WO2021223519A1 - 基于光子准晶材料的透明隔热防紫外线薄膜及其制备方法 - Google Patents

基于光子准晶材料的透明隔热防紫外线薄膜及其制备方法 Download PDF

Info

Publication number
WO2021223519A1
WO2021223519A1 PCT/CN2021/081544 CN2021081544W WO2021223519A1 WO 2021223519 A1 WO2021223519 A1 WO 2021223519A1 CN 2021081544 W CN2021081544 W CN 2021081544W WO 2021223519 A1 WO2021223519 A1 WO 2021223519A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
shell
layer
functional
core
Prior art date
Application number
PCT/CN2021/081544
Other languages
English (en)
French (fr)
Inventor
汪长春
Original Assignee
复旦大学
中山复旦联合创新中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 复旦大学, 中山复旦联合创新中心 filed Critical 复旦大学
Publication of WO2021223519A1 publication Critical patent/WO2021223519A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/25Plastics; Metallised plastics based on macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • C09J7/255Polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/003Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2451/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3009Sulfides
    • C08K2003/3036Sulfides of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2433/00Presence of (meth)acrylic polymer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2467/00Presence of polyester
    • C09J2467/006Presence of polyester in the substrate

Definitions

  • the invention belongs to the technical field of film materials, and specifically relates to a transparent heat-insulating and ultraviolet-proof film and a preparation method thereof.
  • Transparent thermal insulation and explosion-proof film is a functional film attached to vehicle glass or architectural glass. Without reducing the effective area of the glass, it can achieve the purpose of energy saving and UV protection by improving the barrier performance of the glass.
  • glass film mainly prepares infrared and ultraviolet shielding materials to be attached to the glass surface. This technology can solve the problem well. Glass heat insulation and ultraviolet shielding problems, and flexible application, but the current cost of this type of film is still very high, it is difficult to be widely used.
  • the purpose of the present invention is to provide a transparent thermal insulation based on the characteristics of photonic quasicrystals, which has high transparency, good thermal insulation effect, strong UV resistance, good weather resistance and low cost. Ultraviolet composite film and preparation method thereof.
  • the transparent heat-insulating and UV-proof composite film based on photonic quasi-crystal material provided by the present invention has a photon quasi-crystal structure formed by polymer microspheres doped with infrared functional nano-particles in an orderly stacked arrangement, and the structural color and transparency are adjustable. Excellent heat insulation, UV protection and explosion-proof performance.
  • the transparent heat-insulating and UV-proof composite film based on photonic quasi-crystal material provided by the present invention includes a transparent substrate layer, a photonic quasi-crystal functional film layer, an adhesive layer and a peelable protective layer; the photon quasi-crystal film is made of Regularly stacked polymer core-shell structure microspheres and infrared functional nanoparticles are formed through a specific processing technology. They have a wide range of adjustable structural colors and optical transparency, and have excellent transparency, heat insulation and UV protection; among them:
  • the transparent substrate is a polyethylene terephthalate (PET) film or a polyethylene terephthalate film coated with a hardened coating on the surface;
  • PET polyethylene terephthalate
  • the adhesive layer is a polyacrylate adhesive, used for bonding the photonic quasi-crystalline functional film layer and the peelable layer, and used for direct bonding with glass in the later stage;
  • the photonic quasi-crystal functional film layer is composed of two materials.
  • One is a core-shell structure polymer nanosphere, which includes a core microsphere, an intermediate layer and a shell layer.
  • the refractive index of the core microsphere is n1, and the shell layer
  • the refractive index is n2;
  • the other material is nano-particles with infrared function (that is, infrared absorption capacity); the two materials are mixed in a certain proportion, and through the film forming process, the nuclear microspheres with the refractive index of n1 are present in the three-dimensional space.
  • the difference between the refractive index n1 of the core microsphere and the refractive index n2 of the shell microsphere is between 0.01 and 1.5; preferably, the difference in refractive index is between 0.1 and 1.2; more preferably, the difference in refractive index is between 0.3 and 0.5 between;
  • the transparency of the photonic quasi-crystal functional film and the efficiency of blocking ultraviolet light can be changed by adjusting the refractive index of the core material with a refractive index of n1 and the shell material with a refractive index of n2; Change the size of the regularly arranged microspheres in the photonic crystal material to control the transparency of the photonic quasi-crystal functional film and the efficiency of blocking ultraviolet light; it is also possible to change the color of the photonic quasi-crystal functional film by changing the order of the arrangement of functional nanoparticles And transparency, so as to achieve the effect of modulating the appearance state; it is also possible to change the infrared blocking efficiency of the photonic quasi-crystal functional film by changing the content of functional nanoparticles.
  • the size of the core-shell microspheres is 40-300 nanometers, the thickness of the intermediate layer is 5-50 nanometers, and the thickness of the shell layer is 50-500 nanometers.
  • the polydispersity of the core-shell microspheres The index (PDI) is less than 0.15.
  • the nuclear microspheres in order to obtain an ideal UV light blocking effect, have an average particle size of 40nm to 300nm; preferably, the average particle size is 50nm to 200nm; more preferably, the average particle size is 60nm to 150nm; further preferably Ground, the average particle size is 80nm to 120nm.
  • infrared functional nanoparticles are a class of inorganic nanoparticles with good infrared absorption capacity, including cesium tungsten bronze, antimony tin oxide, indium tin oxide, zinc sulfide, etc., preferably cesium tungsten bronze.
  • the mass ratio of infrared functional nanoparticles and core-shell microspheres is between 1:100 and 1:2; preferably, the mass ratio of functional nanoparticles and core-shell microspheres is between 1:50 and 1:4. More preferably, the mass ratio is between 1:25 and 1:10.
  • the core microsphere material is selected from polymers of styrene, methyl methacrylate, ethylene glycol diacrylate and divinylbenzene monomer;
  • the shell material is a polyacrylate copolymer;
  • the monomer of the polyacrylate material is one of ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate or Several types; the glass transition temperature of the shell polymer can be adjusted by adjusting the composition of the polyacrylate monomer to meet the actual processing requirements;
  • the intermediate layer is a cross-linked polymer layer, and the cross-linking of the intermediate layer is through the bifunctional Or multifunctional monomers occur.
  • the shell layer is formed of a thermoplastic polymer.
  • the core microspheres can maintain the stability of their own structure. This performance can be achieved by using polymer materials with high glass transition temperature or This is achieved by cross-linking.
  • the core microspheres and functional nanoparticles are dispersed in the matrix material formed by the shell layer in a close-packed manner; preferably, the core microspheres and functional nanoparticles are dispersed in the shell in a uniformly layered manner.
