WO2021203695A1 - 一种氮化物高熵陶瓷纤维及其制备方法和应用 - Google Patents

一种氮化物高熵陶瓷纤维及其制备方法和应用 Download PDF

Info

Publication number
WO2021203695A1
WO2021203695A1 PCT/CN2020/127990 CN2020127990W WO2021203695A1 WO 2021203695 A1 WO2021203695 A1 WO 2021203695A1 CN 2020127990 W CN2020127990 W CN 2020127990W WO 2021203695 A1 WO2021203695 A1 WO 2021203695A1
Authority
WO
WIPO (PCT)
Prior art keywords
entropy ceramic
ceramic fiber
spinning
entropy
nitride high
Prior art date
Application number
PCT/CN2020/127990
Other languages
English (en)
French (fr)
Inventor
赵彤
叶丽
李伟
孙娅楠
Original Assignee
中国科学院化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院化学研究所 filed Critical 中国科学院化学研究所
Priority to EP20929908.0A priority Critical patent/EP3998246A4/en
Priority to US17/632,916 priority patent/US20220274888A1/en
Publication of WO2021203695A1 publication Critical patent/WO2021203695A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/612Surface area less than 10 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0602Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with two or more other elements chosen from metals, silicon or boron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • C04B35/58014Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on titanium nitrides, e.g. TiAlON
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • C04B35/58028Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on zirconium or hafnium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62272Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on non-oxide ceramics
    • C04B35/62286Fibres based on nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/6325Organic additives based on organo-metallic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/77Preparation of chelates of aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/31Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by introduction of functional groups containing oxygen only in singly bound form
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/02Preparation of spinning solutions
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/02Heat treatment
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/46Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
    • C04B2235/465Ammonia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/6342Polyvinylacetals, e.g. polyvinylbutyral [PVB]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63424Polyacrylates; Polymethacrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63444Nitrogen-containing polymers, e.g. polyacrylamides, polyacrylonitriles, polyvinylpyrrolidone [PVP], polyethylenimine [PEI]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63472Condensation polymers of aldehydes or ketones
    • C04B35/63476Phenol-formaldehyde condensation polymers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2527/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • C07C2527/24Nitrogen compounds

Definitions

  • the invention belongs to the field of materials, and relates to a high-entropy ceramic, in particular to a nitride high-entropy ceramic fiber, and a preparation method and application thereof.
  • High-entropy ceramics are single-phase solid solution ceramics composed of at least five elements, each with a content of 5 to 35%. So far, there are still few researches on high-entropy ceramics. At present, the existing forms of high-entropy ceramics are only powder, block and coating. Research on the properties of high-entropy ceramics is also limited to a few fields.
  • Nitride high-entropy ceramics is a single-crystal ceramic composed of at least five metal elements and nitrogen.
  • the current research mainly focuses on the preparation of nitride high-entropy ceramic coatings and powders.
  • Romania V.Braic et al. deposited a layer of (TiZrNbHfTa)N coating on the surface of stainless steel by physical vapor deposition method, which increased the surface hardness to 33GPa. Compared with the traditional metal coating, the surface hardness was improved.
  • This powder has shown potential application value in supercapacitors (Tian Jin, Xiaohan Sang) ,Mechanochemical-Assisted Synthesis of High-Entropy Metal Nitride via a Soft Urea Strategy, 2018(30):1707512), but the powder materials are easy to fall off and unevenly dispersed in the preparation of devices.
  • Fiber is a one-dimensional material with the characteristics of small size and high specific surface area. Due to the limitation of dimensionality, compared with powder, block and coating, its physical and chemical properties will be significantly changed. In electronic information, energy catalysis And other fields have broad application prospects.
  • Photocatalysis is a process that uses ultraviolet and visible light as light sources and semiconductors as catalysts to catalyze the degradation of organic pollutants, catalyze the decomposition of water to produce hydrogen, and catalyze the conversion of CO 2 and other chemical reactions.
  • the current photocatalyst is mainly in the form of powder, which is difficult to separate from the catalytic raw materials and products, and is difficult to recycle and reuse.
