WO2021223557A1 - 一种晶体制备装置及生长方法 - Google Patents

一种晶体制备装置及生长方法 Download PDF

Info

Publication number
WO2021223557A1
WO2021223557A1 PCT/CN2021/085468 CN2021085468W WO2021223557A1 WO 2021223557 A1 WO2021223557 A1 WO 2021223557A1 CN 2021085468 W CN2021085468 W CN 2021085468W WO 2021223557 A1 WO2021223557 A1 WO 2021223557A1
Authority
WO
WIPO (PCT)
Prior art keywords
growth
crystal
temperature
heating
growth chamber
Prior art date
Application number
PCT/CN2021/085468
Other languages
English (en)
French (fr)
Inventor
王宇
杨田
梁振兴
李敏
Original Assignee
眉山博雅新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010373329.8A external-priority patent/CN111254486A/zh
Priority claimed from CN202010626511.XA external-priority patent/CN111501096B/zh
Application filed by 眉山博雅新材料有限公司 filed Critical 眉山博雅新材料有限公司
Priority to JP2022566702A priority Critical patent/JP2023524962A/ja
Priority to EP21800098.2A priority patent/EP4130349A4/en
Priority to US17/520,815 priority patent/US11408089B2/en
Publication of WO2021223557A1 publication Critical patent/WO2021223557A1/zh
Priority to US17/815,219 priority patent/US20220356599A1/en
Priority to US18/482,847 priority patent/US20240110307A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/002Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/06Heating of the deposition chamber, the substrate or the materials to be evaporated
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/06Joining of crystals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1004Apparatus with means for measuring, testing, or sensing
    • Y10T117/1008Apparatus with means for measuring, testing, or sensing with responsive control means

