the aqueous solution 3 is, for example, a potassium hydrogen carbonate aqueous solution, a sodium hydrogen carbonate aqueous solution, a potassium chloride aqueous solution, a sodium chloride aqueous solution, a sodium hydroxide aqueous solution, a potassium hydroxide aqueous solution, a rubidium hydroxide aqueous solution, or a cesium hydroxide aqueous solution.
  • a porous reducing electrode 5 formed by dispersing an electrolyte membrane (first electrolyte membrane) in the voids and an electrolyte membrane (second electrolyte membrane) 6 are formed between the oxidation tank 1 and the reduction tank 4.
  • the porous reducing electrode support type electrolyte membrane 20 to which the above is bonded is arranged.
  • the electrolyte membrane 6 is arranged on the oxidation tank 1 side, and the porous reduction electrode 5 is arranged on the reduction tank 4 side.
  • the oxide electrode 2 and the porous reduction electrode 5 are connected by a conducting wire 7.
  • a tube 8 is inserted into the oxidation tank 1 in order to allow helium to flow into the aqueous solution 3 in the oxidation tank 1. Since carbon dioxide flows into the reduction tank 4, a gas input port 9 is formed at the bottom of the reduction tank 4. Further, in order to operate the gas phase reduction device 100, the light source 10 is arranged to face the oxide electrode 2.
  • the light source 10 is, for example, a xenon lamp, a pseudo-solar light source, a halogen lamp, a mercury lamp, sunlight, or a combination thereof.
  • porous reducing electrode support type electrolyte membrane 20 A method for producing the porous reducing electrode support type electrolyte membrane 20 will be described.
  • the porous reducing electrode support type electrolyte membrane 20 is formed by joining the porous reducing electrode 5 and the electrolyte membrane 6.
  • the porous reducing electrode 5 is, for example, copper, platinum, gold, silver, indium, palladium, gallium, nickel, tin, cadmium, a porous body of an alloy thereof, silver oxide, copper oxide, copper oxide (II), oxidation. It is a porous body such as nickel, indium oxide, tin oxide, tungsten oxide, tungsten oxide (VI), and copper oxide.
  • the porous reducing electrode 5 may be a porous metal complex having a metal ion and an anionic ligand.
  • the electrolyte membrane 6 is, for example, Nafion (trademark registration), Foreblue, and Aquivion, which are electrolyte membranes having a skeleton composed of carbon and fluorine.
  • the electrolyte membrane 6 may be Celemion or Neosepta, which is an electrolyte membrane having a hydrocarbon-based skeleton.
  • Example 1 a copper porous body having a thickness of 1 mm and a porosity of 98% was used as the porous reducing electrode 5.
  • the electrolyte membrane 6 Nafion, which is a cation exchange membrane, was used.
  • the Nafion dispersion prepared in% was used.
  • the solvent used for dilution is, for example, pure water, a lower alcohol, or a mixture thereof. In Example 1, pure water was used.
  • the electrolyte membrane 6 is previously immersed in boiling nitric acid and boiling pure water, respectively.
  • the porous reducing electrode 5 is impregnated with an electrolyte dispersion liquid (electrolyte content: 0.05 wt.%) In which a polymer material constituting an electrolyte membrane is dispersed.
  • the porous reducing electrode 5 impregnated with the electrolyte dispersion was placed on the electrolyte membrane 6 immersed in boiling nitric acid and boiling pure water, respectively, and the sample was placed on two copper plates as shown in FIG. It is arranged between 30a and 30b.
  • this sample is placed between the hot plates 40a and 40b of the thermocompression bonding device (hot press machine), and while heating under the condition of a heating temperature of 150 ° C., it is applied to the upper surface of the porous reducing electrode 5. Apply pressure vertically downward (against the electrode surface) and leave it for 3 minutes. The sample is then quickly cooled and removed. As a result, it is possible to obtain the porous reducing electrode support type electrolyte membrane 20 in which the porous reducing electrode 5 and the electrolyte membrane 6 are bonded.
  • the thickness of the porous reduction electrode 5 after thermocompression bonding was 0.2 mm, and the porosity was 90%.
  • the electrolyte membrane (first electrolyte membrane) 60 is dispersed and formed on the surface and the inside of the porous reducing electrode 5.
  • the electrolyte membrane 60 dispersedly formed at the interface between the porous reducing electrode 5 and the electrolyte membrane (second electrolyte membrane) 6 adheres to each other, and the electrolyte membrane 60 dispersedly formed inside the porous reducing electrode 5 Since a three-phase interface composed of the porous reduction electrode 5 and the carbon dioxide in the gas phase is formed, the reaction field of the gas phase reduction reaction of carbon dioxide is increased, and the reduction reaction of carbon dioxide is efficiently performed at the three-phase interface. proceed.
  • Electrochemical measurement and gas / liquid production amount measurement Electrochemical measurement and gas / liquid production amount measurement will be described.
  • a 300 W high-pressure xenon lamp (wavelength 450 nm or more cut, illuminance 6.6 mW / cm 2 ) is used as the light source 10, and the surface on which the oxidation assist catalyst of the semiconductor optical electrode of the oxide electrode 2 is formed (the surface on which NiO is formed). ) was fixed so as to be the irradiation surface.
  • the light irradiation area of the oxide electrode 2 was set to 2.5 cm 2 .
  • the oxide electrode 2 was uniformly irradiated with light using the light source 10. By irradiating the oxide electrode 2 with light, electrons flow between the oxide electrode 2 and the porous reduction electrode 5.
  • the current value between the oxide electrode 2 and the porous reduction electrode 5 at the time of light irradiation was measured with an electrochemical measuring device (1287 type potato galvanostat manufactured by Solartron).
  • the gas and liquid in the oxidation tank 1 and the reduction tank 4 were collected at an arbitrary time during light irradiation, and the reaction products were analyzed by a gas chromatograph, a liquid chromatograph, and a gas chromatograph mass spectrometer. As a result, it was confirmed that oxygen was generated in the oxidation tank 1 and hydrogen, carbon monoxide, formic acid, methane, methanol, ethanol and ethylene were produced in the reduction tank 4.
  • Example 2 In Example 2, in the production of the porous reducing electrode-supported electrolyte membrane 20, the electrolyte content of the electrolyte dispersion in step 1 was set to 0.1 wt. I made it to%. All other conditions are the same as in Example 1.
  • Example 4 In Example 4, in the production of the porous reducing electrode support type electrolyte membrane 20, the electrolyte content of the electrolyte dispersion liquid in step 1 was 1.0 wt. I made it to%. All other conditions are the same as in Example 1.
  • Example 5 In Example 5, in the production of the porous reducing electrode-supported electrolyte membrane 20, the electrolyte content of the electrolyte dispersion in step 1 was 5.0 wt. I made it to%. All other conditions are the same as in Example 1.
  • Example 6 In Example 6, a copper porous body having a thickness of 1 mm and a porosity of 90% was used in the production of the porous reducing electrode-supported electrolyte membrane 20. The thickness of the porous reducing electrode 5 after thermocompression bonding was 0.2 mm, and the porosity was 50%. All other conditions are the same as in Example 1.
  • Example 7 In Example 7, a copper porous body having a thickness of 1 mm and a porosity of 85% was used in the production of the porous reducing electrode-supported electrolyte membrane 20. The thickness of the porous reducing electrode 5 after thermocompression bonding was 0.2 mm, and the porosity was 25%. All other conditions are the same as in Example 1.
  • Example 8 In Example 8, a copper porous body having a thickness of 1 mm and a porosity of 81% was used in the production of the porous reducing electrode-supported electrolyte membrane 20. The thickness of the porous reducing electrode 5 after thermocompression bonding was 0.2 mm, and the porosity was 5%. All other conditions are the same as in Example 1.
  • FIG. 4 is a diagram showing the configuration of the carbon dioxide gas phase reducing device 100 according to the ninth embodiment.
  • the carbon dioxide gas phase reduction device 100 is an apparatus (electrolytic reduction reaction apparatus) for an electrolytic reduction reaction of carbon dioxide in the gas phase. Hereinafter, it is simply referred to as a gas phase reducing device 100.
  • a porous reducing electrode 5 formed by dispersing an electrolyte membrane (first electrolyte membrane) in the voids and an electrolyte membrane (second electrolyte membrane) 6 are formed between the oxidation tank 1 and the reduction tank 4.
  • the porous reducing electrode support type electrolyte membrane 20 to which the above is bonded is arranged.
  • the electrolyte membrane 6 is arranged on the oxidation tank 1 side, and the porous reduction electrode 5 is arranged on the reduction tank 4 side.
  • the oxide electrode 2 and the porous reduction electrode 5 are connected by a conducting wire 7.
  • Specific examples of the porous reducing electrode 5 and the electrolyte membrane 6 are the same as in Example 1.
  • a tube 8 is inserted into the oxidation tank 1 in order to allow helium to flow into the aqueous solution 3 in the oxidation tank 1. Since carbon dioxide flows into the reduction tank 4, a gas input port 9 is formed at the bottom of the reduction tank 4. Further, in order to operate the gas phase reduction device 100, the power supply 11 is connected to the lead wire 7.
  • porous reducing electrode support type electrolyte membrane 20 is produced by the same procedure as in Example 1.
  • Electrochemical measurement and gas / liquid production amount measurement Electrochemical measurement and gas / liquid production amount measurement will be described.