  • the photocatalytic fiber because of its macroscopic cotton, cloth and other forms, can be easily separated from the catalytic raw materials and products, which is conducive to the recovery and reuse of the catalyst. Therefore, the photocatalytic fiber has become a popular development field for photocatalysts.
  • the technical problem to be solved by the present invention is to overcome the shortcomings of the prior art and provide a nitride high-entropy ceramic fiber and a preparation method thereof.
  • the method adopts air spinning, electrostatic spinning or spinning method to prepare fiber precursor, and the precursor is degummed and nitridated to prepare nitride high-entropy ceramic fiber.
  • the present invention overcomes the limitation that high-entropy nitride ceramics can only exist in the form of powder, block and coating at present, and expands the existence form of high-entropy ceramics to the fiber field. At the same time, the present invention expands the application range of high-entropy ceramics to The field of photocatalysis.
  • the present invention provides a nitride high-entropy ceramic fiber.
  • the high-entropy ceramic fiber contains Ti, Hf, Ta, Nb and Mo elements.
  • the nitride high-entropy ceramic fiber is in a single crystal phase, and each element is in a molecular Uniform distribution of levels.
  • a further aspect of the present invention is that: the amount of each metal element substance in the high-entropy ceramic fiber accounts for 5 to 35% of the total amount of the metal element; preferably, the amount of each metal element substance is the same.
  • the high-entropy ceramic fiber also contains nitrogen
  • the amount of the nitrogen element is the same as the total amount of the Ti, Hf, Ta, Nb, and Mo elements.
  • the fiber has a dense particle accumulation structure, the surface of which is smooth, and the aspect ratio of the fiber is not less than 50.
  • the present invention also provides a method for preparing the nitride high-entropy ceramic fiber as described above.
  • the preparation method includes: uniformly mixing a high-entropy ceramic precursor containing a target metal element, a spinning aid, and a solvent to form a precursor
  • the spinning solution is then subjected to spinning, degumming and nitriding processes to prepare nitride high-entropy ceramic fibers;
  • the target metal is selected from Ti, Hf, Ta, Nb and Mo elements.
  • the high-entropy ceramic precursors of Ti, Hf, Ta, Nb and Mo elements, spinning aids and solvents are uniformly mixed to prepare the precursor spinning solution, and then the spinning, degumming and nitriding processes are carried out to obtain the The nitride high-entropy ceramic fiber.
  • the preparation process of the high-entropy ceramic precursor includes:
  • step (1) Select the metal alkoxide complexes containing different metal elements prepared according to step (1), mix well and slowly add a mixture of water and monoalcohol, drip and reflux for 1 to 5 hours, and distill at atmospheric pressure to obtain the metal alkoxide Copolymer
  • the mass ratio of the high-entropy ceramic precursor, the spinning aid and the solvent is 1:0.1 ⁇ 1:5 ⁇ 20
  • it is 1:0.2 ⁇ 0.5:5 ⁇ 10; more specifically, 1:0.33-0.4:5-9.5, 1:0.33-0.4:5-9.3, 1:0.33-0.4:5-9.67, 1:0.33-0.4 : 5-10, 1:0.33-0.4:5-20, 1:0.33-0.4:5-5.3 or 1:0.33-0.4:5-6.2;
  • the spinning precursor solution can be prepared or mixed by other technical means, including but not limited to stirring, ultrasound and the like.
  • the molar ratio of the metal alkoxide to the complexing agent in step (1) is 1:(0.15 ⁇ 0.5)n;
  • the complexing agent is acetylacetone and/or ethyl acetoacetate
  • n 4;
  • n 5;
  • R is selected from at least one of C1-C6 alkyl groups and C1-C6 alkoxy groups;
  • the staff of the present invention found that there are differences in the reactivity of different types of metal elements in the process of forming complexes. If the complexing agent is added in a similar ratio, although complexes can be formed, there will be more During the mixed hydrolysis process of the metal alkoxide complex, the reaction balance will be tilted due to the difference in the amount of complexing agent added, resulting in the inability to form a precursor with uniform molecular distribution.