  • a quasi-crystalline structure is formed in the matrix material formed by the layer.
  • the photonic quasicrystalline film material also contains auxiliary agents and additives, which are used to provide the specific properties required by the material; the auxiliary agents and additives are UV stabilizers, film-forming agents, and photocuring agents.
  • auxiliary agents and additives are UV stabilizers, film-forming agents, and photocuring agents.
  • the thickness of the photonic crystal film is 10 ⁇ m to 600 ⁇ m.
  • the thickness of the transparent substrate is 50 ⁇ m to 150 ⁇ m.
  • the thickness of the adhesive layer is 20 ⁇ m to 125 ⁇ m.
  • the peelable layer is a transparent PET release film.
  • the method for preparing the transparent heat-insulating and ultraviolet-proof composite film based on the photonic quasi-crystal material of the present invention includes the following specific steps:
  • the infrared functional nanoparticle slurry prepared above is added to the core-shell microsphere emulsion and mixed uniformly to obtain a pre-emulsion dispersion; wherein the ratio of functional nanoparticles to core-shell microspheres is 1:100 to 1
  • the ratio of functional nanoparticles to core-shell microspheres is between 1:50 and 1:4; more preferably, the ratio of functional nanoparticles and core-shell microspheres is between 1:25 and 1: Between 10;
  • the functional nanoparticles and core microspheres are arranged in the matrix material formed by the shell layer; the processing temperature is 40 ⁇ higher than the glass transition temperature of the shell material of the core-shell microspheres. 70°C.
  • the mechanical force can use known common equipment and special processing equipment for polymer processing.
  • the specific process is as follows: The transparent substrate uniformly coated with the pre-emulsion dispersion is dried in a drying tunnel with a length of 20-60 meters and a temperature of 80°C to obtain a polymer film with a certain width and thickness, usually 0.5-1.8 meters wide. , 10 ⁇ 600 microns thick, and then cover a layer of release PET film on it, which can be peeled off.
  • the micro-stress rolling is applied to make it smooth and fit together at a speed of 1-50 m/min, and then pass through a uniaxial oscillating shearing and regularization device at a speed of 1-10 m/min to make the nuclear microspheres and functional nanospheres
  • the particles are arranged in a continuous matrix formed by the shell layer according to the required structure to form a photonic quasi-crystal layer with a thickness of 10 to 600 microns; the pressing temperature is adjusted according to the glass transition temperature of the shell, which is generally 40 to higher than the glass transition temperature of the shell.
  • the photonic quasi-crystalline functional film is obtained after the final rewinding.
  • the transparent heat-insulating and anti-ultraviolet film based on photonic quasi-crystal material provided by the present invention can change the transparency of the film, the efficiency of heat insulation and blocking ultraviolet rays, and the shielding of ultraviolet light by changing the core-shell microsphere structure and the addition amount of functional nanoparticles.
  • the rate can reach 99%, the light transmittance in the visible light region can reach more than 80%, and the heat insulation rate can reach 50-85%. It has excellent transparent heat insulation and UV protection; it can be used for energy saving and explosion-proof of automobile and architectural glass.
  • Fig. 1 is a schematic diagram of the structure of the novel photonic quasi-crystal transparent heat-insulating and anti-ultraviolet film of the present invention.
  • Figure 2 is the UV-visible spectrum of the photonic quasi-crystal transparent heat-insulating and UV-resistant film prepared by the knife coating method.
  • a transparent heat-insulating anti-ultraviolet film based on photonic quasi-crystal material includes a transparent substrate layer, a photonic quasi-crystal functional film layer, an adhesive layer and a peelable protective layer;
  • the transparent substrate is a PET film with a thickness of 150 microns
  • the photonic quasi-crystal functional film layer is a photonic crystal film composed of core-shell microspheres with a particle size of 280 nanometers and cesium tungsten bronze particles with a particle size of 90 nanometers.
  • the photonic quasi-crystal functional film layer is coated on a transparent PET substrate by a roller coating method, and then the nuclear microspheres and functional nanoparticles in the regular film are uniaxially pressed to obtain the photonic quasi-crystal functional film layer;
  • a polyacrylate adhesive layer is coated on the photonic quasi-crystal functional film layer, and the release PET is laminated, and then pressed to obtain a transparent heat-insulating and UV-resistant composite film.
  • the preparation process of the transparent heat-insulating and anti-ultraviolet composite film is as follows:
  • the specific method is as follows: heat the heat transfer medium of a 10L glass reactor to 85°C. Weigh 1.5g of sodium lauryl sulfate, 2800g of deionized water, 4g of ethylene glycol diacrylate and 36g of styrene monomer, put them in a beaker, stir with a magnetic force to a uniform dispersion, add them to the reactor, and stir. At 60 rpm, when the emulsion temperature rises to 85°C, an initiator is added to initiate the polymerization reaction. The initiator is prepared for immediate use: Weigh 2.5g of sodium persulfate in a centrifuge tube, add 30mL of deionized water and shake to dissolve it and add it to the reactor. After adding, blue opalescence appears about two minutes after adding, indicating that particles are formed and the reaction Start. Continue the reaction for 20 minutes to obtain the polystyrene seed emulsion;
  • ME1 was added to the polystyrene seed emulsion at a dropping rate of 10 mL/min, and the reaction temperature was maintained at 85°C. The emulsion gradually turns white. After the dripping is finished, keep it warm for 30 minutes to obtain the polystyrene microsphere emulsion;
  • ME2 is made up of 1g sodium lauryl sulfate, 320g deionized water, 2.5g Dowfax 2A1, 250g ethyl acrylate and 30g allyl methacrylate, and keeps the monomer emulsion stirred.
  • ME2 was added dropwise at a rate of 14 mL/min. After dripping, keep at 85°C for 15min, and then drip the monomer emulsion ME3 at a rate of 14mL/min.
  • ME3 is made up of 5.5g sodium lauryl sulfate, 2.5g sodium hydroxide, 3g Dowfax 2A1, 1260g deionized water, and 1400g butyl acrylate. After dripping and holding for 1 hour, keep stirring and cool to room temperature to complete the reaction, and filter with a 325 mesh filter cloth to obtain a core-shell microsphere emulsion.
  • the size of the obtained polymer microspheres is 280nm, and the polydispersity index PDI of the microspheres is 0.08;
  • an aqueous dispersion of functional nanoparticles (also called slurry) is prepared.
  • the method is to mix functional nano-particle powder, aqueous dispersant and water, and prepare an aqueous stable dispersion of functional nano-particles through ball milling.
  • the pre-emulsion dispersion prepared in the previous step add appropriate additives such as UV stabilizers, light curing agents, film-forming agents and leveling agents as needed, and then adjust the viscosity of the above-mentioned pre-emulsion dispersion to 50 with a viscosity modifier.
  • ⁇ 80 ripipals (cP) the pre-emulsion dispersion prepared above is uniformly coated on the PET base film by a roller coating method, and then dried through a 25-meter-long 80°C drying tunnel to obtain a width of 1 meter and a thickness of 150 microns
  • the polymer film (can be coated as many times as needed to reach the target thickness).
  • the upper layer is covered with a release PET film, and the composite film structure is smoothed by micro-stress rolling at a speed of 30 m/min.
  • it passes through a uniaxial oscillating shear regularization device at a speed of 5 m/min.
