WO2019225494A1 - 二酸化炭素還元装置 - Google Patents

二酸化炭素還元装置 Download PDF

Info

Publication number
WO2019225494A1
WO2019225494A1 PCT/JP2019/019633 JP2019019633W WO2019225494A1 WO 2019225494 A1 WO2019225494 A1 WO 2019225494A1 JP 2019019633 W JP2019019633 W JP 2019019633W WO 2019225494 A1 WO2019225494 A1 WO 2019225494A1
Authority
WO
WIPO (PCT)
Prior art keywords
reduction
carbon dioxide
electrode
aqueous solution
oxidation
Prior art date
Application number
PCT/JP2019/019633
Other languages
English (en)
French (fr)
Inventor
紗弓 里
裕也 渦巻
陽子 小野
武志 小松
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US17/057,532 priority Critical patent/US20210197166A1/en
Publication of WO2019225494A1 publication Critical patent/WO2019225494A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • C25B3/26Reduction of carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/12Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon dioxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/23Carbon monoxide or syngas
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/03Acyclic or carbocyclic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/50Cells or assemblies of cells comprising photoelectrodes; Assemblies of constructional parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0877Liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/12Processes employing electromagnetic waves
    • B01J2219/1203Incoherent waves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a technology for reducing carbon dioxide by electricity or light energy.
  • an oxidation tank in which an oxidation electrode is immersed in an aqueous solution and a reduction tank in which the reduction electrode is immersed in an aqueous solution are connected via a proton exchange membrane, and carbon dioxide is constantly supplied from the tube to the reduction tank.
  • the reaction proceeds at each electrode by connecting the power source between the electrodes to supply electric energy, or by connecting the electrodes electrically and irradiating the oxidation electrode with light to supply the light energy.
  • Protons generated by the oxidation reaction of water at the oxidation electrode are transported to the reduction tank via the proton exchange membrane.
  • hydrogen is generated by a proton reduction reaction, and carbon monoxide, methane, ethylene, methanol, ethanol, formic acid, and the like are generated by a carbon dioxide reduction reaction.
  • the present invention has been made in view of the above, and an object thereof is to improve the efficiency of the carbon dioxide reduction reaction.
  • a carbon dioxide reduction device is a carbon dioxide reduction device that causes a current to flow between an oxidation electrode and a reduction electrode to cause a reduction reaction in the reduction electrode, wherein the oxidation electrode is immersed in an aqueous solution.
  • An oxidation tank for disposition, a reduction tank for immersing the reduction electrode in an aqueous solution, a proton exchange membrane disposed between the oxidation tank and the reduction tank, and a lower part of the reduction tank And a carbon dioxide supply unit having a plurality of pores for supplying carbon dioxide as bubbles in the aqueous solution.
  • the efficiency of the carbon dioxide reduction reaction can be improved.
  • FIG. 1 is a schematic configuration diagram illustrating a configuration of the carbon dioxide reduction device according to the first embodiment.
  • the carbon dioxide reduction device 1 of the present embodiment is disposed on the bottom surface of the oxidation tank 10, the reduction tank 20, the proton exchange membrane 30 that enables protons to move between the oxidation tank 10 and the reduction tank 20, and the reduction tank 20.
  • the aqueous solution 12 is put in the oxidation tank 10, and the oxidation electrode 11 is immersed in the aqueous solution 12.
  • the oxidation electrode 11 is electrically connected to the power supply 50 by a conducting wire 51.
  • platinum, gold, silver, copper, indium, and nickel can be used for the oxidation electrode 11.
  • the aqueous solution 22 is put into the reduction tank 20, and the reduction electrode 21 is immersed in the aqueous solution 22.
  • the reduction electrode 21 is electrically connected to the power source 50 by a conducting wire 51.
  • the reduction electrode 21 is a plate-like metal, and for example, copper, gold, platinum, silver, palladium, gallium, indium, nickel, tin, and cadmium can be used.
  • the reduction electrode 21 is disposed with the reaction surface facing the gas supply unit 40.
  • the reduction electrode 21 may be a wire mesh or an electrode substrate obtained by applying particulate metal particles to a conductive substrate.
  • Nafion (registered trademark) can be used as the proton exchange membrane 30 for example.
  • Nafion is a perfluorocarbon material composed of a hydrophobic Teflon skeleton composed of carbon-fluorine and a perfluoro side chain having a sulfonic acid group.
  • the gas supply unit 40 supplies carbon dioxide bubbles in a planar shape from the bottom of the reduction tank 20.
  • the gas supply unit 40 includes a gas introduction unit 41 and a bubble generation unit 42.
  • the gas introduction part 41 has a hollow inside, and can send gas from the pipe.
  • the bubble generation unit 42 is a rectangular parallelepiped plate having a large number of cylindrical pores 43, and is arranged as the upper surface of the gas introduction unit 41.
  • the coverage which is the ratio of the pores 43 to the lower surface of the reduction tank 20, is 20%.
  • the pores 43 may be formed so that the coverage is 10% to 90%.
  • the diameter of the pore 43 can be arbitrarily set from about 0.5 mm to about 5.0 mm.
  • the carbon dioxide reduction device 1 When the gas is fed into the gas introduction part 41, the gas passes through the pores 43 of the bubble generation part 42 and is released into the aqueous solution 22 as bubbles.
  • the carbon dioxide reduction device 1 includes the gas supply unit 40 that supplies fine bubbles of carbon dioxide in a planar shape, thereby increasing the concentration of carbon dioxide dissolved in the aqueous solution 22.
  • the carbon dioxide concentration can be made uniform.