  • the ratio of metal alkoxide to complexing agent provided in the present application can overcome the above-mentioned problems and make subsequent hydrolysis to form a stable system, which is beneficial to the formation of high-entropy ceramic fibers.
  • the alkoxide is prepared as follows: the metal salt MCl n or M(NO 3 ) n is dispersed in a solvent, and the temperature is -10 Drop in monoalcohol at ⁇ 5°C, then drop in triethylamine, heat to reflux for 1 ⁇ 5h after the addition is complete, and filter to obtain a metal alkoxide solution;
  • the ratio of metal salt, monohydric alcohol and triethylamine is 1:(1 ⁇ 2)n:(1 ⁇ 1.5)n;
  • the ratio of metal salt, monohydric alcohol and triethylamine is 1:4-10:4-7; more specifically, 1:4:4, 1:5:5, 1:6:5, 1:6:6 , 1:8:7 or 1:10:6;
  • the solvent is one or more of n-hexane, n-heptane, toluene, xylene, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, and tert-butyl methyl ether;
  • the monohydric alcohol is selected from one or more of methanol, ethanol, isopropanol, n-propanol, n-butanol, isobutanol, ethylene glycol methyl ether, and ethylene glycol ethyl ether;
  • the molar ratio of water to total metals in step (2) is 0.8-1.3:1; specifically 1-1.2:1; the mass ratio of monohydric alcohol to water is 3-8:1; specifically 5: 1;
  • the monohydric alcohol is selected from one or more of methanol, ethanol, isopropanol, n-propanol, n-butanol, isobutanol, ethylene glycol methyl ether, and ethylene glycol ethyl ether;
  • the temperature of co-hydrolysis is room temperature-90°C.
  • the time of co-hydrolysis is specifically 2h;
  • the ratio of alcohol to water provided by the present invention is obtained on the basis of considering the mixing of metal alkoxides with different reactivity, so that the reactivity of multiple metal alkoxides during co-hydrolysis tends to be similar, thus A precursor with a uniform distribution of the elements at the molecular level is obtained.
  • the ratio of the total amount of metal elements in the metal alkoxide copolymer to the mass of allyl phenol in step (3) is 1 mol: 18-20 g; specifically, 1 mol: 19.5 g;
  • the molar masses of different metals are different, and it is not convenient to unify the masses into the same range.
  • the present invention is calculated here based on the total amount of metal substances in the metal alkoxide copolymer, and allyl phenol is non-uniform.
  • Polymeric polymers are not suitable to be expressed by the amount of substances, so the ratio of the amount of the substance to the mass is used for expression.
  • the nitriding includes: nitriding the discharged fiber under an ammonia atmosphere, the nitriding temperature is 600-1000°C, specifically 700-900°C or 800°C; the nitriding time is 0.5 ⁇ 5h; specifically 2-3h or 2.5h;
  • the spinning aid is selected from one or more of polymethyl methacrylate, polyvinyl acetate, polyvinyl butyral, and polyvinylpyrrolidone;
  • the solvent is selected from one or more of ethanol, acetone, n-propanol, ethylene glycol methyl ether, and N,N-dimethylformamide.
  • the spinning aid helps to improve the rheology of the solution, such as viscosity, dispersion uniformity and stability.
  • Common spinning aids in this field can be used, preferably polymethyl methacrylate and polyacetic acid.
  • butyraldehyde in any ratio, or mixing polyvinyl butyral and polyvinylpyrrolidone in any ratio.
  • the solvent used is arbitrary, and the selected solvent is beneficial to the dissolution and dispersion of the raw materials, preferably ethanol, acetone, n-propanol, ethylene glycol methyl ether, tert-butyl methyl ether, N,N-dimethylformamide A mixture of one or more of them.
  • the debinding includes: heating up to 500-600°C or 550°C at a heating rate of 0.5-5°C/min in an inert atmosphere, and keeping the temperature for 2 to 4 hours.