  • the core microspheres and functional nanoparticles are arranged in the continuous matrix formed by the shell layer according to the required structure to form a photonic quasicrystalline layer with a thickness of about 150 microns, a pressing temperature of 80°C, and finally winding to prepare a photonic quasicrystalline functional layer.
  • the photonic quasicrystalline functional layer is then dried through a 20-meter-long 80°C drying tunnel to obtain an adhesive layer with a width of 1 meter and a thickness of 50 microns, which is compounded on the photonic quasicrystalline layer. Then, the release PET film is covered on the three-layer structure film, and the composite film structure is smoothed by micro-stress rolling at a rolling speed of 50 m/min. Finally, a transparent heat-insulating UV-resistant photon quasi-crystalline film is obtained.
  • the ultraviolet light shielding rate of the film is 99%, the light transmittance in the visible light region can reach 85%, and the heat insulation rate can reach 73%, and it has excellent transparent heat insulation and UV protection performance.
  • the ultraviolet-visible spectrum of the film is shown in Figure 2.
  • the structure of the transparent heat-insulating and anti-ultraviolet film is the same as in Example 1.
  • the specific preparation process is as follows:
  • the amount of sodium lauryl sulfate added was changed to 1.80 g to prepare the seed emulsion, and then the core-shell emulsion was obtained through stepwise polymerizing, and the final product was polymer microspheres.
  • the size is 252nm, and the polydispersity index PDI of the microspheres is 0.12;
  • Example 2 The same experimental procedure as in Example 1 was used to prepare aqueous functional nanoparticle slurry, and then 50g infrared functional nanoparticle slurry and 1000g core-shell microsphere emulsion were mixed and stirred evenly to obtain a functional thin film layer for preparing photonic quasicrystals. Of preformed emulsion dispersion;
  • pre-emulsion dispersion prepared in the previous step add an appropriate amount of UV stabilizer, light curing agent, film-forming agent and leveling agent, and then adjust the viscosity of the above-mentioned pre-emulsion dispersion to 500-800 cps (cP) through the viscosity modifier,
  • the pre-emulsion dispersion prepared above is uniformly coated on the PET base film by a knife coating method, and then dried through a 45-meter-long 80 °C drying tunnel to obtain a polymer film with a width of 1 meter and a thickness of 300 microns (according to actual conditions) Can be applied multiple times to increase the thickness).
  • the upper layer is covered with a release PET film, and the structure of the composite film is flattened by micro-stress rolling at a speed of 30 m/min.
  • it passes through a uniaxial oscillating shear regularization device at a speed of 4 m/min.
  • the core microspheres and functional nanoparticles are arranged in a continuous matrix formed by the shell layer according to the required structure to form a photonic quasicrystalline layer with a thickness of about 300 microns, a pressing temperature of 80°C, and finally winding to prepare a photonic quasicrystalline functional layer.
  • the composite of the PET release film is the same as in Example 1.
  • the transparent heat-insulating UV-proof photon quasi-crystal film has a UV shielding rate of 99%, a visible light transmittance rate of 81%, and a thermal insulation rate of 83%. Transparent heat insulation and anti-ultraviolet performance.
  • the structure of the transparent heat-insulating and anti-ultraviolet film is the same as in Example 1.
  • the specific preparation process is as follows:
  • the amount of sodium lauryl sulfate added was changed to 2.10 grams to prepare the seed emulsion, and then the core-shell emulsion was obtained through stepwise polymerizing.
  • the size of the polymer microspheres It is 231nm, and the polydispersity index PDI of the microspheres is 0.10;
  • Example 2 The same experimental procedure as in Example 1 was used to prepare an aqueous functional nanoparticle slurry, and then 60g of infrared functional nanoparticle slurry was mixed with 1000g of core-shell microsphere emulsion and stirred evenly to obtain a functional thin film layer for preparing photonic quasicrystals. Of preformed emulsion dispersion;
  • pre-emulsion dispersion prepared in the previous step add an appropriate amount of UV stabilizer, light curing agent, film-forming agent and leveling agent, and then adjust the viscosity of the pre-emulsion dispersion to 40-80 cps (cP) through the viscosity modifier,
  • the pre-emulsion dispersion prepared above is uniformly coated on the PET base film by spraying method, and then dried through a 25-meter-long 80 °C drying tunnel to obtain a polymer film with a width of 1 meter and a thickness of 100 microns (according to the actual situation) Apply multiple times to increase the thickness).
  • the upper layer is covered with a release PET film, and the structure of the composite film is flattened by micro-stress rolling at a speed of 35 m/min.
  • it passes through a uniaxial oscillating shear regularization device at a speed of 6 m/min to make
  • the core microspheres and functional nanoparticles are arranged in the continuous matrix formed by the shell layer according to the required structure to form a photonic quasicrystalline layer with a thickness of about 100 microns, a pressing temperature of 80°C, and finally winding to prepare a photonic quasicrystalline functional layer.
  • the composite of the PET release film is the same as in Example 1.
  • the transparent heat-insulating UV-proof photon quasi-crystal film has a UV shielding rate of 99%, a visible light transmittance rate of 87%, and a heat insulation rate of 68%. Transparent heat insulation and anti-ultraviolet performance.
  • the structure of the transparent heat-insulating and anti-ultraviolet film is the same as in Example 1.
  • the specific preparation process is as follows:
  • the preparation steps are the same as in Example 1.
  • the transparent heat-insulating UV-proof photonic quasicrystal film has a UV shielding rate of 99%, a visible light transmittance rate of 82%, and a heat insulation rate of 71%, which has excellent transparent heat insulation. Anti-ultraviolet performance.
  • the structure of the transparent heat-insulating and anti-ultraviolet film is the same as in Example 1.
  • the specific preparation process is as follows:
  • 65g Infrared functional nano particle slurry is mixed with 1000g core-shell microsphere emulsion and stirred evenly to obtain the pre-emulsion dispersion material for preparing the photonic quasi-crystal functional thin film layer;
  • the preparation steps are the same as in Example 1.
  • the transparent heat-insulating and anti-ultraviolet photonic quasi-crystal film has a UV shielding rate of 99%, a visible light transmittance rate of 81%, and a heat insulation rate of 72%. It has excellent transparent heat insulation. Anti-ultraviolet performance.
  • the structure of the transparent heat-insulating and anti-ultraviolet film is the same as in Example 1.
  • the specific preparation process is as follows:
  • the formulation of functional nanoparticle slurry was prepared by using nano indium tin oxide instead of cesium tungsten bronze. After the slurry was prepared, 60g infrared functional nanoparticle slurry was mixed with 1000g core-shell microsphere emulsion. Stir evenly to obtain the pre-emulsion dispersion material used to prepare the photonic quasi-crystal functional thin film layer;
  • the preparation steps are the same as in Example 1.
  • the transparent heat-insulating UV-proof photonic quasicrystal film obtained has a UV shielding rate of 99%, a visible light transmittance rate of 83%, and a thermal insulation rate of 69%. It has excellent transparency and thermal insulation. Anti-ultraviolet performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