Definitions

  • This application relates to the field of crystal preparation, in particular to a crystal preparation device and growth method.
  • PVT Physical Vapor Transport
  • a crystal preparation device in one aspect, includes: a growth cavity for crystal growth; and a temperature control system for heating the growth cavity so that the radial temperature difference in the growth cavity does not exceed The first preset range of the average temperature in the growth cavity.
  • a crystal preparation device in yet another aspect, includes: a growth cavity for placing seed crystals and source materials; a heating component for heating the growth cavity; and a temperature compensation component for during the crystal growth process Providing temperature compensation, wherein the temperature compensation component is located on the upper surface and/or the lower surface of the growth chamber, and the temperature compensation component includes at least one heating unit.
  • a crystal preparation device in another aspect, includes a growth chamber for placing a seed crystal and a source material, wherein the seed crystal is placed on the top of the growth chamber, and the source material is placed on the The bottom of the growth cavity; a heating component for heating the growth cavity, wherein the heating component is located outside the growth cavity, and the heating component includes a resistance heating element.
  • a method for crystal growth includes: placing a seed crystal and a source material in a growth chamber to grow a crystal; The radial temperature difference in the growth cavity does not exceed the first preset range of the average temperature in the growth cavity.
  • a method for preparing a seed crystal including: first cutting a plurality of hexagonal crystal seed crystals to be expanded to obtain a plurality of regular hexagonal hexagonal crystal seed crystals with the same crystal plane family. Splicing the plurality of regular hexagonal hexagonal crystal seed crystals; performing a second cutting on the plurality of regular hexagonal hexagonal crystal seed crystals spliced to obtain the hexagonal crystal seed crystal to be grown; in the first setting Under certain conditions, perform gap growth on the hexagonal crystal seed crystal to be grown to obtain a hexagonal crystal seed crystal intermediate; and under a second set condition, perform epitaxial growth on the hexagonal crystal seed crystal intermediate, A target hexagonal crystal seed crystal is obtained, wherein the diameter of the target hexagonal crystal seed crystal is larger than the diameter of the hexagonal crystal seed crystal to be enlarged.
  • Figure 1 is a schematic diagram of an exemplary crystal preparation device shown in some embodiments
  • Figure 2 is a schematic diagram of an exemplary temperature feedback regulation system shown in some embodiments
  • Figure 3 is a schematic diagram of exemplary crystal preparation devices shown in other embodiments.
  • Figure 4 is a top view of an exemplary heating unit arrangement shown in some embodiments.
  • Figure 5 is a top view of exemplary heating unit arrangements shown in other embodiments.
  • FIG. 6 is a schematic diagram of an exemplary first electrode and an exemplary second electrode shown in some embodiments
  • Fig. 7 is a top view of an exemplary electrode fixing plate shown in some embodiments.
  • Fig. 8 is a schematic diagram of exemplary crystal preparation devices shown in other embodiments.
  • Fig. 9 is a schematic diagram of an exemplary resistive heating element shown in some embodiments.
  • FIGS. 10 and 11 are plan views of exemplary first electrode and exemplary second electrode arrangement shown in other embodiments;
  • FIG. 12 is a schematic diagram of an exemplary first electrode and/or an exemplary second electrode shown in other embodiments being fixed to a resistive heating element;
  • Figure 13 is a schematic diagram of exemplary crystal preparation devices shown in other embodiments.
  • Figure 14 is a schematic diagram of exemplary at least one heating unit shown in some embodiments.
  • FIG. 15 is a schematic diagram of exemplary crystal preparation apparatuses shown in other embodiments.
  • Figure 16A is a top view of an exemplary at least one heating unit shown in some embodiments.
  • Figure 16B is a side view of an exemplary at least one heating unit shown in some embodiments.
  • Figure 17 is a schematic diagram of exemplary at least one conductive ring shown in some embodiments.
  • FIG. 18 is a flowchart of an exemplary crystal growth method shown in some embodiments.
  • FIG. 19 is a flowchart of exemplary crystal growth methods shown in other embodiments.
  • Figure 21 is a schematic diagram of exemplary produced crystals shown in some embodiments.
  • Figure 22 is a flowchart of exemplary seed crystal preparation methods shown in some embodiments.
  • Figure 23 is a schematic diagram of an exemplary seed crystal preparation process shown in some examples.
  • system is a method for distinguishing different components, elements, parts, parts, or assemblies of different levels.
  • the words can be replaced by other expressions.
  • Fig. 1 is a schematic diagram of an exemplary crystal preparation apparatus shown in some examples.
  • the crystal preparation apparatus 100 may be used to prepare crystals.
  • the crystal preparation apparatus 100 may prepare crystals based on a physical vapor transport (Physical Vapor Transport, PVT) method.
  • PVT Physical Vapor Transport
  • the top of the growth cavity of the crystal preparation device 100 is bonded with a seed crystal, the source material is placed at the bottom of the growth cavity, and a heating element (for example, an induction coil) is provided outside the growth cavity for heating the growth cavity.
  • a heating element for example, an induction coil
  • the temperature field distribution in the growth cavity can be controlled to form an axial temperature gradient between the source material and the seed crystal.
  • the source material decomposes and sublimates into a gas phase component under high temperature conditions, and the gas phase component is transported to the seed crystal in the low temperature region under the drive of the axial temperature gradient. Because the temperature of the seed crystal is relatively low, the gas phase components can generate crystals on the surface of the seed crystal.
  • the crystals may include, but are not limited to, silicon carbide crystals, aluminum nitride crystals, zinc oxide crystals, or zinc antimonide crystals.
  • the crystal preparation apparatus 100 may include a growth chamber 110 and a heating assembly 120.
  • the heating component 120 may be used to heat the growth chamber 110 and provide a temperature field required for crystal growth to prepare crystals.
  • the growth chamber 110 may be a place for providing crystal growth.
  • the growth cavity 110 may be used to grow a seed crystal, and then further grow the crystal based on the seed crystal.
  • a seed crystal and a source material may be placed inside the growth cavity 110, and a crystal is grown based on the seed crystal and the source material.
  • the growth chamber 110 may include a growth chamber cover 111 and a growth chamber body 112.
  • the growth chamber body 112 may be a container with a growth chamber bottom cover, but not a growth chamber cover.
  • the growth chamber cover 111 may be located on the top of the growth chamber body 112 to close the top opening of the growth chamber body 112.
  • the growth chamber 110 may be a crucible, and the crucible may include a crucible cover and a crucible body.
  • the shape of the growth chamber body 112 may include, but is not limited to, a cylindrical shape, a rectangular parallelepiped, or a cubic shape.
  • the shape of the growth chamber cover 111 may include, but is not limited to, a circular disk, a rectangular disk, or a square disk.
  • the shape of the growth chamber cover 111 and the growth chamber body 112 may match.
  • the shape of the growth chamber body 112 may be a cylindrical barrel including a barrel bottom and a barrel side wall, and the shape of the growth chamber cover 111 may be a disc.
  • the shape of the growth chamber body 112 may be a rectangular parallelepiped barrel, which includes a barrel bottom and a barrel side wall, and the shape of the growth chamber cover 111 may be a rectangular disk or a square disk.
  • the material of the growth cavity 110 may include but is not limited to graphite. In some embodiments, the material of the growth cavity 110 may include graphite and silicon carbide. In some embodiments, the mass of graphite may account for 40%-90% of the mass of the growth cavity 110. In some embodiments, the mass of graphite may account for 45%-85% of the mass of the growth cavity 110. In some embodiments, the mass of graphite may account for 50%-80% of the mass of the growth cavity 110. In some embodiments, the mass of graphite may account for 55%-75% of the mass of the growth cavity 110. In some embodiments, the mass of graphite may account for 60%-70% of the mass of the growth cavity 110. In some embodiments, the mass of graphite may account for 64-66% of the mass of the growth cavity 110. In some embodiments, the material of the growth chamber cover 111 and the growth chamber body 112 may be the same or different.
  • the heating component 120 may be used to heat the growth chamber 110 and provide a temperature field required for crystal growth to prepare crystals.
  • the source material can be sublimated and decomposed to generate a gas phase component.
  • the gas phase component can be driven by the axial temperature gradient to be transported to the seed crystal, and in the seed crystal.
  • the crystals grow up and crystallize to form crystals.
  • the heating element 120 may be located outside and/or inside the growth chamber 110.
  • the heating component 120 may include, but is not limited to, a resistance heating device and/or an electromagnetic induction heating device, etc. As shown in FIG.
  • the heating assembly 120 may include an electromagnetic induction heating device disposed around the outside of the growth chamber 110.
  • the electromagnetic induction heating device may include an induction coil.
  • the induction coil can generate eddy currents on the surface of the growth cavity 110 under the action of alternating currents of different frequencies. Under the action of the eddy current, the electrical energy generated on the surface of the growth cavity 110 can be converted into heat energy to heat the growth cavity 110.
  • the heating assembly 120 may include a resistance heating device.
  • the heating component 120 may include a graphite resistance heating device. After the graphite is energized, the heat energy generated by the Joule effect of the current flowing through the graphite can be used to heat the growth chamber 110.
  • the inner surface of the growth chamber cover 111 can be bonded with the seed crystal 150, and the source material 160 can be placed in the growth chamber body 112.
  • the broken line a in FIG. 1 shows the lower surface of the seed crystal 150.
  • the dotted line b in FIG. 1 shows the upper surface of the source material 160.
  • the radial temperature difference may be expressed as the difference between the highest temperature and the lowest temperature on the horizontal section of the growth chamber 110 at the same height. Since the growth chamber 110 has a height, the difference between the highest temperature and the lowest temperature may be different on horizontal cross-sections of different heights.
  • the radial temperature difference may refer to the difference between the highest temperature and the lowest temperature on the plane where the lower surface of the seed crystal is located (the horizontal plane where the dashed line a in FIG. 1 is located). In some embodiments, the radial temperature difference may refer to the difference between the highest temperature and the lowest temperature on the plane where the upper surface of the source material is located (the horizontal plane where the dashed line b in FIG. 1 is located). In some embodiments, the radial temperature difference may refer to the difference between the highest temperature and the lowest temperature on any horizontal plane between the plane where the upper surface of the source material 160 is located and the plane where the lower surface of the seed crystal 150 is located.
  • the heating assembly 120 may include an electromagnetic induction heating device disposed around the outside of the growth chamber 110.
  • the electromagnetic induction heating device may be an induction coil.
  • the induction coil When the induction coil is energized to heat the growth cavity 110, heat energy is conducted from the wall of the growth cavity to the inside of the growth cavity 110. Inside the growth cavity 110, heat energy is conducted from the outer peripheral area of the growth cavity 110 to the central area of the growth cavity 110. Due to the heat dissipation process, there is heat dissipation. Therefore, the outer peripheral area inside the growth cavity 110 may be a relatively high temperature area, and the central area may be a relatively low temperature area. In some embodiments, the outer peripheral area may be an area close to the wall of the growth chamber 110.
  • the central area may be an area close to the central axis of the growth chamber 110.
  • the growth chamber 110 may form a temperature field with a decreasing temperature from the outer peripheral area to the central area.
  • the temperature field can reflect the distribution of the temperature inside the growth cavity 110 in time and space.
  • the temperature field of decreasing temperature can form a radial temperature difference.
  • the radial temperature difference can cause thermal stress on the seed crystal growth surface, which causes the seed crystal growth surface to bulge in the direction of the source material and produce defects such as microtubes and inclusions.
  • the temperature difference in the radial direction can also lead to uneven distribution of the molar ratio of the gas phase components sublimed by the source material in the radial direction, thereby affecting the quality of the crystal. Therefore, in order to prepare high-quality crystals, it is necessary to reduce the radial temperature difference.
  • the temperature field, temperature field, and temperature distribution can be used interchangeably.
  • the temperature control system can make the radial temperature difference in the growth cavity during crystal growth not exceed the first preset range of the crystal growth temperature.
  • the crystal growth temperature and/or the first preset range may be preset.
  • the crystal growth temperature and/or the first preset range may be dynamically determined according to a certain algorithm based on preset conditions.
  • the preset conditions may include, but are not limited to, the size, shape, and material of the growth cavity 110, the size of the seed crystal, and the type and size of the crystal to be grown.
  • the crystal growth temperature may refer to the Celsius temperature required for crystal growth. Different types of crystals have different growth temperatures.
  • the growth temperature of the silicon carbide crystal may be 2200°C-2400°C.
  • the temperature control system can ensure that the radial temperature difference in the growth cavity during crystal growth does not exceed 1% of the crystal growth temperature.
  • the temperature control system can make the radial temperature difference in the growth cavity during crystal growth not exceed 0.8% of the crystal growth temperature. In some embodiments, the temperature control system can make the radial temperature difference in the growth cavity during crystal growth not exceed 0.6% of the crystal growth temperature. In some embodiments, the temperature control system can ensure that the radial temperature difference in the growth cavity does not exceed 0.5% of the crystal growth temperature during crystal growth. In some embodiments, the temperature control system can make the radial temperature difference in the growth cavity during crystal growth not exceed 0.4% of the crystal growth temperature. In some embodiments, the temperature control system can make the radial temperature difference in the growth cavity during crystal growth not exceed 0.3% of the crystal growth temperature.
  • the temperature control system can ensure that the radial temperature difference in the growth cavity during crystal growth does not exceed 0.25% of the crystal growth temperature. In some embodiments, the temperature control system can ensure that the radial temperature difference in the growth cavity during crystal growth does not exceed 0.2% of the crystal growth temperature. In some embodiments, the temperature control system can make the radial temperature difference in the growth cavity during crystal growth not exceed 0.15% of the crystal growth temperature. In some embodiments, the temperature control system can make the radial temperature difference in the growth cavity during crystal growth not exceed 0.1% of the crystal growth temperature. In some embodiments, the temperature control system can make the radial temperature difference in the growth cavity during crystal growth not exceed 0.08% of the crystal growth temperature.
  • the temperature control system can make the radial temperature difference in the growth cavity during crystal growth not exceed 0.06% of the crystal growth temperature. In some embodiments, the temperature control system can ensure that the radial temperature difference in the growth cavity during crystal growth does not exceed 0.05% of the crystal growth temperature. In some embodiments, the temperature control system can make the radial temperature difference in the growth cavity during crystal growth not exceed 0.02% of the crystal growth temperature.
  • the temperature control system can make the radial temperature difference in the growth chamber not exceed the preset radial temperature difference threshold during crystal growth.
  • the preset radial temperature difference threshold may be in the range of 0.5°C to 6°C. In some embodiments, the preset radial temperature difference threshold may be in the range of 0.6°C-5.7°C. In some embodiments, the preset radial temperature difference threshold may be in the range of 0.7°C-5.4°C. In some embodiments, the preset radial temperature difference threshold may be in the range of 0.8°C to 5°C. In some embodiments, the preset radial temperature difference threshold may be in the range of 0.9°C-4.7°C.
  • the preset radial temperature difference threshold may be in the range of 1°C-4.4°C. In some embodiments, the preset radial temperature difference threshold may be in the range of 1.1°C to 4°C. In some embodiments, the preset radial temperature difference threshold may be in the range of 1.2°C-3.5°C. In some embodiments, the preset radial temperature difference threshold may be in the range of 1.3°C to 3°C. In some embodiments, the preset radial temperature difference threshold may be in the range of 1.4°C-2.5°C. In some embodiments, the preset radial temperature difference threshold may be in the range of 1.5°C to 2°C. In some embodiments, the preset radial temperature difference threshold may be in the range of 1.6°C-1.9°C. In some embodiments, the preset radial temperature difference threshold may be in the range of 1.7°C-1.8°C.
  • Crystal growth to a preset size requires a preset time. Therefore, during the entire process of crystal growth, it is necessary to control the radial temperature difference in the growth chamber within a certain time domain to not exceed the first preset range of crystal growth temperature or the preset radial direction. Temperature difference threshold. Since the crystal growth process is to grow along a specific crystal plane, once the crystal grown in a certain period of time has defects, the defects will continue to accumulate and expand in the subsequent stages of the crystal growth, resulting in low crystal quality or even unusable crystals. . Therefore, it is necessary to control the radial temperature difference in the growth cavity during crystal growth during the previous stage of the crystal growth period to keep the temperature difference within the first preset range or the preset radial temperature difference threshold value of the crystal growth temperature.
  • the temperature control system can keep the radial temperature difference in the growth cavity during crystal growth at least within the crystal growth sub-interval and not exceed the first preset range of the crystal growth temperature or the preset radial temperature difference threshold.
  • the crystal growth sub-interval may be a time period in a certain interval before the crystal growth interval.
  • the crystal growth interval is 4:00am-24:00pm, and the time period during which the crystal growth sub-interval is the first 90% of the crystal growth interval may be expressed as the crystal growth sub-interval may be 4:00am-22:00pm.
  • the crystal growth interval may refer to the minimum time required for the crystal to grow to a predetermined size.
  • the crystal growth interval may be determined according to preset conditions.
  • the preset conditions may include, but are not limited to, the size, shape, and material of the growth cavity 110, the size of the seed crystal, and the type and size of the crystal to be grown.
  • the crystal growth sub-interval may be the first 80% of the time period of the crystal growth interval. In some embodiments, the crystal growth sub-interval may be the first 85% of the time period of the crystal growth interval. In some embodiments, the crystal growth sub-interval may be the first 90% of the time period of the crystal growth interval. In some embodiments, the crystal growth sub-interval may be the first 95% of the time period of the crystal growth interval. In some embodiments, the temperature control system can keep the radial temperature difference in the growth chamber during crystal growth within the first preset range of the crystal growth temperature or the preset radial temperature difference threshold throughout the crystal growth interval.
  • the radial temperature difference may be related to the radius of the growth cavity. As shown in FIG. 1, the larger the radius of the growth cavity 110 is, the more heat energy is dissipated during the process of heat transfer from the wall of the growth cavity 110 to the inside of the growth cavity 110, which may result in a larger radial temperature difference. In some embodiments, the radial temperature difference during the growth of crystals grown in the growth cavity 110 of different radii does not exceed the first preset range of crystal growth temperature or the preset radial temperature difference threshold.
  • the temperature control system can make the radial temperature difference in the growth cavity during crystal growth not exceed 0.075% of the crystal growth temperature or a preset radial temperature difference threshold.
  • the preset radial temperature difference threshold may be in the range of 0.5°C to 1.5°C. In some embodiments, the preset radial temperature difference threshold may be in the range of 0.6°C-1.4°C. In some embodiments, the preset radial temperature difference threshold may be in the range of 0.7°C-1.3°C. In some embodiments, the preset radial temperature difference threshold may be in the range of 0.8°C-1.2°C. In some embodiments, the preset radial temperature difference threshold may be in the range of 0.9°C-1.1°C.
  • the temperature control system can make the radial temperature difference during crystal growth not exceed 0.15% of the crystal growth temperature or a preset radial temperature difference threshold.
  • the preset radial temperature difference threshold may be in the range of 0.8°C-2.8°C.
  • the preset radial temperature difference threshold may be in the range of 0.9°C-2.7°C.
  • the preset radial temperature difference threshold may be in the range of 1°C-2.6°C.
  • the preset radial temperature difference threshold may be in the range of 1.1°C-2.5°C.
  • the preset radial temperature difference threshold may be in the range of 1.2°C-2.4°C. In some embodiments, the preset radial temperature difference threshold may be in the range of 1.3°C-2.3°C. In some embodiments, the preset radial temperature difference threshold may be in the range of 1.4°C-2.2°C. In some embodiments, the preset radial temperature difference threshold may be in the range of 1.5°C-2.1°C. In some embodiments, the preset radial temperature difference threshold may be in the range of 1.6°C to 2°C. In some embodiments, the preset radial temperature difference threshold may be in the range of 1.7°C-1.9°C.
  • the temperature control system can make the radial temperature difference in the growth cavity during crystal growth not exceed 0.2% of the crystal growth temperature or a preset radial temperature difference threshold.
  • the preset radial temperature difference threshold may be in the range of 1.5°C-4.5°C. In some embodiments, the preset radial temperature difference threshold may be in the range of 1.7°C-4.3°C. In some embodiments, the preset radial temperature difference threshold may be in the range of 1.9°C-4.1°C. In some embodiments, the preset radial temperature difference threshold may be in the range of 2.1°C-3.9°C.
  • the preset radial temperature difference threshold may be in the range of 2.3°C-3.7°C. In some embodiments, the preset radial temperature difference threshold may be in the range of 2.5°C-3.5°C. In some embodiments, the preset radial temperature difference threshold may be in the range of 2.7°C-3.3°C. In some embodiments, the preset radial temperature difference threshold may be in the range of 2.9°C-3.1°C. In some embodiments, the preset radial temperature difference threshold may be 3°C.
  • the temperature control system can make the radial temperature difference in the growth cavity during crystal growth not exceed 0.3% of the crystal growth temperature or a preset radial temperature difference threshold.
  • the preset radial temperature difference threshold may be in the range of 1.5°C-6°C. In some embodiments, the preset radial temperature difference threshold may be in the range of 1.7-5.8°C. In some embodiments, the preset radial temperature difference threshold may be in the range of 1.9°C-5.6°C. In some embodiments, the preset radial temperature difference threshold may be in the range of 2.1°C-5.4°C.
  • the preset radial temperature difference threshold may be in the range of 2.3°C-5.2°C. In some embodiments, the preset radial temperature difference threshold may be in the range of 2.5°C to 5°C. In some embodiments, the preset radial temperature difference threshold may be in the range of 2.7°C-4.8°C. In some embodiments, the preset radial temperature difference threshold may be in the range of 2.9°C-4.6°C. In some embodiments, the preset radial temperature difference threshold may be in the range of 3.1°C-4.4°C. In some embodiments, the preset radial temperature difference threshold may be in the range of 3.3°C-4.2°C. In some embodiments, the preset radial temperature difference threshold may be in the range of 3.5°C to 4°C. In some embodiments, the preset radial temperature difference threshold may be in the range of 3.7°C-3.8°C.
  • the radial temperature gradient may include the temperature difference per unit distance in the direction from the inner wall of the growth chamber to the central axis of the growth chamber on a horizontal section at the same height of the growth chamber 110.
  • a radial temperature gradient may be formed by the temperature decrease. The radial temperature gradient can cause thermal stress on the seed crystal growth surface, which causes the seed crystal growth surface to bulge in the direction of the source material and produce defects such as microtubes and inclusions.
  • the radial temperature gradient can also cause the non-uniform distribution of the molar ratio of the sublimated gas phase components of the source material along the radial direction, thereby affecting the quality of the crystal. Therefore, in order to prepare high-quality crystals, it is necessary to reduce the radial temperature gradient.
  • the temperature control system can make the radial temperature gradient in the growth cavity not exceed a preset radial temperature gradient threshold during crystal growth.
  • a preset radial temperature gradient threshold may be preset.
  • the preset radial temperature gradient threshold may be determined according to preset conditions.
  • the preset conditions may include, but are not limited to, the size, shape, and material of the growth cavity 110, the size of the seed crystal, and the type and size of the crystal to be grown.
  • the preset radial temperature gradient threshold may be in the range of 0.1° C./cm-0.5° C./cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.11° C./cm-0.49° C./cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.12° C./cm-0.48° C./cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.13° C./cm-0.47° C./cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.14° C./cm-0.46° C./cm.
  • the preset radial temperature gradient threshold may be in the range of 0.15°C/cm-0.45°C/cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.16° C./cm-0.44° C./cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.17°C/cm-0.43°C/cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.18° C./cm-0.42° C./cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.19° C./cm-0.41° C./cm.
  • the preset radial temperature gradient threshold may be in the range of 0.2° C./cm-0.4° C./cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.21° C./cm-0.39° C./cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.22° C./cm-0.38° C./cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.23° C./cm-0.37° C./cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.24° C./cm-0.36° C./cm.
  • the preset radial temperature gradient threshold may be in the range of 0.25° C./cm-0.35° C./cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.26° C./cm-0.34° C./cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.27° C./cm-0.33° C./cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.28° C./cm-0.32° C./cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.29° C./cm-0.31° C./cm. In some embodiments, the preset radial temperature gradient threshold may be 0.3° C./cm.
  • the radial temperature gradient may be related to the radius of the growth cavity. As shown in FIG. 1, the larger the radius of the growth cavity 110 is, the more heat energy is dissipated during the process of heat transfer from the wall of the growth cavity to the inside of the growth cavity 110. The less heat transferred to the central area of the growth cavity 110, the lower the temperature of the central area of the growth cavity 110. In some embodiments, the temperature in the central area of the growth chamber 110 is relatively low, which may cause a large thermal stress on the seed crystal growth surface, causing the seed crystal growth surface to be severely convex in the direction of the source material, and produce microtubes, inclusions, etc. defect.
  • the low temperature in the central region of the growth chamber 110 may also cause the non-uniform distribution of the molar ratio of the gas phase component of the source material sublimation along the radial direction, which seriously affects the quality of the crystal.
  • the radial temperature gradient during the growth of the crystals grown in the growth cavity 110 with different radii does not exceed the preset radial temperature gradient threshold.
  • the temperature control system can make the radial temperature gradient in the growth cavity during crystal growth not exceed the preset radial temperature gradient threshold.
  • the preset radial temperature gradient threshold may be in the range of 0.1° C./cm-0.3° C./cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.11° C./cm-0.29° C./cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.12° C./cm-0.28° C./cm.
  • the preset radial temperature gradient threshold may be in the range of 0.13° C./cm-0.27° C./cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.14° C./cm-0.26° C./cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.15°C/cm-0.25°C/cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.16° C./cm-0.24° C./cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.17° C./cm-0.23° C./cm.
  • the preset radial temperature gradient threshold may be in the range of 0.18° C./cm-0.22° C./cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.19°C/cm-0.21°C/cm. In some embodiments, the preset radial temperature gradient threshold may be 0.2° C./cm.
  • the temperature control system can make the radial temperature gradient in the growth cavity during crystal growth not exceed the preset radial temperature gradient threshold.
  • the preset radial temperature gradient threshold may be in the range of 0.1° C./cm-0.37° C./cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.11° C./cm-0.36° C./cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.12° C./cm-0.35° C./cm.
  • the preset radial temperature gradient threshold may be in the range of 0.13° C./cm-0.34° C./cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.14° C./cm-0.33° C./cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.15°C/cm-0.32°C/cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.16° C./cm-0.31° C./cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.17° C./cm-0.3° C./cm.
  • the preset radial temperature gradient threshold may be in the range of 0.18° C./cm-0.29° C./cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.19°C/cm-0.28°C/cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.2° C./cm-0.27° C./cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.21° C./cm-0.26° C./cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.22° C./cm-0.25° C./cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.23° C./cm-0.24° C./cm.
  • the temperature control system can make the radial temperature gradient in the growth cavity during crystal growth not exceed the preset radial temperature gradient threshold.
  • the preset radial temperature gradient threshold may be in the range of 0.15°C/cm-0.45°C/cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.16° C./cm-0.44° C./cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.17° C./cm-0.43° C./cm.
  • the preset radial temperature gradient threshold may be in the range of 0.18° C./cm-0.42° C./cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.19° C./cm-0.41° C./cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.2° C./cm-0.4° C./cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.21° C./cm-0.39° C./cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.22° C./cm-0.38° C./cm.
  • the preset radial temperature gradient threshold may be in the range of 0.23° C./cm-0.37° C./cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.24° C./cm-0.36° C./cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.25° C./cm-0.35° C./cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.26° C./cm-0.34° C./cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.27° C./cm-0.33° C./cm.
  • the preset radial temperature gradient threshold may be in the range of 0.28° C./cm-0.32° C./cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.29° C./cm-0.31° C./cm. In some embodiments, the preset radial temperature gradient threshold may be 0.3° C./cm.
  • the temperature control system can make the radial temperature gradient in the growth cavity during crystal growth not exceed the preset radial temperature gradient threshold.
  • the preset radial temperature gradient threshold may be in the range of 0.15°C/cm-0.6°C/cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.17° C./cm-0.58° C./cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.19° C./cm-0.56° C./cm.
  • the preset radial temperature gradient threshold may be in the range of 0.21° C./cm-0.54° C./cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.23° C./cm-0.52° C./cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.25° C./cm-0.5° C./cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.27° C./cm-0.48° C./cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.29° C./cm-0.46° C./cm.
  • the preset radial temperature gradient threshold may be in the range of 0.31° C./cm-0.44° C./cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.33° C./cm-0.42° C./cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.35° C./cm-0.4° C./cm. In some embodiments, the preset radial temperature gradient threshold may be in the range of 0.37° C./cm-0.38° C./cm.
  • the distance between the lower surface of the seed crystal 150 and the upper surface of the source material 160 can be expressed as Hcm.
  • the axial temperature gradient may refer to the temperature difference per unit distance in the direction of the central axis of the growth chamber 110. Assuming that there is no radial temperature difference in the plane where the upper surface of the source material 160 is located or the radial temperature difference is small and negligible, the temperature of the plane where the upper surface of the source material 160 is located can be expressed as a°C.
  • the temperature of the plane where the lower surface of the seed crystal 150 is located can be expressed as b°C.
  • a>b the axial temperature gradient can be expressed as The unit is °C/cm.
  • the axial temperature gradient is the driving force for the source material to be decomposed and sublimated by the source material to transfer to the surface of the seed crystal to grow crystals. If the axial temperature gradient is unstable, the gas phase components are unevenly distributed in the axial direction, which will result in poor quality of the grown crystals. Therefore, it is necessary to maintain a stable axial temperature gradient to grow high-quality crystals.
  • the heating element can also be used to maintain a stable axial temperature gradient during crystal growth.
  • the axial temperature gradient needs to be controlled within a preset axial temperature gradient range to ensure the quality of the crystal. If the axial temperature gradient is too small, the driving force may be insufficient, and the deposition rate of the vapor component on the lower surface of the seed crystal is too slow, which cannot meet the mass transmission requirements of the Physical Vapor Transport (PVT). If the axial temperature gradient is too large and the mass transfer is too fast, it will cause the deposition rate of the gas phase components on the lower surface of the seed crystal to be too fast, resulting in the formation of greater stress on the crystal growth surface, and the formation of defects such as inclusions, which will lead to other sites. Wrong defects affect the quality of crystals. Therefore, the axial temperature gradient needs to be maintained within a suitable preset axial temperature gradient range.
  • PVT Physical Vapor Transport
  • the temperature control system can maintain the axial temperature gradient in the growth cavity during crystal growth within a preset axial temperature gradient range.
  • the preset axial temperature gradient range may be 0.2° C./cm-2.5° C./cm. In some embodiments, the preset axial temperature gradient range may be 0.3° C./cm-2.4° C./cm. In some embodiments, the preset axial temperature gradient range may be 0.4° C./cm-2.3° C./cm. In some embodiments, the preset axial temperature gradient range may be 0.5° C./cm-2.2° C./cm. In some embodiments, the preset axial temperature gradient range may be 0.6°C/cm-2.1°C/cm.
  • the preset axial temperature gradient range may be 0.7°C/cm-2.0°C/cm. In some embodiments, the preset axial temperature gradient range may be 0.8° C./cm-1.9° C./cm. In some embodiments, the preset axial temperature gradient range may be 0.9°C/cm-1.8°C/cm. In some embodiments, the preset axial temperature gradient range may be 1.0° C./cm-1.7° C./cm. In some embodiments, the preset axial temperature gradient range may be 1.1° C./cm-1.6° C./cm. In some embodiments, the preset axial temperature gradient range may be 1.2° C./cm-1.5° C./cm. In some embodiments, the preset axial temperature gradient range may be 1.3° C./cm-1.4° C./cm.
  • the heating assembly may include at least one heating unit.
  • the number of at least one heating unit may include 1, 2, 3, and so on.
  • at least one heating unit may be located outside the growth chamber.
  • the at least one heating unit may be partially arranged around the outer periphery of the growth chamber.
  • at least one of the at least two heating units may be arranged around the outer periphery of the growth chamber, and at least one of the at least two heating units may be located on the upper surface and/or under the outside of the growth chamber. surface.
  • at least one heating unit may be located inside the growth chamber.
  • At least one of the at least two heating units may be located inside the growth chamber, and at least one of the at least two heating units may be arranged around the outer periphery of the growth chamber. In some embodiments, at least one of the at least two heating units may be located inside the growth chamber, and at least one of the at least two heating units may be located on the upper surface and/or the lower surface of the outside of the growth chamber. In some embodiments, the at least one heating unit located outside the growth chamber may include at least three first heating units, and the at least three first heating units may respectively correspond to the crystallization area in the growth chamber and the source material in the growth chamber. Region and the location of the vapor phase transport region between the crystalline region and the source material region.
  • the at least one heating unit may include, but is not limited to, resistance heating equipment, electromagnetic induction heating equipment, and the like. In some embodiments, the at least one heating unit may include a resistive heating element and/or an electromagnetic induction coil. In some embodiments, the material of the at least one heating unit may include but is not limited to at least one of graphite, tungsten, platinum, molybdenum, tantalum, or iridium. In some embodiments, at least one heating unit may include a resistive heating element.
  • the resistance heating element may include, but is not limited to, at least one of graphite heating element, tungsten heating element, platinum heating element, molybdenum heating element, tantalum heating element, iridium heating element, or zirconium diboride composite ceramic heating element.
  • Figure 2 is a schematic diagram of an exemplary temperature feedback regulation system shown in some embodiments.
  • the crystal preparation device may include a temperature feedback adjustment system 200.
  • the temperature feedback adjustment system 200 may include a temperature sensing component 210, a heating component 220 and a control component 230.
  • the temperature feedback regulation system and the temperature control system can be used interchangeably.
  • the heating component 120 and the heating component 220 in the embodiment of this specification may represent the same component.
  • the temperature sensing assembly 210 may include at least one temperature sensing unit. In some embodiments, at least one temperature sensing unit may be located on the outer periphery of the growth chamber. In some embodiments, at least one temperature sensing unit may be used to measure the temperature of the growth chamber to obtain the temperature distribution during crystal growth, and send the measured temperature to the control component 230. In some embodiments, the temperature distribution may include, but is not limited to, a radial temperature distribution and an axial temperature distribution. In some embodiments, the radial temperature distribution may include a temperature distribution on at least one horizontal section of the growth chamber 110.
  • the axial temperature distribution may include a temperature distribution on the central axis of the growth chamber 110 or in a direction parallel to the central axis.
  • the radial temperature distribution may include a radial temperature difference distribution and/or a radial temperature gradient distribution.
  • the axial temperature distribution may include an axial temperature gradient distribution.
  • the number of at least one temperature sensing unit may include, but is not limited to, 1, 2, 3, and so on. In some embodiments, the at least one temperature sensing unit may include, but is not limited to, at least one temperature sensor. In some embodiments, the at least one temperature sensing unit may include at least one infrared thermometer.
  • At least one temperature sensing unit may be located on the upper surface outside the growth chamber for measuring the temperature of the lower surface of the seed crystal or the crystal growth surface. In some embodiments, at least one temperature sensing unit may be located on the lower surface outside the growth chamber for measuring the temperature of the upper surface of the source material. In some embodiments, the at least one temperature sensing unit may also be located on the outer wall of the growth chamber for measuring the temperature of the inner and outer peripheral area of the growth chamber.
  • the at least one temperature sensing unit may be arranged in a ring with the center of the growth chamber cover or the growth chamber bottom cover as the center, so as to measure the temperature at the isodiametric position of the growth chamber.
  • at least one temperature sensing unit may be arranged on the outer wall of the growth chamber parallel to the central axis of the growth chamber to measure the axial temperature of the growth chamber.
  • the at least one temperature sensing unit may also be arranged in other shapes such as a square or a rectangle.
  • the information of the temperature sensing component may include, but is not limited to, the arrangement of at least one temperature sensing unit, the number of at least one temperature sensing unit, the location of at least one temperature sensing unit, and at least one temperature sensing unit. The temperature measured by the unit.
  • control component 230 may include at least one control unit.
  • each of the at least one control unit may be connected to each of the at least one heating unit to individually control at least one parameter of each heating unit so that the temperature distribution during crystal growth meets Preset temperature distribution.
  • the at least one parameter may include at least one of current or heating power.
  • the preset temperature distribution may include, but is not limited to, a preset radial temperature difference distribution, a preset radial temperature gradient distribution, and/or a preset axial temperature gradient distribution.
  • control component 230 may generate a radial temperature difference distribution and/or a radial temperature gradient distribution based on the radial temperature measured by the temperature sensing component 210. In some embodiments, the control component 230 may generate an axial temperature gradient distribution based on the axial temperature measured by the temperature sensing component 210.
  • control component 230 may control at least one parameter of the at least one heating unit based on the temperature distribution during crystal growth, so that the radial temperature difference in the growth chamber during crystal growth does not exceed the first predetermined value of the average temperature in the growth chamber. Set range or preset radial temperature difference threshold.
  • control component 230 may be used to control at least one parameter of the at least one heating unit based on the temperature distribution during crystal growth, so that the radial temperature gradient in the growth cavity during crystal growth does not exceed the preset radial temperature gradient Threshold.
  • the temperature sensing component 210 can measure the radial temperature of the growth chamber and send the measured radial temperature to the control component 230.
  • the control component 230 may generate a radial temperature difference distribution and/or a radial temperature gradient distribution based on the radial temperature measured by the temperature sensing component 210.
  • the control component 230 may also be used to determine a preset radial temperature difference threshold and/or a preset radial temperature gradient threshold according to the size, shape and material of the growth cavity 110, the size of the seed crystal, and the type and size of the crystal to be grown.
  • the control component 230 may further compare the radial temperature difference in the radial temperature difference distribution with a preset radial temperature difference threshold, or compare the radial temperature gradient in the radial temperature gradient distribution with the preset radial temperature gradient.
  • the control component 230 can increase the heating power of at least one heating unit arranged in the central area of the growth chamber to reduce the radial temperature.
  • the radial temperature difference and/or the radial temperature gradient until the radial temperature difference does not exceed the preset radial temperature difference threshold and/or the radial temperature gradient does not exceed the preset radial temperature gradient threshold.
  • control component 230 may also control at least one parameter of the at least one heating unit based on the temperature distribution during crystal growth, so that the axial temperature gradient in the growth cavity during crystal growth is maintained stable. In some embodiments, the control component 230 may also control at least one parameter of the at least one heating unit based on the temperature distribution during crystal growth, so that the axial temperature gradient in the growth cavity during crystal growth is maintained within a preset axial temperature gradient range.
  • the temperature sensing component 210 can measure the axial temperature of the growth chamber and send the measured axial temperature to the control component 230. The control component 230 may generate an axial temperature gradient distribution based on the axial temperature measured by the temperature sensing component 210.
  • the control component 230 can also be used to determine the preset axial temperature gradient range according to the size, shape and material of the growth cavity 110, the size of the seed crystal, and the type and size of the crystal to be grown. The control component 230 may further compare the axial temperature gradient in the axial temperature gradient distribution with a preset axial temperature gradient range.
  • the control component 230 can reduce the heating power of at least one heating unit arranged on the outer periphery of the growth chamber close to the growth chamber cover, or increase the heating power of the at least one heating unit arranged on the outer periphery of the growth chamber close to the growth chamber.
  • the heating power of at least one heating unit of the body bottom cover is used to increase the axial temperature gradient until the axial temperature gradient is within the preset axial temperature gradient range.
  • the control component 230 can increase the heating power of at least one heating unit arranged on the outer periphery of the growth chamber close to the growth chamber cover, or reduce the heating power of the at least one heating unit arranged on the outer periphery of the growth chamber close to the growth chamber.
  • the heating power of at least one heating unit of the body bottom cover is used to reduce the axial temperature gradient until the axial temperature gradient is within the preset axial temperature gradient range.
  • the preset radial temperature difference threshold, the preset radial temperature gradient threshold, and the preset axial temperature gradient range may be based on the size, shape, and material of the growth cavity 110, the size of the seed crystal, and the size of the seed crystal to be grown. The type and size of crystals are determined.
  • the relevant content of the preset radial temperature difference threshold, the preset radial temperature gradient threshold, and the preset axial temperature gradient range please refer to FIG. 1 and related descriptions, which will not be repeated here.
  • the temperature feedback adjustment system 200 may further include a storage component (not shown in the figure).
  • the storage component can store data, instructions, and/or any other information.
  • the storage component may store data and/or information related to crystal growth.
  • the storage component may store the crystal growth temperature, the crystal growth time period, the crystal growth interval, the preset temperature distribution, the preset radial temperature difference threshold, the preset radial temperature gradient threshold, and the preset crystal growth temperature required for crystal growth. Axial temperature gradient range, etc.
  • the storage component may store the type of crystal, the size of the seed crystal, the size of the crystal to be grown, and the like.
  • the storage component may store data and/or instructions used by the crystal preparation apparatus 100 to execute or use to complete the exemplary crystal growth method described in the embodiments of this specification.
  • the storage component may store at least one parameter of at least one heating unit adjusted during the crystal growth process.
  • the storage component may be connected to a network to communicate with one or more components (for example, the temperature sensing component 210, the control component 230, etc.) in the temperature feedback regulation system 200.
  • one or more components (for example, the control component 230, etc.) in the feedback adjustment system 200 can read data or instructions in the storage component through the network.
  • the storage component may include mass storage, removable storage, volatile read-write storage, read-only storage (ROM), etc., or any combination thereof.
  • Exemplary mass storage may include magnetic disks, optical disks, solid state drives, removable storage, and the like.
  • Exemplary removable storage may include flash drives, floppy disks, optical disks, memory cards, ZIP disks, tapes, and the like.
  • An exemplary volatile read-write memory may include random access memory (RAM).
  • Random access memory can include dynamic random access memory (DRAM), double data rate synchronous dynamic random access memory (DDR-SDRAM), static random access memory (SRAM), thyristor random access memory (T-RAM), Zero capacitance random access memory (Z-RAM), etc.
  • DRAM dynamic random access memory
  • DDR-SDRAM double data rate synchronous dynamic random access memory
  • SRAM static random access memory
  • T-RAM thyristor random access memory
  • Z-RAM Zero capacitance random access memory
  • Read-only memory can include mask read-only memory (MROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM) ), compact disc read-only memory (CD-ROM), digital versatile disc, etc.
  • the storage component may be implemented by the cloud platform described in this specification.
  • the cloud platform may include one or a combination of private clouds, public clouds, hybrid clouds, community clouds, distributed clouds, cross-clouds, and multi-clouds.
  • the temperature feedback adjustment system 200 may further include a display component (not shown in the figure).
  • the display component can display the time of crystal growth, the size of the crystal, the temperature distribution during the crystal growth, and/or at least one parameter of the at least one heating unit in real time.
  • the at least one parameter may include, but is not limited to, current, heating power, and the like.
  • the control component 230 disclosed in FIG. 2 may be one component that implements the functions of two or more components.
  • the control component 230 may include at least one control unit and at least one processing unit. Such deformations are all within the protection scope of this application.
  • Fig. 3 is a schematic diagram of an exemplary crystal preparation apparatus shown in some examples.
  • the crystal preparation device 100 may prepare semiconductor crystals (for example, silicon carbide crystals, aluminum nitride crystals, zinc oxide crystals, zinc antimonide crystals) based on a physical vapor transmission method.
  • the crystal preparation apparatus 100 may include a growth chamber 110 and a heating assembly.
  • the growth cavity 110 may be used to place the seed crystal 150 and the source material 160.
  • the growth chamber 110 may include a growth chamber cover 111 and a growth chamber main body 112, wherein the growth chamber cover 111 is located at the top of the growth chamber and is used to close the top opening of the growth chamber main body 112.
  • the growth chamber 110 may be a crucible, and the crucible may include a crucible cover and a crucible body.
  • the shape of the growth chamber body 112 may be a cylinder, a rectangular parallelepiped, a cube, or the like.
  • the shape of the growth chamber body 112 may be a cylindrical barrel, which includes a barrel bottom and a barrel side wall.
  • the shape of the growth chamber cover 111 may be a circular disk, a rectangular disk, a square disk, or the like.
  • the material of the growth chamber 110 may include graphite. In some embodiments, the material of the growth chamber 110 may be graphite in whole or in part.
  • the seed crystal 150 may be fixedly bonded to the inner surface (also referred to as the "lower surface") of the growth chamber cover 111 (for example, at the center of the inner surface), and the source material 160 may be placed in the growth chamber. Inside the cavity body 112 (for example, the lower part of the growth cavity 110).
  • the seed crystal 150 may be fixed on the growth chamber cover 111 by an adhesive.
  • the adhesive may include, but is not limited to, epoxy resin glue, AB glue, phenol resin glue, sugar glue and the like.
  • the source material may be in powder form, granular form, block form, or the like.
  • the heating environment of the growth chamber can be controlled to form an axial temperature gradient between the source material 160 and the seed crystal 150.
  • the source material 160 can be decomposed and sublimated into gas phase components when heated (for example, taking the preparation of silicon carbide crystals as an example, the gas phase components include Si 2 C, SiC 2 , Si).
  • the gas phase components include Si 2 C, SiC 2 , Si.
  • the gas phase components change from The surface of the source material 160 is transferred to the surface of the seed crystal 150. Since the temperature of the seed crystal 150 is relatively low, the gas phase components crystallize on the surface of the seed crystal 150 to form crystals.
  • the heating element may be used to heat the growth chamber 110.
  • the heating component may include an electric heating device, an electromagnetic induction heating device, and the like.
  • the heating component may be an induction coil.
  • the heating element may be located outside the growth chamber 110 to provide at least part of the heat required for crystal growth. Take the induction coil as an example. Under the action of intermediate frequency alternating current, the induction coil can generate eddy currents on the surface of the growth cavity 110. Under the action of the eddy currents, the electrical energy generated on the surface of the growth cavity 110 is converted into heat energy, which can heat the surface of the growth cavity 110. , And conduct heat conduction to the inside of the growth cavity 110.
  • the source material 160 under the action of the temperature field in the growth chamber 110, the source material 160 is sublimated and decomposed into gas phase components, and the gas phase components are transported to the surface of the seed crystal 150 for crystallization under the action of the axial temperature gradient. Generate crystals.
  • the heating element may be located outside the growth chamber 110.
  • the heating assembly may include at least two heating units. In some embodiments, at least one of the at least two heating units may be partially arranged around the outer circumference of the growth chamber 110. In some embodiments, at least one of the at least two heating units may be located on the upper surface and/or the lower surface of the growth chamber 110. In some embodiments, at least one heating unit located on the upper surface and/or the lower surface of the growth chamber 110 may be referred to as a temperature compensation component 1210. In some embodiments, the number of at least one heating unit in the temperature compensation assembly 1210 may include, but is not limited to, 1, 2, 3, 4, etc.
  • the shape of at least one heating unit in the temperature compensation assembly 1210 may include, but is not limited to, a regular column or an irregular column such as a cylinder, a triangular prism, a quadrangular prism, a pentagonal prism, or a hexagonal prism.
  • the temperature compensation component 1210 may be arranged in a regular shape or an irregular shape such as a square, a rectangle, a circle, or a ring.
  • the temperature compensation components 1210 may be arranged in a ring or circle with the center of the upper surface and/or the lower surface of the growth cavity 110 as the center. In some embodiments, the arrangement may be a uniform arrangement or a non-uniform arrangement.
  • the radius between two adjacent rings may be equal or unequal.
  • At least one heating unit disposed around the outer circumference of the growth chamber 110 may be referred to as a first heating component 1220.
  • the number of at least one heating unit in the first heating assembly 1220 may include, but is not limited to, 1, 2, 3, 4, etc.
  • the first heating element 1220 may be arranged around the outer periphery of the growth cavity 110 around the central axis of the growth cavity 110. In some embodiments, the arrangement may be a uniform arrangement or a non-uniform arrangement. In some embodiments, the spacing between two adjacent heating units arranged around the outer circumference of the growth chamber 110 may be equal or unequal.
  • the heating methods of the first heating component 1220 and the temperature compensation component 1210 may be the same or different. In some embodiments, the heating method of the temperature compensation component 1210 may be resistance heating. In some embodiments, the heating method of the first heating element 1220 may be resistance heating or induction heating.
  • the growth can be changed by adjusting (e.g., adjusting up and down along the outer surface of the growth chamber 110) the position of the heating element and/or the heating parameters (e.g., current, heating power, etc.) applied to the heating element.
  • the temperature field in the cavity 110 generates a suitable temperature gradient distribution and promotes crystal growth.
  • the induction coil can be spirally wound on the outside of the growth chamber 110, and the distance between adjacent coils is gradually increased from the lower part to the upper part of the growth chamber 110 to control the temperature field in the growth chamber 110 , So as to produce a suitable temperature gradient distribution.
  • the lower part of the growth chamber 110 may refer to a part of the growth chamber 110 away from the growth chamber cover 111.
  • the upper part of the growth chamber 110 may refer to a part of the growth chamber 110 close to the growth chamber cover 111.
  • the induction coil may include a plurality of connected sub-induction coils, and the heating parameters of each sub-induction coil can be separately controlled to control the temperature field in the growth chamber 110 to generate a suitable temperature gradient distribution.
  • the number and/or position of the sub-induction coils can be the default settings of the system, or can be adjusted according to different situations. In some embodiments, the number and/or position of the sub-induction coils can be adjusted according to the size, shape and material of the growth cavity 110, the size of the seed crystal, the type and size of the crystal to be grown.
  • the temperature compensation component 1210 can be used to provide temperature compensation during the crystal growth process.
  • the temperature compensation component 1210 may be located on the upper surface and/or the lower surface of the growth chamber 110.
  • the temperature compensation component 1210 may be located near the center of the upper surface and/or near the center of the lower surface of the growth chamber 110.
  • an induction coil is usually placed outside the growth chamber to heat the growth chamber. Therefore, heat is conducted from the outer peripheral area of the growth chamber to the central area of the growth chamber, resulting in a relatively high temperature area in the outer peripheral area and a relatively low temperature area in the central area. The closer the center area is, the lower the temperature.
  • this radial temperature gradient will cause greater thermal stress on the crystal growth surface, and even the crystal growth surface will be severely oriented toward the source material. Protrusions, and easy to produce defects such as microtubes, inclusions, etc.; for the lower region of the growth chamber (for example, the area covered by the source material), this radial temperature gradient will cause the source material to sublime the gas phase component molar ratio along the The radial distribution is not uniform, which affects the crystal quality. Therefore, it is necessary to reduce this radial temperature gradient. Accordingly, the temperature compensation component 1210 can provide temperature compensation to reduce the radial temperature gradient.
  • the radial temperature gradient of the inner surface (or “lower surface”) of the growth chamber cover 111 can be reduced, thereby reducing defects caused by the stress on the crystal growth surface, and Reduce or avoid corrosion defects on the back of the crystal.
  • the radial temperature gradient of the area covered by the source material 160 can be reduced, the uniformity of the radial temperature distribution can be improved, and the molar ratio of the sublimated gas phase components can be distributed along the radial direction. It is more uniform and improves the quality of the resulting crystals.
  • FIG. 3 only shows the case where the temperature compensation component 1210 is located on the upper surface of the growth chamber 110.
  • the temperature compensation assembly 1210 may include at least one heating unit 1212.
  • the at least one heating unit 1212 may include at least one high-resistance graphite unit.
  • the at least one heating unit 1212 may be uniformly or unevenly distributed on the upper surface or the lower surface of the growth chamber 110 in the radial direction.
  • at least Parameters of one heating unit 1212 for example, at least one of the number, shape, size, arrangement, current, or heating power of at least one heating unit 1212).
  • the number, shape, and/or size of the at least one heating unit 1212 may be such that the contact area between the at least one heating unit 1212 and the upper surface and/or lower surface of the growth chamber 110 occupies the upper surface and/or the lower surface of the growth chamber 110 Or more than 50% of the lower surface area.
  • the number and arrangement of the at least one heating unit 1212 may make the arrangement shape and arrangement area of the at least one heating unit 1212 the same as the shape and area of the horizontal cross-section of the seed crystal 150.
  • the arrangement position of the at least one heating unit 1212 on the upper surface of the growth cavity cover 111 corresponds to the position of the seed crystal 150 on the lower surface of the growth cavity cover 111.
  • the current through the at least one heating unit 1212 and/or the heating power of the at least one heating unit 1212 can make the temperature distribution inside the growth chamber 110 meet the preset temperature distribution.
  • the parameters (for example, heating power, current) of each of the at least one heating unit 1212 can be individually controlled to facilitate adjustment of the radial temperature gradient distribution.
  • the temperature compensation assembly 1210 may further include a fixing frame 1216, and the fixing frame 1216 may include at least one fixing unit for placing at least one heating unit 1212.
  • the fixed frame 1216 may be coaxial with the growth cavity 110.
  • the fixed frame 1216 may be made of thermal insulation material or thermal insulation material.
  • the fixed frame 1216 may be a zirconia ceramic plate or a boron nitride ceramic plate.
  • at least one of the fixed units may be detachably connected.
  • the shape of the at least one fixing unit may include regular or irregular patterns such as hexagons, squares, circles, triangles, etc.
  • the shape of the at least one heating unit 1212 may also include regular patterns or irregular patterns such as hexagons, squares, circles, triangles, etc. More descriptions about the at least one fixing unit and the at least one heating unit 1212 can be found elsewhere in this specification (for example, FIG. 4, FIG. 5 and the description).
  • the temperature compensation component 1210 may further include at least one first electrode 1213, at least one second electrode 1211, and an electrode fixing plate 1215.
  • the electrode fixing plate 1215 can be used to fix the first electrode 1213 and the second electrode 1211.
  • the materials of the first electrode 1213 and the second electrode 1211 may be the same or different.
  • the first electrode 1213 and the second electrode 1211 may both be low-resistance graphite electrodes.
  • the shapes of the first electrode 1213 and the second electrode 1211 may be the same or different.
  • the first electrode 1213 and the second electrode 1211 may both be cylindrical electrodes.
  • the diameter of the first electrode 1213 may be smaller than that of the second electrode 1211. diameter of.
  • the first electrode 1213 and the second electrode 1211 may be connected to a power source (for example, a direct current power source) through wires (for example, a copper wire 1214).
  • the electrode fixing plate 1215 may be made of a heat-insulating material or a heat-insulating material. In some embodiments, the electrode fixing plate 1215 may be a zirconia ceramic plate.
  • the electrode fixing plate 1215 may include at least one first hole 1215-1 and at least one second hole 1215-2 (as shown in FIG. 7), and the at least one first electrode 1213 passes through the at least one first hole. 1215-1 is fixed on at least one heating unit 132, and at least one second electrode 1211 passes through at least one second hole 1215-2 and is fixed on the upper or lower surface of the growth chamber 110. Correspondingly, the first electrode 1213, the at least one heating unit 1212, the upper or lower surface of the growth chamber 110, and the power source form a current path for heating the at least one heating unit 1212.
  • the electrode fixing plate 1215 may further include at least two temperature measuring holes 1215-3, which are located between the radially adjacent first holes 1215-1 or within the setting range of the at least one second hole 1215-2 .
  • the temperature at the at least one heating unit 1212 or the temperature at the outer periphery of the upper or lower surface of the growth chamber 110 can be measured through the at least two temperature measuring holes 1215-3. More descriptions about the at least two temperature measuring holes 1215-3 can be found elsewhere in this specification (for example, FIG. 7 and its description).
  • the crystal preparation apparatus 100 may further include a control component for adjusting parameters of the at least one heating unit 1212 (for example, the number, shape, size, arrangement, and arrangement of the at least one heating unit 1212) based on at least one reference parameter. Current, heating power), so that the radial temperature gradient of the upper surface or the lower surface of the growth chamber 110 does not exceed a preset radial temperature gradient threshold (for example, 0.5° C./cm).
  • the preset radial temperature gradient threshold may be a system default value, or it may be adjusted according to different situations. In some embodiments, when preparing different crystals, the preset radial temperature gradient threshold may be different accordingly.
  • the at least one reference parameter may include crystal type, seed crystal size or shape, temperature information related to the growth cavity 110 during crystal growth, and the like.
  • silicon carbide crystals have three crystal types: close-packed hexagonal structure, cubic structure, and rhombohedral structure.
  • Silicon carbide crystals can include 3C-SiC, 4H-SiC, 6H-SiC, 15R-SiC, etc., where 3C-SiC has a cubic structure, 4H-SiC has a close-packed hexagonal structure, 6H-SiC has a close-packed hexagonal structure, and 15R -SiC is a rhombohedral structure.
  • the parameters of at least one heating unit 1212 can be adjusted to make the radial temperature gradient distribution of the inner surface area of the growth cavity cover 111 suitable for the growth of the silicon carbide crystal type.
  • the size or shape of the seed crystal may be correspondingly different.
  • the parameters of at least one heating unit 1212 can be adjusted so that the radial temperature gradient distribution of the inner surface area of the growth chamber cover 111 is suitable for the growth of seed crystals of this size or shape. Quality crystals.
  • the temperature information related to the growth cavity 110 during the crystal growth process may include the first temperature at the at least one heating unit 1212 and the second temperature at the outer periphery of the upper or lower surface of the growth cavity 110.
  • the temperature compensation component 1210 on the upper surface of the growth chamber 110 as an example, at least one heating unit 1212 may be arranged radially on the outer side of the growth chamber cover 111 (that is, the growth chamber 110) with the center of the growth chamber cover 111 as the center. Upper surface) on.
  • the first temperature may include at least one temperature distributed radially on the upper surface of the growth cavity 110 (also may be referred to as "at least one first temperature").
  • the first heating element 1220 heats the growth cavity 110
  • the heat is gradually reduced in the direction from the outer circumference of the growth cavity 110 to the central axis of the growth cavity 110 on the same horizontal plane.
  • the temperature of the outer periphery of the growth cavity 110 must be greater than the temperature inside the growth cavity 110, that is, the second temperature is greater than the first temperature.
  • the difference (or radial temperature difference) between the first temperature and the second temperature is too large, the radial temperature distribution at this time is not conducive to crystal growth.
  • control component may compare the difference between the at least one first temperature and the second temperature, and adjust the parameter of the at least one heating unit 1212, so that the radial temperature difference on the growth chamber cover 111 does not exceed the preset diameter.
  • the heating power of at least one heating unit located in the central area of the growth cavity 110 can be increased to increase the compensation heat in the central area of the growth cavity 110, increase the first temperature, and decrease the first temperature and the second temperature. The difference (or the radial temperature difference) between the two makes the radial temperature difference on the growth chamber cover 111 smaller than the preset radial temperature difference threshold.
  • the control component may include at least one temperature sensing unit (not shown) for measuring the first temperature and the second temperature.
  • the at least one temperature sensing unit may include a thermometer (for example, an infrared thermometer).
  • at least one temperature sensing unit can measure the first temperature and the second temperature through at least two temperature measurement holes 1215-3 on the temperature compensation component. As mentioned above, at least two temperature measuring holes 1215-3 are located between radially adjacent first holes, and at least one first hole corresponds to at least one heating unit 1212, so the temperature sensing unit can pass through the temperature measuring hole The first temperature at at least one heating unit 1212 is measured.
  • the at least two temperature measuring holes are also located within the setting range (for example, 2 cm) of the at least one second hole, so the temperature sensing unit can measure the second temperature at the outer periphery of the upper surface of the growth chamber through the temperature measuring hole .
  • the setting range may refer to the distance between the centers of at least two temperature measuring holes and the center of at least one second hole.
  • the setting range may be 1 cm-5 cm.
  • the setting range may be 1.5 cm-4.5 cm.
  • the setting range may be 2cm-4cm.
  • the setting range may be 2.5 cm-3.5 cm.
  • the setting range may be 2.8 cm-3.2 cm.
  • Fig. 4 is a top view of an exemplary heating unit arrangement shown in some embodiments
  • Fig. 5 is a top view of an exemplary heating unit arrangement shown in other embodiments.
  • the fixing frame 1216 includes at least one fixing unit for placing at least one heating unit 1212.
  • the fixing frame 1216 can be formed by connecting seven hollow regular hexagon fixing units. Accordingly, the shape of the heating unit 1212 is also a regular hexagon.
  • the fixing frame 1216 can be formed by connecting 9 hollow square fixing units.
  • the shape of the heating unit 1212 is also a square.
  • the number of at least one fixed unit arranged on the growth chamber 110 can be appropriately increased or decreased according to the area of the upper surface or the lower surface of the growth chamber 110.
  • FIG. 6 is a schematic diagram of an exemplary first electrode and an exemplary second electrode shown in some embodiments
  • FIG. 7 is a top view of an exemplary electrode fixing plate shown in some embodiments.
  • At least one first electrode 1213 passes through at least one first hole 1215-1 and is fixed on at least one heating unit 1212, and at least one second electrode 1211 passes through at least one second hole 1215-2. It is fixed on the upper surface or the lower surface of the growth chamber 110.
  • the shapes of the first electrode 1213 and the second electrode 1211 may be the same or different.
  • the first electrode 1213 and the second electrode 1211 may both be cylindrical electrodes, and the diameter of the first electrode 1213 may be smaller than the diameter of the second electrode 1211.
  • the first electrode 1213 and the second electrode 1211 may be connected to a power source (e.g., a direct current power source) through wires (e.g., a copper wire 1214).
  • a power source e.g., a direct current power source
  • wires e.g., a copper wire 1214.
  • the electrode fixing plate 1215 may further include at least two temperature measuring holes 1215-3, and at least one temperature sensing unit may measure the first temperature at the at least one heating unit 1212 and the growth chamber through the at least two temperature measuring holes 1215-3. 110 The second temperature at the outer periphery of the upper or lower surface. As shown in FIG. 7, at least two temperature measuring holes 1215-3 may be located between radially adjacent first holes 1215-1 or within a setting range of at least one second hole 1215-2.
  • the shape of the temperature measuring hole 1215-3 can be a regular pattern or an irregular pattern such as a circle, a square, a polygon, and the like.
  • At least one temperature sensing unit can pass through at least two temperature measuring holes 1215-3 to measure the first temperature at the at least one heating unit 1212 and the first temperature at the outer periphery of the upper or lower surface of the growth chamber 110. Two temperatures, so as to obtain the temperature distribution on the upper surface or the lower surface of the growth chamber 110.
  • the control component may adjust the parameters of the at least one heating unit 1212 (for example, the number, shape, size, arrangement, current, heating power of the at least one heating unit 1212) based on at least the first temperature and the second temperature, so that the growth
  • the radial temperature gradient of the upper surface or the lower surface of the cavity 110 is smaller than a preset threshold.
  • the number of at least one heating unit 1212 is 7 and the arrangement is as shown in FIG.
  • the unit 1212 further, four second electrodes 1211 are placed on the outer periphery of the upper or lower surface of the growth chamber 110, and the four second electrodes 1211 are fixed on the upper surface of the growth chamber 110 through the four second holes 1215-2 Or the lower surface.
  • the six first temperatures T1, T2, T3, T4, T5, and T6 at the at least one heating unit 1212 are sequentially detected by using an infrared thermometer through the temperature measuring hole 1215-3.
  • the four second temperatures P1, P2, P3, and P4 at the outer periphery of the upper surface or the lower surface of the growth cavity 110 are sequentially detected by an infrared thermometer through the temperature measuring hole 1215-3. If at least one of the four second temperatures is less than or greater than the preset temperature P, and/or if at least one of the six first temperatures is less than or greater than the preset temperature T, adjust the parameters of at least one heating unit 1212 (eg , Increase the heating power of at least one heating unit 1212 or reduce the heating power of at least one heating unit 1212) until the 4 second temperatures are equal to the preset temperature P and/or the 6 first temperatures are equal to the preset temperature T, where the preset Assuming that the temperature T is less than the preset temperature P, the temperature difference between the preset temperature T and the preset temperature P is less than a preset threshold (for example, 10K).
  • a preset threshold for example, 10K
  • the average temperature of 4 second temperatures can be calculated Then the average temperature Compare with the 6 first temperatures, if at least one of the 6 first temperatures is greater than the average temperature Or if at least one of the 6 first temperatures is less than the average temperature And the temperature difference is greater than the preset threshold, it is based on the average temperature Adjust the parameters of at least one heating unit 1212 (for example, increase the heating power of at least one heating unit 1212 or decrease the heating power of at least one heating unit 1212) until the six first temperatures are less than the average temperature And the temperature difference is less than a preset threshold (for example, 10K).
  • a preset threshold for example, 10K
  • the possible beneficial effects of these embodiments include but are not limited to: (1) By mounting the temperature compensation component on the upper surface of the growth chamber, the radial temperature on the inner surface of the growth chamber cover caused by the heating of the induction coil can be reduced. Gradient, thereby reducing defects caused by the stress on the crystal growth surface, reducing or avoiding corrosion defects on the back of the crystal, thereby improving the quality and yield of the crystal; (2) By installing the temperature compensation component on the lower surface of the growth chamber, the The radial temperature gradient of the source material covered area caused by the heating of the induction coil, thereby improving the uniformity of the radial temperature distribution, improving the uniformity of the radial distribution of the molar ratio of the sublimation gas phase component, and promoting the stable growth of the crystal; (3) According to the growth The size of the upper or lower surface of the cavity, the type of crystal to be grown, the size or shape of the seed crystal, and/or the temperature distribution in the growth cavity, etc., can flexibly adjust the parameters of the heating unit in the temperature compensation assembly,