  • the heating rate is specifically 1-2°C/min or 1.5°C/min;
  • the holding time is 3h
  • the inert atmosphere is selected from one or a mixture of nitrogen, argon, and helium.
  • the spinning is selected from one of air spinning, electrostatic spinning or spun spinning.
  • the spinning preferably adopts air spinning technology
  • Air spinning conditions are: spinning pressure 0.02 ⁇ 0.2MPa, specifically 0.06MPa;
  • the feed rate is 10-60mL/h, specifically 30mL/h;
  • the receiving distance is 10-50cm, specifically 40cm;
  • the feed rate is preferably 30-60mL/h
  • the gas source of the air spinning is selected from one or a mixture of compressed air, compressed nitrogen, and compressed argon;
  • the spinning preferably adopts electrospinning technology
  • Electrospinning conditions are: spinning voltage 5 ⁇ 15kV, specifically 10kV;
  • the feed rate is 10-60mL/h, specifically 30-40mL/h;
  • the receiving distance is 10-50cm, specifically 40-45cm;
  • the feed rate is preferably 30-60mL/h
  • the spinning preferably adopts spinning technology
  • Spinning conditions for spinning spinning are: spinneret speed 200 ⁇ 5000r/min, specifically 500-1000r/min;
  • the receiving distance is 20-100cm; specifically 30cm.
  • the present invention also claims the application of the nitride high-entropy ceramic fiber provided by the present invention in the preparation of methane from photocatalytic carbon dioxide and the application of the nitride high-entropy ceramic fiber in the preparation of methane.
  • the catalyst used is the nitride high-entropy ceramic fiber provided by the present invention.
  • the catalytic reaction that the catalyst participates in is photocatalysis
  • the light source used is visible light
  • the raw material includes carbon dioxide
  • the mass ratio of the catalyst to the carbon dioxide is 1:80-90; specifically 1:83;
  • the raw materials include water and carbon dioxide.
  • the invention also provides an application of the above-mentioned nitride high-entropy ceramic fiber in preparing methane from carbon dioxide by photocatalysis.
  • the present invention is a nitride ceramic fibers and high entropy applied to photocatalysis, for the first time proposed to be applied to the nitride ceramic high entropy photocatalytic CO 2 Preparation of CH 4 Process, the nitride high-entropy ceramic fiber has higher catalytic activity, and the catalyst and the reactant product are easy to separate.
  • Figure 1 is an XRD pattern of the fiber obtained in Example 2 of the present invention.
  • Figure 2 is an XRD pattern of the fiber obtained in Example 3 of the present invention.
  • Figure 3 is an XRD pattern of the fiber obtained in Example 4 of the present invention.
  • Figure 4 is an SEM image of the fiber obtained in Example 2 of the present invention.
  • Figure 5 is an EDS diagram of the fiber obtained in Example 3 of the present invention.
  • Figure 6 is a physical view of the fiber prepared in Example 4 of the present invention.
  • Fig. 7 is a gas chromatogram after the photocatalytic reaction in Example 13 of the present invention.
  • the present invention will be further described below in conjunction with specific embodiments, but the present invention is not limited to the following embodiments.
  • the methods are conventional methods unless otherwise specified.
  • the raw materials can be obtained from open commercial channels unless otherwise specified.
  • the humic acid mineral raw material is weathered coal or lignite.
