WO2021229639A1 - 偏波分離回路 - Google Patents
偏波分離回路 Download PDFInfo
- Publication number
- WO2021229639A1 WO2021229639A1 PCT/JP2020/018818 JP2020018818W WO2021229639A1 WO 2021229639 A1 WO2021229639 A1 WO 2021229639A1 JP 2020018818 W JP2020018818 W JP 2020018818W WO 2021229639 A1 WO2021229639 A1 WO 2021229639A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ridge
- separation circuit
- polarization separation
- inner cylinder
- waveguide
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/16—Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion
- H01P1/161—Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion sustaining two independent orthogonal modes, e.g. orthomode transducer
Definitions
- This disclosure relates to a polarization separation circuit.
- the polarization separation circuit is used as a feeding circuit for an antenna that uses a signal consisting of two polarized waves that are orthogonal in a plurality of frequency bands.
- Some polarization separation circuits have a multi-cylindrical structure capable of separating and transmitting signals in a plurality of frequency bands.
- the inner cylinder provided inside is a cylindrical waveguide, and signals are transmitted from the inside of the inner cylinder, and the inside of the cylindrical coaxial waveguide including the outer cylinder outside the inner cylinder. A signal is transmitted between the cylinder and the outer cylinder.
- the polarization separation circuit having a double-cylindrical structure is outside due to the relationship between the respective cylinder diameters of the cylindrical waveguide and the cylindrical coaxial waveguide and the cutoff frequency.
- Low frequency band signals are transmitted in a cylindrical coaxial waveguide.
- the polarization separation circuit having a multi-cylindrical structure separates and outputs a signal consisting of two polarizations orthogonal to each other in the low frequency band transmitted between the outer cylinder and the inner cylinder of the cylindrical coaxial waveguide. It is necessary to provide a rectangular branch waveguide for this purpose.
- the polarization separation circuit described in Non-Patent Document 1 has a problem that a structure in which good characteristics can be obtained in a wide band by matching between a cylindrical coaxial waveguide and a branched waveguide is not considered. rice field.
- the present disclosure solves the above-mentioned problems, and an object thereof is to obtain a polarization separation circuit capable of obtaining good characteristics in a wide band.
- a cylindrical coaxial waveguide a plurality of rectangular waveguides, a first ridge provided for each rectangular waveguide between an outer cylinder and an inner cylinder, and a rectangular waveguide.
- a second ridge provided for each first ridge inside, a connecting portion for continuously connecting the first ridge and the second ridge, and a connecting portion between the outer cylinder and the inner cylinder.
- the rectangular waveguide is connected to the end of the cylindrical waveguide, which is provided between the guide portion provided in the above and the partition between the outer cylinder and the inner cylinder and partitions between the adjacent guide portions.
- the guide portion which has a narrow rectangular waveguide portion on the side of the guide and propagates the polarization from the cylindrical coaxial waveguide to the rectangular waveguide, faces the connection portion.
- FIG. It is a perspective perspective view which shows the schematic structure of the polarization separation circuit which concerns on Embodiment 1.
- FIG. It is a perspective side view which shows the polarization separation circuit of FIG. It is a perspective top view which shows the polarization separation circuit of FIG. It is a perspective view which shows the appearance of the polarization separation circuit of FIG. It is a perspective view which shows the inner cylinder, the partition and the guide part in the polarization separation circuit of FIG. It is a perspective view which shows the ridge in the polarization separation circuit of FIG. It is a partial side view which shows the outer cylinder, the inner cylinder, the rectangular waveguide, the ridge, and the guide part in the polarization separation circuit of FIG.
- FIG. 3 is a perspective view showing a modified example 1 of an inner cylinder, a partition, and a guide portion in the polarization separation circuit of FIG. 1. It is a partial side view which shows the outer cylinder, the inner cylinder, the rectangular waveguide and the ridge in the polarization separation circuit of FIG. 1, and the modification 1 of the guide part.
- FIG. 11 is a diagram schematically showing an electric field of a signal in each cross section shown by reference numerals D, E, F and G in FIG. It is a top view which shows the modification of the guide part and a partition in the polarization separation circuit of FIG. It is a top view which shows the modification 2 and the partition of the guide part in the polarization separation circuit of FIG.
- FIG. 3 is a partial side view showing an outer cylinder, an inner cylinder, a rectangular waveguide, a ridge, and a guide portion in the polarization separation circuit according to the second embodiment, and a position where signal reflection occurs.
- FIG. 1 It is a partial side view which shows the outer cylinder, the inner cylinder, the rectangular waveguide, the ridge and the guide part in the polarization separation circuit which concerns on Embodiment 3.
- FIG. 2 It is a partial side view which shows the outer cylinder, the inner cylinder, the rectangular waveguide, the ridge and the guide part in the polarization separation circuit which concerns on Embodiment 4.
- FIG. It is a figure which shows schematic the electric field of the signal in each cross section shown by the reference numeral H, I and J of FIG. It is a perspective top view which shows the polarization separation circuit which concerns on Embodiment 5. It is a perspective view which shows the appearance of the polarization separation circuit which concerns on Embodiment 6.
- the polarization separation circuit 1 has a common terminal 2 of a cylindrical coaxial waveguide, a rectangular waveguide branch terminal 2a to 2d, and a common of the cylindrical coaxial waveguide.
- a terminal 14 and a co-axis terminal 15 of a cylindrical coaxial waveguide are provided.
- the common terminal 2 of the cylindrical coaxial waveguide is a terminal to which a signal composed of two polarized waves orthogonal to each other in the low frequency band is input / output, and a horn antenna is connected to the common terminal 2.
- the common terminal 2 is a portion between the outer cylinder 3 and the inner cylinder 4 in the cylindrical coaxial waveguide composed of the outer cylinder 3 and the inner cylinder 4.
- the common terminal 14 of the cylindrical coaxial waveguide is a terminal to which a signal consisting of two polarized waves orthogonal to each other in the high frequency band is input / output, and a horn antenna is connected to the terminal.
- the common terminal 14 is the end of the inner cylinder 4 of the cylindrical coaxial waveguide.
- the co-axis terminal 15 of the cylindrical coaxial waveguide is a terminal to which a signal consisting of two polarized waves orthogonal to each other in the high frequency band is input / output, and is a polarization separation that separates the polarization of the signal in the high frequency band.
- the circuit is connected.
- the co-axis terminal 15 is the end of the cylindrical coaxial waveguide on the short-circuit end 12 side of the inner cylinder 4.
- the horn antenna which is connected to the common terminal 2 and the common terminal 14 of the cylindrical coaxial waveguide and functions in two frequency bands, the low frequency band and the high frequency band, and the co-axis terminal 15 of the cylindrical coaxial waveguide.
- a waveguide that is connected and separates the polarization of a high frequency band signal is omitted from the illustration and description.
- the rectangular waveguide branch terminals 2a to 2d are configured by the rectangular waveguide 5 and are connected to the end portion of the cylindrical coaxial waveguide on the short-circuit end 12 side.
- One end of the rectangular waveguide 5 is connected to a cylindrical coaxial waveguide, and this end is a narrow rectangular waveguide portion 6 and a wide rectangular waveguide via a step portion 7. It has a structure connected to the part.
- the ridge 8 is a first ridge provided between the outer cylinder 3 and the inner cylinder 4 along the longitudinal direction of the inner cylinder 4 for each rectangular waveguide 5.
- the ridge 9 is a second ridge provided inside the rectangular waveguide 5 for each ridge 8 along the longitudinal direction of the rectangular waveguide 5.
- the ridge 8 and the ridge 9 are continuously connected by the connecting portion 10.
- the partition 11 is provided between the outer cylinder 3 and the inner cylinder 4 and partitions between the adjacent guide portions 13. As shown in FIG. 2, one end surface of the cylindrical coaxial waveguide and the lower surface of the rectangular waveguide branch terminals 2a to 2d are short-circuit ends 12.