一种基于光子准晶材料的透明隔热防紫外线复合薄膜及其制备方法,所述复合薄膜结构为透明基底层、光子准晶功能薄膜层、粘合剂层和可剥离层;光子准晶薄膜由三维有序堆积排列的聚合物核壳结构微球与红外功能纳米粒子通过特定工艺形成,拥有可调的结构色彩和光学透明性。可通过调控核壳微球的核微球大小、壳层厚度、折光指数以及红外功能纳米粒子含量来调控薄膜的结构色彩、透明度以及阻隔紫外及红外的波长范围,也可通过调控厚度来控制紫外及红外的阻隔效率。形成的复合薄膜,紫外光阻隔效率高,可见光透过率大,隔热效果好,具有优异的透明隔热防紫外线及防爆性能;可用于汽车及建筑玻璃的节能及防爆等。

Description

基于光子准晶材料的透明隔热防紫外线薄膜及其制备方法 技术领域
本发明属于薄膜材料技术领域,具体涉及一种透明隔热防紫外线薄膜及其制备方法。
背景技术
出于美观和有效利用日光等功能方面的原因,玻璃越来越多的应用于建筑领域和汽车行业,但有时其良好的透光性也使得太阳光照过强,带来一系列的问题。我们知道,到达地球表面的太阳光主要由红外光、可见光和紫外光组成,其中,辐射热量主要集中在可见光区和红外光区。另外,紫外光具有很高的能量,适量的紫外光有益于身体健康,但过强的紫外辐射容易伤害眼睛和皮肤并诱发疾病;紫外照射还是多数聚合物材料户外老化的最大诱因,导致性能下降,影响相关日常用品及工具的使用寿命。
为了降低能耗、减少紫外线损伤,提高日用品及交通工具的使用寿命,目前有大量的研究聚焦于具有隔热和紫外屏蔽功能的聚合物复合材料薄膜(中国发明专利CN109837033A;CN110654093A;CN 106117575 A)。透明隔热防爆薄膜是在车辆玻璃或建筑玻璃上贴一层功能薄膜,在不减少玻璃有效面积的前提下,可以通过提高玻璃的阻隔性能来达到节能和防紫外线的目的。相比于镀膜热反射玻璃(强反射,光污染)和真空玻璃(密封要求高,造价贵),玻璃贴膜主要将红外和紫外屏蔽材料制备成膜贴在玻璃表面,这种技术能够很好地解决玻璃隔热和紫外线屏蔽问题,并且应用灵活,但是该类薄膜目前造价仍然很高,难于广泛应用。
因此,在本领域急需一种透明隔热防紫外线防爆薄膜制备技术的突破,解决其大规模应用的性价比问题。
发明内容
针对目前该领域的现有技术的不足,本发明的目的在于提供一种基于光子准晶特性的,透明度高、隔热效果好、防紫外能力强、耐候性好、成本低的透明隔热防紫外线复合薄膜及其制备方法。
本发明提供的基于光子准晶材料的透明隔热防紫外线复合薄膜,具有红外功能纳米粒子掺杂的有序堆积排列的聚合物微球形成的光子准晶结构,结构色彩和透明度可调,具有优异的隔热、防紫外和防爆性能。
本发明提供的基于光子准晶材料的透明隔热防紫外线复合薄膜,依次为透明基材层、光子准晶功能薄膜层、粘合剂层和可剥离保护层;所述光子准晶薄膜是由规整堆积排列的聚合物核壳结构微球与红外功能纳米粒子通过特定的加工工艺形成的,拥有大范围可调的结构色彩和光学透明性,具有优异的透明隔热防紫外线能力;其中:
所述透明基材为聚对苯二甲酸乙二醇酯(PET)薄膜或表面涂有硬化涂层的聚对苯二甲酸乙二醇酯薄膜;
所述粘合剂层为聚丙烯酸酯类粘合剂,用于粘合光子准晶功能薄膜层和可剥离层,并用于后期与玻璃的直接贴合;
所述光子准晶功能薄膜层由两种材料复合而成,一种是核壳结构聚合物纳米微球,包括核微球、中间层和壳层,设核微球折光指数为n1,壳层折光指数为n2;另一种材料是具有红外功能(即红外吸收能力)的纳米粒子;两种材料按一定比例混合,通过薄膜成型工艺,使折光指数为n1的核微球在三维空间内有序排列在折光指数为n2的壳层形成的基质薄膜中;同时,红外功能纳米粒子分散在壳层形成的基质薄膜中,得到光子准晶功能薄膜。其中:
所述核微球的折光指数n1和壳微球的折光指数n2的差异在0.01~1.5之间;优选的,折光指数差异在0.1~1.2之间;更加优选地,折光指数差异在0.3~0.5之间;
所述光子准晶功能薄膜中,可以通过调整折光指数为n1的核材料和折光指数为n2的壳材料的折光指数,改变光子准晶功能薄膜的透明性及阻隔紫外光的效率;也可以通过改变光子晶体材料内规则排列的微球的尺寸,控制光子准晶功能薄膜的透明性及阻隔紫外光的效率;也可以通过改变功能纳米粒子排列的有序度,改变光子准晶功能薄膜的颜色和透明度,从而达到调变外观状态效果;也可以通过改变功能纳米粒子的含量,改变光子准晶功能薄膜的红外形阻隔效率。
本发明中,所述核壳结构纳米微球中,核微球的尺寸为40~300纳米,中间层厚度5~50纳米,壳层厚度为50~500纳米,核壳微球的多分散性指数(PDI)小于0.15。
本发明中,为了获得理想的紫外光阻隔效果,核微球具有40nm至300nm的平均粒径;优选的,平均粒径为50nm至200nm;更加优选地,平均粒径为60nm 至150nm;进一步优选地,平均粒径为80nm至120nm。
本发明中,红外功能纳米粒子是一类具有良好红外吸收能力的无机纳米粒子,包括铯钨青铜、氧化锡锑、氧化铟锡和硫化锌等,优选铯钨青铜。
本发明中,红外功能纳米粒子与核壳微球的质量比例在1:100至1:2之间;优选地,功能纳米粒子与核壳微球的质量比例在1:50至1:4之间;更优选地,质量比例在1:25至1:10之间。
本发明中,所述核微球材料选自苯乙烯、甲基丙烯酸甲酯、乙二醇二丙烯酸酯和二乙烯基苯单体的聚合物;所述壳层材料为聚丙烯酸酯共聚物;其中,聚丙烯酸酯类材料的单体为丙烯酸乙酯、丙烯酸丁酯、丙烯酸2-乙基己酯、甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸正丁酯的其中一种或几种;通过调控聚丙烯酸酯类单体的组成可以调控壳层聚合物的玻璃化温度,满足实际的加工要求;所述中间层是交联的聚合物层,中间层的交联通过二官能或多官能单体发生。
本发明中,所述壳层由热塑性聚合物形成,在薄膜材料加工过程中,核微球可以良好的保持自身结构的稳定性,此性能可以通过使用具有高玻璃化转变温度的聚合物材料或通过交联来实现。
本发明中,所述核微球和功能纳米粒子以密堆积的方式分散于壳层形成的基质材料中;优选地,所述核微球和功能纳米粒子以均匀层状堆积的方式分散于壳层形成的基质材料中,形成准晶结构。
本发明中,所述光子准晶薄膜材料中,还包含助剂和添加剂,这些组分用来提供材料所需的特定性能;所述助剂和添加剂为UV稳定剂、成膜剂、光固化剂、流平剂、脱模剂和粘度调节剂中一种或几种。
本发明中,所述光子晶体薄膜的厚度为10μm~600μm。
本发明中,所述透明基材厚度为50μm~150μm。
本发明中,所述粘合剂胶层的厚度为20μm~125μm。