  • This embodiment provides a general preparation method of the high-entropy ceramic precursor, which is specifically as follows:
  • the alkoxide is prepared as follows: the metal salt MCl n or M(NO 3 ) n Disperse in a solvent, drop in monoalcohol at -10 ⁇ 5°C, then drop in triethylamine, heat to reflux for 1 ⁇ 5h after the addition is complete, and filter to obtain a metal alkoxide solution;
  • n 5;
  • the ratio of metal salt, monohydric alcohol and triethylamine is 1:(1 ⁇ 2)n:(1 ⁇ 1.5)n;
  • the solvent is one or more of n-hexane, n-heptane, toluene, xylene, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, and tert-butyl methyl ether;
  • the monohydric alcohol is selected from one or more of methanol, ethanol, isopropanol, n-propanol, n-butanol, isobutanol, ethylene glycol methyl ether, and ethylene glycol ethyl ether;
  • the molar ratio of the metal alkoxide to the complexing agent is 1:(0.15 ⁇ 0.5)n;
  • n 4;
  • n 5;
  • the complexing agent is one or a combination of acetylacetone or ethyl acetoacetate
  • step (2) Select the metal alkoxide complexes containing different metal elements prepared according to step (2), and after mixing them uniformly, add dropwise a mixture of water and monohydric alcohol at room temperature to 90°C, wherein the molar ratio of water to total metals is 0.8 ⁇ 1.3:1, the mass ratio of monoalcohol to water is 3 ⁇ 8:1, reflux for 1 ⁇ 5h after dripping, and distill at normal pressure to obtain the metal alkoxide copolymer;
  • the monohydric alcohol is selected from one or more of methanol, ethanol, isopropanol, n-propanol, n-butanol, isobutanol, ethylene glycol methyl ether, and ethylene glycol ethyl ether;
  • the metal alkoxide copolymer prepared in step (3) is uniformly mixed with allyl phenolic aldehyde, wherein the ratio of the total amount of metal elements to the mass of allyl phenolic is 1 mol: 18-20g, and the temperature is raised to 50-90°C , React for 0.5-4h, and then lower the temperature to obtain a high-entropy ceramic precursor.
  • metal alkoxides are selected from Hf(Oi-Pr) 4 , Ti(OPr) 4 , Ta(OCH 2 CH 2 OCH 3 ) 5 , Mo(OCH 2 CH 2 OCH 2 CH 3 ) 5 And Nb(OPr) 5 , where Mo(OCH 2 CH 2 OCH 2 CH 3 ) 5 , Hf(Oi-Pr) 4 , Ta(OCH 2 CH 2 OCH 3 ) 5 and Nb(OPr) 5 are the metal salt MoCl 5.
  • HfCl 4 , TaCl 5 , and NbCl 5 Disperse HfCl 4 , TaCl 5 , and NbCl 5 in n-heptane separately, and drop in ethylene glycol ethyl ether, monoisopropanol, ethylene glycol methyl ether, and monoalcohol n-propanol respectively at 0°C. triethylamine was added dropwise. after the dropwise addition was heated at reflux for 2h, respectively, and filtered to give a solution of a metal alkoxide; wherein, 5, HfCl 4, TaCl 5 , and the ratio of alcohol and a monobasic NbCl triethylamine salts were MoCl 5 1: 6:5, 1:4:4, 1:10:6, 1:6:6;
  • the metal alkoxides Hf(Oi-Pr) 4 , Ti(OPr) 4 , Ta(OCH 2 CH 2 OCH 3 ) 5 , Mo(OCH 2 CH 2 OCH 2 CH 3 ) 5 and Nb (OPr) Add acetylacetone dropwise to 5 , and continue to stir for 1 hour after dropping;
  • Metal alkoxides Hf(Oi-Pr) 4 , Ti(OPr) 4 , Ta(OCH 2 CH 2 OCH 3 ) 5 , Mo(OCH 2 CH 2 OCH 2 CH 3 ) 5 and Nb(OPr) 5 and acetylacetone The molar ratios are 1:1.1, 1:0.8, 1:1, 1:2 and 1:1.5;
  • the metal alkoxide complex obtained in step (2) is uniformly mixed in an equal metal molar ratio at 70°C, and a mixed solution of water and n-propanol is added dropwise to the system, wherein the molar ratio of water to total metal is 1.2:1 , The mass ratio of n-propanol to water is 8:1, and reflux for 2h after dripping;
  • the metal alkoxide copolymer obtained in step (3) is uniformly mixed with allyl phenolic aldehyde, and the ratio of the total amount of metal elements in the alkoxide copolymer to the mass of allyl phenolic aldehyde is 1 mol: 19.5 g, and the temperature is increased to 80 °C, react for 1h, and lower the temperature to obtain a high-entropy ceramic precursor.