  • the power supply 50 applies a voltage and causes a current to flow between the oxidation electrode 11 and the reduction electrode 21.
  • oxygen is generated in the oxidation tank 10 by an oxidation reaction of water (2H 2 O ⁇ O 2 + 4H + + 4e ⁇ ).
  • hydrogen is generated by a proton reduction reaction (2H + + 2e ⁇ ⁇ H 2 ), and carbon monoxide, methane, ethylene, and the like are generated by a carbon dioxide reduction reaction.
  • FIG. 3 is a schematic configuration diagram illustrating a configuration of the carbon dioxide reduction device according to the second embodiment.
  • the carbon dioxide reduction device 1 of the present embodiment is disposed on the bottom surface of the oxidation tank 10, the reduction tank 20, the proton exchange membrane 30 that enables protons to move between the oxidation tank 10 and the reduction tank 20, and the reduction tank 20.
  • a gas supply unit 40 for supplying carbon dioxide, and a light source 60 Compared to the first embodiment, the carbon dioxide reduction device 1 of the second embodiment uses a photocatalyst that causes a chemical reaction by light irradiation on the oxidation electrode 11 and includes a light source 60 instead of the power supply 50. Is different.
  • the aqueous solution 12 is put in the oxidation tank 10, and the oxidation electrode 11 is immersed in the aqueous solution 12.
  • a compound exhibiting photoactivity or redox activity such as nitride semiconductor, titanium oxide, amorphous silicon, ruthenium complex, or rhenium complex can be used.
  • aqueous solution 12 for example, a sodium hydroxide aqueous solution, a potassium chloride aqueous solution, and a sodium chloride aqueous solution can be used.
  • the aqueous solution 22 is put into the reduction tank 20, and the reduction electrode 21 is immersed in the aqueous solution 22.
  • the oxidation electrode 11 and the reduction electrode 21 are electrically connected by a conducting wire 51.
  • the reduction electrode 21 is plate-shaped, and for example, copper, gold, platinum, indium, tungsten (VI) oxide, copper (II) oxide, or a porous metal complex having a metal ion and an anionic ligand can be used. .
  • the reduction electrode 21 is arranged with a wide surface facing the gas supply unit 40.
  • the reduction electrode 21 may be a wire mesh or an electrode substrate obtained by applying particulate metal particles to a conductive substrate.
  • Nafion (registered trademark) can be used for the proton exchange membrane 30.
  • the same gas supply unit 40 as that of the first embodiment is used.
  • the light source 60 is disposed to face the reaction surface of the oxidation electrode 11 and irradiates the oxidation electrode 11 with light.
  • a xenon lamp, a pseudo solar light source, a halogen lamp, a mercury lamp, and sunlight can be used.
  • the light source 60 may be used in combination with the above.
  • the oxidation electrode 11 When the oxidation electrode 11 is irradiated with light, a current flows between the oxidation electrode 11 and the reduction electrode 21, and oxygen is generated in the oxidation tank 10 by an oxidation reaction of water.
  • the reduction tank 20 hydrogen is generated by a reduction reaction of protons, and carbon monoxide, methane, ethylene, and the like are generated by a reduction reaction of carbon dioxide.
  • Examples and evaluation results Next, for each of the carbon dioxide reduction devices 1 of the first and second embodiments, an example in which the diameter of the pores 43 of the gas supply unit 40 is changed and a comparative example in which carbon dioxide is supplied by a tube will be described. First, Example 1-4 in which the diameter of the pores 43 is changed in the first embodiment and Comparative Example 1 in which carbon dioxide is supplied through a tube will be described.
  • Example 1 the diameter of the pores 43 of the gas supply unit 40 is set to 0.5 mm in the carbon dioxide reduction device 1 of the first embodiment shown in FIG.
  • the oxidation electrode 11 was made of platinum (manufactured by Niraco) and installed in the oxidation tank 10 so that about 0.55 cm 2 of the surface area was immersed in the aqueous solution 12.
  • the aqueous solution 12 was a 1 mol / l sodium hydroxide aqueous solution.
  • a copper plate (manufactured by Niraco) was cut into 2cm x 3cm, and the surface was washed with pure water and dried. The reduction electrode 21 was installed so that all of the copper plate was immersed in the aqueous solution 22.
  • the aqueous solution 22 was a 0.5 mol / l potassium hydrogen carbonate aqueous solution.
  • the proton exchange membrane 30 was Nafion (registered trademark).
  • the diameter of the pores 43 of the bubble generating part 42 is 0.5 mm.
  • Carbon dioxide was supplied to the reduction tank 20 at a flow rate of 20 ml / min and a pressure of 0.18 MPa.
  • the gas in the oxidation tank 10 and the reduction tank 20 was collected at an arbitrary time when voltage was applied, and the reaction product was analyzed with a gas chromatograph. It was confirmed that oxygen was generated in the oxidation tank 10. In the reduction tank 20, it confirmed that hydrogen, carbon monoxide, methane, and ethylene were producing
  • Example 2 is different from Example 1 in that the diameter of the pores 43 is 1.0 mm. Other points are the same as those in the first embodiment.
  • Example 3 is different from Example 1 in that the diameter of the pores 43 is 3.0 mm. Other points are the same as those in the first embodiment.
  • Example 4 is different from Example 1 in that the diameter of the pores 43 is 5.0 mm. Other points are the same as those in the first embodiment.
  • FIG. 4 is a schematic configuration diagram illustrating a configuration of the carbon dioxide reduction device 100 of the first comparative example.
  • the supply method of carbon dioxide is different from that of Example 1-4.
  • the carbon dioxide reduction device 100 of Comparative Example 1 is different from that of Example 1-4 in that the gas supply unit 40 is not provided and carbon dioxide is supplied to the vicinity of the bottom of the reduction tank 20 by the tube 70.
  • the other points are the same as those in Example 1-4.
  • Example 1-4 and Comparative Example 1 Evaluation results of Example 1-4 and Comparative Example 1.