  • Fig. 8 is a schematic diagram of an exemplary crystal preparation apparatus shown in some examples.
  • the crystal preparation device 100 may prepare semiconductor crystals (for example, silicon carbide crystals, aluminum nitride crystals, zinc oxide crystals, zinc antimonide crystals) based on a physical vapor transmission method.
  • the crystal preparation apparatus 100 may include a growth chamber 110 and a heating assembly.
  • the growth cavity 110 may be used to place the seed crystal 150 and the source material 160.
  • the growth chamber 110 may include a growth chamber cover 111 and a growth chamber main body 112, wherein the growth chamber cover 111 is located at the top of the growth chamber and is used to close the top opening of the growth chamber main body 112.
  • the growth chamber 110 may be a crucible, and the crucible may include a crucible cover and a crucible body.
  • the shape of the growth chamber body 112 may be a cylinder, a rectangular parallelepiped, a cube, or the like.
  • the shape of the growth chamber body 112 may be a cylindrical barrel, which includes a barrel bottom and a barrel side wall.
  • the shape of the growth chamber cover 111 may be a circular disk, a rectangular disk, a square disk, or the like.
  • the material of the growth chamber 110 may include graphite. In some embodiments, the material of the growth chamber 110 may be graphite in whole or in part.
  • the seed crystal 150 may be placed on the top of the growth chamber 110. In some embodiments, the seed crystal 150 may be fixedly bonded to the inner surface (also referred to as the “lower surface”) of the growth chamber cover 111 (for example, at the center of the inner surface). In some embodiments, the seed crystal 150 may be fixed on the growth chamber cover 111 by an adhesive.
  • the adhesive may include, but is not limited to, epoxy resin glue, AB glue, phenol resin glue, sugar glue and the like.
  • the source material 160 may be placed at the bottom of the growth chamber 110. In some embodiments, the source material 160 may be placed in the growth chamber body 112 (for example, the lower part of the chamber).
  • the source material 160 may be powdered, granular, lumpy, or the like.
  • the heating environment of the growth cavity 110 can be controlled to form an axial temperature gradient between the source material 160 and the seed crystal 150.
  • the source material 160 can be decomposed and sublimated into gas phase components when heated (for example, taking the preparation of silicon carbide crystals as an example, the gas phase components include Si 2 C, SiC 2 , Si).
  • the gas phase components change from The surface of the source material 160 is transferred to the surface of the seed crystal 150. Since the temperature of the seed crystal 150 is relatively low, the gas phase components crystallize on the surface of the seed crystal 150 to form crystals.
  • the heating element may be used to heat the growth chamber 110.
  • the heating element may be located outside the growth chamber 110.
  • the heating element may be arranged around the outer periphery of the growth chamber 110.
  • the heating element may be used to provide at least part of the heat required for crystal growth.
  • the heating element generates heat under the action of electric current, and transfers the heat to the growth cavity 110 by means of heat radiation, so that the heat is conducted from the outer peripheral area of the growth cavity 110 to the central area of the growth cavity 110 , To form a temperature field. Under the action of the temperature field in the growth chamber 110, the source material 160 is sublimated and decomposed into gas phase components, and the gas phase components are transported to the surface of the seed crystal 150 to be crystallized under the driving action of the axial temperature gradient.
  • the heating component may include a resistive heating element.
  • the resistive heating element may include a high-resistance graphite heating element, a tungsten heating element, a molybdenum heating element, a zirconium diboride composite ceramic heating element, and the like.
  • the shape of the resistive heating element may be a circular ring, a square ring, a rectangular ring, or the like.
  • an induction coil is usually placed outside the growth chamber to heat the growth chamber. At this time, heat is conducted from the outer peripheral area of the growth chamber to the central area of the growth chamber, making the outer peripheral area a relatively high temperature area.
  • the central area is a relatively low temperature area, and the closer to the central area, the lower the temperature, resulting in a larger radial temperature difference or radial temperature gradient inside the growth chamber.
  • the difference for example, the surface roughness, density, or thickness, etc.
  • the temperature distribution inside the cavity 110 is not uniform.
  • this large radial temperature difference and/or radial temperature gradient will cause a large thermal stress on the crystal growth surface Even the crystal growth surface is seriously convex toward the source material, and defects such as microtubules and inclusions are prone to occur; for the source material area of the growth cavity (for example, the area covered by the source material), this large radial temperature difference and /Or the radial temperature gradient will cause the molar ratio of the sublimated gas phase components of the source material to be unevenly distributed along the radial direction, which will affect the crystal quality. Therefore, it is necessary to reduce this radial temperature difference and/or radial temperature gradient. Compared with heating by an induction coil, heating the growth cavity 110 through a resistive heating element can effectively reduce the radial temperature difference and/or radial temperature gradient inside the growth cavity 110 and improve the stability of the crystal growth temperature field. .
  • the resistive heating element may include at least three heating modules for heating the crystallization area of the growth cavity 110, the source material area of the growth cavity 110, and the vapor transmission between the crystallization area and the source material area. area.
  • the crystallization area is located in the upper area of the growth cavity 110.
  • the crystalline area may refer to an area within a setting range of the seed crystal 150.
  • the source material area is located in the lower area of the growth chamber 110.
  • the source material area may refer to an area within a setting range of the source material 160.
  • the vapor phase transport area is located in the middle area of the growth chamber 110.
  • the vapor phase transport region may refer to the region between the crystalline region and the source material region.
  • the source material 160 located in the source material area is thermally decomposed and sublimated into a gas phase component.
  • the gas phase component is driven by the axial temperature gradient to transfer the gas phase component to the seed crystal in the crystallization area through the gas phase transport area. 150, and then crystallize on the surface of the seed crystal 150 to generate crystals.
  • the at least three heating modules may include a first heating module 1230-1, a second heating module 1230-2, and a third heating module 1230-3, which are used to heat the crystallization area and the crystallization area of the growth chamber 110, respectively.
  • the number of heating modules can be flexibly increased or decreased according to actual needs.
  • at least one parameter (for example, current, heating power) of each of the at least three heating modules can be individually controlled.
  • the heating power of the first heating module 1230-1 is less than the heating power of the second heating module 1230-2, and the second heating module 1230-2 The heating power of is less than the heating power of the third heating module 1230-3.
  • by individually controlling the heating power of each of the at least three heating modules at different positions in the axial direction it is convenient to adjust the axial temperature gradient distribution during the crystal growth process.
  • resistive heating element please refer to Figures 9-12 and related descriptions, which will not be repeated here.
  • the crystal preparation device 100 may further include a heat preservation layer.
  • the heat preservation layer can be used to heat the growth chamber 110 and/or the heating component.
  • the thermal insulation layer can be made of any thermal insulation material.
  • the thermal insulation layer may include graphite felt, zirconia ceramics, and the like.
  • the thermal insulation layer may be located outside the heating component.
  • the heat preservation layer may be arranged around the outside of the heating component.
  • the number of layers and thickness of the thermal insulation layer and the spacing distance between the heating components can be set according to actual needs.
  • the thickness of the graphite felt may be 10-40 mm.
  • the insulation layer and the heat preservation layer can be adjusted adaptively according to the size of the growth cavity 110, the type of crystal to be grown, the heating power of the resistance heating element, and the temperature information related to the growth cavity 110 during the crystal growth process.
  • the separation distance between heating components when the heating power of the resistance heating element makes the radial temperature difference of the growth cavity 110 greater than the preset radial temperature difference threshold, the distance between the heat preservation layer and the heating element can be shortened.
  • the growth cavity 110 can be made And/or the temperature of the heating component is not easy to lose, which promotes the stable growth of crystals. If the number of layers of the insulation layer is too small or the thickness is too small, the heat is easily lost, resulting in unstable temperature field, which is not conducive to crystal growth. Too many layers or too thick of the heat preservation layer, the cost of the crystal preparation device is too high. Therefore, it is necessary to control the number and thickness of the insulation layer within a set range to stabilize the temperature field.
  • the parameters of the heat preservation layer for example, the number of layers, thickness, and the separation distance from the growth cavity 110
  • the number of layers of the thermal insulation layer 130 may include 2-10 layers. In some embodiments, the number of layers of the thermal insulation layer 130 may include 3-9 layers. In some embodiments, the number of layers of the thermal insulation layer 130 may include 4-8 layers. In some embodiments, the number of layers of the thermal insulation layer 130 may include 5-7 layers. In some embodiments, the number of layers of the thermal insulation layer 130 may include 6 layers. In some embodiments, the thickness of the thermal insulation layer 130 may be in the range of 1 mm-50 mm. In some embodiments, the thickness of the thermal insulation layer 130 may be in the range of 3 mm-48 mm. In some embodiments, the thickness of the thermal insulation layer 130 may be in the range of 5 mm-45 mm.
  • the thickness of the thermal insulation layer 130 may be in the range of 8 mm-42 mm. In some embodiments, the thickness of the thermal insulation layer 130 may be in the range of 10 mm-40 mm. In some embodiments, the thickness of the thermal insulation layer 130 may be in the range of 15 mm-35 mm. In some embodiments, the thickness of the thermal insulation layer 130 may be in the range of 20 mm-30 mm. In some embodiments, the thickness of the thermal insulation layer 130 may be in the range of 23mm-28mm. In some embodiments, the distance between the insulation layer 130 and the heating element may be in the range of 1 mm-20 mm. In some embodiments, the distance between the thermal insulation layer 130 and the heating element may be in the range of 2mm-18mm.
  • the distance between the insulation layer 130 and the heating element may be in the range of 3 mm-16 mm. In some embodiments, the distance between the thermal insulation layer 130 and the heating element may be in the range of 4mm-14mm. In some embodiments, the distance between the thermal insulation layer 130 and the heating element may be in the range of 5mm-12mm. In some embodiments, the distance between the thermal insulation layer 130 and the heating element may be in the range of 6mm-11mm. In some embodiments, the distance between the thermal insulation layer 130 and the heating element may be in the range of 7mm-10mm. In some embodiments, the distance between the thermal insulation layer 130 and the heating component may be in the range of 8 mm-9 mm.
  • the heating assembly may further include a temperature compensation assembly 1210.
  • the temperature compensation component 1210 can be used to provide temperature compensation during the crystal growth process. Heating the growth cavity 110 by the resistance heating element can effectively reduce the radial temperature difference and/or the radial temperature gradient inside the growth cavity 110. In order to promote the stable growth of crystals, the temperature compensation component 1210 can also provide temperature compensation to further reduce the radial temperature difference and/or the radial temperature gradient.
  • the temperature compensation component 1210 may include a first temperature compensation component 1210-1 and/or a second temperature compensation component 1210-2. In some embodiments, the temperature compensation component 1210 may be located on the upper surface of the growth chamber 110 and/or the lower surface of the growth chamber 110. In some embodiments, the first temperature compensation component 1210-1 may be located near the center of the upper surface of the growth chamber 110, and the second temperature compensation component 1210-2 may be located near the center of the lower surface of the growth chamber 110. In some embodiments, the material of the temperature compensation component 1210 may be a material with high thermal conductivity. In some embodiments, the temperature compensation component 1210 may be a high thermal conductivity graphite body.
  • the shape of the temperature compensation component 1210 may be a disc shape, a cube disc, a rectangular parallelepiped disc, or the like.
  • the high thermal conductivity graphite body (for example, the first temperature compensation component 1210-1) may be located at the center of the upper surface of the growth chamber 110, and the high thermal conductivity graphite body The outer peripheral area of the lower surface of the growth chamber 110 is in contact with the outer peripheral area of the upper surface of the growth chamber 110, so that the heat at the outer peripheral area of the upper surface of the growth chamber 110 can be conducted to the central area of the upper surface of the growth chamber 110, thereby reducing the growth chamber 110.
  • the radial temperature difference and/or radial temperature gradient of the crystallization area (for example, the inner surface of the growth chamber cover where the seed crystal is placed); the high thermal conductivity graphite body (for example, the second temperature compensation component 1210-2) may be located in the growth chamber At the center of the lower surface of the body 110, the outer peripheral area of the upper surface of the high thermal conductivity graphite body is in contact with the outer peripheral area of the lower surface of the growth chamber 110, so that the heat at the outer peripheral area of the lower surface of the growth chamber 110 can be conducted to the growth chamber.
  • the central area of the lower surface of the cavity 110 reduces the radial temperature difference and/or the radial temperature gradient of the source material area of the growth cavity 110 (for example, the source material coverage area), and improves the uniformity of the heat of the source material area.
  • the temperature compensation component 1210 or the first temperature compensation component 1210-1 and the second temperature compensation component 1210-2
  • FIGS. 3 to 6 and related descriptions which will not be repeated here.
  • the crystal preparation apparatus 100 may further include a control component (not shown) for adjusting the heating power of the heating component and/or the temperature compensation component 1210 based on at least one crystal growth parameter, so that the crystal growth interface and the source The temperature field between the materials remains basically stable.
  • the at least one crystal growth parameter may include the amount of source material, the crystal growth size, the height difference between the crystal growth interface and the source material, and the like.
  • the heating power of the heating component and/or temperature compensation component 1210 can be adjusted so that the axis in the growth chamber 110
  • the temperature gradient distribution, the radial temperature gradient distribution of the crystalline region and/or the source material region in the growth cavity 110 are suitable for the growth of crystals in different growth stages.
  • the heating power of the heating assembly and/or temperature compensation assembly 1210 can be adjusted to make the axial temperature gradient distribution and growth in the growth cavity 110
  • the radial temperature gradient distribution of the crystalline region and/or the source material region in the cavity 110 is suitable for the growth of crystals of different sizes.
  • each of the at least three heating units may include at least one sub-heating unit. In some embodiments, at least one sub-heating unit may be separated by at least two electrodes. In some embodiments, each of the at least two electrodes can be connected to the power supply through a wire, so that each sub-heating unit, electrode, wire, and power supply can form a current loop, and further enable at least one parameter in each sub-heating unit ( For example, current or heating power, etc.) can be individually controlled.
  • the resistive heating element may include a plurality of heating sections, and the plurality of heating sections are connected to each other through a plurality of electrodes and arranged around the outer periphery of the growth chamber 110.
  • Fig. 9 is a schematic diagram of an exemplary resistive heating element according to some embodiments.
  • the resistance heating element may include at least a first heating module 1230-1, a second heating module 1230-2, and a third heating module 1230-3, which are used to heat the crystallization area and the crystallization area of the growth cavity 110, respectively.
  • the gas phase transport area and the source material area between the area and the source material area.
  • each heating module may include a plurality of sub-resistance heating elements.
  • the first heating module 1230-1 may include a first sub-resistance heating element 1230-11, a second sub-resistance heating element 1230-12, a third sub-resistance heating element 1230-13, and a fourth sub-resistance heating element 1230-11.
  • Sub-resistance heating element 1230-14; the second heating module 1230-2 may include a fifth sub-resistance heating element 1230-21, a sixth sub-resistance heating element 1230-22, and a seventh sub-resistance heating element 1230-23 ;
  • the third heating module 1230-3 may include the eighth sub-resistance heating element 1230-31, the ninth sub-resistance heating element 1230-32, the tenth sub-resistance heating element 1230-33, and the eleventh sub-resistance heating element Body 1230-34, twelfth sub-resistance heating element 1230-35, thirteenth sub-resistance heating element 1230-36, fourteenth sub-resistance heating element 1230-37, fifteenth sub-resistance heating element 1230 -38 and the sixteenth sub-resistance heating element 1230-39.
  • the heating power of the first heating module 1230-1, the second heating module 1230-2, and the third heating module 1230-3 can be individually controlled. In some embodiments, the heating power of the multiple sub-resistance heating elements in each heating module can be individually controlled.
  • the heating power of the multiple sub-resistance heating elements in each heating module can be individually controlled.
  • the temperature at the first sub-resistive heating element 1230-11 is 2010°C
  • the temperature at the second sub-resistive heating element 1230-12 is 2020°C
  • the third sub-resistive heating element is 2020°C.
  • the temperature at the heating element 1230-13 is 2030°C
  • the temperature at the fourth sub-resistance heating element 1230-14 is 2040°C
  • the temperature at the fifth sub-resistance heating element 1230-21 is 2050°C
  • the sixth sub-resistor The temperature at the heating element 1230-22 is 2060°C
  • the temperature at the seventh sub-resistance heating element 1230-23 is 2070°C
  • the temperature of -39 is 2080°C.
  • the crystal growth interface reaches the level of the fifth sub-resistive heating element 1230-21 and the upper surface of the source material is consumed to the level of the ninth sub-resistive heating element 1230-32, adjust the first sub-resistive heating element 1230-11 respectively
  • the heating power to the eighth sub-resistance heating element 1230-31 reduces the temperature of the first sub-resistance heating element 1230-11 to 2000°C and the second sub-resistance heating element 1230-12 to 2010 °C, the temperature of the third sub-resistance heating element 1230-13 is reduced to 2020 °C, and the temperature of the fourth sub-resistance heating element 1230-14 is reduced to 2030 °C, so that the fifth sub-resistance heating element 1230
  • the temperature at -21 is reduced to 2040°C
  • the temperature at 1230-22 of the sixth sub-resistance heating element is reduced to 2050°C
  • the temperature at 1230-23 of the seventh sub-resistance heating element is reduced to
  • the heating power is adjusted so that the axial temperature gradient distribution between the crystal growth interface and the source material 160 remains basically stable.
  • the heating power of the first temperature compensation component 1210-1 located on the upper surface of the growth cavity 110 needs to be correspondingly reduced, and the second temperature compensation component 1210-2 located on the lower surface of the growth cavity 110 needs to be heated. The power remains the same.
  • FIG. 10 is a top view of an exemplary first electrode and an exemplary second electrode arrangement shown in some embodiments
  • FIG. 11 is a top view of an exemplary first electrode and an exemplary second electrode arrangement shown in some embodiments.
  • the heating assembly may further include at least one first electrode 1213 (for example, a positive electrode) and at least one second electrode 1211 (for example, a negative electrode), at least one first electrode 1213 and at least one second electrode 1211 Distributed along the outer circumferential direction of the resistance heating element 1230.
  • the at least one first electrode 1213 and the at least one second electrode 1211 may be connected to a power source (for example, a direct current power source) through a wire (for example, a water-cooled copper wire).
  • a power source for example, a direct current power source
  • a wire for example, a water-cooled copper wire
  • the at least one first electrode 1213, the at least one second electrode 1211, the resistance heating element 1230, the wire and the power supply form a current path for heating the resistance heating element 1230.
  • the resistive heating element 1230 may be a circular ring, a square ring, a rectangular ring, or the like.
  • at least one first electrode 1213 and at least one second electrode 1211 may be distributed along the circumferential direction of the ring.
  • the materials of the at least one first electrode 1213 and the at least one second electrode 1211 may be the same or different.
  • the at least one first electrode 1213 and the at least one second electrode 1211 may both be low-resistance graphite electrodes.
  • the at least one first electrode 1213 and the at least one second electrode 1211 may be uniformly or non-uniformly distributed on the outer circumference of the resistive heating element 1230.
  • At least one first electrode 1213 and at least one second electrode 1211 can divide the resistive heating element 1230 into multiple heating sections, and the heating power of the multiple heating sections can be individually controlled.
  • the sum of the numbers of at least one first electrode 1213 and at least one second electrode 1211 is an even number.
  • the number of at least one first electrode 1213 and at least one second electrode 1211 can be adjusted according to actual needs. The greater the number of electrodes arranged on the resistance heating element 1230, the higher the control accuracy of the heating power of the resistance heating element 1230.
  • the resistive heating element 1230 may include M first electrodes 1213 and N second electrodes 1211. Wherein, both M and N are integers greater than zero. In some embodiments, M and N may be equal. In some embodiments, the sum of the numbers of the first electrode 1213 and the second electrode 1211 may be an even number.
  • the shape of the resistance heating element 1230 can be a circular ring, two first electrodes 1213 (positive electrodes) and two second electrodes 1211 (negative electrodes) are distributed along the outer circumference of the resistance heating element 1230, The first electrode 1213 and the second electrode 1211 are arranged at equal intervals, and the resistance heating element 1230 is evenly divided into 4 heating sections, wherein the heating power of each heating section can be individually controlled. As shown in FIG.
  • the shape of the resistance heating element 1230 can be a square ring, two first electrodes 1213 (positive electrodes) and two second electrodes 1211 (negative electrodes) are distributed along the outer circumference of the resistance heating element 1230, The first electrode 1213 and the second electrode 1211 are arranged at equal intervals, and the resistance heating element 1230 is evenly divided into 4 heating sections, wherein the heating power of each heating section can be individually controlled.
  • the resistance heating element 1230 may include at least three heating modules, and each of the at least three heating modules may include a plurality of sub-resistance heating elements.
  • at least one first electrode and at least one second electrode may be provided on the plurality of sub-resistive heating elements.
  • the number of first electrodes and second electrodes arranged on them may be the same or different.
  • Fig. 12 is a schematic diagram of an exemplary first electrode and/or an exemplary second electrode shown in some embodiments being fixed to a resistive heating body through a fixing plate.
  • the heating assembly may further include an electrode fixing plate 1215 for fixing at least one first electrode 1213 and/or at least one second electrode 1211.
  • the electrode fixing plate 1215 may include at least two holes 1215-4.
  • at least one first electrode 1213 may pass through one of the at least two holes and be fixed on the outside of the resistive heating element 1230, and at least one second electrode 1211 may pass through the other of the at least two holes.
  • a hole is fixed on the outside of the resistance heating element 1230.
  • the electrode fixing plate 1215 may be made of a heat-insulating material or a heat-insulating material.
  • the electrode fixing plate 1215 may be a zirconia ceramic plate.
  • This embodiment may bring include, but are not limited to: (1) Heating the growth cavity by a resistive heating element can effectively reduce the radial temperature gradient inside the growth cavity and improve the stability of the crystal growth temperature field. (2) By installing the temperature compensation component on the upper surface of the growth chamber, the radial temperature gradient existing on the inner surface of the growth chamber cover can be further reduced, thereby reducing defects caused by the stress on the crystal growth surface, and reducing or avoiding the back surface of the crystal (3) By installing the temperature compensation component on the lower surface of the growth chamber, the radial temperature gradient in the area covered by the source material can be further reduced, thereby improving the radial temperature distribution.
  • the number of heating modules can be flexibly increased or reduced, and the heating power of multiple heating modules can be controlled separately , It is convenient to adjust the axial temperature gradient in the process of crystal growth to meet the requirements of crystal growth; (5) The heating power of the sub-resistance heating element contained in each heating module can be individually controlled, and the heating of multiple heating sections can be individually controlled Power can accurately control the axial temperature gradient.
  • Fig. 13 is a schematic diagram of exemplary crystal preparation apparatuses shown in other embodiments.
  • the crystal preparation apparatus 100 may include a growth chamber 110 and a heating assembly 120.
  • the growth chamber 110 please refer to FIG. 1 and related descriptions, which will not be repeated here.
  • the heating assembly 120 may include at least one heating unit. At least one heating unit may be used to heat the growth chamber 110 to provide a temperature field required for crystal growth to prepare crystals.
  • the heating element 120 may be located inside the growth chamber 110.
  • the at least one heating unit located inside the growth chamber 110 may be referred to as a second heating component 1240.
  • the number of at least one heating unit in the second heating assembly 1240 may include, but is not limited to, 1, 2, 3, 4, 5, 6, and so on.
  • the shape of at least one heating unit in the second heating assembly 1240 may be the same as the horizontal cross-sectional shape of the growth cavity 110.
  • the growth cavity 110 may be a cylinder, and the shape of at least one heating unit in the second heating assembly 1240 may be a circle. In some embodiments, the growth cavity 110 may be a rectangular parallelepiped or a cube, and the shape of at least one heating unit in the second heating assembly 1240 may be a rectangle or a square.
  • At least one heating unit in the second heating assembly 1240 may be distributed inside the growth cavity 110 at intervals along the axial direction of the growth cavity 110. In some embodiments, the distance between two adjacent heating units may be equal or unequal. In some embodiments, the distance may refer to the distance in the axial direction.
  • the material of the at least one heating unit may include, but is not limited to, a high-resistance heat-generating material. In some embodiments, the at least one heating unit may be at least one high-resistance graphite plate. After the at least one high-resistance graphite plate is energized, the heat energy generated by the Joule effect of the current flowing through the at least one high-resistance graphite plate can be used to heat the growth chamber 110.
  • each heating unit of the at least one heating unit may be detachably connected to the growth chamber 110.
  • at least one first connecting member may be provided inside the growth chamber 110
  • at least one second connecting member may be provided on each heating unit of the at least one heating unit
  • at least one first connecting member and at least one The second connecting member may be detachably connected, so that at least one heating unit can be installed and fixed inside the growth chamber 110 and/or at least one heating unit can be detached from the inside of the growth chamber 110.
  • the at least one first connecting member may include a bolt hole
  • the at least one second connecting member may include a bolt matching the bolt hole.
  • the at least one first connecting member may include a hook
  • the at least one second connecting member may include a hanging hole matching the hook.
  • the heating unit located inside the growth chamber needs to meet the set strength to ensure that the source material is distributed on the upper surface of the heating unit, the heating unit will not be deformed, and the uniform stability of the temperature field can be ensured.
  • the thickness of the heating unit can be adjusted according to the different materials of the heating unit.
  • the thickness of the heating unit made of graphite may not be less than the thickness of the heating unit made of metal (for example, tungsten, platinum, molybdenum, tantalum, or iridium).
  • the heating unit may generate a small amount of heat, which in turn causes the temperature field formed by the heating assembly to fail to satisfy crystal growth. Due to the fixed space of the growth chamber, the thickness of the heating unit is too large, which not only reduces the mass of the source material placed on the upper surface of the heating unit, but also causes the height of the circulation channel on the heating unit to increase, which in turn leads to the gas phase components produced by the sublimation of the source material The resistance through the heating unit to the lower surface of the seed crystal increases, which in turn affects the crystal growth rate and crystal quality. Therefore, the thickness of the heating unit needs to be controlled within a preset range.
  • the thickness of at least one heating unit in the second heating assembly 1240 may be in the range of 2mm-30mm. In some embodiments, the thickness of at least one heating unit in the second heating assembly 1240 may be in the range of 4mm-28mm. In some embodiments, the thickness of at least one heating unit in the second heating assembly 1240 may be in the range of 6mm-26mm. In some embodiments, the thickness of at least one heating unit in the second heating assembly 1240 may be in the range of 8mm-24mm. In some embodiments, the thickness of at least one heating unit in the second heating assembly 1240 may be in the range of 10mm-22mm. In some embodiments, the thickness of at least one heating unit in the second heating assembly 1240 may be in the range of 12mm-20mm.
  • the thickness of at least one heating unit in the second heating assembly 1240 may be in the range of 14 mm-18 mm. In some embodiments, the thickness of at least one heating unit in the second heating assembly 1240 may be in the range of 15mm-17mm. In some embodiments, the thickness of at least one heating unit in the second heating assembly 1240 may be in the range of 15.5 mm-16.5 mm.
  • At least one heating unit in the second heating assembly 1240 may include at least one circulation channel 1250.
  • the at least one circulation channel 1250 may open on the upper surface of the at least one heating unit.
  • at least one circulation channel 1250 may penetrate the heating unit, so that at least one component required for crystal growth is transported from the lower surface of the heating unit to the upper surface of the heating unit, and is further driven by the axial temperature gradient. Transport to the lower surface of the seed crystal to grow the crystal.
  • the at least one component required for crystal growth may be at least one gas phase component generated by thermal decomposition of the source material.
  • high-purity silicon carbide powder can be used as the source material, and the gas-phase components Si, SiC 2 and Si 2 C generated by thermal decomposition of the high-purity silicon carbide powder can be at least one of the components required for crystal growth. point.
  • the number of at least one circulation channel 1250 may be 5, 10, 20, 30, etc.
  • the shape of the at least one circulation channel 1250 may be a regular shape or an irregular shape such as a circle, a triangle, a quadrilateral, a pentagon, a hexagon, and the like.
  • the shape of at least one circulation channel 1250 on one heating unit may be the same or different.
  • the at least one circulation channel 1250 may be arranged in a circle, ring, triangle, quadrilateral, pentagon, hexagon, or the like.
  • the number of at least one circulation channel 1250 on different heating units may be equal or unequal. In some embodiments, in two adjacent heating units, the number of at least one circulation channel 1250 on one heating unit may be 10, and the number of at least one circulation channel 1250 on the other heating unit may be 20. In some embodiments, the shape of at least one circulation channel 1250 on different heating units may be the same or different. In some embodiments, in two adjacent heating units, the shape of at least one circulation channel 1250 on one heating unit may be circular, and the shape of at least one circulation channel 1250 on the other heating unit may be hexagonal. . In some embodiments, the arrangement of at least one circulation channel 1250 on different heating units may be the same or different.
  • At least one circulation channel 1250 on one heating unit may be evenly arranged, and at least one circulation channel 1250 on the other heating unit may be non-uniformly arranged.
  • at least one circulation channel 1250 on two adjacent heating units may be arranged annularly with the center of the heating unit as the center of the circle.
  • the distance between adjacent rings on one heating unit may be equal, and the distance between adjacent rings on another heating unit may not be equal.
  • the distance between adjacent rings can be expressed as the difference between the radii of adjacent rings.
  • the source material may leak from the circulation channel to the bottom of the growth chamber 110, resulting in that the source material 160 cannot be placed on the upper surface of at least one heating unit located in the growth chamber. If the area of a circulation channel is too small, the source material 160 will block the circulation channel, so that the gas phase components obtained by the gasification of the source material 160 cannot reach the seed crystal 150 to grow crystals through the circulation channel. Therefore, the cross-sectional area of a circulation channel needs to be controlled within a certain range. In some embodiments, the cross-sectional area of one flow channel may not be more than 1.5 times the particle size of the source material.
  • the cross-sectional area of one flow channel may not be more than 1.4 times the particle size of the source material. In some embodiments, the cross-sectional area of one flow channel may not be more than 1.3 times the particle size of the source material. In some embodiments, the cross-sectional area of a flow channel may not be greater than 1.2 times the particle size of the source material. In some embodiments, the cross-sectional area of one flow channel may not be greater than 1.1 times the particle size of the source material. In some embodiments, the cross-sectional area of one flow channel may not be greater than 1.0 times the particle size of the source material. In some embodiments, the cross-sectional area of one flow channel may not be less than 1.0 times the particle size of the source material.
  • the cross-sectional area of one flow channel may not be less than 1.1 times the particle size of the source material. In some embodiments, the cross-sectional area of one flow channel may not be less than 1.2 times the particle size of the source material. In some embodiments, the cross-sectional area of one flow channel may not be less than 1.3 times the particle size of the source material. In some embodiments, the cross-sectional area of one flow channel may not be less than 1.4 times the particle size of the source material. In some embodiments, the cross-sectional area of one flow channel may not be less than 1.5 times the particle size of the source material. In some embodiments, the cross-sectional area of one flow channel may be in the range of 1.0-1.5 times the particle size of the source material.
  • the cross-sectional area of a flow channel may be in the range of 1.05-1.45 times the particle size of the source material. In some embodiments, the cross-sectional area of one flow channel may be in the range of 1.1-1.4 times the particle size of the source material. In some embodiments, the cross-sectional area of a flow channel may be in the range of 1.15 to 1.35 times the particle size of the source material. In some embodiments, the cross-sectional area of one flow channel may be in the range of 1.2-1.3 times the particle size of the source material. In some embodiments, the cross-sectional area of a flow channel may be in the range of 1.22-1.28 times the particle size of the source material. In some embodiments, the cross-sectional area of one flow channel may be in the range of 1.24-1.26 times the particle size of the source material.
  • the total opening area of at least one circulation channel on the upper surface of a heating unit is too large, the quality or quantity of the source material placed on the upper surface of a heating unit will be limited, thereby affecting the crystal growth efficiency.
  • the total opening area of at least one circulation channel on the upper surface of a heating unit is too small, which will cause the circulation channel to fail to prevent the graphitized carbon particles from moving to the seed crystal, thereby causing crystal defects. Therefore, the total opening area of at least one circulation channel on the upper surface of a heating unit needs to be controlled within a certain range to prevent graphitized carbon particles from moving to the seed crystal, which can further reduce crystal defects and ensure crystal growth efficiency. .
  • the total opening area of at least one circulation channel on the upper surface of a heating unit may be 20%-60% of the area of a heating unit. In some embodiments, the total opening area of at least one circulation channel on the upper surface of a heating unit may be 25%-55% of the area of a heating unit. In some embodiments, the total opening area of at least one circulation channel on the upper surface of a heating unit may be 30%-50% of the area of a heating unit. In some embodiments, the total opening area of at least one circulation channel on the upper surface of a heating unit may be 35%-45% of the area of a heating unit. In some embodiments, the total opening area of at least one circulation channel on the upper surface of a heating unit may be 38%-42% of the area of a heating unit. In some embodiments, the total opening area of at least one circulation channel on the upper surface of a heating unit may be 40% of the area of a heating unit.
  • the heating element 120 is located inside the growth cavity 110.
  • the growth cavity 110 When the growth cavity 110 is heated, part of the heat energy will be conducted to the outside of the growth cavity 110 through the wall of the growth cavity 110, causing the heating unit to be close to the growth cavity.
  • the temperature of the region of the wall 110 is low, and the temperature of the region of the heating unit far from the wall of the growth cavity 110 is high, thereby forming a radial temperature difference and/or a radial temperature gradient inside the growth cavity 110.
  • the resistance of the at least one heating unit can be adjusted by adjusting the density of the at least one circulation channel 1250 on the at least one heating unit, thereby Adjust the heating power of at least one heating unit.
  • the density of at least one circulation channel 1250 may refer to the number of at least one circulation channel 1250 per unit area.
  • the density of the at least one circulation channel 1250 opening in the central area of the upper surface of the at least one heating unit may be less than that of the at least one circulation channel in the edge area of the at least one heating unit.
  • the at least one edge area of the heating unit may refer to an area on the heating unit close to the edge of the heating unit or an area far from the center of the heating unit.
  • the at least one central area of the heating unit may refer to an area on the heating unit close to the center of the heating unit.
  • the density of the at least one flow channel opening and the density of the at least one flow channel can be used interchangeably.
  • the source material 160 can be placed on the upper surface of at least one heating unit located inside the growth chamber 110.
  • the source material 160 may be used to provide at least one component required for crystal growth.
  • the source material 160 may be decomposed to generate gas phase components under the heating action of at least one heating unit.
  • the gas phase component may be at least one component required for crystal growth.
  • the gas phase components can be transported to the seed crystal 150 through at least one circulation channel on the at least one heating unit driven by the axial temperature gradient.
  • the source material 160 may be powdered, granular, lumpy, or the like.
  • Figure 14 is a schematic diagram of exemplary at least one heating unit shown in some embodiments.
  • the shape of the at least one heating unit 1212 may be circular.
  • the shape of the at least one circulation channel 1250 may be circular.
  • the at least one circulation channel 1250 is arranged circumferentially with the center O of the at least one heating unit 1212 as the center and Rn as the radius.
  • at least one circulation channel 1250 may be arranged in at least one circle.
  • at least one circulation channel 1250 can be arranged in 4 circles.
  • the four circles can be represented as the first circulation channel circumference 1251, the second circulation channel circumference 1252, the third circulation channel circumference 1253, and the first circulation channel circumference 1251, respectively.
  • Four circulation channels have a circumference of 1254.
  • the circumferential arrangement and the annular arrangement can be used interchangeably.
  • the density of at least one circulation channel 1250 may also refer to the number of at least one circulation channel 1250 per unit arc length. In some embodiments, the density of at least one circulation channel 1250 on the circumference of different circulation channels may be equal or unequal.
  • the heating element 120 is located inside the growth cavity 110. When the growth cavity 110 is heated, part of the heat energy will be conducted to the outside of the growth cavity 110 through the wall of the growth cavity 110, causing the heating unit to be close to the growth cavity. The temperature of the region of the wall 110 is low, and the temperature of the region of the heating unit far from the wall of the growth cavity 110 is high, thereby forming a radial temperature difference and/or a radial temperature gradient inside the growth cavity 110.
  • the density of the at least one circulation channel 1250 may gradually increase.
  • the opening density of at least one circulation channel on the first circulation channel circumference 1251 may be less than the opening density of at least one circulation channel on the second circulation channel circumference 1252.
  • the opening density of the at least one circulation channel on the second circulation channel circumference 1252 may be smaller than the opening density of the at least one circulation channel on the third circulation channel circumference 1253.
  • the opening density of at least one circulation channel on the third circulation channel circumference 1253 may be less than the opening density of at least one circulation channel on the fourth circulation channel circumference 1254.
  • the density of the at least one circulation channel 1250 may increase stepwise from the central area of the at least one heating unit to the edge area of the at least one heating unit.
  • the opening density of at least one of the circulation channels on the first circulation channel circumference 1251 and the second circulation channel circumference 1252 may be equal.
  • the opening density of at least one circulation channel on the third circulation channel circumference 1253 and the fourth circulation channel circumference 1254 may be equal.
  • the opening density of the at least one circulation channel on the second circulation channel circumference 1252 may be smaller than the opening density of the at least one circulation channel on the third circulation channel circumference 1253.
  • the radius of at least one circulation channel 1250 may be denoted as r. In some embodiments, the radius of the at least one circulation channel 1250 may be the radius of the inscribed circle or the circumscribed circle of the at least one circulation channel 1250. In some embodiments, when the shape of the at least one circulation channel 1250 is circular, the radius of the at least one circulation channel 1250 is the radius of the circle. In some embodiments, when the shape of the at least one circulation channel 1250 is a regular shape such as a triangle, a quadrilateral, a pentagon or a hexagon, the radius of the at least one circulation channel 1250 is a triangle, a quadrilateral, a pentagon or a hexagon, etc. The radius of the inscribed circle or circumscribed circle of a regular shape.
  • the radius r of the at least one circulation channel 1250 may be in the range of 0.1 mm-1 mm. In some embodiments, the radius r of the at least one circulation channel 1250 may be in the range of 0.2 mm-0.9 mm. In some embodiments, the radius r of the at least one circulation channel 1250 may be in the range of 0.3 mm-0.8 mm. In some embodiments, the radius r of the at least one circulation channel 1250 may be in the range of 0.4mm-0.7mm.
  • the radius r of the at least one circulation channel 1250 may be in the range of 0.5 mm-0.6 mm. In some embodiments, the radius r of the at least one circulation channel 1250 may be 0.1 mm. In some embodiments, the radius r of the at least one circulation channel 1250 may be 0.2 mm. In some embodiments, the radius r of the at least one circulation channel 1250 may be 0.3 mm. In some embodiments, the radius r of the at least one circulation channel 1250 may be 0.4 mm. In some embodiments, the radius r of the at least one circulation channel 1250 may be 0.5 mm. In some embodiments, the radius r of the at least one circulation channel 1250 may be 0.6 mm.
  • the radius r of the at least one circulation channel 1250 may be 0.7 mm. In some embodiments, the radius r of the at least one circulation channel 1250 may be 0.8 mm. In some embodiments, the radius r of the at least one circulation channel 1250 may be 0.9 mm. In some embodiments, the radius r of the at least one circulation channel 1250 may be 1 mm.
  • the center distance between two adjacent circulation channels on the circumference of a circulation channel can be expressed as d.
  • the center distance may be the distance between the geometric center points of two adjacent circulation channels 1250 on the circumference of a circulation channel.
  • the geometric center point of the circulation channel 1250 may refer to the center of the circulation channel.
  • the center spacing of two adjacent circulation channels on the same circulation channel circumference may be equal or unequal.
  • the center distance d of two adjacent circulation channels on the circumference of a circulation channel can be expressed as 3r ⁇ d ⁇ 10r. In some embodiments, the center distance d between two adjacent circulation channels on the circumference of a circulation channel can be expressed as 4r ⁇ d ⁇ 9r. In some embodiments, the center distance d between two adjacent circulation channels on the circumference of a circulation channel can be expressed as 5r ⁇ d ⁇ 8r. In some embodiments, the center distance d between two adjacent circulation channels on the circumference of a circulation channel can be expressed as 6r ⁇ d ⁇ 7r. In some embodiments, the center distance d of two adjacent circulation channels on the circumference of a circulation channel can be expressed as 6.4r ⁇ d ⁇ 6.6r.
  • the center distance between two adjacent circulation channels on the circumference of a circulation channel may be in the range of 1.5mm-2.5mm. In some embodiments, the center distance between two adjacent circulation channels on the circumference of one circulation channel may be in the range of 1.6 mm-2.4 mm. In some embodiments, the center distance between two adjacent circulation channels on the circumference of one circulation channel may be in the range of 1.7 mm-2.3 mm. In some embodiments, the center distance between two adjacent circulation channels on the circumference of a circulation channel may be in the range of 1.8 mm-2.2 mm.
  • the center distance between two adjacent circulation channels on the circumference of one circulation channel may be in the range of 1.9 mm-2.1 mm. In some embodiments, the center distance between two adjacent circulation channels on the circumference of a circulation channel may be in the range of 1.95 mm-2.05 mm. In some embodiments, the center-to-center spacing may be 1.5 mm. In some embodiments, the center-to-center spacing may be 1.6 mm. In some embodiments, the center-to-center spacing may be 1.7 mm. In some embodiments, the center-to-center spacing may be 1.8 mm. In some embodiments, the center-to-center spacing may be 1.9 mm. In some embodiments, the center-to-center spacing may be 2 mm.
  • the center-to-center spacing may be 2.1 mm. In some embodiments, the center-to-center spacing may be 2.2 mm. In some embodiments, the center-to-center spacing may be 2.3 mm. In some embodiments, the center-to-center spacing may be 2.4 mm. In some embodiments, the center-to-center spacing may be 2.5 mm.
  • the number of circulation channel circumferences on a heating unit can be expressed as n.
  • n may be an integer not less than 2.
  • n may be 2, 3, 4, 5, etc.
  • the radius of the circumference of the n-th circulation channel can be expressed as R n .
  • the radius of the (n-1)th circulation channel circumference can be expressed as R n-1 .
  • the radius R n of the circumference of the nth circulation channel may be determined according to the size of the at least one heating unit and the radius of the at least one circulation channel.
  • R n may be smaller than the radius of at least one heating unit and larger than the radius of at least one circulation channel.
  • R n -R n-1 when 4r ⁇ R n -R n-1 ⁇ 10r, R n -R n-1 may be equal to (R 2 -R 1 )exp (-(n-1) ⁇ 0.015) . In some embodiments, when 5r ⁇ R n -R n-1 ⁇ 9r, R n -R n-1 may be equal to (R 2 -R 1 )exp (-(n-1) ⁇ 0.015) . In some embodiments, when 6r ⁇ R n -R n-1 ⁇ 8r, R n -R n-1 may be equal to (R 2 -R 1 )exp (-(n-1) ⁇ 0.015) . In some embodiments, when 6.5r ⁇ R n -R n-1 ⁇ 7.5r, R n -R n-1 may be equal to (R 2 -R 1 )exp (-(n-1) ⁇ 0.015) .
  • R n -R n-1 when R n -R n-1 ⁇ 4r, R n -R n-1 may be 4r. In some embodiments, when R n -R n-1 ⁇ 3.5r, R n -R n-1 may be 4r. In some embodiments, when R n -R n-1 ⁇ 3r, R n -R n-1 may be 4r. In some embodiments, when R n -R n-1 ⁇ 2.5r, R n -R n-1 may be 4r. In some embodiments, when R n -R n- 1 ⁇ 2r, R n -R n-1 may be 4r.
  • R n -R n-1 when R n -R n-1 ⁇ 1.5r, R n -R n-1 may be 4r. In some embodiments, when R n -R n-1 ⁇ r, R n -R n-1 may be 4r.
  • the radius R 1 of the circumference 1251 of the first circulation channel near the central area of the heating unit may be in the range of 1 mm-20 mm. In some embodiments, R 1 may be in the range of 2mm-19mm. In some embodiments, R 1 may be in the range of 3mm-18mm. In some embodiments, R 1 may be in the range of 4mm-17mm. In some embodiments, R 1 may be in the range of 5mm-16mm.
  • R 1 may be in the range of 6mm-15mm. In some embodiments, R 1 may be in the range of 7mm-14mm. In some embodiments, R 1 may be in the range of 8mm-13mm. In some embodiments, R 1 may be in the range of 9mm-12mm. In some embodiments, R 1 may be in the range of 10mm-11mm. In some embodiments, R 1 may be 10 mm. In some embodiments, the radius R 2 of the second circulation channel circumference 1252 may be in the range of 2mm-30mm. In some embodiments, R 2 may be in the range of 3mm-29mm. In some embodiments, R 2 may be in the range of 4mm-28mm. In some embodiments, R 2 may be in the range of 5mm-27mm.
  • R 2 may be in the range of 6mm-26mm. In some embodiments, R 2 may be in the range of 7mm-25mm. In some embodiments, R 2 may be in the range of 8mm-24mm. In some embodiments, R 2 may be in the range of 9mm-23mm. In some embodiments, R 2 may be in the range of 10mm-22mm. In some embodiments, R 2 may be in the range of 11mm-21mm. In some embodiments, R 2 may be in the range of 12mm-20mm. In some embodiments, R 2 may be in the range of 13mm-19mm. In some embodiments, R 2 may be in the range of 14mm-18mm. In some embodiments, R 2 may be in the range of 15mm-17mm. In some embodiments, R 2 may be 16 mm.
  • Fig. 15 is a schematic diagram of exemplary crystal preparation apparatuses shown in other embodiments.
  • the crystal preparation apparatus 100 may include a growth chamber 110 and a heating assembly 120.
  • the growth chamber 110 please refer to FIG. 1 of this specification and related descriptions, which will not be repeated here.
  • the heating assembly 120 may include at least two heating units. At least two heating units can be used to heat the growth cavity 110 to provide a temperature field required for crystal growth to prepare the crystal, so that the radial temperature difference during crystal growth does not exceed a preset temperature difference threshold. In some embodiments, at least one of the at least two heating units may be located outside the growth chamber 110. In some embodiments, the at least one heating unit located outside the growth chamber 110 may be referred to as the first heating component 1220. In some embodiments, the first heating element 1220 may be partially arranged around the outer periphery of the growth chamber 110. For related descriptions of the first heating element 1220 disposed around the outer periphery of the growth chamber 110, please refer to FIG.
  • the first heating assembly 1220 may include at least three first heating units.
  • the at least three first heating units may respectively correspond to the positions of the crystallization region in the growth cavity 110, the source material region in the growth cavity 110, and the vapor phase transport region between the crystallization region and the source material region.
  • the first heating element 1220 may be located on the upper surface and/or the lower surface of the outside of the growth chamber 110.
  • Figs. 3 to 7 of this specification and related descriptions please refer to Figs. 3 to 7 of this specification and related descriptions, which will not be repeated here.
  • At least one of the at least two heating units may be located inside the growth chamber 110.
  • the at least one heating unit located inside the growth chamber 110 may be referred to as the second heating component 1240.
  • the second heating assembly 1240 may include at least one second heating unit.
  • At least one heating unit of the second heating assembly 1240 may include at least one circulation channel 1250.
  • at least one circulation channel 1250 please refer to FIG. 14 of this specification and its related description, which will not be repeated here.
  • the heat when only the first heating element 1220 is used to heat the growth chamber 110, on the same level, from the periphery of the growth chamber 110 to the central axis of the growth chamber 110, the heat will gradually be transferred during the transfer process. Decrease.
  • the temperature of the outer periphery of the growth cavity 110 may be greater than the temperature inside the growth cavity 110, at this time, there will be a radial temperature difference or a radial temperature gradient inside the growth cavity 110.
  • the second heating assembly 1240 may include at least two flow passages.
  • the opening density of the at least one circulation channel 1250 in the central area of the upper surface of the at least one heating unit inside the growth cavity 110 may be greater than the density of the at least one circulation channel 1250 opening in the edge area of the at least one heating unit inside the growth cavity 110.
  • the density of the at least one circulation channel 1250 may gradually decrease from the central area of the at least one heating unit to the edge area of the at least one heating unit.
  • the opening density of at least one circulation channel on the first circulation channel circumference 1251 may be greater than the opening density of at least one circulation channel on the second circulation channel circumference 1252.
  • the opening density of the at least one circulation channel on the second circulation channel circumference 1252 may be greater than the opening density of the at least one circulation channel on the third circulation channel circumference 1253.
  • the opening density of the at least one circulation channel on the third circulation channel circumference 1253 may be greater than the opening density of the at least one circulation channel on the fourth circulation channel circumference 1254.
  • the density of the at least one circulation channel 1250 may be reduced in a stepwise manner.
  • the opening density of at least one of the circulation channels on the first circulation channel circumference 1251 and the second circulation channel circumference 1252 may be equal.
  • the opening density of at least one circulation channel on the third circulation channel circumference 1253 and the fourth circulation channel circumference 1254 may be equal.
  • the opening density of the at least one circulation channel on the second circulation channel circumference 1252 may be greater than the opening density of the at least one circulation channel on the third circulation channel circumference 1253.
  • the radius r of the at least one circulation channel 1250 may be in the range of 0.05 mm-0.95 mm. In some embodiments, the radius r of the at least one circulation channel 1250 may be in the range of 0.1 mm-0.9 mm. In some embodiments, the radius r of the at least one circulation channel 1250 may be in the range of 0.2 mm-0.8 mm. In some embodiments, the radius r of the at least one circulation channel 1250 may be in the range of 0.3 mm-0.7 mm.
  • the radius r of the at least one circulation channel 1250 may be in the range of 0.4 mm-0.6 mm. In some embodiments, the radius r of the at least one circulation channel 1250 may be in the range of 0.45 mm-0.55 mm. In some embodiments, the radius r of the at least one circulation channel 1250 may be 0.05 mm. In some embodiments, the radius r of the at least one circulation channel 1250 may be 0.1 mm. In some embodiments, the radius r of the at least one circulation channel 1250 may be 0.2 mm. In some embodiments, the radius r of the at least one flow channel 1250 may be 0.3 mm. In some embodiments, the radius r of the at least one circulation channel 1250 may be 0.4 mm.
  • the radius r of the at least one circulation channel 1250 may be 0.5 mm. In some embodiments, the radius r of the at least one circulation channel 1250 may be 0.6 mm. In some embodiments, the radius r of the at least one circulation channel 1250 may be 0.7 mm. In some embodiments, the radius r of the at least one circulation channel 1250 may be 0.8 mm. In some embodiments, the radius r of the at least one circulation channel 1250 may be 0.9 mm. In some embodiments, the radius r of the at least one circulation channel 1250 may be 0.95 mm.
  • the center distance d between two adjacent circulation channels on the circumference of a circulation channel can be expressed as 4r ⁇ d ⁇ 10r. In some embodiments, the center distance d of two adjacent circulation channels on the circumference of a circulation channel can be expressed as 5r ⁇ d ⁇ 9r. In some embodiments, the center distance d between two adjacent circulation channels on the circumference of a circulation channel can be expressed as 6r ⁇ d ⁇ 8r. In some embodiments, the center distance d between two adjacent circulation channels on the circumference of a circulation channel can be expressed as 6.5r ⁇ d ⁇ 7.5r. In some embodiments, the center distance d between two adjacent circulation channels on the circumference of a circulation channel can be expressed as 6.8r ⁇ d ⁇ 7r.
  • the center distance between two adjacent circulation channels on the circumference of a circulation channel may be in the range of 1 mm-2 mm. In some embodiments, the center distance between two adjacent circulation channels on the circumference of one circulation channel may be in the range of 1.1 mm-1.9 mm. In some embodiments, the center distance between two adjacent circulation channels on the circumference of one circulation channel may be in the range of 1.2 mm-1.8 mm. In some embodiments, the center distance between two adjacent circulation channels on the circumference of one circulation channel may be in the range of 1.3 mm-1.7 mm.
  • the center distance between two adjacent circulation channels on the circumference of one circulation channel may be in the range of 1.4 mm-1.6 mm. In some embodiments, the center distance between two adjacent circulation channels on the circumference of one circulation channel may be in the range of 1.45 mm to 1.55 mm. In some embodiments, the center-to-center spacing may be 1 mm. In some embodiments, the center-to-center spacing may be 1.1 mm. In some embodiments, the center-to-center spacing may be 1.2 mm. In some embodiments, the center-to-center spacing may be 1.3 mm. In some embodiments, the center-to-center spacing may be 1.4 mm. In some embodiments, the center-to-center spacing may be 1.5 mm.
  • the center-to-center spacing may be 1.6 mm. In some embodiments, the center-to-center spacing may be 1.7 mm. In some embodiments, the center-to-center spacing may be 1.8 mm. In some embodiments, the center-to-center spacing may be 1.9 mm. In some embodiments, the center-to-center spacing may be 2 mm. In some embodiments, the center-to-center spacing may be 2.1 mm. In some embodiments, the center-to-center spacing may be 2.2 mm.
  • R n -R n-1 when 4r ⁇ R n -R n-1 ⁇ 12r, R n -R n-1 may be equal to (R 2 -R 1 )exp ((n-1) ⁇ 0.02+0.009) . In some embodiments, when 5r ⁇ R n -R n-1 ⁇ 11r, R n -R n-1 may be equal to (R 2 -R 1 )exp ((n-1) ⁇ 0.02+0.009) . In some embodiments, when 6r ⁇ R n -R n-1 ⁇ 10r, R n -R n-1 may be equal to (R 2 -R 1) exp ( (n-1) ⁇ 0.02 + 0.009).
  • R n -R n-1 when 7r ⁇ R n -R n-1 ⁇ 9r, R n -R n-1 may be equal to (R 2 -R 1 )exp ((n-1) ⁇ 0.02+0.009) . In some embodiments, when 7.5r ⁇ R n -R n-1 ⁇ 8.5r, R n -R n-1 may be equal to (R 2 -R 1 )exp ((n-1) ⁇ 0.02+0.009) .
  • R n -R n-1 when R n -R n-1 >12r, R n -R n-1 may be 12r. In some embodiments, when R n -R n-1 >13r, R n -R n-1 may be 12r. In some embodiments, when R n -R n-1 >14r, R n -R n-1 may be 12r. In some embodiments, when R n -R n-1 >15r, R n -R n-1 may be 12r. In some embodiments, when R n -R n-1 >16r, R n -R n-1 may be 12r.
  • the radius R 1 of the circumference 1251 of the first circulation channel near the central area of the heating unit may be in the range of 1 mm-20 mm. In some embodiments, R 1 may be in the range of 2mm-19mm. In some embodiments, R 1 may be in the range of 3mm-18mm. In some embodiments, R 1 may be in the range of 4mm-17mm. In some embodiments, R 1 may be in the range of 5mm-16mm. In some embodiments, R 1 may be in the range of 6mm-15mm. In some embodiments, R 1 may be in the range of 7mm-14mm. In some embodiments, R 1 may be in the range of 8mm-13mm. In some embodiments, R 1 may be in the range of 9mm-12mm.
  • R 1 may be in the range of 10mm-11mm. In some embodiments, R 1 may be 10 mm. In some embodiments, the radius R 2 of the second circulation channel circumference 1252 may be in the range of 2mm-25mm. In some embodiments, R 2 may be in the range of 3mm-24mm. In some embodiments, R 2 may be in the range of 4mm-23mm. In some embodiments, R 2 may be in the range of 5mm-22mm. In some embodiments, R 2 may be in the range of 6mm-21mm. In some embodiments, R 2 may be in the range of 7mm-20mm. In some embodiments, R 2 may be in the range of 8mm-19mm. In some embodiments, R 2 may be in the range of 9mm-18mm.
  • R 2 may be in the range of 10mm-17mm. In some embodiments, R 2 may be in the range of 11mm-16mm. In some embodiments, R 2 may be in the range of 12mm-15mm. In some embodiments, R 2 may be in the range of 13mm-14mm. In some embodiments, R 2 may be 10.5 mm. In some embodiments, R 2 may be 11 mm. In some embodiments, R 2 may be 11.5 mm. In some embodiments, R 2 may be 12 mm. In some embodiments, R 2 may be 12.4 mm. In some embodiments, R 2 may be 12.5 mm. In some embodiments, R 2 may be 13 mm. In some embodiments, R 2 may be 13.5 mm. In some embodiments, R 2 may be 14 mm.
  • the heating assembly 120 may further include at least one conductive electrode.
  • at least one conductive electrode may be a low-resistance graphite electrode.
  • at least one conductive electrode may be cylindrical.
  • the cross-sectional shape of the at least one conductive electrode may be a regular shape or an irregular shape such as a circle, a triangle, a quadrilateral, a pentagon, or a hexagon.
  • the cross-sectional shape of at least one conductive electrode may be the same or different.
  • the number of at least one conductive electrode may be 2, 3, 4, 5, etc.
  • the heating assembly 120 may include at least two conductive electrodes.
  • the at least two conductive electrodes may be arranged circumferentially on the edge area of the at least one heating unit.
  • one of the at least two conductive electrodes may be fixed to the center of the at least one heating unit, and the remaining conductive electrodes of the at least two conductive electrodes may be centered around the conductive electrode located in the center of the at least one heating unit. Arrangement.
  • the at least two conductive electrodes may be four.
  • the four conductive electrodes may be a first conductive electrode 1242, a second conductive electrode 1243, a third conductive electrode (not shown in the figure), and a fourth conductive electrode (not shown in the figure), respectively.
  • the first conductive electrode 1242 may be located at the center of at least one heating unit, and the second conductive electrode 1243, the third conductive electrode, and the fourth conductive electrode may be uniformly arranged circumferentially with the first conductive electrode as the center.
  • the diameter of the conductive electrode (for example, the first conductive electrode 1242) located in the center of the at least one heating unit may be larger than the diameter of the conductive electrode circumferentially arranged in the edge area of the at least one heating unit. In some embodiments, the diameter of the conductive electrode located in the center of the at least one heating unit may be in the range of 13mm-20mm. In some embodiments, the diameter of the conductive electrode located in the center of the at least one heating unit may be in the range of 14mm-19mm. In some embodiments, the diameter of the conductive electrode located in the center of the at least one heating unit may be in the range of 15mm-18mm. In some embodiments, the diameter of the conductive electrode located in the center of the at least one heating unit may be in the range of 16mm-17mm.
  • the diameters of the conductive electrodes (for example, the second conductive electrode 1243, the third conductive electrode, and the fourth conductive electrode) arranged circumferentially on the edge area of the at least one heating unit may be the same or different.
  • the diameter of the conductive electrodes circumferentially arranged in the edge area of the at least one heating unit may be in the range of 5mm-13mm.
  • the diameter of the conductive electrodes circumferentially arranged in the edge area of the at least one heating unit may be in the range of 6mm-12mm.
  • the diameter of the conductive electrodes circumferentially arranged in the edge area of the at least one heating unit may be in the range of 7 mm to 11 mm.
  • the diameter of the conductive electrodes circumferentially arranged in the edge area of the at least one heating unit may be in the range of 8mm-10mm. In some embodiments, the diameter of the conductive electrodes circumferentially arranged in the edge area of the at least one heating unit may be in the range of 8.5mm-9.5mm.
  • the growth chamber 110 may be provided with at least two electrode posts.
  • at least two electrode posts may be provided at the bottom of the growth chamber 110.
  • the at least two electrode pins may be hollow cylinders for mounting at least two conductive electrodes.
  • the material of the at least two electrode posts may be insulating materials, which are used to isolate the at least two conductive electrodes to prevent short circuits.
  • the material of the at least two electrode posts may be zirconia.
  • the shape, size, and/or number of the at least two electrode pins may be the same as the cross-sectional shape, cross-sectional size, and/or number of the at least two conductive electrodes.
  • the number of at least two electrode posts may be four.
  • the four electrode pins may be a first electrode pin 1244, a second electrode pin 1245, a third electrode pin (not shown in the figure), and a fourth electrode pin (not shown in the figure), respectively.
  • At least one heating unit may be provided with at least two first electrode holes.
  • the shape of the at least two first electrode holes may be a regular shape or an irregular shape such as a circle, a triangle, a quadrilateral, a pentagon, or a hexagon.
  • the number of at least two first electrode holes may be 1, 2, 3, 4, 5, etc.
  • the shape, size, and/or number of the at least two first electrode holes may be the same as the cross-sectional shape, cross-sectional size, and/or number of the at least two conductive electrodes.
  • Figure 16A is a top view of an exemplary at least one heating unit shown in some embodiments.
  • Fig. 16B is a side view of exemplary at least one heating unit shown in other embodiments.
  • the number of at least two first electrode holes is four, and the four first electrode holes are respectively one first electrode hole A 1246 located in the center of at least one heating unit and are arranged in a circle. Three first electrode holes B 1247 in the edge area of at least one heating unit.
  • the heating assembly 120 may include a copper wire (not shown in the figure) and a power source (not shown in the figure).
  • the at least two conductive electrodes may be respectively connected to the power source through copper wires, so that the at least two conductive electrodes, the at least one heating unit and the power source form a current path for heating the at least one heating unit.
  • the heating assembly 120 may further include at least one conductive ring 1241. At least one heating unit may be connected to at least one conductive ring 1241 through at least one conductive electrode. In some embodiments, the at least one conductive ring 1241 may be located on the upper surface or/and the lower surface of the at least one heating unit inside the growth chamber 110. The number of the at least one conductive ring 1241 and the number of the at least one heating unit may be equal or not equal. In some embodiments, the number of at least one conductive ring 1241 is twice the number of at least one heating unit.
  • the material of the at least one conductive ring 1241 may be at least one of graphite, tungsten, molybdenum, tantalum, or iridium.
  • the at least one conductive ring 1241 may be coated with a high temperature resistant carbide coating except for the surface in contact with the at least one heating unit.
  • the carbide coating may include, but is not limited to, tantalum carbide, tungsten carbide, niobium carbide, titanium carbide, and the like.
  • other parts of the at least one heating unit may also be coated with a high temperature resistant carbide coating.
  • At least one conductive ring 1241 may be detachably connected to the growth chamber 110.
  • the detachable connection manner of the at least one conductive ring 1241 and the growth cavity 110 may be the same as the detachable connection manner of the at least one heating unit and the growth cavity 110, which will not be repeated here.
  • At least one second electrode hole 1248 may be provided on at least one conductive ring 1241.
  • the shape and size of the at least one second electrode hole may be the same as the cross-sectional shape and cross-sectional size of the at least one conductive electrode.
  • the number and/or arrangement of the at least one second electrode hole may be the same as or different from the number and/or arrangement of the at least one conductive electrode.
  • the number of at least one second electrode hole may be equal to the number of at least one conductive electrode.
  • the number of at least one second electrode hole may be one less than the number of at least one conductive electrode.
  • Figure 17 is a schematic diagram of exemplary at least one conductive ring shown in some embodiments.
  • the number of at least one second electrode hole 1248 may be three.
  • the three second electrode holes 1248 may be arranged circumferentially on the edge area of the at least one conductive ring 1241.
  • At least a part of the at least two conductive electrodes may pass through the at least two second electrode holes and connect to the at least one conductive ring.
  • the at least two conductive electrodes may be connected to the power supply through copper wires, respectively, so that the at least two conductive electrodes, the at least one conductive ring 1241, the at least one heating unit and the power supply form a current path to connect the at least one heating unit and the at least one conductive ring 1241.
  • at least one conductive ring 1241 can be used to uniformly distribute heat, so as to reduce the radial temperature difference and/or radial temperature gradient inside the growth cavity 110.
  • FIG. 18 is a flowchart of an exemplary crystal growth method shown in some embodiments.
  • Step 1810 placing the seed crystal and source material in the growth chamber to grow the crystal.
  • the seed crystal may be a small crystal having the same crystal orientation as the crystal to be grown, which can be used as a seed for growing the crystal.
  • the seed crystal may be prepared based on a physical vapor transport (PVT), a chemical vapor deposition (CVD), or a pulling method.
  • the seed crystal can be made by at least splicing and gap growth.
  • the preparation method of the seed crystal please refer to Fig. 22, Fig. 23 and related descriptions of this specification, which will not be repeated here.
  • the seed crystal may be fixed on the inner surface of the growth chamber cover 111.
  • the source material may include a material for supplying the seed crystal to grow into a crystal.
  • the composition of the source material of the silicon carbide crystal may include SiC.
  • the composition of the source material of the aluminum nitride crystal may include AlN.
  • the source material may be a powder, granular, and/or bulk material.
  • the shape of the bulk material may be a cube, a rectangular parallelepiped, an irregular block, or the like.
  • the source material may be placed in the growth chamber body 112. As shown in FIG. 1 or FIG. 3 or FIG. 8, the source material can be placed in the lower part of the growth chamber body 112. As shown in FIG. 13 or FIG. 15, the source material may be placed on the upper surface of at least one heating unit inside the growth chamber 110.
  • heating components and temperature sensing components please refer to the descriptions in other parts of this specification (for example, FIG. 1 to FIG. 16), which will not be repeated here.
  • the installation position of the temperature sensing component may be determined according to the position of the temperature distribution of the growth chamber 110 to be measured.
  • the temperature sensing component may be located on the upper surface of the growth chamber 110 to measure the temperature distribution on the lower surface of the seed crystal or the crystal growth surface.
  • the temperature sensing component may be located on the lower surface of the growth chamber 110 to measure the temperature distribution on the upper surface of the source material.
  • the temperature sensing component may also be located on the outer wall of the growth chamber 110 to measure the temperature distribution of the inner and outer peripheral regions of the growth chamber 110.
  • step 1820 during the crystal growth process, the heating component is controlled based on the information of the temperature sensing component, so that the radial temperature difference in the growth cavity during crystal growth does not exceed the first preset range of the average temperature in the growth cavity.
  • the average temperature in the growth chamber may include the average temperature of the lower surface of the seed crystal or the crystal being grown in the growth chamber, and the average temperature of the upper surface of the source material in the growth chamber. In some embodiments, the average temperature in the growth chamber may also include the crystal growth temperature.
  • the control component may be used to control at least one parameter of at least one heating unit in the heating component based on the temperature distribution in the growth cavity during crystal growth, so that the radial temperature difference in the growth cavity during crystal growth does not exceed the growth temperature. The first preset range of the average temperature in the cavity or the preset radial temperature difference threshold.
  • the temperature sensing component 210 can measure the temperature information in the growth chamber and send the measured temperature information to the control component 230.
  • the control component 230 may generate a radial temperature difference distribution and/or a radial temperature gradient distribution based on the temperature information measured by the temperature sensing component 210.
  • the control component 230 can also be used to determine the first preset range, the preset radial temperature difference threshold and/or the preset according to the size, shape and material of the growth cavity 110, the size of the seed crystal, the type and size of the crystal to be grown Radial temperature gradient threshold.
  • the control component 230 may further compare the radial temperature difference in the radial temperature difference distribution with a preset radial temperature difference threshold, or compare the radial temperature gradient in the radial temperature gradient distribution with the preset radial temperature gradient.
  • the control component 230 can be arranged in the growth chamber.
  • the heating power of at least one heating unit in the center area of the body when the temperature in the central area of the growth chamber is higher than the temperature in the outer peripheral area of the growth chamber, as shown in FIG. 13, the current passing through at least one conductive electrode in the central area of the heating unit can be reduced or the current passing through the heating unit can be increased.
  • the current passing through at least one conductive electrode in the central region of the heating unit can be increased or the current passing through the heating unit can be reduced.