  • the oxidation tank 1 is filled with the aqueous solution 3.
  • Platinum manufactured by Niraco
  • Niraco was used for the oxide electrode 2.
  • About 0.55 cm 2 of the surface area of the oxidation electrode 2 was installed in the oxide tank 1 so as to be immersed in the aqueous solution 3.
  • the aqueous solution 3 was a 1.0 mol / L potassium hydroxide aqueous solution.
  • Helium was poured into the oxidation tank 1 from the tube 8 and carbon dioxide was poured into the reduction tank 4 from the gas input port 9 at a flow rate of 5 ml / min and a pressure of 0.18 MPa, respectively.
  • the carbon dioxide reduction reaction can proceed at the three-phase interface composed of [electrolyte membrane-copper (porous reduction electrode) -gas phase carbon dioxide] in the porous reduction electrode-supported electrolyte membrane 20. can.
  • the area of the porous reducing electrode 5 to which carbon dioxide is directly supplied is about 6.25 cm 2 .
  • the oxidation electrode 2 and the porous reduction electrode 5 are connected by a lead wire 7 via a power source 11, and a voltage of 2.5 V is applied. It was applied and electrons were flown.
  • the current value between the oxide electrode 2 and the porous reduction electrode 5 when a voltage of 2.5 V was applied was measured by an electrochemical measuring device.
  • the gas and liquid in the oxidation tank 1 and the reduction tank 4 were sampled at an arbitrary time while the voltage was applied, and the reaction products were analyzed by a gas chromatograph, a liquid chromatograph, and a gas chromatograph mass spectrometer. As a result, it was confirmed that oxygen was generated in the oxidation tank 1 and hydrogen, carbon monoxide, formic acid, methane, methanol, ethanol and ethylene were produced in the reduction tank 4.
  • Example 10 In Example 10, in the production of the porous reducing electrode support type electrolyte membrane 20, the electrolyte content of the electrolyte dispersion liquid in step 1 was set to 0.1 wt. I made it to%. All other conditions are the same as in Example 9.
  • Example 11 In Example 11, in the production of the porous reducing electrode support type electrolyte membrane 20, the electrolyte content of the electrolyte dispersion liquid in step 1 was set to 0.5 wt. I made it to%. All other conditions are the same as in Example 9.
  • Example 12 In Example 12, in the production of the porous reducing electrode-supported electrolyte membrane 20, the electrolyte content of the electrolyte dispersion in step 1 was 1.0 wt. I made it to%. All other conditions are the same as in Example 9.
  • Example 13 In Example 13, in the production of the porous reducing electrode-supported electrolyte membrane 20, the electrolyte content of the electrolyte dispersion in step 1 was 5.0 wt. I made it to%. All other conditions are the same as in Example 9.
  • Example 14 In Example 14, a copper porous body having a thickness of 1 mm and a porosity of 90% was used in the production of the porous reducing electrode-supported electrolyte membrane 20. The thickness of the porous reducing electrode 5 after thermocompression bonding was 0.2 mm, and the porosity was 50%. All other conditions are the same as in Example 9.
  • Example 15 In Example 15, a copper porous body having a thickness of 1 mm and a porosity of 85% was used in the production of the porous reducing electrode-supported electrolyte membrane 20.
  • the thickness of the porous reducing electrode 5 after thermocompression bonding was 0.2 mm, and the porosity was 25%. All other conditions are the same as in Example 9.
  • Example 16 In Example 16, a copper porous body having a thickness of 1 mm and a porosity of 81% was used in the production of the porous reducing electrode-supported electrolyte membrane 20. The thickness of the porous reducing electrode 5 after thermocompression bonding was 0.2 mm, and the porosity was 5%. All other conditions are the same as in Example 9.
  • FIG. 5 is a diagram showing a configuration of a carbon dioxide gas phase reducing device according to Comparative Target Example 1 corresponding to Examples 1 to 8.
  • the configuration of Comparative Example 1 is the same as that of the conventional carbon dioxide gas phase reducing device shown in FIG. 2 of Non-Patent Document 1.
  • the structure of the reduction tank 4 is different.
  • the oxidation tank 1 and the reduction tank 4 are separated from each other only by the electrolyte membrane 6.
  • a non-porous reduction electrode 5'without pores is inserted in the reduction tank 4.
  • the inside of the reduction tank 4 is filled with the aqueous solution 12 and the non-porous reduction electrode 5'is immersed.
  • a tube 13 is inserted into the reduction tank 4 in order to allow carbon dioxide to flow into the aqueous solution 12.
  • the aqueous solution 3 in the oxide tank 1 was a 1 mol / l sodium hydroxide aqueous solution.
  • the aqueous solution 12 of the reduction tank 4 was a 0.5 mol / l potassium hydrogen carbonate aqueous solution.
  • the non-porous reduction electrode 5' was installed by using a copper plate (manufactured by Niraco Co., Ltd.) having an area of about 6 cm 2 so as to be immersed in the aqueous solution 12.
  • Other configurations are the same as those in the first embodiment.
  • FIG. 6 is a diagram showing a configuration of a carbon dioxide gas phase reducing device according to Comparative Target Example 2 corresponding to Examples 9 to 16.
  • the structure of the reduction tank 4 is different.
  • the oxidation tank 1 and the reduction tank 4 are separated from each other only by the electrolyte membrane 6.
  • a non-porous reduction electrode 5'without pores is inserted in the reduction tank 4.
  • the inside of the reduction tank 4 is filled with the aqueous solution 12 and the non-porous reduction electrode 5'is immersed.
  • a tube 13 is inserted into the reduction tank 4 in order to allow carbon dioxide to flow into the aqueous solution 12.
  • the aqueous solution 3 in the oxide tank 1 was a 1 mol / l sodium hydroxide aqueous solution.
  • the aqueous solution 12 of the reduction tank 4 was a 0.5 mol / l potassium hydrogen carbonate aqueous solution.
  • the non-porous reduction electrode 5' was installed by using a copper plate (manufactured by Niraco Co., Ltd.) having an area of about 6 cm 2 so as to be immersed in the aqueous solution 12.
  • Other configurations are the same as in the ninth embodiment.
  • Table 1 shows the Faraday efficiency of the carbon dioxide reduction reaction according to Examples 1 to 16 and Comparative Examples 1 and 2.
  • Faraday efficiency is a value indicating the ratio of the current value used for each reduction reaction to the current value flowing between the electrodes at the time of light irradiation or voltage application, as shown in the equation (1).
  • the "current value of each reduction reaction” in the formula (1) can be obtained by converting the measured value of the amount of each reduction product produced into the number of electrons required for the production reaction.
  • the concentration of the reduction reaction product is A [ppm]
  • the flow rate of the carrier gas is B [L / sec]
  • the number of electrons required for the reduction reaction is Z [mol]
  • the Faraday constant is F [C / mol]
  • the molar of the gas It was calculated using the formula (2) when the body was Vm [L / mol].
  • the solution of the electrolyte dispersion 50 adheres to the surface of the porous reducing electrode 5, and the solution thereof adheres to the surface of the porous reducing electrode 5.
  • the electrolyte dispersion liquid 50 is transferred to the electrolyte membrane 60 with heating, so that the structure is such that the electrolyte membrane 60 is dispersed on the surface and inside of the porous reducing electrode 5.
  • the concentration of the electrolyte dispersion 50 is 1.0 wt. If it is more than%, the structure is such that the surface of the porous reducing electrode 5 is completely covered with the electrolyte membrane 60, so that carbon dioxide cannot be supplied to the surface of the porous reducing electrode 5.
  • the concentration of the electrolyte dispersion 50 is 0.05 wt. % -0.5 wt.
  • the electrolyte membrane 60 having a thickness of several ⁇ m is dispersed on the surface of the porous reduction electrode 5 and the interface between voids, and is covered in an island shape.
  • a large amount of a three-phase interface composed of [reducing electrode-electrolyte film-carbon dioxide] is formed in the porous reducing electrode 5, and the carbon dioxide reduction reaction proceeds at the three-phase interface to reduce carbon dioxide.
  • the efficiency of the reaction is improved. Therefore, the concentration of the electrolyte dispersion 50 used in step 1 is 1.0 wt. % Is considered preferable.
  • Examples 1 to 3 and Examples 6 to 8 and Examples 9 to 11 and Examples 14 to 16 greatly improved the Faraday efficiency of carbon dioxide reduction, respectively. It can be seen that the reduction reaction of carbon dioxide is selectively occurring. This is because in Examples 1 to 3 and Examples 6 to 8, and Examples 9 to 11 and 14 to 16, carbon dioxide in the gas phase is directly applied to the porous reducing electrode 5 without using an aqueous solution. By supplying carbon dioxide near the surface of the porous reducing electrode 5, carbon dioxide is reduced, the diffusion resistance of carbon dioxide is reduced, the amount of carbon dioxide supplied to the porous reducing electrode 5 is increased, and the porosity is further increased. It is considered that the factor is that the electrolyte film 60 is dispersed and formed on the surface of the quality reducing electrode 5 to increase the reaction field.
  • Oxidation tank 2 Oxidation electrode 3: Aqueous solution 4: Reduction tank 5: Porous reduction electrode 5': Non-porous reduction electrode 6: Electrolyte film 7: Lead wire 8: Tube 9: Gas input port 10: Light source 11: Power supply 12: Aqueous solution 13: Tube 20: Porous reducing electrode support type electrolyte membrane 30a, 30b: Copper plate 40a, 40b: Hot plate 50: Electrolyte dispersion 60: Electrolyte membrane 100: Gas phase reducing device for carbon dioxide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