  • the carbon dioxide reduction efficiency was improved as compared with Comparative Example 1.
  • Table 1 shows the Faraday efficiencies of hydrogen generation by proton reduction and substance generation by carbon dioxide reduction in Examples 1-4 and Comparative Example 1, respectively.
  • the Faraday efficiency indicates the ratio of the current value used for the reduction reaction to the current value flowing through the conductor when a voltage is applied.
  • Example 1-4 From Table 1, it can be seen that in Example 1-4 relative to Comparative Example 1, the Faraday efficiency of substance generation by carbon dioxide reduction was improved and the Faraday efficiency of hydrogen generation by proton reduction was reduced. This indicates that the efficiency of the reduction reaction of carbon dioxide is improved on the surface of the reduction electrode rather than protons.
  • Example 1-4 From the results of Example 1-4, there is no significant difference in Faraday efficiency when the pore diameter is 3.0 mm or less, but no significant improvement is observed in the Faraday efficiency when the pore diameter is 5.0 mm. From this, it was shown that the pore diameter is preferably 3.0 mm or less. When the pore diameter is 3.0 mm or less, the area where the gas is in contact with the aqueous solution increases as the size of the bubbles decreases, and in addition to the carbon dioxide being easily dissolved, the carbon dioxide is uniformly dissolved with respect to the reducing electrode. The reason is that we were able to supply carbon.
  • Example 1 with a pore diameter of 0.5 mm has a lower Faraday effect than Example 2 with a pore diameter of 1.0 mm. This is considered to be because carbon dioxide is difficult to pass through the pores and the supply amount is reduced.
  • Example 5-8 in which the diameter of the pores 43 is changed in the second embodiment and Comparative Example 2 in which carbon dioxide is supplied through a tube will be described.
  • Example 5 In Example 5, the diameter of the pores 43 of the gas supply unit 40 is set to 0.5 mm in the carbon dioxide reduction device 1 of the second embodiment shown in FIG.
  • oxidation electrode 11 As the oxidation electrode 11, a substrate in which a GaN thin film of n-type semiconductor was grown on a sapphire substrate and NiO was applied as an oxidation promoter thin film thereon was used.
  • the oxidation electrode 11 was installed in the oxidation tank 10 so as to be immersed in the aqueous solution 12.
  • the aqueous solution 12 was a 1 mol / l sodium hydroxide aqueous solution.
  • a copper plate (manufactured by Niraco) was cut into 2cm x 3cm, and the surface was washed with pure water and dried. The reduction electrode 21 was installed so that all of the copper plate was immersed in the aqueous solution 22.
  • the aqueous solution 22 was a 0.5 mol / l potassium hydrogen carbonate aqueous solution.
  • the proton exchange membrane 30 was Nafion (registered trademark).
  • a 300 W high-pressure xenon lamp (wavelength of 450 nm or more cut, illuminance of 2.2 mW / cm 2 ) is used to irradiate the surface of the oxidation electrode 11 on which the oxidation promoter catalyst is formed. Fixed. The light irradiation area of the oxidation electrode was 1.0 cm 2 .
  • the diameter of the pores 43 of the bubble generating part 42 is 0.5 mm.
  • Carbon dioxide was supplied to the reduction tank 20 at a flow rate of 20 ml / min and a pressure of 0.18 MPa.
  • the light source 60 was used to uniformly irradiate the oxidation electrode 11 with light.
  • the gas in the oxidation tank 10 and the reduction tank 20 was collected and the reaction product was analyzed by a gas chromatograph. It was confirmed that oxygen was generated in the oxidation tank 10. In the reduction tank 20, it confirmed that hydrogen, carbon monoxide, methane, and ethylene were producing
  • Example 6 is different from Example 5 in that the diameter of the pores 43 is 1.0 mm. The other points are the same as in the fifth embodiment.
  • Example 7 is different from Example 5 in that the diameter of the pores 43 is 3.0 mm. The other points are the same as in the fifth embodiment.
  • Example 8 is different from Example 5 in that the diameter of the pores 43 is 5.0 mm.
  • the other points are the same as in the fifth embodiment.
  • FIG. 5 is a schematic configuration diagram illustrating the configuration of the carbon dioxide reduction device 100 of the second comparative example.
  • the supply method of carbon dioxide is different from that of Example 5-8.
  • the carbon dioxide reduction device 100 of Comparative Example 2 differs from the Example 5-8 in that the carbon supply is not provided with the gas supply unit 40 and carbon dioxide is supplied to the vicinity of the bottom of the reduction tank 20 by the tube 70.
  • the other points are the same as those of Example 5-8.
  • Example 5-8 Evaluation results of Example 5-8 and Comparative Example 2
  • the carbon dioxide reduction efficiency was improved as compared with Comparative Example 2.
  • Table 2 below shows the Faraday efficiencies of hydrogen production by proton reduction and substance production by carbon dioxide reduction in Examples 5-8 and Comparative Example 2, respectively.
  • Example 5-8 compared to Comparative Example 2, the Faraday efficiency of substance generation by carbon dioxide reduction was improved and the Faraday efficiency of hydrogen generation by proton reduction was reduced. This indicates that the efficiency of the reduction reaction of carbon dioxide is improved on the surface of the reduction electrode rather than protons.
  • Example 1-4 Regarding the effect due to the difference in pore diameter, the same tendency as in Example 1-4 is observed.
  • the gas supply unit 40 having the plurality of pores 43 is provided in the lower portion of the reduction tank 20, and carbon dioxide is supplied as bubbles into the aqueous solution 22. Since the concentration of carbon dioxide dissolved in the aqueous solution 22 can be increased and the concentration in the aqueous solution 22 can be made uniform without stirring the aqueous solution 22 using, the efficiency of the reduction reaction of carbon dioxide in the reduction electrode 21 is improved. It becomes possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

