WO2021210590A1 - 蓄電デバイス用セパレータの製造方法 - Google Patents

蓄電デバイス用セパレータの製造方法 Download PDF

Info

Publication number
WO2021210590A1
WO2021210590A1 PCT/JP2021/015360 JP2021015360W WO2021210590A1 WO 2021210590 A1 WO2021210590 A1 WO 2021210590A1 JP 2021015360 W JP2021015360 W JP 2021015360W WO 2021210590 A1 WO2021210590 A1 WO 2021210590A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
microporous membrane
storage device
power storage
polyethylene
Prior art date
Application number
PCT/JP2021/015360
Other languages
English (en)
French (fr)
Inventor
シュン 張
隼士 松山
哲士 中尾
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to US17/630,242 priority Critical patent/US20220294076A1/en
Priority to EP21789362.7A priority patent/EP4050064B1/en
Priority to EP23182797.3A priority patent/EP4243182A3/en
Priority to KR1020247024507A priority patent/KR20240117644A/ko
Priority to JP2021568978A priority patent/JP7054764B2/ja
Priority to KR1020227002882A priority patent/KR20220029698A/ko
Priority to PL21789362.7T priority patent/PL4050064T3/pl
Priority to CN202180004783.9A priority patent/CN114207926A/zh
Priority to EP23182781.7A priority patent/EP4243181A3/en
Publication of WO2021210590A1 publication Critical patent/WO2021210590A1/ja
Priority to JP2022026041A priority patent/JP2022084617A/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene
    • C08J2423/12Polypropene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/02Diaphragms; Separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a separator for a power storage device, a method for manufacturing the same, and the like.
  • Microporous membranes include microfiltration membranes, fuel cell separators, condenser separators, functional membrane base materials for filling pores with functional materials to develop new functions, and separators for power storage devices or theirs. It is widely used as a constituent material.
  • Lithium-ion secondary batteries are widely used in notebook personal computers, mobile phones, digital cameras, and the like.
  • a polyolefin microporous membrane is known as a separator for LIB or a constituent material thereof.
  • Patent Document 1 proposes a method for producing a polyolefin microporous membrane for the purpose of high strength, high specific surface area, high pore volume, and the like.
  • a polyolefin microporous membrane is produced by melt-kneading a polyolefin resin having a weight average molecular weight of 500,000 or more and liquid paraffin, and extracting the liquid paraffin from the obtained resin composition. ..
  • Patent Document 2 a polyolefin resin such as polyethylene and a resin other than polyolefin (for example, polyamide) are kneaded in advance with an extruder to be pelletized, and then the pellets and liquid paraffin are mixed and extruded. Further, a method for producing a microporous film by extracting liquid paraffin is described. Further, Patent Documents 3 to 5 describe a method for producing a separator for LIB, which includes a conventional process for producing a microporous polyolefin membrane.
  • Non-Patent Document 1 the nickel content in NMC metal oxide, which is a positive electrode material, is increased, and graphite, which is a negative electrode material, contains silicon (silicon) at a high concentration, or is completely silicon (silicon). It is known that the alternative can significantly improve the energy density of LIB.
  • Non-Patent Document 2 it is known that the silicon (high concentration content) negative electrode has a large volume and expands and contracts by storing or releasing lithium ions at the time of charging and discharging. Further, Non-Patent Document 3 describes that the silicon (high concentration content) negative electrode repeatedly has gaps around the silicon particles during expansion and contraction during charging and discharging, and the solid electrolyte interface (SEI) is formed in the gaps. Accumulation causes the silicon (high concentration content) negative electrode to irreversibly expand with long-term cycle use.
  • SEI solid electrolyte interface
  • Non-Patent Document 4 Wu et al. Reported Khun chain, which is a typical concept for the three-dimensional arrangement of polymer chains.
  • Non-Patent Document 5 describes control of the size or interparticle distance of dissimilar particles dispersed in a resin structure and dispersion exceeding a specific degree of dispersion as research on improving the mechanical characteristics of a resin film using a mixed resin system. Improvements in mechanical properties due to the structure have been reported.
  • Patent Documents 1 and 2 have room for improvement in terms of the drawbacks of the raw material mixing / extrusion process and the cycle characteristics of the power storage device including the separator. Further, none of Patent Documents 3 to 5 focuses on the form of the resin raw material in the melt kneading step or the extrusion step, and details the influence of the type or structure of the polyolefin in the separator for a power storage device on the cycle characteristics. Not done.
  • an object of the present invention is to reduce defects in the raw material mixing / extrusion process and to provide a separator for a power storage device having excellent cycle characteristics.
  • the present inventors have conducted studies to solve the above problems, and have found that the above problems can be solved by using a method for manufacturing a separator for a power storage device having the following configuration, and have completed the present invention. Some aspects of the present invention are illustrated below.
  • the following steps (1) A sheet molding process in which polypropylene, polyethylene, and a plasticizer are extruded into a sheet by an extruder, cooled and solidified, and processed into a sheet-shaped molded product; (2) A stretching step of stretching the sheet-shaped molded product at a surface magnification of 20 times or more and 250 times or less to form a stretched product; (3) A microporous film forming step of extracting the plasticizer from the stretched product to form a microporous film; (4) A heat treatment step of subjecting the microporous membrane to heat treatment to obtain a heat-treated microporous membrane by stretching and relaxing in the width direction; and (5) a winding step of winding the heat-treated microporous membrane.
  • the polypropylene and the polyethylene are used in the following methods (a) to (c): (A) A method of feeding the polypropylene and the polyethylene into the extruder using different feeders; (B) A method in which the polypropylene and the polyethylene are dry-blended and charged into an extruder using a single feeder; (C) A method of feeding a plurality of resin raw materials obtained by dry-blending the polypropylene and polyethylene into an extruder using different feeders; The method for manufacturing a separator for a power storage device according to item 1, which is charged into the extruder by any of the above.
  • the polyethylene has a weight average molecular weight (Mw) of 100,000 to 9,700,000 and a ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of 3 to 12.
  • the polypropylene has a weight average molecular weight (Mw) of 300,000 to 2,000,000 and a ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of 3 to 12.
  • the separator for a power storage device includes a microporous membrane and contains a microporous membrane.
  • the microporous membrane contains polyethylene and polypropylene and contains In the X-ray diffraction (XRD) or wide-angle X-ray scattering (WAXS) measurement of the microporous film, the polyethylene crystallite size is 15 nm to 40 nm, and the polypropylene crystallite size is 10 nm to 50 nm.
  • the separator for a power storage device according to 6. [8] A separator for a power storage device containing a microporous membrane.
  • the microporous membrane contains polyethylene and polypropylene and contains A separator for a power storage device in which the polyethylene crystallite size is 15 nm to 40 nm and the polypropylene crystallite size is 10 nm to 50 nm in the X-ray diffraction (XRD) measurement of the microporous membrane.
  • the separator for a power storage device according to item 8 wherein the polyethylene has a crystallinity of 55% to 99.9% in the XRD measurement of the microporous membrane.
  • a separator for a power storage device containing a microporous membrane is
  • the microporous membrane contains polyethylene and polypropylene and contains A separator for a power storage device in which the polyethylene crystallite size is 15 nm to 40 nm and the polypropylene crystallite size is 10 nm to 50 nm in the wide-angle X-ray scattering (WAXS) measurement of the microporous film.
  • WAXS wide-angle X-ray scattering
  • a battery comprising the separator for a power storage device according to any one of items 6 to 12.
  • the present invention it is possible to provide a method for producing a microporous membrane or a separator for a power storage device in which defects in the raw material mixing / extrusion process are reduced. Further, according to the present invention, it is possible to reduce the agglomerate amount or gel content of the separator for a power storage device obtained by such a manufacturing method, and to provide a power storage device having excellent cycle characteristics.
  • the first embodiment of the present invention provides a separator for a power storage device including a microporous membrane, and specifies the crystal structure of a resin component constituting the microporous membrane.
  • a second embodiment of the present invention provides a method for producing a separator for a power storage device including a microporous membrane, and specifies a raw material to be used in the production method. Each embodiment will be described later.
  • the energy storage device separator (hereinafter, may be abbreviated as "separator”) refers to a member arranged between a plurality of electrodes in the power storage device and having ion permeability and, if necessary, shutdown characteristics.
  • Separators include flat membranes (eg, formed of one microporous membrane), laminated membranes (eg, laminates of multiple microporous membranes, laminates of microporous membranes and other membranes), coating membranes (eg, laminates of other membranes). , When a functional substance is coated on at least one side of the microporous membrane).
  • the separator according to the first embodiment includes a microporous membrane containing polyethylene (PE) having a crystallite size of 15 nm to 40 nm and polypropylene (PP) having a crystallite size of 10 nm to 50 nm.
  • the crystallite size can be measured by a known method, for example, the X-ray diffraction (XRD) method by a reflection type X-ray diffractometer Ultra-IV manufactured by Rigaku Co., Ltd., or the wide-angle X by a transmission type X-ray scattering device NANOPIX or the like. It can be obtained by measurement using the X-ray scattering (WAXS) method.
  • XRD X-ray diffraction
  • WAXS X-ray scattering
  • the microporous membrane can be used as a microfiltration membrane, a fuel cell separator, a condenser separator, a power storage device separator, an electrolysis membrane, or a constituent material thereof.
  • a microporous membrane is used as the power storage device separator or its constituent material, particularly the LIB separator or its constituent material, the microporous membrane itself may be used as the separator, and at least one side of the microporous membrane.
  • a material provided with another layer or another film may be used as the separator.
  • the microporous membrane used for the separator for a power storage device one having low electron conductivity, ionic conductivity, high resistance to an organic solvent, and a fine pore size is preferable.
  • 50% by mass or more and 100% by mass or less of the microporous film is preferably formed of polyolefin (PO), and the PO ratio is 60% by mass. It is more preferably 100% by mass or less, and further preferably 70% by mass or more and 100% by mass or less.
  • the microporous membrane preferably contains both polyethylene (PE) and polypropylene (PP) as PO from the viewpoint of heat rupture resistance and reduction of pore size.
  • the microporous membrane according to the first embodiment contains PE having a crystallite size of 15 nm to 40 nm and PP having a crystallite size of 10 nm to 50 nm, which means that the microporous membrane in which the crystal states of PE and PP are appropriately distributed. It is thought to mean formation.
  • the microporous film having an appropriate crystal distribution of PE and PP swells the electrolytic solution as compared with the conventional separator for a silicon (high concentration content) negative electrode as described in Non-Patent Documents 1 to 3. It is easy to recover the volume in the compression direction by, for example, it is easy to respond to expansion and contraction of a negative electrode such as a silicon (silicon) -containing negative electrode (that is, it is easy to recover even if the pore size of the microporous film is reduced), and / or Since the separator is in close contact with the negative electrode when the silicon-containing negative electrode is shrunk, it is difficult to create a gap between the two, and excessive deposition growth of the solid electrolyte interface (SEI) on the surface of the negative electrode tends to be suppressed.
  • SEI solid electrolyte interface
  • the combination of PE and PP crystallite sizes is preferably PE crystallite size 16 nm to 39 nm and PP crystallite size 11 nm to 49 nm, more preferably PE crystallite size 20 nm to 38 nm and PP crystallite.
  • the size is 11 nm to 47 nm.
  • Appropriate crystal distribution of PE and PP in the microporous film can be determined, for example, by specifying each state of PE and PP in the mixing / extrusion process of the resin raw material, or the isotatic pentad fraction (mm mm) of PP. It can be achieved by controlling the stereoregular structure.
  • Polyethylene (PE) Polyethylene (PE) has a weight average molecular weight (Mw) of 100,000 to 9,700,000 and / or a ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of 3. It is preferably ⁇ 12.
  • Mw and Mw / Mn PE resins are also referred to as ultra-high molecular weight polyethylene (UHMWPE), which optimizes the crystal distribution of microporous membranes containing PE and PP, aggregates and gel contents, and uses them. It is preferable from the viewpoint of the cycle characteristics of the separator and the power storage device.
  • the Mw of PE is more preferably 120,000 to 9,000,000, still more preferably 200,000 to 8,500,000. Further, the dispersity (Mw / Mn) is more preferably 4 to 11, and further preferably 5 to 10.
  • the crystallinity measured by the XRD method is preferably 55% to 99.9%, more preferably 80% to 99.8%, and 85. % To 97% is more preferable.
  • PE alone has a crystallinity of 50% to 90%, more preferably 65% to 80%, and even more preferably 68% to 77%, as measured by the WAXS method.
  • WAXS method has a difference in the measurement results of crystallinity size and crystallinity obtained by measuring the same microporous film between the XRD method and the WAXS method, and the difference tends to be noticeable in the crystallinity measurement. .. It is inferred that such differences are as follows.
  • the XRD method is a reflection type measurement, and is a measurement result mainly based on information on the surface of the microporous film.
  • the WAXS method is a transmission type measurement, and is a measurement result of averaging information including the surface and internal structure of the microporous membrane. Since the microporous membrane described in the present specification is cooled and heated from the surface, sheeted, stretched, etc. in the manufacturing process, the surface of the obtained microporous membrane is more crystalline. It is considered that there may be a tendency for the conversion to progress.
  • the entire higher-order structure through the crystals swells (penetrates, inside) due to thermal energy such as molecular vibration of the electrolytic solution in the operating temperature range (-30 ° C to 80 ° C) of the battery. It is easy to diffuse), and it is considered that it leads to a volume recovery rate with a good compression direction.
  • the swelling into the PE crystal structure is a phenomenon that occurs when the penetrating force of the electrolytic solution is higher than the force based on the entropy elastic energy of the higher-order structure of PE.
  • the swelling of PE to the higher-order structure improves the penetrating power of the electrolytic solution, or the higher-order structure of PE in which the electrolytic solution easily swells (after swelling, the heat of the entire higher-order structure is thermal energy. It is necessary to construct a higher-order structure of PE that can be stabilized).
  • the PE crystallite size is preferably 15 nm to 40 nm, more preferably 16 nm to 39 nm, and even more preferably 20 nm to 38 nm.
  • the crystallite size of PE alone may be adjusted within the above numerical range by, for example, controlling the PE form or the PE raw material input method in the manufacturing process of the microporous membrane, specifying the ratio of the PE raw material to the polypropylene (PP) raw material, and the like. can.
  • the PE may contain not only a single species but also a plurality of types of UHMWPE.
  • UHMWPE is preferably poly (ethylene and / or propylene-co- ⁇ -olefin), and more preferably poly (ethylene-co-propylene) or poly (ethylene-co). -Butene), and at least one selected from the group consisting of poly (ethylene-co-propylene-co-butene).
  • UHMWPE preferably contains a structural unit derived from ethylene in an amount of 98.5 mol% or more and 100 mol% or less, and more preferably 0.0 mol of a structural unit derived from an ⁇ -olefin other than ethylene. It is contained in an amount of more than% and 1.5 mol% or less.
  • PE may contain a polyethylene resin other than UHMWPE.
  • polyethylene resins other than UHMWPE include low-density polyolefin (LDPE) such as linear low-density polyethylene (LLDPE), high-density polyethylene (HDPE), high-pressure low-density polyethylene, and mixtures thereof.
  • LDPE low-density polyolefin
  • LLDPE linear low-density polyethylene
  • HDPE high-density polyethylene
  • HPPE high-pressure low-density polyethylene
  • Polypropylene (PP) Polypropylene (PP) has a weight average molecular weight (Mw) of 300,000 to 2,000,000, and a ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of 3 to 12 Is preferable.
  • Mw and Mw / Mn PP resins are preferable from the viewpoint of optimizing the crystal distribution of the microporous membrane containing PE and PP, the amount of agglomerates and the gel content, and the cycle characteristics of the separator and the power storage device using the same. ..
  • the Mw of PP is more preferably 305,000 to 1,900,000, and even more preferably 310,000 to 1,800,000.
  • the dispersity (Mw / Mn) is more preferably 4 to 11, and even more preferably 4.5 to 10.
  • the crystallite size of PP alone is preferably 10 nm to 50 nm, more preferably 11 nm to 49 nm, from the viewpoint that the microporous membrane containing PE and PP has good volume recovery in the compression direction due to swelling of the electrolytic solution in the battery. More preferably, it is 11 nm to 47 nm. Since PP is incompatible with PE, it is possible to construct a mixed crystal system finely dispersed in the network structure of PE without forming a mixed crystal with PE. As shown in Non-Patent Document 5, a dispersed structure exceeding a specific dispersion degree by controlling the size or inter-particle distance of dissimilar particles dispersed in the resin structure remarkably improves mechanical properties such as impact strength.
  • the crystal structure of PE and PP which has never been seen before, is controlled instead of particles, and the volume recovery in the compression direction of the separator is performed in a significantly smaller order of several tens of nm. It was found that the mechanical properties of the above can be improved.
  • the crystallite size of PP alone may be adjusted within the above numerical range by, for example, controlling the PP form or PP raw material input method in the microporous membrane manufacturing process, specifying the ratio of PP raw material to polyethylene (PE) raw material, and the like. can.
  • PP is preferably a propylene homopolymer from the viewpoint of heat resistance and melt viscosity.
  • examples of PP include isotactic polypropylene, syndiotactic polypropylene, atactic polypropylene and the like. Of these, isotactic polypropylene is preferable.
  • the amount of isotactic PP is preferably 90% by mass or more, more preferably 95% by mass or more, still more preferably 98% by mass or more, still more preferably 100% by mass, based on the total mass of PP in the microporous membrane. (All).
  • the isotactic pentad fraction (mm mm) for the three-dimensional ordered structure (pentad sequence) of PP is 85.0 mol% to 99.7 mol%. It is preferably 86.0 mol% to 99.6 mol%, more preferably 87.0 mol% to 99.5 mol%, and even more preferably 87.0 mol% to 99.5 mol%.
  • (mmml) of the pentad sequence of PP is preferably 0.5 mol% to 2.5 mol%, preferably 0.9 mol%. It is more preferably about 2.4 mol%.
  • (rmml) is preferably 0.1 mol% to 1.0 mol%, more preferably 0.1 mol% to 0.6 mol%. ..
  • the (mmrr) of the pentad sequence of PP is preferably 0.3 mol% to 2.5 mol%, more preferably 0.5 mol% to 2.3 mol%. ..
  • the (mmrm + rrmr) of the pentad sequence of PP is preferably 0.5 mol% to 1.5 mol%, more preferably 0.7 mol% to 1.3 mol%. ..
  • (mrmr) is preferably 0.5 mol% or less, and more preferably 0.4 mol% or less.
  • (rrrr) is preferably 0.1 mol% to 1.5 mol%, more preferably 0.2 mol% to 1.2 mol%. ..
  • (rrrm) is preferably 0.1 mol% to 1.5 mol%, more preferably 0.2 mol% to 1.0 mol%. ..
  • (mrm) of the pentad sequence of PP is preferably 0.1 mol% to 1.5 mol%, more preferably 0.2 mol% to 1.0 mol%. ..
  • meso meso
  • r racemo
  • Non-Patent Document 4 Wu et al. Have a typical concept of the three-dimensional arrangement of polymer chains in the Khun chain model, in which some units of monomers are bent to form a three-dimensional arrangement of polymer chains. I am reporting to decide.
  • "node” represents an atom of linkage
  • in the case of PP represents a C atom
  • "l k” is a bond length
  • in the case of the PP is the distance between C atoms.
  • the mass ratio of polyethylene to polypropylene is preferably 99/1 to 60/40, more preferably 97/3 to 70/30, and 95/5 to 85/15 as the PE / PP mass ratio. It is more preferably present, and most preferably 93/7 to 90/10. Adjusting the PE / PP mass ratio in the microporous membrane within the above numerical range is presumed to be that PP is uniformly dispersed in PE. In reality, it is difficult to uniformly disperse PP in PE simply by mixing the PE raw material and the PP raw material in the process of manufacturing the microporous membrane.
  • the PE raw material and the PP raw material are subjected to a special extrusion process by controlling their respective forms or raw material input methods. , The above-mentioned suitable dispersion tends to be obtained. Then, according to such a method, PP can be easily dispersed in PE more preferably in the above mass ratio.