二酸化炭素の気相還元装置100は、酸化電極2を含む酸化槽1と、前記酸化槽1に隣接し、空の内部に二酸化炭素が供給される還元槽4と、前記酸化槽1と前記還元槽4との間に配置された多孔質還元電極支持型電解質膜20と、を備え、前記多孔質還元電極支持型電解質膜20は、空隙内部に第1の電解質膜が分散して形成された多孔質還元電極5と第2の電解質膜6とを接合した接合体であり、前記第2の電解質膜6は、前記酸化槽1側に配置され、前記多孔質還元電極5は、前記還元槽4側に配置され、前記酸化電極2に導線7で接続され、前記導線7に流れる電子により前記還元槽4内の前記二酸化炭素と還元反応を行う。

Description

二酸化炭素の気相還元装置、および、多孔質還元電極支持型電解質膜の製造方法
 本発明は、二酸化炭素の気相還元装置、および、多孔質還元電極支持型電解質膜の製造方法に関する。
 従来、地球温暖化の防止やエネルギーの安定供給という観点から、二酸化炭素を還元する技術が注目されている。二酸化炭素を還元する還元装置としては、太陽光等の光エネルギーを印加して二酸化炭素を還元する人工光合成技術を利用した還元装置、外部から電気エネルギーを印加して二酸化炭素を還元する電解分解装置がある(非特許文献1~4参照)。
 非特許文献1の図2には、光照射による二酸化炭素の気相還元装置が図示されている。左側の酸化槽と右側の還元槽との間に電解質膜を配置し、酸化槽と還元槽とをそれぞれ水溶液で満たす。酸化槽内に窒化ガリウム(GaN)の酸化電極を入れ、還元槽内に銅(Cu)の還元電極を入れて、酸化電極と還元電極とを導線で接続する。そして、酸化槽内の水溶液にヘリウム(He)を流入し、還元槽内の水溶液に二酸化炭素(CO)を流入する。
 このとき、酸化電極に光を照射すると、酸化電極では電子・正孔対の生成および分離が生じ、水(HO)の酸化反応により酸素(O)およびプロトン(H)が生成する。そして、プロトンは電解質膜を介して還元槽へ移動し、酸化電極で発生した電子(e)は導線を介して還元電極へ移動する。その後、還元電極ではプロトンと電子との結合により水素(H)が生成し、プロトンと電子と二酸化炭素とにより二酸化炭素の還元反応が引き起こされる。この二酸化炭素の還元反応により、エネルギー資源として活用される一酸化炭素、ギ酸、メタンなどが生成する。
Satoshi Yotsuhashi、外6名、"CO2 Conversion with Light and Water by GaN Photoelectrode"、Japanese Journal of Applied Physics 51、2012年、p.02BP07-1-p.02BP07-3 Hiroshi Hashiba、外4名、"Selectivity Control of CO2 Reduction in an Inorganic Artificial Photosynthesis System"、Applied Physics Express 6、2013年、p.097102-1-p.097102-4 Yoshio Hori、外2名、"Formation of Hydrocarbons in the Electrochemical Reduction of Carbone Dioxide at a Copper Electrode in Aqueous Solution"、Journal of the Chemical Society 85(8)、1989年、p.2309-p.2326 Heng Zhong、外2名、"Effect of KHCO3 Concentration on Electrochemical Reduction of CO2 on Copper Electrode"、Journal of The Electrochemical Society 164(9)、2017年、p.F923-p.F927
 従来の二酸化炭素の気相還元装置の場合、還元対象である二酸化炭素は、還元槽内の水溶液に溶解して還元電極に到達し、還元電極の表面で還元される。しかし、二酸化炭素の媒介手段として水溶液を用いるため、その水溶液に溶解可能な二酸化炭素の濃度に限界があり、また、水溶液内での二酸化炭素の拡散抵抗は大きいので、還元電極に対して供給可能な二酸化炭素の供給量には限界がある。
 本発明は、上記事情に鑑みてなされたものであり、本発明の目的は、二酸化炭素の気相還元装置において、二酸化炭素の還元反応の効率を改善可能な技術を提供することである。
 本発明の一態様の二酸化炭素の気相還元装置は、酸化電極を含む酸化槽と、前記酸化槽に隣接し、空の内部に二酸化炭素が供給される還元槽と、前記酸化槽と前記還元槽との間に配置された多孔質還元電極支持型電解質膜と、を備え、前記多孔質還元電極支持型電解質膜は、空隙内部に第1の電解質膜が分散して形成された多孔質還元電極と第2の電解質膜とを接合した接合体であり、前記第2の電解質膜は、前記酸化槽側に配置され、前記多孔質還元電極は、前記還元槽側に配置され、前記酸化電極に導線で接続され、前記導線に流れる電子により前記還元槽内の前記二酸化炭素と還元反応を行う。
 本発明の一態様の多孔質還元電極支持型電解質膜の製造方法は、酸化電極を含む酸化槽と空の内部に二酸化炭素が供給される還元槽との間に配置される多孔質還元電極支持型電解質膜の製造方法において、電解質膜を構成する高分子材料を分散させた電解質分散液に多孔質還元電極を含侵させる工程と、前記電解質分散液に含侵させた前記多孔質還元電極と電解質膜とを重ね、加熱しながら圧力を加えて接合させる工程と、を行う。
 本発明によれば、二酸化炭素の気相還元装置において、二酸化炭素の還元反応の効率を向上可能な技術を提供できる。
図1は、実施例1に係る二酸化炭素の気相還元装置の構成例を示す図である。 図2は、多孔質還元電極支持型電解質膜の作製方法を示す図である。 図3は、多孔質還元電極内に電解質膜が分散形成された様子を示す図である。 図4は、実施例9に係る二酸化炭素の気相還元装置の構成例を示す図である。 図5は、比較対象例1に係る二酸化炭素の気相還元装置の構成例を示す図である。 図6は、比較対象例2に係る二酸化炭素の気相還元装置の構成例を示す図である。 図7は、多孔質還元電極内に電解質膜が島状に分散形成された様子を示す図である。
 以下、図面を参照して本発明の実施例を説明する。本発明は、後述の実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲内において変更を加えることが可能である。
 [発明の概要]
 本発明の目的は、二酸化炭素の気相還元装置において、二酸化炭素の還元反応の効率を改善可能な技術を提供することにある。この目的を達成するため、本発明は、従来の二酸化炭素の気相還元装置に対し、次の特徴を備える。
 第1の特徴は、還元槽内を気相の二酸化炭素で満たし、気相の二酸化炭素を還元電極に直接供給する。これにより、還元槽内において、二酸化炭素の濃度が増加し、二酸化炭素の拡散抵抗が低減する。その結果、還元電極への二酸化炭素の供給量が増加し、還元電極上での二酸化炭素の還元反応の効率を向上できる。
 この点、二酸化炭素の還元反応を実現するには、[電解質膜-還元電極-気相の二酸化炭素]からなる三相界面が必要であるが、第1の特徴を採用すると、還元槽内から水溶液がなくなり、プロトンは還元槽内の気相中を移動できない。また、気相の二酸化炭素は、気孔のない還元電極内を移動できない。その結果、二酸化炭素の還元反応を実現できなくなる。そこで、第2の特徴をさらに備える。