二酸化炭素還元反応の効率の向上を実現する。還元槽20の下部に複数の細孔43を有する気体供給部40を設け、二酸化炭素を水溶液22中に気泡として供給する。これにより、撹拌子を用いて水溶液22を撹拌することなく、水溶液22に溶解する二酸化炭素濃度を高め、水溶液22内の濃度を均一にすることができるので、還元電極21における二酸化炭素の還元反応の効率を向上させることが可能となる。

Description

二酸化炭素還元装置
 本発明は、電気または光エネルギーにより二酸化炭素を還元する技術に関する
 従来の二酸化炭素還元装置は、水溶液中に酸化電極を浸漬した酸化槽と水溶液中に還元電極を浸漬した還元槽がプロトン交換膜を介して接続され、還元槽にチューブから二酸化炭素が常時供給される構成である。電極間に電源を接続して電気エネルギーを供給する、もしくは、電極間を電気的に接続し酸化電極に光を照射して光エネルギーを供給することにより、各電極で反応が進行する。酸化電極で水の酸化反応により生成したプロトンはプロトン交換膜を介して還元槽に輸送される。還元電極では、プロトンの還元反応により水素が生成され、二酸化炭素の還元反応により一酸化炭素、メタン、エチレン、メタノール、エタノール、及びギ酸などが生成される。
Y. Hori, et al., "Formation of Hydrocarbons in the Electrochemical Reduction of Carbon Dioxide at a Copper Electrode in Aqueous Solution", Journal of the Chemical Society, 1989, 85(8), 2309-2326 H. Zhong, et al., "Effect of KHCO3 Concentration on Electrochemical Reduction of CO2 on Copper Electrode", Journal of The Electrochemical Society, 2017, 164(9), F923-F927 S. Yotsuhashi, et al., "CO2 Conversion with Light and Water by GaN Photoelectrode", Japanese Journal of Applied Physics 51, 2012, 02BP07. H. Hashiba, et al., "Selectivity Control of CO2 Reduction in an Inorganic Artificial Photosynthesis System", Applied Physics Express 6, 2013, 097102
 二酸化炭素の還元反応の効率を向上させるためには、高濃度な二酸化炭素を均一に還元電極表面に供給する必要がある。従来のチューブによる供給では二酸化炭素を均一に還元電極に接触させることが難しいという問題があった。攪拌子などを用いて還元槽内の溶液を攪拌して二酸化炭素の気泡を均一に分散させることも考えられるが、攪拌子を駆動するために電力を消費し、コスト、環境負荷が大きくなるという問題がある。
 本発明は、上記に鑑みてなされたものであり、二酸化炭素還元反応の効率の向上を実現することを目的とする。
 本発明に係る二酸化炭素還元装置は、酸化電極と還元電極との間に電流を流して前記還元電極において還元反応を生じさせる二酸化炭素還元装置であって、水溶液中に前記酸化電極を浸漬して配置するための酸化槽と、水溶液中に前記還元電極を浸漬して配置するための還元槽と、前記酸化槽と前記還元槽との間に配置されたプロトン交換膜と、前記還元槽の下部に配置され、二酸化炭素を水溶液中に気泡として供給するための複数の細孔を有する二酸化炭素供給部と、を備えることを特徴とする。
 本発明によれば、二酸化炭素還元反応の効率の向上を実現することができる。
第1の実施形態の二酸化炭素還元装置の構成を示す概略構成図である。 気体供給部の構成を示す斜視図である。 第2の実施形態の二酸化炭素還元装置の構成を示す概略構成図である。 比較例1の二酸化炭素還元装置の構成を示す概略構成図である。 比較例2の二酸化炭素還元装置の構成を示す概略構成図である。
 以下、本発明の実施の形態について図面を用いて説明する。本発明は以下の実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲内において変更を加えても構わない。
 [第1の実施形態]
 図1は、第1の実施形態の二酸化炭素還元装置の構成を示す概略構成図である。
 本実施形態の二酸化炭素還元装置1は、酸化槽10、還元槽20、酸化槽10と還元槽20との間でプロトンの移動を可能にするプロトン交換膜30、還元槽20の底面に配置され、二酸化炭素を供給する気体供給部40、および酸化電極11と還元電極21との間に電流を流す電源50を備える。
 酸化槽10に水溶液12が入れられて、水溶液12に酸化電極11が浸漬される。酸化電極11は、導線51により電源50に電気的に接続される。酸化電極11は、例えば、白金、金、銀、銅、インジウム、及びニッケルを用いることができる。水溶液12は、例えば、水酸化ナトリウム水溶液、塩化カリウム水溶液、及び塩化ナトリウム水溶液を用いることができる。
 還元槽20に水溶液22が入れられて、水溶液22に還元電極21が浸漬される。還元電極21は、導線51により電源50に電気的に接続される。還元電極21は板状の金属であり、例えば、銅、金、白金、銀、パラジウム、ガリウム、インジウム、ニッケル、スズ、及びカドニウムを用いることができる。還元電極21は、反応面を気体供給部40に対向させて配置される。還元電極21は、金網、あるいは導電性基板に粒子状の金属粒子を塗布した電極基板であってもよい。水溶液22は、例えば、炭酸水素カリウム水溶液、塩化カリウム水溶液、及び水酸化ナトリウム水溶液を用いることができる。
 プロトン交換膜30は、例えば、ナフィオン(登録商標)を用いることができる。ナフィオンは、炭素-フッ素からなる疎水性テフロン骨格とスルホン酸基を持つパーフルオロ側鎖から構成されるパーフルオロカーボン材料である。