  • the current of at least one conductive electrode in the edge area of the cell is used to reduce the radial temperature difference and/or the radial temperature gradient until the radial temperature difference does not exceed the first preset range of the average temperature in the growth chamber or the preset radial temperature difference threshold.
  • the radial temperature gradient does not exceed the preset radial temperature gradient threshold.
  • Step 1830 During the crystal growth process, the heating component is controlled based on the information of the temperature sensing component, so that the axial temperature gradient in the growth cavity is maintained stable during the crystal growth.
  • control components and the axial temperature gradient please refer to the descriptions in other parts of this specification (for example, FIG. 1 and FIG. 2), which will not be repeated here.
  • control component 230 may also control at least one parameter of at least one heating unit in the heating component 220 based on the temperature distribution in the growth chamber during crystal growth, so that the axial temperature gradient in the growth chamber during crystal growth is maintained. Stablize. In some embodiments, the control component 230 may also control at least one parameter of at least one heating unit in the heating component 220 based on the temperature distribution in the growth chamber during crystal growth, so that the axial temperature gradient in the growth chamber during crystal growth is maintained. Within the preset axial temperature gradient range. In some embodiments, the temperature sensing component 210 can measure the axial temperature of the growth chamber and send the measured axial temperature to the control component 230.
  • the control component 230 may generate an axial temperature gradient distribution based on the axial temperature measured by the temperature sensing component 210.
  • the control component 230 can also be used to determine the preset axial temperature gradient range according to the size, shape and material of the growth cavity 110, the size of the seed crystal, and the type and size of the crystal to be grown.
  • the control component 230 may further compare the axial temperature gradient in the axial temperature gradient distribution with a preset axial temperature gradient range. If the axial temperature gradient is smaller than the preset axial temperature gradient range, the control component 230 can reduce the heating power of at least one heating unit arranged on the outer periphery of the growth chamber close to the growth chamber cover to increase the axial temperature gradient until the axial temperature The temperature gradient is within the preset axial temperature gradient range.
  • the control component 230 can increase the heating power of at least one heating unit arranged on the outer periphery of the growth chamber close to the growth chamber cover to reduce the axial temperature gradient until the axial temperature gradient is reached.
  • the temperature gradient is within the preset axial temperature gradient range.
  • step 1820 and step 1830 can be performed simultaneously.
  • Some embodiments also disclose a crystal growth method, which prepares semiconductor crystals by the crystal preparation device 100.
  • a crystal growth method which prepares semiconductor crystals by the crystal preparation device 100.
  • the method may include the following steps:
  • Step 1 Bond the seed crystal to the inner surface of the growth chamber cover 111, place the source material in the growth chamber body 112, and cover the growth chamber cover 111 with the seed crystals bonded to the growth chamber body 112 the top of.
  • the adhesive can be evenly coated on the inner surface of the growth chamber cover 111, and then the growth chamber cover 111 covered with the adhesive can be placed in a heating furnace and kept at a temperature of 150-180°C for 5 hours. Then heat it up to 200°C and keep it for 7-10 hours, and then take it out when it cools to room temperature. Then the seed crystal is placed in the center of the inner surface of the growth chamber cover 111, the silicon carbide single wafer is placed on the seed crystal, and the stainless steel block is placed on the silicon carbide single wafer. Then put it in a heating furnace, keep it at 380-430°C for 5h, and take it out when it is cooled to room temperature.
  • the direction of the growth surface of the seed crystal is ⁇ 0001> deflection 4°-6° pointing direction.
  • the adhesive may include, but is not limited to, epoxy resin glue, AB glue, phenolic resin glue or sugar glue. In some embodiments, the adhesive may be sucrose with a purity of 99.9%.
  • the stainless steel block is used to apply a certain pressure to the silicon carbide single wafer, the seed crystal and the growth cavity cover 111 to promote the adhesion of the seed crystal to the inner surface of the growth cavity cover 111.
  • the seed crystal may be cleaned to remove contaminants on the surface of the seed crystal.
  • the seed crystals can be washed with deionized water, organic solvents, and the like.
  • the source material for example, silicon carbide powder
  • the distance between the upper surface of the source material and the crystal growth surface is 30-50 mm.
  • the source material may be powdered.
  • the particle size of the source material may be 30-50 ⁇ m.
  • the surface of the source material placed in the growth chamber body 112 needs to be kept flat.
  • the growth chamber cover 111 bonded with the seed crystal is covered on the top of the growth chamber main body 112 to form a closed space to facilitate the growth of crystals.
  • Step 2 Place the first heating element 1220 outside the growth chamber 110.
  • the heating assembly may include a first heating assembly 1220 and a temperature compensation assembly 1210.
  • the first heating element 1220 may be an induction coil located on the outer periphery of the growth cavity 110 and used to provide at least part of the heat required for crystal growth.
  • the source material for example, silicon carbide powder
  • the gas phase components for example, Si 2 C, SiC 2 , Si
  • the control of the axial temperature gradient can be achieved by controlling the heating power of the induction coil at different positions in the axial direction.
  • the area near the inner wall of the growth cavity 110 is a high temperature area, and the area near the center of the source material is a low temperature area.
  • the source material The radial temperature gradient in the coverage area is relatively large, which is not conducive to the sublimation of the source material and the stable growth of crystals.
  • the Si/C moles in the gas phase components produced by the sublimation of the source material are relatively large.
  • the Si/C mole ratio in the gas phase component produced by the source material sublimation is relatively small, making the radial distribution of the Si/C mole ratio in the gas phase component uneven, which is not conducive to the stable growth of crystals .
  • the area near the outer periphery of the growth chamber cover 111 is a high temperature area, and the area near the center of the growth chamber cover 111 is a low temperature area.
  • the large radial temperature gradient results in greater thermal stress on the crystal growth surface and the crystal growth surface is severely convex toward the source material, and defects are formed on the fixed surface of the seed crystal.
  • a temperature compensation device can be provided on the upper surface and/or the lower surface of the growth chamber 110 to reduce the radial temperature gradient of the growth chamber cover 111 and the radial temperature gradient of the area covered by the source material.
  • a temperature compensation device can be provided on the upper surface and/or the lower surface of the growth chamber 110 to reduce the radial temperature gradient of the growth chamber cover 111 and the radial temperature gradient of the area covered by the source material.
  • Step 3 Install the temperature compensation component 1210 on the upper surface and/or the lower surface of the growth chamber 110.
  • a fixing frame 1216 including at least one fixing unit may be fixed to the upper or lower surface of the growth chamber 110, and at least one heating unit 1212 of the temperature compensation assembly 1210 can be filled and fixed into the at least one fixing unit. Then cover the electrode fixing plate 1215, and make the at least one first electrode 1213 pass through the at least one first hole 1215-1 on the electrode fixing plate 1215, and fix it on the at least one heating unit 1212, while making the at least one second electrode 1211 Pass through at least one second hole 1215-2 on the electrode fixing plate 1215 and fix it on the upper surface and/or the lower surface of the growth chamber 110. Further, the upper ends of the at least one first electrode 1213 and the at least one second electrode 1211 are respectively connected to a copper wire 1214, and the copper wire 1214 is connected to a power source.
  • the size of the upper or lower surface of the growth cavity 110, the type of crystal to be grown, the size or shape of the seed crystal, the temperature (axial temperature gradient and/or radial Temperature gradient) distribution, etc. determine the number, size, shape, arrangement, etc. of at least one heating unit 1212.
  • 10 to 20 heating units 1212 may be arranged on the upper surface of the growth chamber cover.
  • the thickness of the at least one heating unit 1212 may be 5mm-10mm. In some embodiments, the thickness of the at least one heating unit 1212 may be 6mm-9mm. In some embodiments, the thickness of the at least one heating unit 1212 may be 7 mm-8 mm.
  • the side length of the at least one heating unit 1212 may be 10-30 mm. In some embodiments, the side length of at least one heating unit 1212 may be 12-28 mm. In some embodiments, the side length of at least one heating unit 1212 may be 14-26 mm. In some embodiments, the side length of at least one heating unit 1212 may be 16-24 mm. In some embodiments, the side length of at least one heating unit 1212 may be 18-22 mm. In some embodiments, the side length of at least one heating unit 1212 may be 20-21 mm.
  • Step 4 Connect at least one temperature sensing unit to the heating unit 132 and the outer periphery of the upper or lower surface of the growth chamber 110 through at least two temperature measuring holes 1215-3. At least two temperature measuring holes 1215-3 are located between radially adjacent first holes 1215-1 or within a setting range of at least one second hole 136-3.
  • At least one temperature sensing unit can pass through at least two temperature measuring holes 1215-3 on the electrode fixing plate 1215 to measure the first temperature at the at least one heating unit 1212 and the upper surface of the growth chamber 110 or The second temperature at the outer periphery of the lower surface, thereby obtaining the temperature distribution on the upper surface or the lower surface of the growth chamber 110.
  • Step 5 Pass an inert gas (for example, argon) into the growth chamber 110, control the pressure to be maintained at 5-30 Torr, and heat the growth chamber 110 through the first heating component 1220 and the temperature compensation component 1210.
  • an inert gas for example, argon
  • Step 6 Measure the first temperature at the at least one heating unit 1212 and the second temperature at the outer periphery of the upper or lower surface of the growth chamber 110 through at least one temperature sensing unit, and adjust based on at least the first temperature and the second temperature
  • the parameters of the at least one heating unit 1212 for example, the number, shape, size, arrangement, current, heating power of the at least one heating unit 1212
  • the radial temperature gradient of the upper or lower surface of the growth chamber 110 is less than a preset threshold
  • Promote the uniform growth of crystals More descriptions on adjusting the parameters of at least one heating unit 1212 based on the first temperature and the second temperature can be found elsewhere in this specification (for example, FIG. 6, FIG. 7 and their descriptions).
  • the temperature range of the growth chamber 110 maintained during the sublimation of the source material is 2200-2400° C., and the duration of the sublimation process of the source material may be 40-60 hours.
  • the temperature range of the growth chamber cover 111 is maintained at 2100°C to 2350°C, and the first temperature at the at least one heating unit 1212 located on the upper surface of the growth chamber 110 is lower than the growth temperature.
  • the second temperature at the outer periphery of the cavity cover 111, the temperature difference is kept within 10K.
  • FIG. 19 is a flowchart of exemplary crystal growth methods shown in other embodiments.
  • Some embodiments also disclose a crystal growth method, which prepares semiconductor crystals by the crystal preparation device 100.
  • a crystal growth method which prepares semiconductor crystals by the crystal preparation device 100.
  • the method may include the following steps:
  • Step 1910 Place the seed crystal on the top of the growth chamber, and place the source material on the bottom of the growth chamber.
  • the seed crystal is bonded to the inner surface of the growth chamber cover 111, the source material is placed in the growth chamber main body 112, and the growth chamber cover 111 with the seed crystal is bonded to the top of the growth chamber main body 112.
  • the adhesive can be evenly coated on the inner surface of the growth chamber cover 111, and then the growth chamber cover 111 covered with the adhesive can be placed in a heating furnace and kept at a temperature of 150-180°C for 5 hours. Then heat it up to 200°C and keep it for 7-10 hours, and then take it out when it cools to room temperature. Then the seed crystal is placed in the center of the inner surface of the growth chamber cover 111, the silicon carbide single wafer is placed on the seed crystal, and the stainless steel block is placed on the silicon carbide single wafer. Then put it in a heating furnace, keep it at 380-430°C for 5h, and take it out when it is cooled to room temperature.
  • the size of the seed crystal can be 4 inches, 8 inches, and so on.
  • the type of seed crystal may be 4H-SiC seed crystal, 6H-SiC seed crystal, and the like.
  • the direction of the growth surface of the seed crystal is ⁇ 0001> deflection 4°-6° pointing direction.
  • the adhesive may include, but is not limited to, epoxy resin glue, AB glue, phenolic resin glue or sugar glue.
  • the adhesive may be sucrose with a purity of 99.9%.
  • the stainless steel block is used to apply a certain pressure to the silicon carbide single wafer, the seed crystal and the growth cavity cover 111 to promote the adhesion of the seed crystal to the inner surface of the growth cavity cover 111.
  • the seed crystal may be cleaned to remove contaminants on the surface of the seed crystal.
  • the seed crystals can be washed with deionized water, organic solvents, and the like.
  • the source material for example, silicon carbide powder
  • the distance between the upper surface of the source material and the crystal growth surface is 30-100 mm.
  • the particle size of the source material may be 30-50 ⁇ m.
  • the surface of the source material placed in the growth chamber body 112 needs to be kept flat.
  • the growth chamber cover 111 bonded with the seed crystal is covered on the top of the growth chamber main body 112 to form a closed space to facilitate the growth of crystals.
  • Step 1920 Mount the temperature compensation component 1210 on the upper surface and/or the lower surface of the growth chamber 110.
  • the first temperature compensation component 1210-1 and the second temperature compensation component 1210-2 are installed on the upper surface and the lower surface of the growth chamber 110, respectively.
  • the first temperature compensation component 1210-1 or the second temperature compensation component 1210-2 may be a graphite body with high thermal conductivity.
  • the first temperature compensation component 1210-1 or the second temperature compensation component 1210-2 may be disc-shaped.
  • Step 1930 Place the heating element outside the growth chamber 110.
  • a resistive heating element is placed outside the growth chamber 110 so that the growth chamber 110 is located at the center of the resistive heating element.
  • the resistance heating element includes at least a first heating module 1230-1, a second heating module 1230-2, and a third heating module 1230-3.
  • the first heating module 1230-1 is used to heat the crystallization area of the growth cavity 110
  • the second heating module 1230-2 is used for heating the vapor phase transport area between the crystallization area of the growth chamber 110 and the source material area
  • the third heating module 1230-3 is used for heating the source material area of the growth chamber 110.
  • the heating power of each heating module can be individually controlled.
  • the resistance heating element may be an annular high-resistance graphite heating element.
  • an electrode fixing plate 1215 is arranged on the outside of the resistance heating element, so that at least one first electrode 1213 can pass through one of the at least two holes on the electrode fixing plate 1215, and be fixed on the outside of the resistance heating element, while making The at least one second electrode 1211 can pass through the other of the at least two holes on the electrode fixing plate 1215 and be fixed on the outside of the resistive heating element.
  • the upper ends of the at least one first electrode 1213 and the at least one second electrode 1211 are respectively connected to the water-cooled copper wire, and the water-cooled copper wire is connected to the power source.
  • the first electrode 1213 and the second electrode 1211 may be low-resistance graphite electrodes.
  • the electrode fixing plate 1215 may be a zirconia ceramic plate.
  • the method may further include surrounding and disposing the heat preservation layer on the outside of the heating component.
  • the heat preservation layer is arranged around the outer side of the heating component for heat preservation of the growth cavity 110 and/or the heating component.
  • the thermal insulation layer may include graphite felt or zirconia ceramics. Adjust the thickness of the insulation layer according to the size of the growth cavity, the type of crystal to be grown, the heating power of the resistance heating element, the temperature information related to the growth cavity 110 during the crystal growth, and the adjustment of the insulation layer and the heating component The separation distance.
  • Step 1940 heating the growth chamber through the heating component and the temperature compensation component.
  • An inert gas is introduced into the growth chamber 110, the pressure is controlled to be maintained at 5-30 Torr, and the growth chamber 110 is heated by the heating component and the temperature compensation component 1210.
  • an inert gas for example, argon
  • argon an inert gas
  • the growth chamber 110 is heated by the heating component and the temperature compensation component 1210.
  • Step 1950 During the crystal growth process, based on at least one crystal growth parameter (for example, the amount of source material, crystal growth size, height difference between the crystal growth interface and the source material), adjust the heating element and/or temperature compensation through the control element
  • the heating power of the component 1210 keeps the temperature field between the crystal growth interface and the source material 160 basically stable.
  • the heating power (for example, average heating power) of the first temperature compensation component 1210-1 is controlled to be less than the heating power (for example, average heating power) of the first heating module 1230-1.
  • the source material 160 is continuously consumed, and the temperature field between the crystal growth interface and the source material 160 moves downward.
  • the first heating module 1230 The heating power of -1, the heating power of the second heating module 1230-2 and the heating power of the third heating module 1230-3 are adjusted to maintain the downward shifting speed of the temperature field and the crystal growth rate (for example, 0.8-2mm/h) near.
  • the heating power of the first temperature compensation component 1210-1 In some embodiments, the reduced heating power may be 0.1%-0.5%.
  • the temperature range of the growth chamber 110 maintained during the sublimation of the source material is 2200-2400° C., and the duration of the sublimation process of the source material may be 40-60 hours.
  • the pressure in the growth chamber 110 is controlled to be 5-30 Torr.
  • FIG. 20 is a flowchart of exemplary crystal growth methods shown in other embodiments.
  • the embodiment also discloses a crystal growth method, which uses the crystal preparation device 100 to prepare semiconductor crystals.
  • the crystal preparation device 100 uses the crystal preparation device 100 to prepare semiconductor crystals.
  • the following will take the preparation of silicon carbide single crystal as an example for description.
  • the method may include the following steps:
  • step 2010 a heating assembly is prepared.
  • the heating element may be a second heating element 1240 located inside the growth chamber 110.
  • the heating element may include a first heating element 1220 located outside the growth cavity 110 and a second heating element 1240 located inside the growth cavity 110.
  • the heating components please refer to the related descriptions of Figs. 13-16B of this specification, which will not be repeated here.
  • preparing the heating assembly may include arranging at least one circulation channel 1250 on the heating unit of the second heating assembly 1240.
  • the information related to the at least one circulation channel 1250 may be determined according to the type of crystal prepared, the size of the crystal, the size of the growth cavity 110, and the like.
  • the information related to the at least one circulation channel 1250 may include, but is not limited to, the density of the opening of the at least one circulation channel 1250, the radius of the at least one circulation channel 1250, the shape of the at least one circulation channel 1250, and the number of circulation channel circumferences. , The radius of the circulation channel circumference, the center spacing of two adjacent circulation channels on the circumference of different circulation channels, etc.
  • FIGS. 13-15 For the relevant description of the at least one circulation channel 1250, please refer to FIGS. 13-15 and related descriptions, which will not be repeated here.
  • step 2020 the heating assembly is installed, and the seed crystal and source material are placed in the growth chamber.
  • the seed crystal may be 4H-SiC or 6H-SiC with a diameter in the range of 70mm-150mm.
  • the diameter of the seed crystal may be in the range of 80mm-140mm.
  • the diameter of the seed crystal may be in the range of 90mm-130mm.
  • the diameter of the seed crystal may be in the range of 100mm-120mm.
  • the diameter of the seed crystal may be in the range of 105 mm-115 mm.
  • the diameter of the seed crystal may be in the range of 70mm-150mm.
  • the direction of the seed crystal growth surface can be ⁇ 0001> deflection 4°-8° pointing direction.
  • the purity of the source material may be greater than or equal to 99.99%. In some embodiments, the purity of the source material may be greater than or equal to 99.999%.
  • the particle size of the source material when the source material is in powder form, the particle size of the source material may be in the range of 0.1 mm-0.5 mm. In some embodiments, the particle size of the source material may be in the range of 0.15mm-0.45mm. In some embodiments, the particle size of the source material may be in the range of 0.2mm-0.4mm. In some embodiments, the particle size of the source material may be in the range of 0.25 mm-0.35 mm.
  • At least two conductive electrodes can be passed through and fixed on the at least two electrode pins at the bottom of the growth chamber 110 respectively.
  • at least two electrode pins may be provided with internal threads
  • at least two conductive electrodes may be provided with external threads
  • at least two electrode pins may be screwed to fix at least two conductive electrodes.
  • part of the source material may be placed on the bottom of the growth chamber 110.
  • the member is fixed inside the growth cavity 110.
  • the other heating units of the second heating assembly 1240 are respectively installed, and the remaining source materials are placed.
  • the growth chamber cover 111 with the seed crystals bonded is covered on the top of the growth chamber main body 112.
  • at least two conductive electrodes are connected to the copper wire, and the copper wire is connected to the power source to complete the installation of the second heating component 1240 and the placement of the source material and the seed crystal.
  • the specific content of bonding the seed crystal on the growth chamber cover 111 please refer to related descriptions in other parts of this specification (for example, FIG. 19), which will not be repeated here.
  • At least one conductive ring 1241 may also be installed on the upper surface and/or the lower surface of at least one heating unit of the second heating assembly 1240.
  • the at least two second electrode holes of the at least one conductive ring 1241 may pass through the at least two conductive electrodes, and the at least one conductive ring 1241 may be connected to the growth chamber 110 through the third connector on the conductive ring.
  • the inner fourth connecting member is fixed inside the growth chamber 110.
  • at least one conductive ring 1241 when at least one conductive ring 1241 is installed, at least one heating unit of the second heating assembly 1240 may not be fixedly connected to the growth chamber 110. At least one heating unit of the second heating assembly 1240 may be placed on the at least one conductive ring 1241.
  • parts of the upper and lower surfaces of the at least one heating unit that are not in contact with the at least one conductive ring 1241 may also be coated with a high-temperature resistant carbide coating to prevent the at least one The heating unit contaminates the gas phase composition of the source material, which in turn causes the purity of the grown crystals to be low and affects the quality.
  • the filling height of the source material at the bottom of the growth chamber 110 may refer to the height of the source material laid on the bottom of the growth chamber 110. In some embodiments, the filling height of the source material on the heating unit may refer to the height of the source material laid on the heating unit. In some embodiments, the total filling height of the source material may refer to the sum of the height of the source material tiled on the bottom of the growth chamber 110 and the height of the source material tiled on the heating unit of the second heating assembly 1240.
  • the first heating element 1220 (for example, an induction coil) may also be installed (for example, enclosed) outside the growth chamber 110.
  • the filling height of the source material at the bottom of the growth chamber may refer to the distance between the upper surface of the bottom cover of the growth chamber and the upper surface of the source material placed on the bottom cover of the growth chamber. If the filling height of the source material at the bottom of the growth chamber is too high, the source material cannot be sufficiently heated, and the gas phase components generated by the thermal sublimation of the source material cannot effectively pass through the circulation channel on the heating unit in the growth chamber, which further leads to low utilization of the source material. The filling height of the source material at the bottom of the growth chamber is too low, which will result in a small filling amount of the source material and affect the size of the crystal growth.
  • the source material filling height at the bottom of the growth chamber 110 may be 0.1-0.3 of the total source material filling height. In some embodiments, the source material filling height at the bottom of the growth chamber 110 may be 0.12-0.28 of the total source material filling height. In some embodiments, the source material filling height at the bottom of the growth chamber 110 may be 0.14-0.26 of the total source material filling height. In some embodiments, the source material filling height at the bottom of the growth chamber 110 may be 0.16-0.24 of the total source material filling height.
  • the source material filling height at the bottom of the growth chamber 110 may be 0.18-0.22 of the total source material filling height. In some embodiments, the source material filling height at the bottom of the growth chamber 110 may be 0.19-0.21 of the total source material filling height. In some embodiments, the source material filling height at the bottom of the growth chamber 110 may be 0.2 of the total source material filling height.
  • the filling height of the source material on the upper surface of the heating unit may refer to the distance between the upper surface of the heating unit and the upper surface of the source material placed on the upper surface of the heating unit.
  • the filling height of the source material on the upper surface of the heating unit is too high, the source material on the upper surface of the heating unit will be heated unevenly, and the gas phase components generated by the heating of the source material cannot effectively pass through the circulation channel on the heating unit in the growth chamber, which further causes the source material
  • the utilization rate is low.
  • the filling height of the source material on the upper surface of the heating unit is too low, which will result in a small filling amount of the source material and affect the size of the crystal growth.
  • the filling height of the source material on the heating unit may be 0.2-0.4 of the total filling height of the source material. In some embodiments, the filling height of the source material on the heating unit may be 0.22-0.38 of the total filling height of the source material. In some embodiments, the filling height of the source material on the heating unit may be 0.24-0.36 of the total filling height of the source material. In some embodiments, the filling height of the source material on the heating unit may be 0.26-0.34 of the total filling height of the source material.
  • the filling height of the source material on the heating unit may be 0.28-0.32 of the total filling height of the source material. In some embodiments, the filling height of the source material on the heating unit may be 0.29-0.31 of the total filling height of the source material. In some embodiments, the filling height of the source material on the heating unit may be 0.3 of the total filling height of the source material.
  • the source material may not be placed on the uppermost heating unit (the heating unit closest to the growth chamber cover 111) of the second heating assembly 1240. In some embodiments, the source material may be placed on the uppermost heating unit of the second heating assembly 1240.
  • the upper surface of the source material on the uppermost heating unit is too close to the seed crystal growth surface, and part of the source material will be scattered on the seed crystal growth surface, resulting in crystal defects.
  • the upper surface of the source material on the uppermost heating unit is too far away from the seed crystal growth surface, and the transport distance of the gas phase components produced by the sublimation of the source material is too far, which will affect the crystal growth rate.
  • the distance between the upper surface of the source material on the uppermost heating unit and the seed crystal growth surface may be in the range of 30mm-50mm. In some embodiments, the distance between the upper surface of the source material on the uppermost heating unit and the seed crystal growth surface may be in the range of 32 mm-48 mm. In some embodiments, the distance between the upper surface of the source material on the uppermost heating unit and the seed crystal growth surface may be in the range of 34 mm-46 mm.
  • the distance between the upper surface of the source material on the uppermost heating unit and the seed crystal growth surface may be in the range of 36mm-44mm. In some embodiments, the distance between the upper surface of the source material on the uppermost heating unit and the seed crystal growth surface may be in the range of 38mm-42mm. In some embodiments, the distance between the upper surface of the source material on the uppermost heating unit and the seed crystal growth surface may be in the range of 39 mm-41 mm. In some embodiments, the distance between the upper surface of the source material on the uppermost heating unit and the seed crystal growth surface may be 40 mm.
  • Step 2030 start the crystal preparation device to grow crystals.
  • starting the crystal preparation device includes, but is not limited to, performing vacuum processing on the growth chamber, starting heating components (for example, the second heating component 1240, the first heating component 1220, and the second heating component 1240) for heating treatment, Inert gas is introduced into the growth chamber for pressure maintenance treatment.
  • starting heating components for example, the second heating component 1240, the first heating component 1220, and the second heating component 1240
  • Inert gas is introduced into the growth chamber for pressure maintenance treatment.
  • step 2030 may include the following operations: vacuuming the growth chamber 110 to make the growth chamber 110 The pressure inside is reduced to 1 ⁇ 10 -5 Pa-1 ⁇ 10 -3 Pa. Then, at least two conductive electrodes are energized, and the second heating element 1240 is activated to heat, so that the temperature detected on the growth chamber cover 111 is in the range of 900°C to 1200°C. Continue to vacuumize the growth chamber 110 and run at constant power for 20 min-120 min. Then, an inert gas (for example, argon) is introduced into the growth chamber 110 to atmospheric pressure.
  • an inert gas for example, argon
  • step 2030 may include the following operations: vacuuming the growth chamber 110 , The pressure in the growth chamber 110 is reduced to 1 ⁇ 10 -5 Pa-1 ⁇ 10 -3 Pa. Then, the first heating element 1220 is activated to perform heating treatment, so that the temperature detected on the growth chamber cover 111 is in the range of 900°C to 1200°C. Then vacuumize the growth chamber and run at constant power for 20min-120min. Then, an inert gas (for example, argon) is introduced into the growth chamber 110 to atmospheric pressure.
  • an inert gas for example, argon
  • the first heating element 1220 to perform heating treatment, so that the temperature detected on the growth chamber cover 111 is in the range of 1900° C.-2100° C., and run at constant power for 20 min-80 min. Keep the first heating assembly 1220 running at a constant power. Then start the second heating element 1240 for heating, so that the temperature detected on the growth chamber cover 111 is in the range of 2200°C to 2400°C. Vacuum the growth chamber 110 again, and pass an inert gas (for example, argon) into the growth chamber 110 at a rate of 2L/min-5L/min until the pressure in the growth chamber 110 is in the range of 5 Torr-30 Torr .
  • an inert gas for example, argon
  • step 2040 during the crystal growth process, the heating element is controlled based on the temperature in the growth chamber during crystal growth obtained by the temperature sensing element, so that the radial temperature difference in the growth chamber during crystal growth does not exceed the first predetermined value of the average temperature in the growth chamber.
  • step 2050 during the crystal growth process, the heating element is controlled based on the temperature in the growth chamber during crystal growth obtained by the temperature sensing element, so that the axial temperature gradient in the growth chamber during crystal growth is maintained stable.
  • step 2040 and step 2050 can be performed simultaneously.
  • the above preparation process is only an example, and the involved process parameters may be different in different embodiments, and the sequence of the above steps is not unique. In different embodiments, the order between the steps can also be adjusted, or even one or more steps can be omitted.
  • the above examples should not be construed as limiting the scope of protection of this application.
  • the crystal preparation device shown in FIG. 13 is used to prepare silicon carbide crystals using silicon carbide powder with a purity greater than 99.999% as a source material.
  • the heating component is the second heating component 1240, which includes at least one heating unit.
  • the heating unit may be referred to as a heating pan.
  • the preparation process may include the following steps: S1, selecting a graphite crucible with an inner diameter of 100mm-300mm, a difference between a height and an inner diameter of less than 80mm, and a bottom thickness of 40-100mm as the growth chamber 110.
  • a heating plate with a thickness of 5mm-10mm and a diameter of 50mm-300mm.
  • a plurality of circulation channels are drilled on each heating plate, and the radius of the circulation channels is 0.2mm-1mm.
  • the multiple circulation channels can be arranged into 10-30 circulation channel circles with the center of the heating plate as the center.
  • the center distance between adjacent circulation channels on the circumference of the same circulation channel is 1mm-5mm.
  • the first electrode hole A is located in the center of the heating plate, and at least two first electrode holes B are circumferentially arranged on the edge area of the heating plate with the first electrode hole A as the center.
  • the heating plate after processing is as shown in Figure 16A.
  • the diameter of the first electrode hole A is 10 mm-20 mm, and the diameter of the first electrode hole B is 2 mm-10 mm.
  • a conductive ring with a thickness of 5mm-15mm, an outer diameter of 100mm-300mm, and an inner diameter of 110mm-280mm. Drill the second electrode hole on the conductive ring, as shown in Figure 17. The diameter of the second electrode hole on the conductive ring matches the diameter of the first electrode hole B on the heating plate.
  • Pave the first layer of source material on the bottom of the graphite crucible, and the filling height of the first layer of source material is 2mm-10mm.
  • step S3. The filling heights of the third layer of source material, the fourth layer of source material and the fifth layer of source material are 10mm-30mm, 10mm-30mm, 3mm-25mm, and the distance between the upper surface of the fifth layer of source material and the seed crystal growth surface It is 20mm-40mm.
  • a 6H-SiC seed crystal with a diameter of 100mm-200mm and a thickness of 0.4mm-2mm is bonded and fixed on the crucible cover.
  • the direction of the seed crystal growth surface is [0001] deflection 1°-10° pointing direction.
  • the crucible cover with the seed crystals is sealed and assembled on the crucible body, and the crucible is placed in the temperature field.
  • the first conductive electrode 1242 is connected to the positive electrode of the power source through a copper wire
  • the second conductive electrode 1243, the third conductive electrode and the fourth conductive electrode are connected to the negative electrode of the power source through a copper wire.
  • the growth chamber 110 is closed, and vacuum processing is performed on the growth chamber 110 to reduce the pressure of the growth chamber 110 to 1 ⁇ 10 -5 Pa-1 ⁇ 10 -3 Pa. Then turn on the power supply of the heating plate to heat the heating plate until the temperature of the crucible cover measured by the temperature sensing component reaches 900°C to 1400°C. Continue to vacuum and run at constant power for 20min-200min. Then, argon gas is blown into the growth chamber 110 to atmospheric pressure.
  • the crystal starts to grow, and the growth time is 40 hours to 60 hours. After the growth chamber 110 is slowly cooled for 30-60 hours, the silicon carbide crystal and the crucible are taken out.
  • the diameter of the obtained silicon carbide crystal growth surface is 154mm, and the height of the growth surface protrusion is 7.1mm.
  • the prepared silicon carbide crystals were cut, and the wafers 3 mm along the growth direction above the seed crystal plane were taken, and the wafers were ground and polished. Observed by an optical microscope, the density of carbon inclusion particles was statistically obtained as 4.9 particles/cm 2 .
  • Fig. 21 is a schematic diagram of exemplary produced crystals shown in some examples.
  • the crystal growth surface can be expressed as a c-plane, and the substrate surface is a d-plane.
  • the height of the protrusion of the growth surface represents the distance H between the highest point of the growth surface and the substrate surface.
  • the crystal preparation device shown in FIG. 15 is used to prepare silicon carbide crystals with silicon carbide powder with a purity greater than 99.999% as a source material.
  • the heating components include a first heating component 1220 and a second heating component 1240.
  • the first heating element 1220 adopts an induction coil and is arranged around the outer circumference of the growth chamber 110.
  • the second heating component 1240 is located inside the growth chamber 110 and includes at least one heating unit. In this embodiment, the heating unit may be referred to as a heating pan.
  • the preparation process may include the following steps: S1, selecting a graphite crucible with an inner diameter of 100-300 mm, a difference between height and inner diameter not exceeding 50% of the inner diameter, and a bottom thickness not exceeding 40% of the inner diameter as the growth chamber 110.
  • a heating plate with a thickness of 4mm-12mm and a diameter of 50mm-300mm.
  • a plurality of circulation channels are drilled on each heating plate, and the radius of the circulation channels is 0.2mm-1mm.
  • the plurality of circulation channels can be arranged into 18-30 circulation channel circles with the center of the heating plate as the center.
  • the center spacing of adjacent circulation channels on the circumference of the same circulation channel is 1mm-2mm.
  • R n -R n-1 (R 2 -R 1 )exp ((n-1) ⁇ 0.02+0.009 ), where, n-integer not less than 2, R 1 in the range of 5mm-20mm, the difference is within the range of 1mm-4mm of R 1 and R 2.
  • the first electrode hole A is located in the center of the heating plate, and the three first electrode holes B are circumferentially arranged on the edge area of the heating plate with the first electrode hole A as the center.
  • the heating plate after processing is as shown in Figure 16A.
  • the diameter of the first electrode hole A is in the range of 10mm-20mm, and the diameter of the first electrode hole B is in the range of 4mm-15mm.
  • a conductive ring with a thickness of 2mm-20mm, an outer diameter of 100mm-300mm, and an inner diameter of 120mm-280mm. Drill the second electrode hole on the conductive ring, as shown in Figure 17. The diameter of the second electrode hole on the conductive ring matches the diameter of the first electrode hole B on the heating plate.
  • Pave the first layer of source material on the bottom of the graphite crucible, and the filling height of the first layer of source material is 10mm-20mm.
  • step S3. The filling heights of the source material of the third layer and the source material of the fourth layer are respectively 20mm-30mm and 10mm-20mm, and the distance between the upper surface of the source material of the fourth layer and the seed crystal growth surface is 30mm-60mm.
  • a 4H-SiC seed crystal with a diameter of 100mm-200mm and a thickness of 0.5mm-2mm is bonded and fixed on the crucible cover.
  • the direction of the seed crystal growth surface is Deflection 2°-8°pointing direction.
  • the crucible cover with the seed crystals is sealed and assembled on the crucible body, and the crucible is placed in the temperature field.
  • the first conductive electrode 1242 is connected to the positive electrode of the power source through a copper wire
  • the second conductive electrode 1243, the third conductive electrode and the fourth conductive electrode are connected to the negative electrode of the power source through a copper wire.
  • the growth chamber 110 is closed, and vacuum processing is performed on the growth chamber 110 to reduce the pressure of the growth chamber 110 to 1 ⁇ 10 -5 Pa-1 ⁇ 10 -3 Pa. Then the power supply of the induction coil is started to heat the induction coil until the temperature on the crucible cover measured by the temperature sensing component reaches 1000°C-1500°C. Continue to vacuum and run at constant power for 20min-120min. Then, argon gas is blown into the growth chamber 110 to atmospheric pressure.
  • control component controls the second heating component 1240 to heat until the temperature on the crucible cover measured by the temperature sensing component reaches 2200°C-2300°C.
  • Vacuum processing is performed on the growth chamber 110 again, and argon gas is introduced into the growth chamber 110 at a rate of 2L/min-5L/min, so that the pressure of the growth chamber 110 is maintained at 5-30 Torr.
  • the crystal starts to grow, and the growth time is 40-60 hours. After the growth chamber 110 is slowly cooled for 40-60 hours, the silicon carbide crystal and the crucible are taken out.
  • the diameter of the obtained silicon carbide crystal growth surface is 154mm, and the height of the growth surface protrusion is 7.5mm.
  • the prepared silicon carbide crystals were cut, and the wafers 3 mm along the growth direction above the seed crystal plane were taken, and the wafers were ground and polished. Observed by an optical microscope, the density of carbon inclusion particles was calculated to be 4.1 particles/cm 2 .
  • Embodiment 1 to Embodiment 3 adopt the second heating component to heat separately and the first heating component and the second heating component to heat together, which can compensate the radial temperature.
  • the radial temperature difference and/or the radial temperature gradient can be reduced.
  • the circulation channel on the heating unit in the second heating assembly can prevent the graphitized carbon particles of the source material from moving upward, thereby reducing defects such as carbon inclusion microtubes in the crystal and improving the crystal quality.
  • the source material can be distributed on the heating units of different heights of the second heating element, and the source material can be heated in multiple layers, so that the source material can be heated more uniformly and fully.
  • the obtained crystal growth surface can be made flat and the degree of convexity is low (for example, for a crystal with a growth surface diameter of 100mm-200mm, the growth surface convex height is 5mm-7.5mm), and the crystal is
  • the density of the carbon inclusion particles is low (for example, the density of the carbon inclusion particles is 3 pcs/cm 2 -5 pcs/cm 2 ).
  • Figure 22 is a flowchart of an exemplary seed crystal preparation method shown in some embodiments.
  • Figure 23 is a schematic diagram of an exemplary seed crystal preparation process shown in some examples.
  • step 2210 the first cutting is performed on the plurality of hexagonal crystal seed crystals to be expanded to obtain a plurality of regular hexagonal hexagonal crystal seed crystals with the same crystal plane family.
  • the hexagonal crystal seed crystal may refer to a seed crystal in which there are six-fold or six-fold anti-axis characteristic symmetry elements in the direction of the major axis having a higher-order axis.
  • the hexagonal crystal seed crystal to be enlarged may refer to the hexagonal crystal seed crystal planned to be enlarged in diameter.
  • the hexagonal crystal seed crystal to be expanded can be represented as 2310.
  • the diameter of the hexagonal crystal type seed crystal to be expanded may be less than 8 inches.
  • the thickness of the hexagonal crystal seed crystal to be enlarged may be in the range of 100 ⁇ m-500 ⁇ m.
  • the hexagonal crystal seed crystal to be expanded may be prepared based on a physical vapor transport (PVT), chemical vapor deposition (CVD), or a pulling method.
  • the hexagonal crystal seed crystal may be 4H-SiC or 6H-SiC.
  • the first cutting may refer to cutting the hexagonal crystal seed crystal to be expanded into a set first size (for example, 4 inches or 6 inches) and a set first shape (for example, 4 inches or 6 inches) along a set cutting direction. , Regular hexagon) seed crystal.
  • the set cutting direction may be a direction perpendicular to the (0001) plane of the seed crystal.
  • the cut surface may refer to a new surface formed after the first cut of the seed crystal.
  • the crystal face family may refer to all crystal faces in the crystal that have exactly the same arrangement of atoms, ions, or molecules.
  • the plurality of hexagonal crystal seed crystals to be expanded are cut perpendicular to the (0001) plane, respectively, to obtain a plurality of regular hexagonal hexagonal crystal seed crystals with the same crystal plane family.
  • the crystal plane family may be or As shown in Figure 23, after the first cutting, the crystal plane family can be obtained as The regular hexagonal hexagonal crystal seed crystal 2321 and/or crystal face family is The regular hexagonal hexagonal crystal seed crystal 2322.
  • the plurality of hexagonal crystal seed crystals to be expanded may also be polished separately (for example, double-sided polishing).
  • the polishing process can remove the scratches on the surface of the hexagonal crystal seed crystal to be enlarged, and make the surface flat for subsequent processing.
  • the seed crystal of the hexagonal crystal type with enlarged diameter can be treated first. The surface is polished, and then the (0001) surface is polished.
  • the thickness of the hexagonal crystal seed crystal to be expanded after the polishing treatment is in the range of 100 ⁇ m-500 ⁇ m.
  • the thickness of the hexagonal crystal seed crystal to be expanded after the polishing treatment is in the range of 150 ⁇ m-450 ⁇ m. In some embodiments, the thickness of the hexagonal crystal seed crystal to be enlarged after the polishing treatment is in the range of 200 ⁇ m-400 ⁇ m. In some embodiments, the thickness of the hexagonal crystal seed crystal to be expanded after the polishing treatment is in the range of 250 ⁇ m-350 ⁇ m. In some embodiments, the thickness of the hexagonal crystal seed crystal to be expanded after the polishing treatment is in the range of 280 ⁇ m-320 ⁇ m.
  • Step 2220 splicing a plurality of regular hexagonal hexagonal crystal seed crystals.
  • Tight splicing can refer to splicing the cutting surfaces of multiple regular hexagonal hexagonal crystal seed crystals together, and making each cutting surface fit to the greatest extent, so that the spliced multiple regular hexagonal hexagonal crystal seed crystals are spliced The gap is as small as possible.
  • splicing a plurality of regular hexagonal hexagonal crystal seed crystals may include: centering a regular hexagonal hexagonal crystal type seed crystal, and the six sides of the regular hexagonal hexagonal crystal type seed crystal as the center are respectively It is tightly spliced with each side of six different regular hexagonal hexagonal crystal seed crystals.
  • tightly splicing the seven regular hexagonal hexagonal crystal seed crystals may include: taking one regular hexagonal hexagonal crystal seed crystal as the center, and closely splicing the six regular hexagonal hexagonal crystal seed crystals in the The outer periphery of the hexagonal hexagonal crystal seed crystal located in the center.
  • the multiple regular hexagonal hexagonal crystal seed crystals that are closely spliced may all be (0001) planes or Face up. As shown in FIG. 23, the multiple regular hexagonal hexagonal crystal seed crystals after closely splicing can be expressed as 2330.
  • Step 2230 Perform a second cutting on the multiple regular hexagonal hexagonal crystal seed crystals spliced to obtain the hexagonal crystal seed crystal to be grown.
  • the second cutting may include grinding a plurality of closely spliced regular hexagonal hexagonal crystal seed crystals, so that the closely spliced regular hexagonal hexagonal crystal seed crystals after the grinding process are grounded.
  • the crystal has a set second size (for example, 8 inches or 10 inches) and a set second shape (for example, circular).
  • a plurality of closely-spliced hexagonal hexagonal crystal seed crystals may be cut into spliced circular seed crystals of not less than 8 inches.
  • setting the second size is greater than setting the first size.
  • the grinding process may include an off-axis grinding process.
  • the direction of off-axis grinding can be [0001] deflection 3°-6° pointing Direction, so that step flow growth is performed in the process of growing crystals to further improve the crystal quality.
  • performing the second cutting on a plurality of closely-spliced regular hexagonal hexagonal crystal seed crystals may include: the center point of the regular hexagonal hexagonal crystal seed crystal at the center is the center of the circle, and the radius is set as the radius. , Make a circular cut.
  • the set radius may be determined according to the radius of the target hexagonal crystal type seed crystal.
  • a circular track is drawn on the surface of a plurality of closely spliced regular hexagonal hexagonal crystal seed crystals with a radius of 100mm-130mm, and then a grinding process is performed on the circular track to obtain the hexagon to be grown. Crystal seed crystal. As shown in FIG. 23, the hexagonal crystal seed crystal to be grown obtained after the second cutting can be expressed as 2340.
  • the surface area of the regular hexagonal hexagonal crystal seed crystal at the center can be larger than that of the regular hexagonal hexagonal crystal seed crystal located at other positions. Surface area. In some embodiments, the larger the surface area of the regular hexagonal hexagonal crystal seed crystal at the center, the less splicing gap growth defects.
  • the surface area of the hexagonal hexagonal seed crystal at the center may be 25%-55% of the target hexagonal seed crystal surface area or the surface area of the hexagonal crystal seed crystal to be grown. In some embodiments, the surface area of the regular hexagonal hexagonal seed crystal at the center may be 28%-52% of the target hexagonal seed crystal surface area or the surface area of the hexagonal crystal seed crystal to be grown. In some embodiments, the surface area of the regular hexagonal hexagonal crystal seed crystal at the center may be 30%-50% of the target hexagonal crystal seed crystal surface area or the surface area of the hexagonal crystal seed crystal to be grown.
  • the surface area of the regular hexagonal hexagonal crystal seed crystal at the center may be 32%-48% of the target hexagonal crystal seed crystal surface area or the surface area of the hexagonal crystal seed crystal to be grown. In some embodiments, the surface area of the regular hexagonal hexagonal crystal seed crystal at the center may be 35%-45% of the target hexagonal crystal seed crystal surface area or the surface area of the hexagonal crystal seed crystal to be grown. In some embodiments, the surface area of the regular hexagonal hexagonal crystal seed crystal at the center may be 38%-42% of the target hexagonal crystal seed crystal surface area or the surface area of the hexagonal crystal seed crystal to be grown. In some embodiments, the surface area of the hexagonal hexagonal seed crystal at the center may be 40% of the target hexagonal seed crystal surface area or the surface area of the hexagonal crystal seed crystal to be grown.
  • the hexagonal crystal seed crystal to be grown may refer to a spliced seed formed by closely splicing a plurality of regular hexagonal hexagonal crystal seed crystals and having the same or approximately the same shape and diameter as the target hexagonal crystal seed crystal. crystal.
  • the target hexagonal crystal seed crystal has a circular shape and a diameter of 8 inches.
  • the hexagonal crystal seed crystal to be grown may be an 8-inch spliced circular seed crystal formed by tightly splicing seven regular hexagonal hexagonal crystal seed crystals.
  • step 2240 under the first set conditions, the hexagonal crystal seed crystal to be grown is gap-grown to obtain the hexagonal crystal seed crystal intermediate.
  • the gap growth may refer to growing the splicing gap 2341 of the hexagonal crystal seed crystal to be grown, so that the closely spliced hexagonal crystal seed crystal to be grown grows into a whole without gaps or gaps are filled.
  • the gap growth needs to be performed under the first set conditions to promote or The growth of crystal plane family, and inhibit (0001) or The growth of crystal planes to realize the splicing gap growth of the hexagonal crystal seed crystal to be grown.
  • the first set condition may refer to the condition of the hexagonal crystal seed crystal to be grown for gap growth.
  • the first setting condition may include, but is not limited to, a first setting temperature, a first setting pressure, a first setting carbon to silicon ratio, a setting gap growth time, and the like.
  • the growth conditions in the first set conditions are mutually restrictive, and other growth conditions can be controlled according to one or several growth conditions.
  • under different first set temperature and first set carbon to silicon ratio, or The growth rate of the crystal face family is different.
  • the first set carbon to silicon ratio can be controlled to be in the range of 1.1-1.6. or The growth rate of the crystal face family is faster, which is conducive to the growth of the gap.
  • the first set temperature needs to be controlled within the preset temperature range.
  • the first set temperature may be in the range of 1000°C-2000°C.
  • the first set temperature may be in the range of 1050°C-1950°C. In some embodiments, the first set temperature may be in the range of 1100°C-1900°C. In some embodiments, the first set temperature may be in the range of 1150°C to 1850°C. In some embodiments, the first set temperature may be in the range of 1200°C-1800°C. In some embodiments, the first set temperature may be in the range of 1300°C-1750°C. In some embodiments, the first set temperature may be in the range of 1400°C-1700°C. In some embodiments, the first set temperature may be in the range of 1420°C-1680°C.
  • the first set temperature may be in the range of 1440°C-1660°C. In some embodiments, the first set temperature may be in the range of 1460°C-1640°C. In some embodiments, the first set temperature may be in the range of 1480°C-1620°C. In some embodiments, the first set temperature may be in the range of 1500°C to 1600°C. In some embodiments, the first set temperature may be in the range of 1520°C-1580°C. In some embodiments, the first set temperature may be in the range of 1540°C to 1560°C.
  • the first setting pressure needs to be controlled within the preset pressure range.
  • the first set pressure may be in the range of 10 Pa-1000 Pa. In some embodiments, the first set pressure may be in the range of 15Pa-800Pa.
  • the first set pressure may be in the range of 20Pa-600Pa. In some embodiments, the first set pressure may be in the range of 25Pa-400Pa. In some embodiments, the first set pressure may be in the range of 30Pa-200Pa. In some embodiments, the first set pressure may be in the range of 40Pa-170Pa. In some embodiments, the first set pressure may be in the range of 50Pa-150Pa. In some embodiments, the first set pressure may be in the range of 60Pa-120Pa. In some embodiments, the first set pressure may be in the range of 70 Pa-100 Pa. In some embodiments, the first set pressure may be in the range of 80Pa-90Pa.
  • the first set carbon to silicon ratio may be determined by a set flow rate of the first set source gas.
  • the first set source gas may include components required for gap growth.
  • the first set source gas may include, but is not limited to, silane and a carbon source (for example, alkane).
  • the first setting is that the carbon to silicon ratio is too high or too low to make the source gas react sufficiently. Therefore, it is necessary to control the first set carbon to silicon ratio within the preset range.
  • the first set carbon to silicon ratio may be in the range of 1.0-10.0. In some embodiments, the first set carbon to silicon ratio may be in the range of 1.0-9.0. In some embodiments, the first set carbon to silicon ratio may be in the range of 1.0-8.0. In some embodiments, the first set carbon to silicon ratio may be in the range of 1.0-7.0. In some embodiments, the first set carbon to silicon ratio may be in the range of 1.0-6.0. In some embodiments, the first set carbon to silicon ratio may be in the range of 1.0-5.0.
  • the first set carbon to silicon ratio may be in the range of 1.0-4.0. In some embodiments, the first set carbon to silicon ratio may be in the range of 1.0-3.0. In some embodiments, the first set carbon to silicon ratio may be in the range of 1.2-2.8. In some embodiments, the first set carbon to silicon ratio may be in the range of 1.4-2.6. In some embodiments, the first set carbon to silicon ratio may be in the range of 1.6-2.4. In some embodiments, the first set carbon to silicon ratio may be in the range of 1.8-2.2. In some embodiments, the first set carbon to silicon ratio may be in the range of 1.9-2.0.
  • the first set source gas may include, but is not limited to, SiH 4 , C 3 H 8, or H 2 .
  • the set flow rate of SiH 4 may be in the range of 50-300 mL/min. In some embodiments, the set flow rate of SiH 4 may be in the range of 60-280 mL/min. In some embodiments, the set flow rate of SiH 4 may be in the range of 70-260 mL/min. In some embodiments, the set flow rate of SiH 4 may be in the range of 80-240 mL/min. In some embodiments, the set flow rate of SiH 4 may be in the range of 90-220 mL/min. In some embodiments, the set flow rate of SiH 4 may be in the range of 100-200 mL/min.
  • the set flow rate of SiH 4 may be in the range of 110-190 mL/min. In some embodiments, the set flow rate of SiH 4 may be in the range of 120-180 mL/min. In some embodiments, the set flow rate of SiH 4 may be in the range of 130-170 mL/min. In some embodiments, the set flow rate of SiH 4 may be in the range of 140-160 mL/min. In some embodiments, the set flow rate of SiH 4 may be 150 mL/min.
  • the set flow rate of C 3 H 8 may be in the range of 10-200 mL/min. In some embodiments, the set flow rate of C 3 H 8 may be in the range of 20-180 mL/min. In some embodiments, the set flow rate of C 3 H 8 may be in the range of 30-160 mL/min. In some embodiments, the set flow rate of C 3 H 8 may be in the range of 40-140 mL/min. In some embodiments, the set flow rate of C 3 H 8 may be in the range of 50-120 mL/min. In some embodiments, the set flow rate of C 3 H 8 may be in the range of 60-100 mL/min. In some embodiments, the set flow rate of C 3 H 8 may be in the range of 70-90 mL/min. In some embodiments, the set flow rate of C 3 H 8 may be in the range of 75-85 mL/min.
  • the set flow rate of H 2 may be in the range of 10-200 mL/min. In some embodiments, the set flow rate of H 2 may be in the range of 20-180 mL/min. In some embodiments, the set flow rate of H 2 may be in the range of 30-160 mL/min. In some embodiments, the set flow rate of H 2 may be in the range of 40-140 mL/min. In some embodiments, the set flow rate of H 2 may be in the range of 50-120 mL/min. In some embodiments, the set flow rate of H 2 may be in the range of 60-100 mL/min. In some embodiments, the set flow rate of H 2 may be in the range of 70-90 mL/min. In some embodiments, the set flow rate of H 2 may be in the range of 75-85 mL/min.
  • the gap growth time may be determined according to the gap size (for example, gap depth) of the hexagonal crystal seed crystal to be grown and the gap growth rate.
  • the gap growth time is too long, causing the hexagonal seed crystal to be grown to be epitaxially grown to form part of the thin film, resulting in more internal defects in the hexagonal seed crystal intermediate and the target hexagonal seed crystal, and further leading to the low quality of the grown crystal .
  • the gap growth time is too short, so that the splicing gap cannot be filled, and even some gaps are left, which further causes the quality of the hexagonal crystal seed crystal intermediate to be poor. Therefore, the gap growth time needs to be controlled within a preset time range. In some embodiments, the gap growth time can be set in the range of 3h-7h.
  • the gap growth time can be set in the range of 3.5h-6.5h. In some embodiments, the gap growth time can be set in the range of 4h-6h. In some embodiments, the gap growth time can be set in the range of 4.5h-5.5h. In some embodiments, the gap growth time can be set to 5 hours.
  • chemical vapor deposition may be used for gap growth.
  • the gap growth can be performed in a chemical vapor deposition (Chemical Vapor Deposition, CVD) device.
  • the hexagonal crystal seed crystal intermediate may refer to the seed crystal after the splicing gap of the hexagonal crystal seed crystal to be grown is grown.
  • Step 2250 under the second set conditions, perform epitaxial growth on the hexagonal crystal seed crystal intermediate to obtain the target hexagonal crystal seed crystal.
  • epitaxial growth can refer to the hexagonal crystal seed crystal intermediate perpendicular to (0001) or The growth is performed in the direction of the crystal plane, so that the hexagonal crystal seed crystal intermediate is grown into a target hexagonal crystal seed crystal with a set thickness.
  • the set thickness may be in the range of 400um-700um. In some embodiments, the set thickness may be in the range of 450um-650um. In some embodiments, the set thickness may be in the range of 500um-600um. In some embodiments, the set thickness may be in the range of 540um-560um.
  • the epitaxial growth needs to be performed under the second set conditions to promote (0001) or The growth of crystal planes, and inhibit or Growth of crystal face family.
  • the second setting condition may refer to a condition for epitaxial growth of the hexagonal crystal seed crystal intermediate.
  • the second setting conditions may include, but are not limited to, a second setting temperature, a second setting pressure, a second setting carbon to silicon ratio, a setting epitaxial growth time, and the like.
  • the second set temperature needs to be controlled within the preset temperature range.
  • the second set temperature may be in the range of 1100°C-2000°C. In some embodiments, the second set temperature may be in the range of 1200°C-1900°C.
  • the second set temperature may be in the range of 1300°C to 1800°C. In some embodiments, the second set temperature may be in the range of 1400°C-1700°C. In some embodiments, the second set temperature may be in the range of 1420°C-1680°C. In some embodiments, the second set temperature may be in the range of 1440°C-1660°C. In some embodiments, the second set temperature may be in the range of 1460°C-1640°C. In some embodiments, the second set temperature may be in the range of 1480°C-1620°C. In some embodiments, the second set temperature may be in the range of 1500°C to 1600°C. In some embodiments, the second set temperature may be in the range of 1520°C-1580°C. In some embodiments, the second set temperature may be in the range of 1540°C to 1560°C.
  • the second set pressure needs to be controlled within the preset pressure range.
  • the second set pressure may be in the range of 10Pa-1000Pa. In some embodiments, the second set pressure may be in the range of 15Pa-800Pa. In some embodiments, the second set pressure may be in the range of 20Pa-600Pa. In some embodiments, the second set pressure may be in the range of 25Pa-400Pa.
  • the second set pressure may be in the range of 30Pa-200Pa. In some embodiments, the second set pressure may be in the range of 40Pa-170Pa. In some embodiments, the second set pressure may be in the range of 50Pa-150Pa. In some embodiments, the second set pressure may be in the range of 60Pa-120Pa. In some embodiments, the second set pressure may be in the range of 70 Pa-100 Pa. In some embodiments, the second set pressure may be in the range of 80Pa-90Pa.
  • the second set carbon to silicon ratio may be determined by a set flow rate of the second set source gas.
  • the second set source gas may include components required for epitaxial growth.
  • the second set source gas may include, but is not limited to, silane and a carbon source (for example, alkane).
  • the composition of the second set source gas and the first set source gas may be the same or different.
  • the first set source gas may include, but is not limited to, SiH 4 , C 3 H 8, or H 2 .
  • the second setting is that the carbon to silicon ratio is too high or too low to allow the source gas to react sufficiently for epitaxial growth. Therefore, it is necessary to control the second set carbon-silicon ratio within the preset range.
  • the second set carbon to silicon ratio may be in the range of 0.1-2. In some embodiments, the second set carbon to silicon ratio may be in the range of 0.3-1.7. In some embodiments, the second set carbon to silicon ratio may be in the range of 0.5-1.5. In some embodiments, the second set carbon to silicon ratio may be in the range of 0.8-1.2. In some embodiments, the second set carbon to silicon ratio may be in the range of 0.9-1.1. In some embodiments, the second set carbon to silicon ratio may be in the range of 0.92-1.08. In some embodiments, the second set carbon to silicon ratio may be in the range of 0.95-1.05. In some embodiments, the second set carbon to silicon ratio may be in the range of 0.96-1.04.
  • the second set carbon to silicon ratio may be in the range of 0.97-1.03. In some embodiments, the second set carbon to silicon ratio may be in the range of 0.98-1.02. In some embodiments, the second set carbon to silicon ratio may be in the range of 0.99-1.01. In some embodiments, the second set carbon to silicon ratio may be 1.
  • the set epitaxial growth time can be determined according to the set thickness of the target hexagonal crystal seed crystal.
  • the epitaxial growth may be performed in a chemical vapor deposition (Chemical Vapor Deposition, CVD) apparatus.
  • the target hexagonal crystal seed crystal may refer to a seed crystal that has undergone diameter enlargement processing for the hexagonal crystal seed crystal to be enlarged.
  • the diameter of the target hexagonal crystal seed crystal may not be less than 2 times the diameter of the hexagonal crystal seed crystal to be enlarged.
  • the diameter of the target hexagonal crystal seed crystal may not be less than 2.5 times the diameter of the hexagonal crystal seed crystal to be enlarged.
  • the diameter of the target hexagonal crystal seed crystal may not be less than 3 times the diameter of the hexagonal crystal seed crystal to be enlarged.
  • the diameter of the target hexagonal crystal seed crystal may be greater than or equal to 8 inches.
  • the diameter of the target hexagonal crystal seed crystal may be 8 inches, 9 inches, 10 inches, and so on.
  • the target hexagonal crystal seed crystal can be used as the hexagonal crystal seed crystal to be expanded, and the operation of the process 2200 is repeated to grow a larger diameter hexagonal crystal seed crystal.
  • the epitaxial growth may include growing a crystal layer having a set size and the same crystal orientation as the seed crystal on the seed crystal. Since there are various defects in the seed crystal, and these defects are usually inherited during the epitaxial growth process, the seed crystal needs to be etched in situ to eliminate these defects.
  • the hexagonal crystal seed crystal to be grown may be etched in situ under the third setting condition to improve the surface flatness of the hexagonal crystal seed crystal to be grown.
  • the in-situ etching may be performed in a chemical vapor deposition (CVD) apparatus.
  • the CVD device needs to be pre-treated before performing in-situ etching.
  • the pretreatment may include, but is not limited to, vacuum treatment and heat treatment.
  • the vacuum treatment may refer to reducing the pressure in the CVD device to 10 -5 Pa to remove most of the air in the CVD device.
  • the heating treatment may include heating the CVD device to a range of 400°C-800°C. In some embodiments, the heating treatment may further include keeping the CVD device at a temperature ranging from 400° C. to 800° C. for about 1 hour.
  • the third setting condition may be, but not limited to, a setting gas with a setting flow rate, a third setting temperature, a third setting pressure, and a setting etching time.
  • the set gas may refer to a gas that can react with carbon.
  • the set gas may be hydrogen. Hydrogen can react with the carbon in the hexagonal silicon carbide seed crystal to be grown to generate hydrocarbons for in-situ etching.
  • the set flow rate needs to be controlled within the preset flow rate range.
  • the set flow rate may be in the range of 5L/min-200L/min.
  • the set flow rate may be in the range of 10L/min-150L/min.
  • the set flow rate may be in the range of 15L/min-100L/min.
  • the set flow rate may be in the range of 20L/min-80L/min. In some embodiments, the set flow rate may be in the range of 25L/min-75L/min. In some embodiments, the set flow rate may be in the range of 30L/min-70L/min. In some embodiments, the set flow rate may be in the range of 35L/min-65L/min. In some embodiments, the set flow rate may be in the range of 40L/min-60L/min. In some embodiments, the set flow rate may be in the range of 44L/min-46L/min.
  • the third setting temperature is too high can cause the etching efficiency to be too fast or uncontrollable, and affect the quality of the hexagonal crystal seed crystal to be grown.
  • the third set temperature is too low, the set gas and the third set temperature are too high to be unable to react, and etching cannot be performed. Therefore, the third set temperature needs to be controlled within the preset temperature range.
  • the third set temperature may be in the range of 1200°C-1500°C. In some embodiments, the third set temperature may be in the range of 1250°C to 1450°C. In some embodiments, the third set temperature may be in the range of 1300°C to 1400°C. In some embodiments, the third set temperature may be in the range of 1340°C-1360°C.
  • the third setting pressure is too high, which may cause the gas phase substances generated by the reaction between the setting gas and the hexagonal crystal seed crystal to be grown to be unable to be effectively removed in time, and thus the quality of the hexagonal crystal seed crystal to be grown after etching is not high. .
  • the third setting pressure is too low, which may cause the etching efficiency to be too fast or uncontrollable, and affect the quality of the hexagonal crystal seed crystal to be grown. Therefore, the third set pressure needs to be controlled within the preset pressure range.
  • the third set pressure may be in the range of 1 kPa-12 kPa. In some embodiments, the third set pressure may be in the range of 2kPa-11kPa.
  • the third set pressure may be in the range of 3kPa-10kPa. In some embodiments, the third set pressure may be in the range of 4kPa-9kPa. In some embodiments, the third set pressure may be in the range of 5kPa-8kPa. In some embodiments, the third set pressure may be in the range of 6kPa-7kPa.
  • the setting of the etching time can be determined according to the surface flatness and surface morphology of the hexagonal crystal seed crystal to be grown. Setting the etching time to be too long cannot guarantee the uniformity of the hexagonal seed crystals to be grown after etching. Setting the etching time to be too short may cause more defects on the surface of the hexagonal crystal seed crystal to be grown, thereby affecting its quality. Therefore, it is necessary to control the set etching time within the set time range.
  • the set etching time may be in the range of 10 min-30 min. In some embodiments, the set etching time can be in the range of 12 min-28 min. In some embodiments, the set etching time may be in the range of 15min-25min. In some embodiments, the set etching time may be in the range of 18 min-22 min. In some embodiments, the set etching time can be in the range of 19min-20min.
  • the hexagonal crystal seed crystal according to the intrinsic properties of the hexagonal crystal seed crystal, it is cut into six sides. or The regular hexagonal hexagonal crystal seed crystal of the crystal face family. In crystallography, the crystal face family is or The physical and chemical properties of the six sides are the same, so that the gap growth quality between the same crystal plane group is higher or the dislocations are less, and the quality of the target hexagonal crystal seed crystal is higher.
  • This embodiment provides a method for preparing a seed crystal, the steps are as follows: S1, preparing 7 6H-SiC with a diameter of 110mm-160mm, and polishing the 7 6H-SiC respectively to make the surface of the 6H-SiC flat.
  • the 6H-SiC can be The surface is polished, and then the (0001) surface is polished.
  • the thickness of the polished 6H-SiC may be about 100 ⁇ m-150 ⁇ m.
  • S6 Arrange the clean round 6H-SiC according to the grinding order in S4, and use an adhesive (for example, sucrose) to bond it to a graphite tray with a level surface. Put the circular 6H-SiC-bonded tray into the CVD device, first vacuum the CVD device to 1 ⁇ 10 -5 Pa-1 ⁇ 10 -3 Pa, and then use 1°C/min-20°C/min The heating rate is slowly heated to 600°C-1000°C, and the temperature is maintained for 0.5h-2h to remove the air in the CVD device.
  • an adhesive for example, sucrose
  • This embodiment provides another method for preparing a seed crystal, including the following steps: S1, preparing 7 6H-SiC with a diameter of 110mm-160mm, and polishing the 7 6H-SiC to make the 6H-SiC surface flat.
  • the 6H-SiC can be The surface is polished, and then the (0001) surface is polished.
  • the thickness of the polished 6H-SiC may be about 100 ⁇ m-150 ⁇ m.
  • S6 Arrange the clean round 6H-SiC according to the grinding order in S4, and use an adhesive (for example, sucrose) to bond it to a graphite tray with a level surface. Put the circular 6H-SiC-bonded tray into the CVD device, first vacuum the CVD device to 1 ⁇ 10 -5 Pa-1 ⁇ 10 -3 Pa, and then use 1°C/min-20°C/min The heating rate is slowly heated to 600°C-1000°C and kept for 0.5h-3h to remove the air in the CVD device.
  • an adhesive for example, sucrose
  • the two embodiments were carried out separately Crystal face family and Since the physicochemical properties of the crystal plane family are the same, the two embodiments are the gap growth of a single crystal plane family, which can improve the quality of the gap growth. at the same time, with The crystal plane family is conducive to the migration of atoms deposited on the surface, so that the epitaxial growth is uniform, and it is not easy to form defects.
  • a complete regular hexagonal hexagonal crystal seed crystal is placed at the center when the close splicing is performed. , So that the central part of the hexagonal crystal seed crystal to be grown obtained after the second cutting has no splicing gaps, thereby providing a stable substrate for gap growth, so as to greatly reduce the defects of the target hexagonal crystal seed crystal and improve its quality.
  • the heating component can be controlled based on the temperature in the growth cavity obtained by the temperature sensing component during the crystal growth, so that the crystal growth inside the cavity
  • the radial temperature difference does not exceed the first preset range of the average temperature in the growth chamber or the preset radial temperature difference threshold, which can also maintain the axial temperature gradient in the growth chamber during crystal growth to stabilize the crystal growth, and further preparation Large-sized, high-quality crystals
  • At least one heating element is used to heat the growth chamber, which can compensate for the radial temperature, for example, can reduce the radial temperature difference and/or the radial temperature gradient.
  • the circulation channel on the heating unit in the second heating assembly can prevent the graphitized carbon particles of the source material from moving upward, thereby reducing defects such as carbon inclusion microtubes in the crystal and improving the crystal quality.
  • Distributing the source material on heating units of different heights and heating the source material in multiple layers can make the source material heated more uniformly and fully, which not only improves the utilization rate of the source material, but also reduces the carbonization of the source material. Further improve the crystal quality.
  • the obtained crystal growth surface is relatively flat, the degree of convexity is low, and the density of the carbon inclusion particles in the crystal is low, and the crystal quality is high.
  • the gap growth of a single crystal plane group can improve the quality of the gap growth.
  • a complete regular hexagonal hexagonal crystal seed crystal can be placed in the center and/or the centered
  • the surface area of the hexagonal hexagonal crystal seed crystal is larger than the surface area of the regular hexagonal hexagonal crystal seed crystal located in other positions, which provides a stable substrate for gap growth, so as to reduce the defects of the target hexagonal crystal seed crystal and improve its quality.
  • the possible beneficial effects may be any one or a combination of the above, or any other beneficial effects that may be obtained.
  • this application uses specific words to describe the embodiments of the application.
  • “one embodiment”, “an embodiment”, and/or “some embodiments” mean a certain feature, structure, or characteristic related to at least one embodiment of the present application. Therefore, it should be emphasized and noted that “one embodiment” or “one embodiment” or “an alternative embodiment” mentioned twice or more in different positions in this specification does not necessarily refer to the same embodiment. .
  • some features, structures, or characteristics in one or more embodiments of the present application can be appropriately combined.
  • numbers describing the number of ingredients and attributes are used. It should be understood that such numbers used in the description of the embodiments use the modifier "about”, “approximately” or “substantially” in some examples. Retouch. Unless otherwise stated, “approximately”, “approximately” or “substantially” indicates that the number is allowed to vary by ⁇ 20%.
  • the numerical parameters used in the specification and claims are approximate values, and the approximate values can be changed according to the required characteristics of individual embodiments. In some embodiments, the numerical parameter should consider the prescribed effective digits and adopt the method of general digit retention. Although the numerical ranges and parameters used to confirm the breadth of the range in some embodiments of the present application are approximate values, in specific embodiments, the setting of such numerical values is as accurate as possible within the feasible range.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