  • the microporous film may contain a polyolefin (PO) resin other than PE and PP, for example, a butylene homopolymer having excellent crystallinity, as long as it does not interfere with the exertion of the effects of the present invention.
  • PO polyolefin
  • microporous film can be used as a resin component other than PO as a resin component other than PO, for example, nylon 6, nylon 66, nylon 11, nylon 6-10, nylon 6-12, nylon 6 as long as the effect of the present invention is not hindered.
  • Polypolymer resin such as -66, aramid resin; Polypolymer resin; Polyester resin such as polyethylene terephthalate (PET) and polybutene terephthalate (PBT); Fluorine resin such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE) It may contain a copolymer of ethylene and vinyl alcohol (for example, Eval Co., Ltd., melting point: 157 ° C to 190 ° C), polysulfone, polyethersulfone, polyketone, polyether ether ketone (PEEK), and the like. These resin components can be used singularly or in plurals.
  • the microporous membrane may contain additives other than resin as long as it does not interfere with the exertion of the effects of the present invention.
  • the additive include a dehydration condensation catalyst, metal soaps such as calcium stearate or zinc stearate, an ultraviolet absorber, a light stabilizer, an antistatic agent, an antifogging agent, and a coloring pigment.
  • microporous membrane As the separator for the power storage device is a flat membrane, but when the separator for the power storage device is in the form of a laminated membrane, the layers other than the microporous membrane are removed from the laminated membrane. Can be measured.
  • the porosity of the microporous membrane is preferably 20% or more, more preferably 30% or more, still more preferably 32% or more or 35% or more.
  • the porosity of the microporous membrane is preferably 90% or less, more preferably 80% or less, still more preferably 50% or less.
  • the air permeability of the microporous membrane is preferably 1 second or longer, more preferably 50 seconds or longer, still more preferably 55 seconds or longer, still more preferably 100 seconds or longer, per 100 cm 3.
  • the air permeability of the microporous membrane is preferably 400 seconds or less, more preferably 300 seconds or less.
  • the air permeability of the microporous membrane can be adjusted by adjusting the stretching ratio, stretching temperature, and the like. Such air permeability is measured by the method described in Examples.
  • the film thickness of the microporous membrane is preferably 1.0 ⁇ m or more, more preferably 2.0 ⁇ m or more, still more preferably 3.0 ⁇ m or more, or 4.0 ⁇ m or more. When the film thickness of the microporous film is 1.0 ⁇ m or more, the film strength tends to be further improved.
  • the film thickness of the microporous membrane is preferably 500 ⁇ m or less, more preferably 100 ⁇ m or less, still more preferably 80 ⁇ m or less, 22 ⁇ m or less, or 19 ⁇ m or less. When the film thickness of the microporous membrane is 500 ⁇ m or less, the ion permeability tends to be further improved.
  • the film thickness of the microporous membrane can be adjusted by adjusting the stretching ratio, stretching temperature, and the like. Such film thickness is measured by the method described in Examples.
  • the film thickness of the microporous membrane is preferably 25 ⁇ m or less, more preferably 22 ⁇ m or less or 20 ⁇ m or less, and further preferably 18 ⁇ m or less.
  • the film thickness of the microporous membrane is 25 ⁇ m or less, the permeability tends to be further improved.
  • the lower limit of the film thickness of the microporous membrane may be 1.0 ⁇ m or more, 3.0 ⁇ m or more, 4.0 ⁇ m or more, or 5.0 ⁇ m or more.
  • the method for producing a separator for a power storage device can include a method for producing a microporous membrane, and the following steps: (1) A sheet molding step in which pelletized polypropylene (PP), powdered polyethylene (PE), and a plasticizer are extruded into a sheet by an extruder, cooled and solidified, and processed into a sheet molded body; (2) A stretching step of biaxially stretching a sheet-shaped molded product at a surface magnification of 20 times or more and 250 times or less to form a stretched product; (3) Microporous film forming step of extracting a plasticizer from a stretched product to form a microporous film; (4) A heat treatment step of subjecting the microporous membrane to heat treatment to obtain a heat-treated microporous membrane by stretching and relaxing in the width direction
  • the method for producing a separator for a power storage device has drawbacks in a process of mixing and extruding a plurality of raw materials by forming a film by mixing and extruding a PE raw material into a powder and a PP raw material into a pellet. (That is, the amount of unmelted material) can be reduced.
  • the unmelted material during the mixing / extrusion process can cause agglomerates, gels, etc. of the finally obtained microporous membrane and the separator containing the same, so it is filled with a separator having a microporous membrane with reduced defects. It is possible to achieve the thickness maintenance characteristic (cycle characteristic) of the separator or the capacity maintenance characteristic (cycle characteristic) of the power storage device when the discharge is repeated.
  • the separator according to the first embodiment described above can be obtained, but also the crystal distribution of PE and PP in the microporous membrane constituting the separator is described above. It can also be optimized as described above to facilitate deformation and contraction of a negative electrode such as a silicon-containing negative electrode and contribute to the adhesion between the negative electrode and the separator.
  • the resin raw materials and additives used in the second embodiment can be the same as the PE, PP, PO, other resins and additives described above for the first embodiment.
  • the separator for a power storage device manufactured by the manufacturing method according to the second embodiment also has a PE having a crystallite size of 15 nm to 40 nm and a crystallite size of 10 nm, similarly to the separator for a power storage device according to the first embodiment. It is preferable to provide a microporous membrane containing PP having a thickness of about 50 nm, and the isotactic pentad fraction (mm mm) relating to the three-dimensional ordered structure of PP is more preferably 85.0 mol% to 99.7 mol%.
  • each step according to the second embodiment will be described in order.
  • the pellet-shaped PP raw material, the powder-shaped PE raw material, and the plasticizer are supplied to the extruder.
  • the PE raw material and the PP raw material the PE and PP described in the first embodiment can be used in a predetermined mass ratio.
  • the PE raw material is preferably in the form of a powder from the viewpoint of improving the yield of the raw material mixing / extrusion process in the process of producing the microporous membrane and from the viewpoint of facilitating the reduction of the amount of unmelted material in the obtained microporous membrane. It is more preferable that 2% by mass to 100% by mass is powder based on the total mass of PE used.
  • Preferred "powder" as a PE raw material has a number average particle size (Nd 50 ) of 80 ⁇ m to 180 ⁇ m, a volume average particle size (Vd 50 ) of 120 ⁇ m to 220 ⁇ m, and a number particle size distribution (Nd 80 /).
  • Nd 20 ) is 1.1 to 4.2, preferably 1.2 to 4.1
  • the volume particle size distribution (Vd 80 / Vd 20 ) is 1.1 to 3.3, preferably 1.1 to 3.3.
  • the crystallite size is in the range of 15 nm to 40 nm
  • the crystallinity is 30% to 99%, preferably 32% to 98%, and more preferably 38% to 38%.
  • the flow manufactured by Micromerics For example, for the number average particle size (Nd 50 ), the volume average particle size (Vd 50 ), the number particle size distribution (Nd 80 / Nd 20 ), and the volume particle size distribution (Vd 80 / Vd 20 ), the flow manufactured by Micromerics.
  • Formula Image analysis It can be obtained by measurement using a particle size / shape measuring device, Particle Insight. Further, for example, the crystallite size and the crystallinity can be obtained by XRD measurement using an X-ray diffractometer Ultima-IV manufactured by Rigaku Corporation.
  • the PP raw material is preferably in the shape of pellets from the viewpoint of improving the yield of the raw material mixing / extrusion process in the process of producing the microporous membrane and from the viewpoint of facilitating the reduction of the amount of unmelted material in the obtained microporous membrane. It is more preferable that 2% by mass to 100% by mass is pellets based on the total mass of PP used.
  • Pellet-shaped PP can be obtained, for example, by drying the polymerized PP powder, extruding it into a strand shape with an extruder, cooling it with water, and then cutting it into a pellet shape.
  • the viscosity average molecular weight (Mv) of the PP powder raw material is preferably 200,000 or more and 1,000,000 or less, more preferably 250,000 or more and 900,000 or less, and further preferably 300,000 or more and 800,000. It is as follows.
  • the “pellet” preferable as a PP raw material is larger than the number average particle size (Nd 50 ) and the volume average particle size (Vd 50 ) of the “powder” preferable as a PE raw material, and has a side length.
  • the shape of the pellet is not particularly limited, and may be, for example, a spherical shape, an elliptical spherical shape, or a pillar shape. It is obtained by melt-extruding the raw material with an extruder, arranging it into a strand shape while cooling it with water or air, and continuously cutting it. The dimensions or detailed shape of the pellet can be adjusted, for example, by a stranding or cutting method.
  • the rate of swelling by the plasticizer can be significantly slowed (ie, it is presumed that the pelletized PP does not swell substantially). It is important that the inside of the extruder does not inhibit the swelling of the powdered PE raw material.
  • the “pellet” preferable as the PP raw material component is larger than the crystallite size of the “powder” preferable as the PE raw material component, and the first implementation is carried out. It has the crystallite size of PP described in the form.
  • the crystallite size, crystallinity, pellet size, and shape of the pellets such as the temperature of the extruded resin in the form of strands, the cooling temperature at the time of cutting, or the pulling speed of the strands from the extrusion (melt microstretching), etc. Can be adjusted.
  • These number average particle diameters (Nd 50 ), volume average particle diameters (Vd 50 ), crystallite size, crystallinity, and the like can be measured by known methods.
  • the number average particle size (Nd 50 ), the volume average particle size (Vd 50 ), the crystallinity size, and the crystallinity can be measured by the same method as that according to the first embodiment.
  • the size of the pellet can be obtained, for example, by measuring the length of one side with a calibrated caliper.
  • pelletized PP and powdered PE makes it easier to significantly improve the uniformity of swelling of the plasticizer in the extruder. It is considered that this is because the swelling rate of the pellet can be significantly slower than that of the powder. Therefore, the pellet-shaped PP does not excessively inhibit the swelling of the powder-like PE, and the pellet itself basically does not swell, and is suitably used in the subsequent melting and kneading. As a result, even in the process of melt kneading, the PP component can be easily and uniformly dispersed in the PE component to the molecular level.
  • the plasticizer can be a known material as long as it is liquid at a temperature of 20 ° C. to 70 ° C. and has excellent dispersibility of PE or PP.
  • the plasticizer used in the step (1) is preferably a non-volatile solvent capable of forming a uniform solution at a temperature equal to or higher than the melting point of PE or PP in consideration of subsequent extraction.
  • Specific examples of the non-volatile solvent include hydrocarbons such as liquid paraffin, paraffin wax, decane, and decalin; esters such as dioctyl phthalate and dibutyl phthalate; higher alcohols such as oleyl alcohol and stearyl alcohol. And so on.
  • liquid paraffin is preferable because it has high compatibility with polyethylene, the interface peeling between the resin and the plasticizer is unlikely to occur even when the melt-kneaded product is stretched, and uniform stretching tends to be easily carried out.
  • the extruder examples include a single-screw extruder, a twin-screw extruder, a short-screw extruder with a screw, and the like, and a twin-screw extruder is particularly preferable.
  • the raw material is sheared by the continuous mixer, and it is more preferable that the continuous mixer is mounted on the twin-screw extruder.
  • the resin raw material and / or the plasticizer is preferably at a temperature of 25 ° C. to 80 ° C. from the viewpoint of ensuring the entanglement of the polymer chains to the extent that the molecular weight of the resin raw material does not decrease while ensuring an appropriate viscosity. It is supplied to the extruder at a temperature of preferably 30 ° C. to 76 ° C., more preferably at a temperature of 30 ° C. to 70 ° C.
  • the PE and PP raw materials are prepared from the following methods (a) to (c): from the viewpoints of controlling the crystal structure of PE and PP, controlling swelling with respect to the plasticizer, and the like.
  • A A method of feeding PP pellets and PE powder into an extruder using different feeders;
  • B A method in which PP pellets and PE powder are dry-blended and charged into an extruder using a single feeder;
  • C A method in which PP pellets and PE powder are dry-blended to obtain a plurality of resin raw materials, and the plurality of resin raw materials are charged into an extruder using different feeders; It is preferable that the extruder is charged by any of the above.
  • PE and PP Since the control of the crystal structure of PE and PP is important in the mixed state of PE and PP, in the present invention, by taking advantage of the thermodynamically semi-phase-soluble property of both, PE and PP can be used within a limited residence time in the extruder.
  • the swelling of the plasticizer such as liquid paraffin (LP) is of paramount importance for the uniform dispersion of the PE itself (eg, no unmelted or gel formation) before the PE melts in extrusion.
  • LP liquid paraffin
  • the PE and PP raw materials are preferably put into the extruder by any of the above methods (a) to (c).
  • the timing of charging PP and PE into the extruder may be simultaneous, sequential, or continuous, and is preferably simultaneous supply to the twin-screw extruder.
  • the timing of charging PP and PE into the extruder is the same.
  • a plurality of resin raw materials may be obtained by performing a dry blend of PP pellets and PE powder a plurality of times, or a dry blend product obtained by performing a dry blend of PP pellets and PE powder once.
  • a plurality of resin raw materials may be obtained by dividing into a plurality of resin raw materials.
  • the separator thickness retention rate and / or cell capacity retention rate after the cycle test From the viewpoint of, (a) and (b) are more preferable, and (b) is further preferable.
  • the plasticizer can be supplied to the twin-screw extruder together with the PE raw material and / or the PP raw material, for example.
  • the plasticizer may be additionally supplied from the same or different feeders.
  • This type of twin-screw extruder generally has an upper feed port arranged on the upstream side and a middle feed port located on the downstream side of the feed port and arranged in the middle of the melt kneading area. ing.
  • the plasticizer can be additionally supplied from the middle feed port of the twin-screw extruder.
  • the first component or the second component can also be supplied from the middle feed port.
  • the mixed slurry may be prepared using a continuous mixer.
  • the lower limit of the set temperature of the continuous mixer is preferably 25 ° C. or higher, more preferably 30 ° C. or higher from the viewpoint of maximally swelling the PE raw material and the plasticizer, and the upper limit is the resin raw material at the time of mixing. From the viewpoint of melting, it is preferably 68 ° C. or lower, more preferably 67 ° C. or lower, 66 ° C. or lower, or 65 ° C. or lower.
  • the shear rate of the continuous mixer is 100 seconds-1 to 400,000 seconds- 1 from the viewpoint of uniformly contacting the resin raw material with the plasticizer to obtain a dispersion, preferably 120 seconds- 1 to 398,000. Seconds- 1 , more preferably 1,000 seconds- 1 to 100,000 seconds- 1 .
  • the residence time of the continuous mixer is 1.0 second to 60 seconds, preferably 2.0 seconds to 58 seconds, and more preferably 2.0 seconds to 20 seconds from the viewpoint of ensuring the dispersion of the resin raw material in the plasticizer. It is 56 seconds.
  • the resin raw material and the plasticizer are melt-kneaded by a twin-screw extruder to produce a resin composition.
  • conditions such as the type and time of the apparatus used for melt kneading are not limited as long as the uniformity of swelling of the resin raw material with respect to the plasticizer is ensured.
  • PO resins other than PE and PP resin raw materials other than PO
  • known additives such as dehydration condensation catalysts, metal soaps such as calcium stearate or zinc stearate, ultraviolet absorbers, light stabilizers, etc.
  • Antistatic agents, antifogging agents, coloring pigments and the like may also be charged into the twin-screw extruder.
  • the melt-kneaded product is formed into a sheet.
  • the melt-kneaded product is extruded into a sheet shape via a T-die or the like, brought into contact with a heat conductor, and cooled to a temperature sufficiently lower than the crystallization temperature of the resin component.
  • a heat conductor used for cooling and solidification
  • the heat conductor used for cooling and solidification include metals, water, air, and plasticizers. Among these, it is preferable to use a metal roll because of its high heat conduction efficiency.
  • the die lip interval is preferably 200 ⁇ m or more and 3,000 ⁇ m or less, and more preferably 500 ⁇ m or more and 2,500 ⁇ m or less.
  • the die lip interval is 200 ⁇ m or more, the shavings and the like are reduced, the influence on the film quality such as streaks or defects is small, and the risk of film breakage or the like can be reduced in the subsequent stretching step.
  • the die lip interval is 3,000 ⁇ m or less, the cooling rate is high, cooling unevenness can be prevented, and the thickness stability of the sheet can be maintained. Further, the extruded sheet-shaped molded product may be rolled.
  • step (2) the sheet-shaped molded product obtained in the step (1) is stretched at a surface magnification of 20 times or more and 250 times or less.
  • the step (2) may be performed before the porous body forming step (3), or may be performed on the porous body after the step (3). Further, the step (2) may be performed before and after the extraction of the plasticizer from the sheet-shaped molded product.
  • biaxial stretching is preferable to uniaxial stretching from the viewpoint that the film thickness distribution and air permeability distribution in the width direction (TD) can be reduced.
  • the biaxial stretching method include simultaneous biaxial stretching, sequential biaxial stretching, multi-stage stretching, and multiple stretching. From the viewpoint of improving the puncture strength and the uniformity of stretching, simultaneous biaxial stretching is preferable, and from the viewpoint of ease of controlling the plane orientation, successive biaxial stretching is preferable.
  • the simultaneous biaxial stretching is a stretching in which MD (mechanical direction of continuous molding of microporous membrane) and TD (direction of crossing MD of microporous membrane at an angle of 90 °) are simultaneously stretched.
  • the method refers to a method, and the draw ratio in each direction may be different.
  • Sequential biaxial stretching refers to a stretching method in which MD and TD are stretched independently, and when MD or TD is stretched, the other direction is fixed in an unconstrained state or a fixed length. It is assumed that it is in the state of being.
  • the draw ratio is preferably in the range of 20 times or more and 200 times or less in terms of surface magnification, more preferably in the range of 25 times or more and 170 times or less, and further preferably 30 times or more and 150 times or less.
  • the stretching ratio in each axial direction is preferably in the range of 2 times or more and 15 times or less for MD and 2 times or more and 15 times or less for TD, 3 times or more and 12 times or less for MD, and 3 times or more and 12 times or less for TD. It is more preferable that the range is 5 times or more and 10 times or less for MD, and 5 times or more and 10 times or less for TD.
  • the stretching temperature is preferably 90 ° C. to 150 ° C., more preferably 100 ° C. to 140 ° C., and even more preferably 110 ° C. to 130 ° C. from the viewpoint of meltability and film forming property of the PE / PP raw material.
  • the plasticizer is extracted from the resin composition formed in the (1) or the drawn product formed in the step (2) to form a microporous film.
  • the method for extracting the plasticizer include a method in which a stretched product is immersed in an extraction solvent to extract the plasticizer and then dried.
  • the extraction method may be either a batch method or a continuous method.
  • the residual amount of the plasticizer in the microporous membrane is preferably less than 1% by mass with respect to the total mass of the microporous membrane.
  • the plasticizer may be recovered and reused by an operation such as distillation.
  • the extraction solvent it is preferable to use a solvent that is poor with respect to the PE and PP resins, is a good solvent with respect to the plasticizer, and has a boiling point lower than the melting point of the PE and PP resins.
  • an extraction solvent include hydrocarbons such as n-hexane and cyclohexane; halogenated hydrocarbons such as methylene chloride and 1,1,1-trichloroethane; non-chlorine type such as hydrofluoroether and hydrofluorocarbon.
  • Hydrocarbon solvents including alcohols such as ethanol and isopropanol; ethers such as diethyl ether and tetrahydrofuran; ketones such as acetone and methyl ethyl ketone can be mentioned.
  • extraction solvents may be recovered and reused by an operation such as distillation.
  • step (4) for example, the microporous membrane obtained in step (3) is heat-treated at a temperature equal to or lower than the melting point of the microporous membrane, and then the microporous membrane is stretched and heat-treated. Manufacture the membrane.
  • the microporous membrane is heat treated for the purpose of heat fixation from the viewpoint of suppressing shrinkage.
  • the heat treatment method includes a stretching operation performed at a predetermined atmosphere, a predetermined temperature, and a predetermined stretching ratio for the purpose of adjusting physical properties, and / or a predetermined atmosphere, a predetermined temperature, for the purpose of reducing stretching stress. And the mitigation operation performed at a predetermined mitigation rate.