 気体供給部40は、還元槽20の底から面状に二酸化炭素の気泡を供給する。図2に示すように、気体供給部40は、気体導入部41および気泡生成部42で構成される。気体導入部41は、中が空洞であり、配管から気体を送り込むことができる。気泡生成部42は、筒状の細孔43を多数備えた直方体の板であり、気体導入部41の上面として配置される。細孔43が還元槽20の下面に対して占める割合である被覆率は20%である。被覆率が10%から90%となるように細孔43を形成してもよい。細孔43の直径は、0.5mmから5.0mm程度まで任意に設定できる。
 気体導入部41に気体を送り込むと、気体が気泡生成部42の細孔43を通り、水溶液22中に気泡となって放出される。本実施形態の二酸化炭素還元装置1は、面状に二酸化炭素の細かい気泡を供給する気体供給部40を備えることにより、水溶液22に溶解する二酸化炭素濃度を高めることができるとともに、水溶液22内での二酸化炭素の濃度を均一にすることができる。
 電源50は、電圧を印加し、酸化電極11と還元電極21との間に電流を流す。
 電圧が印加されると、酸化槽10では水の酸化反応(2H2O → O2+4H++4e-)により酸素が生成される。還元槽20ではプロトンの還元反応(2H++2e- → H2)により水素が生成されるとともに、二酸化炭素の還元反応により一酸化炭素、メタン、エチレン等が生成される。
 還元槽20に供給する二酸化炭素を他の気体に変えることで、例えば、プロトン還元による水素生成および窒素の還元反応によるアンモニアの生成も可能である。
 [第2の実施形態]
 図3は、第2の実施形態の二酸化炭素還元装置の構成を示す概略構成図である。
 本実施形態の二酸化炭素還元装置1は、酸化槽10、還元槽20、酸化槽10と還元槽20との間でプロトンの移動を可能にするプロトン交換膜30、還元槽20の底面に配置され、二酸化炭素を供給する気体供給部40、および光源60を備える。第2の実施形態の二酸化炭素還元装置1は、第1の実施形態と比較して、酸化電極11に光照射により化学反応を引き起こす光触媒を用い、電源50の代わりに光源60を備えた点で相違する。
 酸化槽10に水溶液12が入れられて、水溶液12に酸化電極11が浸漬される。酸化電極11は、例えば、窒化物半導体、酸化チタン、アモルファスシリコン、ルテニウム錯体、レニウム錯体のような光活性やレドックス活性を示す化合物を用いることができる。水溶液12は、例えば、水酸化ナトリウム水溶液、塩化カリウム水溶液、及び塩化ナトリウム水溶液を用いることができる。
 還元槽20に水溶液22が入れられて、水溶液22に還元電極21が浸漬される。酸化電極11と還元電極21は、導線51により電気的に接続される。還元電極21は板状であり、例えば、銅、金、白金、インジウム、酸化タングステン(VI)、酸化銅(II)、金属イオンとアニオン性配位子を有する多孔性金属錯体を用いることができる。還元電極21は、広い面を気体供給部40に対向させて配置される。還元電極21は、金網、あるいは導電性基板に粒子状の金属粒子を塗布した電極基板であってもよい。水溶液22は、例えば、炭酸水素カリウム水溶液、塩化カリウム水溶液、及び水酸化ナトリウム水溶液を用いることができる。
 プロトン交換膜30は、第1の実施形態と同様に、ナフィオン(登録商標)を用いることができる。
 気体供給部40は、第1の実施形態と同じものを用いる。
 光源60は、酸化電極11の反応面に対向して配置され、酸化電極11に対して光を照射する。光源60は、例えば、キセノンランプ、擬似太陽光源、ハロゲンランプ、水銀ランプ、及び太陽光を用いることができる。光源60は、上記のものを組み合わせて用いてもよい。
 酸化電極11に光が照射されると、酸化電極11と還元電極21との間に電流が流れ、酸化槽10では水の酸化反応により酸素が生成される。還元槽20ではプロトンの還元反応により水素が生成されるとともに、二酸化炭素の還元反応により一酸化炭素、メタン、エチレン等が生成される。
 [実施例と評価結果]
 次に、第1、第2の実施形態の二酸化炭素還元装置1のそれぞれについて、気体供給部40の細孔43の直径を変えた実施例とチューブにより二酸化炭素を供給する比較例について説明する。まず、第1の実施形態において細孔43の直径を変えた実施例1-4とチューブにより二酸化炭素を供給する比較例1について説明する。
 (実施例1)
 実施例1は、図1に示した第1の実施形態の二酸化炭素還元装置1において、気体供給部40の細孔43の直径を0.5mmとしたものである。
 酸化電極11には、白金(ニラコ製)を用い、表面積の約0.55cm2が水溶液12に浸水するように酸化槽10に設置した。
 水溶液12は、1mol/lの水酸化ナトリウム水溶液とした。
 還元電極21には、銅板(ニラコ製)を2cm×3cmに切断し、表面を純水で洗浄し乾燥させたものを用いた。銅板の全てが水溶液22に浸水するように還元電極21を設置した。
 水溶液22は、0.5mol/lの炭酸水素カリウム水溶液とした。
 プロトン交換膜30はナフィオン(登録商標)を用いた。
 気泡生成部42の細孔43の直径は0.5mmである。
 還元槽20に対しては二酸化炭素を流量20ml/minかつ圧力0.18MPaで供給した。
 酸化槽10にヘリウムを還元槽20に二酸化炭素を供給して十分に置換した後、電源50により2.2Vの電圧を印加して酸化電極11と還元電極21の間に電流を流した。
 電圧印加時の任意の時間に、酸化槽10および還元槽20内のガスを採取してガスクロマトグラフにて反応生成物を分析した。酸化槽10内では酸素が生成していることを確認した。還元槽20内では、水素、一酸化炭素、メタン、及びエチレンが生成していることを確認した。
 (実施例2)
 実施例2は、実施例1と比較して、細孔43の直径が1.0mmである点で異なる。その他の点は、実施例1と同じである。
 (実施例3)
 実施例3は、実施例1と比較して、細孔43の直径が3.0mmである点で異なる。その他の点は、実施例1と同じである。
 (実施例4)
 実施例4は、実施例1と比較して、細孔43の直径が5.0mmである点で異なる。その他の点は、実施例1と同じである。
 (比較例1)