提供一种晶体制备装置及晶体生长方法。该装置包括:生长腔体,用于晶体生长;以及温控系统,用于加热生长腔体,使晶体生长时生长腔体内的径向温差不超过生长腔体内平均温度的第一预设范围。该方法包括:将籽晶和源材料置于生长腔体中生长晶体;在晶体生长过程中,基于温度传感组件的信息控制加热组件,使得晶体生长时生长腔体内的径向温差不超过生长腔体内平均温度的第一预设范围。

Description

一种晶体制备装置及生长方法
交叉引用
本申请要求2020年05月06日提交的中国申请号202010373329.8和2020年07月02日提交的中国申请号202010626511.X的优先权,其全部内容通过引用并入本文。
技术领域
本申请涉及晶体制备领域,特别涉及一种晶体制备装置及生长方法。
背景技术
半导体晶体(例如,碳化硅单晶)具有优异的物理化学性能,因此成为制造高频率和大功率器件的重要材料。物理气相传输法(Physical Vapor Transport,PVT)是一种用于制备半导体晶体的方法。物料在高温条件下分解升华为气相组分,气相组分在轴向温度梯度驱动下传输至低温区的籽晶处,并在籽晶表面沉积生成晶体。然而,在晶体的生长过程中,不仅存在轴向温度梯度,还存在径向温度梯度。在生长大尺寸的晶体时,较大的径向温度梯度会导致晶体生长缺陷,降低晶体的质量和产率。此外,由于物料覆盖区域的径向温度梯度较大,使得升华的各个气相组分的摩尔比沿径向分布不均匀,不利于晶体的稳定生长。因此,有必要提供一种改进的晶体制备装置及其生长方法,以制备大尺寸、高质量的晶体。
发明内容
一方面提供一种晶体制备装置,装置包括:生长腔体,用于晶体生长;以及温控系统,用于加热所述生长腔体,使晶体生长时所述生长腔体内的径向温差不超过所述生长腔体内平均温度的第一预设范围。
又一方面提供一种晶体制备装置,装置包括:生长腔体,用于放置籽晶和源材料;加热组件,用于加热所述生长腔体;以及温度补偿组件,用于在晶体生长过程中提供温度补偿,其中,所述温度补偿组件位于所述生长腔体上表面和/或下表面,以及所述温度补偿组件包括至少一个加热单元。
又一方面提供一种晶体制备装置,装置包括:生长腔体,用于放置籽晶和源材料,其中,所述籽晶置于所述生长腔体的顶部,所述源材料置于所述生长腔体的底部;加热组件,用于加热所述生长腔体,其中,所述加热组件位于所述生长腔体的外部,所述加热组件包括电阻式发热体。
又一方面提供一种晶体生长方法,方法包括:将籽晶和源材料置于生长腔体中生长晶体;在晶体生长过程中,基于温度传感组件的信息控制加热组件,使得晶体生长时所述生长腔体内的径向温差不超过所述生长腔体内平均温度的第一预设范围。
又一方面提供一种籽晶的制备方法,包括:对多个待扩径六方晶型籽晶分别进行第一切割,得到切割面为相同晶面族的多个正六边形六方晶型籽晶;将所述多个正六边形六方晶型籽晶进行拼接;对拼接的所述多个正六边形六方晶型籽晶进行第二切割,得到待生长六方晶型籽晶;在第一设定条件下,对所述待生长六方晶型籽晶进行缝隙生长,得到六方晶型籽晶中间体;以及在第二设定条件下,对所述六方晶型籽晶中间体进行外延生长,得到目标六方晶型籽晶,其中,所述目标六方晶型籽晶的直径大于所述待扩径的六方晶型籽晶的直径。
附图说明
本说明书将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:
图1是一些实施例所示的示例性晶体制备装置的示意图;
图2是一些实施例所示的示例性温度反馈调节系统的示意图;
图3是另一些实施例所示的示例性晶体制备装置的示意图;
图4是一些实施例所示的示例性加热单元排布的俯视图;
图5是另一些实施例所示的示例性加热单元排布的俯视图;
图6是一些实施例所示的示例性第一电极和示例性第二电极的示意图;
图7是一些实施例所示的示例性电极固定板的俯视图;
图8是另一些实施例所示的示例性晶体制备装置的示意图;
图9是一些实施例所示的示例性电阻式发热体的示意图;
图10和图11是另一些实施例所示的示例性第一电极和示例性第二电极排布的俯视图;
图12是另一些实施例所示的示例性第一电极和/或示例性第二电极固定到电阻式发热体的示意图;
图13是另一些实施例所示的示例性晶体制备装置的示意图;
图14是一些实施例所示的示例性至少一个加热单元的示意图;
图15是另一些实施例所示的示例性晶体制备装置的示意图;
图16A是一些实施例所示的示例性至少一个加热单元的俯视图;
图16B是一些实施例所示的示例性至少一个加热单元的侧视图;
图17是一些实施例所示的示例性至少一个导电环的示意图;
图18是一些实施例所示的示例性晶体生长方法的流程图;
图19是另一些实施例所示的示例性晶体生长方法的流程图;
图20是另一些实施例所示的示例性晶体生长方法的流程图;
图21是一些实施例所示的示例性制得的晶体的示意图;
图22是一些实施例所示的示例性籽晶制备方法的流程图;
图23是一些实施例所示的示例性籽晶制备过程的示意图。
图中,100为晶体制备装置;110为生长腔体;120为加热组件;111为生长腔体盖;112为生长腔主体;130为保温层;150为籽晶;160为源材料;1210为温度补偿组件;1210-1为第一温度补偿组件;1210-2为第二温度补偿组件;1211为第二电极;1212为至少一个加热单元;1213为第一电极;1214为铜线;1215为电极固定板;1215-1为第一孔洞;1215-2为第二孔洞;1215-3为测温孔;1215-4为至少两个孔洞;1216为固定框架;1220为第一加热组件;1230为电阻式发热体;1230-1为第一加热模块;1230-2为第二加热模块;1230-3为第三加热模块;1230-11为第一子电阻式发热体;1230-12为第二子电阻式发热体;1230-13为第三子电阻式发热体;1230-14为第四子电阻式发热体;1230-21为第五子电阻式发热体;1230-22为第六子电阻式发热体;1230-23为第七子电阻式发热体;1230-31为第八子电阻式发热体;1230-32为第九子电阻式发热体;1230-33为第十子电阻式发热体;1230-34为第十一子电阻式发热体;1230-35为第十二子电阻式发热体;1230-36为第十三子电阻式发热体;1230-37为第十四子电阻式发热体;1230-38为第十五子电阻式发热体;1230-39为第十六子电阻式发热体;1240为第二加热组件;1241-至少一个导电环;1242-第一导电电极;1243-第二导电电极;1244-第一电极插柱;1245-第二电极插柱;1246-第一电极孔A;1247-第一电极孔B;1248-第二电极孔;1250-至少一个流通通道;1251-第一流通通道圆周;1252-第二流通通道圆周;1253-第三流通通道圆周;1254-第四流通通道圆周;210-温度传感组件;220-加热组件;230-控制组件;2310-待扩径六方晶型籽晶;2321-晶面族为
Figure PCTCN2021085468-appb-000001
的正六边形六方晶型籽晶;2322-晶面族为
Figure PCTCN2021085468-appb-000002
的正六边形六方晶型籽晶;2330-进行紧密拼接后的多个正六边形六方晶型籽晶;2340-进行第二切割后得到的待生长六方晶型籽晶;2341-拼接缝 隙。
具体实施方式
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本申请的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本申请应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。应当理解的是,附图仅仅是为了说明和描述的目的,并不旨在限制本申请的范围。应当理解的是,附图并不是按比例绘制的。
需要理解的是,为了便于对本申请的描述,术语“中心”、“上表面”、“下表面”、“上”、“下”、“顶”、“底”、“内”、“外”、“轴向”、“径向”、“外周”、“外部”等指示的位置关系为基于附图所示的位置关系,而不是指示所指的装置、组件或单元必须具有特定的位置关系,不能理解为是对本申请的限制。
应当理解,本文使用的“系统”、“装置”、“单元”和/或“模组”是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换所述词语。
如本申请和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。
本申请中使用了流程图用来说明根据本申请的实施例的系统所执行的操作。应当理解的是,前面或后面操作不一定按照顺序来精确地执行。相反,可以按照倒序或同时处理各个步骤。同时,也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。
图1是一些实施例所示的示例性晶体制备装置的示意图。
晶体制备装置100可以用于制备晶体。在一些实施例中,晶体制备装置100可以基于物理气相传输法(Physical Vapor Transport,PVT)制备晶体。晶体制备装置100的生长腔体顶部粘接籽晶,生长腔体底部放置源材料,生长腔体外部设置加热元件(例如,感应线圈),用于加热生长腔体。在晶体生长过程中,可以通过控制生长腔体内的温场分布,使源材料和籽晶之间形成轴向温度梯度。源材料在高温条件下分解升华为气 相组分,气相组分在轴向温度梯度的驱动下传输至低温区的籽晶处。由于籽晶所处位置的温度相对较低,气相组分可以在籽晶表面生成晶体。在一些实施例中,晶体可以包括但不限于碳化硅晶体、氮化铝晶体、氧化锌晶体或锑化锌晶体。
如图1所示,晶体制备装置100可以包括生长腔体110和加热组件120。加热组件120可以用于加热生长腔体110,提供晶体生长所需的温度场以制备晶体。
生长腔体110可以是用于提供晶体生长的场所。在一些实施例中,生长腔体110可以用于生长籽晶,再基于籽晶进一步生长晶体。在一些实施例中,生长腔体110内部可以放置籽晶和源材料,并基于籽晶和源材料生长晶体。在一些实施例中,生长腔体110可以包括生长腔体盖111和生长腔主体112。在一些实施例中,生长腔主体112可以是具有生长腔体底盖,而不具备生长腔体盖的容器。在一些实施例中,生长腔体盖111可以位于生长腔主体112顶部,用于封闭生长腔主体112的顶端开口。在一些实施例中,生长腔体110可以是坩埚,坩埚可以包括坩埚盖和坩埚本体。在一些实施例中,生长腔主体112的形状可以包括但不限于圆柱形、长方体或立方体等。在一些实施例中,生长腔体盖111的形状可以包括但不限于圆盘、长方形盘或正方形盘等。在一些实施例中,生长腔体盖111与生长腔主体112的形状可以相匹配。在一些实施例中,生长腔主体112的形状可以是圆柱形的桶体,其包括桶底和桶侧壁,生长腔体盖111的形状可以是圆盘。在一些实施例中,生长腔主体112的形状可以是长方体的桶体,其包括桶底和桶侧壁,生长腔体盖111的形状可以是长方形盘或正方形盘。
在一些实施例中,生长腔体110的材质可以包括但不限于石墨。在一些实施例中,生长腔体110的材质可以包括石墨和碳化硅。在一些实施例中,石墨质量可以占生长腔体110质量的40%-90%。在一些实施例中,石墨质量可以占生长腔体110质量的45%-85%。在一些实施例中,石墨质量可以占生长腔体110质量的50%-80%。在一些实施例中,石墨质量可以占生长腔体110质量的55%-75%。在一些实施例中,石墨质量可以占生长腔体110质量的60%-70%。在一些实施例中,石墨质量可以占生长腔体110质量的64-66%。在一些实施例中,生长腔体盖111和生长腔主体112的材质可以相同,也可以不同。
加热组件120可以用于加热生长腔体110,提供晶体生长所需的温度场以制备晶体。在一些实施例中,在生长腔体110内部温度场的作用下,源材料可以升华分解生成气相组分,气相组分可以在轴向温度梯度的驱动下,传输至籽晶处,并在籽晶处长大、结晶生成晶体。在一些实施例中,加热组件120可以位于生长腔体110的外部和/或内 部。在一些实施例中,加热组件120可以包括但不限于电阻加热设备和/或电磁感应加热设备等。如图1所示,加热组件120可以包括围绕设置在生长腔体110外部的电磁感应加热设备。在一些实施例中,电磁感应加热设备可以包括感应线圈。感应线圈在不同频率的交流电作用下,可以在生长腔体110表面产生涡流。在涡流作用下,生长腔体110表面产生的电能可以转变为热能,以对生长腔体110进行加热。在一些实施例中,加热组件120可以包括电阻加热设备。在一些实施例中,加热组件120可以包括石墨电阻加热设备,石墨通电后可以利用电流流过石墨的焦耳效应产生的热能对生长腔体110进行加热。
如图1所示,生长腔体盖111的内侧面可以粘接籽晶150,生长腔主体112内可以放置源材料160。图1中虚线a所示为籽晶150的下表面。图1中虚线b所示为源材料160的上表面。在一些实施例中,径向温差可以表示为生长腔体110同一高度的水平截面上最高温度与最低温度的差值。由于生长腔体110具有高度,在不同高度的水平截面上,最高温度与最低温度的差值可能不同。在一些实施例中,为了方便,径向温差可以指籽晶下表面所在的平面(图1中虚线a所在的水平面)上最高温度与最低温度的差值。在一些实施例中,径向温差可以指源材料上表面所在的平面(图1中虚线b所在的水平面)上最高温度与最低温度的差值。在一些实施例中,径向温差可以指源材料160上表面所在的平面与籽晶150下表面所在的平面之间的任意一个水平面上最高温度与最低温度的差值。
如图1所示,加热组件120可以包括围绕设置在生长腔体110外部的电磁感应加热设备。电磁感应加热设备可以是感应线圈。感应线圈通电对生长腔体110进行加热时,热能从生长腔体壁传导至生长腔体110内部。在生长腔体110内部,热能从生长腔体110外周区域传导至生长腔体110中心区域。由于热能传导过程中,存在热能消散。因此,生长腔体110内部的外周区域可以是相对高温区,中心区域可以是相对低温区。在一些实施例中,外周区域可以是靠近生长腔体110壁的区域。中心区域可以是靠近生长腔体110中心轴的区域。在一些实施例中,生长腔体110内部可以形成从外周区域到中心区域,温度递减的温场。温场可以反映生长腔体110内部温度在时间和空间上的分布情况。温度递减的温场可以形成径向温差。
径向温差可以导致籽晶生长面产生热应力,使籽晶生长面向源材料方向凸起,且产生微管、包裹体等缺陷。在一定情况下,径向温差还可以导致源材料升华的气相组分的摩尔比沿径向分布不均匀,进而影响晶体的质量。因此,为了制备高质量的晶体, 需要降低径向温差。本说明书实施例中,除非有特别说明,温场、温度场和温度分布可以替换使用。
在一些实施例中,温控系统可以使晶体生长时生长腔体内的径向温差不超过晶体生长温度的第一预设范围。在一些实施例中,可以预先设置晶体生长温度和/或第一预设范围。在一些实施例中,可以基于预设条件根据一定的算法来动态确定晶体生长温度和/或第一预设范围。在一些实施例中,预设条件可以包括但不限于生长腔体110的尺寸、形状和材质、籽晶的尺寸、待生长的晶体的种类和尺寸。关于温控系统的具体描述可以参见本说明书图2及其相关说明。
径向温差可以导致晶体生长时产生微管、包裹体等缺陷。因此,需要控制晶体生长时的径向温差,以得到高质量的晶体。关于具体的控制过程可以参见本说明书其它部分(例如,图2)的描述。在一些实施例中,晶体生长温度可以指晶体生长所需的摄氏温度。不同种类的晶体,其生长温度不同。在一些实施例中,碳化硅晶体的生长温度可以为2200℃-2400℃。在一些实施例中,温控系统可以使晶体生长时生长腔体内的径向温差不超过晶体生长温度的1%。在一些实施例中,温控系统可以使晶体生长时生长腔体内的径向温差不超过晶体生长温度的0.8%。在一些实施例中,温控系统可以使晶体生长时生长腔体内的径向温差不超过晶体生长温度的0.6%。在一些实施例中,温控系统可以使晶体生长时生长腔体内的径向温差不超过晶体生长温度的0.5%。在一些实施例中,温控系统可以使晶体生长时生长腔体内的径向温差不超过晶体生长温度的0.4%。在一些实施例中,温控系统可以使晶体生长时生长腔体内的径向温差不超过晶体生长温度的0.3%。在一些实施例中,温控系统可以使晶体生长时生长腔体内的径向温差不超过晶体生长温度的0.25%。在一些实施例中,温控系统可以使晶体生长时生长腔体内的径向温差不超过晶体生长温度的0.2%。在一些实施例中,温控系统可以使晶体生长时生长腔体内的径向温差不超过晶体生长温度的0.15%。在一些实施例中,温控系统可以使晶体生长时生长腔体内的径向温差不超过晶体生长温度的0.1%。在一些实施例中,温控系统可以使晶体生长时生长腔体内的径向温差不超过晶体生长温度的0.08%。在一些实施例中,温控系统可以使晶体生长时生长腔体内的径向温差不超过晶体生长温度的0.06%。在一些实施例中,温控系统可以使晶体生长时生长腔体内的径向温差不超过晶体生长温度的0.05%。在一些实施例中,温控系统可以使晶体生长时生长腔体内的径向温差不超过晶体生长温度的0.02%。
在一些实施例中,温控系统可以使晶体生长时生长腔体内的径向温差不超过预 设径向温差阈值。在一些实施例中,预设径向温差阈值可以在0.5℃-6℃范围内。在一些实施例中,预设径向温差阈值可以在0.6℃-5.7℃范围内。在一些实施例中,预设径向温差阈值可以在0.7℃-5.4℃范围内。在一些实施例中,预设径向温差阈值可以在0.8℃-5℃范围内。在一些实施例中,预设径向温差阈值可以在0.9℃-4.7℃范围内。在一些实施例中,预设径向温差阈值可以在1℃-4.4℃范围内。在一些实施例中,预设径向温差阈值可以在1.1℃-4℃范围内。在一些实施例中,预设径向温差阈值可以在1.2℃-3.5℃范围内。在一些实施例中,预设径向温差阈值可以在1.3℃-3℃范围内。在一些实施例中,预设径向温差阈值可以在1.4℃-2.5℃范围内。在一些实施例中,预设径向温差阈值可以在1.5℃-2℃范围内。在一些实施例中,预设径向温差阈值可以在1.6℃-1.9℃范围内。在一些实施例中,预设径向温差阈值可以在1.7℃-1.8℃范围内。
晶体生长到预设尺寸需要预设时间,因此,在晶体生长的整个过程中,需要控制生长腔体内的径向温差在一定时间域内不超过晶体生长温度的第一预设范围或预设径向温差阈值。由于晶体生长过程是沿着特定的晶面进行生长,一旦某一时间段生长的晶体出现缺陷,在该晶体生长的后续阶段中,该缺陷就会不断累积扩大,最终导致晶体质量低甚至无法使用。因此,需要控制处于晶体生长时间段的前面阶段的时间内,晶体生长时生长腔体内的径向温差保持不超过晶体生长温度的第一预设范围或预设径向温差阈值。
在一些实施例中,温控系统可以使晶体生长时生长腔体内的径向温差至少在晶体生长子区间内保持不超过晶体生长温度的第一预设范围或预设径向温差阈值。在一些实施例中,晶体生长子区间可以为晶体生长区间的前某一区间内的时间段。在一些实施例中,晶体生长区间为4:00am-24:00pm,晶体生长子区间为晶体生长区间的前90%的时间段可以表示为晶体生长子区间可以为4:00am-22:00pm。在一些实施例中,晶体生长区间可以指晶体生长到预设尺寸所需的最少时间。在一些实施例中,可以根据预设条件确定晶体生长区间。在一些实施例中,预设条件可以包括但不限于生长腔体110的尺寸、形状和材质、籽晶的尺寸、待生长的晶体的种类和尺寸。
在一些实施例中,晶体生长子区间可以为晶体生长区间的前80%的时间段。在一些实施例中,晶体生长子区间可以为晶体生长区间的前85%的时间段。在一些实施例中,晶体生长子区间可以为晶体生长区间的前90%的时间段。在一些实施例中,晶体生长子区间可以为晶体生长区间的前95%的时间段。在一些实施例中,温控系统可以使晶体生长时生长腔体内的径向温差在整个晶体生长区间内保持不超过晶体生长温度的第 一预设范围或预设径向温差阈值。
在一些实施例中,径向温差可以与生长腔体的半径有关。如图1所示,生长腔体110的半径越大,热能从生长腔体110壁传导至生长腔体110内部的过程中,热能消散越多,可以导致径向温差越大。一些实施例可以使生长在不同半径的生长腔体110中的晶体生长时的径向温差不超过晶体生长温度的第一预设范围或预设径向温差阈值。
在一些实施例中,当生长腔体的半径不超过5cm时,温控系统可以使晶体生长时生长腔体内的径向温差不超过晶体生长温度的0.075%或预设径向温差阈值。在一些实施例中,预设径向温差阈值可以在0.5℃-1.5℃范围内。在一些实施例中,预设径向温差阈值可以在0.6℃-1.4℃范围内。在一些实施例中,预设径向温差阈值可以在0.7℃-1.3℃范围内。在一些实施例中,预设径向温差阈值可以在0.8℃-1.2℃范围内。在一些实施例中,预设径向温差阈值可以在0.9℃-1.1℃范围内。
在一些实施例中,当生长腔体的半径大于5cm且不超过8cm时,温控系统可以使晶体生长时的径向温差不超过晶体生长温度的0.15%或预设径向温差阈值。在一些实施例中,预设径向温差阈值可以在0.8℃-2.8℃范围内。在一些实施例中,预设径向温差阈值可以在0.9℃-2.7℃范围内。在一些实施例中,预设径向温差阈值可以在1℃-2.6℃范围内。在一些实施例中,预设径向温差阈值可以在1.1℃-2.5℃范围内。在一些实施例中,预设径向温差阈值可以在1.2℃-2.4℃范围内。在一些实施例中,预设径向温差阈值可以在1.3℃-2.3℃范围内。在一些实施例中,预设径向温差阈值可以在1.4℃-2.2℃范围内。在一些实施例中,预设径向温差阈值可以在1.5℃-2.1℃范围内。在一些实施例中,预设径向温差阈值可以在1.6℃-2℃范围内。在一些实施例中,预设径向温差阈值可以在1.7℃-1.9℃范围内。
在一些实施例中,当生长腔体的半径大于8cm且不超过10cm时,温控系统可以使晶体生长时生长腔体内的径向温差不超过晶体生长温度的0.2%或预设径向温差阈值。在一些实施例中,预设径向温差阈值可以在1.5℃-4.5℃范围内。在一些实施例中,预设径向温差阈值可以在1.7℃-4.3℃范围内。在一些实施例中,预设径向温差阈值可以在1.9℃-4.1℃范围内。在一些实施例中,预设径向温差阈值可以在2.1℃-3.9℃范围内。在一些实施例中,预设径向温差阈值可以在2.3℃-3.7℃范围内。在一些实施例中,预设径向温差阈值可以在2.5℃-3.5℃范围内。在一些实施例中,预设径向温差阈值可以在2.7℃-3.3℃范围内。在一些实施例中,预设径向温差阈值可以在2.9℃-3.1℃范围内。在一些实施例中,预设径向温差阈值可以为3℃。
在一些实施例中,当生长腔体的半径大于10cm时,温控系统可以使晶体生长时生长腔体内的径向温差不超过晶体生长温度的0.3%或预设径向温差阈值。在一些实施例中,预设径向温差阈值可以在1.5℃-6℃范围内。在一些实施例中,预设径向温差阈值可以在1.7-5.8℃范围内。在一些实施例中,预设径向温差阈值可以在1.9℃-5.6℃范围内。在一些实施例中,预设径向温差阈值可以在2.1℃-5.4℃范围内。在一些实施例中,预设径向温差阈值可以在2.3℃-5.2℃范围内。在一些实施例中,预设径向温差阈值可以在2.5℃-5℃范围内。在一些实施例中,预设径向温差阈值可以在2.7℃-4.8℃范围内。在一些实施例中,预设径向温差阈值可以在2.9℃-4.6℃范围内。在一些实施例中,预设径向温差阈值可以在3.1℃-4.4℃范围内。在一些实施例中,预设径向温差阈值可以在3.3℃-4.2℃范围内。在一些实施例中,预设径向温差阈值可以在3.5℃-4℃范围内。在一些实施例中,预设径向温差阈值可以在3.7℃-3.8℃范围内。
在一些实施例中,径向温度梯度可以包括在生长腔体110同一高度的水平截面上,从生长腔体内壁到生长腔体中心轴的方向上,单位距离上的温度差值。在一些实施例中,从生长腔体内壁到生长腔体中心轴的方向上,温度递减可以形成径向温度梯度。径向温度梯度可以导致籽晶生长面产生热应力,使籽晶生长面向源材料方向凸起,且产生微管、包裹体等缺陷。在一定情况下,径向温度梯度还可以导致源材料升华的气相组分的摩尔比沿径向分布不均匀,进而影响晶体的质量。因此,为了制备高质量的晶体,需要降低径向温度梯度。
在一些实施例中,温控系统可以使晶体生长时生长腔体内的径向温度梯度不超过预设径向温度梯度阈值。在一些实施例中,可以预先设置预设径向温度梯度阈值。在一些实施例中,可以根据预设条件确定预设径向温度梯度阈值。在一些实施例中,预设条件可以包括但不限于生长腔体110的尺寸、形状和材质、籽晶的尺寸、待生长的晶体的种类和尺寸。
在一些实施例中,预设径向温度梯度阈值可以在0.1℃/cm-0.5℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.11℃/cm-0.49℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.12℃/cm-0.48℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.13℃/cm-0.47℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.14℃/cm-0.46℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.15℃/cm-0.45℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.16℃/cm-0.44℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以 在0.17℃/cm-0.43℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.18℃/cm-0.42℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.19℃/cm-0.41℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.2℃/cm-0.4℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.21℃/cm-0.39℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.22℃/cm-0.38℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.23℃/cm-0.37℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.24℃/cm-0.36℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.25℃/cm-0.35℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.26℃/cm-0.34℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.27℃/cm-0.33℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.28℃/cm-0.32℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.29℃/cm-0.31℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以是0.3℃/cm。
在一些实施例中,径向温度梯度可以与生长腔体的半径有关。如图1所示,生长腔体110的半径越大,热能从生长腔体壁传导至生长腔体110内部的过程中,热能消散越多。传导至生长腔体110中心区域的热能越少,生长腔体110中心区域的温度越低。在一些实施例中,生长腔体110中心区域的温度较低,可以导致籽晶生长面产生较大的热应力,使籽晶生长面向源材料方向严重凸起,且产生微管、包裹体等缺陷。在一些实施例中,生长腔体110中心区域的温度较低,还可以导致源材料升华的气相组分的摩尔比沿径向分布不均匀,严重影响晶体的质量。一些实施例可以使生长在不同半径的生长腔体110中的晶体生长时的径向温度梯度不超过预设径向温度梯度阈值。
在一些实施例中,当生长腔体的半径不超过5cm时,温控系统可以使晶体生长时生长腔体内的径向温度梯度不超过预设径向温度梯度阈值。在一些实施例中,预设径向温度梯度阈值可以在0.1℃/cm-0.3℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.11℃/cm-0.29℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.12℃/cm-0.28℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.13℃/cm-0.27℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.14℃/cm-0.26℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.15℃/cm-0.25℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.16℃/cm-0.24℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.17℃/cm-0.23℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.18℃/cm-0.22℃/cm范围内。在一些 实施例中,预设径向温度梯度阈值可以在0.19℃/cm-0.21℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以是0.2℃/cm。
在一些实施例中,当生长腔体的半径大于5cm且不超过8cm时,温控系统可以使晶体生长时生长腔体内的径向温度梯度不超过预设径向温度梯度阈值。在一些实施例中,预设径向温度梯度阈值可以在0.1℃/cm-0.37℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.11℃/cm-0.36℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.12℃/cm-0.35℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.13℃/cm-0.34℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.14℃/cm-0.33℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.15℃/cm-0.32℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.16℃/cm-0.31℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.17℃/cm-0.3℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.18℃/cm-0.29℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.19℃/cm-0.28℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.2℃/cm-0.27℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.21℃/cm-0.26℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.22℃/cm-0.25℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.23℃/cm-0.24℃/cm范围内。
在一些实施例中,当生长腔体的半径大于8cm且不超过10cm时,温控系统可以使晶体生长时生长腔体内的径向温度梯度不超过预设径向温度梯度阈值。在一些实施例中,预设径向温度梯度阈值可以在0.15℃/cm-0.45℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.16℃/cm-0.44℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.17℃/cm-0.43℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.18℃/cm-0.42℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.19℃/cm-0.41℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.2℃/cm-0.4℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.21℃/cm-0.39℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.22℃/cm-0.38℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.23℃/cm-0.37℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.24℃/cm-0.36℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.25℃/cm-0.35℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.26℃/cm-0.34℃/cm范围内。在一些实施例中, 预设径向温度梯度阈值可以在0.27℃/cm-0.33℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.28℃/cm-0.32℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.29℃/cm-0.31℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以为0.3℃/cm。
在一些实施例中,当生长腔体的半径大于10cm时,温控系统可以使晶体生长时生长腔体内的径向温度梯度不超过预设径向温度梯度阈值。在一些实施例中,预设径向温度梯度阈值可以在0.15℃/cm-0.6℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.17℃/cm-0.58℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.19℃/cm-0.56℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.21℃/cm-0.54℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.23℃/cm-0.52℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.25℃/cm-0.5℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.27℃/cm-0.48℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.29℃/cm-0.46℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.31℃/cm-0.44℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.33℃/cm-0.42℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.35℃/cm-0.4℃/cm范围内。在一些实施例中,预设径向温度梯度阈值可以在0.37℃/cm-0.38℃/cm范围内。
如图1所示,籽晶150的下表面与源材料160的上表面的距离可以表示为Hcm。在一些实施例中,轴向温度梯度可以指在生长腔体110的中心轴方向上,单位距离上的温度差值。假设源材料160上表面所在的平面不存在径向温差或径向温差很小可以忽略不计,则源材料160上表面所在平面的温度可以表示为a℃。假设籽晶150下表面所在的平面不存在径向温差或径向温差很小可以忽略不计,则籽晶150下表面所在平面的温度可以表示为b℃。其中,a>b,轴向温度梯度可以表示为
Figure PCTCN2021085468-appb-000003
单位为℃/cm。
轴向温度梯度是源材料受热分解升华的气相组分传输至籽晶表面生长晶体的驱动力。如果轴向温度梯度不稳定,则气相组分在轴向方向上分布不均匀,会导致生长的晶体质量差。因此,需要维持轴向温度梯度稳定,以生长高质量的晶体。在一些实施例中,加热组件还可以用于使晶体生长时的轴向温度梯度维持稳定。
在一些实施例中,轴向温度梯度需要控制在预设轴向温度梯度范围内,以保证晶体的质量。如果轴向温度梯度过小,可能会导致驱动力不足,气相组分在籽晶下表面 的沉积速度过慢,不能满足物理气相传输法(Physical Vapor Transport,PVT)对质量传输的要求。如果轴向温度梯度过大,质量传输过快,会导致气相组分在籽晶下表面的沉积速度过快,导致晶体生长面形成较大的应力,易形成包裹体等缺陷,进而导致其他位错缺陷,影响晶体质量。因此,轴向温度梯度需要维持在适宜的预设轴向温度梯度范围内。
在一些实施例中,温控系统可以使晶体生长时生长腔体内的轴向温度梯度维持在预设轴向温度梯度范围内。在一些实施例中,预设轴向温度梯度范围可以是0.2℃/cm-2.5℃/cm。在一些实施例中,预设轴向温度梯度范围可以是0.3℃/cm-2.4℃/cm。在一些实施例中,预设轴向温度梯度范围可以是0.4℃/cm-2.3℃/cm。在一些实施例中,预设轴向温度梯度范围可以是0.5℃/cm-2.2℃/cm。在一些实施例中,预设轴向温度梯度范围可以是0.6℃/cm-2.1℃/cm。在一些实施例中,预设轴向温度梯度范围可以是0.7℃/cm-2.0℃/cm。在一些实施例中,预设轴向温度梯度范围可以是0.8℃/cm-1.9℃/cm。在一些实施例中,预设轴向温度梯度范围可以是0.9℃/cm-1.8℃/cm。在一些实施例中,预设轴向温度梯度范围可以是1.0℃/cm-1.7℃/cm。在一些实施例中,预设轴向温度梯度范围可以是1.1℃/cm-1.6℃/cm。在一些实施例中,预设轴向温度梯度范围可以是1.2℃/cm-1.5℃/cm。在一些实施例中,预设轴向温度梯度范围可以是1.3℃/cm-1.4℃/cm。
在一些实施例中,加热组件可以包括至少一个加热单元。在一些实施例中,至少一个加热单元的数量可以包括1个、2个、3个等。在一些实施例中,至少一个加热单元可以位于生长腔体外部。在一些实施例中,至少一个加热单元可以部分环绕设置于生长腔体外周。在一些实施例中,至少两个加热单元中的至少一个加热单元可以环绕设置于生长腔体外周,至少两个加热单元中的至少一个加热单元可以位于生长腔体外部的上表面和/或下表面。在一些实施例中,至少一个加热单元可以位于生长腔体内部。在一些实施例中,至少两个加热单元中的至少一个加热单元可以位于生长腔体内部,至少两个加热单元中的至少一个加热单元可以环绕设置于生长腔体外周。在一些实施例中,至少两个加热单元中的至少一个加热单元可以位于生长腔体内部,至少两个加热单元中的至少一个加热单元可以位于生长腔体外部的上表面和/或下表面。在一些实施例中,位于生长腔体外部的至少一个加热单元可以包括至少三个第一加热单元,至少三个第一加热单元可以分别对应于生长腔体内的结晶区域、生长腔体内的源材料区域以及结晶区域与源材料区域之间的气相传输区域的位置。
在一些实施例中,至少一个加热单单元可以包括但不限于电阻加热设备、电磁 感应加热设备等。在一些实施例中,至少一个加热单元可以包括电阻式发热体和/或电磁感应线圈。在一些实施例中,至少一个加热单元的材质可以包括但不限于石墨、钨、铂、钼、钽或铱中的至少一种。在一些实施例中,至少一个加热单元可以包括电阻式发热体。电阻式发热体可以包括但不限于石墨发热体、钨发热体、铂发热体、钼发热体、钽发热体、铱发热体或二硼化锆复合陶瓷发热体中的至少一种。
应当注意的是,上述有关晶体制备装置100的描述仅仅是为了示例和说明,而不限定本申请的适用范围。对于本领域技术人员来说,在本申请的指导下可以对晶体制备装置100进行各种修正和改变。然而,这些修正和改变仍在本申请的范围之内。
图2是一些实施例所示的示例性温度反馈调节系统的示意图。
在一些实施例中,晶体制备装置可以包括温度反馈调节系统200。如图2所示,温度反馈调节系统200可以包括温度传感组件210、加热组件220和控制组件230。本说明书实施例中,除非有特别说明,温度反馈调节系统和温控系统可以替换使用。本说明书实施例中加热组件120和加热组件220可以表示相同的部件。
在一些实施例中,温度传感组件210可以包括至少一个温度传感单元。在一些实施例中,至少一个温度传感单元可以位于生长腔体的外周。在一些实施例中,至少一个温度传感单元可以用于测量生长腔体的温度,以获得晶体生长时的温度分布,并将测得的温度发送至控制组件230。在一些实施例中,温度分布可以包括但不限于径向温度分布和轴向温度分布。在一些实施例中,径向温度分布可以包括在生长腔体110的至少一个水平截面上的温度分布。在一些实施例中,轴向温度分布可以包括在生长腔体110中心轴或平行于中心轴的方向上的温度分布。在一些实施例中,径向温度分布可以包括径向温差分布和/或径向温度梯度分布。在一些实施例中,轴向温度分布可以包括轴向温度梯度分布。
在一些实施例中,至少一个温度传感单元的数量可以包括但不限于1个、2个、3个等。在一些实施例中,至少一个温度传感单元可以包括但不限于至少一个温度传感器。在一些实施例中,至少一个温度传感单元可以包括至少一个红外测温仪。
在一些实施例中,至少一个温度传感单元可以位于生长腔体外部的上表面,用于测量籽晶下表面或晶体生长面的温度。在一些实施例中,至少一个温度传感单元可以位于生长腔体外部的下表面,用于测量源材料上表面的温度。在一些实施例中,至少一个温度传感单元还可以位于生长腔体的外壁上,用于测量生长腔体内外周区域的温度。
在一些实施例中,至少一个温度传感单元可以以生长腔体盖或生长腔体底盖的 中心为圆心排列成环形,以测量生长腔体等径位置处的温度。在一些实施例中,至少一个温度传感单元可以与生长腔体的中心轴线平行地排列在生长腔体外壁上,以测量生长腔体的轴向温度。在一些实施例中,至少一个温度传感单元还可以排列成正方形或长方形等其他形状。
在一些实施例中,温度传感组件的信息可以包括但不限于至少一个温度传感单元的排布、至少一个温度传感单元的数量、至少一个温度传感单元的位置、至少一个温度传感单元测得的温度。
在一些实施例中,控制组件230可以包括至少一个控制单元。在一些实施例中,至少一个控制单元中的每个控制单元可以与至少一个加热单元中的每个加热单元连接,以单独控制每个加热单元的至少一个参数,使晶体生长时的温度分布满足预设温度分布。在一些实施例中,至少一个参数可以包括电流或加热功率中的至少一个。在一些实施例中,预设温度分布可以包括但不限于预设径向温差分布、预设径向温度梯度分布和/或预设轴向温度梯度分布。
在一些实施例中,控制组件230可以基于温度传感组件210测得的径向温度生成径向温差分布和/或径向温度梯度分布。在一些实施例中,控制组件230可以基于温度传感组件210测得的轴向温度生成轴向温度梯度分布。
在一些实施例中,控制组件230可以基于晶体生长时的温度分布,控制至少一个加热单元的至少一个参数,使得晶体生长时生长腔体内的径向温差不超过生长腔体内平均温度的第一预设范围或预设径向温差阈值。在一些实施例中,控制组件230可以用于基于晶体生长时的温度分布,控制至少一个加热单元的至少一个参数,使得晶体生长时生长腔体内的径向温度梯度不超过预设径向温度梯度阈值。在一些实施例中,温度传感组件210可以测量生长腔体的径向温度,并将测得的径向温度发送至控制组件230。控制组件230可以基于温度传感组件210测得的径向温度生成径向温差分布和/或径向温度梯度分布。控制组件230还可以用于根据生长腔体110的尺寸、形状和材质、籽晶的尺寸、待生长的晶体的种类和尺寸确定预设径向温差阈值和/或预设径向温度梯度阈值。控制组件230可以进一步将径向温差分布中的径向温差与预设径向温差阈值进行比较,或将径向温度梯度分布中的径向温度梯度与预设径向温度梯度进行比较。若径向温差大于预设径向温差阈值,或径向温度梯度大于预设径向温度梯度阈值,控制组件230可以提高排列在生长腔体中心区域的至少一个加热单元的加热功率,以降低径向温差和/或径向温度梯度,直到径向温差不超过预设径向温差阈值和/或径向温度梯度不超过预 设径向温度梯度阈值。
在一些实施例中,控制组件230还可以基于晶体生长时的温度分布,控制至少一个加热单元的至少一个参数,使得晶体生长时生长腔体内的轴向温度梯度维持稳定。在一些实施例中,控制组件230还可以基于晶体生长时的温度分布,控制至少一个加热单元的至少一个参数,使得晶体生长时生长腔体内的轴向温度梯度维持在预设轴向温度梯度范围内。在一些实施例中,温度传感组件210可以测量生长腔体的轴向温度,并将测得的轴向温度发送至控制组件230。控制组件230可以基于温度传感组件210测得的轴向温度生成轴向温度梯度分布。控制组件230还可以用于根据生长腔体110的尺寸、形状和材质、籽晶的尺寸、待生长的晶体的种类和尺寸确定预设轴向温度梯度范围。控制组件230可以进一步将轴向温度梯度分布中的轴向温度梯度与预设轴向温度梯度范围进行比较。若轴向温度梯度小于预设轴向温度梯度范围,控制组件230可以降低排列在生长腔体外周靠近生长腔体盖的至少一个加热单元的加热功率,或提高排列在生长腔体外周靠近生长腔体底盖的至少一个加热单元的加热功率,以提高轴向温度梯度,直到轴向温度梯度在预设轴向温度梯度范围内。若轴向温度梯度大于预设轴向温度梯度范围,控制组件230可以提高排列在生长腔体外周靠近生长腔体盖的至少一个加热单元的加热功率,或降低排列在生长腔体外周靠近生长腔体底盖的至少一个加热单元的加热功率,以降低轴向温度梯度,直到轴向温度梯度在预设轴向温度梯度范围内。
在一些实施例中,预设径向温差阈值、预设径向温度梯度阈值、预设轴向温度梯度范围可以是根据生长腔体110的尺寸、形状和材质、籽晶的尺寸、待生长的晶体的种类和尺寸确定。关于预设径向温差阈值、预设径向温度梯度阈值、预设轴向温度梯度范围的相关内容可以参见图1及其相关说明,在此不再赘述。
在一些实施例中,温度反馈调节系统200还可以包括存储组件(图中未示出)。存储组件可以存储数据、指令和/或任何其他信息。在一些实施例中,存储组件可以存储晶体生长所涉及的数据和/或信息。在一些实施例中,存储组件可以存储晶体生长所需的晶体生长温度、晶体生长时间段、晶体生长区间、预设温度分布、预设径向温差阈值、预设径向温度梯度阈值、预设轴向温度梯度范围等。在一些实施例中,存储组件可以存储晶体的种类、籽晶的尺寸、待生长的晶体尺寸等。在一些实施例中,存储组件可以存储晶体制备装置100用于执行或使用以完成本说明书实施例中描述的示例性晶体生长方法的数据和/或指令。例如,存储组件可以存储晶体生长过程中调节的至少一个加热单元的至少一个参数。
在一些实施例中,存储组件可以连接网络,以与温度反馈调节系统200中的一个或多个组件(例如,温度传感组件210、控制组件230等)之间通信。反馈调节系统200中的一个或多个组件(例如,控制组件230等)可以通过网络读取存储组件中的数据或指令。
在一些实施例中,存储组件可以包括大容量存储器、可移除存储器、易失性读写存储器、只读存储器(ROM)等或其任意组合。示例性的大容量存储可以包括磁盘、光盘、固态硬盘、移动存储等。示例性的可移除存储器可以包括闪存驱动器、软盘、光盘、存储卡、ZIP磁盘、磁带等。示例性的易失性读写存储器可以包括随机存取存储器(RAM)。随机存取存储器可以包括动态随机存储器(DRAM)、双数据率同步动态随机存取存储器(DDR-SDRAM)、静态随机存取存储器(SRAM)、可控硅随机存取存储器(T-RAM)、零电容随机存取存储器(Z-RAM)等。只读存储器(ROM)可以包括掩模只读存储器(MROM)、可编程的只读存储器(PROM)、可擦除可编程只读存储器(EPROM)、电可擦除可编程只读存储器(EEPROM)、光盘只读存储器(CD-ROM)、数字多功能光盘等。在一些实施例中,存储组件可以通过本说明书中描述的云平台实现。在一些实施例中,云平台可以包括私有云、公共云、混合云、社区云、分布式云、跨云、多云等其中一种或几种的组合。
在一些实施例中,温度反馈调节系统200还可以包括显示组件(图中未示出)。在一些实施例中,显示组件可以实时显示晶体生长的时间、晶体的尺寸、晶体生长过程中的温度分布和/或至少一个加热单元的至少一个参数等。在一些实施例中,至少一个参数可以包括但不限于电流、加热功率等。
需要注意的是,上述对温度反馈调节系统200的描述,仅为描述方便,并不能把本申请限制在所举实施例范围之内。可以理解,对于本领域的技术人员来说,在了解该系统的原理后,可能在不背离这一原理的情况下,对各个组件进行任意组合,或者构成子系统与其他组件连接。例如,图2中披露的控制组件230可以是一个组件实现两个或两个以上组件的功能。作为示例,控制组件230可以包括至少一个控制单元和至少一个处理单元。诸如此类的变形,均在本申请的保护范围之内。
图3是一些实施例所示的示例性晶体制备装置的示意图。在一些实施例中,晶体制备装置100可以基于物理气相传输法制备半导体晶体(例如,碳化硅晶体、氮化铝晶体、氧化锌晶体、锑化锌晶体)。如图3所示,晶体制备装置100可以包括生长腔体110和加热组件。
生长腔体110可以用于放置籽晶150和源材料160。在一些实施例中,生长腔体110可以包括生长腔体盖111和生长腔主体112,其中,生长腔体盖111位于生长腔体顶部,用于封闭生长腔主体112的顶端开口。在一些实施例中,生长腔体110可以是坩埚,坩埚可以包括坩埚盖和坩埚本体。在一些实施例中,生长腔主体112的形状可以是圆柱形、长方体、立方体等。在一些实施例中,生长腔主体112的形状可以是圆柱形的桶体,其包括桶底和桶侧壁。在一些实施例中,与生长腔主体112的形状相应,生长腔体盖111的形状可以是圆盘、长方形盘、正方形盘等。在一些实施例中,生长腔体110的材质可以包括石墨。在一些实施例中,生长腔体110的材质可以全部或部分为石墨。
在一些实施例中,籽晶150可以固定粘接于生长腔体盖111的内侧面(也可以称之为“下表面”)(例如,内侧面中心位置处),源材料160可以置于生长腔主体112内(例如,生长腔体110下部)。在一些实施例中,籽晶150可以通过粘接剂固定在生长腔体盖111上。粘接剂可以包括但不限于环氧树脂胶、AB胶、酚醛树脂胶、糖胶等。在一些实施例中,源材料可以是粉末状、颗粒状、块状等。在晶体生长过程中,可以通过控制生长腔体的加热环境,使得源材料160和籽晶150之间形成轴向温度梯度。源材料160受热可以分解升华为气相组分(例如,以制备碳化硅晶体为例,气相组分包括Si 2C、SiC 2、Si),在轴向温度梯度的驱动作用下,气相组分从源材料160表面传输至籽晶150表面,由于籽晶150处温度相对较低,气相组分在籽晶150表面结晶进而生成晶体。
加热组件可以用于加热生长腔体110。在一些实施例中,加热组件可以包括电加热设备、电磁感应加热设备等。在一些实施例中,加热组件可以是感应线圈。在一些实施例中,加热组件可以位于生长腔体110的外部,用于提供晶体生长所需要的至少部分热量。以感应线圈为例,感应线圈在中频交流电作用下,可以在生长腔体110表面产生涡流,在涡流作用下,生长腔体110表面产生的电能转变为热能,可以对生长腔体110表层进行加热,并向生长腔体110内部进行热传导。结合上文所述,在生长腔体110内的温度场作用下,源材料160升华分解为气相组分,气相组分在轴向温度梯度的驱动作用下,运输至籽晶150表面进行结晶以生成晶体。
在一些实施例中,加热组件可以位于生长腔体110外部。在一些实施例中,加热组件可以包括至少两个加热单元。在一些实施例中,至少两个加热单元中的至少一个加热单元可以部分环绕设置于生长腔体110外周。在一些实施例中,至少两个加热单元中的至少一个加热单元可以位于生长腔体110上表面和/或下表面。在一些实施例中, 位于生长腔体110上表面和/或下表面的至少一个加热单元可以称为温度补偿组件1210。在一些实施例中,温度补偿组件1210中的至少一个加热单元的数量可以包括但不限于1个、2个、3个、4个等。在一些实施例中,温度补偿组件1210中的至少一个加热单元的形状可以包括但不限于圆柱体、三棱柱、四棱柱、五棱柱或六棱柱等规则柱体或不规则柱体。在一些实施例中,温度补偿组件1210可以排布为正方形、长方形、圆形或环形等规则形状或不规则形状。在一些实施例中,温度补偿组件1210可以以生长腔体110上表面和/或下表面的中心为圆心排布成环形或圆形。在一些实施例中,排布可以是均匀排布或非均匀排布。在一些实施例中,温度补偿组件1210以生长腔体110上表面和/或下表面的中心为圆心排布成环形时,相邻两个圆环之间半径可以相等或不相等。
在一些实施例中,环绕设置于生长腔体110外周的至少一个加热单元可以称为第一加热组件1220。在一些实施例中,第一加热组件1220中的至少一个加热单元的数量可以包括但不限于1个、2个、3个、4个等。在一些实施例中,第一加热组件1220可以以生长腔体110的中心轴为中心环绕排布在生长腔体110外周。在一些实施例中,排布可以是均匀排布或非均匀排布。在一些实施例中,环绕排布在生长腔体110外周的相邻两个加热单元之间的间距可以相等或不相等。在一些实施例中,第一加热组件1220和温度补偿组件1210的加热方式可以相同,也可以不同。在一些实施例中,温度补偿组件1210的加热方式可以是电阻加热。在一些实施例中,第一加热组件1220的加热方式可以是电阻加热或感应加热。
在一些实施例中,可以通过调节(例如,沿生长腔体110外表面上下调节)加热组件的位置和/或施加在加热组件上的加热参数(例如,电流、加热功率等参数),改变生长腔体110内的温度场,以产生合适的温度梯度分布,促进晶体生长。以感应线圈为例,感应线圈可以螺旋式缠绕在生长腔体110的外部,并且相邻线圈间的间距从生长腔体110的下部往上部逐渐加大,以控制生长腔体110内的温度场,从而产生合适的温度梯度分布。在一些实施例中,生长腔体110的下部可以指生长腔体110上远离生长腔体盖111的部分。在一些实施例中,生长腔体110的上部可以指生长腔体110上靠近生长腔体盖111的部分。在一些实施例中,感应线圈可以包括多个相连的子感应线圈,每个子感应线圈的加热参数可以被分别控制,以控制生长腔体110内的温度场,从而产生合适的温度梯度分布。子感应线圈的数量和/或位置可以是系统默认设置,也可以根据不同情况调节。在一些实施例中,可以根据生长腔体110的尺寸、形状和材质、籽晶的尺寸、待生长的晶体的种类和尺寸调节子感应线圈的数量和/或位置。
温度补偿组件1210可以用于在晶体生长过程中提供温度补偿。在一些实施例中,温度补偿组件1210可以位于生长腔体110的上表面和/或下表面。在一些实施例中,温度补偿组件1210可以位于生长腔体110的上表面中心附近和/或下表面中心附近。在传统的晶体制备装置中,通常在生长腔体外部放置感应线圈,用于加热生长腔体。因此,热量由生长腔体的外周区域向生长腔体的中心区域传导,导致外周区域为相对高温区,而中心区域为相对低温区,越靠近中心区域的温度越低。对于生长腔体上部区域(例如,放置籽晶的生长腔体盖的内侧面)来说,这种径向温度梯度会导致晶体生长面产生较大的热应力甚至晶体生长面严重向源材料方向凸起,且容易产生微管、包裹体等缺陷;对于生长腔体下部区域(例如,源材料覆盖区域)来说,这种径向温度梯度会导致源材料升华的气相组分的摩尔比沿径向分布不均匀,影响晶体质量。因此,需要降低这种径向温度梯度。相应地,温度补偿组件1210可以提供温度补偿以降低径向温度梯度。当温度补偿组件1210位于生长腔体110上表面时,可以降低生长腔体盖111内侧面(或称之为“下表面”)的径向温度梯度,从而降低晶体生长面应力引起的缺陷,以及降低或避免晶体背面的腐蚀缺陷。当温度补偿组件1210位于生长腔体110下表面时,可以降低源材料160覆盖区域的径向温度梯度,提高径向温度分布的均匀性,从而使升华的气相组分的摩尔比沿径向分布更均匀,提高生成的晶体的质量。图3中仅示出了温度补偿组件1210位于生长腔体110上表面的情况。
在一些实施例中,温度补偿组件1210可以包括至少一个加热单元1212。在一些实施例中,至少一个加热单元1212可以包括至少一个高阻石墨单元。在一些实施例中,至少一个加热单元1212可以沿径向均匀或不均匀地分布于生长腔体110上表面或下表面。在一些实施例中,可以根据生长腔体110上表面或下表面的尺寸、待生长的晶体类型、籽晶150的形状或尺寸、生长腔体110上表面或下表面的温度分布等,调整至少一个加热单元1212的参数(例如,至少一个加热单元1212的数量、形状、尺寸、排布、电流或加热功率中的至少一个)。在一些实施例中,至少一个加热单元1212的数量、形状和/或尺寸可以使得至少一个加热单元1212与生长腔体110上表面和/或下表面的接触面积占生长腔体110上表面和/或下表面面积的50%以上。在一些实施例中,至少一个加热单元1212的数量和排布可以使得至少一个加热单元1212的排布形状和排布面积与籽晶150水平截面的形状和面积相同。在一些实施例中,至少一个加热单元1212在生长腔体盖111的上表面的排布位置与籽晶150在生长腔体盖111的下表面的位置相对应。在一些实施例中,通过至少一个加热单元1212的电流和/或至少一个加热 单元1212的加热功率可以使得生长腔体110内部的温度分布满足预设温度分布。
在一些实施例中,至少一个加热单元1212中的每一个的参数(例如,加热功率、电流)可以被分别单独控制,以方便调整径向温度梯度分布。
在一些实施例中,温度补偿组件1210还可以包括固定框架1216,固定框架1216可以包括至少一个固定单元,用于放置至少一个加热单元1212。在一些实施例中,固定框架1216可以与生长腔体110同轴。在一些实施例中,固定框架1216可以由保温材料或隔热材料制成。在一些实施例中,固定框架1216可以是氧化锆陶瓷板或氮化硼陶瓷板。在一些实施例中,至少一个固定单元之间可以是可拆卸连接。在一些实施例中,至少一个固定单元的形状可以包括六边形、正方形、圆形、三角形等规则图形或不规则图形。相应地,至少一个加热单元1212的形状也可以包括六边形、正方形、圆形、三角形等规则图形或不规则图形。关于至少一个固定单元以及至少一个加热单元1212的更多描述可见本说明书其他位置(例如,图4、图5以及描述)。
在一些实施例中,温度补偿组件1210还可以包括至少一个第一电极1213、至少一个第二电极1211以及电极固定板1215。其中,电极固定板1215可以用于固定第一电极1213和第二电极1211。在一些实施例中,第一电极1213和第二电极1211的材质可以相同或不同。在一些实施例中,第一电极1213和第二电极1211可以均为低阻石墨电极。在一些实施例中,第一电极1213和第二电极1211的形状可以相同或不同。在一些实施例中,第一电极1213和第二电极1211可以都是圆柱形电极。在一些实施例中,由于生长腔体外周区域为相对高温区,而中心区域为相对低温区,这种径向温度梯度会导致晶体缺陷,因此,第一电极1213的直径可以小于第二电极1211的直径。在一些实施例中,第一电极1213和第二电极1211可以通过导线(例如,铜线1214)连接至电源(例如,直流电源)。在一些实施例中,电极固定板1215可以由保温材料或隔热材料制成。在一些实施例中,电极固定板1215可以是氧化锆陶瓷板。在一些实施例中,电极固定板1215可以包括至少一个第一孔洞1215-1以及至少一个第二孔洞1215-2(如图7所示),至少一个第一电极1213穿过至少一个第一孔洞1215-1固定在至少一个加热单元132上,至少一个第二电极1211穿过至少一个第二孔洞1215-2固定在生长腔体110的上表面或下表面。相应地,第一电极1213、至少一个加热单元1212、生长腔体110的上表面或下表面以及电源形成电流通路,用于加热至少一个加热单元1212。在一些实施例中,电极固定板1215上还可以包括至少两个测温孔1215-3,位于径向相邻的第一孔洞1215-1之间或至少一个第二孔洞1215-2设定范围内。在一些实施例中, 可以通过至少两个测温孔1215-3测量至少一个加热单元1212处的温度或生长腔体110上表面或下表面外周处的温度。关于至少两个测温孔1215-3的更多描述可见本说明书其他位置(例如,图7及其描述)。
在一些实施例中,晶体制备装置100还可以包括控制组件,用于基于至少一个参考参数,调节至少一个加热单元1212的参数(例如,至少一个加热单元1212的数量、形状、尺寸、排布、电流、加热功率),使得生长腔体110上表面或下表面的径向温度梯度不超过预设径向温度梯度阈值(例如,0.5℃/cm)。在一些实施例中,预设径向温度梯度阈值可以是系统默认值,也可以根据不同情况调整。在一些实施例中,制备不同晶体时,预设径向温度梯度阈值可以相应不同。在一些实施例中,至少一个参考参数可以包括晶体类型、籽晶尺寸或形状、晶体生长过程中与生长腔体110相关的温度信息等。以碳化硅晶体为例,碳化硅晶体有密排六方结构、立方结构以及菱方结构三种晶体类型。碳化硅晶体可以包括3C-SiC、4H-SiC、6H-SiC、15R-SiC等,其中,3C-SiC为立方结构,4H-SiC为密排六方结构,6H-SiC为密排六方结构,15R-SiC为菱方结构。针对不同的碳化硅晶体类型,可以通过调节至少一个加热单元1212的参数,使得生长腔体盖111内侧面区域的径向温度梯度分布适合该种碳化硅晶体类型的生长。在一些实施例中,针对不同的晶体生长需求,籽晶的尺寸或形状可以相应不同。相应地,针对不同尺寸或形状的籽晶,可以通过调节至少一个加热单元1212的参数,使得生长腔体盖111内侧面区域的径向温度梯度分布适合该种尺寸或形状的籽晶生长为高质量晶体。
在一些实施例中,晶体生长过程中与生长腔体110相关的温度信息可以包括至少一个加热单元1212处的第一温度和生长腔体110上表面或下表面外周处的第二温度。以温度补偿组件1210位于生长腔体110上表面为例,至少一个加热单元1212可以以生长腔体盖111的中心为圆心径向排布在生长腔体盖111的外侧面(即生长腔体110上表面)上。相应地,第一温度可以包括生长腔体110上表面径向分布的至少一个温度(也可以称之为“至少一个第一温度”)。第一加热组件1220对生长腔体110加热时,在同一水平面上,从生长腔体110外周到生长腔体110中心轴的方向上,热量在传递过程中逐渐减小。在没有补偿热量的情况下,生长腔体110外周的温度必然大于生长腔体110内部的温度,即第二温度大于第一温度。当第一温度和第二温度之间的差值(或径向温差)过大时,此时的径向温度分布不利于晶体生长。在一些实施例中,控制组件可以比对至少一个第一温度和第二温度之间的差异,调节至少一个加热单元1212的参数,使得生长腔体盖111上的径向温差不超过预设径向温差阈值。在一些实施例中,可以增 大位于生长腔体110中心区域的至少一个加热单元的加热功率以增大生长腔体110中心区域的补偿热量,提高第一温度,降低第一温度和第二温度之间的差值(或径向温差),使生长腔体盖111上的径向温差小于预设径向温差阈值。
在一些实施例中,控制组件可以包括至少一个温度传感单元(未示出),用于测量第一温度以及第二温度。在一些实施例中,至少一个温度传感单元可以包括测温仪(例如,红外测温仪)。在一些实施例中,至少一个温度传感单元可以通过温度补偿组件上的至少两个测温孔1215-3测量第一温度以及第二温度。如前所述,至少两个测温孔1215-3位于径向相邻的第一孔洞之间,而至少一个第一孔洞与至少一个加热单元1212相应,因此温度传感单元可以通过测温孔测量至少一个加热单元1212处的第一温度。类似地,至少两个测温孔还位于至少一个第二孔洞的设定范围(例如,2cm)内,因此温度传感单元可以通过测温孔测量生长腔体上表面的外周处的第二温度。在一些实施例中,设定范围可以指至少两个测温孔的中心与至少一个第二孔洞的中心的距离。在一些实施例中,设定范围可以是1cm-5cm。在一些实施例中,设定范围可以是1.5cm-4.5cm。在一些实施例中,设定范围可以是2cm-4cm。在一些实施例中,设定范围可以是2.5cm-3.5cm。在一些实施例中,设定范围可以是2.8cm-3.2cm。图4是一些实施例所示的示例性加热单元排布的俯视图;图5是另一些实施例所示的示例性加热单元排布的俯视图。
固定框架1216包括至少一个固定单元,用于放置至少一个加热单元1212。如图4所示,固定框架1216可以由7个镂空的正六边形固定单元连接而成,相应地,加热单元1212的形状也是正六边形。如图5所示,固定框架1216可以由9个镂空的正方形固定单元连接而成,相应地,加热单元1212的形状也是正方形。在一些实施例中,可以根据生长腔体110上表面或下表面的面积,适当增加或减少其上排布的至少一个固定单元的数量。
图6是一些实施例所示的示例性第一电极和示例性第二电极的示意图;图7是一些实施例所示的示例性电极固定板的俯视图。
如图6和图7所示,至少一个第一电极1213穿过至少一个第一孔洞1215-1固定在至少一个加热单元1212上,至少一个第二电极1211穿过至少一个第二孔洞1215-2固定在生长腔体110的上表面或下表面。在一些实施例中,第一电极1213和第二电极1211的形状可以相同或不同。在一些实施例中,第一电极1213和第二电极1211可以都是圆柱形电极,并且第一电极1213的直径可以小于第二电极1211的直径。在一些 实施例中,第一电极1213和第二电极1211可以通过导线(例如,铜线1214)连接至电源(例如,直流电源)。当铜线1214与电源连接后,第一电极1213、至少一个加热单元1212、生长腔体110的上表面或下表面以及电源形成电流通路,用于加热至少一个加热单元1212。
电极固定板1215上还可以包括至少两个测温孔1215-3,至少一个温度传感单元可以通过至少两个测温孔1215-3测量至少一个加热单元1212处的第一温度以及生长腔体110上表面或下表面外周处的第二温度。如图7所示,至少两个测温孔1215-3可以位于径向相邻的第一孔洞1215-1之间或至少一个第二孔洞1215-2设定范围内。测温孔1215-3的形状可以是圆形、正方形、多边形等规则图形或不规则图形。在一些实施例中,至少一个温度传感单元可以穿过至少两个测温孔1215-3,测量至少一个加热单元1212处的第一温度以及生长腔体110上表面或下表面外周处的第二温度,从而获得生长腔体110上表面或下表面的温度分布。进一步地,控制组件可以至少基于第一温度和第二温度,调节至少一个加热单元1212的参数(例如,至少一个加热单元1212的数量、形状、尺寸、排布、电流、加热功率),使得生长腔体110上表面或下表面的径向温度梯度小于预设阈值。
在一些实施例中,假设至少一个加热单元1212的数量为7个且排布如图4所示,相应地,7个第一电极1213穿过7个第一孔洞1215-1固定于至少一个加热单元1212处,进一步地,生长腔体110上表面或下表面的外周处放置4个第二电极1211且4个第二电极1211通过4个第二孔洞1215-2固定于生长腔体110上表面或下表面。按照顺时针方向,利用红外测温仪穿过测温孔1215-3依次检测至少一个加热单元1212处的6个第一温度T1、T2、T3、T4、T5和T6。另外,同时利用红外测温仪穿过测温孔1215-3依次检测生长腔体110上表面或下表面的外周处的4个第二温度P1、P2、P3、和P4。如果4个第二温度中的至少一个小于或大于预设温度P,和/或如果6个第一温度中的至少一个小于或大于预设温度T,则调整至少一个加热单元1212的参数(例如,增大至少一个加热单元1212的加热功率或降低至少一个加热单元1212的加热功率),直至4个第二温度等于预设温度P和/或6个第一温度等于预设温度T,其中预设温度T小于预设温度P,预设温度T和预设温度P的温度差值小于预设阈值(例如,10K)。在一些实施例中,可以计算4个第二温度的平均温度
Figure PCTCN2021085468-appb-000004
然后将平均温度
Figure PCTCN2021085468-appb-000005
分别与6个第一温度进行比较,如果6个第一温度中的至少一个大于平均温度
Figure PCTCN2021085468-appb-000006
或者如果6个第一温度中的至少一个小于平均温度
Figure PCTCN2021085468-appb-000007
且温度差值大于预设阈值,则基于平均温度
Figure PCTCN2021085468-appb-000008
调整 至少一个加热单元1212的参数(例如,增大至少一个加热单元1212的加热功率或降低至少一个加热单元1212的加热功率),直至6个第一温度均小于平均温度
Figure PCTCN2021085468-appb-000009
且温度差值小于预设阈值(例如,10K)。
应当注意的是,上述有关晶体制备装置100的描述仅仅是为了示例和说明,而不限定本申请的适用范围。对于本领域技术人员来说,在本申请的指导下可以对晶体制备装置100进行各种修正和改变。然而,这些修正和改变仍在本申请的范围之内。
这些实施例可能带来的有益效果包括但不限于:(1)通过将温度补偿组件安装到生长腔体上表面,可以减小由感应线圈加热引起的生长腔体盖内侧面存在的径向温度梯度,从而降低晶体生长面应力引起的缺陷,降低或避免晶体背面的腐蚀缺陷,进而提高晶体的质量和产率;(2)通过将温度补偿组件安装到生长腔体下表面,可以减小由感应线圈加热引起的源材料覆盖区域的径向温度梯度,从而提高径向温度分布的均匀性,提高升华气相组分摩尔比的径向分布均匀性,促进晶体的稳定生长;(3)根据生长腔体上表面或下表面的尺寸、待生长的晶体类型、籽晶的尺寸或形状和/或生长腔体内的温度分布等,可以灵活调节温度补偿组件中加热单元的参数,并且可以单独控制每个加热单元的参数;(4)通过监控晶体生长过程中生长腔体上表面或下表面的温度分布,调节温度补偿组件的参数,保证晶体稳定且高质量的生长。
图8是一些实施例所示的示例性晶体制备装置的示意图。在一些实施例中,晶体制备装置100可以基于物理气相传输法制备半导体晶体(例如,碳化硅晶体、氮化铝晶体、氧化锌晶体、锑化锌晶体)。如图8所示,晶体制备装置100可以包括生长腔体110和加热组件。
生长腔体110可以用于放置籽晶150和源材料160。在一些实施例中,生长腔体110可以包括生长腔体盖111和生长腔主体112,其中,生长腔体盖111位于生长腔体顶部,用于封闭生长腔主体112的顶端开口。仅作为示例,生长腔体110可以是坩埚,坩埚可以包括坩埚盖和坩埚本体。在一些实施例中,生长腔主体112的形状可以是圆柱形、长方体、立方体等。在一些实施例中,生长腔主体112的形状可以是圆柱形的桶体,其包括桶底和桶侧壁。在一些实施例中,与生长腔主体112的形状相应,生长腔体盖111的形状可以是圆盘、长方形盘、正方形盘等。在一些实施例中,生长腔体110的材质可以包括石墨。在一些实施例中,生长腔体110的材质可以全部或部分为石墨。