本发明中,所述可剥离层为透明PET离型膜。
本发明的基于光子准晶材料的透明隔热防紫外线复合薄膜的制备方法,具体步骤为:
包括:在透明基材上制备光子准晶功能薄膜,再涂复粘合剂胶层,最后贴合透明PET离型膜;其中,光子准晶功能薄膜制备过程为:
(1)红外功能纳米粒子水性分散体(亦称浆料)的制备
将红外功能纳米粒子粉体、水性分散剂和水混合,经球磨制备得到功能纳米粒子的水性稳定分散体,具体是取30~50质量份的功能纳米粒子粉体,0.1~3质量份分散剂和50~70质量份的水搅拌均匀,然后泵入砂磨机中研磨3~5小时,得到红外功能纳米粒子浆料;
(2)核壳微球的制备
采用多步乳液聚合法制备(Nanoscale,2019,11,20015-2002),得到的核壳微球乳液在室温下可以稳定一年以上;
(3)然后将上述制备的红外功能纳米粒子浆料加入到核壳微球乳液中,混合均匀,得到预制乳液分散料;其中,功能纳米粒子与核壳微球的比例在1:100至1:2之间;优选地,功能纳米粒子与核壳微球的比例在1:50至1:4之间;更加优选地,功能纳米粒子与核壳微球的比例在1:25至1:10之间;
(4)将乳液分散料通过辊涂、喷涂或刮涂的方式,均匀涂敷在透明基底上;
(5)最后在机械力的作用下使功能纳米粒子和核微球在壳层形成的基质材料中完成合适的排列;其加工温度比核壳微球的壳材料的玻璃化转变温度高40~70℃。
本发明中,所述机械力作用可以采用已知的聚合物加工过程的常用设备及特殊加工设备。例如,单轴压制,双轴压延或层压加工等;优选地,利用单轴压制制备光子晶体膜。具体过程如下:将均匀涂敷了预制乳液分散料的透明基底,通过长度20~60米、温度80℃的烘道烘干,得到一定宽度和厚度的聚合物薄膜,通常为0.5~1.8米宽,10~600微米厚,然后,在其上面覆盖一层离型PET膜,可以剥离。接下来,经过微应力辊压使其平整贴合,速度在1~50米/分钟之间,然后以1~10米/分钟速度经过单轴震荡剪切规整设备,使核微球和功能纳米粒子按要求结构排列在壳层形成的连续基质中,形成光子准晶层,厚度为10~600微米之间;压制温度根据壳层的玻璃化温度调节,一般高于壳层玻璃化温度40~70℃,最后收卷即得到光子准晶功能薄膜。
最后,揭去PET离型膜,在光子准晶功能层表面按上述方法涂敷一层聚丙烯酸酯水性胶粘剂涂层,烘干并覆盖PET离型膜,经过微应力辊使PET离型膜贴合,速度在10~60米/分钟之间,最后得到透明隔热防紫外线光子准晶薄膜。
本发明提供的基于光子准晶材料的透明隔热防紫外线薄膜,可以通过改变核壳微球结构和功能纳米粒子添加量来改变薄膜的透明性、隔热和阻挡紫外线的效率,紫外光的屏蔽率可达99%,可见光区透光率可以达到80%以上,隔热率达到50~85%,具有优异的透明隔热防紫外线性能;可用于汽车及建筑玻璃的节能及防爆。
附图说明
图1为本发明新型光子准晶透明隔热防紫外线薄膜的结构示意图。
图2为刮涂法制备光子准晶透明隔热防紫外线薄膜的紫外可见光谱。
图中标记说明如下:
1——透明基材层;
2——光子准晶功能薄膜层;
3——粘合剂层;
4——可剥离保护层。
具体实施方式
以下结合具体的实施例对上述方案进行进一步说明,以使本发明的优点和特点被本领域的相关技术人员更好得理解。应理解为,在不脱离本发明实施例原理的前提下,所述实施例仅帮助理解本发明,不应视为对本发明的具体限制。
实施例1
一种基于光子准晶材料的透明隔热防紫外线薄膜,如图1所示,包括透明基材层、光子准晶功能薄膜层、粘合剂层和可剥离保护层;
其中,透明基材为PET膜,厚度为150微米;光子准晶功能薄膜层由粒径为280纳米的核壳微球和粒径为90纳米铯钨青铜颗粒的组成的光子晶体薄膜,厚度150微米;
光子准晶功能薄膜层是通过辊涂的方法涂敷在透明PET基底上,然后通过单轴压制规整薄膜中的核微球和功能纳米粒子,得到光子准晶功能薄膜层;
然后在光子准晶功能薄膜层上面涂敷聚丙烯酸酯粘合剂层,贴合离型PET后,进行压合,得到透明隔热防紫外线复合薄膜。
所述透明隔热防紫外线复合薄膜的制备过程如下:
(1)制备单分散的核壳聚合物乳液
具体方法如下:将10L玻璃反应釜的传热介质加热到85℃。称取1.5g十二烷基硫酸钠、2800g去离子水、4g乙二醇二丙烯酸酯和36g苯乙烯单体,放于烧杯中,用磁力搅拌至均匀分散液,加入到反应釜中,搅拌60rpm,待乳液温度升到85℃后加入引发剂引发聚合反应。引发剂现配现用:称取2.5g过硫酸钠于离心管中,加入30mL去离子水摇晃溶解后加入到反应釜中,加入后大约两分钟出现蓝色乳光,说明有粒子生成,反应开始。继续反应20min,即得到聚苯乙烯种子乳液;
称取6.4g十二烷基硫酸钠、6g Dowfax 2A1、1200g去离子水、4g氢氧化钠、70g乙二醇二丙烯酸酯和700g苯乙烯单体,放于锥型瓶中,在磁力搅拌下配成单体乳液,记为ME1,并维持乳液搅拌状态。称取2.5g过硫酸钠于离心管中,加入30mL去离子水摇晃溶解后加入ME1中。用计量泵将ME1以10mL/min的滴加速度加入到聚苯乙烯种子乳液中,维持反应温度85℃。乳液逐渐变白,滴加结束后,保温30分钟,即得到聚苯乙烯微球乳液;
称取2.5g过硫酸钠溶于30mL水中,加入到单体乳液ME2中。ME2由1g十二烷基硫酸钠、320g去离子水、2.5g Dowfax 2A1,、250g丙烯酸乙酯和30g甲基丙烯酸烯丙酯配置而成,并维持单体乳液搅拌状态。以14mL/min的速度滴加ME2。滴完85℃保温15min,然后以14mL/min的速度滴加单体乳液ME3。ME3由5.5g十二烷基硫酸钠、2.5g氢氧化钠、3g Dowfax 2A1、1260g去离子水、1400g丙烯酸丁酯配置而成。滴完保温1h后保持搅拌冷却至室温即完成反应,用325目滤布过滤即得到核壳微球乳液。得到的聚合物微球尺寸为280nm,微球的多分散指数PDI为0.08;
(2)制备预制乳液分散料
首先制备功能纳米粒子水性分散体(亦称浆料)。方法是将功能纳米粒子粉体、水性分散剂和水混合,经球磨制备得到功能纳米粒子的水性稳定分散体。称取800g粒径为90纳米的铯钨青铜粉体、50g水性超分散剂Solsperse 46000和1000g去离子水,高速分散均匀,然后泵入砂磨机中研磨5小时,得到红外功能纳米粒子浆料。然后,称取70g红外功能纳米粒子浆料与1000g核壳微球乳液混合,搅拌均匀,即得到了用于制备光子准晶功能薄膜层的预制乳液分散料;
(3)制备透明隔热防紫外线复合薄膜