 第2の特徴は、還元電極を気孔のある多孔質還元電極とし、多孔質還元電極と電解質膜とを接合する。これにより、[電解質膜-多孔質還元電極-気相の二酸化炭素]からなる三相界面が形成されるので、還元槽内を気相の二酸化炭素で満たした場合であっても、多孔質還元電極上での二酸化炭素の気相還元の進行を実現できる。
 しかし、多孔質還元電極に対して電解質膜を接合させるだけでは、[電解質膜-多孔質還元電極-気相の二酸化炭素]からなる三相界面は、電解質膜と多孔質還元電極との接合面上のみに限定されてしまう。そこで、第3の特徴をさらに備える。
 第3の特徴は、多孔質還元電極の空隙内部にも電解質膜を分散して形成する。これにより、二酸化炭素の気相還元反応の反応場が増大するので、多孔質還元電極上での二酸化炭素の還元反応の効率を向上できる。
 つまり、本発明は、空隙内部に電解質膜が分散して形成された多孔質還元電極に電解質膜を接合した多孔質還元電極支持型電解質膜に対して、気相の二酸化炭素を直接供給することを特徴とする。この特徴により、還元電極上での二酸化炭素の還元反応の効率向上を実現できる。
 [実施例1]
  [二酸化炭素の気相還元装置の構成]
 図1は、実施例1に係る二酸化炭素の気相還元装置100の構成例を示す図である。当該気相還元装置100は、酸化電極への光照射により還元電極で二酸化炭素の還元反応を起こす還元装置(人工光合成装置)である。以下、単に気相還元装置100という。
 気相還元装置100は、図1に示すように、一筐体の内部空間を二分することで形成された酸化槽1と還元槽4とを備える。酸化槽1は水溶液3で満たされ、水溶液3には半導体または金属錯体からなる酸化電極2が挿入される。酸化槽1に隣接する還元槽4には、その空の内部に二酸化炭素の気体または二酸化炭素を含む気体が満たされる。
 酸化電極2は、例えば、窒化物半導体、酸化チタン、アモルファスシリコン、ルテニウム錯体、レニウム錯体のような光活性やレドックス活性を示す化合物である。水溶液3は、例えば、炭酸水素カリウム水溶液、炭酸水素ナトリウム水溶液、塩化カリウム水溶液、塩化ナトリウム水溶液、水酸化ナトリウム水溶液、水酸化カリウム水溶液、水酸化ルビジウム水溶液、水酸化セシウム水溶液である。
 酸化槽1と還元槽4との間には、空隙内部に電解質膜(第1の電解質膜)が分散して形成された多孔質還元電極5と、電解質膜(第2の電解質膜)6と、を接合した多孔質還元電極支持型電解質膜20が配置される。酸化槽1側には電解質膜6が配置され、還元槽4側には多孔質還元電極5が配置される。酸化電極2と多孔質還元電極5とは、導線7で接続される。
 酸化槽1には、酸化槽1内の水溶液3にヘリウムを流入するため、チューブ8が挿入される。還元槽4には、還元槽4内に二酸化炭素を流入するため、還元槽4の底部に気体入力口9が形成される。さらに、気相還元装置100を運転するため、光源10が酸化電極2に対して対向配置される。光源10は、例えば、キセノンランプ、擬似太陽光源、ハロゲンランプ、水銀ランプ、太陽光、または、これらの組み合わせである。
  [多孔質還元電極支持型電解質膜の作製方法]
 多孔質還元電極支持型電解質膜20の作製方法を説明する。多孔質還元電極支持型電解質膜20は、多孔質還元電極5と電解質膜6とを接合して形成する。
 多孔質還元電極5は、例えば、銅、白金、金、銀、インジウム、パラジウム、ガリウム、ニッケル、スズ、カドミウム、それらの合金の多孔質体、酸化銀、酸化銅、酸化銅(II)、酸化ニッケル、酸化インジウム、酸化スズ、酸化タングステン、酸化タングステン(VI)、酸化銅などの多孔質体である。その他、多孔質還元電極5は、金属イオンとアニオン性配位子とを有する多孔性金属錯体でもよい。
 電解質膜6は、例えば、炭素-フッ素からなる骨格を持つ電解質膜であるナフィオン(商標登録)、フォアブルー、アクイヴィオンである。その他、電解質膜6は、炭化水素系骨格を持つ電解質膜であるセレミオンやネオセプタでもよい。
 実施例1では、多孔質還元電極5として、厚み1mm、気孔率98%の銅多孔質体を用いた。電解質膜6として、カチオン交換膜であるナフィオンを用いた。また、作製時に使用する電解質分散液には、デュポン社製のナフィオン分散液(商標登録)(ナフィオン含有率:20wt.%)を、純水で200倍に希釈してナフィオン含有率(=電解質含有率)を0.05wt.%に調製したナフィオン分散液を用いた。希釈に用いる溶媒は、例えば、純水もしくは低級アルコール、または、それらの混合液である。実施例1では、純水を用いた。
 まず、電解質膜6のプロトン移動度を向上させるため、予め、電解質膜6を沸騰硝酸と沸騰純水とにそれぞれ浸漬させておく。次に、工程1として、多孔質還元電極5を、電解質膜を構成する高分子材料を分散させた電解質分散液(電解質含有率:0.05wt.%)に含侵させる。その後、沸騰硝酸と沸騰純水とにそれぞれ浸漬させた電解質膜6の上に、電解質分散液に含侵させた多孔質還元電極5を重ね、図2に示すように、そのサンプルを2つの銅板30a,30bの間に配置する。次に、工程2として、このサンプルを熱圧着装置(ホットプレス機)のホットプレート40a,40bの間に設置し、加熱温度150℃の条件で加熱しながら、多孔質還元電極5の上面に対して垂直方向に下方へ(電極面に対して)圧力を加えて3分間放置する。その後、そのサンプルを素早く冷却して取り出す。これにより、多孔質還元電極5と電解質膜6とが接合した多孔質還元電極支持型電解質膜20を得ることができる。なお、熱圧着後の多孔質還元電極5の厚みは0.2mm、気孔率は90%であった。
 工程1において、多孔質還元電極5を電解質分散液に含侵しているため、図2の拡大図に示すように、多孔質還元電極5の表面および内部に電解質分散液50の溶液が付着している。その状態で工程2の熱プレス処理を行うと、加熱と共に電解質分散液50に含まれる低級アルコールや純水は気化し、電解質分散液に含まれるナフィオンのみがガラス転移して、厚みが数百nmの電解質膜(ナフィオン膜)を形成することで、図3に示すように、多孔質還元電極5の表面および内部に電解質膜(第1の電解質膜)60が分散形成される。多孔質還元電極5と電解質膜(第2の電解質膜)6との界面に分散形成される電解質膜60によって両者が接着し、多孔質還元電極5の内部には分散形成された電解質膜60と多孔質還元電極5と気相の二酸化炭素とからなる三相界面が形成されるため、二酸化炭素の気相還元反応の反応場が増大し、その三相界面において二酸化炭素の還元反応が効率よく進行する。
  [電気化学測定およびガス・液体生成量測定]
 電気化学測定およびガス・液体生成量測定を説明する。
 酸化槽1を水溶液3で満たす。酸化電極2には、サファイア基板上にn型半導体である窒化ガリウム(GaN)の薄膜と、窒化アルミニウムガリウム(AlGaN)の薄膜とを、その順にエピタキシャル成長させ、その上にニッケル(Ni)を真空蒸着して熱処理を行うことで、酸化ニッケル(NiO)の助触媒薄膜を形成した基板を用いた。そして、その酸化電極2を、水溶液3に浸水するように酸化槽1内に設置した。水溶液3は、1.0mol/Lの水酸化カリウム水溶液とした。光源10には、300Wの高圧キセノンランプ(波長450nm以上をカット、照度6.6mW/cm)を用い、酸化電極2の半導体光電極の酸化助触媒が形成されている面(NiOの形成面)が照射面となるように固定した。酸化電極2の光照射面積を2.5cmとした。