- the partition 11 is a member extending from the short-circuit end 12 between the outer cylinder 3 and the inner cylinder 4.
- the guide portion 13 is provided between the outer cylinder 3 and the inner cylinder 4 for each connection portion 10, and propagates the polarization from the cylindrical coaxial waveguide to the rectangular waveguide 5.
- the guide portion 13 is a member extending from the short-circuit end 12 between the outer cylinder 3 and the inner cylinder 4.
- FIG. 6 is a perspective view showing the ridge 8 and the ridge 9 in the polarization separation circuit 1.
- the ridge 8 is provided with a tapered portion 16 which is an inclined surface that descends toward the end portion
- the ridge 9 is provided with a tapered portion 17 which is an inclined surface that descends toward the end portion. Since the height of the tapered portion rises smoothly from the end and the electric field distribution changes smoothly, the taper portion has better characteristics (reflection characteristics or conversion characteristics) than a general ridge in which the height increases stepwise from the end. ) Is easy to obtain. Further, the ridge 8 and the ridge 9 are continuously connected by the connecting portion 10.
- the connecting portion 10 has a corner surface 18.
- FIG. 7 is a partial side view showing the outer cylinder 3, the inner cylinder 4, the rectangular waveguide 5, the ridge 8, the ridge 9, and the guide portion 13 in the polarization separation circuit 1.
- the cylindrical coaxial waveguide 19 includes an outer cylinder 3 and an inner cylinder 4.
- a rectangular waveguide 5 is provided at one end of the cylindrical coaxial waveguide 19.
- a narrow rectangular waveguide portion 6 is connected to one end of a cylindrical coaxial waveguide 19, and a portion on the tip side from the step portion 7 is a wide rectangular guide. It is a waveguide.
- the region 100a is a region where the inner cylinder 4 and the ridge 8 face each other in the cylindrical coaxial waveguide 19.
- the inner cylinder 4 and the surface of the ridge 8 on the inner cylinder 4 side are arranged in parallel.
- the region 100b is a region where the guide portion 13 and the corner surface 18 of the connecting portion 10 face each other.
- the surface of the guide portion 13 on the corner surface 18 side and the corner surface 18 are arranged in parallel.
- the region 100c is a region where the ridge 9 and the bottom surface 20 face each other in the rectangular waveguide 5.
- the bottom surface 20 and the surface of the ridge 9 on the bottom surface 20 side are arranged in parallel.
- FIG. 8 is a diagram schematically showing an electric field of a signal in each cross section shown by reference numerals A, B, and C in FIG. 7.
- the signal input to the common terminal 2 of the cylindrical coaxial waveguide forms the electric field distribution shown in the cross section A in the region 100a, the electric field distribution shown in the cross section B in the region 100b, and the electric field shown in the cross section C in the region 100c.
- Form a distribution As shown in FIG. 8, in the polarization separation circuit 1, the electric field distributions of the signals in the regions 100a, 100b and 100c are similar, and the guide portion 13 and the corner surface 18 are located between the inner cylinder 4 and the ridge 8.
- the influence of discontinuity between the space and between the ridge 9 and the bottom surface 20 of the rectangular waveguide 5 is small, and good characteristics can be obtained over a wide band.
- FIG. 9 is a partial side view showing the outer cylinder 3, the inner cylinder 4, the rectangular waveguide 5, the ridge 8, the ridge 9, and the guide portion 13 in the polarization separation circuit 1, and the position where the signal reflection occurs.
- the signal propagation path in the polarization separation circuit 1 is composed of regions (1) to (9).
- the region (1) is a region where the inner peripheral portion of the outer cylinder 3 and the outer peripheral portion of the inner cylinder 4 face each other.
- the region (2) is a region where the outer peripheral portion of the inner cylinder 4 and the tapered portion 16 of the ridge 8 face each other.
- the regions (3) and (4) are regions in which the outer peripheral portion of the inner cylinder 4 and the portion of the ridge 8 having a uniform height face each other.
- signal reflection ⁇ 1 occurs at the connection between the region (1) and the region (2), and similarly, the region (2) and the region (3).
- a signal reflection ⁇ 2 occurs at the connection portion with the region (3), and a signal reflection ⁇ 3 occurs at the connection portion between the region (3) and the region (4).
- a signal reflection ⁇ 4 occurs at the connection between the region (4) and the region (5), a signal reflection ⁇ 5 occurs at the connection between the region (5) and the region (6), and the region (6) and the region (7) ),
- a signal reflection ⁇ 6 occurs.
- a signal reflection ⁇ 7 occurs at the connection between the region (7) and the region (8), and a signal reflection ⁇ 8 occurs at the connection between the region (8) and the region (9).
- the polarization separation circuit 1 can obtain good characteristics over a wide band.
- the tapered portion also reflects only at the end portion, the tapered portion can be similarly obtained with good characteristics even if it is considered that the reflection occurs in a minute region.
- first structure shown in FIG. 4 composed of the outer cylinder 3 and the plurality of rectangular waveguides 5 connected to the ends thereof, and the inner cylinder 4 and its outer periphery shown in FIG. 5 are connected.
- the second structure composed of the partition 11 and the guide portion 13 and the third structure, which is the ridge 8 and the ridge 9 connected to each other by the connecting portion 10, shown in FIG. 6 are manufactured separately. Will be done.
- a notch for inserting a third structure in which the ridge 8 and the ridge 9 are continuously connected is formed on the outer peripheral portion of the outer cylinder 3 and the upper surface of the rectangular waveguide 5.
- the polarization separation circuit 1 inserts the second structure into the outer cylinder 3 in the first structure, and then cuts in the outer peripheral portion of the outer cylinder 3 in the first structure and the upper surface of the rectangular waveguide 5. It is assembled by inserting a third structure into the portion. As a result, the polarization separation circuit 1 can be easily assembled.
- FIG. 10 is a perspective view showing the inner cylinder 4 and the partition 11 in the polarization separation circuit 1 and the guide portion 13A which is a modification 1 of the guide portion 13.
- the guide portion 13A has a shape in which the width increases toward the short-circuit end 12 of the cylindrical coaxial waveguide. That is, as shown in FIG. 10, the surface of the guide portion 13A opposite to the inner cylinder 4 has a width widening toward the short-circuit end 12. As a result, the electric field distribution changes smoothly, so that good characteristics can be easily obtained.
- FIG. 12 is a diagram schematically showing the electric field of the signal in each cross section shown by the reference numerals D, E, F and G in FIG.
- the signal forms the electric field distribution shown in the cross section D in the region 100a, forms the electric field distribution shown in the cross section E and the cross section F in the region 100b, and forms the electric field distribution shown in the cross section G in the region 100c.
- the electric field distribution changes stepwise as shown in the cross sections D, E, F and G.
- the influence of discontinuity between the inner cylinder 4 and the ridge 8, between the guide portion 13A and the corner surface 18, and between the ridge 9 and the bottom surface 20 of the rectangular waveguide 5 is further reduced. Good characteristics can be obtained over a wide band.
- FIG. 13 is a top view showing the guide portion 13A in the polarization separation circuit 1 and the partition 11A which is a modification of the partition 11.
- the partition 11A is arranged in contact with both side surfaces of the guide portion 13A.
- the position of the guide portion 13A is fixed, and the distance between the guide portion 13A and the corner surface 18 can be maintained with high accuracy.
- the partition 11A is in contact with both side surfaces of the guide portion 13, there is no gap between the partition 11A and the guide portion 13, and it is not necessary to control the gap, which facilitates manufacturing.
- FIG. 14 is a top view showing a guide portion 13B and a partition 11A, which is a modification 2 of the guide portion 13 in the polarization separation circuit 1.