 図4は、比較例1の二酸化炭素還元装置100の構成を示す概略構成図である。実施例1-4とは、二酸化炭素の供給方法が異なる。比較例1の二酸化炭素還元装置100は、実施例1-4と比較して、気体供給部40を備えず、チューブ70により二酸化炭素を還元槽20の底付近に供給した点で異なる。その他の点は、実施例1-4と同じである。
 (実施例1-4と比較例1の評価結果)
 実施例1-4における、電圧印加時の還元反応生成物を測定すると、比較例1と比較して二酸化炭素還元の効率が向上した。次表1に、実施例1-4および比較例1のプロトン還元による水素生成および二酸化炭素還元による物質生成のファラデー効率をそれぞれ示す。ファラデー効率とは、電圧印加時に導線に流れた電流値に対して、還元反応に使われた電流値の割合を示すものである。
Figure JPOXMLDOC01-appb-T000001
 表1から、比較例1に対して実施例1-4では、二酸化炭素還元による物質生成のファラデー効率が向上し、プロトン還元による水素生成のファラデー効率は低下したことが分かる。これは、還元電極表面において、プロトンよりも二酸化炭素の還元反応の効率が向上したことを示している。
 実施例1-4の結果から、細孔径3.0mm以下の場合にはファラデー効率に大きな違いは見られないが、細孔径5.0mmの場合にはファラデー効率に大きな向上が見られない。このことから、細孔径は3.0mm以下が好ましいことが示された。細孔径3.0mm以下の場合は、気泡の大きさが小さくなると水溶液に気体が接触している面積が増加し、二酸化炭素が溶けやすくなったことに加えて、還元電極に対して均一に二酸化炭素を供給することができたことが要因と考えられる。
 細孔径0.5mmの実施例1は、細孔径1.0mmの実施例2よりもファラデー効果が低下している。これは、二酸化炭素が細孔を通りにくくなり、供給量が減少したことが要因と考えられる。
 続いて、第2の実施形態において細孔43の直径を変えた実施例5-8とチューブにより二酸化炭素を供給する比較例2について説明する。
 (実施例5)
 実施例5は、図3に示した第2の実施形態の二酸化炭素還元装置1において、気体供給部40の細孔43の直径を0.5mmとしたものである。
 酸化電極11には、サファイア基板の上にn型の半導体であるGaNの薄膜を結晶成長させ、その上に酸化助触媒薄膜としてNiOを塗布した基板を用いた。水溶液12に浸水するように酸化電極11を酸化槽10に設置した。
 水溶液12は、は1mol/lの水酸化ナトリウム水溶液とした。
 還元電極21には、銅板(ニラコ製)を2cm×3cmに切断し、表面を純水で洗浄し乾燥させたものを用いた。銅板の全てが水溶液22に浸水するように還元電極21を設置した。
 水溶液22は、0.5mol/lの炭酸水素カリウム水溶液とした。
 プロトン交換膜30はナフィオン(登録商標)を用いた。
 光源60には、300Wの高圧キセノンランプ(波長450nm以上をカット、照度2.2mW/cm2)を用い、酸化電極11の半導体光電極の酸化助触媒が形成されている面を照射するように固定した。酸化電極の光照射面積を1.0cm2とした。
 気泡生成部42の細孔43の直径は0.5mmである。
 還元槽20に対しては二酸化炭素を流量20ml/minかつ圧力0.18MPaで供給した。
 酸化槽10および還元槽20を二酸化炭素およびヘリウムで十分に置換した後、光源60を用いて酸化電極11に均一に光を照射した。
 光照射時の任意の時間に、酸化槽10および還元槽20内のガスを採取してガスクロマトグラフにて反応生成物を分析した。酸化槽10内では酸素が生成していることを確認した。還元槽20内では、水素、一酸化炭素、メタン、及びエチレンが生成していることを確認した。
 (実施例6)
 実施例6は、実施例5と比較して、細孔43の直径が1.0mmである点で異なる。その他の点は、実施例5と同じである。
 (実施例7)
 実施例7は、実施例5と比較して、細孔43の直径が3.0mmである点で異なる。その他の点は、実施例5と同じである。
 (実施例8)
 実施例8は、実施例5と比較して、細孔43の直径が5.0mmである点で異なる。その他の点は、実施例5と同じである。
 (比較例2)
 図5は、比較例2の二酸化炭素還元装置100の構成を示す概略構成図である。実施例5-8とは、二酸化炭素の供給方法が異なる。比較例2の二酸化炭素還元装置100は、実施例5-8と比較して、気体供給部40を備えず、チューブ70により二酸化炭素を還元槽20の底付近に供給した点で異なる。その他の点は、実施例5-8と同じである。
 (実施例5-8と比較例2の評価結果)
 実施例5-8における、光照射時の還元反応生成物を測定すると、比較例2と比較して二酸化炭素還元の効率が向上した。次表2に、実施例5-8および比較例2のプロトン還元による水素生成および二酸化炭素還元による物質生成のファラデー効率をそれぞれ示す。
Figure JPOXMLDOC01-appb-T000002
 表2から、比較例2に対して実施例5-8では、二酸化炭素還元による物質生成のファラデー効率が向上し、プロトン還元による水素生成のファラデー効率は低下したことが分かる。これは、還元電極表面において、プロトンよりも二酸化炭素の還元反応の効率が向上したことを示している。
 細孔径の違いによる効果に関しても、実施例1-4と同様の傾向が見られる。
 以上説明したように、本実施の形態によれば、還元槽20の下部に複数の細孔43を有する気体供給部40を設け、二酸化炭素を水溶液22中に気泡として供給することにより、撹拌子を用いて水溶液22を撹拌することなく、水溶液22に溶解する二酸化炭素濃度を高め、水溶液22内の濃度を均一にすることができるので、還元電極21における二酸化炭素の還元反応の効率を向上させることが可能となる。
 本実施の形態によれば、還元電極21の反応面を複数の細孔43に対向させて配置することにより、還元電極21の反応面全体に対して二酸化炭素の気泡を高濃度で均一に供給でき、還元電極21における二酸化炭素の還元反応の効率を向上させることが可能となる。
 1…二酸化炭素還元装置
 10…酸化槽
 11…酸化電極
 12…水溶液
 20…還元槽
 21…還元電極
 22…水溶液
 30…プロトン交換膜
 40…気体供給部
 41…気体導入部
 42…気泡生成部
 43…細孔
 50…電源
 51…導線
 60…光源
 70…チューブ