  • a relaxation operation may be performed after the stretching operation.
  • the stretching operation preferably stretches the MD and / or TD of the membrane 1.1 times or more, and more preferably 1.2 times or more. conduct.
  • the upper limit of the draw ratio at the time of heat fixing is preferably 3.0 times or less, and preferably 2.5 times or less for both MD and TD.
  • the relaxation operation is a reduction operation of the membrane to MD and / or TD.
  • the relaxation rate is a value obtained by dividing the size of the film after the relaxation operation by the size of the film before the relaxation operation. When both MD and TD are relaxed, it is a value obtained by multiplying the relaxation rate of MD and the relaxation rate of TD.
  • the relaxation rate is preferably 0.99 or less, more preferably 0.95 or less.
  • the relaxation rate is preferably 0.5 or more from the viewpoint of film quality.
  • the relaxation operation may be performed in both the MD and TD directions or only in one of the MD and TD.
  • the temperature of the heat treatment including the stretching or relaxation operation is preferably in the range of 100 ° C. to 170 ° C. from the viewpoint of the melting points of PE and PP resins (hereinafter, also referred to as “Tm”).
  • Tm melting points of PE and PP resins
  • the lower limit of the heat treatment temperature is more preferably 110 ° C. or higher, further preferably 115 ° C. or higher, and the upper limit thereof is more preferably 160 ° C. or lower, still more preferably 150 ° C. or lower, still more preferably 140 ° C. or lower.
  • the microporous membrane heat-treated in the heat treatment step (4) or the microporous membrane produced by the second embodiment can be wound into a roll by, for example, a winder.
  • the obtained roll can be stored until a separator for a power storage device is manufactured using the microporous membrane.
  • the obtained microporous membrane or roll can be cut by a slitter from the viewpoint of handleability and storage stability. Further, the microporous membrane may be subjected to post-treatment such as hydrophilization treatment with a surfactant or the like, cross-linking treatment with ionizing radiation or the like.
  • the microporous membranes obtained in steps (1) to (5) may be used as a single-layer separator, or a plurality of microporous membranes may be laminated, or a microporous membrane and another membrane may be laminated.
  • a functional layer can be provided on the microporous membrane, or the microporous membrane can be coated.
  • a power storage device includes a positive electrode, a negative electrode, and a separator containing the microporous membrane described above.
  • Specific examples of the power storage device include a lithium secondary battery, a lithium ion secondary battery, a sodium secondary battery, a sodium ion secondary battery, a magnesium secondary battery, a magnesium ion secondary battery, a calcium secondary battery, and a calcium ion.
  • a lithium secondary battery a lithium ion secondary battery (LIB), a nickel hydrogen battery, or a lithium ion capacitor is preferable, and a lithium ion secondary battery is more preferable.
  • the batteries listed above preferably contain an electrolytic solution from the viewpoints of ionic conductivity, charge / discharge characteristics, and the like.
  • the electrolytic solution in the battery may contain water, and the water contained in the system after the battery is manufactured is the water contained in the electrolytic solution or the water brought into the member such as the electrode or the separator. May be good.
  • the electrolytic solution can contain a non-aqueous solvent.
  • the solvent contained in the non-aqueous solvent of the present embodiment include alcohols such as methanol and ethanol; aprotic solvents and the like. Among them, the aprotic solvent is preferable as the non-aqueous solvent.
  • aprotonic solvent examples include cyclic carbonates, fluoroethylene carbonates, lactones, organic compounds having a sulfur atom, chain fluorinated carbonates, cyclic ethers, mononitriles, alkoxy group-substituted nitriles, dinitriles, cyclic nitriles, and short chain fatty acids.
  • examples thereof include esters, chain ethers, fluorinated ethers, ketones, compounds in which some or all of the H atoms of the aprotonic solvent are replaced with halogen atoms, and the like.
  • Examples of the cyclic carbonate include ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, trans-2,3-butylene carbonate, cis-2,3-butylene carbonate, 1,2-pentylene carbonate, trans-2, Examples thereof include 3-pentylene carbonate, cis-2,3-pentylene carbonate, vinylene carbonate, 4,5-dimethylvinylene carbonate, vinylethylene carbonate and the like.
  • fluoroethylene carbonate examples include 4-fluoro-1,3-dioxolane-2-one, 4,4-difluoro-1,3-dioxolane-2-one, and cis-4,5-difluoro-1,3-.
  • Dioxolane-2-one, trans-4,5-difluoro-1,3-dioxolane-2-one, 4,4,5-trifluoro-1,3-dioxolane-2-one, 4,4,5,5 -Tetrafluoro-1,3-dioxolane-2-one, 4,4,5-trifluoro-5-methyl-1,3-dioxolane-2-one and the like can be mentioned.
  • lactone examples include ⁇ -butyrolactone, ⁇ -methyl- ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -valerolactone, ⁇ -caprolactone, and ⁇ -caprolactone.
  • Examples of the organic compound having a sulfur atom include ethylene sulfite, propylene sulfite, butylene sulfite, pentensulfite, sulfolane, 3-sulfolene, 3-methylsulfolane, 1,3-propanesulton, and 1,4-butanesulton. , 1-Propene 1,3-Sulton, dimethyl sulfoxide, tetramethylene sulfoxide, ethylene glycol sulfite and the like.
  • chain carbonate examples include ethyl methyl carbonate, dimethyl carbonate, diethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, dipropyl carbonate, methyl butyl carbonate, dibutyl carbonate, ethyl propyl carbonate and the like.
  • cyclic ether examples include tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,3-dioxane and the like.
  • mononitrile examples include acetonitrile, propionitrile, butyronitrile, valeronitrile, benzonitrile, acrylonitrile, and the like.
  • alkoxy group-substituted nitrile examples include methoxyacetonitrile and 3-methoxypropionitrile.
  • Examples of the dinitrile include malononitrile, succinonitrile, methylsuccinonitrile, glutaronitrile, 2-methylglutaronitrile, adiponitrile, 1,4-dicyanoheptan, 1,5-dicyanopentane, and 1,6-dicyanohexane.
  • 1,7-Dicyanoheptane, 2,6-dicyanoheptane, 1,8-dicyanooctane, 2,7-dicyanooctane, 1,9-dicyanononane, 2,8-dicyanononane, 1,10-dicyanodecane, 1, 6-Dicyanodecane, 2,4-dimethylglutaronitrile, ethylene glycol bis (propionitrile) ether and the like can be mentioned.
  • cyclic nitrile examples include benzonitrile and the like.
  • Examples of short-chain fatty acid esters include methyl acetate, methyl propionate, methyl isobutyrate, methyl butyrate, methyl isovalerate, methyl valerate, methyl pivalate, methyl hydroangelica, methyl caproate, ethyl acetate, and propionic acid.
  • Examples of the chain ether include dimethoxyethane, diethyl ether, 1,3-dioxolane, diglyme, triglyme, tetraglyme and the like.
  • Examples of the fluorinated ether include the general formula Rf aa- OR bb (in the formula, Rf aa is an alkyl group containing a fluorine atom, and R bb is an organic group which may contain a fluorine atom). Examples thereof include compounds represented by.
  • ketone examples include acetone, methyl ethyl ketone, methyl isobutyl ketone and the like.
  • Examples of the compound in which a part or all of the H atom of the aprotic solvent is replaced with a halogen atom include a compound in which the halogen atom is fluorine.
  • examples of the fluorinated product of the chain carbonate include methyl trifluoroethyl carbonate, trifluorodimethyl carbonate, trifluorodiethyl carbonate, trifluoroethyl methyl carbonate, methyl 2,2-difluoroethyl carbonate, and methyl 2,2.
  • examples thereof include 2-trifluoroethyl carbonate and methyl 2,2,3,3-tetrafluoropropyl carbonate.
  • R cc- OC (O) OR dd
  • R cc and R dd are CH 3 , CH 2 CH 3 , CH 2 CH 2 CH 3 , CH (CH 3 ) 2 , and formula CH 2 Rf ee (in the formula, Rf ee is at least one. It is at least one selected from the group consisting of groups represented by (which is an alkyl group having 1 to 3 carbon atoms in which a hydrogen atom is substituted with a fluorine atom), and R cc and / or R dd is at least 1. Contains one hydrogen atom. ⁇ Can be represented by.
  • Fluorines of short-chain fatty acid esters include, for example, fluorine represented by 2,2-difluoroethyl acetate, 2,2,2-trifluoroethyl acetic acid, and 2,2,3,3-tetrafluoropropyl acetate. Examples include short-chain fatty acid esters. Fluorinated short chain fatty acid esters have the following general formula: R ff- C (O) OR gg ⁇ In the formula, R ff is CH 3 , CH 2 CH 3 , CH 2 CH 2 CH 3 , CH (CH 3 ) 2 , CF 3 CF 2 H, CFH 2 , CF 2 H, CF 2 Rf hh , CFHRf hh.
  • Rf ii is an alkyl group having 1 to 3 carbon atoms in which a hydrogen atom may be substituted with at least one fluorine atom
  • Rf ii is at least one fluorine atom.
  • R ff and / or R gg contains at least one fluorine atom and R ff is CF 2 H, then R gg is It is not CH 3 ⁇ .
  • the LIB uses lithium transition metal oxides such as lithium cobalt oxide and lithium cobalt composite oxide as the positive electrode, carbon materials such as graphite and graphite or silicon-containing materials as the negative electrode, and lithium salts such as LiPF 6 as the electrolytic solution. It is a storage battery using an organic solvent containing the oxide.
  • the ionized Li reciprocates between the electrodes.
  • a separator is arranged between the electrodes. From the viewpoint that the separator according to the first embodiment or the separator produced by the second embodiment is brought into close contact with the negative electrode without gaps, the negative electrode of the LIB is preferably a silicon-containing negative electrode.
  • the condition values, physical property values, characteristic values, etc. explained above shall be measured according to the methods described in the items of the following examples. If the separator contains one microporous membrane and another layer, is a coating membrane, or contains multiple microporous membranes, remove one microporous membrane from the separator or remove it from the separator. The coating shall be removed to measure or evaluate the properties of the microporous membrane.
  • a calibration curve was prepared by measuring standard polystyrene under the following conditions using ALC / GPC 150C type (trademark) manufactured by Waters. In addition, chromatograms were measured for each of the following polymers under the same conditions, and the weight average molecular weight and number average molecular weight of each polymer were calculated by the following methods based on the calibration curve.
  • the isotatic pentad fraction (mm mm) in the polypropylene component is determined as the (mm mm) peak fraction in the total absorption peak of the methyl carbon region measured by 13 C-NMR.
  • the attribution of the signal in the methyl group region containing the isotatic pentad is described in A.I. Zambellietal. (According to Macromolecules 8, 687 (1975).
  • the mmmm pentad fraction with respect to the three-dimensional ordered structure of the contained PP in the raw material and the microporous membrane is measured as follows.
  • the mmmm pentad fraction relating to the three-dimensional ordered structure of the contained PP in the raw material and the microporous membrane was dissolved in o-dichlorobenzene-d4 at 130 ° C. or higher so as to have a concentration of 10% by weight (wt%), and 13 C-NMR measurement was performed.
  • the measurement conditions are as follows.
  • the mmmm pentad was assigned to 21.8 ppm, and the peaks of the methyl region of 18 ppm to 22 ppm were assigned to mmmm, mmml, rmmr, mmrr, rmrr, rrmrm, mmrm, rrrrr, rrrrm and mrrm.
  • the mmmm pentad fraction was calculated by dividing the integral value of the mmmm pentad by the sum of the integral values of these peaks.
  • mmmm 21.8ppm Regarding the chemical shift of each three-dimensional structure, mmmm 21.8ppm, mmmr 21.6ppm, rmmr 21.3ppm, mmrr 21.0ppm, mmrm + rmrr 20.8ppm, rmrm 20.6ppm, rrrr 20.3ppm, rrrm 20.2ppm, mrrm 19.9ppm Is.
  • Crystallite size of polyolefins (eg, PE, PP, etc.) contained in the separator or in the microporous membrane contained in the separator can be determined by either reflection X-ray diffraction or transmission wide-angle X-ray scattering. good.
  • the crystallite size of the polyolefin (for example, PE, PP, etc.) contained in the separator or the microporous membrane contained in the separator was determined by using a transmission type X-ray scattering device NANOPIX manufactured by Rigaku Corporation.
  • NANOPIX manufactured by Rigaku Corporation.
  • the sample was irradiated with Cu-K ⁇ rays, and scattering was detected by the semiconductor detector Hyper-6000.
  • the measurement was performed under the conditions that the distance between the sample and the detector was 86 mm and the output was 40 kV and 30 mA.
  • Crystalline size (nm) and crystallinity in transmission method wide-angle X-ray scattering measurement In the case of transmission method wide-angle X-ray scattering measurement, the X-rays irradiated to the sample in the X-ray scattering pattern obtained by the two-dimensional detector.
  • the scattering intensity at the same distance from the center corresponds to the same scattering angle when the object travels straight through the sample, passes through the sample, and is centered on the position where it reaches the two-dimensional detector. Therefore, by calculating the intensity average at each scattering angle (annular average) for the measured X-ray scattering pattern, a one-dimensional scattering intensity profile with respect to the scattering angle 2 ⁇ can be obtained.
  • a treatment was performed to separate the (110) plane diffraction peak, the ⁇ crystal (040) plane diffraction peak, the ⁇ crystal (130) plane diffraction peak, and the polyethylene amorphous peak into six parts.
  • the crystallite size was calculated according to Scherrer's equation (lower equation) from the full width at half maximum of the polyethylene (110) plane diffraction peak and the polypropylene (110) plane diffraction peak calculated by peak separation.
  • the crystallinity can be obtained as a percentage value obtained by dividing the sum of the separated crystals and the amorphous peaks by the area of the crystal peaks.
  • D K ⁇ / ( ⁇ cos ⁇ )
  • D Crystallite size (nm)
  • K 0.9 (constant)
  • X-ray wavelength (nm)
  • ( ⁇ 1 2- ⁇ 2 2 )
  • 0.5 ⁇ 1 Full width at half maximum (rad) of the (hkl) peak calculated as a result of peak separation.
  • ⁇ 2 Full width at half maximum (rad) of the spread of the incident beam
  • Bragg angle
  • the diffraction peaks derived from crystals are (110), (040), (130), (111) of ⁇ crystal (motorcycle crystal). ) And (13-1) / (041) planes, and the diffraction peaks derived from amorphous were separated into two. Diffraction peaks derived from separated crystals and amorphous were approximated by a gaussian function. The two amorphous peaks were fixed as follows and peak separation was performed.
  • D (110) K ⁇ / ( ⁇ cos ⁇ ) D (110): Crystallite size (nm) K: 0.9 (constant) ⁇ : X-ray wavelength (nm) ⁇ : ( ⁇ 1 2- ⁇ 2 2 ) 0.5 ⁇ 1 : Full width at half maximum (rad) of the (hkl) peak calculated as a result of peak separation. ⁇ 2 : Full width at half maximum (rad) of the spread of the incident beam ⁇ : Bragg angle
  • ⁇ Amount of unmelted material in separator (pieces / 1000m 2 )>
  • the amount of unmelted material in the separator has an area of 100 ⁇ m in length ⁇ 100 ⁇ m in width or more when the separator obtained through the film forming steps of Examples and Comparative Examples is observed with a transmission optical microscope, and light is transmitted. Quantified by areas that do not. The number of resin agglomerates per 1000 m 2 of separator area was measured by observation with a transmission optical microscope.
  • Test method 1 The positive electrode, the negative electrode, and the non-aqueous electrolytic solution were prepared by the following procedures a to c.
  • NMC nickel, manganese, cobalt composite oxide
  • As a conductive auxiliary material 1.6% by mass of graphite powder (KS6) (density 2.26 g / cm 3 , number average particle diameter 6.5 ⁇ m) and acetylene black powder (AB) (density 1.95 g / cm 3 , number).
  • PVDF polyvinylidene fluoride
  • NMP N-methylpyrrolidone
  • a graphene negative electrode containing 40% of silicon is prepared and supported on a copper foil having a thickness of 12 ⁇ m as a negative electrode current collector to a thickness of 3.6 ⁇ m to prepare a negative electrode. bottom.
  • the thickness of the microporous membrane used as a separator was measured according to the method described in the above item ⁇ Film thickness ( ⁇ m)>.
  • the current value is 1A (0.3C) and the final battery voltage is 4.
  • a laminated secondary battery having a size of 100 mm ⁇ 60 mm and a capacity of 3 Ah was prepared by charging with a constant current and constant voltage (CCCV) for 3 hours under the condition of 2 V.
  • the separator was taken out from the battery after 100 cycles, and its thickness was measured according to the method described in the above item ⁇ film thickness ( ⁇ m)>.
  • the thickness retention rate of the separator after 100 cycles was calculated as a% value by the following formula.
  • Evaluation result (%) 100 ⁇ (separator thickness after 100 cycles / separator thickness measured in d. Above)
  • the thickness of the taken-out separator was measured at any 10 points, and the average value was used.
  • This slurry-like solution was applied to both sides of an aluminum foil having a thickness of 15 ⁇ m so that a part of the aluminum foil was exposed, and then the solvent was dried and removed to adjust the coating amount to 175 g / m 2 per side. Further, it was rolled by a roll press so that the density of the positive electrode mixture portion was 2.8 g / cm 3, and then it was cut so that the coated portion was 30 mm ⁇ 50 mm and included the exposed aluminum foil portion to obtain a positive electrode. ..
  • This slurry-like solution was applied to both sides of a copper foil having a thickness of 10 ⁇ m so that a part of the copper foil was exposed, and then the solvent was dried and removed to adjust the coating amount to 86 g / m 2 per side. Further, it was rolled by a roll press so that the density of the negative electrode mixture portion was 1.45 g / cm 3, and then it was cut so that the coated portion was 32 mm ⁇ 52 mm and included the exposed copper foil portion to obtain a negative electrode. ..
  • Battery assembly From 15 double-sided negative electrodes and 14 double-sided positive electrodes while folding a long separator with a width of 55 mm so that the active material surfaces of the positive and negative electrodes face each other and are interposed between the positive and negative electrodes. It was made into a laminated body. An aluminum lead piece with a sealant is welded to the exposed portion of the 14 positive electrode aluminum foils of this laminate, and a nickel lead piece with a sealant is welded to the exposed portion of the 15 negative electrode copper foils, and then aluminum. It was inserted into the exterior of the laminate, and a total of three sides, the side where the positive and negative electrode lead pieces were exposed and the other two sides, were welded and sealed.
  • the non-aqueous electrolyte solution was injected into the exterior body, and then the opening was sealed to prepare a 28-opposed laminated battery. After leaving the obtained battery at room temperature for one day, it is charged to a battery voltage of 4.2 V with a constant current of 330 mA (0.3 C) in an atmosphere of 25 ° C., and after reaching a constant voltage of 4.2 V.
  • the first charging after the battery was manufactured was performed for a total of 8 hours. Subsequently, the battery was discharged to a battery voltage of 3.0 V at a current value of 330 mA (0.3 C).
  • the separator was taken out from the battery after 100 cycles, and its thickness was measured according to the method described in the above item ⁇ film thickness ( ⁇ m)>.
  • the thickness retention rate of the separator after 100 cycles was calculated as a% value by the following formula.
  • Evaluation result (%) 100 ⁇ (separator thickness after 100 cycles / separator thickness measured in d. Above)
  • the thickness of the taken-out separator was measured at any 10 points, and the average value was used.
  • Polypropylene (PP) raw material used Polypropylene (PP) shown in Table 2 or Table 3 was prepared.
  • Example 1 The PE1 powder and PP1 pellets were supplied to a twin-screw extruder equipped with a manifold (T die) having a die lip interval of 1500 ⁇ m according to the charging method (a) at the mass ratio shown in Table 4, and melt-mixed. During melt mixing, liquid paraffin (kinematic viscosity at 37.78 ° C. 7.59 ⁇ 10 -5 m 2 / s) was supplied to the twin-screw extruder by an injection nozzle, and further kneaded to extrude the resin composition. ..
  • the extrusion middle stage portion (middle stage feed port of the twin-screw extruder) so that the ratio of the amount of liquid paraffin to the resin composition extruded from the twin-screw extruder is 70% by mass and the temperature of the resin composition is 220 ° C. ) Further injected liquid paraffin. Subsequently, the extruded resin composition was extruded onto a cooling roll controlled to a surface temperature of 25 ° C. and cast to obtain a sheet-shaped molded product.
  • the sheet-shaped molded product was guided to a simultaneous biaxial tenter stretching machine and biaxially stretched to obtain a stretched product.
  • the stretching conditions are as shown in Table 4, the stretched surface magnification is 55 times, and the porosity, air permeability, thickness, etc. are adjusted by appropriately adjusting the stretching temperature, the heating air volume, and the like.
  • the biaxial stretching temperature was set to 126 ° C.
  • the stretched product was immersed in dichloromethane, and liquid paraffin was extracted from the stretched product to form a microporous membrane.
  • the microporous membrane was guided to a TD tenter to be heat-fixed, heat-fixed (HS) at 129 ° C., stretched at a TD stretching ratio of 2.0 times, and then the relaxation rate was 0.9 in the TD direction.
  • the operation was doubled (that is, the relaxation operation was performed up to 1.8 times after stretching the TD direction 2.0 times compared to before the heat fixing).
  • the above evaluation of the heat-treated microporous membrane was performed. Then, using the microporous membrane as a separator, the above separator evaluation and battery evaluation were performed. The evaluation results are shown in Table 4.
  • Examples 2 to 20 and Comparative Examples 1 to 3 A microporous film was prepared and evaluated by the same method as in Example 1 except that the raw material composition, the raw material charging method, and the stretching ratio in the stretching step were changed as shown in Tables 4 to 6. The evaluation results of the obtained microporous membrane, separator and battery are shown in Tables 4 to 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Cell Separators (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