- the guide portion 13B has a curved inclined surface. Since the inclined surface of the guide portion 13B is curved, even if the position of the connecting portion 10 is slightly displaced, the change in the length of the portion of the inclined surface of the guide portion 13B facing the corner surface 18 is reduced, and the guide portion 13B is discontinuous. The sex is reduced.
- the polarization separation circuit 1 has a rectangular waveguide between a cylindrical coaxial waveguide 19, four rectangular waveguides 5, an outer cylinder 3 and an inner cylinder 4.
- a ridge 8 provided for each tube 5, a ridge 9 provided for each ridge 8 inside a rectangular waveguide 5, a connecting portion 10 for continuously connecting the ridge 8 and the ridge 9, and an outer cylinder 3
- a guide portion 13 provided for each connection portion 10 between the inner cylinder 4 and the guide portion 13 for propagating the polarization from the cylindrical coaxial waveguide 19 to the rectangular waveguide 5, and between the outer cylinder 3 and the inner cylinder 4. It is provided with a partition 11 for partitioning between adjacent guide portions 13.
- the rectangular waveguide 5 has a narrow rectangular waveguide portion 6 on the side connected to the end of the cylindrical coaxial waveguide 19, and the guide portion 13 faces the connecting portion 10.
- the guide portion 13A has a shape in which the width becomes wider toward the short-circuit end 12 of the cylindrical coaxial waveguide 19. Since the influence of the discontinuity between the guide portion 13A and the connection portion 10 is further reduced and the electric field distribution changes smoothly, it is easy to obtain good characteristics over a wide band.
- the guide portion 13 and the partition 11A are in contact with each other.
- the position of the guide portion 13A is fixed, and the distance between the guide portion 13A and the corner surface 18 can be maintained with high accuracy.
- the ridge 8 has a tapered portion 16 and the ridge 9 has a tapered portion 17.
- the influence of discontinuity between the outer peripheral portion of the inner cylinder 4 and the ridge 8 and between the bottom surface 20 of the rectangular waveguide 5 and the ridge 9 is reduced, and the electric field distribution changes smoothly, so that good characteristics can be obtained. It will be easier.
- the ridge 8 and the ridge 9 are formed symmetrically with respect to the connection portion 10. Since the reflection of the signal is canceled in the transmission path, good characteristics can be obtained in a wide band.
- FIG. 15 shows the outer cylinder 3, the inner cylinder 4, the rectangular waveguide 5, the ridge 8A, the ridge 9A, the guide portion 13, and the signal reflection generation position in the polarization separation circuit 1B according to the second embodiment. It is a partial side view shown.
- the ridge 8A is not provided with the tapered portion 16 and is shortened by that amount.
- the ridge 9A is not provided with the tapered portion 17, and is shortened by that amount.
- the signal propagation path in the polarization separation circuit 1B is composed of regions (1a) to (7a).
- the region (1a) is a region where the inner peripheral portion of the outer cylinder 3 and the outer peripheral portion of the inner cylinder 4 face each other.
- the regions (2a) and (3a) are regions where the outer peripheral portion of the inner cylinder 4 and the ridge 8A having a uniform height face each other.
- the region (4a) is a region where the guide portion 13 and the corner surface 18 of the connecting portion 10 face each other.
- the regions (5a) and (6a) are regions where the ridge 9A having a uniform height and the bottom surface 20 of the rectangular waveguide 5 face each other.
- the region (7a) is a region where the ceiling surface and the bottom surface 20 of the rectangular waveguide 5 face each other.
- signal reflection ⁇ 1 occurs at the connection between the region (1a) and the region (2a), and similarly, the region (2a) and the region (3a).
- a signal reflection ⁇ 2 occurs at the connection portion with the region (3a)
- a signal reflection ⁇ 3 occurs at the connection portion between the region (3a) and the region (4a).
- Signal reflection ⁇ 4 occurs at the connection between the region (4a) and the region (5a)
- signal reflection ⁇ 5 occurs at the connection between the region (5a) and the region (6a)
- a signal reflection ⁇ 6 occurs.
- each of the regions (1a) to (7a) is one-fourth of the wavelength at the operating frequency of the polarization separation circuit 1B. Since the ridges 8A and 9A are formed symmetrically with respect to the connection portion 10, the reflection ⁇ 1 and the reflection ⁇ 6 are canceled, the reflection ⁇ 2 and the reflection ⁇ 5 are canceled, and the reflection ⁇ 3 and the reflection ⁇ 4 are offset. As a result, the polarization separation circuit 1B can obtain good characteristics over a wide band.
- the ridges 8A and 9A are formed symmetrically with respect to the connection portion 10. Since the reflection of the signal is canceled in the transmission path, good characteristics can be obtained in a wide band. Since the ridges 8A and 9A do not have tapered portions, the lengths of the cylindrical coaxial waveguide and the rectangular waveguide 5 can be shortened.
- FIG. 16 shows the ridge 8 and the ridge 9 connected by the outer cylinder 3, the inner cylinder 4, the rectangular waveguide 5, and the connecting portion 10A, and the guide portion 13C in the polarization separation circuit 1C according to the third embodiment. It is a partial side view shown. As shown in FIG. 16, the surface of the guide portion 13C facing the connecting portion 10A has a concave curved surface, and the corner surface 18A of the connecting portion 10A has a convex curved surface.
- the distance between the concave curved surface of the guide portion 13C and the convex curved surface of the corner surface 18A can be kept constant.
- the influence of discontinuity is reduced, so that good characteristics can be obtained over a wide band.
- connection corner between the portion having a uniform height and the tapered surface may be formed by a curved surface so that the portion having a uniform height in the ridge 8 smoothly switches to the tapered surface of the tapered portion 16.
- the connecting corner between the portion having a uniform height and the tapered surface may be formed by a curved surface so that the portion having a uniform height in the ridge 9 smoothly switches to the tapered surface of the tapered portion 17.
- the opposite surfaces of the guide portion 13C and the connection portion 10A are curved surfaces. Since the guide portion 13C and the connecting portion 10A face each other on a curved surface, the influence of discontinuity is reduced, so that good characteristics can be obtained over a wide band.
- FIG. 17 is a partial side view showing the outer cylinder 3, the inner cylinder 4, the rectangular waveguide 5, the ridge 8, the ridge 9, and the guide portion 13D in the polarization separation circuit 1D according to the fourth embodiment.
- the guide portion 13D is a member extended to a position facing both the ridge 8 and the ridge 9.
- the guide portion 13D includes a tapered portion 13D (1) and a tapered portion 13D (2).
- the tapered portion 13D (1) faces the tapered portion 16 of the ridge 8, and the tapered portion 13D (2) faces the tapered portion 17 of the ridge 9.
- the polarization separation circuit 1D has a so-called double ridge structure composed of a guide portion 13D and a ridge 8, and a guide portion 13D and a ridge 9.
- FIG. 18 is a diagram schematically showing the electric field of the signal in each cross section shown by the reference numerals H, I and J in FIG.
- the signal forms the electric field distribution shown in the cross section H in the region where the portion where the height of the ridge 8 is uniform and the portion where the height of the guide portion 13D is uniform face each other, and the corners of the guide portion 13D and the connection portion 10 are formed.
- the electric field distribution shown in the cross section I is formed, and in the region where the portion where the height of the ridge 9 is uniform and the portion where the height of the guide portion 13D is uniform face each other,
- the electric field distribution shown in the cross section J is formed.
- FIG. 19 is a perspective top view showing the polarization separation circuit 1E according to the fifth embodiment.
- the polarization separation circuit 1E includes a rectangular waveguide 5A instead of the rectangular waveguide 5 in the configuration shown in the first embodiment.
- the rectangular waveguide 5A includes a rectangular waveguide 6A whose width narrows toward the end connected to the cylindrical coaxial waveguide.
- the width of the rectangular waveguide portion 6A is narrowed in a tapered shape. Since the rectangular waveguide 5A does not have the step portion 7, the discontinuity is small. As a result, the polarization separation circuit 1E can obtain good characteristics over a wide band.