 酸化槽1に対してチューブ8からヘリウムを、還元槽4に対して気体入力口9から二酸化炭素を、それぞれ流量5ml/minかつ圧力0.18MPaで流し入れた。この系では、多孔質還元電極支持型電解質膜20内の[電解質膜-銅(多孔質還元電極)-気相の二酸化炭素]からなる三相界面において、二酸化炭素の還元反応を進行させることができる。
 酸化槽1と還元槽4とをヘリウムと二酸化炭素とでそれぞれ十分に置換した後、光源10を用いて酸化電極2に均一に光を照射した。酸化電極2への光照射により、酸化電極2と多孔質還元電極5との間に電子が流れる。光照射時の酸化電極2と多孔質還元電極5との間の電流値を、電気化学測定装置(Solartron社製、1287型ポテンショガルバノスタット)で測定した。また、光照射中の任意の時間に、酸化槽1内および還元槽4内のガスおよび液体を採取し、ガスクロマトグラフおよび液体クロマトグラフ、ガスクロマトグラフ質量分析計で反応生成物を分析した。その結果、酸化槽1内では、酸素が生成され、還元槽4内では、水素、一酸化炭素、ギ酸、メタン、メタノール、エタノール、エチレンが生成されていることを確認した。
 [実施例2]
 実施例2では、多孔質還元電極支持型電解質膜20の作製において、工程1の電解質分散液の電解質含有率を0.1wt.%にした。それ以外の条件はすべて実施例1と同様である。
 [実施例3]
 実施例3では、多孔質還元電極支持型電解質膜20の作製において、工程1の電解質分散液の電解質含有率を0.5wt.%にした。それ以外の条件はすべて実施例1と同様である。
 [実施例4]
 実施例4では、多孔質還元電極支持型電解質膜20の作製において、工程1の電解質分散液の電解質含有率を1.0wt.%にした。それ以外の条件はすべて実施例1と同様である。
 [実施例5]
 実施例5では、多孔質還元電極支持型電解質膜20の作製において、工程1の電解質分散液の電解質含有率を5.0wt.%にした。それ以外の条件はすべて実施例1と同様である。
 [実施例6]
 実施例6では、多孔質還元電極支持型電解質膜20の作製において、厚み1mm、気孔率90%の銅多孔質体を用いた。熱圧着後の多孔質還元電極5の厚みは0.2mm、気孔率は50%であった。それ以外の条件はすべて実施例1と同様である。
 [実施例7]
 実施例7では、多孔質還元電極支持型電解質膜20の作製において、厚み1mm、気孔率85%の銅多孔質体を用いた。熱圧着後の多孔質還元電極5の厚みは0.2mm、気孔率は25%であった。それ以外の条件はすべて実施例1と同様である。
 [実施例8]
 実施例8では、多孔質還元電極支持型電解質膜20の作製において、厚み1mm、気孔率81%の銅多孔質体を用いた。熱圧着後の多孔質還元電極5の厚みは0.2mm、気孔率は5%であった。それ以外の条件はすべて実施例1と同様である。
 [実施例9]
  [二酸化炭素の気相還元装置の構成]
 図4は、実施例9に係る二酸化炭素の気相還元装置100の構成を示す図である。当該二酸化炭素の気相還元装置100は、気相の二酸化炭素の電解還元反応の装置(電解還元反応装置)である。以下、単に気相還元装置100という。
 気相還元装置100は、図4に示すように、一筐体の内部空間を二分することで形成された酸化槽1と還元槽4とを備える。酸化槽1は水溶液3で満たされ、水溶液3には半導体または金属錯体からなる酸化電極2が挿入される。酸化槽1に隣接する還元槽4には、その空の内部に二酸化炭素の気体または二酸化炭素を含む気体が満たされる。酸化電極2は、例えば、白金、金、銀、銅、インジウム、ニッケルである。水溶液3の具体例は、実施例1と同様である。
 酸化槽1と還元槽4との間には、空隙内部に電解質膜(第1の電解質膜)が分散して形成された多孔質還元電極5と、電解質膜(第2の電解質膜)6と、を接合した多孔質還元電極支持型電解質膜20が配置される。酸化槽1側には電解質膜6が配置され、還元槽4側には多孔質還元電極5が配置される。酸化電極2と多孔質還元電極5とは、導線7で接続される。多孔質還元電極5と電解質膜6との各具体例は、実施例1と同様である。
 酸化槽1には、酸化槽1内の水溶液3にヘリウムを流入するため、チューブ8が挿入される。還元槽4には、還元槽4内に二酸化炭素を流入するため、還元槽4の底部に気体入力口9が形成される。さらに、気相還元装置100を運転するため、電源11が導線7に接続される。
  [多孔質還元電極支持型電解質膜の作製方法]
 多孔質還元電極支持型電解質膜20は、実施例1と同様の手順で作製する。
  [電気化学測定およびガス・液体生成量測定]
 電気化学測定およびガス・液体生成量測定を説明する。
 酸化槽1を水溶液3で満たす。酸化電極2には、白金(ニラコ社製)を用いた。酸化電極2の表面積の約0.55cmが水溶液3に浸水するように酸化槽1内に設置した。水溶液3は、1.0mol/Lの水酸化カリウム水溶液とした。
 酸化槽1に対してチューブ8からヘリウムを、還元槽4に対して気体入力口9から二酸化炭素を、それぞれ流量5ml/minかつ圧力0.18MPaで流し入れた。この系では、多孔質還元電極支持型電解質膜20内の[電解質膜-銅(多孔質還元電極)-気相の二酸化炭素]からなる三相界面において、二酸化炭素の還元反応を進行させることができる。二酸化炭素が直接供給される多孔質還元電極5の面積は、約6.25cmである。
 酸化槽1と還元槽4とをヘリウムと二酸化炭素とでそれぞれ十分に置換した後、酸化電極2と多孔質還元電極5との間を電源11を介して導線7でつなぎ、電圧2.5Vを印加して電子を流した。電圧2.5Vを印加した時の酸化電極2と多孔質還元電極5との間の電流値を、電気化学測定装置で測定した。また、電圧印加中の任意の時間に、酸化槽1内および還元槽4内のガスおよび液体を採取し、ガスクロマトグラフおよび液体クロマトグラフ、ガスクロマトグラフ質量分析計にて反応生成物を分析した。その結果、酸化槽1内では、酸素が生成され、還元槽4内では、水素、一酸化炭素、ギ酸、メタン、メタノール、エタノール、エチレンが生成されていることを確認した。
 [実施例10]
 実施例10では、多孔質還元電極支持型電解質膜20の作製において、工程1の電解質分散液の電解質含有率を0.1wt.%にした。それ以外の条件はすべて実施例9と同様である。
 [実施例11]
 実施例11では、多孔質還元電極支持型電解質膜20の作製において、工程1の電解質分散液の電解質含有率を0.5wt.%にした。それ以外の条件はすべて実施例9と同様である。
 [実施例12]
 実施例12では、多孔質還元電極支持型電解質膜20の作製において、工程1の電解質分散液の電解質含有率を1.0wt.%にした。それ以外の条件はすべて実施例9と同様である。
 [実施例13]
 実施例13では、多孔質還元電極支持型電解質膜20の作製において、工程1の電解質分散液の電解質含有率を5.0wt.%にした。それ以外の条件はすべて実施例9と同様である。
 [実施例14]
 実施例14では、多孔質還元電極支持型電解質膜20の作製において、厚み1mm、気孔率90%の銅多孔質体を用いた。熱圧着後の多孔質還元電極5の厚みは0.2mm、気孔率は50%であった。それ以外の条件は全て実施例9と同様である。