パウダー状ポリエチレンとペレット状ポリプロピレンと可塑剤とを押出機にてシート状に押出して成形体を形成する工程、及び成形体を湿式法により多孔化する工程を含む蓄電デバイス用セパレータの製造方法が提供される。

Description

蓄電デバイス用セパレータの製造方法
 本発明は、蓄電デバイス用セパレータ、及びその製造方法等に関する。
 微多孔膜は、精密ろ過膜、燃料電池用セパレータ、コンデンサー用セパレータ、機能材を孔の中に充填させて新たな機能を発現させるための機能膜の母材、及び蓄電デバイス用セパレータ又はそれらの構成材料等として広く用いられている。
 ノート型パーソナルコンピュータ、携帯電話、及びデジタルカメラ等には、リチウムイオン二次電池(LIB)が広く使用されている。このうち、LIB用セパレータ又はその構成材料としては、例えばポリオレフィン微多孔膜が知られている。特許文献1には、高強度、高比表面積、及び高細孔容積等を目的とした、ポリオレフィン微多孔膜の製造方法が提案されている。特許文献1では、重量平均分子量が500,000以上のポリオレフィン樹脂と、流動パラフィンとを溶融混錬し、得られた樹脂組成物から流動パラフィンを抽出することによってポリオレフィン微多孔膜を製造している。特許文献2には、ポリエチレンなどのポリオレフィン樹脂と、ポリオレフィン以外の樹脂(例えばポリアミド)とを予め押出機で混錬してペレット化してから、ペレットと、流動パラフィンとを混合して押出成形して、さらに流動パラフィンを抽出することにより微多孔膜を製造する方法が記述されている。また、特許文献3~5には、従来のポリオレフィン微多孔膜の製造工程を含むLIB用セパレータの製造方法が記述されている。
 近年、電気自動車の長距離走行に向けて、LIBの高容量化、及び高エネルギー密度化の研究が進められている。例えば、非特許文献1により、正極材料であるNMC金属酸化物中のニッケル含有率を高め、負極材料であるグラファイト類にシリコン(ケイ素)を高濃度に含有させ、又は完全にシリコン(ケイ素)で代替することで、LIBのエネルギー密度を大幅の向上ができることが知られている。
 他方では、非特許文献2により、シリコン(高濃度含有)負極は、充放電時に、リチウムイオンを蓄えるか、又は放出することで、体積が大きく膨張収縮することが知られる。さらに、非特許文献3には、シリコン(高濃度含有)負極は、充放電時の膨張収縮の際に、シリコン粒子周囲に繰り返しに隙間ができることが記述され、その隙間に固体電解質界面(SEI)が蓄積することで、長期サイクル使用に伴い、シリコン(高濃度含有)負極は不可逆的に膨張する。これらにより、セパレータフィルムが、繰り返しに圧縮力を受け、その力が解放されるため、フィルムの孔径構造が破壊される(潰れる)こと、又は不可逆的に圧縮されることで、イオン透過性が低下する恐れがある。特に、後者(非特許文献3記載の現象)においては、種々の非水系電解液の構成のリチウムイオン電池は、SEIの発生抑制は原理的に難しい。
 なお、非特許文献4には、Wuらにより、高分子鎖の立体的配置についての代表的な概念のKuhn chainが報告されている。非特許文献5には、混合樹脂系を利用した樹脂膜の力学的物性の向上における研究として、樹脂構造中に分散した異種粒子の大きさ又は粒子間距離の制御、特定の分散度を超える分散構造による力学物性の向上などが報告されている。
特開2002-088189号公報 特開2002-226639号公報 国際公開第2020/067161号 特開2020-092068号公報 国際公開第2011/118660号
Chem.Rev.2018,118,11433-11456 J.Phys.Chem.C 2014,118,9395-9399 ACS Appl.Mater.Interfaces 2019,11,45726-45736 Journal of Polymer Science:Part B:Polymer Physics,Vol.27,723-741(1989) POLYMER,1985,Vol 26,November 1855
 近年、蓄電デバイス用セパレータの構成材料としての微多孔膜を製造する際に、複数の原料を混合及び押出する工程の欠点(すなわち、未溶融物量)の低減が求められている。混合・押出工程時の未溶融物は、最終的に得られる微多孔膜中の凝集物、ゲルなどの原因となることがある。欠点の低減された微多孔膜を備えるセパレータによって、充放電を繰り返したときの容量維持特性(サイクル特性)に優れた蓄電デバイスを実現可能であると期待される。
 しかしながら、特許文献1及び2に記載の微多孔膜には、原料混合・押出工程の欠点、及びセパレータを備える蓄電デバイスのサイクル特性という観点で改良の余地があった。また、特許文献3~5のいずれも溶融混錬工程または押出工程での樹脂原料の形態に着目するものではなく、蓄電デバイス用セパレータ中のポリオレフィンの種類または構造がサイクル特性に及ぼす影響について詳述していない。
 上記の事情に鑑み、本発明は、原料混合・押出工程の欠点を低減して、サイクル特性に優れる蓄電デバイス用セパレータを提供することを目的とする。
 本発明者らは、上記の課題を解決するため検討を行い、以下の構成を有する蓄電デバイス用セパレータの製造方法を用いることにより上記課題を解決できることを見出して、本発明を完成させた。本発明の態様の一部を、以下に例示する。
[1]
 以下の工程:
 (1)ポリプロピレン、ポリエチレン、及び可塑剤を押出機にてシート状に押出し、冷却固化させ、シート状成形体に加工するシート成形工程;
 (2)前記シート状成形体を20倍以上250倍以下の面倍率で延伸して、延伸物を形成する延伸工程;
 (3)前記延伸物から前記可塑剤を抽出して、微多孔膜を形成する微多孔膜形成工程;
 (4)前記微多孔膜を熱処理に供して、幅方向に延伸及び緩和を行って熱処理された微多孔膜を得る熱処理工程;並びに
 (5)前記熱処理された微多孔膜を巻取る巻取工程;
を含む蓄電デバイス用セパレータの製造方法であって、
 前記ポリエチレンはパウダー状であり、かつ前記ポリプロピレンはペレット状である蓄電デバイス用セパレータの製造方法。
[2]
 前記ポリプロピレン及び前記ポリエチレンは、下記方法(a)~(c):
  (a)前記ポリプロピレン及び前記ポリエチレンを、それぞれ別のフィーダを用いて前記押出機へ投入する方法;
  (b)前記ポリプロピレンと前記ポリエチレンをドライブレンドした混合状態で、一つのフィーダを用いて押出機へ投入する方法;
  (c)前記ポリプロピレンと前記ポリエチレンをドライブレンドして得られた複数の樹脂原料を、それぞれ別のフィーダを用いて押出機へ投入する方法;
のいずれかにより前記押出機に投入される、項目1に記載の蓄電デバイス用セパレータの製造方法。
[3]
 前記ポリエチレン/前記ポリプロピレンの質量比率が、99/1~60/40である、項目1又は2に記載の蓄電デバイス用セパレータの製造方法。
[4]
 前記ポリエチレンは、重量平均分子量(Mw)が100,000~9,700,000であり、かつ数平均分子量(Mn)に対する重量平均分子量(Mw)の比(Mw/Mn)が3~12である、項目3に記載の蓄電デバイス用セパレータの製造方法。
[5]
 前記ポリプロピレンは、重量平均分子量(Mw)が300,000~2,000,000であり、かつ数平均分子量(Mn)に対する重量平均分子量(Mw)の比(Mw/Mn)が3~12であり、かつ
 前記ポリプロピレンのアイソタチックペンタッド分率(mmmm)が、85.0mol%~99.7mol%である、項目3に記載の蓄電デバイス用セパレータの製造方法。
[6]
 項目1~5のいずれか1項に記載の製造方法で製造された、蓄電デバイス用セパレータ。
[7]
 前記蓄電デバイス用セパレータは、微多孔膜を含み、
 前記微多孔膜は、ポリエチレン及びポリプロピレンを含み、
 前記微多孔膜のX線回折(XRD)または広角X線散乱(WAXS)測定において、前記ポリエチレンの結晶子サイズが15nm~40nmであり、かつ前記ポリプロピレ
ンの結晶子サイズが10nm~50nmである、項目6に記載の蓄電デバイス用セパレータ。
[8]
 微多孔膜を含む蓄電デバイス用セパレータであって、
 前記微多孔膜は、ポリエチレン及びポリプロピレンを含み、
 前記微多孔膜のX線回折(XRD)測定において、前記ポリエチレンの結晶子サイズが15nm~40nmであり、かつ前記ポリプロピレンの結晶子サイズが10nm~50nmである蓄電デバイス用セパレータ。
[9]
 前記微多孔膜のXRD測定において、前記ポリエチレンの結晶化度が、55%~99.9%である、項目8に記載の蓄電デバイス用セパレータ。
[10]
 微多孔膜を含む蓄電デバイス用セパレータであって、
 前記微多孔膜は、ポリエチレン及びポリプロピレンを含み、
 前記微多孔膜の広角X線散乱(WAXS)測定において、前記ポリエチレンの結晶子サイズが15nm~40nmであり、かつ前記ポリプロピレンの結晶子サイズが10nm~50nmである蓄電デバイス用セパレータ。
[11]
 前記微多孔膜のWAXS測定において、前記ポリエチレンの結晶化度が、50%~90%である、項目10に記載の蓄電デバイス用セパレータ。
[12]
 前記微多孔膜に含まれる前記ポリプロピレンのアイソタチックペンタッド分率(mmmm)が、85.0mol%~99.7mol%である、項目8~11のいずれか1項に記載の蓄電デバイス用セパレータ。
[13]
 項目6~12のいずれか1項に記載の蓄電デバイス用セパレータを含む電池。
 本発明によれば、原料混合・押出工程の欠点の低減が図られた微多孔膜又は蓄電デバイス用セパレータの製造方法を提供することができる。また、本発明によれば、かかる製造方法により得られる蓄電デバイス用セパレータの凝集物量又はゲル含有量を低減し、サイクル特性に優れた蓄電デバイスを提供することができる。
 以下、本発明の実施形態を説明するが、本発明は、以下の実施形態に限定されず、その要旨を逸脱しない範囲で様々な変形が可能である。本明細書において、「~」とは、特に断りがない場合、その両端の数値を上限値、及び下限値として含む意味である。また、本明細書において、数値範囲の上限値、及び下限値は任意に組み合わせることができる。
 本発明の第一の実施形態は、微多孔膜を含む蓄電デバイス用セパレータを提供し、その微多孔膜を構成する樹脂成分の結晶構造を特定する。本発明の第二の実施形態は、微多孔膜を含む蓄電デバイス用セパレータの製造方法を提供し、その製造方法において使用原料を特定する。各実施形態について後述する。
<蓄電デバイス用セパレータ>
 本発明の一態様は、蓄電デバイス用セパレータを提供する。蓄電デバイス用セパレータ(以下、「セパレータ」として略記することがある。)とは、蓄電デバイスにおいて複数の電極の間に配置され、かつイオン透過性及び必要に応じてシャットダウン特性を有する部材をいう。
 セパレータは、平膜(例えば、1枚の微多孔膜で形成される)、積層膜(例えば、複数の微多孔膜の積層体、微多孔膜と他の膜の積層体)、コーティング膜(例えば、微多孔膜の少なくとも片面に機能性物質がコーティングされている場合)などの形態でよい。
 第一の実施形態に係るセパレータは、結晶子サイズが15nm~40nmのポリエチレン(PE)と結晶子サイズが10nm~50nmのポリプロピレン(PP)とを含む微多孔膜を備える。結晶子サイズは、既知の手法により測定可能であり、例えば、リガク社製反射型X線回折装置Ultima-IV等によるX線回折(XRD)法、又は透過型X線散乱装置NANOPIX等による広角X線散乱(WAXS)法を用いた測定により得ることができる。セパレータの構成要素について以下に説明する。
<微多孔膜>
 微多孔膜は、精密ろ過膜、燃料電池用セパレータ、コンデンサー用セパレータ、蓄電デバイス用セパレータ、電気分解膜又はそれらの構成材料等として利用可能である。
 蓄電デバイス用セパレータ又はその構成材料、特に特にLIB用セパレータ又はその構成材料として微多孔膜が用いられる場合、微多孔膜は、それ自体が該セパレータとして用いられてもよく、微多孔膜の少なくとも片面に他の層又は他の膜が設けられたものが該セパレータとして用いられてもよい。蓄電デバイス用セパレータに用いられる微多孔膜としては、電子伝導性が小さく、イオン伝導性を有し、有機溶媒に対する耐性が高く、そして、孔径の微細なものが好ましい。
 微多孔膜は、蓄電デバイス用セパレータとして使用されるときのシャットダウン特性の観点から、その50質量%以上100質量%以下がポリオレフィン(PO)で形成されることが好ましく、PO割合が、60質量%以上100質量%以下であることがより好ましく、70質量%以上100質量%以下であることが更に好ましい。微多孔膜は、熱破膜耐性、及び孔径の低下の観点から、POとして、ポリエチレン(PE)とポリプロピレン(PP)の両方を含むことが好ましい。
 第一の実施形態に係る微多孔膜が、結晶子サイズ15nm~40nmのPEと結晶子サイズ10nm~50nmのPPを含むことは、PEとPPの結晶状態が適切に分布された微多孔膜の形成を意味すると考えられる。
 また、PEとPPの適切な結晶分布を有する微多孔膜は、非特許文献1~3に記述されるような従来のシリコン(高濃度含有)負極のためのセパレータと比べて、電解液の膨潤による圧縮方向への体積回復がし易く、例えばシリコン(ケイ素)含有負極等の負極の膨張収縮に変形対応し易く(すなわち、微多孔膜の孔径が減少しても回復し易く)、かつ/又はシリコン(ケイ素)含有負極の収縮時にセパレータが負極に密着していることで、両者の隙間ができ難く、負極表面への過剰な固体電解質界面(SEI)の沈着成長が抑制される傾向にあり、それにより蓄電デバイス内の長期使用時のサイクルを向上させることが考えられる。他方では、PEとPPの適切な結晶分布は、微多孔膜の製造プロセスにおいて樹脂原料の混合・押出工程の欠点が低減されたことを示唆する。このような観点から、PEとPPの結晶子サイズの組み合わせは、好ましくは、PE結晶子サイズ16nm~39nmとPP結晶子サイズ11nm~49nm、より好ましくはPE結晶子サイズ20nm~38nmとPP結晶子サイズ11nm~47nmである。
 微多孔膜中のPEとPPの適切な結晶分布は、例えば、樹脂原料の混合・押出工程でPEとPPの各状態を特定したり、PPのアイソタチックペンタッド分率(mmmm)などの立体規則構造を制御したりすることにより達成されることができる。
(ポリエチレン(PE))
 ポリエチレン(PE)は、重量平均分子量(Mw)が100,000~9,700,000であり、かつ/又は数平均分子量(Mn)に対する重量平均分子量(Mw)の比(Mw/Mn)が3~12であることが好ましい。このようなMw及びMw/MnのPE樹脂は、超高分子量ポリエチレン(UHMWPE)とも称され、PE及びPPを含む微多孔膜の結晶分布の最適化、凝集物量及びゲル含有量、並びにそれを用いるセパレータ及び蓄電デバイスのサイクル特性の観点から好ましい。
 PEのMwは、上記と同様の観点から、より好ましくは120,000~9,000,000、更に好ましくは200,000~8,500,000である。また、その分散度(Mw/Mn)は、4~11であることがより好ましく、5~10であることが更に好ましい。
 PE単体は、電池中での電解液による膨潤状態の観点からは、XRD法で測定された結晶化度が55%~99.9%が好ましく、80%~99.8%がより好ましく、85%~97%が更に好ましい。PE単体は、同様の観点から、WAXS法で測定される結晶化度が50%~90%が好ましく、65%~80%がより好ましく、68%~77%が更に好ましい。XRD法とWAXS法は、同一微多孔膜を測定しても得られる結晶子サイズ、結晶化度の測定結果に差異があり、しばしば結晶化度測定おいて、差異が顕著に見られる傾向がある。このような差異は下記によると推察する。XRD法は反射型測定であり、微多孔膜の表面の情報が主とする測定結果である。一方、WAXS法は透過型測定であり、微多孔膜の表面、内部構造を含めた平均化情報の測定結果である。本願明細書に記載される微多孔膜は、その製造工程内で、表面から冷却、加熱操作をし、シート化、延伸などを行うため、得られた微多孔膜は、表面の方がより結晶化が進んでいる傾向があっても良いと考えられる。
 このようなPE結晶群は、結晶を介した全体の高次構造が、電池の使用温度領域(-30℃~80℃)での電解液が持つ分子振動などの熱エネルギーにより膨潤(浸透、内部拡散)し易く、圧縮方向の良い体積回復率へ繋がると考えられる。PE結晶構造への膨潤は、電解液の浸透する力が、PEの高次構造が持つエントロピー弾性エネルギーに基づく力より高い場合に起こる現象である。そのため、PEの高次構造への膨潤は、電解液の浸透する力を向上させるか、または電解液が膨潤し易いPEの高次構造(膨潤後、全体の高次構造熱が熱エネルギー的な安定化が可能なPEの高次構造)の構築が必要である。本発明では、電池の使用温度領域内で微多孔膜の機械的強度を維持しながら、膨潤し易いPEの高次構造を構築できた。このような傾向に沿って、PE結晶子サイズは、15nm~40nmであることが好ましく、16nm~39nmであることがより好ましく、20nm~38nmであることが更に好ましい。PE単体の結晶子サイズは、例えば、微多孔膜の製造プロセスにおけるPE形態又はPE原料投入方式の制御、ポリプロピレン(PP)原料に対するPE原料割合の特定等により上記数値範囲内に調整されることができる。
 PEは、単一種のみならず、複数種のUHMWPEを含んでもよい。UHMWPEは、微多孔膜の高強度の観点から、好ましくはポリ(エチレン、及び/又はプロピレン-co-α-オレフィン)であり、より好ましくはポリ(エチレン-co-プロピレン)、ポリ(エチレン-co-ブテン)、及びポリ(エチレン-co-プロピレン-co-ブテン)から成る群から選択される少なくとも1つである。同様の観点から、UHMWPEは、好ましくは、エチレン由来の構成単位を98.5モル%以上100モル%以下で含み、より好ましくは、エチレン以外のα-オレフィンに由来する構成単位を0.0モル%超1.5モル%以下で含む。
 また、PEは、UHMWPE以外のポリエチレン樹脂を含んでもよい。UHMWPE以外のポリエチレン樹脂としては、直鎖状低密度ポリエチレン(LLDPE)等の低密度ポリオレフィン(LDPE)、高密度ポリエチレン(HDPE)、高圧法低密度ポリエチレン、又はこれらの混合物等が挙げられる。
(ポリプロピレン(PP))
 ポリプロピレン(PP)は、重量平均分子量(Mw)が300,000~2,000,000であり、かつ数平均分子量(Mn)に対する重量平均分子量(Mw)の比(Mw/Mn)が3~12であることが好ましい。このようなMw及びMw/MnのPP樹脂は、PE及びPPを含む微多孔膜の結晶分布の最適化、凝集物量及びゲル含有量、並びにそれを用いるセパレータ及び蓄電デバイスのサイクル特性の観点から好ましい。
 PPのMwは、上記と同様の観点から、より好ましくは305,000~1,900,000であり、更に好ましくは310,000~1,800,000である。また、その分散度(Mw/Mn)は、4~11であることがより好ましく、4.5~10であることが更に好ましい。
 PP単体の結晶子サイズは、PE及びPPを含む微多孔膜が電池内において電解液膨潤による圧縮方向における体積回復が良いという観点から、好ましくは10nm~50nmであり、より好ましくは11nm~49nm、更に好ましくは11nm~47nmである。PPは、PEと非相溶であるためPEとの混晶を形成せずに、PEの網目構造へ微分散した混合結晶系を構築することができる。非特許文献5に示されるように、樹脂構造中に分散した異種粒子の大きさ又は粒子間距離を制御することにより特定の分散度を超える分散構造は、衝撃強度などの力学物性を著しく向上させることがあり、このような現象は、分散した異種粒子について数百nm~数μmの大きさで制御されていることが知られている。これに対して、本実施形態では、驚くべきことに、粒子ではなく、これまでにないPE及びPPの結晶構造を制御し、数十nmという有意に小さいオーダーで、セパレータの圧縮方向における体積回復の力学物性を改善することができるという知見が得られた。PP単体の結晶子サイズは、例えば、微多孔膜の製造プロセスにおけるPP形態又はPP原料投入方式の制御、ポリエチレン(PE)原料に対するPP原料割合の特定等により上記数値範囲内に調整されることができる。