- FIG. 20 is a perspective view showing the appearance of the polarization separation circuit 1F according to the sixth embodiment.
- the outer cylinder 3A included in the polarization separation circuit 1F has a large diameter portion 3a having a large diameter and a small diameter portion 3b having a small diameter.
- the small diameter portion 3b is formed on the short-circuit end 12 side of the outer cylinder 3A
- the large-diameter portion 3a is formed on the opposite side of the short-circuit end 12 of the outer cylinder 3A.
- the cutoff frequency of the higher-order mode in the cylindrical coaxial waveguide 19 can be increased.
- the influence of the cutoff frequency of the higher-order mode at the portion where the rectangular waveguide 5 is connected in the small diameter portion 3b can be reduced, and matching can be easily performed.
- the polarization separation circuit 1F can obtain good characteristics over a wide band.
- the polarization separation circuit according to the present disclosure can be used for high frequency signals in the VHF band, UHF band, microwave band, or millimeter wave band, for example.
- 1,1A-1F polarization separation circuit 2 common terminal, 2a-2d rectangular waveguide branch terminal, 3,3A outer cylinder, 3a large diameter part, 3b small diameter part, 4 inner cylinder, 5,5A rectangular waveguide Tube, 6,6A Rectangular waveguide section, 7 step section, 8,8A, 9,9A ridge, 10,10A connection section, 11,11A partition, 12 short-circuit end, 13,13A to 13D guide section, 13D (1) ), 13D (2), 16,17 Tapered part, 14 Common terminal, 15 Co-axis terminal, 18,18A Corner surface, 19 Cylindrical coaxial waveguide, 20 Bottom surface, 100a-100c area.
Landscapes
- Waveguide Aerials (AREA)
Abstract
偏波分離回路(1)は、円筒同軸導波管(19)と、4つの矩形導波管(5)と、外円筒(3)と内円筒(4)との間に、矩形導波管(5)ごとに設けられたリッジ(8)と、矩形導波管(5)の内部にリッジ(8)ごとに設けられたリッジ(9)と、リッジ(8)とリッジ(9)とを連続的に接続する接続部(10)と、外円筒(3)と内円筒(4)との間に接続部(10)ごとに設けられ、円筒同軸導波管(19)から矩形導波管(5)へ偏波を伝搬させるガイド部(13)と、外円筒(3)と内円筒(4)との間に設けられ、隣り合うガイド部(13)の間を仕切る仕切り(11)を備える。
Description
本開示は、偏波分離回路に関する。
偏波分離回路は、複数の周波数帯において直交している2つの偏波からなる信号を利用するアンテナの給電回路として用いられる。偏波分離回路には、複数の周波数帯における信号を分離して伝送することができる多重円筒構造を有するものがある。例えば、二重円筒構造では、最内部に設けられた内円筒が円筒導波管であり、その内側から信号が伝送され、この内円筒の外側にある外円筒を含む円筒同軸導波管における内円筒と外円筒の間で信号が伝送される。二重円筒構造を有した偏波分離回路は、例えば、非特許文献1に記載されるように、円筒導波管と円筒同軸導波管のそれぞれの円筒径と遮断周波数との関係によって外側の円筒同軸導波管において低い周波数帯の信号が伝送される。
Henry Z. Zhang, " A Wideband Orthogonal-Mode Junction Using a Junction of a Quad-Ridged Coaxial Waveguide and Four Ridged Sectoral Waveguides ", IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 12, NO. 5, MAY 2002, pp. 172-174.
多重円筒構造を有した偏波分離回路は、円筒同軸導波管の外円筒と内円筒との間で伝送される低周波数帯において直交している2つの偏波からなる信号を分離して出力するための矩形の分岐導波管を設ける必要がある。非特許文献1に記載された偏波分離回路では、円筒同軸導波管と分岐導波管との間の整合をとって広帯域に良好な特性が得られる構造が考慮されていないという課題があった。
本開示は上記課題を解決するものであり、広帯域に良好な特性が得られる偏波分離回路を得ることを目的とする。
本開示に係る偏波分離回路は、外円筒と内円筒が同軸に配置された円筒同軸導波管と、円筒同軸導波管の一方の端部に接続された複数の矩形導波管と、外円筒と内円筒との間に矩形導波管ごとに設けられた第1のリッジと、矩形導波管の内部に第1のリッジごとに設けられた第2のリッジと、第1のリッジと第2のリッジとを連続的に接続する接続部と、外円筒と内円筒との間に、接続部ごとに設けられ、ガイド部と、外円筒と内円筒との間に設けられ、隣り合ったガイド部の間を仕切る仕切りを備え、矩形導波管は、円筒同軸導波管の端部に接続される側に幅の狭い矩形導波管部を有し、ガイド部は、接続部と対向している。
本開示によれば、円筒同軸導波管と、複数の矩形導波管と、外円筒と内円筒との間に矩形導波管ごとに設けられた第1のリッジと、矩形導波管の内部に第1のリッジごとに設けられた第2のリッジと、第1のリッジと第2のリッジとを連続的に接続する接続部と、外円筒と内円筒との間に、接続部ごとに設けられたガイド部と、外円筒と内円筒との間に設けられ、隣り合ったガイド部の間を仕切る仕切りを備え、矩形導波管は、円筒同軸導波管の端部に接続される側に幅の狭い矩形導波管部を有し、円筒同軸導波管から矩形導波管へ偏波を伝搬させるガイド部は、接続部と対向している。この構成を有することによって、円筒同軸導波管および矩形導波管における各領域の信号の電界分布が近似するので、本開示に係る偏波分離回路は、広帯域に良好な特性が得られる。
実施の形態1.