利用上步制备的预制乳液分散料,根据需要加入适量助剂,如UV稳定剂、光固化剂,成膜剂和流平剂,然后通过粘度调节剂调节上述预制乳液分散料的粘度调整到50~80里泊(cP),通过辊涂方法将上述配制好的预制乳液分散料均匀涂敷在PET基膜上,然后通过25米长的80℃烘道烘干,得到宽度1米厚度150微米的聚合物薄膜(根据需要可以多次涂敷达到目标厚度)。然后,将其上层覆盖离型PET膜,经过微应力辊压,使复合膜结构平整,速度在30米/分钟;接下来,以5米/分钟速度经过单轴震荡剪切规整化设备,使核微球和功能纳米粒子按要求结构排列在壳层形成的连续基质中,形成光子准晶层,厚度为150微米左右,压制温度80℃,最后收卷即可制备得到光子准晶功能层。
揭去上层PET离型膜,将市售乳液型聚丙烯酸酯粘合剂的粘度调整到工艺要求粘度,然后通过刮涂方法将乳液型聚丙烯酸酯粘合剂涂敷在上面制备好的PET支撑的光子准晶功能层上,然后通过20米长的80℃烘道烘干,得到宽度1米厚度50微米的粘合剂层,并复合在光子准晶层上面。然后,在上述三层结构薄膜上面覆盖离型PET膜,经过微应力辊压,使复合薄膜结构平整,辊压速度在50米/分钟,最后得到透明隔热防紫外线光子准晶薄膜。
该薄膜的紫外光的屏蔽率99%,可见光区透光率可以达到85%,隔热率达到73%,具有优异的透明隔热防紫外线性能。薄膜的紫外可见光谱见图2。
实施例2
所述的透明隔热防紫外线薄膜结构同实施例1,具体制备过程如下:
(1)制备单分散的核壳聚合物乳液
采用与实施例1相同的实验步骤,在第一步配方中,十二烷基硫酸钠的加入量改为1.80克制备种子乳液,然后经逐步聚合物得到核壳乳液,最终产物聚合物微球尺寸为252nm,微球的多分散指数PDI为0.12;
(2)制备预制乳液分散料
采用与实施例1相同的实验步骤制备功能纳米粒子水性浆料,然后将50g红外功能纳米粒子浆料与1000g核壳微球乳液混合,搅拌均匀,即得到了用于制备光子准晶功能薄膜层的预制乳液分散料;
(3)制备透明隔热防紫外线复合薄膜
利用上步制备的预制乳液分散料,加入适量UV稳定剂、光固化剂,成膜剂 和流平剂,然后通过粘度调节剂调节上述预制乳液分散料的粘度500~800里泊(cP),通过刮涂方法将上述配制好的预制乳液分散料均匀涂敷在PET基膜上,然后通过45米长的80℃烘道烘干,得到宽度1米厚度300微米的聚合物薄膜(根据实际情况可以多次涂敷,增加厚度)。然后,将其上层覆盖离型PET膜,经过微应力辊压,使复合膜结构平整,速度在30米/分钟;接下来,以4米/分钟速度经过单轴震荡剪切规整化设备,使核微球和功能纳米粒子按要求结构排列在壳层形成的连续基质中,形成光子准晶层,厚度为300微米左右,压制温度80℃,最后收卷即可制备得到光子准晶功能层。
PET离型膜的复合同实施例1,得到透明隔热防紫外线光子准晶薄膜的紫外光的屏蔽率99%,可见光区透光率可以达到81%,隔热率达到83%,具有优异的透明隔热防紫外线性能。
实施例3
所述的透明隔热防紫外线薄膜结构同实施例1,具体制备过程如下:
(1)制备单分散的核壳聚合物乳液
采用与实施例1相同的实验步骤,在第一步配方中,十二烷基硫酸钠的加入量改为2.10克制备种子乳液,然后经逐步聚合物得到核壳乳液,的聚合物微球尺寸为231nm,微球的多分散指数PDI为0.10;
(2)制备预制乳液分散料
采用与实施例1相同的实验步骤制备功能纳米粒子水性浆料,然后将60g红外功能纳米粒子浆料与1000g核壳微球乳液混合,搅拌均匀,即得到了用于制备光子准晶功能薄膜层的预制乳液分散料;
(3)制备透明隔热防紫外线复合薄膜
利用上步制备的预制乳液分散料,加入适量UV稳定剂、光固化剂,成膜剂和流平剂,然后通过粘度调节剂调节上述预制乳液分散料的粘度40~80里泊(cP),通过喷涂方法将上述配制好的预制乳液分散料均匀涂敷在PET基膜上,然后通过25米长的80℃烘道烘干,得到宽度1米厚度100微米的聚合物薄膜(根据实际情况可以多次涂敷,增加厚度)。然后,将其上层覆盖离型PET膜,经过微应力辊压,使复合膜结构平整,速度在35米/分钟;接下来,以6米/分钟速度经过单轴震荡剪切规整化设备,使核微球和功能纳米粒子按要求结构排列在壳 层形成的连续基质中,形成光子准晶层,厚度为100微米左右,压制温度80℃,最后收卷即可制备得到光子准晶功能层。
PET离型膜的复合同实施例1,得到透明隔热防紫外线光子准晶薄膜的紫外光的屏蔽率99%,可见光区透光率可以达到87%,隔热率达到68%,具有优异的透明隔热防紫外线性能。
实施例4
所述的透明隔热防紫外线薄膜结构同实施例1,具体制备过程如下:
(1)制备单分散的核壳聚合物乳液
制备单分散的核壳聚合物乳液同实施例1;
(2)制备预制乳液分散料
采用与实施例1相同的实验步骤,制备功能纳米粒子浆料采用纳米粒子复合配方,具体为:铯钨青铜:氧化锡锑:氧化铟锡=2:1:1,配好浆料后,将75g红外功能纳米粒子浆料与1000g核壳微球乳液混合,搅拌均匀,即得到了用于制备光子准晶功能薄膜层的预制乳液分散料;
(3)制备透明隔热防紫外线复合薄膜
制备步骤与实施例1相同,得到透明隔热防紫外线光子准晶薄膜的紫外光的屏蔽率99%,可见光区透光率可以达到82%,隔热率达到71%,具有优异的透明隔热防紫外线性能。
实施例5
所述的透明隔热防紫外线薄膜结构同实施例1,具体制备过程如下:
(1)制备单分散的核壳聚合物乳液
制备单分散的核壳聚合物乳液同实施例1;
(2)制备预制乳液分散料
采用与实施例1相同的实验步骤,制备功能纳米粒子浆料采用纳米粒子复合配方,具体为:铯钨青铜:硫化锌:氧化铟锡=1:1:1,配好浆料后,将65g红外功能纳米粒子浆料与1000g核壳微球乳液混合,搅拌均匀,即得到了用于制备光子准晶功能薄膜层的预制乳液分散料;
(3)制备透明隔热防紫外线复合薄膜
制备步骤与实施例1相同,得到透明隔热防紫外线光子准晶薄膜的紫外光的 屏蔽率99%,可见光区透光率可以达到81%,隔热率达到72%,具有优异的透明隔热防紫外线性能。
实施例6
所述的透明隔热防紫外线薄膜结构同实施例1,具体制备过程如下:
(1)制备单分散的核壳聚合物乳液
制备单分散的核壳聚合物乳液同实施例1;
(2)制备预制乳液分散料
采用与实施例1相同的实验步骤,制备功能纳米粒子浆料配方采用纳米氧化铟锡代替铯钨青铜,配好浆料后,将60g红外功能纳米粒子浆料与1000g核壳微球乳液混合,搅拌均匀,即得到了用于制备光子准晶功能薄膜层的预制乳液分散料;
(3)制备透明隔热防紫外线复合薄膜
制备步骤与实施例1相同,得到透明隔热防紫外线光子准晶薄膜的紫外光的屏蔽率99%,可见光区透光率可以达到83%,隔热率达到69%,具有优异的透明隔热防紫外线性能。