 PPは、耐熱性及び溶融粘度の観点から、プロピレンホモポリマーであることが好ましい。PPとしては、例えば、アイソタクティックポリプロピレン、シンジオタクティックポリプロピレン、アタクティックポリプロピレン等が挙げられる。中でも、アイソタクティックポリプロピレンが好ましい。アイソタクティックPPの量は、微多孔膜中のPP総質量に対して、好ましくは90質量%以上、より好ましくは95質量%以上、さらに好ましくは98質量%以上、よりさらに好ましくは100質量%(全て)である。
 微多孔膜中のPEとPPの結晶分布の最適化の観点から、PPの立体規則構造(ペンタッドシーケンス)に関するアイソタチックペンタッド分率(mmmm)は、85.0mol%~99.7mol%であることが好ましく、86.0mol%~99.6mol%であることがより好ましく、87.0mol%~99.5mol%であることが更に好ましい。
 微多孔膜中のPEとPPの結晶分布の最適化の観点から、PPのペンタッドシーケンスのうち、(mmmr)は、0.5mol%~2.5mol%であることが好ましく、0.9mol%~2.4mol%であることがより好ましい。
 上記と同様の観点から、PPのペンタッドシーケンスのうち、(rmmr)は、0.1mol%~1.0mol%であることが好ましく、0.1mol%~0.6mol%であることがより好ましい。
 上記と同様の観点から、PPのペンタッドシーケンスのうち、(mmrr)は、0.3mol%~2.5mol%であることが好ましく、0.5mol%~2.3mol%であることがより好ましい。
 上記と同様の観点から、PPのペンタッドシーケンスのうち、(mmrm+rrmr)は、0.5mol%~1.5mol%であることが好ましく、0.7mol%~1.3mol%であることがより好ましい。
 上記と同様の観点から、PPのペンタッドシーケンスのうち、(mrmr)は、0.5mol%以下であることが好ましく、0.4mol%以下であることがより好ましい。
 上記と同様の観点から、PPのペンタッドシーケンスのうち、(rrrr)は、0.1mol%~1.5mol%であることが好ましく、0.2mol%~1.2mol%であることがより好ましい。
 上記と同様の観点から、PPのペンタッドシーケンスのうち、(rrrm)は、0.1mol%~1.5mol%であることが好ましく、0.2mol%~1.0mol%であることがより好ましい。
 上記と同様の観点から、PPのペンタッドシーケンスのうち、(mrrm)は、0.1mol%~1.5mol%であることが好ましく、0.2mol%~1.0mol%であることがより好ましい。
 ポリプロピレンユニットのメチル基が同方向に連結した構造はメソ(m)として、異方向に連結した構造はラセモ(r)として知られている。本実施形態では、上記のように限定した割合のmmmm~mrrmの少なくとも1つの立体配置で構成されたPPを用いていることにより微多孔膜の製造において、PEとの結晶分布の調整に優れる現象が見られる。
 この現象は、可塑剤共存条件下、溶解したPEとPPが分子レベルで良い分散状態であることが重要であり、特に、PP分子鎖の絡み合い状態の制御が求められる。非特許文献4に示されるとおり、Wuらは、高分子鎖の立体的配置についての代表的な概念がKuhn chainモデルであり、単量体のある程度の単位が折れ曲がって高分子鎖の立体配を決めることを報告している。Kuhn chainモデルにおいて、「node」は結合間の原子を表し、PPの場合にはC原子を表し、そして「l」は結合長であり、PPの場合にはC原子間の距離である。このモデルに沿ってセグメント間の立体的な角度を求め、高分子鎖の両末端間距離を計算する理論式が導き出されており、そして分子鎖の絡み合い構造が論理的に描写できることが明らかにされる。本実施形態では、実験的にPP中のmmmm立体配置の割合を定めており、このようなPPは、可塑剤中でPEと良い分散性を示す回転半径であると推測される。
(PEとPPの質量比率)
 ポリエチレンとポリプロピレンの質量比率は、PE/PP質量比率として、99/1~60/40であることが好ましく、97/3~70/30であることがより好ましく、95/5~85/15であることが更に好ましく、93/7~90/10であることが最も好ましい。微多孔膜中のPE/PP質量比率を上記の数値範囲内に調整することは、PE中に均一にPPが分散されたと推測される。実際には、微多孔膜の製造プロセスにおいてPE原料とPP原料を単に混合するだけでは、PE中にPPが均一に分散し難い。理論に拘束されることを望まないが、後述される蓄電デバイス用セパレータの製造プロセスにおいて、PE原料とPP原料について、それぞれの形態又は原料投入方式を制御して、特殊な押出工程に供することで、上記のような好適な分散が得られる傾向にある。そして、かかる手法によれば、上記の質量比率においてより好適に、PE中にPPを分散させ易くなる。
(その他の含有物)
 微多孔膜は、本発明の作用効果の発揮を阻害しない範囲で、PEとPP以外のポリオレフィン(PO)樹脂、例えば、結晶性に優れるブチレンホモポリマーなどを含んでよい。
 また、微多孔膜は、本発明の作用効果の発揮を阻害しない範囲で、PO以外の樹脂成分として、例えば、ナイロン6、ナイロン66、ナイロン11、ナイロン6-10、ナイロン6-12、ナイロン6-66、アラミド樹脂等のポリアミド樹脂;ポリイミド系樹脂;ポリエチレンテレフタレート(PET)、ポリブテンテレフタレート(PBT)等のポリエステル系樹脂;ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素系樹脂;エチレンとビニルアルコールの共重合体(例えば、株式会社クラレ製 エバール 融点:157℃~190℃)、ポリスルホン、ポリエーテルスルホン、ポリケトン、ポリエーテルエーテルケトン(PEEK)等を含んでよい。これらの樹脂成分は、単数又は複数で使用されることができる。
 微多孔膜は、本発明の作用効果の発揮を阻害しない範囲で、樹脂以外の添加物を含んでもよい。添加物としては、例えば、脱水縮合触媒、ステアリン酸カルシウム又はステアリン酸亜鉛等の金属石鹸類、紫外線吸収剤、光安定剤、帯電防止剤、防曇剤、着色顔料等が挙げられる。
(微多孔膜の各種特性)
 微多孔膜の特性を以下に説明する。
 これらの特性は、蓄電デバイス用セパレータとしての微多孔膜が平膜の場合であるが、蓄電デバイス用セパレータが積層膜の形態である場合には積層膜から微多孔膜以外の層を除いてから測定されることができる。
 微多孔膜の気孔率は、好ましくは20%以上、より好ましくは30%以上、更に好ましくは32%以上又は35%以上である。微多孔膜の気孔率が20%以上であることにより、微多孔膜をアルカリ金属イオン電池用セパレータ又はその構成材料に用いたときに、アルカリ金属イオンの急速な移動に対する追従性がより向上する傾向にある。一方、微多孔膜の気孔率は、好ましくは90%以下、より好ましくは80%以下、更に好ましくは50%以下である。微多孔膜の気孔率が90%以下であることにより、膜強度がより向上し、自己放電がより抑制される傾向にある。微多孔膜の気孔率は、実施例に記載の方法により測定される。
 微多孔膜の透気度は、100cm3当たり、好ましくは1秒以上、より好ましくは50秒以上、更に好ましくは55秒以上、より更に好ましくは100秒以上である。微多孔膜の透気度が1秒以上であることにより、膜厚と気孔率と平均孔径のバランスがより向上する傾向にある。また、微多孔膜の透気度は、好ましくは400秒以下、より好ましくは300秒以下である。微多孔膜の透気度が400秒以下であることにより、イオン透過性がより向上する傾向にある。微多孔膜の透気度は、延伸倍率、延伸温度を調整する等により調節可能である。かかる透気度は、実施例に記載の方法により測定される。
 微多孔膜の膜厚は、好ましくは1.0μm以上、より好ましくは2.0μm以上、更に好ましくは3.0μm以上、又は4.0μm以上である。微多孔膜の膜厚が1.0μm以上であることにより、膜強度がより向上する傾向にある。また、微多孔膜の膜厚は、好ましくは500μm以下、より好ましくは100μm以下、更に好ましくは80μm以下、22μm以下又は19μm以下である。微多孔膜の膜厚が500μm以下であることにより、イオン透過性がより向上する傾向にある。微多孔膜の膜厚は、延伸倍率、延伸温度を調整する等により調節可能である。かかる膜厚は、実施例に記載の方法により測定される。
 特に、LIB用セパレータ又はその構成材料として微多孔膜を用いる場合、微多孔膜の膜厚は、好ましくは25μm以下、より好ましくは22μm以下又は20μm以下、更に好ましくは18μm以下である。この場合、微多孔膜の膜厚が25μm以下であることにより、透過性がより向上する傾向にある。この場合、微多孔膜の膜厚の下限値は、1.0μm以上、3.0μm以上、4.0μm以上又は5.0μm以上でよい。
<蓄電デバイス用セパレータの製造方法>
 本発明の別の態様は、微多孔膜を含む蓄電デバイス用セパレータの製造方法を提供する。第二の実施形態に係る蓄電デバイス用セパレータの製造方法は、微多孔膜の製造方法を包含することができ、以下の工程:
 (1)ペレット状のポリプロピレン(PP)、パウダー状のポリエチレン(PE)、及び可塑剤を押出機にてシート状に押出し、冷却固化させ、シート状成形体に加工するシート成形工程;
 (2)シート状成形体を20倍以上250倍以下の面倍率で二軸延伸して、延伸物を形成する延伸工程;
 (3)延伸物から可塑剤を抽出して、微多孔膜を形成する微多孔膜形成工程;
 (4)微多孔膜を熱処理に供して、幅方向(TD)に延伸及び緩和を行って熱処理された微多孔膜を得る熱処理工程;並びに
 (5)熱処理された微多孔膜を巻取る巻取工程;
を含む。
 第二の実施形態に係る蓄電デバイス用セパレータの製造方法は、PE原料をパウダー状に、PP原料をペレット状にし、混合・押出して製膜することによって、複数の原料の混合・押出工程の欠点(すなわち、未溶融物量)を低減することができる。混合・押出工程時の未溶融物は、最終的に得られる微多孔膜及びそれを含むセパレータの凝集物、ゲルなどの原因となり得るので、欠点の低減された微多孔膜を備えるセパレータによって、充放電を繰り返したときのセパレータの厚み維持特性(サイクル特性)又は蓄電デバイスの容量維持特性(サイクル特性)を達成することができる。
 また、第二の実施形態では、上記で説明された第一の実施形態に係るセパレータを得ることができるだけでなく、セパレータを構成する微多孔膜中のPEとPPの結晶分布を上記で説明されたとおりに最適化し、例えばシリコン含有負極などの負極の膨張収縮に変形対応させ易くして負極とセパレータの密着性に寄与することもできる。
 第二の実施形態で使用される樹脂原料及び添加剤は、第一の実施形態について上記で説明されたPE、PP、PO、その他の樹脂、添加剤と同じであることができる。また、第二の実施形態に係る製造方法により製造された蓄電デバイス用セパレータも第一の実施形態に係る蓄電デバイス用セパレータと同様に、結晶子サイズが15nm~40nmのPEと結晶子サイズが10nm~50nmのPPとを含む微多孔膜を備えることが好ましく、PPの立体規則構造に関するアイソタチックペンタッド分率(mmmm)は85.0mol%~99.7mol%であることがより好ましい。以下、第二の実施形態に係る各工程について順に説明する。
[シート成形工程(1)]
 工程(1)では、ペレット状PP原料、パウダー状PE原料、及び可塑剤を押出機に供給する。上記のとおり、PE原料及びPP原料としては、第一の実施形態について説明されたPE及びPPを所定の質量比率で使用することができる。
(ポリエチレン(PE)原料)
 PE原料は、微多孔膜の製造プロセスにおいて原料混合・押出工程の歩留まりを向上させる観点、及び得られる微多孔膜の未溶融物量を低減し易くする観点から、パウダーの形状であることが好ましく、使用PEの全質量を基準として、2質量%~100質量%がパウダーであることがより好ましい。
 PE原料として好ましい「パウダー」とは、数平均粒径(Nd50)が80μm~180μmであること、体積平均粒径(Vd50)が120μm~220μmであること、数粒径分布(Nd80/Nd20)が1.1~4.2であり、好ましくは1.2~4.1であること、体積粒径分布(Vd80/Vd20)が1.1~3.3であり、好ましくは1.15~3.2あること、結晶子サイズが15nm~40nmの範囲内にあること、結晶化度が30%~99%、好ましくは32%~98%で、より好ましくは38%~97.5%であること、ポリエチレンを含むこと、から成る群より選択される少なくとも1つの条件を満たすものをいう。これらの数平均粒径(Nd50)、体積平均粒径(Vd50)、数粒径分布(Nd80/Nd20)、体積粒径分布(Vd80/Vd20)、結晶子サイズ、結晶化度等は、既知の手法により測定可能である。
 例えば、数平均粒径(Nd50)、体積平均粒径(Vd50)、数粒径分布(Nd80/Nd20)、及び体積粒径分布(Vd80/Vd20)については、Micromeritics製フロー式画像解析粒子径・形状測定装置Particle Insightを用いた測定により得ることができる。また、例えば、結晶子サイズ、及び結晶化度については、リガク社製X線回折装置Ultima-IVを用いたXRD測定により得ることができる。
(ポリプロピレン(PP)原料)
 PP原料は、微多孔膜の製造プロセスにおいて原料混合・押出工程の歩留まりを向上させる観点、及び得られる微多孔膜の未溶融物量を低減し易くする観点から、ペレットの形状であることが好ましく、使用PPの全質量を基準として、2質量%~100質量%がペレットであることがより好ましい。
 ペレット状PPは、例えば、重合したPPパウダーを乾燥した後、それを押出機によりストランド状に押出し、水冷後、ペレット状にカットすることで得ることができる。その場合、PPパウダー原料の粘度平均分子量(Mv)は、好ましくは200,000以上1,000,000以下、より好ましくは250,000以上900,000以下、更に好ましくは300,000以上800,000以下である。なお、PPのMvは、ASTM-D4020に基づき、デカリン溶媒における135℃での極限粘度[η](dl/g)を測定することで、次式に従って算出することができる。
  [η]=1.10×10-4Mv0.80
 ここで、PP原料として好ましい「ペレット」とは、PE原料として好ましい「パウダー」の数平均粒径(Nd50)、及び体積平均粒径(Vd50)よりも大きく、かつ、1辺の長さが最大10mm以下であり、1mm以上の樹脂物である。ペレットの形状は、特に限定されず、例えば、球形、楕円球形、及び柱形のいずれでもよい。原料を押出機により、溶融押出を行い、水冷又は空冷させながら、ストランド状に整え、連続的に切断することで得られる。ペレットの寸法又は詳細な形状は、例えば、ストランド形成、又は切断法式で調整されることができる。
(パウダー状PE原料とペレット状PP原料の組み合わせ)
 PP原料を上記のように「ペレット」形態に調整することで、可塑剤による膨潤速度を大幅に遅らせることができる(すなわち、ペレット状PPは、実質的に膨潤しないことが推測される)。押出機の内部では、パウダー状PE原料の膨潤を阻害しないことが重要である。また、膨潤工程後の溶融工程で、均一溶融の視点からは、PP原料成分として好ましい「ペレット」とは、PE原料成分として好ましい「パウダー」の結晶子サイズよりも大きく、かつ、第一の実施形態において説明されたPPの結晶子サイズを有するものをいう。
 ペレットの製造方法では、ストランド状に押出樹脂の温度や切断時の冷却温度又は押出よりストランド状の引き速度(溶融微延伸)など、ペレットの結晶子サイズ、結晶化度、ペレットの大きさ、形状を調整できる。これらの数平均粒径(Nd50)、体積平均粒径(Vd50)、結晶子サイズ、結晶化度等は、既知の手法により測定可能である。例えば、これらの数平均粒径(Nd50)、体積平均粒径(Vd50)、結晶子サイズ、及び結晶化度は、第一の実施形態に係る手法と同様の手法により測定可能である。また、ペレットの大きさは、例えば、校正済みのノギスによって1辺の長さを計測することで、得ることができる。
 ペレット状PPとパウダー状PEの混合は、押出機内での可塑剤の膨潤の均一性を著しく向上させ易くする。これは、ペレットの膨潤速度は、パウダーと比べ、著しく遅くなることができるためであると考えられる。そのため、ペレット状PPは、パウダー状PEの膨潤を過度に阻害することなく、また、かかるペレット自体は基本的には膨潤しないで、その後の熔融混練において好適に利用される。これにより、溶融混錬のプロセスでも容易に均一に分子レベルまで、PE成分中にPP成分を分散させ易くなる。
(可塑剤)
 可塑剤は、20℃~70℃の温度で液状であり、かつ、PE又はPPの分散性に優れる限り、既知の材料であることができる。工程(1)で使用される可塑剤は、その後の抽出も考慮すると、PE又はPPの融点以上において均一溶液を形成し得る、不揮発性溶媒が好ましい。不揮発性溶媒の具体例としては、例えば、流動パラフィン、パラフィンワックス、デカン、及びデカリン等の炭化水素類;フタル酸ジオクチル、及びフタル酸ジブチル等のエステル類;オレイルアルコール、及びステアリルアルコール等の高級アルコール等が挙げられる。中でも、流動パラフィンは、ポリエチレンとの相溶性が高く、溶融混練物を延伸しても樹脂と可塑剤との界面剥離が起こり難く、均一な延伸が実施し易くなる傾向にあるため好ましい。
(原料の押出機への供給)
 押出機としては、例えば、単軸押出機、二軸押出機、スクリュー付き短軸押出基などが挙げられ、中でも二軸押出機が好ましい。また、工程(1)では、連続混合機による原料のせん断が行われることが好ましく、二軸押出機に連続混合機が実装されていることがより好ましい。
 樹脂原料及び/又は可塑剤は、適切な粘度を確保しながら、樹脂原料の分子量の低下を起こさない程度にポリマー鎖の絡み合いを確保する観点から、好ましくは25℃~80℃の温度で、より好ましくは30℃~76℃の温度で、更に好ましくは30℃~70℃の温度で押出機に供給される。
 PE及びPP原料は、PEとPPの結晶構造の制御、可塑剤に対する膨潤の制御などの観点から、下記方法(a)~(c):
  (a)PPペレット及びPEパウダーを、それぞれ別のフィーダを用いて押出機へ投入する方法;
  (b)PPペレット及びPEパウダーをドライブレンドした混合状態で、一つのフィーダを用いて押出機へ投入する方法;
  (c)PPペレット及びPEパウダーをドライブレンドして複数の樹脂原料を得て、複数の樹脂原料をそれぞれ別のフィーダを用いて押出機へ投入する方法;
のいずれかにより押出機に投入されることが好ましい。PEとPPの結晶構造制御はPEとPP混合状態で重要であるため、本発明では両者の熱力学的に半相溶性である特性を活かして、限られた押出機内の滞留時間内でPEとPP分散状態を制御することに着目した。この着眼点からは、投入するPEおよびPPの大きさ(例えば、パウダー、ペレットなど)を制御することで、間接的にPEとPPの結晶構造を制御することに至った。加えて、押出内でPEが融解する前に、流動パラフィン(LP)などの可塑剤の膨潤が、PE自身の均一分散(例えば、未溶融物またはゲルの発生なし)にとって、最も重要である。PPの過剰な溶融物が、LPと混合し、可塑剤の粘度または不均一性を増すことで、PEの均一膨潤を阻害することが実験的に明らかになった。PE及びPP原料は、以上の観点から、上記方法(a)~(c)のいずれかにより押出機に投入されることが好ましい。
 投入方法(a)では、PPとPEの押出機への投入タイミングは、同時、逐次、又は連続でよく、好ましくは二軸押出機への同時供給である。投入方法(b)及び(c)では、PPとPEの押出機への投入タイミングは、同時である。
 投入方法(c)では、PPペレットとPEパウダーのドライブレンドを複数回行って複数の樹脂原料を得てもよく、PPペレットとPEパウダーのドライブレンドを1回行って得られたドライブレンド品を複数に分けて複数の樹脂原料を得てもよい。