図1は、実施の形態1に係る偏波分離回路1の概略構成を示す透視斜視図である。図2は、偏波分離回路1を示す透視側面図である。図3は、偏波分離回路1を示す透視上面図である。図4は、偏波分離回路1の外観を示す斜視図である。偏波分離回路1は、低周波数帯において直交している2つの偏波からなる信号と、高周波数帯において直交している2つの偏波からなる信号とを分離する、二重円筒構成の装置である。
図1は、実施の形態1に係る偏波分離回路1の概略構成を示す透視斜視図である。図2は、偏波分離回路1を示す透視側面図である。図3は、偏波分離回路1を示す透視上面図である。図4は、偏波分離回路1の外観を示す斜視図である。偏波分離回路1は、低周波数帯において直交している2つの偏波からなる信号と、高周波数帯において直交している2つの偏波からなる信号とを分離する、二重円筒構成の装置である。
偏波分離回路1は、図1、図2、図3および図4に示すように、円筒同軸導波管の共通端子2、矩形導波管分岐端子2a~2d、円筒同軸導波管の共通端子14および円筒同軸導波管の共軸端子15を備える。円筒同軸導波管の共通端子2は、低周波数帯において直交している2つの偏波からなる信号が入出力される端子であり、ホーンアンテナが接続される。共通端子2は、外円筒3と内円筒4によって構成される円筒同軸導波管のうち、外円筒3と内円筒4との間の部分である。
円筒同軸導波管の共通端子14は、高周波数帯において直交している2つの偏波からなる信号が入出力される端子であり、ホーンアンテナが接続される。共通端子14は、円筒同軸導波管のうち、内円筒4の端部である。円筒同軸導波管の共軸端子15は、高周波数帯において直交している2つの偏波からなる信号が入出力される端子であり、高周波数帯の信号の偏波を分離する偏波分離回路が接続される。共軸端子15は、円筒同軸導波管のうち、内円筒4における短絡端12側の端部である。
なお、円筒同軸導波管の共通端子2と共通端子14に接続され、低周波数帯と高周波数帯の2つの周波数帯で機能するホーンアンテナ、および、円筒同軸導波管の共軸端子15に接続されて、高周波数帯の信号の偏波を分離する偏波分離回路は、図示および説明を省略する。
矩形導波管分岐端子2a~2dは、矩形導波管5によって構成され、円筒同軸導波管における短絡端12側の端部に接続されている。矩形導波管5は、円筒同軸導波管に一方の端部が接続され、この端部が幅の狭い矩形導波管部6であり、ステップ部7を介して幅が広い矩形導波管部に繋がった構造を有している。リッジ8は、外円筒3と内円筒4との間に、内円筒4の長手方向に沿って、矩形導波管5ごとに設けられた第1のリッジである。リッジ9は、矩形導波管5の内部に、矩形導波管5の長手方向に沿って、リッジ8ごとに設けられた第2のリッジである。リッジ8およびリッジ9は、接続部10によって連続的に接続される。
仕切り11は、外円筒3と内円筒4との間に設けられ、隣り合ったガイド部13の間を仕切る。図2に示すように、円筒同軸導波管の一方の端面と矩形導波管分岐端子2a~2dの下面は、短絡端12になっている。仕切り11は、この短絡端12から外円筒3と内円筒4との間に延びた部材である。ガイド部13は、外円筒3と内円筒4との間に接続部10ごとに設けられ、円筒同軸導波管から矩形導波管5へ偏波を伝搬させる。仕切り11と同様に、ガイド部13は、短絡端12から外円筒3と内円筒4との間に延びた部材である。
図5は、偏波分離回路1における内円筒4、仕切り11およびガイド部13を示す斜視図である。図5に示すように、仕切り11およびガイド部13は、内円筒4の一方の端部の外周に設けられ、短絡端12から内円筒4の長手方向に延びている。仕切り11は、ガイド部13とガイド部13との間に配置されている。図5に示す内円筒4には、仕切り11およびガイド部13が4つずつ設けられている。
図6は、偏波分離回路1におけるリッジ8およびリッジ9を示す斜視図である。リッジ8には、端部に向けて下る傾斜面であるテーパ部16が設けられ、リッジ9には、端部に向けて下る傾斜面であるテーパ部17が設けられている。テーパ部は、端部から滑らかに高さが高くなり電界分布も滑らかに変化するので、端部からステップ状に高さが高くなる一般的なリッジに比べて良好な特性(反射特性または変換特性)が得られやすい。また、リッジ8とリッジ9は、接続部10によって連続的に接続されている。接続部10は、コーナー面18を有する。
図7は、偏波分離回路1における、外円筒3、内円筒4、矩形導波管5、リッジ8、リッジ9およびガイド部13を示す部分側面図である。図7に示すように、円筒同軸導波管19は、外円筒3および内円筒4を備える。円筒同軸導波管19の一方の端部には、矩形導波管5が設けられる。矩形導波管5は、幅の狭い矩形導波管部6が、円筒同軸導波管19の一方の端部に接続されており、ステップ部7から先端側の部分が、幅の広い矩形導波管部となっている。
図7において、領域100aは、円筒同軸導波管19において内円筒4とリッジ8とが対向している領域である。内円筒4とリッジ8における内円筒4側の面とは、平行に配置されている。また、領域100bは、ガイド部13と、接続部10のコーナー面18とが対向している領域である。ガイド部13におけるコーナー面18側の面とコーナー面18は、平行に配置されている。領域100cは、矩形導波管5においてリッジ9と底面20とが対向している領域である。底面20とリッジ9における底面20側の面とは、平行に配置されている。
実施の形態1に係る偏波分離回路1の動作は、以下の通りである。
円筒同軸導波管の共通端子2に対し、低周波数帯において直交している2つの偏波からなる信号が入力されると、第1の偏波は、対向する2つの矩形導波管分岐端子2aおよび2cに出力され、第1の偏波に直交する第2の偏波は、対向する矩形導波管分岐端子2bおよび2dに出力される。円筒同軸導波管の共通端子2に入力された上記信号は、内円筒4とリッジ8との間、ガイド部13とコーナー面18との間、および、リッジ9と矩形導波管5の底面20との間を伝搬して、矩形導波管分岐端子2a~2dから出力される。
円筒同軸導波管の共通端子2に対し、低周波数帯において直交している2つの偏波からなる信号が入力されると、第1の偏波は、対向する2つの矩形導波管分岐端子2aおよび2cに出力され、第1の偏波に直交する第2の偏波は、対向する矩形導波管分岐端子2bおよび2dに出力される。円筒同軸導波管の共通端子2に入力された上記信号は、内円筒4とリッジ8との間、ガイド部13とコーナー面18との間、および、リッジ9と矩形導波管5の底面20との間を伝搬して、矩形導波管分岐端子2a~2dから出力される。
図8は、図7の符号A、BおよびCで示した各断面における信号の電界を概略的に示す図である。円筒同軸導波管の共通端子2に入力された信号は、領域100aにおいて断面Aに示す電界分布を形成し、領域100bにおいて断面Bに示す電界分布を形成し、領域100cにおいて断面Cに示す電界分布を形成する。図8に示すように、偏波分離回路1では、領域100a、100bおよび100cにおける信号の電界分布は近似しており、内円筒4とリッジ8との間、ガイド部13とコーナー面18との間およびリッジ9と矩形導波管5の底面20との間における不連続の影響が小さく、広帯域に良好な特性が得られる。
図9は、偏波分離回路1における外円筒3、内円筒4、矩形導波管5、リッジ8、リッジ9およびガイド部13と、信号の反射の発生位置を示す部分側面図である。偏波分離回路1における信号の伝搬経路は、図9に示すように、領域(1)~(9)により構成される。領域(1)は、外円筒3の内周部と内円筒4の外周部が対向している領域である。領域(2)は、内円筒4の外周部とリッジ8のテーパ部16とが対向している領域である。領域(3)および(4)は、内円筒4の外周部とリッジ8の高さが一様な部分が対向している領域である。
領域(5)は、ガイド部13と接続部10のコーナー面18とが対向している領域である。領域(6)および(7)は、リッジ9の高さが一様な部分と矩形導波管5の底面20とが対向している領域である。領域(8)は、リッジ9のテーパ部17と矩形導波管5の底面20とが対向している領域である。領域(9)は、矩形導波管5の天井面と底面20とが対向している領域である。これらの領域(1)~(9)のそれぞれの長さは、偏波分離回路1の動作周波数における波長のおおよそ4分の1の長さである。リッジのテーパ部は、動作周波数における波長のおおよそ2分の1の長さである。
領域(1)から領域(9)まで信号が伝搬する際に、領域(1)と領域(2)との接続部において信号の反射Γ1が生じ、同様に、領域(2)と領域(3)との接続部において信号の反射Γ2が生じ、領域(3)と領域(4)との接続部において信号の反射Γ3が生じる。領域(4)と領域(5)との接続部において信号の反射Γ4が生じ、領域(5)と領域(6)との接続部において信号の反射Γ5が生じ、領域(6)と領域(7)との接続部において信号の反射Γ6が生じる。領域(7)と領域(8)との接続部において信号の反射Γ7が生じ、領域(8)と領域(9)との接続部において信号の反射Γ8が生じる。