 [実施例15]
 実施例15では、多孔質還元電極支持型電解質膜20の作製において、厚み1mm、気孔率85%の銅多孔質体を用いた。熱圧着後の多孔質還元電極5の厚みは0.2mm、気孔率は25%であった。それ以外の条件は全て実施例9と同様である。
 [実施例16]
 実施例16では、多孔質還元電極支持型電解質膜20の作製において、厚み1mm、気孔率81%の銅多孔質体を用いた。熱圧着後の多孔質還元電極5の厚みは0.2mm、気孔率は5%であった。それ以外の条件は全て実施例9と同様である。
 [比較対象例1]
 図5は、実施例1~8に対応する比較対象例1に係る二酸化炭素の気相還元装置の構成を示す図である。比較対象例1の構成は、非特許文献1の図2に示された従来の二酸化炭素の気相還元装置と同様である。
 図1と比較して、還元槽4の構造が異なる。酸化槽1と還元槽4とは、電解質膜6のみによって隔てられている。還元槽4には、気孔のない非多孔質還元電極5’が挿入されている。還元槽4内は水溶液12で満たされ、非多孔質還元電極5’が浸されている。水溶液12に二酸化炭素を流入するため、還元槽4にチューブ13が挿入されている。
 酸化槽1内の水溶液3は、1mol/lの水酸化ナトリウム水溶液とした。還元槽4の水溶液12は、0.5mol/lの炭酸水素カリウム水溶液とした。また、非多孔質還元電極5’は、面積約6cmの銅板(ニラコ社製)を用い、水溶液12に浸水するように設置した。その他の構成は、実施例1と同様である。
 反応生成物を分析したところ、水素、一酸化炭素、ギ酸、メタン、エチレンが生成していることを確認した。
 [比較対象例2]
 図6は、実施例9~16に対応する比較対象例2に係る二酸化炭素の気相還元装置の構成を示す図である。
 図4と比較して、還元槽4の構造が異なる。酸化槽1と還元槽4とは、電解質膜6のみによって隔てられている。還元槽4には、気孔のない非多孔質還元電極5’が挿入されている。還元槽4内は水溶液12で満たされ、非多孔質還元電極5’が浸されている。水溶液12に二酸化炭素を流入するため、還元槽4にチューブ13が挿入されている。
 酸化槽1内の水溶液3は、1mol/lの水酸化ナトリウム水溶液とした。還元槽4の水溶液12は、0.5mol/lの炭酸水素カリウム水溶液とした。また、非多孔質還元電極5’は、面積約6cmの銅板(ニラコ社製)を用い、水溶液12に浸水するように設置した。その他の構成は、実施例9と同様である。
 反応生成物を分析したところ、水素、一酸化炭素、メタン、エチレン、ギ酸が生成していることを確認した。
 [二酸化炭素の還元反応の実験結果]
 実施例1~16および比較対象例1、2による二酸化炭素の還元反応のファラデー効率を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 ファラデー効率とは、式(1)に示すように、光照射時または電圧印加時に電極間に流れた電流値に対して、各還元反応に使われた電流値の割合を示す値である。
  各還元反応のファラデー効率=(各還元反応の電流値)/(酸化電極-還元電極間の電流値) ・・・(1)
 式(1)の「各還元反応の電流値」は、各還元生成物の生成量の測定値を、その生成反応に必要な電子数に換算することで求めることができる。還元反応生成物の濃度をA[ppm]、キャリアガスの流量をB[L/sec]、還元反応に必要な電子数をZ[mol]、ファラデー定数をF[C/mol]、気体のモル体をVm[L/mol]としたとき、式(2)を用いて算出した。
  各還元反応の電流値[A]=(A×B×Z×F×10-6)/Vm ・・・(2)
 表1より、実施例1~3は、実施例4,5と比較して、二酸化炭素還元の選択性が高いことを把握できる。実施例9~11についても、実施例12,13と比較して、二酸化炭素還元の選択性が高いことを把握できる。
 実施例5,13については、二酸化炭素還元による生成物が検出されなかったため、ファラデー効率の測定結果は無しとなっている。これは、実施例4,5および実施例12,13において、電解質膜が多孔質還元電極5の金属表面を覆ってしまったことにより、多孔質還元電極5への二酸化炭素の供給が著しく不足したことが原因と考えられる。
 また、図2および図3に示したように、工程1で多孔質還元電極5を電解質分散液に含侵させると、多孔質還元電極5の表面に電解質分散液50の溶液が付着し、その状態で工程2の熱プレス処理を行うと、加熱と共に電解質分散液50が電解質膜60に転移することで、多孔質還元電極5の表面および内部に電解質膜60が分散した構造となる。しかし、実施例4,5および実施例12,13のように、電解質分散液50の濃度が1.0wt.%以上だと、多孔質還元電極5の表面を電解質膜60で完全に被覆した構造になるため、二酸化炭素を多孔質還元電極5の表面に供給することができなくなる。
 一方、実施例1~3および実施例9~11のように、電解質分散液50の濃度が0.05wt.%~0.5wt.%の場合には、図7に示すように、多孔質還元電極5の表面や空隙界面に厚み数μmの電解質膜60が分散して島状に被覆した構造となる。この構造では、[還元電極-電解質膜-二酸化炭素]からなる三相界面が多孔質還元電極5内に多量に形成され、その三相界面において二酸化炭素の還元反応が進行し、二酸化炭素の還元反応の効率が向上する。それ故、工程1で用いる電解質分散液50の濃度は、1.0wt.%未満が好ましいと考えられる。
 さらに、比較対象例1,2に対して、実施例1~3および実施例6~8と、実施例9~11および実施例14~16とは、それぞれ、二酸化炭素還元のファラデー効率が大きく向上しており、二酸化炭素の還元反応が選択的に起こっていることがわかる。これは、実施例1~3および実施例6~8と、実施例9~11および実施例14~16と、において、水溶液を介さず多孔質還元電極5に対して気相の二酸化炭素を直接供給することで、多孔質還元電極5の表面付近での二酸化炭素が増加し、二酸化炭素の拡散抵抗が低減され、多孔質還元電極5への二酸化炭素供給量が増加したこと、さらには、多孔質還元電極5の表面に電解質膜60が分散して形成されて反応場が増大したこと、が要因と考えられる。
 [発明の効果]
 本発明によれば、多孔質還元電極5に電解質膜6を接合した多孔質還元電極支持型電解質膜20に対して、気相の二酸化炭素を直接的に供給するので、還元槽4の二酸化炭素の濃度が増加し、多孔質還元電極5の表面付近での二酸化炭素の拡散抵抗を低減できる。また、多孔質還元電極5の内部に電解質膜を分散して形成したので、二酸化炭素の気相還元反応の反応場が増大し、多孔質還元電極5での二酸化炭素の還元反応の効率向上を実現できる。さらに、工程1,2では、多孔質還元電極5の空隙率を詳細に制御でき、さらに多孔質還元電極5の内部に分散させる電解質分散液の量を規定できることから、反応場の制御が容易となる。
 1:酸化槽
 2:酸化電極
 3:水溶液
 4:還元槽
 5:多孔質還元電極
 5’:非多孔質還元電極
 6:電解質膜
 7:導線
 8:チューブ
 9:気体入力口
 10:光源
 11:電源
 12:水溶液
 13:チューブ
 20:多孔質還元電極支持型電解質膜
 30a,30b:銅板
 40a,40b:ホットプレート
 50:電解質分散液
 60:電解質膜
 100:二酸化炭素の気相還元装置