 原料投入方法(a)~(c)の中でも、押出の安定性制御の観点から均一分散PEとPPの分散状態を構築することで、サイクル試験後のセパレータ厚み保持率及び/又はセル容量保持率の観点から、(a)及び(b)がより好ましく、(b)が更に好ましい。
 また、可塑剤は、例えば、PE原料及び/又はPP原料と共に二軸押出機に供給することができる。PE原料及び/又はPP原料と共に可塑剤を二軸押出機に供給した後で、同一の又は異なるフィーダから、可塑剤を追加供給してもよい。この種の二軸押出機は、一般に、上流側に配される上段フィード口と、そのフィード口よりも下流側であって、溶融混錬エリアの途中に配される中段フィード口とを有している。従って、二軸押出機の上段フィード口から混合スラリーを供給した後、二軸押出機先の中段フィード口から可塑剤を追加供給することもできる。これにより、二軸押出機から押出される樹脂組成物に占める流動パラフィン量比を所望の割合に調整し易くなり、また、樹脂組成物の温度を所望の範囲に調整し易くなる。勿論、中段フィード口から、第1成分又は第2成分を供給することもできる。
 混合スラリーは連続混合機を用いて調合しても良い。連続混合機の設定温度の下限は、PE原料及び可塑剤を最大限に膨潤させる観点から、好ましくは25℃以上、より好ましくは30℃以上である、また、その上限は、混合時に樹脂原料を溶融させるという観点から、好ましくは68℃以下、より好ましくは、67℃以下、66℃以下又は65℃以下である。
 連続混合機のせん断速度は、樹脂原料を均一に可塑剤と接触させ、分散体を得る観点から、100秒-1~400,000秒-1であり、好ましくは120秒-1~398,000秒-1、より好ましくは1,000秒-1~100,000秒-1である。
 連続混合機の滞留時間は、可塑剤中の樹脂原料の分散を確保する観点から、1.0秒~60秒であり、好ましくは2.0秒~58秒、より好ましくは2.0秒~56秒である。
(溶融混錬)
 工程(1)では、樹脂原料、及び可塑剤を二軸押出機にて溶融混錬し、樹脂組成物を製造する。第二の実施形態では、可塑剤に対する樹脂原料の膨潤の均一性が確保される限り、溶融混錬に使用される装置の種類、時間等の条件は限定されない。なお、所望により、PE及びPP以外のPO樹脂、PO以外の樹脂原料、公知の添加剤、例えば、脱水縮合触媒、ステアリン酸カルシウム又はステアリン酸亜鉛等の金属石鹸類、紫外線吸収剤、光安定剤、帯電防止剤、防曇剤、着色顔料等も二軸押出機に投入してよい。
(冷却固化、シート成形)
 工程(1)では、溶融混練物をシート状に成形する。シート状成形体を製造する方法としては、例えば、溶融混練物を、Tダイ等を介してシート状に押出し、熱伝導体に接触させて樹脂成分の結晶化温度より充分に低い温度まで冷却して固化する方法が挙げられる。冷却固化に用いられる熱伝導体としては、金属、水、空気、可塑剤等が挙げられる。これらの中でも、熱伝導の効率が高いため、金属製のロールを用いることが好ましい。また、押出した混練物を金属製のロールに接触させるときに、少なくとも一対のロールで挟み込むことは、熱伝導の効率が更に高まると共に、シートが配向して膜強度が増し、シートの表面平滑性も向上する傾向にあるため、より好ましい。樹脂組成物をTダイからシート状に押出すときのダイリップ間隔は200μm以上3,000μm以下であることが好ましく、500μm以上2,500μm以下であることがより好ましい。ダイリップ間隔が200μm以上であると、メヤニ等が低減され、スジ又は欠点などの膜品位への影響が少なく、その後の延伸工程において膜破断などのリスクを低減することができる。一方、ダイリップ間隔が3,000μm以下であると、冷却速度が速く冷却ムラを防げると共に、シートの厚み安定性を維持できる。また、押出されたシート状成形体を圧延してもよい。
[延伸工程(2)]
 工程(2)では、工程(1)で得られたシート状成形体を20倍以上250倍以下の面倍率で延伸する。面倍率が20倍以上であると、得られる微多孔膜に十分な強度を付与できる傾向にあり、一方、面倍率が250倍以下であると、膜破断を防ぎ、高い生産性が得られる傾向にある。工程(2)は、多孔体形成工程(3)の前に行ってよいし、工程(3)の後に多孔体に対して行ってもよい。さらに、工程(2)は、シート状成形体からの可塑剤の抽出の前後に行ってもよい。
 延伸処理としては、幅方向(TD)の膜厚分布と透気度分布を小さくできるという観点から、一軸延伸よりも二軸延伸が好ましい。シートを二軸方向に同時に延伸することでシート状成形体が製膜工程の中で冷却・加熱を繰り返す回数が減り、幅方向の分布が良くなる。二軸延伸方法としては、例えば、同時二軸延伸、逐次二軸延伸、多段延伸、多数回延伸等の方法を挙げることができる。突刺強度の向上、及び延伸の均一性の観点からは、同時二軸延伸が好ましく、また、面配向の制御容易性の観点からは、遂次二軸延伸が好ましい。
 本明細書では、同時二軸延伸とは、MD(微多孔膜連続成形の機械方向)の延伸とTD(微多孔膜のMDを90°の角度で横切る方向)の延伸が同時に施される延伸方法をいい、各方向の延伸倍率は異なってもよい。逐次二軸延伸とは、MD、及びTDの延伸が独立して施される延伸方法をいい、MD又はTDに延伸が為されているときは、他方向は非拘束状態又は定長に固定されている状態とする。
 延伸倍率は、面倍率で20倍以上200倍以下の範囲内であることが好ましく、25倍以上170倍以下の範囲であることがより好ましく、30倍以上150倍以下が更に好ましい。各軸方向の延伸倍率は、MDに2倍以上15倍以下、TDに2倍以上15倍以下の範囲であることが好ましく、MDに3倍以上12倍以下、TDに3倍以上12倍以下の範囲であることがより好ましく、MDに5倍以上10倍以下、TDに5倍以上10倍以下の範囲であることが更に好ましい。
 延伸温度は、PE/PP原料の溶融性及び製膜性の観点から、好ましくは90℃~150℃、より好ましくは100℃~140℃、更に好ましくは110℃~130℃である。
[微多孔膜形成工程(3)]
 工程(3)では、(1)で形成された樹脂組成物から、又は工程(2)で形成された延伸物から可塑剤を抽出し、微多孔膜を形成する。可塑剤の抽出方法としては、例えば、抽出溶剤に延伸物を浸漬して可塑剤を抽出して、乾燥させる方法が挙げられる。抽出方法は、バッチ式と連続式のいずれであってもよい。微多孔膜の収縮を抑えるために、浸漬、及び乾燥の一連の工程中にシート状成形体の端部を拘束することが好ましい。また、微多孔膜中の可塑剤残存量は、微多孔膜全体の質量に対して、1質量%未満にすることが好ましい。なお、工程(3)の後に、蒸留等の操作により可塑剤を回収して再利用してよい。
 抽出溶剤としては、PE及びPP樹脂に対して貧溶媒であり、可塑剤に対して良溶媒であり、かつ沸点がPE及びPP樹脂の融点より低いものを用いることが好ましい。このような抽出溶剤としては、例えば、n-ヘキサン、シクロヘキサン等の炭化水素類;塩化メチレン、1,1,1-トリクロロエタン等のハロゲン化炭化水素類;ハイドロフルオロエーテル、ハイドロフルオロカーボン等の非塩素系ハロゲン化溶剤;エタノール、イソプロパノール等のアルコール類;ジエチルエーテル、テトラヒドロフラン等のエーテル類;アセトン、メチルエチルケトン等のケトン類が挙げられる。なお、これらの抽出溶剤は、蒸留等の操作により回収して再利用してよい。
[熱処理工程(4)]
 工程(4)では、例えば、工程(3)で得られた微多孔膜の融点以下の温度で、その微多孔膜の熱処理を行った後、かかる微多孔膜を延伸し、熱処理された微多孔膜を製造する。
 微多孔膜には、収縮を抑制する観点から熱固定を目的として熱処理を施す。熱処理の方法としては、物性の調整を目的として、所定の雰囲気、所定の温度、及び所定の延伸倍率で行う延伸操作、並びに/又は、延伸応力低減を目的として、所定の雰囲気、所定の温度、及び所定の緩和率で行う緩和操作が挙げられる。延伸操作を行った後に緩和操作を行ってよい。これらの熱処理は、テンター又はロール延伸機を用いて行うことができる。
 延伸操作は、微多孔膜の強度、及び気孔率を高めるという観点から、膜のMD、及び/又はTDに1.1倍以上であることが好ましく、より好ましくは1.2倍以上の延伸を行う。熱固定時の延伸倍率の上限値は、MD、TDともに、3.0倍以下であることが好ましく、2.5倍以下であることが好ましい。
 また、緩和操作は、膜のMD、及び/又はTDへの縮小操作のことである。緩和率とは、緩和操作後の膜の寸法を緩和操作前の膜の寸法で除した値のことである。なお、MDとTDの双方を緩和した場合は、MDの緩和率とTDの緩和率を乗じた値のことである。緩和率は、好ましくは0.99以下、より好ましくは0.95以下である。緩和率は膜品質の観点から0.5以上であることが好ましい。緩和操作は、MDとTDの両方向で又はMDとTDの片方だけで行ってよい。
 延伸又は緩和操作などを含む熱処理の温度は、PE及びPP樹脂の融点(以下、「Tm」ともいう。)の観点から、100℃~170℃の範囲内であることが好ましい。延伸、及び緩和操作の温度が上記範囲であると、熱収縮率の低減と気孔率とのバランスの観点から好ましい。熱処理温度の下限は、より好ましくは110℃以上、更に好ましくは115℃以上であり、その上限は、より好ましくは160℃以下、更に好ましくは150℃以下、より更に好ましくは140℃以下である。
[巻取工程(5)]
 工程(5)では、熱処理工程(4)で熱処理された微多孔膜、又は第二の実施形態により製造された微多孔膜を、例えば巻取機によりロール状に巻き取ることができる。得られたロールは、微多孔膜を用いて蓄電デバイス用セパレータを製造するまで保管されることができる。
[その他の工程]
 得られた微多孔膜又はロールは、取り扱い性、及び保管安定性の観点から、スリッターにより切断されたりすることができる。また、微多孔膜に対して、界面活性剤等による親水化処理、電離性放射線等による架橋処理等の後処理を行ってもよい。工程(1)~(5)により得られた微多孔膜を、単層セパレータとして使用してよく、又は複数の微多孔膜を積層したり、微多孔膜と別の膜とを積層したり、微多孔膜に機能層を設けたり、微多孔膜にコーティングしたりすることができる。
<蓄電デバイス>
 本発明の別の実施形態に係る蓄電デバイスは、正極と、負極と、上記で説明された微多孔膜を含むセパレータとを備える。蓄電デバイスとしては、具体的には、リチウム二次電池、リチウムイオン二次電池、ナトリウム二次電池、ナトリウムイオン二次電池、マグネシウム二次電池、マグネシウムイオン二次電池、カルシウム二次電池、カルシウムイオン二次電池、アルミニウム二次電池、アルミニウムイオン二次電池、ニッケル水素電池、ニッケルカドミウム電池、電気二重層キャパシタ、リチウムイオンキャパシタ、レドックスフロー電池、リチウム硫黄電池、リチウム空気電池、亜鉛空気電池などが挙げられる。これらの中でも、実用性の観点から、リチウム二次電池、リチウムイオン二次電池(LIB)、ニッケル水素電池、又はリチウムイオンキャパシタが好ましく、より好ましくはリチウムイオン二次電池である。また、上記で列挙された電池は、イオン伝導性、充放電特性などの観点から、電解液を含むことが好ましい。
 電池中の電解液は、水分を含んでよく、そして電池作製後の系内に含まれる水分は、電解液に含有される水分、又は電極若しくはセパレータ等の部材に含まれた持ち込み水分であってもよい。電解液は、非水系溶媒を含むことができる。本実施形態の非水系溶媒に含まれる溶媒として、例えば、メタノール、エタノール等のアルコール類;非プロトン性溶媒等が挙げられる。中でも、非水系溶媒としては、非プロトン性溶媒が好ましい。
 非プロトン性溶媒としては、例えば、環状カーボネート、フルオロエチレンカーボネート、ラクトン、硫黄原子を有する有機化合物、鎖状フッ素化カーボネート、環状エーテル、モノニトリル、アルコキシ基置換ニトリル、ジニトリル、環状ニトリル、短鎖脂肪酸エステル、鎖状エーテル、フッ素化エーテル、ケトン、上記非プロトン性溶媒のH原子の一部または全部をハロゲン原子で置換した化合物等が挙げられる。
 環状カーボネートとしては、例えば、エチレンカーボネート、プロピレンカーボネート、1,2-ブチレンカーボネート、トランス-2,3-ブチレンカーボネート、シス-2,3-ブチレンカーボネート、1,2-ペンチレンカーボネート、トランス-2,3-ペンチレンカーボネート、シス-2,3-ペンチレンカーボネート、ビニレンカーボネート、4,5-ジメチルビニレンカーボネート、及びビニルエチレンカーボネート等が挙げられる。
 フルオロエチレンカーボネートとしては、例えば、4-フルオロ-1,3-ジオキソラン-2-オン、4,4-ジフルオロ-1,3-ジオキソラン-2-オン、シス-4,5-ジフルオロ-1,3-ジオキソラン-2-オン、トランス-4,5-ジフルオロ-1,3-ジオキソラン-2-オン、4,4,5-トリフルオロ-1,3-ジオキソラン-2-オン、4,4,5,5-テトラフルオロ-1,3-ジオキソラン-2-オン、及び4,4,5-トリフルオロ-5-メチル-1,3-ジオキソラン-2-オン等が挙げられる。
 ラクトンとしては、例えば、γ-ブチロラクトン、α-メチル-γ-ブチロラクトン、γ-バレロラクトン、γ-カプロラクトン、δ-バレロラクトン、δ-カプロラクトン、及びε-カプロラクトン等が挙げられる。
 硫黄原子を有する有機化合物としては、例えば、エチレンサルファイト、プロピレンサルファイト、ブチレンサルファイト、ペンテンサルファイト、スルホラン、3-スルホレン、3-メチルスルホラン、1,3-プロパンスルトン、1,4-ブタンスルトン、1-プロペン1,3-スルトン、ジメチルスルホキシド、テトラメチレンスルホキシド、及びエチレングリコールサルファイト等が挙げられる。
 鎖状カーボネートとしては、例えば、エチルメチルカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、ジプロピルカーボネート、メチルブチルカーボネート、ジブチルカーボネート、エチルプロピルカーボネート等が挙げられる。
 環状エーテルとしては、例えば、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、及び1,3-ジオキサン等が挙げられる。
 モノニトリルとしては、例えば、アセトニトリル、プロピオニトリル、ブチロニトリル、バレロニトリル、ベンゾニトリル、及びアクリロニトリル等が挙げられる。
 アルコキシ基置換ニトリルとしては、例えば、メトキシアセトニトリル及び3-メトキシプロピオニトリル等が挙げられる。
 ジニトリルとしては、例えば、マロノニトリル、スクシノニトリル、メチルスクシノニトリル、グルタロニトリル、2-メチルグルタロニトリル、アジポニトリル、1,4-ジシアノヘプタン、1,5-ジシアノペンタン、1,6-ジシアノヘキサン、1,7-ジシアノヘプタン、2,6-ジシアノヘプタン、1,8-ジシアノオクタン、2,7-ジシアノオクタン、1,9-ジシアノノナン、2,8-ジシアノノナン、1,10-ジシアノデカン、1,6-ジシアノデカン、及び2,4-ジメチルグルタロニトリル、エチレングリコールビス(プロピオニトリル)エーテル等が挙げられる。
 環状ニトリルとしては、例えば、ベンゾニトリル等が挙げられる。
 短鎖脂肪酸エステルとしては、例えば、酢酸メチル、プロピオン酸メチル、イソ酪酸メチル、酪酸メチル、イソ吉草酸メチル、吉草酸メチル、ピバル酸メチル、ヒドロアンゲリカ酸メチル、カプロン酸メチル、酢酸エチル、プロピオン酸エチル、イソ酪酸エチル、酪酸エチル、イソ吉草酸エチル、吉草酸エチル、ピバル酸エチル、ヒドロアンゲリカ酸エチル、カプロン酸エチル、酢酸プロピル、プロピオン酸プロピル、イソ酪酸プロピル、酪酸プロピル、イソ吉草酸プロピル、吉草酸プロピル、ピバル酸プロピル、ヒドロアンゲリカ酸プロピル、カプロン酸プロピル、酢酸イソプロピル、プロピオン酸イソプロピル、イソ酪酸イソプロピル、酪酸イソプロピル、イソ吉草酸イソプロピル、吉草酸イソプロピル、ピバル酸イソプロピル、ヒドロアンゲリカ酸イソプロピル、カプロン酸イソプロピル、酢酸ブチル、プロピオン酸ブチル、イソ酪酸ブチル、酪酸ブチル、イソ吉草酸ブチル、吉草酸ブチル、ピバル酸ブチル、ヒドロアンゲリカ酸ブチル、カプロン酸ブチル、酢酸イソブチル、プロピオン酸イソブチル、イソ酪酸イソブチル、酪酸イソブチル、イソ吉草酸イソブチル、吉草酸イソブチル、ピバル酸イソブチル、ヒドロアンゲリカ酸イソブチル、カプロン酸イソブチル、酢酸tert-ブチル、プロピオン酸tert-ブチル、イソ酪酸tert-ブチル、酪酸tert-ブチル、イソ吉草酸tert-ブチル、吉草酸tert-ブチル、ピバル酸tert-ブチル、ヒドロアンゲリカ酸tert-ブチル、及びカプロン酸tert-ブチル等が挙げられる。
 鎖状エーテルとしては、例えば、ジメトキシエタン、ジエチルエーテル、1,3-ジオキソラン、ジグライム、トリグライム、及びテトラグライム等が挙げられる。
 フッ素化エーテルとしては、例えば、一般式Rfaa-ORbb(式中、Rfaaは、フッ素原子を含有するアルキル基であり、かつRbbは、フッ素原子を含有してよい有機基である)で表される化合物等が挙げられる。
 ケトンとしては、例えば、アセトン、メチルエチルケトン、及びメチルイソブチルケトン等が挙げられる。
 上記非プロトン性溶媒のH原子の一部または全部をハロゲン原子で置換した化合物としては、例えば、ハロゲン原子がフッ素である化合物等を挙げることができる。
 ここで、鎖状カーボネートのフッ素化物としては、例えば、メチルトリフルオロエチルカーボネート、トリフルオロジメチルカーボネート、トリフルオロジエチルカーボネート、トリフルオロエチルメチルカーボネート、メチル2,2-ジフルオロエチルカーボネート、メチル2,2,2-トリフルオロエチルカーボネート、メチル2,2,3,3-テトラフルオロプロピルカーボネートが挙げられる。上記のフッ素化鎖状カーボネートは、下記の一般式:
 Rcc-O-C(O)O-Rdd
{式中、Rcc及びRddは、CH、CHCH、CHCHCH、CH(CH、及び式CHRfee(式中、Rfeeは、少なくとも1つのフッ素原子で水素原子が置換された炭素数1~3のアルキル基である)で表される基から成る群より選択される少なくとも一つであり、そしてRcc及び/又はRddは、少なくとも1つのフッ素原子を含有する。}
で表すことができる。
 また、短鎖脂肪酸エステルのフッ素化物としては、例えば、酢酸2,2-ジフルオロエチル、酢酸2,2,2-トリフルオロエチル、酢酸2,2,3,3-テトラフルオロプロピルに代表されるフッ素化短鎖脂肪酸エステルが挙げられる。フッ素化短鎖脂肪酸エステルは、下記の一般式:
 Rff-C(O)O-Rgg
{式中、Rffは、CH、CHCH、CHCHCH、CH(CH、CFCFH、CFH、CFH、CFRfhh、CFHRfhh、及びCHRfiiから成る群より選択される少なくとも一つであり、Rggは、CH、CHCH、CHCHCH、CH(CH、及びCHRfiiから成る群より選択される少なくとも一つであり、Rfhhは、少なくとも1つのフッ素原子で水素原子が置換されてよい炭素数1~3のアルキル基であり、Rfiiは、少なくとも1つのフッ素原子で水素原子が置換された炭素数1~3のアルキル基であり、そしてRff及び/又はRggは、少なくとも1つのフッ素原子を含有し、RffがCFHである場合、RggはCHではない}で表すことができる。
<LIB>
 LIBは、正極として、コバルト酸リチウム、リチウムコバルト複合酸化物等のリチウム遷移金属酸化物、負極として、グラファイト、黒鉛等の炭素材料、又はケイ素含有材料、そして電解液としてLiPF6等のリチウム塩を含む有機溶媒を使用した蓄電池である。LIBの充電・放電時に、イオン化したLiが電極間を往復する。また、電極間の接触を抑制しながら、イオン化したLiが電極間を比較的高速で移動する必要があるため、電極間にセパレータが配置される。第一の実施形態に係るセパレータ、又は第二の実施形態により製造されたセパレータを、負極と隙間なく密着させるという観点から、LIBの負極は、シリコン(ケイ素)含有負極であることが好ましい。