リッジ8およびリッジ9は、接続部10を基準として対称に形成されているので、反射Γ1と反射Γ8は相殺され、反射Γ2と反射Γ7は相殺され、反射Γ3と反射Γ6は相殺され、反射Γ4と反射Γ5は相殺される。これにより、偏波分離回路1は、広帯域に良好な特性が得られる。なお、ここでは、テーパ部についても端部のみに反射が生じるとして説明したが、テーパ部では、微小領域での反射が生じたとして考えても同様に良好な特性が得られる。
なお、図4に示した、外円筒3とその端部に接続した複数の矩形導波管5によって構成される第1の構造体と、図5に示した、内円筒4とその外周に接続した仕切り11およびガイド部13によって構成される第2の構造体と、図6に示した、接続部10によって互いに接続されたリッジ8とリッジ9である第3の構造体とは、別々に製造される。また、外円筒3の外周部と矩形導波管5の上面には、リッジ8とリッジ9が連続的に接続された第3の構造体を挿入するための切り込み部が形成されている。偏波分離回路1は、第1の構造体における外円筒3に第2の構造体を挿入し、その後、第1の構造体における外円筒3の外周部および矩形導波管5の上面における切り込み部に第3の構造体を挿入することにより組み上げられる。これにより、偏波分離回路1を容易に組み上げることができる。
また、偏波分離回路1は、第1の構造体、第2の構造体および第3の構造体を別個に製造せず、3Dプリンタによって一体で製造されてもよい。これまでの説明では、偏波分離回路1が二重円筒構成である場合について示したが、三重以上の多重円筒構造であってもよい。
図10は、偏波分離回路1における、内円筒4および仕切り11と、ガイド部13の変形例1であるガイド部13Aとを示す斜視図である。ガイド部13Aは、円筒同軸導波管の短絡端12に向かうにつれて幅が広くなる形状を有している。すなわち、図10に示すように、ガイド部13Aにおける内円筒4とは反対側の面は、短絡端12に向かって幅が広がっている。これにより、電界分布が滑らかに変わるため、良好な特性が得られやすくなる。
図11は、偏波分離回路1における、外円筒3、内円筒4、矩形導波管5、リッジ8、リッジ9およびガイド部13Aを示す部分側面図である。図11において、領域100aは、円筒同軸導波管において内円筒4とリッジ8が対向している領域である。内円筒4とリッジ8における内円筒4側の面は平行に配置されている。領域100bは、ガイド部13Aと接続部10のコーナー面18が対向している領域である。ガイド部13Aにおけるコーナー面18側の面とコーナー面18は平行に配置されている。領域100cは、矩形導波管5においてリッジ9と底面20が対向している領域である。底面20とリッジ9における底面20側の面とは、平行に配置されている。
図12は、図11の符号D、E、FおよびGで示した各断面における信号の電界を概略的に示す図である。信号は、領域100aにおいて断面Dに示す電界分布を形成し、領域100bにおいて断面Eおよび断面Fに示す電界分布を形成し、領域100cにおいて断面Gに示す電界分布を形成する。偏波分離回路1においては、断面D、E、FおよびGに示すように電界分布が段階的に変化している。これにより、内円筒4とリッジ8との間、ガイド部13Aとコーナー面18との間、および、リッジ9と矩形導波管5の底面20との間における不連続の影響がさらに小さくなり、広帯域に良好な特性が得られる。
図13は、偏波分離回路1における、ガイド部13Aと、仕切り11の変形例である仕切り11Aとを示す上面図である。仕切り11Aは、図13に示すように、ガイド部13Aの両側面にそれぞれ接して配置される。これにより、ガイド部13Aの位置が固定され、ガイド部13Aとコーナー面18との間隔を精度良く保つことができる。また、仕切り11Aがガイド部13の両側面に接しているので、仕切り11Aとガイド部13との隙間がなくなり、その隙間の制御が不要となるため、製造しやすくなる。
図14は、偏波分離回路1における、ガイド部13の変形例2であるガイド部13Bと仕切り11Aとを示す上面図である。ガイド部13Bは、図14に示すように、傾斜面が湾曲している。ガイド部13Bは、傾斜面が湾曲しているので、接続部10の位置が多少ずれても、ガイド部13Bの傾斜面におけるコーナー面18に対向する部分の長さの変化が低減され、不連続性が低減される。
以上のように、実施の形態1に係る偏波分離回路1は、円筒同軸導波管19と、4つの矩形導波管5と、外円筒3と内円筒4との間に、矩形導波管5ごとに設けられたリッジ8と、矩形導波管5の内部にリッジ8ごとに設けられたリッジ9と、リッジ8とリッジ9とを連続的に接続する接続部10と、外円筒3と内円筒4との間に接続部10ごとに設けられ、円筒同軸導波管19から矩形導波管5へ偏波を伝搬させるガイド部13と、外円筒3と内円筒4との間に設けられ、隣り合ったガイド部13の間を仕切る仕切り11とを備える。矩形導波管5は、円筒同軸導波管19の端部に接続される側に幅の狭い矩形導波管部6を有し、ガイド部13は、接続部10と対向している。これにより、円筒同軸導波管19および矩形導波管5における各領域の信号の電界分布が近似するので、偏波分離回路1は、広帯域に良好な特性が得られる。
実施の形態1に係る偏波分離回路1において、内円筒4の外周部とリッジ8との間、ガイド部13または13Aと接続部10との間および矩形導波管5の内部の底面20とリッジ9との間は、それぞれ平行である。これらの間が不連続であることの影響が小さく、広帯域に良好な特性が得られる。
実施の形態1に係る偏波分離回路1において、ガイド部13Aが、円筒同軸導波管19の短絡端12に向かうにつれて幅が広くなる形状を有している。ガイド部13Aと接続部10との間の不連続の影響がさらに低減され、電界分布が滑らかに変わるため、広帯域に良好な特性が得られやすい。
実施の形態1に係る偏波分離回路1において、ガイド部13と仕切り11Aは接している。ガイド部13Aの位置が固定され、ガイド部13Aとコーナー面18との間隔を精度良く保つことができる。
実施の形態1に係る偏波分離回路1において、リッジ8がテーパ部16を有し、リッジ9がテーパ部17を有する。内円筒4の外周部とリッジ8との間および矩形導波管5の底面20とリッジ9との間における不連続の影響が低減され、電界分布が滑らかに変わるため、良好な特性が得られやすくなる。
実施の形態1に係る偏波分離回路1において、リッジ8とリッジ9が、接続部10を基準として対称に形成されている。伝送経路において信号の反射が相殺されるので、広帯域に良好な特性が得られる。
実施の形態2.
図15は、実施の形態2に係る偏波分離回路1Bにおける、外円筒3、内円筒4、矩形導波管5、リッジ8A、リッジ9Aおよびガイド部13と、信号の反射の発生位置とを示す部分側面図である。リッジ8Aは、テーパ部16が設けられておらず、その分だけ短くなっている。同様に、リッジ9Aには、テーパ部17が設けられておらず、その分だけ短くなっている。
図15は、実施の形態2に係る偏波分離回路1Bにおける、外円筒3、内円筒4、矩形導波管5、リッジ8A、リッジ9Aおよびガイド部13と、信号の反射の発生位置とを示す部分側面図である。リッジ8Aは、テーパ部16が設けられておらず、その分だけ短くなっている。同様に、リッジ9Aには、テーパ部17が設けられておらず、その分だけ短くなっている。
偏波分離回路1Bにおける信号の伝搬経路は、図15に示すように、領域(1a)~(7a)によって構成される。領域(1a)は、外円筒3の内周部と内円筒4の外周部とが対向している領域である。領域(2a)および(3a)は、内円筒4の外周部と、高さが一様なリッジ8Aとが対向している領域である。領域(4a)は、ガイド部13と接続部10のコーナー面18とが対向している領域である。領域(5a)および(6a)は、高さが一様なリッジ9Aと矩形導波管5の底面20とが対向している領域である。領域(7a)は、矩形導波管5の天井面と底面20とが対向している領域である。
領域(1a)から領域(7a)まで信号が伝搬する際に、領域(1a)と領域(2a)との接続部において信号の反射Γ1が生じ、同様に、領域(2a)と領域(3a)との接続部において信号の反射Γ2が生じ、領域(3a)と領域(4a)との接続部において信号の反射Γ3が生じる。領域(4a)と領域(5a)との接続部において信号の反射Γ4が生じ、領域(5a)と領域(6a)との接続部において信号の反射Γ5が生じ、領域(6a)と領域(7a)との接続部において信号の反射Γ6が生じる。
領域(1a)~(7a)のそれぞれの長さは、偏波分離回路1Bの動作周波数における波長の4分の1の長さである。リッジ8Aおよびリッジ9Aは、接続部10を基準として対称に形成されているので、反射Γ1と反射Γ6は相殺され、反射Γ2と反射Γ5は相殺され、反射Γ3と反射Γ4は相殺される。これにより、偏波分離回路1Bは広帯域に良好な特性が得られる。
以上のように、実施の形態2に係る偏波分離回路1Bにおいて、リッジ8Aとリッジ9Aが、接続部10を基準として対称に形成されている。伝送経路において信号の反射が相殺されるので、広帯域に良好な特性が得られる。リッジ8Aおよびリッジ9Aは、テーパ部がないので、円筒同軸導波管と矩形導波管5の長さを短縮できる。
実施の形態3.