  • the precursor solution obtained in step (1) is stretched into nanofibers by an air spinning device, the spinning pressure is 0.09 MPa, the feeding speed is 30 mL/h, and the receiving distance is 40 cm;
  • step (2) Place the nanofiber cotton collected in step (2) in a heat treatment device, in a nitrogen atmosphere, at a heating rate of 1°C/min, heat up to 600°C, and keep it for 2 hours to obtain a debinding fiber;
  • the debinding fiber prepared in step (3) is placed in a heat treatment device, nitriding in an ammonia atmosphere, the nitriding temperature is 800° C., and the time is 2 h, to obtain nitride high-entropy fiber cotton.
  • the XRD of the nitride high-entropy ceramic fiber is shown in Figure 1. It can be seen from the figure that the fiber formed a single crystal phase structure, indicating that the nitride high-entropy ceramic was successfully prepared, and its SEM is shown in Figure 4. It can be seen from the figure that the diameter of the fiber is very uniform.
  • the specific surface area of the fiber is 6m 2 /g measured by a specific surface area analyzer.
  • the ultra-high temperature performance of the nitride high-entropy ceramic fiber cannot be tested in a general laboratory because it cannot be melted below 3000°C.
  • the high-entropy ceramic precursor containing Ti, Hf, Ta, Nb, and Mo was prepared by the method described in Example 1, and the specific preparation method was the same as that in Example 2.
  • the precursor solution obtained in step (1) is gas-spinned using a pneumatic spinning device, and stretched into nanofibers.
  • the spinning pressure is 0.06MPa
  • the feed rate is 30mL/h
  • step (2) Place the nanofiber cotton collected in step (2) in a heat treatment device, in an argon atmosphere, at a heating rate of 1.5°C/min, heat up to 600°C, and keep it for 2 hours to obtain a debinding fiber;
  • the debinding fiber prepared in step (3) is placed in a heat treatment device, nitriding in an ammonia atmosphere, the nitriding temperature is 900° C., and the time is 2 h, to obtain nitride high-entropy fiber cotton.
  • the XRD of the nitride high-entropy ceramic fiber is shown in Figure 2. It can be seen from the figure that the fiber forms a single crystal phase structure, indicating that the nitride high-entropy ceramic has been successfully prepared.
  • the EDS diagram of the fiber shows that the distribution of each element in the fiber is very uniform ( Figure 5).
  • the ultra-high temperature performance of the nitride high-entropy ceramic fiber cannot be tested in a general laboratory because it cannot be melted below 3000°C.
  • metal alkoxides are selected from Hf(OPr) 4 , Ti(OPr) 4 , Ta(OPr) 5 , Mo(OPr) 5 and Nb(OCH 2 CH 2 OCH 3 ) 5 , where Hf (OPr) 4, Ta (OPr ) 5, Mo (OPr) 5 and Nb (OCH 2 CH 2 OCH 3 ) 5 metal salt is HfCl 4, TaCl 5, MoCl 5 and NbCl 5 were dispersed in n-hexane, At -5°C, drop in the monoalcohol n-propanol, n-propanol, n-propanol and ethylene glycol methyl ether respectively, then drop in the triethylamine respectively, heat to reflux for 2h after the addition is complete, and filter to obtain the metal alkoxide solution respectively; wherein the metal salt is HfCl 4, TaCl 5, MoCl 5 and NbCl and a monohydroxy alcohol and tri
  • the molar ratio of metal alkoxides Hf(OPr) 4 , Ti(OPr) 4 , Ta(OPr) 5 , Mo(OPr) 5 and Nb(OCH 2 CH 2 OCH 3 ) 5 and acetylacetone are 1:0.5, 1 respectively :0.8, 1:1, 1:2 and 1:0.9;
  • the metal alkoxide complex obtained in step (2) is uniformly mixed according to the equivalent metal molar ratio.