 上記で説明された条件値、物性値、特性値などについては、特に言及しない限り、以下の実施例の項目に記載の方法に従って測定されるものとする。セパレータが、1つの微多孔膜と、別の層とを含む場合、コーティング膜である場合、又は複数の微多孔膜を含む場合には、セパレータから1つの微多孔膜を取り外すか、又はセパレータからコーティング部を除去して、微多孔膜の特性を測定又は評価するものとする。
 以下、実施例、及び比較例を挙げて本発明を更に具体的に説明する。ただし、本発明の要旨を超えない限り、本発明は以下の実施例のみに限定されない。実施例中の物性は、以下の方法により測定した。
<重量平均分子量(Mw)、数平均分子量(Mn)>
 Waters社製 ALC/GPC 150C型(商標)を用い、標準ポリスチレンを以下の条件で測定して較正曲線を作成した。また、下記各ポリマーについて同様の条件でクロマトグラムを測定し、較正曲線に基づいて、下記方法により各ポリマーの重量平均分子量と数平均分子量を算出した。
 カラム  :東ソー製 GMH6-HT(商標)2本+GMH6-HTL(商標)2本
 移動相  :o-ジクロロベンゼン
 検出器  :示差屈折計
 流速   :1.0ml/min
 カラム温度:140℃
 試料濃度 :0.1wt%
(ポリエチレン及びポリプロピレンの重量平均分子量と数平均分子量)
 得られた較正曲線における各分子量成分に、0.43(ポリエチレンのQファクター/ポリスチレンのQファクター=17.7/41.3)又は0.64(ポリプロピレンのQファクター/ポリスチレンのQファクター=26.4/41.3)を乗じることにより、ポリエチレン換算又はポリプロピレン換算の分子量分布曲線を得て、重量平均分子量と数平均分子量を算出した。
<立体規則構造に関するmmmmペンタッド分率>
 ポリプロピレン成分中のアイソタチックペンタッド分率(mmmm)を、13C-NMRで測定されるメチル炭素領域の全吸収ピーク中の(mmmm)ピーク分率として求める。また、アイソタチックペンタッドを含むメチル基領域のシグナルの帰属は、A.Zambellietal.(Macromolecules 8,687(1975)に準拠する。具体的には、原料及び微多孔膜中の含有PPの立体規則構造に関するmmmmペンタッド分率を次のとおりに測定する。
<原料及び微多孔膜中の含有PPの立体規則構造に関するmmmmペンタッド分率>
 試料を10重量%(wt%)の濃度となるよう130℃以上でo-ジクロロベンゼン(dichlorobenzene)-d4に溶解し、13C-NMR測定を行った。測定条件は以下のとおりである。
  装置:Bruker Avance NEO 600
  パルスプログラム:zgpg30
  パルス待ち時間:5sec
  試料管直径:5mmΦ
  測定温度:130℃
13C-NMRスペクトルにおいてmmmmペンタッドを21.8ppmと帰属し、18ppm~22ppmのメチル領域のピークをmmmm、mmmr、rmmr、mmrr、rmrr、rmrm、mmrm、rrrr、rrrm、mrrmと帰属した。mmmmペンタッドの積分値を、これらピークの積分値の総和で除し、mmmmペンタッド分率を算出した。
なお、それぞれの立体構造のケミカルシフトについては、
  mmmm 21.8ppm、
  mmmr 21.6ppm、
  rmmr 21.3ppm、
  mmrr 21.0ppm、
  mmrm+rmrr 20.8ppm、
  rmrm 20.6ppm、
  rrrr 20.3ppm、
  rrrm 20.2ppm、
  mrrm 19.9ppm
である。
<膜厚(μm)>
 微小測厚器(東洋精機製 タイプKBM)を用いて、室温23℃、湿度40%の雰囲気下でセパレータ試料の厚みを測定した。端子径5mmφの端子を用い、44gfの荷重を印加して測定した。
<気孔率(%)>
 10cm×10cm角の試料を微多孔膜から切り取り、その体積(cm3)と質量(g)を求め、それらと密度(g/cm3)より、次式を用いて気孔率を計算した。
   気孔率(%)=(体積-質量/密度)/体積×100
<透気度(秒/100cm3)>
 JIS P-8117に準拠し、東洋精器(株)製のガーレー式透気度計、G-B2(商標)を用いて温度23℃、湿度40%の雰囲気下でポリオレフィン微多孔膜の透気抵抗度を測定し透気度とした。
<結晶構造解析>
 セパレータ中またはセパレータに含まれる微多孔膜中に含まれるポリオレフィン(例えば、PE、PPなど)の結晶子サイズは、反射法X線回折または透過法広角X線散乱のどちらの測定法を用いてもよい。
(透過法広角X線散乱測定)
 セパレータ中またはセパレータに含まれる微多孔膜中に含まれるポリオレフィン(例えば、PE、PPなど)の結晶子サイズは、リガク社製透過型X線散乱装置NANOPIXを用いて行った。Cu-Kα線を試料に照射し、半導体検出器Hypix-6000により散乱を検出した。試料-検出器間距離は86mm、出力は40kV,30mAの条件下で測定を行った。光学系はポイントフォーカスを採用し、スリット径は1st slit:φ=0.55mm,2nd slit:open,Guard slit:φ=0.35mmの条件下で測定を行った。
・透過法広角X線散乱測定における結晶子サイズ(nm)と結晶化度
 透過法広角X線散乱測定の場合、2次元検出器で得られたX線散乱パターンにおいて、試料に照射されたX線が試料を直進、透過し、2次元検出器に到達した位置を中心としたとき、中心から同じ距離にある散乱強度は、同じ散乱角に対応する。そこで、測定されたX線散乱パターンに対して、各散乱角における強度平均を算出する(円環平均)ことで、散乱角2θに対する1次元散乱強度プロフィールを得ることができる。得られた1次元プロフィールの2θ=10.0°から2θ=29.0°までの範囲において、ポリエチレン斜方晶(110)面回折ピーク、斜方晶(200)面回折ピークとポリプロピレンのα晶(110)面回折ピーク、α晶(040)面回折ピーク、α晶(130)面回折ピークおよびポリエチレンの非晶ピークの6つに分離する処理を行った。2θ=10.0°から2θ=29.0°を直線で結ぶようにベースラインを引き、ポリエチレンの(110)面回折ピークおよび(200)面回折ピークはvoigt関数で近似し、ポリプロピレンの(110)、(040)、(130)面回折ピークおよびポリエチレンの非晶ピークはgauss関数で近似した。なお、非晶ピークのピーク位置は、2θ=19.6°、半値全幅は6.3°で固定し、結晶ピークのピーク位置と半値全幅は特に固定せずにピーク分離を行った。ピーク分離により算出されたポリエチレンの(110)面回折ピークおよびポリプロピレンの(110)面回折ピークの半値全幅より、シェラーの式(下式)に従って、結晶子サイズを算出した。なお、結晶化度は、分離した結晶と非晶ピークの和を、結晶ピークの面積が割算したパーセント値として得られることができる。
  D=Kλ/(βcosθ)
  D:結晶子サイズ(nm)
  K:0.9 (定数)
  λ:X線の波長(nm)
  β:(β -β 0.5
  β:ピーク分離の結果算出された(hkl)ピークの半値全幅(rad)
  β:入射ビームの広がりの半値全幅(rad)
  θ:ブラッグ角
(反射法X線回折測定)
・反射法X線回折測定におけるポリオレフィン結晶子サイズ(nm)と結晶化度
 リガク社製X線回折装置Ultima-IVを用いて、セパレータ中に含まれるポリオレフィン(例えば、PE、PPなど)のXRD測定を行った。Cu-Kα線を試料に入射し、リガク社製検出器D/tex Ultraにより回折光を検出した。試料-検出器間距離285mm、励起電圧40kV及び電流40mAの条件下でKRD測定を行った。光学系としては集中光学系を採用し、DS=1/2°、SS=解放及び縦スリット=10mmというスリット条件下で測定を行った。
・反射法X線回折測定における解析
ポリエチレンの場合
 得られたXRDプロフィールの2θ=9.7°から2θ=29.0°までの範囲を斜方晶(110)面回折ピークと斜方晶(200)面回折ピークと非晶ピークの3つに分離し、(110)面回折ピークの半値全幅より、シェラーの式(下式)に従って、結晶子サイズを算出した。(110)面回折ピークと(200)面回折ピークはvoigt関数で近似し、非晶ピークはgauss関数で近似した。なお、非晶ピークのピーク位置は、2θ=19.6°、半値全幅は6.3°で固定し、結晶ピークのピーク位置と半値全幅は特に固定せずにピーク分離を行った。ピーク分離により算出された(110)面回折ピークの半値全幅より、シェラーの式(下式)に従って、結晶子サイズを算出した。なお、結晶化度は、分離した結晶と非晶ピークの和を、結晶ピークの面積が割算したパーセント値として得られることができる。
ポリプロピレンの場合
 得られたXRDプロフィールの2θ=6°から2θ=31°までの範囲で、結晶由来の回折ピークをα晶(単車晶)の(110)、(040)、(130)、(111)および(13-1)/(041)面の5つに分離し、非晶由来の回折ピークを2つに分離した。分離した結晶および非晶由来の回折ピークはgauss関数で近似した。なお、2つの非晶ピークはそれぞれ、次のように固定しピーク分離を行った。非晶ピーク1は2θ=14.9°、半値全幅4.7°で固定し、非晶ピーク2は2θ=19.18°、半値全幅7.0°で固定した。ピーク分離により得られた(110)面回折ピークの半値全幅より、シェラーの式(下式)に従って、結晶子サイズを算出した。結晶化度は、分離した結晶と非晶ピークの和を、結晶ピークの面積を割算したパーセント値として得ることができる。
  D(110)=Kλ/(βcosθ)
  D(110):結晶子サイズ(nm)
  K:0.9 (定数)
  λ:X線の波長(nm)
  β:(β -β 0.5
  β:ピーク分離の結果算出された(hkl)ピークの半値全幅(rad)
  β:入射ビームの広がりの半値全幅(rad)
  θ:ブラッグ角
<セパレータ中の未溶融物量(個/1000m2)>
 セパレータ中の未溶融物量は、実施例と比較例の製膜工程を経て得られたセパレータを透過型光学顕微鏡で観察したときに、縦100μm×横100μm以上の面積を有し、かつ光が透過しない領域によって定量化される。透過型光学顕微鏡による観察にて、セパレータ面積1000m2当たりの樹脂凝集物の個数を測定した。
<サイクル試験(%) 試験方法1>
 以下の手順a~cにより、正極、負極、及び非水電解液を調製した。
a.正極の作製
 正極活物質としてニッケル、マンガン、コバルト複合酸化物(NMC)(Ni:Mn:Co=1:1:1(元素比)、密度4.70g/cm3)を90.4質量%、導電助材としてグラファイト粉末(KS6)(密度2.26g/cm3、数平均粒子径6.5μm)を1.6質量%、及びアセチレンブラック粉末(AB)(密度1.95g/cm3、数平均粒子径48nm)を3.8質量%、並びにバインダとしてポリフッ化ビニリデン(PVDF)(密度1.75g/cm3)を4.2質量%の比率で混合し、これらをN-メチルピロリドン(NMP)中に分散させてスラリーを調製した。このスラリーを、正極集電体となる厚さ20μmのアルミニウム箔の片面にダイコーターを用いて塗布し、130℃において3分間乾燥した後、ロールプレス機を用いて圧縮成形することにより、正極を作製した。このときの正極活物質塗布量は109g/m2であった。
b.負極の作製
 非特許文献3に記載の方法に従って、シリコンを40%含有するグラフェン負極を調製し、負極集電体となる厚さ12μmの銅箔に3.6μm厚で担持して、負極を作製した。
c.非水電解液の調製
 エチレンカーボネート:エチルメチルカーボネート=1:2(体積比)の混合溶媒に、溶質としてLiPF6を濃度1.0mol/Lとなるように溶解させることにより、非水電解液を調製した。
d.電池作製
 上記項目<膜厚(μm)>に記載の方法に従って、セパレータとして使用される微多孔膜の厚みを測定した。上記a~cで得られた正極、負極、及び非水電解液、並びにセパレータ(実施例のセパレータ又は比較例のセパレータ)を使用して、電流値1A(0.3C)、終止電池電圧4.2Vの条件で3時間定電流定電圧(CCCV)充電したサイズ100mm×60mm、容量3Ahのラミネート型二次電池を作製した。
e.サイクル試験、厚み保持率(%)と容量保持率(%)
(e1)前処理
 上記d.で作製された電池を、1/3Cの電流値で電圧4.2Vまで定電流充電した後、4.2Vの定電圧充電を8時間行い、その後1/3Cの電流で3.0Vの終止電圧まで放電を行った。次に、1Cの電流値で電圧4.2Vまで定電流充電した後、4.2Vの定電圧充電を3時間行い、更に1Cの電流で3.0Vの終止電圧まで放電を行った。最後に1Cの電流値で4.2Vまで定電流充電をした後、4.2Vの定電圧充電を3時間行った。なお、1Cとは電池の基準容量を1時間で放電する電流値を表す。
(e2)サイクル試験
 上記(e1)前処理を行った電池を、温度25℃の条件下で、放電電流1Cで放電終止電圧3Vまで放電を行った後、充電電流1Cで充電終止電圧4.2Vまで充電を行った。これを1サイクルとして充放電を繰り返した。そして、初期容量(第1回目のサイクルにおける容量)に対する1000サイクル後の容量保持率を下記式により%値で算出した。
 評価結果(%)=100×(1000サイクル後の保持容量/初期容量)
 また、100サイクル後の電池からセパレータを取り出して、上記項目<膜厚(μm)>に記載の方法に従って、その厚みを測定した。100サイクル後のセパレータの厚み保持率を下記式により%値で算出した。
 評価結果(%)=100×(100サイクル後のセパレータ厚み/上記d.で測定したセパレータ厚み)
なお、取り出したセパレータを任意の10箇所での厚みを測定して、平均値を用いた。
<サイクル試験(%) 試験方法2>
(電池の作製)
a.正極の作製
 正極活物質としてLiNi1/3Mn1/3Co1/3と、導電助剤としてカーボンブラックと、結着剤としてポリフッ化ビニリデン溶液とを、91:5:4の固形分質量比で混合し、分散溶媒としてN-メチル-2-ピロリドンを固形分68質量%となるように添加し、更に混合して、スラリー状の溶液を調製した。このスラリー状の溶液を、厚さ15μmのアルミニウム箔の両面に、アルミニウム箔の一部が露出するように塗布した後、溶剤を乾燥除去し、塗布量を片面当たり175g/mとした。更に正極合剤部分の密度が2.8g/cmとなるようにロールプレスで圧延し、その後、塗布部が30mm×50mmで、かつアルミニウム箔露出部を含むように裁断し、正極を得た。
b.負極の作製
 負極活物質として人造黒鉛/シリコン粒子(Elkem製、Silgrain e-Si 408)=1:1(質量比)と、結着剤としてスチレンブタジエンゴム及びカルボキシメチルセルロース水溶液とを、負極活物質:スチレンブタジエンゴム:カルボキシメチルセルロース=96.4:1.9:1.7の固形分質量比で混合し、分散溶媒として水を固形分50質量%となるように添加し、更に混合して、スラリー状の溶液を調製した。このスラリー状の溶液を、厚さ10μmの銅箔の両面に銅箔の一部が露出するように塗布した後、溶剤を乾燥除去し、塗布量を片面当たり86g/mとした。更に負極合剤部分の密度が1.45g/cmとなるようにロールプレスで圧延し、その後、塗布部が32mm×52mmで、かつ銅箔露出部を含むように裁断し、負極を得た。
c.非水系電解液の調製
 エチレンカーボネート:エチルメチルカーボネート=1:2(体積比)の混合溶媒に、溶質としてLiPFを濃度1.0mol/Lとなるように溶解させ、更にビニレンカーボネートを1.0重量%となるように添加し、非水系電解液を調製した。
d.電池組立
 正極と負極の活物質面が対向するように、かつ正極と負極との間に介在するように、幅55mmの長尺のセパレータをつづら折りしながら、両面負極15枚、両面正極14枚からなる積層体とした。この積層体の14枚の正極アルミニウム箔の露出部に、シーラント付きのアルミニウム製リード片を溶接し、15枚の負極銅箔の露出部に、シーラント付きのニッケル製リード片を溶接した後、アルミニウムラミネート外装体内に挿入し、正・負極リード片が露出する辺とその他2辺との計3辺をラミネートシールした。次に上記非水系電解液を外装体内に注入し、その後開口部を封止して、28対向のラミネート型電池を作製した。得られた電池を室温にて1日放置した後、25℃雰囲気下、330mA(0.3C)の定電流で電池電圧4.2Vまで充電し、到達後4.2Vを保持するように定電圧充電を行うという方法で、合計8時間、電池作製後の最初の充電を行った。続いて、330mA(0.3C)の電流値で電池電圧3.0Vまで電池を放電した。
(サイクル特性評価)
 上記「d.電池組立」で得られた電池の充放電は、25℃雰囲気下で1000サイクル実施した。充電については、1A(1.0C)の定電流で電池電圧4.2Vまで充電し、到達後4.2Vを保持するように定電圧充電を行うという方法で、合計3時間電池を充電した。放電については、1A(1.0C)の電流値で電池電圧3.0Vまで電池を放電した。1000サイクル目の放電容量と1サイクル目の放電容量から、容量維持率を算出した。容量維持率が高い場合、良好なサイクル特性を有するものと評価した。
 評価結果(%)=100×(1000サイクル後の保持容量/初期容量)
 また、100サイクル後の電池からセパレータを取り出して、上記項目<膜厚(μm)>に記載の方法に従って、その厚みを測定した。100サイクル後のセパレータの厚み保持率を下記式により%値で算出した。
 評価結果(%)=100×(100サイクル後のセパレータ厚み/上記d.で測定したセパレータ厚み)
なお、取り出したセパレータを任意の10箇所での厚みを測定して、平均値を用いた。
<ポリエチレン(PE)原料>
 表1に示されるポリエチレン(PE)を用意した。
<使用ポリプロピレン(PP)原料>
 表2又は表3に示されるポリプロピレン(PP)を用意した。
[実施例1]
 PE1パウダーと、PP1ペレットとを、表4に記載の質量比にて、投入方式(a)に従って、ダイリップ間隔1500μmのマニホルド(Tダイ)を備える二軸押出機に供給し、溶融混合した。溶融混合中、流動パラフィン(37.78℃における動粘度7.59×10-52/s)をインジェクションノズルで二軸押出機へ供給し、更に混練を行って、樹脂組成物を押出した。このとき、二軸押出機から押出される樹脂組成物に占める流動パラフィン量比が質量70%、樹脂組成物の温度が220℃となるように、押出中段部(二軸押出機の中段フィード口)から流動パラフィンを更に注入した。続いて、押出された樹脂組成物を、表面温度25℃に制御された冷却ロール上に押出し、キャストすることにより、シート状成形体を得た。
 次に、シート状成形体を同時二軸テンター延伸機に導き、二軸延伸を行って延伸物を得た。延伸条件は、表4に記載のとおりであり、延伸面倍率55倍であり、延伸温度、加熱風量等を適宜調整することによって、気孔率、透気度、厚み等を調整した。なお、二軸延伸温度は126℃に設定した。
 次に、延伸物をジクロロメタンに浸漬して、延伸物から流動パラフィンを抽出して、微多孔膜を形成した。
 次に、微多孔膜の熱固定を行なうべくTDテンターに導き、129℃で熱固定(HS)を行い、TD延伸倍率2.0倍で延伸し、その後、TD方向に緩和率が0.9倍の操作を行った(すなわち、熱固定を行う前に対して、TD方向を2.0倍延伸した後に、1.8倍まで緩和操作を行った)。熱処理された微多孔膜の上記評価を行った。その後、微多孔膜をセパレータとして用いて、上記のセパレータ評価及び電池評価を行った。評価結果を表4に示す。
[実施例2~20、及び比較例1~3]
 表4~6に示すとおりに原料組成、原料投入方式、又は延伸工程の延伸倍率を変更したこと以外は、実施例1と同様の手法により微多孔膜を作製し、評価した。得られた微多孔膜、セパレータ及び電池の評価結果を表4~6に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
(表4~6の略号の説明)
 原料投入方式(a):PE及びPPを個別のフィーダから押出機へ投入する。
 原料投入方式(b):PEとPPのドライブレンドを一つのフィーダから押出機へ投入する。
 原料投入方式(c)PEとPPのドライブレンドにより複数の樹脂原料を得て、得られた複数の樹脂原料を個別のフィーダから押出機へ投入する。