在一些实施例中,籽晶150可以置于生长腔体110的顶部。在一些实施例中,籽晶150可以固定粘接于生长腔体盖111的内侧面(也可以称之为“下表面”)(例如, 内侧面中心位置处)。在一些实施例中,籽晶150可以通过粘接剂固定在生长腔体盖111上。粘接剂可以包括但不限于环氧树脂胶、AB胶、酚醛树脂胶、糖胶等。在一些实施例中,源材料160可以置于生长腔体110的底部。在一些实施例中,源材料160可以置于生长腔主体112内(例如,腔体下部)。在一些实施例中,源材料160可以是粉末状、颗粒状、块状等。在晶体生长过程中,可以通过控制生长腔体110的加热环境,使得源材料160和籽晶150之间形成轴向温度梯度。源材料160受热可以分解升华为气相组分(例如,以制备碳化硅晶体为例,气相组分包括Si 2C、SiC 2、Si),在轴向温度梯度的驱动作用下,气相组分从源材料160表面传输至籽晶150表面,由于籽晶150处温度相对较低,气相组分在籽晶150表面结晶进而生成晶体。
加热组件可以用于加热生长腔体110。在一些实施例中,加热组件可以位于生长腔体110的外部。在一些实施例中,加热组件可以环绕设置在生长腔体110外周。在一些实施例中,加热组件可以用于提供晶体生长所需要的至少部分热量。在一些实施例中,加热组件在电流作用下产生热量,通过热辐射的传热方式将热量传送至生长腔体110,使热量由生长腔体110的外周区域向生长腔体110的中心区域传导,以形成温场。在生长腔体110内的温度场作用下,源材料160升华分解为气相组分,气相组分在轴向温度梯度的驱动作用下,运输至籽晶150表面进行结晶以生成晶体。
在一些实施例中,加热组件可以包括电阻式发热体。在一些实施例中,电阻式发热体可以包括高阻石墨发热体、钨发热体、钼发热体、二硼化锆复合陶瓷发热体等。在一些实施例中,电阻式发热体的形状可以是圆环、正方形环、长方形环等。在传统的晶体制备装置中,通常在生长腔体外部放置感应线圈来加热生长腔体,此时热量由生长腔体的外周区域向生长腔体的中心区域传导,使外周区域为相对高温区,而中心区域为相对低温区,越靠近中心区域的温度越低,导致生长腔体内部的径向温差或径向温度梯度较大。在一些实施例中,生长腔体110周向上各个位置处的差异(例如,表面粗糙度、密度或厚度等不同),会导致生长腔体110周向上各个位置处的导热性能不同,进一步导致生长腔体110内部的温度分布不均匀。对于生长腔体结晶区域(例如,放置籽晶的生长腔体盖的内侧面)来说,这种较大的径向温差和/或径向温度梯度会导致晶体生长面产生较大的热应力甚至晶体生长面严重向源材料方向凸起,且容易产生微管、包裹体等缺陷;对于生长腔体源材料区域(例如,源材料覆盖区域)来说,这种较大的径向温差和/或径向温度梯度会导致源材料升华的气相组分的摩尔比沿径向分布不均匀,影响晶体质量。因此,需要降低这种径向温差和/或径向温度梯度。相比于采用感应线圈加 热,通过电阻式发热体对生长腔体110进行加热,可以有效降低生长腔体110内部的径向温差和/或径向温度梯度,同时提高晶体生长温场的稳定性。
在一些实施例中,电阻式发热体可以包括至少三个加热模块,分别用于加热生长腔体110的结晶区域、生长腔体110的源材料区域以及结晶区域与源材料区域之间的气相传输区域。其中,结晶区域位于生长腔体110的上部区域。在一些实施例中,结晶区域可以指籽晶150设定范围内的区域。源材料区域位于生长腔体110的下部区域。在一些实施例中,源材料区域可以指源材料160设定范围内的区域。气相传输区域位于生长腔体110的中部区域。在一些实施例中,气相传输区域可以指结晶区域与源材料区域之间的区域。在晶体生长过程中,位于源材料区域的源材料160受热分解升华为气相组分,气相组分在轴向温度梯度的驱动作用下,通过气相传输区域将气相组分传输至结晶区域的籽晶150处,进而在籽晶150表面结晶以生成晶体。
在一些实施例中,至少三个加热模块可以包括第一加热模块1230-1、第二加热模块1230-2和第三加热模块1230-3,分别用于加热生长腔体110的结晶区域、结晶区域与源材料区域之间的气相传输区域和源材料区域。在一些实施例中,可以根据实际需要,灵活增加或减少加热模块的数量。在一些实施例中,至少三个加热模块的每一个的至少一个参数(例如,电流、加热功率)可以单独控制。在一些实施例中,为了保持合适的轴向温度梯度,在晶体生长过程中,第一加热模块1230-1的加热功率小于第二加热模块1230-2的加热功率,第二加热模块1230-2的加热功率小于第三加热模块1230-3的加热功率。在一些实施例中,通过单独控制轴向上不同位置处的至少三个加热模块中的每个加热模块的加热功率,可以方便调整晶体生长过程中的轴向温度梯度分布。关于电阻式发热体的更多细节可以参见图9-12及其相关描述,在此不再赘述。
在一些实施例中,晶体制备装置100还可以包括保温层。保温层可以用于对生长腔体110和/或加热组件进行保温。在一些实施例中,保温层可以由任何保温材料制得。在一些实施例中,保温层可以包括石墨毡、氧化锆陶瓷等。在一些实施例中,保温层可以位于加热组件外部。在一些实施例中,保温层可以围绕设置于加热组件的外侧。在一些实施例中,保温层的层数、厚度与加热组件之间的间隔距离等可以根据实际需要设置。在一些实施例中,石墨毡的厚度可以为10-40mm。在一些实施例中,可以根据生长腔体110的尺寸、待生长的晶体类型、电阻式发热体的加热功率、晶体生长过程中与生长腔体110相关的温度信息等适应性地调节保温层与加热组件之间的间隔距离。在一些实施例中,电阻式发热体的加热功率使得生长腔体110的径向温差大于预设径向温差 阈值时,可以缩短保温层与加热组件之间的距离。在一些实施例中,通过将保温层设置于加热组件的外侧,且灵活调整保温层的参数(例如,层数、厚度、与生长腔体110之间的间隔距离),可以使生长腔体110和/或加热组件的温度不易散失,促进晶体的稳定生长。保温层的层数太少或厚度太小,热量易散失,导致温场不稳定,不利于晶体生长。保温层的层数太多或厚度太大,晶体制备装置成本太高。因此,需要将保温层的层数和厚度控制在设定范围内,以稳定温场。在一些实施例中,保温层130的层数可以包括2-10层。在一些实施例中,保温层130的层数可以包括3-9层。在一些实施例中,保温层130的层数可以包括4-8层。在一些实施例中,保温层130的层数可以包括5-7层。在一些实施例中,保温层130的层数可以包括6层。在一些实施例中,保温层130的厚度可以在1mm-50mm范围内。在一些实施例中,保温层130的厚度可以在3mm-48mm范围内。在一些实施例中,保温层130的厚度可以在5mm-45mm范围内。在一些实施例中,保温层130的厚度可以在8mm-42mm范围内。在一些实施例中,保温层130的厚度可以在10mm-40mm范围内。在一些实施例中,保温层130的厚度可以在15mm-35mm范围内。在一些实施例中,保温层130的厚度可以在20mm-30mm范围内。在一些实施例中,保温层130的厚度可以在23mm-28mm范围内。在一些实施例中,保温层130与加热组件之间的距离可以为在1mm-20mm范围内。在一些实施例中,保温层130与加热组件之间的距离可以为在2mm-18mm范围内。在一些实施例中,保温层130与加热组件之间的距离可以为在3mm-16mm范围内。在一些实施例中,保温层130与加热组件之间的距离可以为在4mm-14mm范围内。在一些实施例中,保温层130与加热组件之间的距离可以为在5mm-12mm范围内。在一些实施例中,保温层130与加热组件之间的距离可以为在6mm-11mm范围内。在一些实施例中,保温层130与加热组件之间的距离可以为在7mm-10mm范围内。在一些实施例中,保温层130与加热组件之间的距离可以为在8mm-9mm范围内。
在一些实施例中,加热组件还可以包括温度补偿组件1210。温度补偿组件1210可以用于在晶体生长过程中提供温度补偿。通过电阻式发热体对生长腔体110进行加热,可以有效降低生长腔体110内部的径向温差和/或径向温度梯度。为了促进晶体的稳定生长,还可以通过温度补偿组件1210提供温度补偿以进一步降低径向温差和/或径向温度梯度。
在一些实施例中,温度补偿组件1210可以包括第一温度补偿组件1210-1和/或第二温度补偿组件1210-2。在一些实施例中,温度补偿组件1210可以位于生长腔体110 上表面和/或生长腔体110下表面。在一些实施例中,第一温度补偿组件1210-1可以位于生长腔体110的上表面中心附近,第二温度补偿组件1210-2可以位于生长腔体110的下表面中心附近。在一些实施例中,温度补偿组件1210的材质可以是高热导率材质。在一些实施例中,温度补偿组件1210可以是高热导率石墨体。在一些实施例中,温度补偿组件1210的形状可以是圆盘状、正方体盘、长方体盘等。在一些实施例中,以高热导率石墨体为例,高热导率石墨体(例如,第一温度补偿组件1210-1)可以位于生长腔体110上表面中心位置处,同时高热导率石墨体的下表面外周区域与生长腔体110的上表面外周区域相接触,从而可以将生长腔体110的上表面外周区域处的热量传导到生长腔体110的上表面中心区域,降低生长腔体110结晶区域(例如,放置籽晶的生长腔体盖的内侧面)的径向温差和/或径向温度梯度;高热导率石墨体(例如,第二温度补偿组件1210-2)可以位于生长腔体110下表面中心位置处,同时高热导率石墨体的上表面外周区域与生长腔体110的下表面外周区域相接触,从而可以将生长腔体110的下表面外周区域处的热量传导到生长腔体110的下表面中心区域,降低生长腔体110源材料区域(例如,源材料覆盖区域)的径向温差和/或径向温度梯度,提高源材料区域的受热均匀性。关于温度补偿组件1210(或第一温度补偿组件1210-1、第二温度补偿组件1210-2)的更多细节可以参见图3-图6及其相关描述,在此不再赘述。
在一些实施例中,晶体制备装置100还可以包括控制组件(未示出),用于基于至少一个晶体生长参数,调节加热组件和/或温度补偿组件1210的加热功率,使得晶体生长界面与源材料间的温场保持基本稳定。在一些实施例中,至少一个晶体生长参数可以包括源材料的量、晶体生长尺寸、晶体生长界面与源材料间的高度差等。在一些实施例中,在晶体生长的不同阶段,针对生长腔体110内不同的源材料的量,可以通过调节加热组件和/或温度补偿组件1210的加热功率,使得生长腔体110内的轴向温度梯度分布、生长腔体110内结晶区域和/或源材料区域的径向温度梯度分布适合不同生长阶段的晶体的生长。在晶体生长的不同阶段,针对生长腔体110内生长的晶体的不同尺寸,可以通过调节加热组件和/或温度补偿组件1210的加热功率,使得生长腔体110内的轴向温度梯度分布、生长腔体110内结晶区域和/或源材料区域的径向温度梯度分布适合不同尺寸的晶体生长。在晶体生长过程中,随着源材料不断消耗,籽晶上不断沉积生长晶体,晶体生长界面与源材料间的高度差不断增加,通过调节加热组件和/或温度补偿组件1210的加热功率,可以有效控制晶体生长界面与源材料间的温度梯度分布基本不变。关于调节加热组件和/或温度补偿组件1210的加热功率的更多细节可以参见图 9及其相关描述,在此不再赘述。
在一些实施例中,至少三个加热单元中的每个加热单元可以包括至少一个子加热单元。在一些实施例中,至少一个子加热单元可以通过至少两个电极分隔开。在一些实施例中,至少两个电极中的每个电极可以通过导线与电源连接,使每个子加热单元、电极、导线和电源可以形成电流回路,进一步使每个子加热单元中的至少一个参数(例如,电流或加热功率等)可以被单独控制。在一些实施例中,电阻式发热体可以包括多个发热段,多个发热段通过多个电极彼此连接并环绕设置于生长腔体110外周。
图9是根据一些实施例所示的示例性电阻式发热体的示意图。
如图9所示,电阻式发热体可以至少包括第一加热模块1230-1、第二加热模块1230-2和第三加热模块1230-3,分别用于加热生长腔体110的结晶区域、结晶区域与源材料区域之间的气相传输区域和源材料区域。在一些实施例中,每个加热模块可以包括多个子电阻式发热体。在一些实施例中,第一加热模块1230-1可以包括第一子电阻式发热体1230-11、第二子电阻式发热体1230-12、第三子电阻式发热体1230-13和第四子电阻式发热体1230-14;第二加热模块1230-2可以包括第五子电阻式发热体1230-21、第六子电阻式发热体1230-22和第七子电阻式发热体1230-23;第三加热模块1230-3可以包括第八子电阻式发热体1230-31、第九子电阻式发热体1230-32、第十子电阻式发热体1230-33、第十一子电阻式发热体1230-34、第十二子电阻式发热体1230-35、第十三子电阻式发热体1230-36、第十四子电阻式发热体1230-37、第十五子电阻式发热体1230-38和第十六子电阻式发热体1230-39。
在一些实施例中,第一加热模块1230-1、第二加热模块1230-2和第三加热模块1230-3的加热功率可以单独控制。在一些实施例中,每个加热模块中的多个子电阻式发热体的加热功率可以单独控制。在晶体生长过程中,随着源材料160不断被消耗,晶体生长界面与源材料160间的高度差不断增加,为了使晶体生长界面与源材料160间的温场保持基本稳定,需要对第一加热模块1230-1的加热功率、第二加热模块1230-2的加热功率和第三加热模块1230-3的加热功率进行调整。此外,为了维持轴向温度梯度的稳定,还需要对第一温度补偿组件1210-1和/或第二温度补偿组件1210-2的加热功率进行调整。在一些实施例中,在晶体生长前,第一子电阻式发热体1230-11处的温度为2010℃,第二子电阻式发热体1230-12处的温度为2020℃,第三子电阻式发热体1230-13处的温度为2030℃,第四子电阻式发热体1230-14处的温度为2040℃,第五子电阻式发热体1230-21处的温度为2050℃,第六子电阻式发热体1230-22处的温度为2060℃, 第七子电阻式发热体1230-23处的温度为2070℃,第八子电阻式发热体1230-31到第十六子电阻式发热体1230-39的温度均为2080℃。当晶体生长界面到达第五子电阻式发热体1230-21的水平面,源材料上表面消耗到第九子电阻式发热体1230-32的水平面时,分别调节第一子电阻式发热体1230-11至第八子电阻式发热体1230-31的加热功率,使第一子电阻式发热体1230-11处的温度降低至2000℃,使第二子电阻式发热体1230-12处的温度降低至2010℃,使第三子电阻式发热体1230-13处的温度降低至2020℃,使第四子电阻式发热体1230-14处的温度降低至2030℃,使第五子电阻式发热体1230-21处的温度降低至2040℃,使第六子电阻式发热体1230-22处的温度降低至2050℃,使第七子电阻式发热体1230-23处的温度降低至2060℃,使第八子电阻式发热体1230-31处的温度降低至2070℃,使第九子电阻式发热体1230-32到第十六子电阻式发热体1230-39的温度保持2080℃不变,通过上述调整加热功率的调整,使得晶体生长界面与源材料160间的轴向温度梯度分布保持基本稳定。此外,随着晶体生长,需要将位于生长腔体110上表面的第一温度补偿组件1210-1的加热功率相应的降低,位于生长腔体110下表面的第二温度补偿组件1210-2的加热功率保持不变。
图10是一些实施例所示的示例性第一电极和示例性第二电极排布的俯视图;图11是一些实施例所示的示例性第一电极和示例性第二电极排布的俯视图。
在一些实施例中,加热组件还可以包括至少一个第一电极1213(例如,正电极)和至少一个第二电极1211(例如,负电极),至少一个第一电极1213和至少一个第二电极1211沿电阻式发热体1230外侧周向分布。在一些实施例中,至少一个第一电极1213和至少一个第二电极1211可以通过导线(例如,水冷铜线)连接至电源(例如,直流电源)。相应地,至少一个第一电极1213、至少一个第二电极1211、电阻式发热体1230、导线以及电源形成电流通路,用于加热电阻式发热体1230。
在一些实施例中,结合图8所示,电阻式发热体1230可以是圆环、正方形环、长方形环等。相应地,至少一个第一电极1213和至少一个第二电极1211可以沿环周向分布。在一些实施例中,至少一个第一电极1213和至少一个第二电极1211的材质可以相同或不同。例如,至少一个第一电极1213和至少一个第二电极1211可以均为低阻石墨电极。在一些实施例中,至少一个第一电极1213和至少一个第二电极1211可以均匀或非均匀地分布在电阻式发热体1230的外周。在一些实施例中,至少一个第一电极1213和至少一个第二电极1211可以将电阻式发热体1230划分为多个加热段,多个加热段的加热功率可以单独控制。在一些实施例中,至少一个第一电极1213和至少一个第二电 极1211的个数总和为偶数。在一些实施例中,可以根据实际需要,调节至少一个第一电极1213和至少一个第二电极1211的个数。在电阻式发热体1230上排布的电极数量越多,对电阻式发热体1230的加热功率的控制精度越高。在一些实施例中,电阻式发热体1230可以包括M个第一电极1213和N个第二电极1211。其中,M与N均为大于0的整数。在一些实施例中,M与N可以相等。在一些实施例中,第一电极1213和第二电极1211的数量总和可以为偶数。
如图10所示,电阻式发热体1230的形状可以是圆环,2个第一电极1213(正电极)和2个第二电极1211(负电极)沿电阻式发热体1230外侧周向分布,第一电极1213和第二电极1211相间地等间距排布,将电阻式发热体1230均匀划分为4个加热段,其中,每个加热段的加热功率可以被单独控制。如图11所示,电阻式发热体1230的形状可以是正方形环,2个第一电极1213(正电极)和2个第二电极1211(负电极)沿电阻式发热体1230外侧周向分布,第一电极1213和第二电极1211相间地等间距排布,将电阻式发热体1230均匀划分为4个加热段,其中,每个加热段的加热功率可被单独控制。
在一些实施例中,结合图9所述,电阻式发热体1230可以包括至少三个加热模块,至少三个加热模块的每一个可以包括多个子电阻式发热体。相应地,多个子电阻式发热体上可以设置至少一个第一电极和至少一个第二电极。对于多个子电阻式发热体来说,其上排布的第一电极和第二电极的数量可以相同或不同。
图12是一些实施例所示的示例性第一电极和/或示例性第二电极穿过固定板固定到电阻式发热体的示意图。
如图12所示,加热组件还可以包括电极固定板1215,用于固定至少一个第一电极1213和/或至少一个第二电极1211。在一些实施例中,电极固定板1215可以包括至少两个孔洞1215-4。在一些实施例中,至少一个第一电极1213可以穿过至少两个孔洞中的一个孔洞,固定在电阻式发热体1230的外侧,至少一个第二电极1211可以穿过至少两个孔洞中的另一个孔洞,固定在电阻式发热体1230的外侧。在一些实施例中,电极固定板1215可以由保温材料或隔热材料制成。在一些实施例中,电极固定板1215可以是氧化锆陶瓷板。
应当注意的是,上述有关晶体制备装置100的描述仅仅是为了示例和说明,而不限定本申请的适用范围。对于本领域技术人员来说,在本申请的指导下可以对晶体制备装置100进行各种修正和改变。然而,这些修正和改变仍在本申请的范围之内。
本实施例可能带来的有益效果包括但不限于:(1)通过电阻式发热体对生长腔体进行加热,可以有效降低生长腔体内部的径向温度梯度,同时提高晶体生长温场的稳定性;(2)通过将温度补偿组件安装到生长腔体上表面,可以进一步减小生长腔体盖内侧面存在的径向温度梯度,从而降低晶体生长面应力引起的缺陷,降低或避免晶体背面的腐蚀缺陷,进而提高晶体的质量和产率;(3)通过将温度补偿组件安装到生长腔体下表面,可以进一步减小源材料覆盖区域的径向温度梯度,从而提高径向温度分布的均匀性,提高升华气相组分中Si/C摩尔比的径向分布均匀性,促进晶体的稳定生长;(4)可以灵活增加或减少加热模块的数量,且单独控制多个加热模块的加热功率,方便调整晶体生长过程中的轴向温度梯度,以满足晶体生长要求;(5)可以单独控制每个加热模块所包含的子电阻式发热体的加热功率,且单独控制多个加热段的加热功率,可以精确控制轴向温度梯度。
图13是另一些实施例所示的示例性晶体制备装置的示意图。
如图13所示,晶体制备装置100可以包括生长腔体110和加热组件120。关于生长腔体110的描述可以参见图1及其相关说明,在此不再赘述。
在一些实施例中,加热组件120可以包括至少一个加热单元。至少一个加热单元可以用于加热生长腔体110,提供晶体生长所需的温场以制备晶体。在一些实施例中,加热组件120可以位于生长腔体110内部。位于生长腔体110内部的至少一个加热单元可以称为第二加热组件1240。在一些实施例中,第二加热组件1240中的至少一个加热单元的数量可以包括但不限于1个、2个、3个、4个、5个、6个等。在一些实施例中,第二加热组件1240中的至少一个加热单元的形状可以与生长腔体110的水平截面形状相同。在一些实施例中,生长腔体110可以为圆柱体,第二加热组件1240中的至少一个加热单元的形状可以为圆形。在一些实施例中,生长腔体110可以为长方体或立方体,第二加热组件1240中的至少一个加热单元的形状可以为长方形或正方形。
在一些实施例中,第二加热组件1240中的至少一个加热单元可以沿生长腔体110的轴向方向间隔分布在生长腔体110内部。在一些实施例中,相邻两个加热单元之间的距离可以相等,也可以不相等。在一些实施例中,距离可以指轴向方向上的距离。在一些实施例中,至少一个加热单元的材质可以包括但不限于高阻发热材质。在一些实施例中,至少一个加热单元可以是至少一个高阻石墨板。至少一个高阻石墨板通电后可以利用电流流过至少一个高阻石墨板的焦耳效应产生的热能对生长腔体110进行加热。
在一些实施例中,至少一个加热单元的每一个加热单元可以与生长腔体110可 拆卸连接。在一些实施例中,生长腔体110内部可以设有至少一个第一连接件,至少一个加热单元的每一个加热单元上可以设有至少一个第二连接件,至少一个第一连接件与至少一个第二连接件可以可拆卸连接,以使至少一个加热单元可以安装固定在生长腔体110内部和/或至少一个加热单元可以从生长腔体110内部拆卸。在一些实施例中,至少一个第一连接件可以包括螺栓孔,至少一个第二连接件可以包括与螺栓孔相匹配的螺栓。在一些实施例中,至少一个第一连接件可以包括挂钩,至少一个第二连接件可以包括与挂钩相匹配的挂孔。
在一些实施例中,位于生长腔体内部的加热单元需要满足设定的强度,以保证源材料分布在加热单元上表面,加热单元不会发生形变,可以保证温场的均匀稳定性。加热单元的厚度可以根据加热单元材质不同进行调整。在一些实施例中,材质为石墨的加热单元的厚度可以不小于材质为金属(例如,钨、铂、钼、钽或铱)的加热单元的厚度。
加热单元的厚度太小可以导致加热单元的发热量小,进而导致加热组件形成的温场不能满足晶体生长。由于生长腔体的空间固定,加热单元的厚度太大,不仅导致加热单元上表面放置的源材料质量减小,而且导致加热单元上流通通道的高度增加,进而导致源材料升华产生的气相组分穿过加热单元到达籽晶下表面的阻力增大,进而影响晶体生长速率和晶体质量。因此,加热单元的厚度需要控制在预设范围内。在一些实施例中,第二加热组件1240中的至少一个加热单元的厚度可以在2mm-30mm范围内。在一些实施例中,第二加热组件1240中的至少一个加热单元的厚度可以在4mm-28mm范围内。在一些实施例中,第二加热组件1240中的至少一个加热单元的厚度可以在6mm-26mm范围内。在一些实施例中,第二加热组件1240中的至少一个加热单元的厚度可以在8mm-24mm范围内。在一些实施例中,第二加热组件1240中的至少一个加热单元的厚度可以在10mm-22mm范围内。在一些实施例中,第二加热组件1240中的至少一个加热单元的厚度可以在12mm-20mm范围内。在一些实施例中,第二加热组件1240中的至少一个加热单元的厚度可以在14mm-18mm范围内。在一些实施例中,第二加热组件1240中的至少一个加热单元的厚度可以在15mm-17mm范围内。在一些实施例中,第二加热组件1240中的至少一个加热单元的厚度可以在15.5mm-16.5mm范围内。
在一些实施例中,第二加热组件1240中的至少一个加热单元可以包括至少一个流通通道1250。至少一个流通通道1250可以开口于至少一个加热单元上表面。在一些实施例中,至少一个流通通道1250可以贯穿加热单元,使得晶体生长所需的至少一种 组分从加热单元的下表面运输至加热单元的上表面,进一步在轴向温度梯度的驱动下运输至籽晶下表面,以生长晶体。在一些实施例中,至少一种晶体生长所需的组分可以是源材料受热分解生成的至少一种气相组分。以生长碳化硅晶体为例,可以采用高纯碳化硅粉末作为源材料,高纯碳化硅粉末受热分解生成的气相组分Si、SiC 2和Si 2C可以是晶体生长所需的至少一种组分。
在一些实施例中,至少一个流通通道1250的数量可以是5个、10个、20个、30个等。在一些实施例中,至少一个流通通道1250的形状可以是圆形、三角形、四边形、五边形、六边形等规则形状或不规则形状。在一些实施例中,一个加热单元上的至少一个流通通道1250的形状可以相同,也可以不同。在一些实施例中,至少一个流通通道1250可以排布成圆形、环形、三角形、四边形、五边形、六边形等。
在一些实施例中,不同加热单元上的至少一个流通通道1250的数量可以相等,也可以不相等。在一些实施例中,相邻的两个加热单元中,一个加热单元上的至少一个流通通道1250的数量可以为10个,另一个加热单元上的至少一个流通通道1250的数量可以为20个。在一些实施例中,不同加热单元上的至少一个流通通道1250的形状可以相同,也可以不同。在一些实施例中,相邻的两个加热单元中,一个加热单元上的至少一个流通通道1250的形状可以为圆形,另一个加热单元上的至少一个流通通道1250的形状可以为六边形。在一些实施例中,不同加热单元上的至少一个流通通道1250的排布可以相同,也可以不同。在一些实施例中,相邻的两个加热单元中,一个加热单元上的至少一个流通通道1250可以均匀排布,另一个加热单元上的至少一个流通通道1250可以非均匀排布。在一些实施例中,相邻的两个加热单元上的至少一个流通通道1250可以均以加热单元的中心为圆心环形排布。在一些实施例中,一个加热单元上的相邻环的间距可以相等,另一个加热单元上的相邻环的间距可以不相等。在一些实施例中,相邻环的间距可以表示为相邻环的半径的差值。
由于一个流通通道的面积太大,源材料会从流通通道漏到生长腔体110底部,导致位于生长腔体内的至少一个加热单元上表面无法放置源材料160。一个流通通道的面积太小,源材料160会将流通通道堵住,导致源材料160气化得到的气相组分无法通过流通通道到达籽晶150处生长晶体。因此,一个流通通道的截面积需要控制在一定范围内。在一些实施例中,一个流通通道的截面积可以不大于源材料粒径的1.5倍。在一些实施例中,一个流通通道的截面积可以不大于源材料粒径的1.4倍。在一些实施例中,一个流通通道的截面积可以不大于源材料粒径的1.3倍。在一些实施例中,一个流通通 道的截面积可以不大于源材料粒径的1.2倍。在一些实施例中,一个流通通道的截面积可以不大于源材料粒径的1.1倍。在一些实施例中,一个流通通道的截面积可以不大于源材料粒径的1.0倍。在一些实施例中,一个流通通道的截面积可以不小于源材料粒径的1.0倍。在一些实施例中,一个流通通道的截面积可以不小于源材料粒径的1.1倍。在一些实施例中,一个流通通道的截面积可以不小于源材料粒径的1.2倍。在一些实施例中,一个流通通道的截面积可以不小于源材料粒径的1.3倍。在一些实施例中,一个流通通道的截面积可以不小于源材料粒径的1.4倍。在一些实施例中,一个流通通道的截面积可以不小于源材料粒径的1.5倍。在一些实施例中,一个流通通道的截面积可以在源材料粒径的1.0-1.5倍的范围内。在一些实施例中,一个流通通道的截面积可以在源材料粒径的1.05-1.45倍的范围内。在一些实施例中,一个流通通道的截面积可以在源材料粒径的1.1-1.4倍的范围内。在一些实施例中,一个流通通道的截面积可以在源材料粒径的1.15-1.35倍的范围内。在一些实施例中,一个流通通道的截面积可以在源材料粒径的1.2-1.3倍的范围内。在一些实施例中,一个流通通道的截面积可以在源材料粒径的1.22-1.28倍的范围内。在一些实施例中,一个流通通道的截面积可以在源材料粒径的1.24-1.26倍的范围内。
由于一个加热单元上表面的至少一个流通通道的开口面积总和太大,会导致一个加热单元上表面放置的源材料质量或数量有限,进而影响晶体生长效率。一个加热单元上表面的至少一个流通通道的开口面积总和太小,会导致流通通道无法阻止石墨化的碳颗粒运动到籽晶处,进而产生晶体缺陷。因此,需要将一个加热单元上表面的至少一个流通通道的开口面积总和控制在一定范围内,以阻止石墨化的碳颗粒运动到籽晶处,进一步可以减少晶体缺陷,同时还能保证晶体生长效率。在一些实施例中,一个加热单元上表面的至少一个流通通道的开口面积总和可以为一个加热单元面积的20%-60%。在一些实施例中,一个加热单元上表面的至少一个流通通道的开口面积总和可以为一个加热单元面积的25%-55%。在一些实施例中,一个加热单元上表面的至少一个流通通道的开口面积总和可以为一个加热单元面积的30%-50%。在一些实施例中,一个加热单元上表面的至少一个流通通道的开口面积总和可以为一个加热单元面积的35%-45%。在一些实施例中,一个加热单元上表面的至少一个流通通道的开口面积总和可以为一个加热单元面积的38%-42%。在一些实施例中,一个加热单元上表面的至少一个流通通道的开口面积总和可以为一个加热单元面积的40%。
如图13所示,加热组件120位于生长腔体110内部,对生长腔体110进行加热 时,部分热能会通过生长腔体110壁传导至生长腔体110外部,导致加热单元上靠近生长腔体110壁的区域的温度低,加热单元上远离生长腔体110壁的区域的温度高,进而在生长腔体110内部形成径向温差和/或径向温度梯度。在一些实施例中,由于至少一个加热单元的材质可以包括但不限于高阻发热材质,因此,可以通过调整至少一个加热单元上至少一个流通通道1250的密度来调整至少一个加热单元的电阻,从而调整至少一个加热单元的加热功率。在一些实施例中,至少一个流通通道1250的密度可以指单位面积内至少一个流通通道1250的数量。在一些实施例中,空气的电阻率大于至少一个加热单元的材质的电阻率时,加热单元上至少一个流通通道1250的密度越大,该加热单元的电阻率越高,在通电电流相等的情况下,该加热单元的加热功率越大。
为了降低或消除径向温差和/或径向温度梯度,在一些实施例中,至少一个加热单元上表面中心区域的至少一个流通通道1250开口的密度可以小于至少一个加热单元边沿区域的至少一个流通通道1250开口的密度。在一些实施例中,至少一个加热单元边沿区域可以指加热单元上靠近加热单元边沿的区域或远离加热单元中心的区域。在一些实施例中,至少一个加热单元中心区域可以指加热单元上靠近加热单元中心的区域。本说明书实施例中,除非有特别说明,至少一个流通通道开口的密度和至少一个流通通道的密度可以替换使用。
如图13所示,位于生长腔体110内部的至少一个加热单元上表面可以放置源材料160。源材料160可以用于提供晶体生长所需的至少一种组分。源材料160可以在至少一个加热单元的加热作用下分解产生气相组分。气相组分可以是晶体生长所需的至少一种组分。气相组分可以通过至少一个加热单元上的至少一个流通通道在轴向温度梯度的驱动下运输到籽晶150处。在一些实施例中,源材料160可以是粉末状、颗粒状、块状等。
图14是一些实施例所示的示例性至少一个加热单元的示意图。
如图14所示,至少一个加热单元1212的形状可以为圆形。至少一个流通通道1250的形状可以为圆形。至少一个流通通道1250以至少一个加热单元1212的圆心O为圆心、Rn为半径圆周排布。在一些实施例中,至少一个流通通道1250可以排布成至少一个圆周。如图14所示,至少一个流通通道1250可以排布成4个圆周。在从至少一个加热单元的中心区域到至少一个加热单元的边沿区域的径向上,4个圆周可以分别表示为第一流通通道圆周1251、第二流通通道圆周1252、第三流通通道圆周1253和第四流通通道圆周1254。本说明书实施例中,除非有特别说明,圆周排布与环形排布可以替 换使用。
在一些实施例中,至少一个流通通道1250的密度还可以指单位弧长上至少一个流通通道1250的数量。在一些实施例中,不同的流通通道圆周上的至少一个流通通道1250的密度可以相等,也可以不相等。如图13所示,加热组件120位于生长腔体110内部,对生长腔体110进行加热时,部分热能会通过生长腔体110壁传导至生长腔体110外部,导致加热单元上靠近生长腔体110壁的区域的温度低,加热单元上远离生长腔体110壁的区域的温度高,进而在生长腔体110内部形成径向温差和/或径向温度梯度。在一些实施例中,从至少一个加热单元的中心区域到至少一个加热单元的边沿区域,至少一个流通通道1250的密度可以逐渐增大。在一些实施例中,第一流通通道圆周1251上的至少一个流通通道的开口密度可以小于第二流通通道圆周1252上的至少一个流通通道的开口密度。第二流通通道圆周1252上的至少一个流通通道的开口密度可以小于第三流通通道圆周1253上的至少一个流通通道的开口密度。第三流通通道圆周1253上的至少一个流通通道的开口密度可以小于第四流通通道圆周1254上的至少一个流通通道的开口密度。在一些实施例中,从至少一个加热单元的中心区域到至少一个加热单元的边沿区域,至少一个流通通道1250的密度可以呈阶梯式增大。在一些实施例中,第一流通通道圆周1251与第二流通通道圆周1252上的至少一个流通通道的开口密度可以相等。第三流通通道圆周1253与第四流通通道圆周1254上的至少一个流通通道的开口密度可以相等。第二流通通道圆周1252上的至少一个流通通道的开口密度可以小于第三流通通道圆周1253上的至少一个流通通道的开口密度。
在一些实施例中,至少一个流通通道1250的半径可以表示为r。在一些实施例中,至少一个流通通道1250的半径可以是至少一个流通通道1250的内切圆或外接圆的半径。在一些实施例中,至少一个流通通道1250的形状为圆形时,至少一个流通通道1250的半径为圆的半径。在一些实施例中,至少一个流通通道1250的形状为三角形、四边形、五边形或六边形等规则形状时,至少一个流通通道1250的半径为三角形、四边形、五边形或六边形等规则形状的内切圆或外接圆的半径。
为了使源材料160气化得到的气相组分能够通过流通通道到达籽晶150处生长晶体,且保证晶体生长效率。在一些实施例中,至少一个流通通道1250的半径r可以在0.1mm-1mm范围内。在一些实施例中,至少一个流通通道1250的半径r可以在0.2mm-0.9mm范围内。在一些实施例中,至少一个流通通道1250的半径r可以在0.3mm-0.8mm范围内。在一些实施例中,至少一个流通通道1250的半径r可以在0.4mm-0.7mm 范围内。在一些实施例中,至少一个流通通道1250的半径r可以在0.5mm-0.6mm范围内。在一些实施例中,至少一个流通通道1250的半径r可以为0.1mm。在一些实施例中,至少一个流通通道1250的半径r可以为0.2mm。在一些实施例中,至少一个流通通道1250的半径r可以为0.3mm。在一些实施例中,至少一个流通通道1250的半径r可以为0.4mm。在一些实施例中,至少一个流通通道1250的半径r可以为0.5mm。在一些实施例中,至少一个流通通道1250的半径r可以为0.6mm。在一些实施例中,至少一个流通通道1250的半径r可以为0.7mm。在一些实施例中,至少一个流通通道1250的半径r可以为0.8mm。在一些实施例中,至少一个流通通道1250的半径r可以为0.9mm。在一些实施例中,至少一个流通通道1250的半径r可以为1mm。
如图14所示,一个流通通道圆周上的相邻两个流通通道的中心间距可以表示为d。在一些实施例中,中心间距可以是一个流通通道圆周上相邻的两个流通通道1250的几何中心点的距离。在一些实施例中,流通通道的形状为圆形时,流通通道1250的几何中心点可以指流通通道的圆心。在一些实施例中,相同的流通通道圆周上的相邻两个流通通道的中心间距可以相等,也可以不相等。
在一些实施例中,一个流通通道圆周上的相邻两个流通通道的中心间距d可以表示为3r<d<10r。在一些实施例中,一个流通通道圆周上的相邻两个流通通道的中心间距d可以表示为4r<d<9r。在一些实施例中,一个流通通道圆周上的相邻两个流通通道的中心间距d可以表示为5r<d<8r。在一些实施例中,一个流通通道圆周上的相邻两个流通通道的中心间距d可以表示为6r<d<7r。在一些实施例中,一个流通通道圆周上的相邻两个流通通道的中心间距d可以表示为6.4r<d<6.6r。
为了使加热单元上表面能够放置适量的源材料以保证晶体生长效率,在一些实施例中,一个流通通道圆周上的相邻两个流通通道的中心间距可以在1.5mm-2.5mm范围内。在一些实施例中,一个流通通道圆周上的相邻两个流通通道的中心间距可以在1.6mm-2.4mm范围内。在一些实施例中,一个流通通道圆周上的相邻两个流通通道的中心间距可以在1.7mm-2.3mm范围内。在一些实施例中,一个流通通道圆周上的相邻两个流通通道的中心间距可以在1.8mm-2.2mm范围内。在一些实施例中,一个流通通道圆周上的相邻两个流通通道的中心间距可以在1.9mm-2.1mm范围内。在一些实施例中,一个流通通道圆周上的相邻两个流通通道的中心间距可以在1.95mm-2.05mm范围内。在一些实施例中,中心间距可以是1.5mm。在一些实施例中,中心间距可以是1.6mm。在一些实施例中,中心间距可以是1.7mm。在一些实施例中,中心间距可以是1.8mm。 在一些实施例中,中心间距可以是1.9mm。在一些实施例中,中心间距可以是2mm。在一些实施例中,中心间距可以是2.1mm。在一些实施例中,中心间距可以是2.2mm。在一些实施例中,中心间距可以是2.3mm。在一些实施例中,中心间距可以是2.4mm。在一些实施例中,中心间距可以是2.5mm。
在一些实施例中,一个加热单元上的流通通道圆周的数量可以表示为n。其中,n可以为不小于2的整数。在一些实施例中,n可以是2个、3个、4个、5个等。如图14所示,第n个流通通道圆周的半径可以表示R n。同样地,第(n-1)个流通通道圆周的半径可以表示为R n-1。在一些实施例中,可以根据至少一个加热单元的尺寸和至少一个流通通道的半径等确定第n个流通通道圆周的半径R n。在一些实施例中,R n可以小于至少一个加热单元的半径,且大于至少一个流通通道的半径。
在一些实施例中,当4r<R n-R n-1<10r时,R n-R n-1可以等于(R 2-R 1)exp (-(n-1)×0.015)。在一些实施例中,当5r<R n-R n-1<9r时,R n-R n-1可以等于(R 2-R 1)exp (-(n-1)×0.015)。在一些实施例中,当6r<R n-R n-1<8r时,R n-R n-1可以等于(R 2-R 1)exp (-(n-1)×0.015)。在一些实施例中,当6.5r<R n-R n-1<7.5r时,R n-R n-1可以等于(R 2-R 1)exp (-(n-1)×0.015)
在一些实施例中,当R n-R n-1<4r时,R n-R n-1可以为4r。在一些实施例中,当R n-R n-1<3.5r时,R n-R n-1可以为4r。在一些实施例中,当R n-R n-1<3r时,R n-R n-1可以为4r。在一些实施例中,当R n-R n-1<2.5r时,R n-R n-1可以为4r。在一些实施例中,当R n-R n- 1<2r时,R n-R n-1可以为4r。在一些实施例中,当R n-R n-1<1.5r时,R n-R n-1可以为4r。在一些实施例中,当R n-R n-1<r时,R n-R n-1可以为4r。在一些实施例中,靠近加热单元中心区域的第一流通通道圆周1251的半径R 1可以在1mm-20mm范围内。在一些实施例中,R 1可以在2mm-19mm范围内。在一些实施例中,R 1可以在3mm-18mm范围内。在一些实施例中,R 1可以在4mm-17mm范围内。在一些实施例中,R 1可以在5mm-16mm范围内。在一些实施例中,R 1可以在6mm-15mm范围内。在一些实施例中,R 1可以在7mm-14mm范围内。在一些实施例中,R 1可以在8mm-13mm范围内。在一些实施例中,R 1可以在9mm-12mm范围内。在一些实施例中,R 1可以在10mm-11mm范围内。在一些实施例中,R 1可以为10mm。在一些实施例中,第二流通通道圆周1252的半径R 2可以在2mm-30mm范围内。在一些实施例中,R 2可以在3mm-29mm范围内。在一些实施例中,R 2可以在4mm-28mm范围内。在一些实施例中,R 2可以在5mm-27mm范围内。在一些实施例中,R 2可以在6mm-26mm范围内。在一些实施例中,R 2可以在7mm-25mm范围内。在一些实施例中,R 2可以在8mm-24mm范围内。在一些实施例中,R 2可以在 9mm-23mm范围内。在一些实施例中,R 2可以在10mm-22mm范围内。在一些实施例中,R 2可以在11mm-21mm范围内。在一些实施例中,R 2可以在12mm-20mm范围内。在一些实施例中,R 2可以在13mm-19mm范围内。在一些实施例中,R 2可以在14mm-18mm范围内。在一些实施例中,R 2可以在15mm-17mm范围内。在一些实施例中,R 2可以为16mm。
图15是另一些实施例所示的示例性晶体制备装置的示意图。
如图15所示,晶体制备装置100可以包括生长腔体110和加热组件120。关于生长腔体110的描述可以参见本说明书图1及其相关说明,在此不再赘述。
在一些实施例中,加热组件120可以包括至少两个加热单元。至少两个加热单元可以用于加热生长腔体110,提供晶体生长所需的温场以制备晶体,使晶体生长时的径向温差不超过预设温差阈值。在一些实施例中,至少两个加热单元中的至少一个加热单元可以位于生长腔体110外部。在一些实施例中,位于生长腔体110外部的至少一个加热单元可以称为为第一加热组件1220。在一些实施例中,第一加热组件1220可以部分环绕设置于生长腔体110外周。关于环绕设置于生长腔体110外周的第一加热组件1220的相关描述可以参见本说明书图3及其相关说明,在此不再赘述。在一些实施例中,第一加热组件1220可以包括至少三个第一加热单元。至少三个第一加热单元可以分别对应于生长腔体110内的结晶区域、生长腔体110内的源材料区域以及结晶区域与源材料区域之间的气相传输区域的位置。关于环绕设置于生长腔体110外周的至少三个第一加热单元的相关描述可以参见本说明书图8、图9及其相关说明,在此不再赘述。在一些实施例中,第一加热组件1220可以位于生长腔体110外部的上表面和/或下表面。关于位于生长腔体110外部的上表面和/或下表面的第一加热组件1220的相关描述可以参见本说明书图3至图7及其相关说明,在此不再赘述。
在一些实施例中,至少两个加热单元中的至少一个加热单元可以位于生长腔体110内部。在一些实施例中,位于生长腔体110内部的至少一个加热单元可以称为第二加热组件1240。第二加热组件1240可以包括至少一个第二加热单元。关于位于生长腔体110内部的第二加热组件1240的相关描述可以参见本说明书图13及其相关说明,在此不再赘述。
在一些实施例中,第二加热组件1240的至少一个加热单元可以包括至少一个流通通道1250。关于至少一个流通通道1250的相关描述可以参见本说明书图14及其相关说明,在此不再赘述。
在一些实施例中,只采用第一加热组件1220对生长腔体110加热时,在同一水平面上,从生长腔体110外周到生长腔体110中心轴的方向上,热量在传递过程中会逐渐减小。生长腔体110外周的温度可以大于生长腔体110内部的温度,此时生长腔体110内部会存在径向温差或径向温度梯度。
为了降低或消除径向温差和/或径向温度梯度,在一些实施例中,第二加热组件1240可以至少包括两个以上流通通道。位于生长腔体110内部的至少一个加热单元上表面中心区域的至少一个流通通道1250开口的密度可以大于位于生长腔体110内部的至少一个加热单元边沿区域的至少一个流通通道1250开口的密度。在一些实施例中,从至少一个加热单元的中心区域到至少一个加热单元的边沿区域,至少一个流通通道1250的密度可以逐渐减小。在一些实施例中,第一流通通道圆周1251上的至少一个流通通道的开口密度可以大于第二流通通道圆周1252上的至少一个流通通道的开口密度。第二流通通道圆周1252上的至少一个流通通道的开口密度可以大于第三流通通道圆周1253上的至少一个流通通道的开口密度。第三流通通道圆周1253上的至少一个流通通道的开口密度可以大于第四流通通道圆周1254上的至少一个流通通道的开口密度。在一些实施例中,从至少一个加热单元的中心区域到至少一个加热单元的边沿区域,至少一个流通通道1250的密度可以呈阶梯式减小。在一些实施例中,第一流通通道圆周1251与第二流通通道圆周1252上的至少一个流通通道的开口密度可以相等。第三流通通道圆周1253与第四流通通道圆周1254上的至少一个流通通道的开口密度可以相等。第二流通通道圆周1252上的至少一个流通通道的开口密度可以大于第三流通通道圆周1253上的至少一个流通通道的开口密度。
为了使源材料160气化得到的气相组分能够通过流通通道到达籽晶150处生长晶体,且保证晶体生长效率。在一些实施例中,至少一个流通通道1250的半径r可以在0.05mm-0.95mm范围内。在一些实施例中,至少一个流通通道1250的半径r可以在0.1mm-0.9mm范围内。在一些实施例中,至少一个流通通道1250的半径r可以在0.2mm-0.8mm范围内。在一些实施例中,至少一个流通通道1250的半径r可以在0.3mm-0.7mm范围内。在一些实施例中,至少一个流通通道1250的半径r可以在0.4mm-0.6mm范围内。在一些实施例中,至少一个流通通道1250的半径r可以在0.45mm-0.55mm范围内。在一些实施例中,至少一个流通通道1250的半径r可以为0.05mm。在一些实施例中,至少一个流通通道1250的半径r可以为0.1mm。在一些实施例中,至少一个流通通道1250的半径r可以为0.2mm。在一些实施例中,至少一个流通通道1250的半径r可以 为0.3mm。在一些实施例中,至少一个流通通道1250的半径r可以为0.4mm。在一些实施例中,至少一个流通通道1250的半径r可以为0.5mm。在一些实施例中,至少一个流通通道1250的半径r可以为0.6mm。在一些实施例中,至少一个流通通道1250的半径r可以为0.7mm。在一些实施例中,至少一个流通通道1250的半径r可以为0.8mm。在一些实施例中,至少一个流通通道1250的半径r可以为0.9mm。在一些实施例中,至少一个流通通道1250的半径r可以为0.95mm。
在一些实施例中,一个流通通道圆周上的相邻两个流通通道的中心间距d可以表示为4r<d<10r。在一些实施例中,一个流通通道圆周上的相邻两个流通通道的中心间距d可以表示为5r<d<9r。在一些实施例中,一个流通通道圆周上的相邻两个流通通道的中心间距d可以表示为6r<d<8r。在一些实施例中,一个流通通道圆周上的相邻两个流通通道的中心间距d可以表示为6.5r<d<7.5r。在一些实施例中,一个流通通道圆周上的相邻两个流通通道的中心间距d可以表示为6.8r<d<7r。
为了使加热单元上表面能够放置适量的源材料以保证晶体生长效率,在一些实施例中,一个流通通道圆周上的相邻两个流通通道的中心间距可以在1mm-2mm范围内。在一些实施例中,一个流通通道圆周上的相邻两个流通通道的中心间距可以在1.1mm-1.9mm范围内。在一些实施例中,一个流通通道圆周上的相邻两个流通通道的中心间距可以在1.2mm-1.8mm范围内。在一些实施例中,一个流通通道圆周上的相邻两个流通通道的中心间距可以在1.3mm-1.7mm范围内。在一些实施例中,一个流通通道圆周上的相邻两个流通通道的中心间距可以在1.4mm-1.6mm范围内。在一些实施例中,一个流通通道圆周上的相邻两个流通通道的中心间距可以在1.45mm-1.55mm范围内。在一些实施例中,中心间距可以是1mm。在一些实施例中,中心间距可以是1.1mm。在一些实施例中,中心间距可以是1.2mm。在一些实施例中,中心间距可以是1.3mm。在一些实施例中,中心间距可以是1.4mm。在一些实施例中,中心间距可以是1.5mm。在一些实施例中,中心间距可以是1.6mm。在一些实施例中,中心间距可以是1.7mm。在一些实施例中,中心间距可以是1.8mm。在一些实施例中,中心间距可以是1.9mm。在一些实施例中,中心间距可以是2mm。在一些实施例中,中心间距可以是2.1mm。在一些实施例中,中心间距可以是2.2mm。
在一些实施例中,当4r<R n-R n-1<12r时,R n-R n-1可以等于(R 2-R 1)exp ((n-1)×0.02+0.009)。在一些实施例中,当5r<R n-R n-1<11r时,R n-R n-1可以等于(R 2-R 1)exp ((n-1)×0.02+0.009)。在一些实施例中,当6r<R n-R n-1<10r时,R n-R n-1可以等于(R 2-R 1)exp ((n-1)×0.02+0.009)。在一些实 施例中,当7r<R n-R n-1<9r时,R n-R n-1可以等于(R 2-R 1)exp ((n-1)×0.02+0.009)。在一些实施例中,当7.5r<R n-R n-1<8.5r时,R n-R n-1可以等于(R 2-R 1)exp ((n-1)×0.02+0.009)
在一些实施例中,当R n-R n-1>12r时,R n-R n-1可以为12r。在一些实施例中,当R n-R n-1>13r时,R n-R n-1可以为12r。在一些实施例中,当R n-R n-1>14r时,R n-R n-1可以为12r。在一些实施例中,当R n-R n-1>15r时,R n-R n-1可以为12r。在一些实施例中,当R n-R n-1>16r时,R n-R n-1可以为12r。在一些实施例中,靠近加热单元中心区域的第一流通通道圆周1251的半径R 1可以在1mm-20mm范围内。在一些实施例中,R 1可以在2mm-19mm范围内。在一些实施例中,R 1可以在3mm-18mm范围内。在一些实施例中,R 1可以在4mm-17mm范围内。在一些实施例中,R 1可以在5mm-16mm范围内。在一些实施例中,R 1可以在6mm-15mm范围内。在一些实施例中,R 1可以在7mm-14mm范围内。在一些实施例中,R 1可以在8mm-13mm范围内。在一些实施例中,R 1可以在9mm-12mm范围内。在一些实施例中,R 1可以在10mm-11mm范围内。在一些实施例中,R 1可以为10mm。在一些实施例中,第二流通通道圆周1252的半径R 2可以在2mm-25mm范围内。在一些实施例中,R 2可以在3mm-24mm范围内。在一些实施例中,R 2可以在4mm-23mm范围内。在一些实施例中,R 2可以在5mm-22mm范围内。在一些实施例中,R 2可以在6mm-21mm范围内。在一些实施例中,R 2可以在7mm-20mm范围内。在一些实施例中,R 2可以在8mm-19mm范围内。在一些实施例中,R 2可以在9mm-18mm范围内。在一些实施例中,R 2可以在10mm-17mm范围内。在一些实施例中,R 2可以在11mm-16mm范围内。在一些实施例中,R 2可以在12mm-15mm范围内。在一些实施例中,R 2可以在13mm-14mm范围内。在一些实施例中,R 2可以为10.5mm。在一些实施例中,R 2可以为11mm。在一些实施例中,R 2可以为11.5mm。在一些实施例中,R 2可以为12mm。在一些实施例中,R 2可以为12.4mm。在一些实施例中,R 2可以为12.5mm。在一些实施例中,R 2可以为13mm。在一些实施例中,R 2可以为13.5mm。在一些实施例中,R 2可以为14mm。
在一些实施例中,加热组件120还可以包括至少一个导电电极。在一些实施例中,至少一个导电电极可以是低阻石墨电极。在一些实施例中,至少一个导电电极可以是柱形。在一些实施例中,至少一个导电电极的截面形状可以是圆形、三角形、四边形、五边形或六边形等规则形状或不规则形状。在一些实施例中,至少一个导电电极的截面形状可以相同,也可以不同。在一些实施例中,至少一个导电电极的数量可以是2个、3个、4个、5个等。
在一些实施例中,加热组件120可以包括至少两个导电电极。在一些实施例中,至少两个导电电极可以圆周排布在至少一个加热单元的边缘区域。在一些实施例中,至少两个导电电极中的一个导电电极可以固定于至少一个加热单元的中心,至少两个导电电极中的其余导电电极可以以位于至少一个加热单元中心的导电电极为中心圆周排布。在一些实施例中,至少两个导电电极可以为四个。四个导电电极可以分别为第一导电电极1242、第二导电电极1243、第三导电电极(图中未示出)和第四导电电极(图中未示出)。在一些实施例中,第一导电电极1242可以位于至少一个加热单元的中心,第二导电电极1243、第三导电电极和第四导电电极可以以第一导电电极为中心均匀圆周排布。
在一些实施例中,位于至少一个加热单元中心的导电电极(例如,第一导电电极1242)的直径可以大于圆周排布在至少一个加热单元边缘区域的导电电极的直径。在一些实施例中,位于至少一个加热单元中心的导电电极的直径可以在13mm-20mm范围内。在一些实施例中,位于至少一个加热单元中心的导电电极的直径可以在14mm-19mm范围内。在一些实施例中,位于至少一个加热单元中心的导电电极的直径可以在15mm-18mm范围内。在一些实施例中,位于至少一个加热单元中心的导电电极的直径可以在16mm-17mm范围内。
在一些实施例中,圆周排布在至少一个加热单元边缘区域的导电电极(例如,第二导电电极1243、第三导电电极和第四导电电极)的直径可以相同,也可以不同。在一些实施例中,圆周排布在至少一个加热单元边缘区域的导电电极的直径可以在5mm-13mm范围内。在一些实施例中,圆周排布在至少一个加热单元边缘区域的导电电极的直径可以在6mm-12mm范围内。在一些实施例中,圆周排布在至少一个加热单元边缘区域的导电电极的直径可以在7mm-11mm范围内。在一些实施例中,圆周排布在至少一个加热单元边缘区域的导电电极的直径可以在8mm-10mm范围内。在一些实施例中,圆周排布在至少一个加热单元边缘区域的导电电极的直径可以在8.5mm-9.5mm范围内。
生长腔体110可以设有至少两个电极插柱。在一些实施例中,至少两个电极插柱可以设置在生长腔体110底部。在一些实施例中,至少两个电极插柱可以是中空柱体,用于安装至少两个导电电极。在一些实施例中,至少两个电极插柱的材质可以是绝缘材料,用于隔离至少两个导电电极,以防止短路。在一些实施例中,至少两个电极插柱的材质可以是氧化锆。在一些实施例中,至少两个电极插柱的形状、尺寸和/或数量可以与至少两个导电电极的截面形状、截面尺寸和/或数量相同。在一些实施例中,至少两 个电极插柱可以为四个。四个电极插柱可以分别为第一电极插柱1244、第二电极插柱1245、第三电极插柱(图中未示出)和第四电极插柱(图中未示出)。
在一些实施例中,至少一个加热单元上可以设有至少两个第一电极孔。在一些实施例中,至少两个第一电极孔的形状可以是圆形、三角形、四边形、五边形或六边形等规则形状或不规则形状。在一些实施例中,至少两个第一电极孔的数量可以是1个、2个、3个、4个、5个等。在一些实施例中,至少两个第一电极孔的形状、尺寸和/或数量可以与至少两个导电电极的截面形状、截面尺寸和/或数量相同。
图16A是一些实施例所示的示例性至少一个加热单元的俯视图。图16B是另一些实施例所示的示例性至少一个加热单元的侧视图。
如图16A和图16B所示,至少两个第一电极孔的数量为四个,四个第一电极孔分别为位于至少一个加热单元中心的1个第一电极孔A 1246和圆周排布在至少一个加热单元边缘区域的3个第一电极孔B 1247。
在一些实施例中,加热组件120可以包括铜线(图中未示出)和电源(图中未示出)。至少两个导电电极可以分别通过铜线与电源连接,以使至少两个导电电极、至少一个加热单元与电源形成电流通路,用于加热至少一个加热单元。
在一些实施例中,加热组件120还可以包括至少一个导电环1241。至少一个加热单元可以通过至少一个导电电极连接到至少一个导电环1241。在一些实施例中,至少一个导电环1241可以位于生长腔体110内部的至少一个加热单元的上表面或/和下表面。至少一个导电环1241的数量与至少一个加热单元的数量可以相等,也可以不相等。在一些实施例中,至少一个导电环1241的数量是至少一个加热单元的数量的两倍。在一些实施例中,至少一个导电环1241的材质可以为石墨、钨、钼、钽或铱中的至少一种。在一些实施例中,至少一个导电环1241上除与至少一个加热单元相接触的表面外,其他表面可以涂覆耐高温的碳化物涂层。在一些实施例中,碳化物涂层可以包括但不限于碳化钽、碳化钨、碳化铌、碳化钛等。同样地,至少一个加热单元上除与至少一个导电环1241相接触的表面(例如,边缘部分)外,其他部位也可以涂覆耐高温的碳化物涂层。
在一些实施例中,至少一个导电环1241可以与生长腔体110可拆卸连接。至少一个导电环1241与生长腔体110的可拆卸连接方式可以与至少一个加热单元与生长腔体110的可拆卸连接方式相同,在此不再赘述。
至少一个导电环1241上可以设有至少一个第二电极孔1248。在一些实施例中, 至少一个第二电极孔的形状和尺寸可以与至少一个导电电极的截面形状和截面尺寸相同。在一些实施例中,至少一个第二电极孔的数量和/或排布方式可以与至少一个导电电极的数量和/或排布方式相同或不同。在一些实施例中,至少一个第二电极孔的数量可以与至少一个导电电极的数量相等。在一些实施例中,至少一个第二电极孔的数量可以比至少一个导电电极的数量少一个。
图17是一些实施例所示的示例性至少一个导电环的示意图。
如图17所示,至少一个第二电极孔1248的数量可以为三个。三个第二电极孔1248可以圆周排布在至少一个导电环1241的边缘区域。
在一些实施例中,至少两个导电电极的至少一部分可以穿过至少两个第二电极孔,并连接至少一个导电环。至少两个导电电极可以分别通过铜线与电源连接,以使至少两个导电电极、至少一个导电环1241、至少一个加热单元与电源形成电流通路,以对至少一个加热单元和至少一个导电环1241进行加热。其中,至少一个导电环1241可以用于均匀分布热量,以降低生长腔体110内部的径向温差和/或径向温度梯度。
图18是一些实施例所示的示例性晶体生长方法的流程图。
步骤1810,将籽晶和源材料置于生长腔体中生长晶体。
籽晶可以是具有与待生长的晶体相同晶向的小晶体,其可以作为生长晶体的种子。在一些实施例中,籽晶可以基于物理气相传输法(Physical Vapor Transport,PVT)、化学气相沉积法(Chemical Vapor Deposition,CVD)或提拉法等制得。在一些实施例中,籽晶可以至少通过拼接处理和缝隙生长制得。关于籽晶的制备方法的相关描述可以参见本说明书图22、图23及其相关说明,在此不再赘述。在一些实施例中,如图1所示,可以将籽晶固定在生长腔体盖111的内侧面。
源材料可以包括用于供给籽晶长大成为晶体的材料。在一些实施例中,碳化硅晶体的源材料的组分可以包括SiC。在一些实施例中,氮化铝晶体的源材料的组分可以包括AlN。在一些实施例中,源材料可以是粉末状、颗粒状和/或块体材料。在一些实施例中,块体材料的形状可以是正方体、长方体或不规则块体等。在一些实施例中,可以将源材料置于生长腔主体112内。如图1或图3或图8所示,可以将源材料置于生长腔主体112下部。如图13或图15所示,可以将源材料置于生长腔体110内部的至少一个加热单元上表面。
关于生长腔体的相关说明可以参见本说明书其他部分(例如,图1、图3)的描述,在此不再赘述。
关于将籽晶和源材料置于生长腔体中的相关说明可以参见本说明书其他部分(例如,图13、图15、图19)的描述,在此不再赘述。
关于加热组件和温度传感组件的相关说明可以参见本说明书其他部分(例如,图1-图16)的描述,在此不再赘述。
在一些实施例中,温度传感组件的安装位置可以根据待测量的生长腔体110温度分布的位置确定。在一些实施例中,温度传感组件可以位于生长腔体110的上表面,用于测量籽晶下表面或晶体生长面的温度分布。在一些实施例中,温度传感组件可以位于生长腔体110的下表面,用于测量源材料上表面的温度分布。在一些实施例中,温度传感组件还可以位于生长腔体110的外壁上,用于测量生长腔体110内外周区域的温度分布。
步骤1820,在晶体生长过程中,基于温度传感组件的信息控制加热组件,使得晶体生长时生长腔体内的径向温差不超过生长腔体内平均温度的第一预设范围。
关于控制组件、温度传感组件、温度传感组件的信息、径向温差和预设径向温差阈值的相关说明可以参见本说明书其他部分(例如,图1、图2)的描述,在此不再赘述。
在一些实施例中,生长腔体内平均温度可以包括生长腔体内籽晶或正在生长的晶体下表面的平均温度、生长腔体内源材料上表面的平均温度。在一些实施例中,生长腔体内平均温度还可以包括晶体生长温度。在一些实施例中,控制组件可以用于基于晶体生长时生长腔体内的温度分布,控制加热组件中的至少一个加热单元的至少一个参数,使得晶体生长时生长腔体内的径向温差不超过生长腔体内平均温度的第一预设范围或预设径向温差阈值。在一些实施例中,温度传感组件210可以测量生长腔体内的温度信息,并将测得的温度信息发送至控制组件230。控制组件230可以基于温度传感组件210测得的温度信息生成径向温差分布和/或径向温度梯度分布。控制组件230还可以用于根据生长腔体110的尺寸、形状和材质、籽晶的尺寸、待生长的晶体的种类和尺寸确定第一预设范围、预设径向温差阈值和/或预设径向温度梯度阈值。控制组件230可以进一步将径向温差分布中的径向温差与预设径向温差阈值进行比较,或将径向温度梯度分布中的径向温度梯度与预设径向温度梯度进行比较。若径向温差大于预设径向温差阈值,或径向温度梯度大于预设径向温度梯度阈值,在一些实施例中,如图3或图8所示,控制组件230可以提高排列在生长腔体中心区域的至少一个加热单元的加热功率。在一些实施例中,位于生长腔体中心区域的温度高于位于生长腔体外周区域的温度时,如图13 所示,可以降低通过加热单元中心区域的至少一个导电电极的电流或提高通过加热单元边沿区域的至少一个导电电极的电流。在一些实施例中,位于生长腔体中心区域的温度低于位于生长腔体外周区域的温度时,如图15所示,可以提高通过加热单元中心区域的至少一个导电电极的电流或降低通过加热单元边沿区域的至少一个导电电极的电流,以降低径向温差和/或径向温度梯度,直到径向温差不超过生长腔体内平均温度的第一预设范围或预设径向温差阈值,径向温度梯度不超过预设径向温度梯度阈值。关于温控系统的控制过程可以参见图2及其相关描述,在此不再赘述。
步骤1830、在晶体生长过程中,基于温度传感组件的信息控制加热组件,使得晶体生长时生长腔体内的轴向温度梯度维持稳定。
关于控制组件、轴向温度梯度的相关说明可以参见本说明书其他部分(例如,图1、图2)的描述,在此不再赘述。
在一些实施例中,控制组件230还可以基于晶体生长时生长腔体内的温度分布,控制加热组件220中的至少一个加热单元的至少一个参数,使得晶体生长时生长腔体内的轴向温度梯度维持稳定。在一些实施例中,控制组件230还可以基于晶体生长时生长腔体内的温度分布,控制加热组件220中的至少一个加热单元的至少一个参数,使得晶体生长时生长腔体内的轴向温度梯度维持在预设轴向温度梯度范围内。在一些实施例中,温度传感组件210可以测量生长腔体的轴向温度,并将测得的轴向温度发送至控制组件230。控制组件230可以基于温度传感组件210测得的轴向温度生成轴向温度梯度分布。控制组件230还可以用于根据生长腔体110的尺寸、形状和材质、籽晶的尺寸、待生长的晶体的种类和尺寸确定预设轴向温度梯度范围。控制组件230可以进一步将轴向温度梯度分布中的轴向温度梯度与预设轴向温度梯度范围进行比较。若轴向温度梯度小于预设轴向温度梯度范围,控制组件230可以降低排列在靠近生长腔体盖的生长腔体外周的至少一个加热单元的加热功率,以提高轴向温度梯度,直到轴向温度梯度在预设轴向温度梯度范围内。若轴向温度梯度大于预设轴向温度梯度范围,控制组件230可以提高排列在靠近生长腔体盖的生长腔体外周的至少一个加热单元的加热功率,以降低轴向温度梯度,直到轴向温度梯度在预设轴向温度梯度范围内。关于温控系统对轴向温度梯度的控制过程可以参见图2及其相关描述,在此不再赘述。
应当注意的是,上述有关流程1800的描述仅仅是为了示例和说明,而不限定本申请的适用范围。对于本领域技术人员来说,在本申请的指导下可以对流程1800进行各种修正和改变。然而,这些修正和改变仍在本申请的范围之内。例如,步骤1820和 步骤1830可以同步进行。
一些实施例还公开了一种晶体生长方法,该方法通过晶体制备装置100制备半导体晶体。为了方便,以下将以制备碳化硅单晶为例进行描述。该方法可以包括如下步骤:
步骤1:将籽晶粘接到生长腔体盖111的内侧面,以及将源材料放置到生长腔主体112中,并将粘接有籽晶的生长腔体盖111盖合于生长腔主体112的顶部。
首先,可以将粘接剂均匀覆于生长腔体盖111的内侧面上,然后将覆有粘接剂的生长腔体盖111置于加热炉中,在150-180℃温度条件下保温5h,再升温至200℃温度条件下保温7-10h,待冷却至室温将其取出。然后将籽晶置于生长腔体盖111的内侧面的正中心,将碳化硅单晶片置于籽晶上,并且将不锈钢块置于碳化硅单晶片上。之后将其置于加热炉中,在380-430℃温度条件下保温5h,待冷却至室温将其取出。
籽晶的生长面的方向为<0001>偏转4°-6°指向
Figure PCTCN2021085468-appb-000010
方向。粘接剂可以包括但不限于环氧树脂胶、AB胶、酚醛树脂胶或糖胶等。在一些实施例中,粘接剂可以是纯度为99.9%的蔗糖。不锈钢块用于给碳化硅单晶片、籽晶以及生长腔体盖111施加一定的压力,促进籽晶粘接到生长腔体盖111的内侧面。在粘接固定籽晶的过程中,由于粘接剂涂抹的不均匀、生长腔体盖内侧面加工精度较差等原因,可能导致籽晶背面与生长腔体盖111内侧面之间产生气泡或空隙,进而导致生成的晶体包含缺陷,因此,将籽晶置于生长腔体盖111的内侧面的正中心时需要避免气泡或空隙的产生。在一些实施例中,在将籽晶粘接到生长腔体盖的内侧面之前,还可以对籽晶进行清洗,以去除籽晶表面的污染物。在一些实施例中,可以用去离子水、有机溶剂等对籽晶进行清洗。
其次,可以将源材料(例如,碳化硅粉体)放置到生长腔主体112中,并且使得源材料上表面与晶体生长面之间的距离为30-50mm。在一些实施例中,源材料可以是粉末状。源材料的粒径可以为30-50μm。放置到生长腔主体112中的源材料表面需要保持平整。
在将源材料放置到生长腔主体112中后,将粘接有籽晶的生长腔体盖111盖合于生长腔主体112的顶部,形成密闭空间,以利于晶体的生长。
步骤2:在生长腔体110的外部放置第一加热组件1220。
如图3所述,加热组件可以包括第一加热组件1220和温度补偿组件1210。第一加热组件1220可以为感应线圈,位于生长腔体110的外周,用于提供晶体生长所需 要的至少部分热量。当感应线圈通入电流时,对生长腔体110进行加热,源材料(例如,碳化硅粉体)在高温条件下受热分解升华为气相组分(例如,Si 2C、SiC 2、Si),在轴向温度梯度的驱动作用下,气相组分传输至温度相对较低的籽晶表面,结晶生成晶体(例如,碳化硅晶体)。在一些实施例中,可以通过控制感应线圈在轴向上不同位置的加热功率,实现对轴向温度梯度的控制。
如果仅利用设置于生长腔体110外周的感应线圈对生长腔体110进行加热,靠近生长腔体110内壁附近的区域为高温区,靠近源材料中心附近的区域处为低温区,此时源材料覆盖区域的径向温度梯度较大,不利于源材料的升华和晶体的稳定生长。在一些实施例中,由于源材料覆盖区域的径向温度梯度较大,在靠近生长腔体110内壁附近的高温区,源材料升华产生的气相组分中的Si/C摩尔比较大,而在靠近源材料中心附近的低温区,源材料升华产生的气相组分中的Si/C摩尔比较小,使得气相组分中的Si/C摩尔比的径向分布不均匀,不利于晶体的稳定生长。另外,对于生长腔体盖111来说,靠近生长腔体盖111的外周附近的区域为高温区,靠近生长腔体盖111中心附近的区域为低温区,此时生长腔体盖111上存在较大的径向温度梯度,导致晶体生长面产生较大的热应力以及晶体生长面严重向源材料方向凸起,以及导致籽晶的固定面上形成缺陷。因此可以通过在生长腔体110的上表面和/或下表面设置温度补偿装置,来降低生长腔体盖111的径向温度梯度以及源材料覆盖区域的径向温度梯度。关于径向温度梯度的相关描述可以参见本说明书其他部分(例如,图1及其相关说明)的描述,在此不再赘述。
步骤3:将温度补偿组件1210安装到生长腔体110的上表面和/或下表面。
在一些实施例中,可以将包括至少一个固定单元的固定框架1216固定到生长腔体110的上表面或下表面,将温度补偿组件1210的至少一个加热单元1212填充固定到至少一个固定单元中。然后盖上电极固定板1215,并使至少一个第一电极1213穿过电极固定板1215上的至少一个第一孔洞1215-1,固定在至少一个加热单元1212上,同时使至少一个第二电极1211穿过电极固定板1215上的至少一个第二孔洞1215-2,固定在生长腔体110的上表面和/或下表面。进一步地,再将至少一个第一电极1213和至少一个第二电极1211的上端分别连接铜线1214,将铜线1214与电源相连。
在一些实施例中,可以根据生长腔体110上表面或下表面的尺寸、待生长的晶体类型、籽晶的尺寸或形状、生长腔体110内的温度(轴向温度梯度和/或径向温度梯度)分布等,确定至少一个加热单元1212的数量、尺寸、形状、排布等。在一些实施例中,生长4英寸-10英寸的碳化硅晶体时,可以在生长腔体盖的上表面排布10-20个 加热单元1212。在一些实施例中,至少一个加热单元1212的厚度可以为5mm-10mm。在一些实施例中,至少一个加热单元1212的厚度可以为6mm-9mm。在一些实施例中,至少一个加热单元1212的厚度可以为7mm-8mm。以至少一个加热单元1212的形状为六边形为例进行说明,至少一个加热单元1212的边长可以为10-30mm。在一些实施例中,至少一个加热单元1212的边长可以为12-28mm。在一些实施例中,至少一个加热单元1212的边长可以为14-26mm。在一些实施例中,至少一个加热单元1212的边长可以为16-24mm。在一些实施例中,至少一个加热单元1212的边长可以为18-22mm。在一些实施例中,至少一个加热单元1212的边长可以为20-21mm。
步骤4:将至少一个温度传感单元通过至少两个测温孔1215-3与加热单元132和生长腔体110上表面或下表面外周连接。至少两个测温孔1215-3位于径向相邻的第一孔洞1215-1之间或至少一个第二孔洞136-3设定范围内。
在一些实施例中,至少一个温度传感单元可以穿过电极固定板1215上的至少两个测温孔1215-3,测量至少一个加热单元1212处的第一温度以及生长腔体110上表面或下表面外周处的第二温度,从而获得生长腔体110上表面或下表面的温度分布。
步骤5:向生长腔体110中通入惰性气体(例如,氩气),控制压力保持在5-30Torr,以及,通过第一加热组件1220以及温度补偿组件1210对生长腔体110加热。
步骤6:通过至少一个温度传感单元测量至少一个加热单元1212处的第一温度和生长腔体110上表面或下表面外周处的第二温度,并至少基于第一温度和第二温度,调节至少一个加热单元1212的参数(例如,至少一个加热单元1212的数量、形状、尺寸、排布、电流、加热功率),使得生长腔体110上表面或下表面的径向温度梯度小于预设阈值,促进晶体均匀生长。关于基于第一温度和第二温度,调节至少一个加热单元1212的参数的更多描述可见本说明书其他位置(例如,图6、图7及其描述)。