Claims (10)

  1. 一种基于光子准晶材料的透明隔热防紫外线薄膜,其特征在于,依次为透明基底层、光子准晶功能薄膜层、粘合剂层和可剥离保护层;所述光子准晶薄膜由规整堆积排列的聚合物核壳结构微球与红外功能纳米粒子通过特定的加工工艺形成,拥有大范围可调的结构色彩和光学透明性,具有优异的透明隔热防紫外线能力;其中:
    所述透明基底层材料为聚对苯二甲酸乙二醇酯薄膜或表面涂有硬化涂层的聚对苯二甲酸乙二醇酯薄膜;
    所述粘合剂层为聚丙烯酸酯类粘合剂,用于粘合光子准晶功能薄膜层和可剥离层,并用于后期与玻璃的直接贴合;
    所述光子准晶功能薄膜层由两种材料复合而成,一种是核壳结构聚合物纳米微球,包括核微球、中间层和壳层,设核微球折光指数为n 1,壳层折光指数为n 2;另一种材料是具有红外功能的纳米粒子;两种材料混合,通过薄膜成型工艺,使折光指数为n 1的核微球在三维空间内有序排列在折光指数为n 2的壳层形成的基质薄膜中;同时,红外功能纳米粒子分散在壳层形成的基质薄膜中,得到光子准晶功能薄膜;其中:
    所述核微球的折光指数n 1和壳微球的折光指数n 2的差异在0.01~1.5之间;
    所述光子准晶功能薄膜中,通过调整折光指数为n 1的核材料和折光指数为n 2的壳材料的折光指数,改变光子准晶功能薄膜的透明性及阻隔紫外光的效率;通过改变光子晶体材料内规则排列的微球的尺寸,控制光子准晶功能薄膜的透明性及阻隔紫外光的效率;通过改变功能纳米粒子排列的有序度,改变光子准晶功能薄膜的颜色和透明度,从而达到调变外观状态效果;通过改变功能纳米粒子的含量,改变光子准晶功能薄膜的红外形阻隔效率。
  2. 根据权利要求1所述的透明隔热防紫外线薄膜,其特征在于,所述核壳结构纳米微球中,核微球的尺寸为40~300纳米,中间层厚度为5~50纳米,壳层厚度为50~500纳米,核壳微球的多分散性指数(PDI)小于0.15。
  3. 根据权利要求1所述的透明隔热防紫外线薄膜,其特征在于,红外功能纳米粒子是一类具有良好红外吸收能力的无机纳米粒子,选自铯钨青铜、氧化锡锑、氧化铟锡和硫化锌。
  4. 根据权利要求1所述的透明隔热防紫外线复合薄膜,其特征在于,红外功能纳米粒子与核壳微球的质量比例在1:100至1:2之间。
  5. 根据权利要求1所述的透明隔热防紫外线薄膜,其特征在于,所述核微球材料选自苯乙烯、甲基丙烯酸甲酯、乙二醇二丙烯酸酯和二乙烯基苯单体的聚合物;所述壳层材料为聚丙烯酸酯共聚物;其中,聚丙烯酸酯类材料的单体为丙烯酸乙酯、丙烯酸丁酯、丙烯酸2-乙基己酯、甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸正丁酯的其中一种或几种;通过调控聚丙烯酸酯类单体的组成可以调控壳层聚合物的玻璃化温度,满足实际的加工要求;所述中间层是交联的聚合物层,中间层的交联通过二官能或多官能单体发生。
  6. 根据权利要求1所述的透明隔热防紫外线薄膜,其特征在于,所述核微球和功能纳米粒子以密堆积的方式分散于壳层形成的基质材料中;优选地,所述核微球和功能纳米粒子以均匀层状堆积的方式分散于壳层形成的基质材料中,形成准晶结构。
  7. 根据权利要求1所述的透明隔热防紫外线复合薄膜,其特征在于,所述光子准晶薄膜材料中,还包含助剂和添加剂,这些组分用来提供材料所需的特定性能;所述助剂和添加剂为UV稳定剂、成膜剂、光固化剂、流平剂、脱模剂和粘度调节剂中一种或几种。
  8. 根据权利要求1所述的透明隔热防紫外线薄膜,其特征在于,所述光子晶体薄膜的厚度为10μm~600μm;所述透明基底层厚度为50μm~150μm;所述粘合剂胶层的厚度为20μm~125μm;所述可剥离层为透明PET离型膜。
  9. 一种如权利要求1所述的透明隔热防紫外线薄膜的制备方法,其特征在于,具体步骤为:
    在透明基底上制备光子准晶功能薄膜,再涂复粘合剂胶层,最后贴合透明PET离型膜;其中,光子准晶功能薄膜制备过程包括:
    (1)红外功能纳米粒子水性分散体亦称浆料的制备
    将红外功能纳米粒子粉体、水性分散剂和水混合,经球磨制备得到功能纳米粒子的水性稳定分散体,具体是取30~50质量份的功能纳米粒子粉体,0.1~3质量份分散剂和50~70质量份的水搅拌均匀,然后泵入砂磨机中研磨3~5小时,得到红外功能纳米粒子浆料;
    (2)核壳微球的制备
    采用多步乳液聚合法制备,得到的核壳微球乳液在室温下可以稳定一年以上;
    (3)然后将上述制备的红外功能纳米粒子浆料加入到核壳微球乳液中,混合均匀,得到预制乳液分散料;其中,功能纳米粒子与核壳微球的比例在1:100至1:2之间;
    (4)将乳液分散料通过辊涂、喷涂或刮涂的方式,均匀涂敷在透明基底上;
    (5)最后在机械力的作用下使功能纳米粒子和核微球在壳层形成的基质材料中完成合适的排列;得到光子准晶功能薄膜,其加工温度比核壳微球的壳材料的玻璃化转变温度高40~70℃。
  10. 根据权利要求1所述的制备方法,其特征在于,所述机械力作用包括单轴压制,双轴压延或层压加工;具体过程为:将均匀涂敷了预制乳液分散料的透明基底,通过长度20~60米、温度为80℃的烘道,烘干,得到宽度为0.5~1.8米、厚度为10~600微米的聚合物薄膜;然后,在其上面覆盖一层离型PET膜;经过微应力辊压使其平整贴合,速度控制在1~60米/分钟之间;然后以1~10米/分钟速度经过单轴震荡剪切规整设备,使核微球和红外功能纳米粒子按要求结构排列在壳层形成的连续基质材料中,形成光子准晶层,厚度为10~600微米之间;压制温度根据壳层的玻璃化温度调节,要求高于壳层玻璃化温度40~70℃;最后收卷即得到光子准晶功能薄膜。
PCT/CN2021/081544 2020-05-07 2021-03-18 基于光子准晶材料的透明隔热防紫外线薄膜及其制备方法 WO2021223519A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010374679.6A CN111690331B (zh) 2020-05-07 2020-05-07 基于光子准晶材料的透明隔热防紫外线薄膜及其制备方法
CN202010374679.6 2020-05-07

Publications (1)

Publication Number Publication Date
WO2021223519A1 true WO2021223519A1 (zh) 2021-11-11

Family

ID=72476481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081544 WO2021223519A1 (zh) 2020-05-07 2021-03-18 基于光子准晶材料的透明隔热防紫外线薄膜及其制备方法

Country Status (2)