Claims (13)

  1.  以下の工程:
     (1)ポリプロピレン、ポリエチレン、及び可塑剤を押出機にてシート状に押出し、冷却固化させ、シート状成形体に加工するシート成形工程;
     (2)前記シート状成形体を20倍以上250倍以下の面倍率で延伸して、延伸物を形成する延伸工程;
     (3)前記延伸物から前記可塑剤を抽出して、微多孔膜を形成する微多孔膜形成工程;
     (4)前記微多孔膜を熱処理に供して、幅方向に延伸及び緩和を行って熱処理された微多孔膜を得る熱処理工程;並びに
     (5)前記熱処理された微多孔膜を巻取る巻取工程;
    を含む蓄電デバイス用セパレータの製造方法であって、
     前記ポリエチレンはパウダー状であり、かつ前記ポリプロピレンはペレット状である蓄電デバイス用セパレータの製造方法。
  2.  前記ポリプロピレン及び前記ポリエチレンは、下記方法(a)~(c):
      (a)前記ポリプロピレン及び前記ポリエチレンを、それぞれ別のフィーダを用いて前記押出機へ投入する方法;
      (b)前記ポリプロピレンと前記ポリエチレンをドライブレンドした混合状態で、一つのフィーダを用いて押出機へ投入する方法;
      (c)前記ポリプロピレンと前記ポリエチレンをドライブレンドして得られた複数の樹脂原料を、それぞれ別のフィーダを用いて押出機へ投入する方法;
    のいずれかにより前記押出機に投入される、請求項1に記載の蓄電デバイス用セパレータの製造方法。
  3.  前記ポリエチレン/前記ポリプロピレンの質量比率が、99/1~60/40である、請求項1又は2に記載の蓄電デバイス用セパレータの製造方法。
  4.  前記ポリエチレンは、重量平均分子量(Mw)が100,000~9,700,000であり、かつ数平均分子量(Mn)に対する重量平均分子量(Mw)の比(Mw/Mn)が3~12である、請求項3に記載の蓄電デバイス用セパレータの製造方法。
  5.  前記ポリプロピレンは、重量平均分子量(Mw)が300,000~2,000,000であり、かつ数平均分子量(Mn)に対する重量平均分子量(Mw)の比(Mw/Mn)が3~12であり、かつ
     前記ポリプロピレンのアイソタチックペンタッド分率(mmmm)が、85.0mol%~99.7mol%である、請求項3に記載の蓄電デバイス用セパレータの製造方法。
  6.  請求項1~5のいずれか1項に記載の製造方法で製造された、蓄電デバイス用セパレータ。
  7.  前記蓄電デバイス用セパレータは、微多孔膜を含み、
     前記微多孔膜は、ポリエチレン及びポリプロピレンを含み、
     前記微多孔膜のX線回折(XRD)または広角X線散乱(WAXS)測定において、前記ポリエチレンの結晶子サイズが15nm~40nmであり、かつ前記ポリプロピレンの結晶子サイズが10nm~50nmである、請求項6に記載の蓄電デバイス用セパレータ。
  8.  微多孔膜を含む蓄電デバイス用セパレータであって、
     前記微多孔膜は、ポリエチレン及びポリプロピレンを含み、
     前記微多孔膜のX線回折(XRD)測定において、前記ポリエチレンの結晶子サイズが15nm~40nmであり、かつ前記ポリプロピレンの結晶子サイズが10nm~50nmである蓄電デバイス用セパレータ。
  9.  前記微多孔膜のXRD測定において、前記ポリエチレンの結晶化度が、55%~99.9%である、請求項8に記載の蓄電デバイス用セパレータ。
  10.  微多孔膜を含む蓄電デバイス用セパレータであって、
     前記微多孔膜は、ポリエチレン及びポリプロピレンを含み、
     前記微多孔膜の広角X線散乱(WAXS)測定において、前記ポリエチレンの結晶子サイズが15nm~40nmであり、かつ前記ポリプロピレンの結晶子サイズが10nm~50nmである蓄電デバイス用セパレータ。
  11.  前記微多孔膜のWAXS測定において、前記ポリエチレンの結晶化度が、50%~90%である、請求項10に記載の蓄電デバイス用セパレータ。
  12.  前記微多孔膜に含まれる前記ポリプロピレンのアイソタチックペンタッド分率(mmmm)が、85.0mol%~99.7mol%である、請求項8~11のいずれか1項に記載の蓄電デバイス用セパレータ。
  13.  請求項6~12のいずれか1項に記載の蓄電デバイス用セパレータを含む電池。
PCT/JP2021/015360 2020-04-13 2021-04-13 蓄電デバイス用セパレータの製造方法 WO2021210590A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US17/630,242 US20220294076A1 (en) 2020-04-13 2021-04-13 Method for Producing Separator for Power Storage Device
EP21789362.7A EP4050064B1 (en) 2020-04-13 2021-04-13 Method for producing separator for power storage device
EP23182797.3A EP4243182A3 (en) 2020-04-13 2021-04-13 Method for producing separator for power storage device
KR1020247024507A KR20240117644A (ko) 2020-04-13 2021-04-13 축전 디바이스용 세퍼레이터의 제조 방법
JP2021568978A JP7054764B2 (ja) 2020-04-13 2021-04-13 蓄電デバイス用セパレータの製造方法
KR1020227002882A KR20220029698A (ko) 2020-04-13 2021-04-13 축전 디바이스용 세퍼레이터의 제조 방법
PL21789362.7T PL4050064T3 (pl) 2020-04-13 2021-04-13 Sposób wytwarzania separatora dla urządzeń magazynujących energię
CN202180004783.9A CN114207926A (zh) 2020-04-13 2021-04-13 蓄电装置用分隔件的制造方法
EP23182781.7A EP4243181A3 (en) 2020-04-13 2021-04-13 Method for producing separator for power storage device
JP2022026041A JP2022084617A (ja) 2020-04-13 2022-02-22 蓄電デバイス用セパレータの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-071790 2020-04-13
JP2020071790 2020-04-13

Publications (1)

Publication Number Publication Date
WO2021210590A1 true WO2021210590A1 (ja) 2021-10-21

Family

ID=78083986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015360 WO2021210590A1 (ja) 2020-04-13 2021-04-13 蓄電デバイス用セパレータの製造方法

Country Status (7)

Country Link
US (1) US20220294076A1 (ja)
EP (3) EP4243182A3 (ja)
JP (2) JP7054764B2 (ja)
KR (2) KR20220029698A (ja)
CN (1) CN114207926A (ja)
PL (1) PL4050064T3 (ja)
WO (1) WO2021210590A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4328266A1 (en) 2022-03-17 2024-02-28 Asahi Kasei Kabushiki Kaisha Polyethylene powder and molded article
WO2024071058A1 (ja) * 2022-09-27 2024-04-04 株式会社Gsユアサ 鉛蓄電池

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002088189A (ja) 2000-09-13 2002-03-27 Nitto Denko Corp 多孔質フィルムの製造方法
JP2002226639A (ja) 2001-01-31 2002-08-14 Asahi Kasei Corp 微多孔膜およびリチウム電池用セパレータ
JP2005190792A (ja) * 2003-12-25 2005-07-14 Asahi Kasei Chemicals Corp 電池用セパレータ
JP2009114434A (ja) * 2007-10-15 2009-05-28 Toray Ind Inc 多孔性フィルム
JP2012164655A (ja) * 2011-02-03 2012-08-30 Samsung Sdi Co Ltd リチウム二次電池用セパレータ及びこれを含むリチウム二次電池
JP2014133873A (ja) * 2012-12-11 2014-07-24 Asahi Kasei Chemicals Corp ポリエチレンパウダー、成形体、及びリチウムイオン二次電池用セパレーター
WO2020067161A1 (ja) 2018-09-25 2020-04-02 旭化成株式会社 高強度セパレータ
JP2020092068A (ja) 2018-12-07 2020-06-11 旭化成株式会社 微多孔膜の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998006776A1 (fr) * 1996-08-09 1998-02-19 Toray Industries, Inc. Film de polypropylene et condensateur dans lequel ledit film est utilise en tant que dielectrique
JP4698078B2 (ja) * 2000-07-26 2011-06-08 旭化成イーマテリアルズ株式会社 ポリオレフィン製微多孔膜及びその製造方法
JP2002194132A (ja) * 2000-12-26 2002-07-10 Tonen Chem Corp ポリオレフィン微多孔膜及びその製造方法
US20090226813A1 (en) * 2008-03-07 2009-09-10 Kotaro Takita Microporous Membrane, Battery Separator and Battery
JP2011184671A (ja) * 2010-03-08 2011-09-22 Kee:Kk 耐熱性ポリオレフィン微多孔膜及びその製造方法。
CN102473887B (zh) 2010-03-23 2015-07-08 帝人株式会社 聚烯烃微多孔膜、非水系二次电池用隔膜、非水系二次电池及聚烯烃微多孔膜的制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002088189A (ja) 2000-09-13 2002-03-27 Nitto Denko Corp 多孔質フィルムの製造方法
JP2002226639A (ja) 2001-01-31 2002-08-14 Asahi Kasei Corp 微多孔膜およびリチウム電池用セパレータ
JP2005190792A (ja) * 2003-12-25 2005-07-14 Asahi Kasei Chemicals Corp 電池用セパレータ
JP2009114434A (ja) * 2007-10-15 2009-05-28 Toray Ind Inc 多孔性フィルム
JP2012164655A (ja) * 2011-02-03 2012-08-30 Samsung Sdi Co Ltd リチウム二次電池用セパレータ及びこれを含むリチウム二次電池
JP2014133873A (ja) * 2012-12-11 2014-07-24 Asahi Kasei Chemicals Corp ポリエチレンパウダー、成形体、及びリチウムイオン二次電池用セパレーター
WO2020067161A1 (ja) 2018-09-25 2020-04-02 旭化成株式会社 高強度セパレータ
JP2020092068A (ja) 2018-12-07 2020-06-11 旭化成株式会社 微多孔膜の製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A. ZAMBELLI ET AL., MACROMOLECULES, vol. 8, 1975, pages 687
ACS APPL. MATER. INTERFACES, vol. 11, 2019, pages 45726 - 45736
CHEM. REV., vol. 118, 2018, pages 11433 - 11456
J. PHYS. CHEM. C, vol. 118, 2014, pages 9395 - 9399
POLYMER, vol. 26, 18 November 1955 (1955-11-18)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4328266A1 (en) 2022-03-17 2024-02-28 Asahi Kasei Kabushiki Kaisha Polyethylene powder and molded article
WO2024071058A1 (ja) * 2022-09-27 2024-04-04 株式会社Gsユアサ 鉛蓄電池

Also Published As

Publication number Publication date
EP4050064A4 (en) 2023-01-04
EP4243181A2 (en) 2023-09-13
EP4243182A3 (en) 2023-11-15
EP4243181A3 (en) 2023-11-15
EP4050064A1 (en) 2022-08-31
JPWO2021210590A1 (ja) 2021-10-21
JP2022084617A (ja) 2022-06-07
US20220294076A1 (en) 2022-09-15
KR20220029698A (ko) 2022-03-08
EP4050064B1 (en) 2024-03-27
KR20240117644A (ko) 2024-08-01
EP4243182A2 (en) 2023-09-13
JP7054764B2 (ja) 2022-04-14
PL4050064T3 (pl) 2024-06-03
CN114207926A (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
KR100885360B1 (ko) 폴리올레핀 미다공막 및 축전지용 세퍼레이터
JP2023120223A (ja) 高強度セパレータ
JP2022084617A (ja) 蓄電デバイス用セパレータの製造方法
DE112016004175T5 (de) Aktivkohlefilter für Hybrid-Superkondensator-Batteriesysteme
TWI484514B (zh) Lithium ion capacitors
JP7461381B2 (ja) 無機塗工層架橋セパレータ
JP2016507877A (ja) 分離膜の製造方法とその分離膜及びこれを用いた電池
CN111758175A (zh) 用于锂-硫电池的活性材料配制物和制备方法
JP4220329B2 (ja) ポリオレフィン微多孔膜及びその製造方法
KR101868797B1 (ko) 수압을 이용한 다공성 고분자 분리막의 제조방법
WO2014195205A1 (de) Modifizierte batterieseparatoren und lithiummetall-batterien
KR101512145B1 (ko) 분리막의 제조방법, 이 방법에 의해 제조된 분리막 및 이 분리막을 포함하는 전기화학 소자
JP2020061312A (ja) 含微量金属架橋セパレータ
JP2011111559A (ja) 多孔質フィルムおよびその製造方法
KR102460963B1 (ko) 복합 세퍼레이터, 이를 포함하는 리튬 전지, 및 상기 복합 세퍼레이터의 제조방법
KR20210106274A (ko) 개선된 내압축성을 갖는 리튬이차전지용 분리막 및 상기 분리막을 포함하는 리튬이차전지
JP2021036515A (ja) 架橋型樹脂分散セパレータ
JP2004307711A (ja) 多孔質フィルムの製造方法
JP7525288B2 (ja) 蓄電デバイス用セパレータ
JP7295484B2 (ja) 二次電池電極用合剤組成物、電極合剤シートの製造方法、電極合剤シート、電極及び二次電池
KR102655663B1 (ko) 축전 디바이스용 세퍼레이터 및 그의 제조 방법
JP4307065B2 (ja) ポリオレフィン微多孔膜の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021568978

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21789362

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227002882

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021789362

Country of ref document: EP

Effective date: 20220525

NENP Non-entry into the national phase

Ref country code: DE