Claims (4)

  1.  酸化電極を含む酸化槽と、
     前記酸化槽に隣接し、空の内部に二酸化炭素が供給される還元槽と、
     前記酸化槽と前記還元槽との間に配置された多孔質還元電極支持型電解質膜と、を備え、
     前記多孔質還元電極支持型電解質膜は、
     空隙内部に第1の電解質膜が分散して形成された多孔質還元電極と第2の電解質膜とを接合した接合体であり、前記第2の電解質膜は、前記酸化槽側に配置され、前記多孔質還元電極は、前記還元槽側に配置され、前記酸化電極に導線で接続され、前記導線に流れる電子により前記還元槽内の前記二酸化炭素と還元反応を行う二酸化炭素の気相還元装置。
  2.  前記第1の電解質膜は、
     前記多孔質還元電極の空隙界面に島状に形成されている請求項1に記載の二酸化炭素の気相還元装置。
  3.  酸化電極を含む酸化槽と空の内部に二酸化炭素が供給される還元槽との間に配置される多孔質還元電極支持型電解質膜の製造方法において、
     電解質膜を構成する高分子材料を分散させた電解質分散液に多孔質還元電極を含侵させる工程と、
     前記電解質分散液に含侵させた前記多孔質還元電極と電解質膜とを重ね、加熱しながら圧力を加えて接合させる工程と、
     を行う多孔質還元電極支持型電解質膜の製造方法。
  4.  前記電解質分散液は、
     電解質含有率が1.0wt.%未満である請求項3に記載の多孔質還元電極支持型電解質膜の製造方法。
PCT/JP2020/044254 2020-11-27 2020-11-27 二酸化炭素の気相還元装置、および、多孔質還元電極支持型電解質膜の製造方法 WO2022113277A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022564940A JPWO2022113277A1 (ja) 2020-11-27 2020-11-27
US18/254,087 US20230416933A1 (en) 2020-11-27 2020-11-27 Carbon Dioxide Gas Phase Reduction Apparatus and Method for Manufacturing a Porous Reducing Electrode-Supported Electrolyte Membrane
PCT/JP2020/044254 WO2022113277A1 (ja) 2020-11-27 2020-11-27 二酸化炭素の気相還元装置、および、多孔質還元電極支持型電解質膜の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/044254 WO2022113277A1 (ja) 2020-11-27 2020-11-27 二酸化炭素の気相還元装置、および、多孔質還元電極支持型電解質膜の製造方法