在一些实施例中,晶体生长过程中,源材料升华时保持生长腔体110的温度范围为2200-2400℃,源材料升华过程的持续时间可以为40-60小时。在一些实施例中,晶体生长过程中,保持生长腔体盖111的温度范围为2100℃-2350℃,且位于生长腔体110的上表面处的至少一个加热单元1212处的第一温度小于生长腔体盖111外周处的第二温度,温度差值保持在10K以内。
以上制备过程仅作为示例,其中涉及的工艺参数在不同实施例中可以不同,上述步骤的先后也并非唯一,在不同实施例中也可以调整步骤间的顺序,甚至省略某一或多个步骤。不应将上述示例理解为对本申请保护范围的限制。
图19是另一些实施例所示的示例性晶体生长方法的流程图。
一些实施例还公开了一种晶体生长方法,该方法通过晶体制备装置100制备半导体晶体。为了方便,以下将以制备碳化硅单晶为例进行描述。该方法可以包括如下步骤:
步骤1910:将籽晶置于生长腔体的顶部,将源材料置于生长腔体的底部。
将籽晶粘接到生长腔体盖111的内侧面,以及将源材料放置到生长腔主体112中,并将粘接有籽晶的生长腔体盖111盖合于生长腔主体112的顶部。
首先,可以将粘接剂均匀覆于生长腔体盖111的内侧面上,然后将覆有粘接剂的生长腔体盖111置于加热炉中,在150-180℃温度条件下保温5h,再升温至200℃温度条件下保温7-10h,待冷却至室温将其取出。然后将籽晶置于生长腔体盖111的内侧面的正中心,将碳化硅单晶片置于籽晶上,并且将不锈钢块置于碳化硅单晶片上。之后将其置于加热炉中,在380-430℃温度条件下保温5h,待冷却至室温将其取出。
其中,籽晶的尺寸可以是4英寸、8英寸等。籽晶的类型可以是4H-SiC籽晶、6H-SiC籽晶等。籽晶的生长面的方向为<0001>偏转4°-6°指向
Figure PCTCN2021085468-appb-000011
方向。粘接剂可以包括但不限于环氧树脂胶、AB胶、酚醛树脂胶或糖胶等。优选地,粘接剂可以是纯度为99.9%的蔗糖。不锈钢块用于给碳化硅单晶片、籽晶以及生长腔体盖111施加一定的压力,促进籽晶粘接到生长腔体盖111的内侧面。在粘接固定籽晶的过程中,由于粘接剂涂抹的不均匀、生长腔体盖内侧面加工精度较差等原因,可能导致籽晶背面与生长腔体盖111内侧面之间产生气泡或空隙,进而导致生成的晶体包含缺陷,因此,将籽晶置于生长腔体盖111的内侧面的正中心时需要避免气泡或空隙的产生。在一些实施例中,在将籽晶粘接到生长腔体盖的内侧面之前,还可以对籽晶进行清洗,以去除籽晶表面的污染物。在一些实施例中,可以用去离子水、有机溶剂等对籽晶进行清洗。
其次,可以将源材料(例如,碳化硅粉体)放置到生长腔主体112中,并且使得源材料上表面与晶体生长面之间的距离为30-100mm。源材料的粒径可以为30-50μm。放置到生长腔主体112中的源材料表面需要保持平整。
在将源材料放置到生长腔主体112中后,将粘接有籽晶的生长腔体盖111盖合于生长腔主体112的顶部,形成密闭空间,以利于晶体的生长。
步骤1920:将温度补偿组件1210安装到生长腔体110的上表面和/或下表面。在一些实施例中,分别将第一温度补偿组件1210-1和第二温度补偿组件1210-2安装到 生长腔体110的上表面和下表面。
首先,将第一温度补偿组件1210-1固定到生长腔体110的上表面,使第一温度补偿组件1210-1的下表面外周区域与生长腔体110的上表面外周区域相接触,从而可以将生长腔体110的上表面外周区域处的热量传导到生长腔体110的上表面中心区域。然后,将第二温度补偿组件1210-2固定到生长腔体110的下表面,使第二温度补偿组件1210-2的上表面外周区域与生长腔体110的下表面外周区域相接触,从而可以将生长腔体110的下表面外周区域处的热量传导到生长腔体110的下表面中心区域。第一温度补偿组件1210-1或第二温度补偿组件1210-2可以是高热导率石墨体。第一温度补偿组件1210-1或第二温度补偿组件1210-2可以是圆盘状。
步骤1930:将加热组件置于生长腔体110的外部。
首先,在生长腔体110的外部放置电阻式发热体,使生长腔体110位于电阻式发热体内的中央位置。电阻式发热体至少包括第一加热模块1230-1、第二加热模块1230-2和第三加热模块1230-3,其中,第一加热模块1230-1用于加热生长腔体110的结晶区域,第二加热模块1230-2用于加热生长腔体110的结晶区域与源材料区域之间的气相传输区域,第三加热模块1230-3用于加热生长腔体110的源材料区域。每个加热模块的加热功率可以单独控制。电阻式发热体可以是圆环状的高阻石墨发热体。
然后,在电阻式发热体的外部设置电极固定板1215,使至少一个第一电极1213可以穿过电极固定板1215上至少两个孔洞中的一个孔洞,固定在电阻式发热体的外侧,同时使至少一个第二电极1211可以穿过电极固定板1215上至少两个孔洞中的另一个孔洞,固定在电阻式发热体的外侧。再将至少一个第一电极1213和至少一个第二电极1211的上端分别连接水冷铜线,将水冷铜线与电源相连。第一电极1213和第二电极1211可以是低阻石墨电极。电极固定板1215可以是氧化锆陶瓷板。
在一些实施例中,该方法还可以包括将保温层围绕设置于加热组件的外侧。
将保温层围绕设置于加热组件的外侧,用于对生长腔体110和/或加热组件进行保温。保温层可以包括石墨毡或氧化锆陶瓷。根据生长腔体的尺寸、待生长的晶体类型、电阻式发热体的加热功率、晶体生长过程中与生长腔体110相关的温度信息等调节保温层的厚度,以及调节保温层与加热组件之间的间隔距离。
步骤1940:通过加热组件和温度补偿组件对生长腔体加热。向生长腔体110中通入惰性气体,控制压力保持在5-30Torr,以及,通过加热组件和温度补偿组件1210对生长腔体110加热。
在对生长腔体110进行加热前,可以向生长腔体110中通入惰性气体(例如,氩气),以排除生长腔体110内的空气。然后,通过加热组件和温度补偿组件1210对生长腔体110进行加热。
步骤1950:在晶体生长过程中,基于至少一个晶体生长参数(例如,源材料的量、晶体生长尺寸、晶体生长界面与源材料间的高度差),通过控制组件调节加热组件和/或温度补偿组件1210的加热功率,使得晶体生长界面与源材料160间的温场保持基本稳定。
在一些实施例中,晶体生长过程中,控制第一温度补偿组件1210-1的加热功率(例如,平均加热功率)<第一加热模块1230-1的加热功率(例如,平均加热功率)<第二加热模块1230-2的加热功率(例如,平均加热功率)<第三加热模块1230-3的加热功率(例如,平均加热功率)=第二温度补偿组件1210-2的加热功率(例如,平均加热功率)。随着晶体生长,源材料160不断被消耗,晶体生长界面与源材料160间的温场下移,为了使晶体生长界面与源材料160间的温场保持基本稳定,需要对第一加热模块1230-1的加热功率、第二加热模块1230-2的加热功率和第三加热模块1230-3的加热功率进行调整,从而保持温场下移速度与晶体生长速率(例如,0.8-2mm/h)接近。此外,随着晶体生长,为了维持温度梯度的稳定,还需要降低第一温度补偿组件1210-1的加热功率,在一些实施例中,降低的加热功率可以为0.1%-0.5%。关于晶体生长过程中,通过控制组件调节加热组件和/或温度补偿组件1210的加热功率的更多描述可见本说明书其他位置(例如,图9及其描述)。
在一些实施例中,源材料升华时保持生长腔体110的温度范围为2200-2400℃,源材料升华过程的持续时间可以为40-60小时。在一些实施例中,晶体生长过程中,控制生长腔体110内的压力为5-30Torr。
应当注意的是,上述有关流程1900的描述仅仅是为了示例和说明,而不限定本申请的适用范围。对于本领域技术人员来说,在本申请的指导下可以对流程1900进行各种修正和改变。然而,这些修正和改变仍在本申请的范围之内。以上制备过程仅作为示例,其中涉及的工艺参数在不同实施例中可以不同,上述步骤的先后也并非唯一,在不同实施例中也可以调整步骤间的顺序,甚至省略某一或多个步骤。不应将上述示例理解为对本申请保护范围的限制。
图20是另一些实施例所示的示例性晶体生长方法的流程图。
实施例还公开了一种晶体生长方法,该方法通过晶体制备装置100制备半导体 晶体。为了方便,以下将以制备碳化硅单晶为例进行描述。如图20所示,该方法可以包括如下步骤:
步骤2010,制备加热组件。
在一些实施例中,如图13所示,加热组件可以是位于生长腔体110内部的第二加热组件1240。在一些实施例中,如图15所示,加热组件可以包括位于生长腔体110外部的第一加热组件1220和位于生长腔体110内部的第二加热组件1240。关于加热组件的相关描述可以参见本说明书图13-图16B的相关说明,在此不再赘述。
在一些实施例中,制备加热组件可以包括在第二加热组件1240的加热单元上设置至少一个流通通道1250。在一些实施例中,可以根据制备的晶体种类、晶体尺寸、生长腔体110的尺寸等确定与至少一个流通通道1250相关的信息。在一些实施例中,与至少一个流通通道1250相关的信息可以包括但不限于至少一个流通通道1250开口的密度、至少一个流通通道1250的半径、至少一个流通通道1250的形状、流通通道圆周的数量、流通通道圆周的半径、不同流通通道圆周上的相邻两个流通通道的中心间距等。关于至少一个流通通道1250的相关描述可以参见图13-图15及其相关说明,在此不再赘述。
步骤2020,安装加热组件,并将籽晶和源材料置于生长腔体中。
在一些实施例中,籽晶可以是直径在70mm-150mm范围内的4H-SiC或6H-SiC。在一些实施例中,籽晶的直径可以在80mm-140mm范围内。在一些实施例中,籽晶的直径可以在90mm-130mm范围内。在一些实施例中,籽晶的直径可以在100mm-120mm范围内。在一些实施例中,籽晶的直径可以在105mm-115mm范围内。在一些实施例中,籽晶的直径可以在70mm-150mm范围内。在一些实施例中,籽晶生长面的方向可以为<0001>偏转4°-8°指向
Figure PCTCN2021085468-appb-000012
方向。
在一些实施例中,源材料的纯度可以大于等于99.99%。在一些实施例中,源材料的纯度可以大于等于99.999%。在一些实施例中,当源材料为粉末状时,源材料的粒径可以在0.1mm-0.5mm范围内。在一些实施例中,源材料的粒径可以在0.15mm-0.45mm范围内。在一些实施例中,源材料的粒径可以在0.2mm-0.4mm范围内。在一些实施例中,源材料的粒径可以在0.25mm-0.35mm范围内。
关于籽晶、源材料和生长腔体的更多说明可以参见本说明书其他部分(例如,图19)的描述。
安装加热组件中的第二加热组件1240时,可以将至少两个导电电极分别穿过并固定在生长腔体110底部的至少两个电极插柱上。在一些实施例中,至少两个电极插柱内可以设有内螺纹,至少两个导电电极外部可以设有外螺纹,至少两个电极插柱可以通过螺纹连接固定至少两个导电电极。然后,可以将部分源材料放置在生长腔体110底部。再使第二加热组件1240中一个加热单元的至少两个第一电极孔穿过至少两个导电电极,并将加热单元通过加热单元上的第二连接件与生长腔体110内部的第一连接件固定在生长腔体110内部。再将部分源材料放置在该加热单元上表面。依此分别安装第二加热组件1240的其他加热单元,并放置其余源材料。再将粘接有籽晶的生长腔体盖111盖合于生长腔主体112的顶部。然后将至少两个导电电极与铜线连接,将铜线与电源连接,完成第二加热组件1240的安装及源材料和籽晶的放置。关于将籽晶粘接在生长腔体盖111上的具体内容可以参见本说明书其他部分(例如,图19)的相关描述,在此不做赘述。
在一些实施例中,还可以在第二加热组件1240的至少一个加热单元的上表面和/或下表面安装至少一个导电环1241。在一些实施例中,可以将至少一个导电环1241的至少两个第二电极孔穿过至少两个导电电极,并将至少一个导电环1241通过导电环上的第三连接件与生长腔体110内部的第四连接件固定在生长腔体110内部。在一些实施例中,当安装至少一个导电环1241时,第二加热组件1240的至少一个加热单元可以与生长腔体110不固定连接。第二加热组件1240的至少一个加热单元可以放置在至少一个导电环1241上。
在一些实施例中,还可以将至少一个加热单元的上表面和下表面中未与至少一个导电环1241接触的部分涂覆耐高温的碳化物涂层,以防止在晶体生长过程中,至少一个加热单元污染源材料的气相组分,进而导致生长的晶体纯度不高而影响质量。
在一些实施例中,生长腔体110底部的源材料装填高度可以指平铺在生长腔体110底部的源材料的高度。在一些实施例中,加热单元上的源材料装填高度可以指平铺在该加热单元上的源材料高度。在一些实施例中,源材料总装填高度可以指平铺在生长腔体110底部的源材料高度与平铺在第二加热组件1240的加热单元上的源材料高度之和。
在一些实施例中,还可以将第一加热组件1220(例如,感应线圈)安装(例如,围设)在生长腔体110外部。
生长腔体底部的源材料装填高度可以指生长腔体底盖上表面与放置在生长腔体 底盖上的源材料上表面之间的距离。生长腔体底部的源材料装填高度太高会导致源材料无法充分受热,且源材料受热升华产生的气相组分无法有效通过生长腔体内加热单元上的流通通道,进一步导致源材料利用率低。生长腔体底部的源材料装填高度太低,会导致源材料装填量少,影响晶体生长的尺寸。因此,需要将生长腔体底部的源材料装填高度控制在预设高度范围内。在一些实施例中,生长腔体110底部的源材料装填高度可以是源材料总装填高度的0.1-0.3。在一些实施例中,生长腔体110底部的源材料装填高度可以是源材料总装填高度的0.12-0.28。在一些实施例中,生长腔体110底部的源材料装填高度可以是源材料总装填高度的0.14-0.26。在一些实施例中,生长腔体110底部的源材料装填高度可以是源材料总装填高度的0.16-0.24。在一些实施例中,生长腔体110底部的源材料装填高度可以是源材料总装填高度的0.18-0.22。在一些实施例中,生长腔体110底部的源材料装填高度可以是源材料总装填高度的0.19-0.21。在一些实施例中,生长腔体110底部的源材料装填高度可以是源材料总装填高度的0.2。
加热单元上表面的源材料装填高度可以指加热单元上表面与放置在加热单元上表面的源材料上表面之间的距离。加热单元上表面的源材料装填高度太高,加热单元上表面的源材料受热会不均匀,且源材料受热产生的气相组分无法有效通过生长腔体内加热单元上的流通通道,进一步导致源材料利用率低。加热单元上表面的源材料装填高度太低,会导致源材料装填量少,影响晶体生长的尺寸。因此,需要将加热单元上表面的源材料装填高度控制在预设高度范围内。在一些实施例中,加热单元上的源材料装填高度可以是源材料总装填高度的0.2-0.4。在一些实施例中,加热单元上的源材料装填高度可以是源材料总装填高度的0.22-0.38。在一些实施例中,加热单元上的源材料装填高度可以是源材料总装填高度的0.24-0.36。在一些实施例中,加热单元上的源材料装填高度可以是源材料总装填高度的0.26-0.34。在一些实施例中,加热单元上的源材料装填高度可以是源材料总装填高度的0.28-0.32。在一些实施例中,加热单元上的源材料装填高度可以是源材料总装填高度的0.29-0.31。在一些实施例中,加热单元上的源材料装填高度可以是源材料总装填高度的0.3。
在一些实施例中,第二加热组件1240的最上层加热单元(与生长腔体盖111距离最近的加热单元)上可以不放置源材料。在一些实施例中,第二加热组件1240的最上层加热单元上可以放置源材料。最上层加热单元上的源材料上表面与籽晶生长面的距离太近,部分源材料会分散在籽晶生长面上,进而导致产生晶体缺陷。最上层加热单元上的源材料上表面与籽晶生长面的距离太远,源材料升华产生的气相组分的运输距离太 远,会影响晶体生长速率。因此,需要将最上层加热单元上的源材料上表面与籽晶生长面的距离控制在预设距离范围内。在一些实施例中,最上层加热单元上的源材料上表面与籽晶生长面的距离可以在30mm-50mm范围内。在一些实施例中,最上层加热单元上的源材料上表面与籽晶生长面的距离可以在32mm-48mm范围内。在一些实施例中,最上层加热单元上的源材料上表面与籽晶生长面的距离可以在34mm-46mm范围内。在一些实施例中,最上层加热单元上的源材料上表面与籽晶生长面的距离可以在36mm-44mm范围内。在一些实施例中,最上层加热单元上的源材料上表面与籽晶生长面的距离可以在38mm-42mm范围内。在一些实施例中,最上层加热单元上的源材料上表面与籽晶生长面的距离可以在39mm-41mm范围内。在一些实施例中,最上层加热单元上的源材料上表面与籽晶生长面的距离可以为40mm。
步骤2030,启动晶体制备装置生长晶体。
在一些实施例中,启动晶体制备装置包括但不限于对生长腔体进行真空处理、启动加热组件(例如,第二加热组件1240、第一加热组件1220和第二加热组件1240)进行加热处理、向生长腔体内通入惰性气体进行压力维持处理。
在一些实施例中,当加热组件为第二加热组件1240(如图13所示的晶体制备装置)时,步骤2030可以包括如下操作:对生长腔体110进行抽真空处理,使生长腔体110内的压强降低至1×10 -5Pa-1×10 -3Pa。然后将至少两个导电电极通电,启动第二加热组件1240进行加热,使生长腔体盖111上探测到的温度在900℃-1200℃范围内。继续对生长腔体110进行抽真空处理,并恒功率运行20min-120min。然后向生长腔体110通入惰性气体(例如,氩气)至大气压强。再提高第二加热组件1240的加热功率,使生长腔体盖111上探测到的温度在1900℃-2100℃范围内,并恒功率运行20min-80min。再次对生长腔体110进行抽真空处理,并以2L/min-5L/min速率向生长腔体110中通入惰性气体(例如,氩气)至生长腔体110内压强在5Torr-30Torr范围内。
在一些实施例中,当加热组件为第一加热组件1220和第二加热组件1240(如图15所示的晶体制备装置)时,步骤2030可以包括如下操作:对生长腔体110进行抽真空处理,使生长腔体110内的压强降低至1×10 -5Pa-1×10 -3Pa。然后启动第一加热组件1220进行加热处理,使生长腔体盖111上探测到的温度在900℃-1200℃范围内。再对生长腔体进行抽真空处理,并恒功率运行20min-120min。然后向生长腔体110通入惰性气体(例如,氩气)至大气压强。继续采用第一加热组件1220进行加热处理,使生长腔体盖111上探测到的温度在1900℃-2100℃范围内,并恒功率运行20min-80min。 保持第一加热组件1220恒功率运行。再启动第二加热组件1240进行加热,使生长腔体盖111上探测到的温度在2200℃-2400℃范围内。再次对生长腔体110进行抽真空处理,并以2L/min-5L/min速率向生长腔体110中通入惰性气体(例如,氩气)至生长腔体110内压强在5Torr-30Torr范围内。
步骤2040,在晶体生长过程中,基于温度传感组件获得的晶体生长时生长腔体内的温度控制加热组件,使得晶体生长时生长腔体内的径向温差不超过生长腔体内平均温度的第一预设范围。
关于温度传感组件、控制组件、温度分布、径向温差、第一预设范围、预设径向温差阈值和步骤2040的控制过程的相关说明可以参见本说明书其他部分(例如,图1、图2、图18)的描述,在此不再赘述。
步骤2050,在晶体生长过程中,基于温度传感组件获得的晶体生长时生长腔体内的温度控制加热组件,使得晶体生长时生长腔体内的轴向温度梯度维持稳定。
关于温度传感组件、控制组件、温度分布、轴向温度梯度和步骤2050的控制过程的相关说明可以参见本说明书其他部分(例如,图1、图2、图18)的描述,在此不再赘述。
应当注意的是,上述有关流程2000的描述仅仅是为了示例和说明,而不限定本申请的适用范围。对于本领域技术人员来说,在本申请的指导下可以对流程2000进行各种修正和改变。然而,这些修正和改变仍在本申请的范围之内。例如,步骤2040和步骤2050可以同步进行。以上制备过程仅作为示例,其中涉及的工艺参数在不同实施例中可以不同,上述步骤的先后也并非唯一,在不同实施例中也可以调整步骤间的顺序,甚至省略某一或多个步骤。不应将上述示例理解为对本申请保护范围的限制。
本实施例采用如图13所示的晶体制备装置,以纯度大于99.999%的碳化硅粉末作为源材料制备碳化硅晶体。加热组件为第二加热组件1240,包括至少一个加热单元。在本实施例中,加热单元可以称为加热盘。制备过程可以包括如下步骤:S1、选取内径为100mm-300mm、高度与内径的差值小于80mm、底部厚度为40-100mm的石墨坩埚作为生长腔体110。
选取厚度为5mm-10mm、直径为50mm-300mm的加热盘。在每个加热盘上钻得多个流通通道,流通通道的半径为0.2mm-1mm。多个流通通道可以以加热盘的中心为圆心排布为10-30个流通通道圆周。相同流通通道圆周上的相邻流通通道的中心间距为1mm-5mm。假设两个相邻排布的流通通道圆周的半径分别为R n和R n-1,则R n-R n-1=(R 2- R 1)exp (-(n-1)×0.015),其中,n为不小于2的整数,R 1在1mm-20mm范围内,R 2-R 1=1mm-10mm。第n个流通通道圆周与第(n-1)个流通通道圆周的半径差可以表示为:R n-R n- 1=1mm-5mm。
在每个加热盘上分别钻1个第一电极孔A和至少两个第一电极孔B(例如,三个第一电极孔B)。第一电极孔A位于加热盘的中心,至少两个第一电极孔B以第一电极孔A为圆心圆周排布在加热盘的边缘区域。加工完成后的加热盘如图16A所示。第一电极孔A的直径为10mm-20mm,第一电极孔B的直径为2mm-10mm。
选取厚度为5mm-15mm、外径为100mm-300mm、内径为110mm-280mm的导电环。在导电环上钻取第二电极孔,如图17所示。导电环上的第二电极孔与加热盘上的第一电极孔B的直径相适配。
S2、将第一导电电极1242穿过坩埚底部的第一电极插柱1244,并固定;将第二导电电极1243穿过坩埚底部的第二电极插柱1245,并固定。同样将第三导电电极和第四导电电极(图中未示出)分别穿过坩埚底部的第三电极插柱和第四电极插柱(图中未示出),并固定。
在石墨坩埚底部铺装第一层源材料,第一层源材料的装填高度为2mm-10mm。
S3、将导电环套在第二导电电极、第三导电电极和第四导电电极上,并将导电环固定于碳化硅粉末的上方。将加热盘穿过第一导电电极1242、第二导电电极1243、第三导电电极和第四导电电极,并放置在导电环上。再将另一个导电环固定在加热盘上方,使加热盘固定且与第一导电电极1242、第二导电电极1243、第三导电电极和第四导电电极接触良好。在加热盘上表面铺装第二层源材料,第二层源材料的装填高度为5mm-20mm。
S4、重复步骤S3。第三层源材料、第四层源材料和第五层源材料的装填高度分别为10mm-30mm、10mm-30mm、3mm-25mm,并使第五层源材料上表面与籽晶生长面的距离为20mm-40mm。
S5、将直径为100mm-200mm、厚度为0.4mm-2mm的6H-SiC籽晶粘接固定在坩埚盖上。籽晶生长面的方向为[0001]偏转1°-10°指向
Figure PCTCN2021085468-appb-000013
方向。将粘接有籽晶的坩埚盖密封装配于坩埚主体上,将坩埚放入温场中。
S6、连接各导电电极的水冷铜线,同时将铜线引至温场之外,并与直流电源连接。将第一导电电极1242通过铜线接电源正极,将第二导电电极1243、第三导电电极 和第四导电电极通过铜线接电源负极。
S7、封闭生长腔体110,对生长腔体110进行抽真空处理,使生长腔体110压强降低至1×10 -5Pa-1×10 -3Pa。然后启动加热盘电源,使加热盘升温加热,直到测温传感组件测得坩埚盖上温度达到900℃-1400℃。继续抽真空,并恒功率运行20min-200min。然后向生长腔体110通入氩气至大气压强。
S8、继续加热,直到测温传感组件测得坩埚盖上温度达到2000℃-2300℃。控制组件调整加热盘的加热功率,使测温传感组件探测到坩埚盖上温度维持在2000℃2300℃,稳定运行。再次对生长腔体110进行抽真空处理,并以2L/min-5L/min的速率向生长腔体110中通入氩气,使生长腔体110压强保持在5Torr-30Torr。
S9、晶体开始生长,生长时间为40小时-60小时。生长腔体110缓慢冷却30-60小时后,取出碳化硅晶体和坩埚。
制得的碳化硅晶体生长面处直径为154mm,生长面凸起高度为7.1mm。对制得的碳化硅晶体进行切割,取籽晶面以上,沿生长方向3mm处的晶片,对晶片进行研磨抛光,采用光学显微镜观察,统计得到碳包裹物颗粒的密度为4.9个/cm 2
图21是一些实施例所示的示例性制得的晶体的示意图。如图21所示,晶体生长面可以表示为c面,基体面为d面。生长面凸起高度表示生长面的最高点与基体面的距离H。
本实施例采用如图15所示的晶体制备装置,以纯度大于99.999%的碳化硅粉末作为源材料制备碳化硅晶体,加热组件包括第一加热组件1220和第二加热组件1240。第一加热组件1220采用感应线圈,环绕设置于生长腔体110外周。第二加热组件1240位于生长腔体110内部,包括至少一个加热单元。在本实施例中,加热单元可以称为加热盘。制备过程可以包括如下步骤:S1、选取内径为100-300mm、高度与内径的差值不超过内径的50%、底部厚度不超过内径的40%的石墨坩埚作为生长腔体110。
选取厚度为4mm-12mm、直径为50mm-300mm的加热盘。在每个加热盘上钻得多个流通通道,流通通道的半径为0.2mm-1mm。多个流通通道可以以加热盘的中心为圆心排布为18-30个流通通道圆周。相同流通通道圆周上的相邻流通通道的中心间距为1mm-2mm。假设两个相邻排布的流通通道圆周的半径分别为R n和R n-1,则R n-R n-1=(R 2-R 1)exp ((n-1)×0.02+0.009),其中,n为不小于2的整数,R 1在5mm-20mm范围内,R 2与R 1的差值在1mm-4mm范围内。第n个流通通道圆周与第(n-1)个流通通道圆周的半径差可以表示为:R 25-R 24=2mm-6mm。
在每个加热盘上分别钻1个第一电极孔A和至少两个第一电极孔B(例如,三个第一电极孔B)。第一电极孔A位于加热盘的中心,三个第一电极孔B以第一电极孔A为圆心圆周排布在加热盘的边缘区域。加工完成后的加热盘如图16A所示。第一电极孔A的直径在10mm-20mm范围内,第一电极孔B的直径在4mm-15mm范围内。
选取厚度为2mm-20mm、外径为100mm-300mm、内径为120mm-280mm的导电环。在导电环上钻取第二电极孔,如图17所示。导电环上的第二电极孔与加热盘上的第一电极孔B的直径相适配。
S2、将第一导电电极1242穿过坩埚底部的第一电极插柱1244,并固定;将第二导电电极1243穿过坩埚底部的第二电极插柱1245,并固定。同样将第三导电电极和第四导电电极(图中未示出)分别穿过坩埚底部的第三电极插柱和第四电极插柱(图中未示出),并固定。
在石墨坩埚底部铺装第一层源材料,第一层源材料的装填高度为10mm-20mm。
S3、将导电环套在第二导电电极、第三导电电极和第四导电电极上,并将导电环固定于碳化硅粉末的上方。将加热盘穿过第一导电电极1242、第二导电电极1243、第三导电电极和第四导电电极,并放置在导电环上。再将另一个导电环固定在加热盘上方,使加热盘固定且与第一导电电极1242、第二导电电极1243、第三导电电极和第四导电电极接触良好。在加热盘上表面铺装第二层源材料,第二层源材料的装填高度为20mm-30mm。
S4、重复步骤S3。第三层源材料和第四层源材料的装填高度分别为20mm-30mm、10mm-20mm,并使第四层源材料上表面与籽晶生长面的距离为30mm-60mm。
S5、将直径为100mm-200mm、厚度为0.5mm-2mm的4H-SiC籽晶粘接固定在坩埚盖上。籽晶生长面的方向为
Figure PCTCN2021085468-appb-000014
偏转2°-8°指向
Figure PCTCN2021085468-appb-000015
方向。将粘接有籽晶的坩埚盖密封装配于坩埚主体上,将坩埚放入温场中。
S6、连接各导电电极的水冷铜线,同时将铜线引至温场之外,并与直流电源连接。将第一导电电极1242通过铜线接电源正极,将第二导电电极1243、第三导电电极和第四导电电极通过铜线接电源负极。
S7、封闭生长腔体110,对生长腔体110进行抽真空处理,使生长腔体110压强降低至1×10 -5Pa-1×10 -3Pa。然后启动感应线圈的电源,使感应线圈加热,直到测温传感组件测得坩埚盖上温度达到1000℃-1500℃。继续抽真空,并恒功率运行20min- 120min。然后向生长腔体110通入氩气至大气压强。
S8、继续采用感应线圈加热,直到测温传感组件测得坩埚盖上温度达到1800℃2100℃,控制组件控制感应线圈继续恒功率运行20min-80min。
同时控制组件控制第二加热组件1240加热,直到测温传感组件测得坩埚盖上温度达到2200℃-2300℃。再次对生长腔体110进行抽真空处理,并以2L/min-5L/min的速率向生长腔体110中通入氩气,使生长腔体110压强保持在5-30Torr。
S9、晶体开始生长,生长时间为40-60小时。生长腔体110缓慢冷却40-60小时后,取出碳化硅晶体和坩埚。
制得的碳化硅晶体生长面处直径为154mm,生长面凸起高度为7.5mm。对制得的碳化硅晶体进行切割,取籽晶面以上,沿生长方向3mm处的晶片,对晶片进行研磨抛光,采用光学显微镜观察,统计得到碳包裹物颗粒的密度为4.1个/cm 2
上述实施例1-实施例3采用第二加热组件单独加热和第一加热组件与第二加热组件共同加热,可以对径向温度进行补偿。在一些实施例中,可以降低径向温差和/或径向温度梯度。第二加热组件中的加热单元上的流通通道可以阻止源材料石墨化的碳颗粒向上运动,进而减少晶体中碳包裹物微管等缺陷,提高晶体质量。同时,采用第二加热组件加热时,可以将源材料分布在第二加热组件的不同高度的加热单元上,对源材料进行多层分段加热,可以使源材料加热更均匀更充分,不仅可以提高源材料的利用率,还可以减少源材料的碳化,进一步提高晶体质量。在一些实施例中,可以使制得的晶体生长面较平坦,凸起程度低(如,对于生长面直径为100mm-200mm的晶体,生长面凸起高度为5mm-7.5mm),且晶体中碳包裹物颗粒的密度低(如,碳包裹物颗粒的密度为3个/cm 2-5个/cm 2)。
图22是一些实施例所示的示例性籽晶制备方法的流程图。
图23是一些实施例所示的示例性籽晶制备过程的示意图。
步骤2210,对多个待扩径六方晶型籽晶分别进行第一切割,得到切割面为相同晶面族的多个正六边形六方晶型籽晶。
六方晶型籽晶可以指在具有高次轴的主轴方向上存在六重轴或六重反轴特征对称元素的籽晶。在一些实施例中,待扩径六方晶型籽晶可以指计划进行扩大直径处理的六方晶型籽晶。如图23所示,待扩径六方晶型籽晶可以表示为2310。在一些实施例中,待扩径六方晶型籽晶的直径可以小于8英寸。在一些实施例中,待扩径六方晶型籽晶的厚度可以在100μm-500μm范围内。在一些实施例中,待扩径六方晶型籽晶可以基于物 理气相传输法(Physical Vapor Transport,PVT)、化学气相沉积法(Chemical Vapor Deposition,CVD)或提拉法等制得。在一些实施例中,六方晶型籽晶可以为4H-SiC或6H-SiC。
在一些实施例中,第一切割可以指沿设定切割方向将待扩径六方晶型籽晶切割成具有设定第一尺寸(例如,4英寸或6英寸)和设定第一形状(例如,正六边形)的籽晶。在一些实施例中,设定切割方向可以是垂直于籽晶(0001)面的方向。在一些实施例中,切割面可以指籽晶经过第一切割后形成的新的表面。在一些实施例中,晶面族可以指晶体中原子、离子或分子排列完全相同的所有晶面。在一些实施例中,对多个待扩径六方晶型籽晶分别进行垂直于(0001)面切割,可以得到切割面为相同晶面族的多个正六边形六方晶型籽晶。在一些实施例中,晶面族可以为
Figure PCTCN2021085468-appb-000016
Figure PCTCN2021085468-appb-000017
如图23所示,进行第一切割后,可以得到晶面族为
Figure PCTCN2021085468-appb-000018
的正六边形六方晶型籽晶2321和/或晶面族为
Figure PCTCN2021085468-appb-000019
的正六边形六方晶型籽晶2322。
在一些实施例中,对多个待扩径六方晶型籽晶分别进行第一切割之前,还可以对多个待扩径六方晶型籽晶分别进行抛光处理(例如,双面抛光)。通过抛光处理可以去除待扩径六方晶型籽晶表面的划痕,使其表面平坦,以便于后续处理。在一些实施例中,可以先对待扩径六方晶型籽晶的
Figure PCTCN2021085468-appb-000020
面进行抛光处理,然后对(0001)面进行抛光处理。在一些实施例中,进行抛光处理后的待扩径六方晶型籽晶的厚度在100μm-500μm范围内。在一些实施例中,进行抛光处理后的待扩径六方晶型籽晶的厚度在150μm-450μm范围内。在一些实施例中,进行抛光处理后的待扩径六方晶型籽晶的厚度在200μm-400μm范围内。在一些实施例中,进行抛光处理后的待扩径六方晶型籽晶的厚度在250μm-350μm范围内。在一些实施例中,进行抛光处理后的待扩径六方晶型籽晶的厚度在280μm-320μm范围内。
步骤2220,将多个正六边形六方晶型籽晶进行拼接。
紧密拼接可以指将多个正六边形六方晶型籽晶的切割面拼接在一起,且使各个切割面最大程度地贴合,以使拼接后的多个正六边形六方晶型籽晶的拼接缝隙尽可能小。在一些实施例中,将多个正六边形六方晶型籽晶进行拼接可以包括:以一个正六边形六方晶型籽晶为中心,为中心的正六边形六方晶型籽晶的六条边分别与六个不同的正六边形六方晶型籽晶的各一条边紧密拼接。在一些实施例中,将七个正六边形六方晶型籽晶进行紧密拼接可以包括:以一个正六边形六方晶型籽晶为中心,将六个正六边形六方晶型籽晶紧密拼接在位于中心的正六边形六方晶型籽晶的外周。在一些实施例中,进行紧 密拼接的多个正六边形六方晶型籽晶可以均是(0001)面或
Figure PCTCN2021085468-appb-000021
面朝上。如图23所示,进行紧密拼接后的多个正六边形六方晶型籽晶可以表示为2330。
步骤2230,对拼接的多个正六边形六方晶型籽晶进行第二切割,得到待生长六方晶型籽晶。
在一些实施例中,第二切割可以包括对紧密拼接的多个正六边形六方晶型籽晶进行磨削处理,以使经过磨削处理后的紧密拼接的多个正六边形六方晶型籽晶具有设定第二尺寸(例如,8英寸或10英寸)和设定第二形状(例如,圆形)。在一些实施例中,可以将紧密拼接的多个正六边形六方晶型籽晶切割成不小于8英寸的拼接圆形籽晶。在一些实施例中,设定第二尺寸大于设定第一尺寸。在一些实施例中,磨削处理可以包括偏轴磨削处理。在一些实施例中,偏轴磨削的方向可以为[0001]偏转3°-6°指向
Figure PCTCN2021085468-appb-000022
方向,以使在生长晶体的过程中进行台阶流生长,以进一步提高晶体质量。
在一些实施例中,对紧密拼接的多个正六边形六方晶型籽晶进行第二切割可以包括:以为中心的正六边形六方晶型籽晶的中心点为圆心,以设定半径为半径,进行圆形切割。在一些实施例中,设定半径可以根据目标六方晶型籽晶的半径确定。在一些实施例中,以100mm-130mm为半径在紧密拼接的多个正六边形六方晶型籽晶的表面划出圆形轨迹,然后在圆形轨迹上进行磨削处理,可以得到待生长六方晶型籽晶。如图23所示,进行第二切割后得到的待生长六方晶型籽晶可以表示为2340。
在晶体生长过程中,由于径向温度梯度的存在,会导致籽晶生长面产生较大的热应力,使籽晶生长面向源材料方向严重凸起,且产生微管、包裹体等缺陷。为了避免由于径向温度梯度导致拼接缝隙在生长过程中产出更多的缺陷,可以使为中心的正六边形六方晶型籽晶的表面积大于位于其他位置的正六边形六方晶型籽晶的表面积。在一些实施例中,为中心的正六边形六方晶型籽晶的表面积占比越大,拼接缝隙生长缺陷越少。在一些实施例中,为中心的正六边形六方晶型籽晶表面积可以为目标六方晶型籽晶表面积或待生长六方晶型籽晶表面积的25%-55%。在一些实施例中,为中心的正六边形六方晶型籽晶表面积可以为目标六方晶型籽晶表面积或待生长六方晶型籽晶表面积的28%-52%。在一些实施例中,为中心的正六边形六方晶型籽晶表面积可以为目标六方晶型籽晶表面积或待生长六方晶型籽晶表面积的30%-50%。在一些实施例中,为中心的正六边形六方晶型籽晶表面积可以为目标六方晶型籽晶表面积或待生长六方晶型籽晶表面积的32%-48%。在一些实施例中,为中心的正六边形六方晶型籽晶表面积可以为目标六方晶型籽晶表面积或待生长六方晶型籽晶表面积的35%-45%。在一些实施例中, 为中心的正六边形六方晶型籽晶表面积可以为目标六方晶型籽晶表面积或待生长六方晶型籽晶表面积的38%-42%。在一些实施例中,为中心的正六边形六方晶型籽晶表面积可以为目标六方晶型籽晶表面积或待生长六方晶型籽晶表面积的40%。
在一些实施例中,待生长六方晶型籽晶可以指由多个正六边形六方晶型籽晶紧密拼接成的、具有与目标六方晶型籽晶的形状和直径相等或约相等的拼接籽晶。在一些实施例中,目标六方晶型籽晶的形状为圆形,直径为8英寸。待生长六方晶型籽晶可以是由七个正六边形六方晶型籽晶紧密拼接成的8英寸的拼接圆形籽晶。
步骤2240,在第一设定条件下,对待生长六方晶型籽晶进行缝隙生长,得到六方晶型籽晶中间体。
在一些实施例中,缝隙生长可以指对待生长六方晶型籽晶的拼接缝隙2341进行生长,以使紧密拼接的待生长六方晶型籽晶生长为无缝隙或缝隙被填充的整体。在一些实施例中,缝隙生长需要在第一设定条件下进行,以促进
Figure PCTCN2021085468-appb-000023
Figure PCTCN2021085468-appb-000024
晶面族的生长,且抑制(0001)或
Figure PCTCN2021085468-appb-000025
晶面的生长,以实现待生长六方晶型籽晶的拼接缝隙生长。在一些实施例中,第一设定条件可以指待生长六方晶型籽晶进行缝隙生长的条件。在一些实施例中,第一设定条件可以包括但不限于第一设定温度、第一设定压力、第一设定碳硅比和设定缝隙生长时间等。
第一设定条件中的各生长条件是相互制约的,可以根据其中某一个或几个生长条件,控制其他的生长条件。在一些实施例中,在不同的第一设定温度和第一设定碳硅比下,
Figure PCTCN2021085468-appb-000026
Figure PCTCN2021085468-appb-000027
晶面族的生长速率不同。在一些实施例中,第一设定温度在1600℃-1700℃范围内时,可以控制第一设定碳硅比在1.1-1.6范围内,
Figure PCTCN2021085468-appb-000028
Figure PCTCN2021085468-appb-000029
晶面族的生长速率较快,有利于缝隙生长。
缝隙生长温度太高会导致缝隙生长速率较慢,同时待生长六方晶型籽晶可以外延生长形成部分薄膜,导致六方晶型籽晶中间体和目标六方晶型籽晶内部缺陷较多,进一步导致生长得到的晶体质量不高。缝隙生长温度太低会导致缝隙生长所需的源气体无法充分反应,进而导致缝隙生长速率较慢,缝隙无法被填充,进而导致六方晶型籽晶中间体质量较差。因此,第一设定温度需要控制在预设温度范围内。在一些实施例中,第一设定温度可以在1000℃-2000℃范围内。在一些实施例中,第一设定温度可以在1050℃-1950℃范围内。在一些实施例中,第一设定温度可以在1100℃-1900℃范围内。在一些实施例中,第一设定温度可以在1150℃-1850℃范围内。在一些实施例中,第一设定温度可以在1200℃-1800℃范围内。在一些实施例中,第一设定温度可以在1300℃- 1750℃范围内。在一些实施例中,第一设定温度可以在1400℃-1700℃范围内。在一些实施例中,第一设定温度可以在1420℃-1680℃范围内。在一些实施例中,第一设定温度可以在1440℃-1660℃范围内。在一些实施例中,第一设定温度可以在1460℃-1640℃范围内。在一些实施例中,第一设定温度可以在1480℃-1620℃范围内。在一些实施例中,第一设定温度可以在1500℃-1600℃范围内。在一些实施例中,第一设定温度可以在1520℃-1580℃范围内。在一些实施例中,第一设定温度可以在1540℃-1560℃范围内。
第一设定压力过大,会导致缝隙生长所需的源气体的平均自由程降低,拼接缝隙无法被填充,甚至留有部分空隙,导致六方晶型籽晶中间体质量较差。第一设定压力太小,会导致隙生长速率较慢,且待生长六方晶型籽晶的表面被部分刻蚀,进一步增加六方晶型籽晶中间体的缺陷,降低六方晶型籽晶中间体质量。因此,第一设定压力需要控制在预设压力范围内。在一些实施例中,第一设定压力可以在10Pa-1000Pa范围内。在一些实施例中,第一设定压力可以在15Pa-800Pa范围内。在一些实施例中,第一设定压力可以在20Pa-600Pa范围内。在一些实施例中,第一设定压力可以在25Pa-400Pa范围内。在一些实施例中,第一设定压力可以在30Pa-200Pa范围内。在一些实施例中,第一设定压力可以在40Pa-170Pa范围内。在一些实施例中,第一设定压力可以在50Pa-150Pa范围内。在一些实施例中,第一设定压力可以在60Pa-120Pa范围内。在一些实施例中,第一设定压力可以在70Pa-100Pa范围内。在一些实施例中,第一设定压力可以在80Pa-90Pa范围内。
在一些实施例中,第一设定碳硅比可以通过设定流量的第一设定源气体确定。在一些实施例中,第一设定源气体可以包括缝隙生长所需的组分。在一些实施例中,第一设定源气体可以包括但不限于硅烷和碳源(例如,烷烃)。
第一设定碳硅比太高或太低都无法使源气体充分发生反应。因此,需要将第一设定碳硅比控制在预设范围内。在一些实施例中,第一设定碳硅比可以在1.0-10.0范围内。在一些实施例中,第一设定碳硅比可以在1.0-9.0范围内。在一些实施例中,第一设定碳硅比可以在1.0-8.0范围内。在一些实施例中,第一设定碳硅比可以在1.0-7.0范围内。在一些实施例中,第一设定碳硅比可以在1.0-6.0范围内。在一些实施例中,第一设定碳硅比可以在1.0-5.0范围内。在一些实施例中,第一设定碳硅比可以在1.0-4.0范围内。在一些实施例中,第一设定碳硅比可以在1.0-3.0范围内。在一些实施例中,第一设定碳硅比可以在1.2-2.8范围内。在一些实施例中,第一设定碳硅比可以在1.4- 2.6范围内。在一些实施例中,第一设定碳硅比可以在1.6-2.4范围内。在一些实施例中,第一设定碳硅比可以在1.8-2.2范围内。在一些实施例中,第一设定碳硅比可以在1.9-2.0范围内。
在一些实施例中,第一设定源气体可以包括但不限于SiH 4、C 3H 8或H 2等。
在一些实施例中,SiH 4的设定流量可以在50-300mL/min范围内。在一些实施例中,SiH 4的设定流量可以在60-280mL/min范围内。在一些实施例中,SiH 4的设定流量可以在70-260mL/min范围内。在一些实施例中,SiH 4的设定流量可以在80-240mL/min范围内。在一些实施例中,SiH 4的设定流量可以在90-220mL/min范围内。在一些实施例中,SiH 4的设定流量可以在100-200mL/min范围内。在一些实施例中,SiH 4的设定流量可以在110-190mL/min范围内。在一些实施例中,SiH 4的设定流量可以在120-180mL/min范围内。在一些实施例中,SiH 4的设定流量可以在130-170mL/min范围内。在一些实施例中,SiH 4的设定流量可以在140-160mL/min范围内。在一些实施例中,SiH 4的设定流量可以为150mL/min。
在一些实施例中,C 3H 8的设定流量可以在10-200mL/min范围内。在一些实施例中,C 3H 8的设定流量可以在20-180mL/min范围内。在一些实施例中,C 3H 8的设定流量可以在30-160mL/min范围内。在一些实施例中,C 3H 8的设定流量可以在40-140mL/min范围内。在一些实施例中,C 3H 8的设定流量可以在50-120mL/min范围内。在一些实施例中,C 3H 8的设定流量可以在60-100mL/min范围内。在一些实施例中,C 3H 8的设定流量可以在70-90mL/min范围内。在一些实施例中,C 3H 8的设定流量可以在75-85mL/min范围内。
在一些实施例中,H 2的设定流量可以在10-200mL/min范围内。在一些实施例中,H 2的设定流量可以在20-180mL/min范围内。在一些实施例中,H 2的设定流量可以在30-160mL/min范围内。在一些实施例中,H 2的设定流量可以在40-140mL/min范围内。在一些实施例中,H 2的设定流量可以在50-120mL/min范围内。在一些实施例中,H 2的设定流量可以在60-100mL/min范围内。在一些实施例中,H 2的设定流量可以在70-90mL/min范围内。在一些实施例中,H 2的设定流量可以在75-85mL/min范围内。
在一些实施例中,可以根据待生长六方晶型籽晶的缝隙尺寸(例如,缝隙深度)和缝隙生长速率确定缝隙生长时间。缝隙生长时间太长,导致待生长六方晶型籽晶可以外延生长形成部分薄膜,导致六方晶型籽晶中间体和目标六方晶型籽晶内部缺陷较多,进一步导致生长得到的晶体质量不高。缝隙生长时间太短,导致拼接缝隙无法被填充, 甚至留有部分空隙,进一步导致六方晶型籽晶中间体质量较差。因此,需要将缝隙生长时间控制在预设时间范围内。在一些实施例中,设定缝隙生长时间可以在3h-7h范围内。在一些实施例中,设定缝隙生长时间可以在3.5h-6.5h范围内。在一些实施例中,设定缝隙生长时间可以在4h-6h范围内。在一些实施例中,设定缝隙生长时间可以在4.5h-5.5h范围内。在一些实施例中,设定缝隙生长时间可以为5h。
在一些实施例中,可以采用化学气相沉积法(Chemical Vapor Deposition,CVD)进行缝隙生长。相应地,缝隙生长可以在化学气相沉积法(Chemical Vapor Deposition,CVD)装置中进行。
六方晶型籽晶中间体可以指待生长六方晶型籽晶的拼接缝隙进行生长完成后的籽晶。
步骤2250,在第二设定条件下,对六方晶型籽晶中间体进行外延生长,得到目标六方晶型籽晶。
在一些实施例中,外延生长可以指对六方晶型籽晶中间体在垂直于(0001)或
Figure PCTCN2021085468-appb-000030
晶面的方向上进行生长,以使六方晶型籽晶中间体生长为具有设定厚度的目标六方晶型籽晶。在一些实施例中,设定厚度可以在400um-700um范围内。在一些实施例中,设定厚度可以在450um-650um范围内。在一些实施例中,设定厚度可以在500um-600um范围内。在一些实施例中,设定厚度可以在540um-560um范围内。
在一些实施例中,外延生长需要在第二设定条件下进行,以促进(0001)或
Figure PCTCN2021085468-appb-000031
晶面的生长,且抑制
Figure PCTCN2021085468-appb-000032
Figure PCTCN2021085468-appb-000033
晶面族的生长。在一些实施例中,第二设定条件可以指六方晶型籽晶中间体进行外延生长的条件。在一些实施例中,第二设定条件可以包括但不限于第二设定温度、第二设定压力、第二设定碳硅比和设定外延生长时间等。
外延生长温度太高会导致外延生长速率较慢,同时六方晶型籽晶中间体的外表面会发生部分刻蚀,导致目标六方晶型籽晶缺陷较多,进一步导致生长得到的晶体质量不高。外延生长温度太低会导致外延生长所需的源气体无法充分反应,进而导致外延生长速率较慢,还会导致目标六方晶型籽晶质量较差。因此,第二设定温度需要控制在预设温度范围内。在一些实施例中,第二设定温度可以在1100℃-2000℃范围内。在一些实施例中,第二设定温度可以在1200℃-1900℃范围内。在一些实施例中,第二设定温度可以在1300℃-1800℃范围内。在一些实施例中,第二设定温度可以在1400℃-1700℃范围内。在一些实施例中,第二设定温度可以在1420℃-1680℃范围内。在一些实施例中,第二设定温度可以在1440℃-1660℃范围内。在一些实施例中,第二设定温度可以 在1460℃-1640℃范围内。在一些实施例中,第二设定温度可以在1480℃-1620℃范围内。在一些实施例中,第二设定温度可以在1500℃-1600℃范围内。在一些实施例中,第二设定温度可以在1520℃-1580℃范围内。在一些实施例中,第二设定温度可以在1540℃-1560℃范围内。
第二设定压力过大,会导致外延生长所需的源气体的平均自由程降低,进一步导致外延生长速率较慢。第二设定压力太小,六方晶型籽晶中间体的外表面会发生部分刻蚀,导致目标六方晶型籽晶的缺陷较多。因此,第二设定压力需要控制在预设压力范围内。在一些实施例中,第二设定压力可以在10Pa-1000Pa范围内。在一些实施例中,第二设定压力可以在15Pa-800Pa范围内。在一些实施例中,第二设定压力可以在20Pa-600Pa范围内。在一些实施例中,第二设定压力可以在25Pa-400Pa范围内。在一些实施例中,第二设定压力可以在30Pa-200Pa范围内。在一些实施例中,第二设定压力可以在40Pa-170Pa范围内。在一些实施例中,第二设定压力可以在50Pa-150Pa范围内。在一些实施例中,第二设定压力可以在60Pa-120Pa范围内。在一些实施例中,第二设定压力可以在70Pa-100Pa范围内。在一些实施例中,第二设定压力可以在80Pa-90Pa范围内。
在一些实施例中,第二设定碳硅比可以通过设定流量的第二设定源气体确定。在一些实施例中,第二设定源气体可以包括外延生长所需的组分。在一些实施例中,第二设定源气体可以包括但不限于硅烷和碳源(例如,烷烃)。在一些实施例中,第二设定源气体与第一设定源气体的组分可以相同,也可以不同。在一些实施例中,第一设定源气体可以包括但不限于SiH 4、C 3H 8或H 2等。
第二设定碳硅比太高或太低都无法使源气体充分发生反应,以进行外延生长。因此,需要将第二设定碳硅比控制在预设范围内。
在一些实施例中,第二设定碳硅比可以在0.1-2范围内。在一些实施例中,第二设定碳硅比可以在0.3-1.7范围内。在一些实施例中,第二设定碳硅比可以在0.5-1.5范围内。在一些实施例中,第二设定碳硅比可以在0.8-1.2范围内。在一些实施例中,第二设定碳硅比可以在0.9-1.1范围内。在一些实施例中,第二设定碳硅比可以在0.92-1.08范围内。在一些实施例中,第二设定碳硅比可以在0.95-1.05范围内。在一些实施例中,第二设定碳硅比可以在0.96-1.04范围内。在一些实施例中,第二设定碳硅比可以在0.97-1.03范围内。在一些实施例中,第二设定碳硅比可以在0.98-1.02范围内。在一些实施例中,第二设定碳硅比可以在0.99-1.01范围内。在一些实施例中,第二设定碳硅比可 以为1。
设定外延生长时间可以根据目标六方晶型籽晶的设定厚度确定。在一些实施例中,外延生长可以在化学气相沉积法(Chemical Vapor Deposition,CVD)装置中进行。
在一些实施例中,目标六方晶型籽晶可以指对待扩径六方晶型籽晶进行扩大直径处理后的籽晶。在一些实施例中,目标六方晶型籽晶的直径可以不小于待扩径的六方晶型籽晶的直径的2倍。在一些实施例中,目标六方晶型籽晶的直径可以不小于待扩径的六方晶型籽晶的直径的2.5倍。在一些实施例中,目标六方晶型籽晶的直径可以不小于待扩径的六方晶型籽晶的直径的3倍。在一些实施例中,目标六方晶型籽晶的直径可以大于等于8英寸。在一些实施例中,目标六方晶型籽晶的直径可以为8英寸、9英寸、10英寸等。在一些实施例中,可以将目标六方晶型籽晶作为待扩径六方晶型籽晶,重复进行流程2200的操作,以生长更大直径的六方晶型籽晶。
在一些实施例中,外延生长可以包括在籽晶上生长具有设定尺寸、与籽晶晶向相同的晶层。由于籽晶内会存在各种缺陷,而进行外延生长过程中通常会继承这些缺陷,因此需要对籽晶进行原位刻蚀以消除这些缺陷。在一些实施例中,进行缝隙生长之前,可以在第三设定条件下对待生长六方晶型籽晶进行原位刻蚀,以提高待生长六方晶型籽晶的表面平整度。在一些实施例中,原位刻蚀可以在化学气相沉积法(Chemical Vapor Deposition,CVD)装置中进行。
在一些实施例中,进行原位刻蚀前需要对CVD装置进行预处理。预处理可以包括但不限于抽真空处理和加热处理。在一些实施例中,抽真空处理可以指将CVD装置内的压强降低至10 -5Pa,以除去CVD装置内的大部分空气。在一些实施例中,加热处理可以包括将CVD装置加热至400℃-800℃范围内。在一些实施例中,加热处理还可以包括使CVD装置在400℃-800℃范围内保温约1h。
在一些实施例中,第三设定条件可以但不限于通入设定流量的设定气体、第三设定温度、第三设定压力和设定刻蚀时间。在一些实施例中,设定气体可以指能与碳进行反应的气体。在一些实施例中,设定气体可以为氢气。氢气可以与待生长六方晶型碳化硅籽晶中的碳进行反应生成碳氢化合物,以进行原位刻蚀。
设定流量太高可以导致通入的设定气体(例如,氢气)过量,导致设定气体浪费。设定流量太高还可以导致温场不稳定,进而影响待生长六方晶型碳化硅籽晶的刻蚀均匀性。设定流量太低可以导致刻蚀效率低。因此,需要将设定流量控制在预设流量范围内。在一些实施例中,设定流量可以在5L/min-200L/min范围内。在一些实施例中, 设定流量可以在10L/min-150L/min范围内。在一些实施例中,设定流量可以在15L/min-100L/min范围内。在一些实施例中,设定流量可以在20L/min-80L/min范围内。在一些实施例中,设定流量可以在25L/min-75L/min范围内。在一些实施例中,设定流量可以在30L/min-70L/min范围内。在一些实施例中,设定流量可以在35L/min-65L/min范围内。在一些实施例中,设定流量可以在40L/min-60L/min范围内。在一些实施例中,设定流量可以在44L/min-46L/min范围内。
第三设定温度太高可以导致刻蚀效率过快或不可控,影响待生长六方晶型籽晶的质量。第三设定温度太低,设定气体与第三设定温度太高无法发生反应,无法进行刻蚀。因此,需要将第三设定温度控制在预设温度范围内。在一些实施例中,第三设定温度可以在1200℃-1500℃范围内。在一些实施例中,第三设定温度可以在1250℃-1450℃范围内。在一些实施例中,第三设定温度可以在1300℃-1400℃范围内。在一些实施例中,第三设定温度可以在1340℃-1360℃范围内。
第三设定压力过高,可以导致设定气体与待生长六方晶型籽晶进行反应生成的气相物质无法及时有效地排除,进而导致进行刻蚀后的待生长六方晶型籽晶质量不高。第三设定压力过低可以导致刻蚀效率过快或不可控,影响待生长六方晶型籽晶的质量。因此,需要将第三设定压力控制在预设压力范围内。在一些实施例中,第三设定压力可以在1kPa-12kPa范围内。在一些实施例中,第三设定压力可以在2kPa-11kPa范围内。在一些实施例中,第三设定压力可以在3kPa-10kPa范围内。在一些实施例中,第三设定压力可以在4kPa-9kPa范围内。在一些实施例中,第三设定压力可以在5kPa-8kPa范围内。在一些实施例中,第三设定压力可以在6kPa-7kPa范围内。
设定刻蚀时间可以根据待生长六方晶型籽晶的表面平整度和表面形貌等确定。设定刻蚀时间太长无法保证刻蚀后的待生长六方晶型籽晶的均匀性。设定刻蚀时间太短可以导致待生长六方晶型籽晶表面具有较多缺陷,进而影响其质量。因此,需要将设定刻蚀时间控制在设定时间范围内。在一些实施例中,设定刻蚀时间可以在10min-30min范围内。在一些实施例中,设定刻蚀时间可以在12min-28min范围内。在一些实施例中,设定刻蚀时间可以在15min-25min范围内。在一些实施例中,设定刻蚀时间可以在18min-22min范围内。在一些实施例中,设定刻蚀时间可以在19min-20min范围内。
在一些实施例中,根据六方晶型籽晶的本征性质将其切割成六个侧面均为
Figure PCTCN2021085468-appb-000034
Figure PCTCN2021085468-appb-000035
晶面族的正六边形六方晶型籽晶。在晶体学上,晶面族为
Figure PCTCN2021085468-appb-000036
Figure PCTCN2021085468-appb-000037
的六个侧面的理化特性相同,使得相同晶面族之间的缝隙生长质量更高或位错 更少,进一步使制得的目标六方晶型籽晶质量更高。
应当注意的是,上述有关流程2200的描述仅仅是为了示例和说明,而不限定本申请的适用范围。对于本领域技术人员来说,在本申请的指导下可以对流程2200进行各种修正和改变。然而,这些修正和改变仍在本申请的范围之内。以上制备过程仅作为示例,其中涉及的工艺参数在不同实施例中可以不同,上述步骤的先后也并非唯一,在不同实施例中也可以调整步骤间的顺序,甚至省略某一或多个步骤。不应将上述示例理解为对本申请保护范围的限制。
本实施例提供一种籽晶的制备方法,步骤如下:S1、制备7个直径为110mm-160mm的6H-SiC,并对7个6H-SiC分别进行抛光处理,以使6H-SiC表面平坦。例如,可以先对6H-SiC的
Figure PCTCN2021085468-appb-000038
面进行抛光,然后对(0001)面进行抛光。经过抛光处理后的6H-SiC的厚度可以约为100μm-150μm。
S2、对经过抛光处理后的6H-SiC进行垂直于(0001)面的第一切割,得到切割面为
Figure PCTCN2021085468-appb-000039
晶面族的正六边形6H-SiC,如图23中所示的晶面族为
Figure PCTCN2021085468-appb-000040
的正六边形六方晶型籽晶2321。
S3、对7个正六边形6H-SiC进行紧密拼接,以1个正六边形6H-SiC为中心,将6个正六边形6H-SiC紧密拼接在位于中心的正六边形6H-SiC的外周,排列成如图23中所示的进行紧密拼接后的多个正六边形六方晶型籽晶2330。将紧密拼接的7个正六边形6H-SiC用粘接剂(例如,石蜡)粘在一个表面水平的平台(例如,不锈钢盘)上,使7个正六边形6H-SiC的(0001)面均朝上,且拼接面相贴合。
S4、对紧密拼接且粘在一个平台上的7个正六边形6H-SiC进行第二切割。以排列在中心的正六边形6H-SiC的中心点为圆心,以半径为100mm-120mm在紧密拼接且粘在一个平台上的7个正六边形6H-SiC表面划出圆形轨迹。然后在圆形轨迹上进行偏轴磨削处理,偏轴磨削的方向为[0001]偏转3.8°指向
Figure PCTCN2021085468-appb-000041
方向,得到圆形的6H-SiC,如图23中所示的进行第二切割后得到的待生长六方晶型籽晶2340。
S5、取下粘在平台上的圆形6H-SiC。将圆形6H-SiC放置于丙酮溶液中进行超声清洗,再用去离子水清洗,以清除圆形6H-SiC上的石蜡和颗粒物。再对圆形6H-SiC的外周进行磨削处理和精细抛光处理,以去除圆形6H-SiC表面的划痕。
将进行磨削处理和精细抛光处理后的圆形6H-SiC放入异丙醇溶液中,在30℃-100℃下超声清洗10min-100min。然后使用去离子水超声清洗5min-30min,以进一步去除圆形6H-SiC表面的杂质和有机物,得到洁净的圆形6H-SiC。由于粘在平台上的圆形 6H-SiC上的粘接剂(例如,石蜡)被清洗掉了,洁净的圆形6H-SiC实质上是指可以拼接为如图23中进行第二切割后得到的待生长六方晶型籽晶2340所示的圆形的7个小籽晶。
S6、将洁净的圆形6H-SiC按S4中的磨削顺序进行排列,并采用粘接剂(例如,蔗糖)将其粘接在表面水平的石墨托盘上。将粘接有圆形6H-SiC的托盘放入CVD装置中,先对CVD装置抽真空至1×10 -5Pa-1×10 -3Pa后,再以1℃/min-20℃/min的加热速率缓慢加热至600℃-1000℃,保温0.5h-2h,以除去CVD装置中的空气。然后对CVD装置加热至1200℃-1600℃,并以20L/min-80L/min的速率通入氢气,维持CVD装置内压强为2000Pa-10000Pa,保温10min-30min,对圆形6H-SiC进行原位刻蚀,以去除圆形6H-SiC表面划痕,改善圆形6H-SiC表面平整度和表面形貌。
S7、对圆形6H-SiC进行
Figure PCTCN2021085468-appb-000042
晶面族的缝隙生长。向CVD装置中通入氢气至CVD装置内压强为大气压强,加热CVD装置至温度为1500℃-2000℃。向CVD装置内通入100-200mL/min SiH 4、40-100mL/min C 3H 8、40-100L/min H 2,以维持CVD装置中碳硅比为1.0-5.0。然后将CVD装置内压强降低至30Pa-200Pa,进行
Figure PCTCN2021085468-appb-000043
晶面族的缝隙生长。缝隙生长时间为2h-5h。
S8、对S7中圆形6H-SiC进行外延生长。调节CVD装置温度至1500℃-1700℃,向CVD装置内通入100-300mL/min SiH 4、40-100mL/min C 3H 8、40-100L/min H 2,并控制CVD装置中碳硅比为0.5-1.5,以进行(0001)晶面的外延生长。当外延生长达到设定厚度500μm-900μm后,向CVD装置内通入氦气至CVD装置内压强达到大气压强,使外延生长停止。然后经过60h-120h缓慢冷却到室温,取出即可得到直径大于250mm的6H-SiC籽晶。
本实施例提供另一种籽晶的制备方法,包括如下步骤:S1、制备7个直径为110mm-160mm的6H-SiC,并对7个6H-SiC分别进行抛光处理,以使6H-SiC表面平坦。例如,可以先对6H-SiC的
Figure PCTCN2021085468-appb-000044
面进行抛光,然后对(0001)面进行抛光。经过抛光处理后的6H-SiC的厚度可以约为100μm-150μm。
S2、对经过抛光处理后的6H-SiC进行垂直于(0001)面的第一切割,得到切割面为
Figure PCTCN2021085468-appb-000045
晶面族的正六边形6H-SiC,如图23中所示的晶面族为
Figure PCTCN2021085468-appb-000046
的正六边形六方晶型籽晶2322。
S3、对7个正六边形6H-SiC进行紧密拼接,以1个正六边形6H-SiC为中心,将6个正六边形6H-SiC紧密拼接在位于中心的正六边形6H-SiC的外周,排列成如图 23中所示的进行紧密拼接后的多个正六边形六方晶型籽晶2330。将紧密拼接的7个正六边形6H-SiC用粘接剂(例如,石蜡)粘在一个表面水平的平台(例如,不锈钢盘)上,使7个正六边形6H-SiC的(0001)面均朝上,且拼接面相贴合。
S4、对紧密拼接且粘在一个平台上的7个正六边形6H-SiC进行第二切割。以排列在中心的正六边形6H-SiC的中心点为圆心,以半径约为100mm-130mm在紧密拼接且粘在一个平台上的7个正六边形6H-SiC表面划出圆形轨迹。然后在圆形轨迹上进行偏轴磨削处理,偏轴磨削的方向为[0001]偏转2°-8°指向
Figure PCTCN2021085468-appb-000047
方向,得到圆形的6H-SiC,如图23中所示的进行第二切割后得到的待生长六方晶型籽晶2340。
S5、取下粘在平台上的圆形6H-SiC。将圆形6H-SiC放置于丙酮溶液中进行超声清洗,再用去离子水清洗,以清除圆形6H-SiC上的石蜡和颗粒物。再对圆形6H-SiC的外周进行磨削处理和精细抛光处理,以去除圆形6H-SiC表面的划痕。
将进行磨削处理和精细抛光处理后的圆形6H-SiC放入异丙醇溶液中,在30℃-100℃下超声清洗10-70min。然后使用去离子水超声清洗5-20min,以进一步去除圆形6H-SiC表面的杂质和有机物,得到洁净的圆形6H-SiC。由于粘在平台上的圆形6H-SiC上的粘接剂(例如,石蜡)被清洗掉了,洁净的圆形6H-SiC实质上是指可以拼接为如图23中进行第二切割后得到的待生长六方晶型籽晶2340所示的圆形的7个小籽晶。
S6、将洁净的圆形6H-SiC按S4中的磨削顺序进行排列,并采用粘接剂(例如,蔗糖)将其粘接在表面水平的石墨托盘上。将粘接有圆形6H-SiC的托盘放入CVD装置中,先对CVD装置抽真空至1×10 -5Pa-1×10 -3Pa后,再以1℃/min-20℃/min的加热速率缓慢加热至600℃-1000℃,保温0.5h-3h,以除去CVD装置中的空气。然后对CVD装置加热至1300℃-1600℃,并以10-100L/min的速率通入氢气,维持CVD装置内压强为2000Pa-10000Pa,保温10min-60min,对圆形6H-SiC进行原位刻蚀,以去除圆形6H-SiC表面划痕,改善圆形6H-SiC表面平整度和表面形貌。
S7、对圆形6H-SiC进行
Figure PCTCN2021085468-appb-000048
晶面族的缝隙生长。向CVD装置中通入氢气至CVD装置内压强为大气压强,加热CVD装置至温度为1500℃-1800℃。向CVD装置内通入50-200mL/min SiH 4、20-150mL/min C 3H 8、20-100L/min H 2,以维持CVD装置中碳硅比为1-4。然后将CVD装置内压强降低至100Pa-400Pa,进行
Figure PCTCN2021085468-appb-000049
晶面族的缝隙生长。缝隙生长时间为2h-5h。
S8、对S7中圆形6H-SiC进行外延生长。调节CVD装置温度至1500℃-1700℃,向CVD装置内通入50-200mL/min SiH 4、20-150mL/min C 3H 8、20-100L/min H 2,并控 制CVD装置中碳硅比为0.5-2,以进行(0001)晶面的外延生长。当外延生长达到设定厚度500μm-800μm后,向CVD装置内通入氦气至CVD装置内压强达到大气压强,使外延生长停止。然后经过50h-120h缓慢冷却到室温,取出即可得到直径大于200mm的6H-SiC籽晶。
上述两个实施例分别进行
Figure PCTCN2021085468-appb-000050
晶面族和
Figure PCTCN2021085468-appb-000051
晶面族的缝隙生长,由于晶面族的理化特性相同,两个实施例均为单一晶面族的缝隙生长,可以提高缝隙生长的质量。同时,
Figure PCTCN2021085468-appb-000052
Figure PCTCN2021085468-appb-000053
晶面族有利于沉积在该表面的原子进行迁移,使外延生长均匀,不易形成缺陷。
为了避免由于径向温度梯度导致拼接缝隙在生长过程中产出更多的缺陷,在一些实施例中,进行紧密拼接时,将1个完整的正六边形六方晶型籽晶放在中心位置处,使得进行第二切割后得到的待生长六方晶型籽晶的中心部位无拼接缝隙,从而可以为缝隙生长提供稳定的基底,以大大降低目标六方晶型籽晶的缺陷,提高其质量。
一些实施例可能带来的有益效果包括但不限于:(1)在晶体生长过程中,可以基于温度传感组件获得的晶体生长时生长腔体内的温度控制加热组件,使得晶体生长时生长腔体内的径向温差不超过生长腔体内平均温度的第一预设范围或预设径向温差阈值,还可以使得晶体生长时生长腔体内的轴向温度梯度维持稳定,以使晶体稳定生长,进一步制备大尺寸、高质量的晶体;(2)采用至少一个加热组件对生长腔体进行加热,可以对径向温度进行补偿,例如,可以降低径向温差和/或径向温度梯度。(3)第二加热组件中的加热单元上的流通通道可以阻止源材料石墨化的碳颗粒向上运动,进而减少晶体中碳包裹物微管等缺陷,提高晶体质量。(4)将源材料分布在不同高度的加热单元上,对源材料进行多层加热,可以使源材料加热更均匀更充分,不仅可以提高源材料的利用率,还可以减少源材料的碳化,进一步提高晶体质量。(5)制得的晶体生长面较平坦,凸起程度低,且晶体中碳包裹物颗粒的密度低,晶体质量高。(6)根据六方晶型籽晶的本征性质进行单一晶面族的缝隙生长,可以提高缝隙生长的质量。(7)为了避免由于径向温度梯度导致拼接缝隙在生长过程中产出更多的缺陷,可以将1个完整的正六边形六方晶型籽晶放在中心位置处和/或使位于中心的正六边形六方晶型籽晶的表面积大于位于其他位置的正六边形六方晶型籽晶的表面积,为缝隙生长提供稳定的基底,以降低目标六方晶型籽晶的缺陷,提高其质量。需要说明的是,不同实施例可能产生的有益效果不同,在不同的实施例里,可能产生的有益效果可以是以上任意一种或几种的组合,也可以是其他任何可能获得的有益效果。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能会对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范实施例的精神和范围。
同时,本申请使用了特定词语来描述本申请的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
此外,本领域技术人员可以理解,本申请的各方面可以通过若干具有可专利性的种类或情况进行说明和描述,包括任何新的和有用的工序、机器、产品或物质的组合,或对他们的任何新的和有用的改进。相应地,本申请的各个方面可以完全由硬件执行、可以完全由软件(包括固件、常驻软件、微码等)执行、也可以由硬件和软件组合执行。以上硬件或软件均可被称为“数据块”、“模块”、“引擎”、“单元”、“组件”或“系统”。此外,本申请的各方面可能表现为位于一个或多个计算机可读介质中的计算机产品,该产品包括计算机可读程序编码。
此外,除非权利要求中明确说明,本申请所述处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本申请流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本申请实施例实质和范围的修正和等价组合。例如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的处理设备或移动设备上安装所描述的系统。
同理,应当注意的是,为了简化本申请披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本申请实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本申请对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一 些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本申请一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
针对本申请引用的每个专利、专利申请、专利申请公开物和其他材料,如文章、书籍、说明书、出版物、文档等,特此将其全部内容并入本申请作为参考。与本申请内容不一致或产生冲突的申请历史文件除外,对本申请权利要求最广范围有限制的文件(当前或之后附加于本申请中的)也除外。需要说明的是,如果本申请附属材料中的描述、定义、和/或术语的使用与本申请所述内容有不一致或冲突的地方,以本申请的描述、定义和/或术语的使用为准。
最后,应当理解的是,本申请中所述实施例仅用以说明本申请实施例的原则。其他的变形也可能属于本申请的范围。因此,作为示例而非限制,本申请实施例的替代配置可视为与本申请的教导一致。相应地,本申请的实施例不仅限于本申请明确介绍和描述的实施例。