Claims (4)

  1.  酸化電極と還元電極との間に電流を流して前記還元電極において還元反応を生じさせる二酸化炭素還元装置であって、
     水溶液中に前記酸化電極を浸漬して配置するための酸化槽と、
     水溶液中に前記還元電極を浸漬して配置するための還元槽と、
     前記酸化槽と前記還元槽との間に配置されたプロトン交換膜と、
     前記還元槽の下部に配置され、二酸化炭素を水溶液中に気泡として供給するための複数の細孔を有する気体供給部と、
     を備えることを特徴とする二酸化炭素還元装置。
  2.  前記気体供給部の前記複数の細孔を有する面は、前記還元槽の上方に向けて配置されており、
     前記還元電極は反応面が前記複数の細孔を有する面と対向するように配置されることを特徴とする請求項1に記載の二酸化炭素還元装置。
  3.  前記酸化電極と前記還元電極との間に電流を流す電源を備えることを特徴とする請求項1又は2に記載の二酸化炭素還元装置。
  4.  前記酸化電極は光の照射により触媒機能を発揮して酸化反応を生じるものであり、
     前記酸化電極の反応面に光を照射する光源を備えることを特徴とする請求項1又は2に記載の二酸化炭素還元装置。
PCT/JP2019/019633 2018-05-22 2019-05-17 二酸化炭素還元装置 WO2019225494A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/057,532 US20210197166A1 (en) 2018-05-22 2019-05-17 Carbon Dioxide Reduction Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-098089 2018-05-22
JP2018098089A JP6997376B2 (ja) 2018-05-22 2018-05-22 二酸化炭素還元装置

Publications (1)

Publication Number Publication Date
WO2019225494A1 true WO2019225494A1 (ja) 2019-11-28