図16は、実施の形態3に係る偏波分離回路1Cにおける、外円筒3、内円筒4、矩形導波管5、接続部10Aによって接続されたリッジ8とリッジ9、および、ガイド部13Cを示す部分側面図である。ガイド部13Cにおける接続部10Aと対向する面は、図16に示すように凹曲面となっており、接続部10Aにおけるコーナー面18Aは、凸曲面となっている。
図16は、実施の形態3に係る偏波分離回路1Cにおける、外円筒3、内円筒4、矩形導波管5、接続部10Aによって接続されたリッジ8とリッジ9、および、ガイド部13Cを示す部分側面図である。ガイド部13Cにおける接続部10Aと対向する面は、図16に示すように凹曲面となっており、接続部10Aにおけるコーナー面18Aは、凸曲面となっている。
例えば、ガイド部13Cの凹曲面とコーナー面18Aの凸曲面との曲率を合わせることで、ガイド部13Cの凹曲面とコーナー面18Aの凸曲面との間隔を、一定に保つことができる。これにより、不連続の影響が低減されるので、広帯域に良好な特性が得られる。
リッジ8において高さが一様な部分からテーパ部16のテーパ面へ滑らかに切り替わるように、高さが一様な部分とテーパ面との接続コーナーが曲面で形成されてもよい。同様に、リッジ9において高さが一様な部分からテーパ部17のテーパ面へ滑らかに切り替わるように、高さが一様な部分とテーパ面との接続コーナーが曲面で形成されてもよい。
以上のように、実施の形態3に係る偏波分離回路1Cにおいて、ガイド部13Cと接続部10Aは、対向する面が曲面になっている。ガイド部13Cと接続部10Aとが曲面で対向するので、不連続の影響が低減されるので、広帯域に良好な特性が得られる。
実施の形態4.
図17は、実施の形態4に係る偏波分離回路1Dにおける、外円筒3、内円筒4、矩形導波管5、リッジ8、リッジ9、およびガイド部13Dを示す部分側面図である。ガイド部13Dは、図17に示すように、リッジ8とリッジ9の両方に対向する位置まで延伸した部材である。また、ガイド部13Dは、テーパ部13D(1)とテーパ部13D(2)とを備える。テーパ部13D(1)は、リッジ8のテーパ部16と対向し、テーパ部13D(2)は、リッジ9のテーパ部17と対向している。偏波分離回路1Dは、ガイド部13Dおよびリッジ8と、ガイド部13Dおよびリッジ9とによって構成される、いわゆる、ダブルリッジ構造を有する。
図17は、実施の形態4に係る偏波分離回路1Dにおける、外円筒3、内円筒4、矩形導波管5、リッジ8、リッジ9、およびガイド部13Dを示す部分側面図である。ガイド部13Dは、図17に示すように、リッジ8とリッジ9の両方に対向する位置まで延伸した部材である。また、ガイド部13Dは、テーパ部13D(1)とテーパ部13D(2)とを備える。テーパ部13D(1)は、リッジ8のテーパ部16と対向し、テーパ部13D(2)は、リッジ9のテーパ部17と対向している。偏波分離回路1Dは、ガイド部13Dおよびリッジ8と、ガイド部13Dおよびリッジ9とによって構成される、いわゆる、ダブルリッジ構造を有する。
図18は、図17の符号H、IおよびJで示した各断面における信号の電界を概略的に示す図である。信号は、リッジ8の高さが一様な部分とガイド部13Dの高さが一様な部分とが対向した領域において断面Hに示す電界分布を形成し、ガイド部13Dと接続部10のコーナー面18とが対向する領域においては、断面Iに示す電界分布を形成し、リッジ9の高さが一様な部分とガイド部13Dの高さが一様な部分とが対向した領域においては、断面Jに示す電界分布を形成する。
断面H、IおよびJに示すように、各領域の電界分布がガイド部とリッジとの間に集中するため、各領域における電界分布がさらに似たものとなる。これにより、信号の伝送経路における不連続の影響がさらに小さくなり、広帯域に良好な特性が得られる。
実施の形態5.
図19は、実施の形態5に係る偏波分離回路1Eを示す透視上面図である。偏波分離回路1Eは、実施の形態1に示した構成のうち、矩形導波管5の代わりに、矩形導波管5Aを備える。矩形導波管5Aは、図19に示すように、円筒同軸導波管に接続される端部に向かって幅が狭くなる矩形導波管部6Aを備える。
図19は、実施の形態5に係る偏波分離回路1Eを示す透視上面図である。偏波分離回路1Eは、実施の形態1に示した構成のうち、矩形導波管5の代わりに、矩形導波管5Aを備える。矩形導波管5Aは、図19に示すように、円筒同軸導波管に接続される端部に向かって幅が狭くなる矩形導波管部6Aを備える。
以上のように、実施の形態5に係る偏波分離回路1Eにおいて、矩形導波管部6Aは、幅がテーパ状に狭くなっている。矩形導波管5Aにはステップ部7がないため、不連続性が小さい。これにより、偏波分離回路1Eは、広帯域に良好な特性が得られる。
実施の形態6.