Country Link
CN (1) CN111690331B (zh)
WO (1) WO2021223519A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115010968A (zh) * 2022-05-26 2022-09-06 中国科学技术大学 一种单层密排微球薄膜的制备方法
CN115058042A (zh) * 2022-08-18 2022-09-16 广州光驭超材料有限公司 一种炫彩膜及其制备方法
CN115322529A (zh) * 2022-08-05 2022-11-11 广东科明诺科技有限公司 一种发光聚酯母粒及其制备方法与应用
CN116657106A (zh) * 2023-07-25 2023-08-29 广州市尤特新材料有限公司 一种cto靶材及其制备方法与应用
CN117384411A (zh) * 2023-10-11 2024-01-12 浙江宝汇薄膜股份有限公司 一种基于光学材料的复合薄膜及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111690331B (zh) * 2020-05-07 2022-04-12 复旦大学 基于光子准晶材料的透明隔热防紫外线薄膜及其制备方法
CN114859547A (zh) * 2021-01-20 2022-08-05 北京京东方传感技术有限公司 节能光学模组
CN112961533B (zh) * 2021-02-10 2022-06-21 华中科技大学 一种具有白天被动制冷功能的结构色涂层及其制备方法
CN114457489B (zh) * 2022-03-23 2023-08-22 合肥工业大学 一种具有芯壳结构的荧光聚乳酸纤维织物
CN114908575B (zh) * 2022-06-21 2023-06-16 江南大学 一种液晶抗紫外线整理剂及其在纺织品上的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101162276A (zh) * 2007-11-16 2008-04-16 长兴化学工业股份有限公司 光学膜
CN105949379A (zh) * 2016-05-18 2016-09-21 珠海光驭科技有限公司 一种纳米微球和表面光学材料以及表面光学材料的制备方法
KR20160136794A (ko) * 2015-05-21 2016-11-30 세종대학교산학협력단 광결정 표시장치 및 이의 제조 방법
CN110908193A (zh) * 2019-12-25 2020-03-24 深圳市光科全息技术有限公司 一种应用于Mini—LED阵列光源的扩散薄膜
CN111690331A (zh) * 2020-05-07 2020-09-22 复旦大学 基于光子准晶材料的透明隔热防紫外线薄膜及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7241502B2 (en) * 2001-09-14 2007-07-10 Merck Patentgesellschaft Moulded bodies consisting of core-shell particles
US7957621B2 (en) * 2008-12-17 2011-06-07 3M Innovative Properties Company Light extraction film with nanoparticle coatings
CN104418972B (zh) * 2013-08-26 2017-04-05 中国科学院化学研究所 光子晶体胶囊颜料及其制备方法和应用
JP6717930B2 (ja) * 2016-03-28 2020-07-08 富士フイルム株式会社 遠赤外線透過性組成物、形成体、積層体、遠赤外線透過フィルタ、固体撮像素子および赤外線カメラ
KR102101798B1 (ko) * 2017-12-27 2020-04-22 한국조폐공사 보안요소용 광결정 필름과 이의 제조방법 및 이를 포함하는 보안물품
CN108047981A (zh) * 2018-02-06 2018-05-18 浙江欣麟新材料技术有限公司 一种防蓝光保护膜
CN108227055B (zh) * 2018-03-14 2020-09-25 纳琳威纳米科技南通有限公司 一种可见光反射膜的制备方法及其用途
CN110587882B (zh) * 2019-08-07 2021-09-17 复旦大学 一种防紫外线结构色彩色隐形眼镜及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101162276A (zh) * 2007-11-16 2008-04-16 长兴化学工业股份有限公司 光学膜
KR20160136794A (ko) * 2015-05-21 2016-11-30 세종대학교산학협력단 광결정 표시장치 및 이의 제조 방법
CN105949379A (zh) * 2016-05-18 2016-09-21 珠海光驭科技有限公司 一种纳米微球和表面光学材料以及表面光学材料的制备方法
CN110908193A (zh) * 2019-12-25 2020-03-24 深圳市光科全息技术有限公司 一种应用于Mini—LED阵列光源的扩散薄膜
CN111690331A (zh) * 2020-05-07 2020-09-22 复旦大学 基于光子准晶材料的透明隔热防紫外线薄膜及其制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115010968A (zh) * 2022-05-26 2022-09-06 中国科学技术大学 一种单层密排微球薄膜的制备方法
CN115322529A (zh) * 2022-08-05 2022-11-11 广东科明诺科技有限公司 一种发光聚酯母粒及其制备方法与应用
CN115058042A (zh) * 2022-08-18 2022-09-16 广州光驭超材料有限公司 一种炫彩膜及其制备方法
CN116657106A (zh) * 2023-07-25 2023-08-29 广州市尤特新材料有限公司 一种cto靶材及其制备方法与应用
CN116657106B (zh) * 2023-07-25 2023-09-29 广州市尤特新材料有限公司 一种cto靶材及其制备方法与应用
CN117384411A (zh) * 2023-10-11 2024-01-12 浙江宝汇薄膜股份有限公司 一种基于光学材料的复合薄膜及其制备方法

Also Published As

Publication number Publication date
CN111690331B (zh) 2022-04-12
CN111690331A (zh) 2020-09-22

Similar Documents

Publication Publication Date Title
WO2021223519A1 (zh) 基于光子准晶材料的透明隔热防紫外线薄膜及其制备方法
US10725328B2 (en) Temperature-controlled dimming film with a function of shielding near-infrared light and preparation method thereof
CN110078872B (zh) 包含聚合物基体和核壳纳米颗粒的复合材料系统、其制备方法及其应用
CN100463935C (zh) 阳光控制低辐射透明薄膜及其制备方法和用途
CN103387787B (zh) 一种有机/无机杂化透明隔热涂层材料、制备方法及其应用
TW466359B (en) Ultraviolet radiation-curable light-modulating film for a light valve, and method of making same
CN112965268B (zh) 具有多角度光致变色效果的柔性光子晶体及其制备方法
WO2012041069A1 (zh) 一种高透明紫外阻隔节能膜及其溶液相转移制备方法
CN101787235A (zh) 一种应用于透明抗紫外线隔热膜的油墨、采用该油墨的隔热膜及其制作工艺
CN103074002A (zh) 一种智能温控节能复合贴膜
CN106956486A (zh) 具有高紫外阻隔性能的隔热膜及其制备方法
CN111522080A (zh) 一种基于光子晶体材料的防蓝光保护膜及其制备方法
CN104149451A (zh) 一种防紫外线隔热汽车膜
CN113386437B (zh) 具有温度/电压响应变色的柔性光子晶体材料及其制备方法
CN202986257U (zh) 一种新型隔热陶瓷窗膜
CN108227055B (zh) 一种可见光反射膜的制备方法及其用途
CN111522151B (zh) 一种高度灵敏的机械调控智能窗薄膜及其制备方法
CN109651789A (zh) 一种具有光吸收功能并耐溶剂开裂的透明聚酯材料及其制备方法
CN104142584B (zh) 一种氧化物纳米线型电光薄膜的制备方法
CN105218846B (zh) 一种微球智能隔热窗膜及其制备方法
KR101117226B1 (ko) 차열용액 조성물 및 그 제조방법, 이 조성물을 이용한 차열필름 및 그 제조방법, 비닐하우스용 단열비닐
JP2015104865A (ja) 熱線遮蔽フィルム及びセパレータ・粘着層付き熱線遮蔽フィルム
CN112647824B (zh) 节能自适应调光全息显示材料及全息膜及全息显示玻璃
KR101350213B1 (ko) 적외선 차단 코팅제 및 이를 이용한 적외선 차단 필름의 제조방법
JP6249924B2 (ja) 高分子カプセルを含む透明断熱材及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21799534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21799534

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/05/2023)