Family

ID=68615748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019633 WO2019225494A1 (ja) 2018-05-22 2019-05-17 二酸化炭素還元装置

Country Status (3)

Country Link
US (1) US20210197166A1 (ja)
JP (1) JP6997376B2 (ja)
WO (1) WO2019225494A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111801153B (zh) * 2018-03-08 2022-12-13 日立金属株式会社 浆料贮存搅拌装置
US11920248B2 (en) * 2018-12-18 2024-03-05 Prometheus Fuels, Inc Methods and systems for fuel production
US10590548B1 (en) * 2018-12-18 2020-03-17 Prometheus Fuels, Inc Methods and systems for fuel production
CN113957466B (zh) * 2021-11-08 2023-03-14 中国石油大学(华东) 光电催化反应用流动式电解池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5495508A (en) * 1977-12-05 1979-07-28 Rca Corp Storage of solar energy
WO2013117814A1 (en) * 2012-02-08 2013-08-15 Outotec Oyj Method of operating an electrolysis cell and cathode frame
WO2014034004A1 (ja) * 2012-08-27 2014-03-06 パナソニック株式会社 二酸化炭素還元用光化学電極、および該光化学電極を用いて二酸化炭素を還元する方法
WO2015146014A1 (ja) * 2014-03-24 2015-10-01 株式会社 東芝 光電気化学反応システム
JP2017155336A (ja) * 2016-02-29 2017-09-07 株式会社東芝 電気化学反応装置および電気化学反応方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9339764B2 (en) * 2012-03-12 2016-05-17 Uchicago Argonne, Llc Internal gas and liquid distributor for electrodeionization device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5495508A (en) * 1977-12-05 1979-07-28 Rca Corp Storage of solar energy
WO2013117814A1 (en) * 2012-02-08 2013-08-15 Outotec Oyj Method of operating an electrolysis cell and cathode frame
WO2014034004A1 (ja) * 2012-08-27 2014-03-06 パナソニック株式会社 二酸化炭素還元用光化学電極、および該光化学電極を用いて二酸化炭素を還元する方法
WO2015146014A1 (ja) * 2014-03-24 2015-10-01 株式会社 東芝 光電気化学反応システム
JP2017155336A (ja) * 2016-02-29 2017-09-07 株式会社東芝 電気化学反応装置および電気化学反応方法

Also Published As

Publication number Publication date
US20210197166A1 (en) 2021-07-01
JP6997376B2 (ja) 2022-01-17
JP2019203164A (ja) 2019-11-28

Similar Documents

Publication Publication Date Title
WO2019225494A1 (ja) 二酸化炭素還元装置
JP7121318B2 (ja) 二酸化炭素の気相還元装置及び二酸化炭素の気相還元方法
US20130092549A1 (en) Proton exchange membrane electrolysis using water vapor as a feedstock
CN107841760B (zh) 电化学还原co2制碳氢化合物的气体扩散电极制备方法
JP7325082B2 (ja) 二酸化炭素還元装置及び二酸化炭素還元方法
KR20190077531A (ko) 유기 하이드라이드 제조장치 및 유기 하이드라이드의 제조방법
Gao et al. Fabrication of Cu (1 0 0) facet-enhanced ionic liquid/copper hybrid catalysis via one-step electro-codeposition for CO2ER toward C2
Sun et al. Superaerophobic CoP nanowire arrays as a highly effective anode electrocatalyst for direct hydrazine fuel cells
WO2019225495A1 (ja) 電解還元装置及び電解還元方法
JP7316085B2 (ja) 二酸化炭素の還元体回収システムおよび該システムを用いた有用炭素資源の製造方法
Liang et al. Core–Shell Structured Cu (OH) 2@ NiFe (OH) x Nanotube Electrocatalysts for Methanol Oxidation Based Hydrogen Evolution
JP2018090838A (ja) 二酸化炭素還元装置
Park et al. Heterostructured nanocatalysts to boost the hydrogen evolution reaction in neutral electrolyte
JP2019535897A (ja) 光電気的水分解による水素製造用微小電極光ファイバ、光ケーブル、および水素製造装置
WO2023084683A1 (ja) 電解質膜
He et al. Grain boundary and interface interaction of metal (copper/indium) oxides to boost efficient electrocatalytic carbon dioxide reduction into syngas
WO2021234908A1 (ja) 二酸化炭素の気相還元装置、および、多孔質電極支持型電解質膜の製造方法
JP2017020094A (ja) 反応処理方法および装置
Karimi et al. Performance Characteristics of Polymer Electrolyte Membrane CO2 Electrolyzer: Effect of CO2 Dilution, Flow Rate and Pressure
WO2023095193A1 (ja) 多孔質電極支持型電解質膜および多孔質電極支持型電解質膜の製造方法
KR20210066448A (ko) 이산화탄소 환원용 전극 제조방법 및 이에 의해 제조된 이산화탄소 환원용 전극을 포함하는 이산화탄소 환원 장치
WO2023095201A1 (ja) 多孔質電極支持型電解質膜および多孔質電極支持型電解質膜の製造方法
JP7207672B1 (ja) 蟻酸生成装置
WO2022249276A1 (ja) 二酸化炭素の気相還元装置および二酸化炭素の気相還元方法
Muroyama et al. Performance Enhancement of a Membrane Electrochemical Cell for CO2 Capture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19806539

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19806539

Country of ref document: EP

Kind code of ref document: A1