Publications (1)

Publication Number Publication Date
WO2022113277A1 true WO2022113277A1 (ja) 2022-06-02

Family

ID=81755446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/044254 WO2022113277A1 (ja) 2020-11-27 2020-11-27 二酸化炭素の気相還元装置、および、多孔質還元電極支持型電解質膜の製造方法

Country Status (3)

Country Link
US (1) US20230416933A1 (ja)
JP (1) JPWO2022113277A1 (ja)
WO (1) WO2022113277A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024116355A1 (ja) * 2022-11-30 2024-06-06 日本電信電話株式会社 二酸化炭素還元装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001097894A (ja) * 1999-09-30 2001-04-10 Toshiba Corp 炭酸ガス還元装置
JP2017527701A (ja) * 2014-09-08 2017-09-21 スリーエム イノベイティブ プロパティズ カンパニー 二酸化炭素電気分解装置用のイオン性ポリマー膜
JP2019049043A (ja) * 2017-09-07 2019-03-28 株式会社東芝 膜電極接合体、電気化学セル、および電気化学装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001097894A (ja) * 1999-09-30 2001-04-10 Toshiba Corp 炭酸ガス還元装置
JP2017527701A (ja) * 2014-09-08 2017-09-21 スリーエム イノベイティブ プロパティズ カンパニー 二酸化炭素電気分解装置用のイオン性ポリマー膜
JP2019049043A (ja) * 2017-09-07 2019-03-28 株式会社東芝 膜電極接合体、電気化学セル、および電気化学装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024116355A1 (ja) * 2022-11-30 2024-06-06 日本電信電話株式会社 二酸化炭素還元装置

Also Published As

Publication number Publication date
JPWO2022113277A1 (ja) 2022-06-02
US20230416933A1 (en) 2023-12-28

Similar Documents

Publication Publication Date Title
WO2020121556A1 (ja) 二酸化炭素の気相還元装置及び二酸化炭素の気相還元方法
JP6024900B2 (ja) 二酸化炭素を還元する方法
JP2006302695A (ja) 光電気化学セル及びその製造方法
JP5779240B2 (ja) 太陽光燃料電池
WO2022113277A1 (ja) 二酸化炭素の気相還元装置、および、多孔質還元電極支持型電解質膜の製造方法
JP5173080B2 (ja) 二酸化炭素を還元する方法
JP7273346B2 (ja) 二酸化炭素の気相還元方法
JP2018119204A (ja) 水素脱離方法および脱水素装置
WO2021234908A1 (ja) 二酸化炭素の気相還元装置、および、多孔質電極支持型電解質膜の製造方法
WO2022244234A1 (ja) 多孔質電極支持型電解質膜および多孔質電極支持型電解質膜の製造方法
WO2022118364A1 (ja) 電解質膜支持型還元電極の製造方法
WO2023095203A1 (ja) 多孔質電極支持型電解質膜の製造方法
WO2023095201A1 (ja) 多孔質電極支持型電解質膜および多孔質電極支持型電解質膜の製造方法
WO2023084683A1 (ja) 電解質膜
WO2023095193A1 (ja) 多孔質電極支持型電解質膜および多孔質電極支持型電解質膜の製造方法
JP7356067B2 (ja) 二酸化炭素の気相還元装置、および、二酸化炭素の気相還元方法
JP6997376B2 (ja) 二酸化炭素還元装置
JP7327422B2 (ja) 還元反応用電極
WO2022249276A1 (ja) 二酸化炭素の気相還元装置および二酸化炭素の気相還元方法
US12036526B2 (en) Carbon dioxide reduction device
WO2023084682A1 (ja) 電解質膜、及び、電解質膜の製造方法
WO2024116235A1 (ja) 二酸化炭素の気相還元装置
WO2023233590A1 (ja) 還元電極、及び、還元電極の製造方法
JP6998590B2 (ja) 反応装置及び炭化水素の製造方法
WO2022249314A1 (ja) 二酸化炭素還元装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20963541

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022564940

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18254087

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20963541

Country of ref document: EP

Kind code of ref document: A1