Claims (43)

  1. 一种晶体制备装置,其特征在于,所述装置包括:
    生长腔体,用于晶体生长;以及
    温控系统,用于加热所述生长腔体,使晶体生长时所述生长腔体内的径向温差不超过所述生长腔体内平均温度的第一预设范围。
  2. 根据权利要求1所述的装置,其特征在于,所述温控系统使晶体生长时所述生长腔体内的径向温差不超过所述生长腔体内平均温度的1%。
  3. 根据权利要求1所述的装置,其特征在于,所述生长腔体的半径不超过5cm,所述温控系统使晶体生长时所述生长腔体内的径向温差不超过所述生长腔体内平均温度的0.075%。
  4. 根据权利要求1所述的装置,其特征在于,所述生长腔体的半径大于5cm且不超过8cm,所述温控系统使晶体生长时所述生长腔体内的径向温差不超过所述生长腔体内平均温度的0.15%。
  5. 根据权利要求1所述的装置,其特征在于,所述生长腔体的半径大于8cm且不超过10cm,所述温控系统使晶体生长时所述生长腔体内的径向温差不超过所述生长腔体内平均温度的0.2%。
  6. 根据权利要求1所述的装置,其特征在于,所述生长腔体的半径大于10cm,所述温控系统使晶体生长时所述生长腔体内的径向温差不超过所述生长腔体内平均温度的0.3%。
  7. 根据权利要求1所述的装置,其特征在于,所述温控系统使晶体生长时所述生长腔体内的径向温差至少在晶体生长子区间内保持不超过所述生长腔体内平均温度的第一预设范围,其中,所述晶体生长子区间为晶体生长区间的前80%的时间段。
  8. 根据权利要求1所述的装置,其特征在于,所述温控系统使晶体生长时所述生长腔体内的径向温度梯度不超过预设径向温度梯度阈值。
  9. 根据权利要求8所述的装置,其特征在于,所述预设径向温度梯度阈值在0.1℃/cm-0.5℃/cm范围内。
  10. 根据权利要求1所述的装置,其特征在于,所述生长腔体的半径不超过5cm,所述温控系统使晶体生长时所述生长腔体内的径向温度梯度不超过0.1℃/cm-0.3℃/cm。
  11. 根据权利要求1所述的装置,其特征在于,所述生长腔体的半径大于5cm且不超过8cm,所述温控系统使晶体生长时所述生长腔体内的径向温度梯度不超过0.1℃/cm-0.37℃/cm。
  12. 根据权利要求1所述的装置,其特征在于,所述生长腔体的半径大于8cm且不超过10cm,所述温控系统使晶体生长时所述生长腔体内的径向温度梯度不超过0.15℃/cm-0.45℃/cm。
  13. 根据权利要求1所述的装置,其特征在于,所述生长腔体的半径大于10cm,所述温控系统使晶体生长时所述生长腔体内的径向温度梯度不超过0.15℃/cm-0.6℃/cm。
  14. 根据权利要求1所述的装置,其特征在于,所述温控系统使晶体生长时所述生长腔体内的轴向温度梯度维持稳定。
  15. 根据权利要求1所述的装置,其特征在于,所述温控系统包括:
    加热组件,所述加热组件包括至少一个加热单元;
    温度传感组件;
    控制组件,所述控制组件基于所述温度传感组件的信息控制所述至少一个加热单元的至少一个参数,使得晶体生长时所述生长腔体内的径向温差不超过所述生长腔体内平均温度的第一预设范围。
  16. 根据权利要求15所述的装置,其特征在于,所述控制组件还基于所述温度传感组件的信息控制所述至少一个加热单元的至少一个参数,使得晶体生长时所述生长腔 体内的轴向温度梯度维持稳定。
  17. 根据权利要求15或16所述的装置,其特征在于,所述至少一个参数包括电流或加热功率中的至少一个。
  18. 根据权利要求15所述的装置,其特征在于,
    所述至少一个加热单元位于所述生长腔体内部,
    所述至少一个加热单元包括至少一个流通通道,其中,
    所述至少一个流通通道开口于所述至少一个加热单元上表面,
    在晶体生长过程中,所述至少一个加热单元上表面放置源材料。
  19. 根据权利要求18所述的装置,其特征在于,所述加热单元至少包括两个以上流通通道,所述至少一个加热单元上表面中心区域的所述至少一个流通通道开口的密度小于所述至少一个加热单元边沿区域的所述至少一个流通通道开口的密度。
  20. 根据权利要求15所述的装置,其特征在于,
    所述加热组件包括至少两个加热单元,其中,
    所述至少两个加热单元中的至少一个加热单元位于所述生长腔体外部,以及
    所述至少两个加热单元中的至少一个加热单元位于所述生长腔体内部,其中,
    位于所述生长腔体内部的所述至少一个加热单元包括至少一个流通通道,所述至少一个流通通道开口于所述生长腔体内部的所述至少一个加热单元上表面,
    在晶体生长过程中,位于所述生长腔体内部的所述至少一个加热单元上表面放置源材料。
  21. 根据权利要求20所述的装置,其特征在于,所述加热单元至少包括两个以上流通通道,位于所述生长腔体内部的所述至少一个加热单元上表面中心区域的所述至少一个流通通道开口的密度大于所述位于所述生长腔体内部的所述至少一个加热单元边沿区域的所述至少一个流通通道开口的密度。
  22. 根据权利要求18或20所述的装置,其特征在于,一个所述流通通道的截面积不大于所述源材料粒径的1.5倍。
  23. 根据权利要求18或20所述的装置,其特征在于,一个所述加热单元上表面的所述至少一个流通通道的开口面积总和为所述一个加热单元面积的20%-60%。
  24. 根据权利要求20所述的装置,其特征在于,位于所述生长腔体外部的所述至少一个加热单元部分环绕设置于所述生长腔体外周。
  25. 根据权利要求20所述的装置,其特征在于,位于所述生长腔体外部的所述至少一个加热单元包括至少三个第一加热单元,所述至少三个第一加热单元环绕设置于所述生长腔体的外部,分别对应于所述生长腔体内的结晶区域、所述生长腔体内的源材料区域以及所述结晶区域与所述源材料区域之间的气相传输区域的位置。
  26. 根据权利要求20所述的装置,其特征在于,位于所述生长腔体外部的所述至少一个加热单元位于所述生长腔体外部的上表面和/或下表面。
  27. 根据权利要求15所述的装置,其特征在于,
    所述至少一个加热单元通过至少一个导电电极连接到至少一个导电环,所述至少一个导电环位于所述至少一个加热单元的上表面或/和下表面。
  28. 根据权利要求15所述的装置,其特征在于,
    所述加热组件位于所述生长腔体外部,所述加热组件包括至少两个加热单元,其中,
    所述至少两个加热单元中的至少一个加热单元部分环绕设置于所述生长腔体外周,以及
    所述至少两个加热单元中的至少一个加热单元位于所述生长腔体外部的上表面和/或下表面。
  29. 根据权利要求15所述的装置,其特征在于,
    所述加热组件包括至少三个加热单元,所述至少三个加热单元环绕设置于所述生长 腔体的外部,分别对应于所述生长腔体内的结晶区域、所述生长腔体内的源材料区域以及所述结晶区域与所述源材料区域之间的气相传输区域的位置。
  30. 一种晶体制备装置,其特征在于,所述装置包括:
    生长腔体,用于放置籽晶和源材料;
    加热组件,用于加热所述生长腔体;以及
    温度补偿组件,用于在晶体生长过程中提供温度补偿,其中,
    所述温度补偿组件位于所述生长腔体上表面和/或下表面,以及
    所述温度补偿组件包括至少一个加热单元。
  31. 一种晶体制备装置,其特征在于,所述装置包括:
    生长腔体,用于放置籽晶和源材料,其中,
    所述籽晶置于所述生长腔体的顶部,
    所述源材料置于所述生长腔体的底部;
    加热组件,用于加热所述生长腔体,其中,
    所述加热组件位于所述生长腔体的外部,
    所述加热组件包括电阻式发热体。
  32. 一种晶体生长方法,其特征在于,所述方法包括:
    将籽晶和源材料置于生长腔体中生长晶体;
    在晶体生长过程中,基于温度传感组件的信息控制加热组件,使得晶体生长时所述生长腔体内的径向温差不超过所述生长腔体内平均温度的第一预设范围。
  33. 根据权利要求32所述的方法,其特征在于,所述方法还包括:
    在晶体生长过程中,基于温度传感组件的信息控制加热组件,使得晶体生长时所述生长腔体内的轴向温度梯度维持稳定。
  34. 一种籽晶的制备方法,包括:
    对多个待扩径六方晶型籽晶分别进行第一切割,得到切割面为相同晶面族的多个正六边形六方晶型籽晶;
    将所述多个正六边形六方晶型籽晶进行拼接;
    对拼接的所述多个正六边形六方晶型籽晶进行第二切割,得到待生长六方晶型籽晶;
    在第一设定条件下,对所述待生长六方晶型籽晶进行缝隙生长,得到六方晶型籽晶中间体;以及
    在第二设定条件下,对所述六方晶型籽晶中间体进行外延生长,得到目标六方晶型籽晶,其中,
    所述目标六方晶型籽晶的直径大于所述待扩径的六方晶型籽晶的直径。
  35. 根据权利要求34所述的方法,其特征在于,所述晶面族为
    Figure PCTCN2021085468-appb-100001
    Figure PCTCN2021085468-appb-100002
  36. 根据权利要求34所述的方法,其特征在于,所述将所述多个正六边形六方晶型籽晶进行拼接包括:
    以一个所述正六边形六方晶型籽晶为中心,所述为中心的正六边形六方晶型籽晶的六条边分别与六个不同的所述正六边形六方晶型籽晶的各一条边紧密拼接。
  37. 根据权利要求36所述的方法,其特征在于,所述对拼接的所述多个正六边形六方晶型籽晶进行第二切割包括:
    以所述为中心的正六边形六方晶型籽晶的中心点为圆心,以设定半径为半径,进行切割。
  38. 根据权利要求36所述的方法,其特征在于,所述为中心的正六边形六方晶型籽晶的表面积为所述目标六方晶型籽晶的表面积的25%-55%。
  39. 根据权利要求34所述的方法,其特征在于,所述第一设定条件包括第一设定温度、第一设定压力、第一设定碳硅比和设定缝隙生长时间,其中,
    所述第一设定温度在1000℃-2000℃范围内,
    所述第一设定压力在10Pa-1000Pa范围内,以及
    所述第一设定碳硅比在1.0-10.0范围内。
  40. 根据权利要求34所述的方法,其特征在于,所述第二设定条件包括第二设定 温度、第二设定压力和第二设定碳硅比,其中,
    所述第二设定温度在1100℃-2000℃范围内,
    所述第二设定压力在10Pa-1000Pa范围内,以及
    所述第二设定碳硅比在0.1-2范围内。
  41. 根据权利要求34所述的方法,其特征在于,所述方法还包括:
    进行所述缝隙生长之前,在第三设定条件下对所述待生长六方晶型籽晶进行原位刻蚀,以提高所述待生长六方晶型籽晶的表面平整度。
  42. 根据权利要求41所述的方法,其特征在于,所述第三设定条件包括通入预设流量的设定气体、第三设定温度和设定预设压力,其中,
    所述设定气体为氢气,所述设定流量在5L/min-200L/min范围内,
    所述第三设定温度在1200℃-1500℃范围内,以及
    所述第三设定压力在1kPa-12kPa范围内。
  43. 根据权利要求34所述的方法,其特征在于,所述目标六方晶型籽晶的直径不小于所述待扩径的六方晶型籽晶的直径的两倍。
PCT/CN2021/085468 2020-05-06 2021-04-02 一种晶体制备装置及生长方法 WO2021223557A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022566702A JP2023524962A (ja) 2020-05-06 2021-04-02 結晶の製造装置及び成長方法
EP21800098.2A EP4130349A4 (en) 2020-05-06 2021-04-02 CRYSTAL PRODUCTION APPARATUS AND GROWTH METHOD
US17/520,815 US11408089B2 (en) 2020-05-06 2021-11-08 Devices and methods for growing crystals
US17/815,219 US20220356599A1 (en) 2020-05-06 2022-07-27 Devices and methods for growing crystals
US18/482,847 US20240110307A1 (en) 2020-05-06 2023-10-06 Methods and systems for producing composite crystals

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010373329.8A CN111254486A (zh) 2020-05-06 2020-05-06 一种晶体制备装置
CN202010373329.8 2020-05-06
CN202010626511.XA CN111501096B (zh) 2020-07-02 2020-07-02 一种晶体制备装置
CN202010626511.X 2020-07-02

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US17/451,647 Continuation-In-Part US20220316093A1 (en) 2020-05-06 2021-10-21 Methods and systems for preparing composite crystals

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/520,815 Continuation US11408089B2 (en) 2020-05-06 2021-11-08 Devices and methods for growing crystals

Publications (1)

Publication Number Publication Date
WO2021223557A1 true WO2021223557A1 (zh) 2021-11-11

Family

ID=78467789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/085468 WO2021223557A1 (zh) 2020-05-06 2021-04-02 一种晶体制备装置及生长方法

Country Status (4)

Country Link
US (2) US11408089B2 (zh)
EP (1) EP4130349A4 (zh)
JP (1) JP2023524962A (zh)
WO (1) WO2021223557A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104120489A (zh) * 2008-12-08 2014-10-29 Ii-Vi有限公司 高晶体质量的SiC单晶晶锭及其形成方法
CN106048715A (zh) * 2016-07-12 2016-10-26 江苏拜尔特光电设备有限公司 一种控制碳化硅单晶生长径向温度梯度的装置及方法
US20180057925A1 (en) * 2016-08-26 2018-03-01 National Chung Shan Institute Of Science And Technology Device for growing monocrystalline crystal
CN110541199A (zh) * 2019-10-11 2019-12-06 山东大学 一种直径8英寸及以上尺寸高质量SiC籽晶的制备方法
CN111074348A (zh) * 2019-12-17 2020-04-28 山东天岳先进材料科技有限公司 一种降低晶体内部应力的退火处理方法及装置
CN111254486A (zh) * 2020-05-06 2020-06-09 眉山博雅新材料有限公司 一种晶体制备装置
CN111501096A (zh) * 2020-07-02 2020-08-07 眉山博雅新材料有限公司 一种晶体制备装置

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6041036B2 (ja) 1982-08-27 1985-09-13 財団法人 半導体研究振興会 GaAs浮遊帯融解草結晶製造装置
US5343827A (en) 1992-02-19 1994-09-06 Crystal Technology, Inc. Method for crystal growth of beta barium boratean
US6800136B2 (en) * 2000-03-13 2004-10-05 Ii-Vi Incorporated Axial gradient transport apparatus and process
CN1261622C (zh) 2003-11-14 2006-06-28 中国科学院物理研究所 物理气相传输生长碳化硅单晶的方法及其装置
US7794842B2 (en) 2004-12-27 2010-09-14 Nippon Steel Corporation Silicon carbide single crystal, silicon carbide single crystal wafer, and method of production of same
US8152921B2 (en) 2006-09-01 2012-04-10 Okmetic Oyj Crystal manufacturing
US8628621B2 (en) 2007-12-31 2014-01-14 Jusung Engineering Co., Ltd. Gas injector and film deposition apparatus having the same
CN101323973A (zh) 2008-07-04 2008-12-17 绍兴县精工机电研究所有限公司 一种多晶硅定向长晶热场结构
CA2764900A1 (en) * 2009-10-30 2011-05-05 Sumitomo Electric Industries, Ltd. Method for manufacturing silicon carbide substrate and silicon carbide substrate
US20120032191A1 (en) * 2009-10-30 2012-02-09 Sumitomo Electric Industries, Ltd. Method for manufacturing silicon carbide substrate and silicon carbide substrate
JP2011246315A (ja) * 2010-05-28 2011-12-08 Sumitomo Electric Ind Ltd 炭化珪素基板およびその製造方法
JP5594198B2 (ja) * 2011-03-16 2014-09-24 富士通株式会社 電子部品及び電子部品組立装置
JP6025306B2 (ja) * 2011-05-16 2016-11-16 株式会社豊田中央研究所 SiC単結晶、SiCウェハ及び半導体デバイス
EP2851456A1 (en) * 2012-04-20 2015-03-25 II-VI Incorporated Large Diameter, High Quality SiC Single Crystals, Method and Apparatus
CN202717878U (zh) 2012-07-27 2013-02-06 浙江宏业新能源有限公司 一种多晶铸锭炉控制系统的侧温加热控制装置
CN102978691A (zh) 2012-12-13 2013-03-20 苏州工业园区杰士通真空技术有限公司 一种新型蓝宝石晶体生长炉加热系统
JP6090998B2 (ja) 2013-01-31 2017-03-08 一般財団法人電力中央研究所 六方晶単結晶の製造方法、六方晶単結晶ウエハの製造方法
CN104152992A (zh) 2014-08-06 2014-11-19 江西赛维Ldk太阳能高科技有限公司 一种籽晶的铺设方法、准单晶硅片的制备方法及准单晶硅片
CN104313693B (zh) 2014-09-19 2017-01-18 北京雷生强式科技有限责任公司 掺杂钇铝石榴石激光晶体的生长装置、晶体生长炉及制备方法
US9845549B2 (en) * 2014-10-31 2017-12-19 Sumitomo Electric Industries, Ltd. Method of manufacturing silicon carbide single crystal
CN204417642U (zh) 2014-12-11 2015-06-24 河北同光晶体有限公司 一种用于制备碳化硅晶体的加热装置
CN105040104A (zh) 2015-06-25 2015-11-11 江苏艾科勒科技有限公司 一种制备厚碳化硅单晶晶锭的方法
KR102106722B1 (ko) * 2015-07-29 2020-05-04 쇼와 덴코 가부시키가이샤 에피택셜 탄화규소 단결정 웨이퍼의 제조 방법
CN105316758A (zh) 2015-11-11 2016-02-10 常州天合光能有限公司 一种籽晶的铺设方法及铸锭单晶生长方法
CN105525351A (zh) 2015-12-24 2016-04-27 中国科学院上海硅酸盐研究所 一种高效SiC晶体扩径方法
US20170321345A1 (en) 2016-05-06 2017-11-09 Ii-Vi Incorporated Large Diameter Silicon Carbide Single Crystals and Apparatus and Method of Manufacture Thereof
CN106048729B (zh) 2016-06-28 2019-04-09 山东天岳先进材料科技有限公司 一种pvt法大直径碳化硅单晶生长装置
CN106435732B (zh) 2016-08-30 2019-08-30 河北同光晶体有限公司 一种快速制备大尺寸SiC单晶晶棒的方法
CN106119954B (zh) * 2016-08-31 2018-11-06 台州市一能科技有限公司 一种碳化硅单晶制造装置
CN107916454A (zh) 2016-09-14 2018-04-17 苏州奥趋光电技术有限公司 一种用于氮化铝晶体生长炉的热场
CN108018605A (zh) 2016-11-03 2018-05-11 北京七星华创电子股份有限公司 籽晶处理方法及碳化硅晶体生长方法
CN106637410B (zh) 2016-12-30 2019-03-26 珠海鼎泰芯源晶体有限公司 坩埚装置
CN106906515A (zh) 2017-04-20 2017-06-30 山东大学 一种能实现温度场实时调整的SiC单晶生长装置及利用该装置生长SiC单晶的方法
CN207391600U (zh) 2017-10-24 2018-05-22 福建北电新材料科技有限公司 一种碳化硅晶体的生长设备
CN207845760U (zh) 2017-12-14 2018-09-11 深圳先进技术研究院 一种具有网栅导热件的热蒸发坩埚组件
CN108277534A (zh) 2018-04-27 2018-07-13 济南金曼顿自动化技术有限公司 一种石墨电阻加热SiC晶体生长炉
CN208151525U (zh) 2018-04-27 2018-11-27 济南金曼顿自动化技术有限公司 一种石墨电阻加热SiC晶体生长炉
CN209062038U (zh) 2018-11-14 2019-07-05 苏州傲尔林格塑胶有限公司 一种耳机线材加工装置
JP7264343B2 (ja) 2019-02-20 2023-04-25 パナソニックホールディングス株式会社 Iii族窒化物結晶の製造方法および種基板
CN111088524B (zh) 2019-12-24 2021-03-26 山东天岳先进科技股份有限公司 一种大尺寸碳化硅单晶、衬底及制备方法和使用的装置
CN111088525B (zh) 2019-12-26 2021-03-19 山东天岳先进科技股份有限公司 一种制备单晶的装置和碳化硅单晶的制备方法
CN111235630A (zh) 2020-03-26 2020-06-05 哈尔滨科友半导体产业装备与技术研究院有限公司 一种pvt法双籽晶单晶制备方法及热场

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104120489A (zh) * 2008-12-08 2014-10-29 Ii-Vi有限公司 高晶体质量的SiC单晶晶锭及其形成方法
CN106048715A (zh) * 2016-07-12 2016-10-26 江苏拜尔特光电设备有限公司 一种控制碳化硅单晶生长径向温度梯度的装置及方法
US20180057925A1 (en) * 2016-08-26 2018-03-01 National Chung Shan Institute Of Science And Technology Device for growing monocrystalline crystal
CN110541199A (zh) * 2019-10-11 2019-12-06 山东大学 一种直径8英寸及以上尺寸高质量SiC籽晶的制备方法
CN111074348A (zh) * 2019-12-17 2020-04-28 山东天岳先进材料科技有限公司 一种降低晶体内部应力的退火处理方法及装置
CN111254486A (zh) * 2020-05-06 2020-06-09 眉山博雅新材料有限公司 一种晶体制备装置
CN111501096A (zh) * 2020-07-02 2020-08-07 眉山博雅新材料有限公司 一种晶体制备装置

Also Published As

Publication number Publication date
EP4130349A4 (en) 2023-10-18
US20220056612A1 (en) 2022-02-24
US11408089B2 (en) 2022-08-09
EP4130349A1 (en) 2023-02-08
US20220356599A1 (en) 2022-11-10
JP2023524962A (ja) 2023-06-14

Similar Documents

Publication Publication Date Title
CN113106541B (zh) 一种晶体制备装置及生长方法
CN111088524B (zh) 一种大尺寸碳化硅单晶、衬底及制备方法和使用的装置
CN111058088B (zh) 一种用于pvt法制备单晶的长晶炉及其应用
CN111172592B (zh) 一种掺杂碳化硅单晶、衬底及制备方法和使用的装置
WO1997031133A1 (en) A susceptor for a device for epitaxially growing objects and such a device
JP6937525B2 (ja) 大型サイズ高純度炭化ケイ素単結晶、基板及びその製造方法並びに製造用装置
TW201807272A (zh) 一種用於成長單晶晶體之裝置
CN111501096B (zh) 一种晶体制备装置
JP2008110907A (ja) 炭化珪素単結晶インゴットの製造方法及び炭化珪素単結晶インゴット
JP5179690B2 (ja) 炭化ケイ素の大型単結晶を作るための軸芯勾配輸送装置及び方法
CN113151897A (zh) 一种坩埚结构
CN107190322B (zh) 一种大尺寸电阻率可调的碳化硅多晶陶瓷的生长方法
TWI794853B (zh) 包含成長坩堝的晶體生長設備及使用成長坩堝的方法
TW202117100A (zh) 碳化矽錠之製備方法、碳化矽晶圓之製備方法以及其系統
WO2021223557A1 (zh) 一种晶体制备装置及生长方法
US20140158042A1 (en) Apparatus for fabricating ingot
CN211497863U (zh) 一种用于pvt法制备单晶的坩埚组件和长晶炉
JP2014024703A (ja) 炭化珪素単結晶の製造方法
CN110306238A (zh) 一种晶体生长装置及晶体生长方法
TWI837924B (zh) 碳化矽晶圓製造方法以及碳化矽錠製造方法
RU2811353C1 (ru) Способ получения монокристаллического SiC
CN115558987B (zh) 一种用于升华法生长晶体的坩埚装置
WO2021129270A1 (zh) 一种碳化硅单晶、衬底和制备用装置
TW202323601A (zh) 碳化矽晶圓製造方法以及碳化矽錠製造方法
US8303924B2 (en) Production method for a low-dislocation bulk AlN single crystal and low-dislocation monocrystalline AlN substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21800098

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022566702

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021800098

Country of ref document: EP

Effective date: 20221101

NENP Non-entry into the national phase

Ref country code: DE