図20は、実施の形態6に係る偏波分離回路1Fの外観を示す斜視図である。偏波分離回路1Fが備える外円筒3Aは、径が大きい径大部3aと径が小さい径小部3bを有している。例えば、径小部3bは、外円筒3Aにおける短絡端12側に形成され、径大部3aは、外円筒3Aにおける短絡端12とは反対側に形成される。
図20は、実施の形態6に係る偏波分離回路1Fの外観を示す斜視図である。偏波分離回路1Fが備える外円筒3Aは、径が大きい径大部3aと径が小さい径小部3bを有している。例えば、径小部3bは、外円筒3Aにおける短絡端12側に形成され、径大部3aは、外円筒3Aにおける短絡端12とは反対側に形成される。
外円筒3Aが径小部3bを有することにより、円筒同軸導波管19における高次モードの遮断周波数を高くすることができる。これにより、径小部3bにおける矩形導波管5が接続した部分における高次モードの遮断周波数による影響を低減でき、整合がとりやすくなる。これにより、偏波分離回路1Fは、広帯域に良好な特性が得られる。
なお、各実施の形態の組み合わせまたは実施の形態のそれぞれの任意の構成要素の変形もしくは実施の形態のそれぞれにおいて任意の構成要素の省略が可能である。
本開示に係る偏波分離回路は、例えば、VHF帯、UHF帯、マイクロ波帯またはミリ波帯の高周波信号に利用可能である。
1,1A~1F 偏波分離回路、2 共通端子、2a~2d 矩形導波管分岐端子、3,3A 外円筒、3a 径大部、3b 径小部、4 内円筒、5,5A 矩形導波管、6,6A 矩形導波管部、7 ステップ部、8,8A,9,9A リッジ、10,10A 接続部、11,11A 仕切り、12 短絡端、13,13A~13D ガイド部、13D(1),13D(2),16,17 テーパ部、14 共通端子、15 共軸端子、18,18A コーナー面、19 円筒同軸導波管、20 底面、100a~100c 領域。
Claims (10)
- 外円筒と内円筒が同軸に配置された円筒同軸導波管と、
前記円筒同軸導波管の一方の端部に接続された複数の矩形導波管と、
前記外円筒と前記内円筒との間に前記矩形導波管ごとに設けられた第1のリッジと、
前記矩形導波管の内部に前記第1のリッジごとに設けられた第2のリッジと、
前記第1のリッジと前記第2のリッジとを連続的に接続する接続部と、
前記外円筒と前記内円筒との間に前記接続部ごとに設けられ、前記円筒同軸導波管から前記矩形導波管へ偏波を伝搬させるガイド部と、
前記外円筒と前記内円筒との間に設けられ、隣り合う前記ガイド部の間を仕切る仕切りと、
を備え、
前記矩形導波管は、前記円筒同軸導波管の端部に接続される側に幅の狭い矩形導波管部を有し、
前記ガイド部は、前記接続部と対向していること
を特徴とする偏波分離回路。 - 前記内円筒の外周部と前記第1のリッジとの間、前記ガイド部と前記接続部との間、および前記矩形導波管の内部の底面と前記第2のリッジとの間は、それぞれ平行であること
を特徴とする請求項1記載の偏波分離回路。 - 前記ガイド部は、前記円筒同軸導波管の短絡端に向かうにつれて幅が広くなる形状を有していること
を特徴とする請求項1記載の偏波分離回路。 - 前記ガイド部と前記仕切りは接していること
を特徴とする請求項1記載の偏波分離回路。 - 前記第1のリッジおよび前記第2のリッジは、テーパ部を有すること
を特徴とする請求項1記載の偏波分離回路。 - 前記第1のリッジと前記第2のリッジは、前記接続部を基準として対称に形成されていること
を特徴とする請求項1記載の偏波分離回路。 - 前記ガイド部と前記接続部は、対向する面が曲面になっていること
を特徴とする請求項1記載の偏波分離回路。 - 前記ガイド部は、前記第1のリッジと前記第2のリッジとに対向する位置まで延伸していること
を特徴とする請求項1記載の偏波分離回路。 - 前記矩形導波管部は、幅がテーパ状に狭くなること
を特徴とする請求項1記載の偏波分離回路。 - 前記外円筒は、径が大きい径大部と径が小さい径小部を有すること
を特徴とする請求項1記載の偏波分離回路。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022522099A JP7106039B2 (ja) | 2020-05-11 | 2020-05-11 | 偏波分離回路 |
PCT/JP2020/018818 WO2021229639A1 (ja) | 2020-05-11 | 2020-05-11 | 偏波分離回路 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/018818 WO2021229639A1 (ja) | 2020-05-11 | 2020-05-11 | 偏波分離回路 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021229639A1 true WO2021229639A1 (ja) | 2021-11-18 |
Family
ID=78526221
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/018818 WO2021229639A1 (ja) | 2020-05-11 | 2020-05-11 | 偏波分離回路 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7106039B2 (ja) |
WO (1) | WO2021229639A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61182301A (ja) * | 1985-02-07 | 1986-08-15 | Nippon Telegr & Teleph Corp <Ntt> | フインライン装荷偏分波器 |
JPH11330801A (ja) * | 1998-05-20 | 1999-11-30 | Mitsubishi Electric Corp | 導波管形偏分波器 |
JP2004518362A (ja) * | 2001-01-24 | 2004-06-17 | レイセオン・カンパニー | 無線周波数アンテナ給電装置 |
JP2010021996A (ja) * | 2008-06-24 | 2010-01-28 | Honeywell Internatl Inc | ミリメートル波の低損失高絶縁スイッチ |
JP2011160293A (ja) * | 2010-02-02 | 2011-08-18 | Nippon Telegr & Teleph Corp <Ntt> | フィンライン型導波管構造、偏波分離器およびフィンライン型導波管構造の製造方法 |
JP2014183459A (ja) * | 2013-03-19 | 2014-09-29 | Mitsubishi Electric Corp | 偏波分離回路 |
US20150207201A1 (en) * | 2014-01-17 | 2015-07-23 | Airbus Ds Gmbh | Broadband Signal Junction With Sum Signal Absorption |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6636127B2 (en) | 2002-02-23 | 2003-10-21 | Lockheed Martin Corp. | Broadband turnstile waveguide junction |
-
2020
- 2020-05-11 WO PCT/JP2020/018818 patent/WO2021229639A1/ja active Application Filing
- 2020-05-11 JP JP2022522099A patent/JP7106039B2/ja active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61182301A (ja) * | 1985-02-07 | 1986-08-15 | Nippon Telegr & Teleph Corp <Ntt> | フインライン装荷偏分波器 |
JPH11330801A (ja) * | 1998-05-20 | 1999-11-30 | Mitsubishi Electric Corp | 導波管形偏分波器 |
JP2004518362A (ja) * | 2001-01-24 | 2004-06-17 | レイセオン・カンパニー | 無線周波数アンテナ給電装置 |
JP2010021996A (ja) * | 2008-06-24 | 2010-01-28 | Honeywell Internatl Inc | ミリメートル波の低損失高絶縁スイッチ |
JP2011160293A (ja) * | 2010-02-02 | 2011-08-18 | Nippon Telegr & Teleph Corp <Ntt> | フィンライン型導波管構造、偏波分離器およびフィンライン型導波管構造の製造方法 |
JP2014183459A (ja) * | 2013-03-19 | 2014-09-29 | Mitsubishi Electric Corp | 偏波分離回路 |
US20150207201A1 (en) * | 2014-01-17 | 2015-07-23 | Airbus Ds Gmbh | Broadband Signal Junction With Sum Signal Absorption |
Also Published As
Publication number | Publication date |
---|---|
JP7106039B2 (ja) | 2022-07-25 |
JPWO2021229639A1 (ja) | 2021-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10218076B1 (en) | Hexagonal waveguide based circularly polarized horn antennas | |
JP2000201013A (ja) | フィ―ドホ―ン | |
US20160049733A1 (en) | Method and Apparatus for Orthogonal-Mode Junction Coupling | |
WO2021229639A1 (ja) | 偏波分離回路 | |
US5406298A (en) | Small wideband passive/active antenna | |
US4039975A (en) | E plane folded hybrid with coaxial difference port | |
US20020163401A1 (en) | Wideband coaxial orthogonal-mode junction coupler | |
JP2011199353A (ja) | H面t分岐導波管 | |
JP2010178305A (ja) | 導波管電力分配器 | |
KR101713769B1 (ko) | 동축 도파관 기반의 공간 전력 결합기 | |
JP2008079085A (ja) | 伝送線路導波管変換器 | |
JP6161345B2 (ja) | 偏波分離回路 | |
JP6316076B2 (ja) | 偏分波器 | |
JP6391560B2 (ja) | 導波管変換回路及びアンテナ装置 | |
JP3662446B2 (ja) | 2周波共用フィード | |
JP6671564B2 (ja) | 導波管方向性結合器及び偏波分離回路 | |
JP2013207391A (ja) | 方形導波管の接続構造 | |
JP2006081160A (ja) | 伝送路変換器 | |
KR100322178B1 (ko) | 직선·원편파변환기 | |
JP4053928B2 (ja) | 円−矩形導波管変換器、直交偏波分離用分波器、一次放射器、給電部及びアンテナ | |
CN114759335B (zh) | 正交模耦合器和双线极化馈源 | |
JPH1032401A (ja) | 円偏波一次放射器 | |
JP6355525B2 (ja) | 偏波分離回路 | |
JP6253342B2 (ja) | 偏波分離回路 | |
JP4027244B2 (ja) | 衛星放送受信用コンバータ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20935718 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022522099 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20935718 Country of ref document: EP Kind code of ref document: A1 |