  • a mixed solution of water and n-propanol is added dropwise to the system, wherein the molar ratio of water to total metals is 1:1 , The mass ratio of n-propanol to water is 5:1, and reflux for 2h after dripping;
  • the metal alkoxide copolymer obtained in step (3) is uniformly mixed with allyl phenolic aldehyde, and the ratio of the total amount of metal elements in the alkoxide copolymer to the mass of allyl phenolic aldehyde is 1mol:18g, and the temperature is raised to 90°C , React for 3h, and lower the temperature to obtain a high-entropy ceramic precursor.
  • the spinning voltage is 10kV
  • the feeding speed is 40mL/h
  • the receiving distance is 40cm
  • step (2) Place the nanofiber cotton collected in step (2) in a heat treatment device, in an argon atmosphere, at a heating rate of 1°C/min, heat up to 600°C, and keep it for 2 hours to obtain a debinding fiber;
  • the debinding fiber prepared in step (3) is placed in a heat treatment device, nitriding in an ammonia atmosphere, the nitriding temperature is 1000° C., and the time is 2 h to obtain nitride high-entropy ceramic fiber cotton.
  • the ultra-high temperature performance of the nitride high-entropy ceramic fiber cannot be tested in a general laboratory because it cannot be melted below 3000°C.
  • Example 1 The method described in Example 1 was used to prepare a high-entropy ceramic precursor containing Ti, Hf, Ta, Nb, and Mo.
  • the spinning voltage is 15kV
  • the feeding speed is 30mL/h
  • the receiving distance is 45cm
  • step (2) Place the nanofiber cotton collected in step (2) in a heat treatment device, in an argon atmosphere, at a heating rate of 1.5°C/min, heat up to 600°C, and keep it for 2 hours to obtain a debinding fiber;
  • the debinding fiber prepared in step (3) is placed in a heat treatment device, nitriding in an ammonia atmosphere, the nitriding temperature is 800° C., and the time is 2 h, to obtain nitride high-entropy fiber cotton.
  • the ultra-high temperature performance of the nitride high-entropy ceramic fiber cannot be tested in a general laboratory because it cannot be melted below 3000°C.
  • Example 1 The method described in Example 1 was used to prepare a high-entropy ceramic precursor containing Ti, Hf, Ta, Nb, and Mo.
  • the spinning head rotation speed is 1000 r/min, and the receiving distance is 30 cm;
  • step (2) Place the nanofiber cotton collected in step (2) in a heat treatment device, in an argon atmosphere, at a heating rate of 1°C/min, heat up to 600°C, and keep it for 2 hours to obtain a debinding fiber;
  • the debinding fiber prepared in step (3) is placed in a heat treatment device, nitriding in an ammonia atmosphere, the nitriding temperature is 1000° C., and the time is 2 h, to obtain nitride high-entropy fiber cotton.
  • the ultra-high temperature performance of the nitride high-entropy ceramic fiber cannot be tested in a general laboratory because it cannot be melted below 3000°C.
  • Example 1 The method described in Example 1 was used to prepare a high-entropy ceramic precursor containing Ti, Hf, Ta, Nb, and Mo.
  • the precursor solution obtained in step (1) is gas-spun using a pneumatic spinning device, and stretched into nanofibers.
  • the spinning pressure is 0.02MPa, and the feed rate is 10mL/h.
  • the distance is 10cm;
  • step (2) Place the nanofiber cotton collected in step (2) in a heat treatment device, in a nitrogen atmosphere, at a heating rate of 0.5°C/min, heat up to 550°C and keep it for 4 hours to obtain a debinding fiber;
  • the debinding fiber prepared in step (3) is placed in a heat treatment device, and nitriding in an ammonia atmosphere, the nitriding temperature is 600° C., and the time is 0.5 h to obtain nitride high-entropy fiber cotton.
  • the ultra-high temperature performance of the nitride high-entropy ceramic fiber cannot be tested in a general laboratory because it cannot be melted below 3000°C.
  • Example 1 The method described in Example 1 was used to prepare a high-entropy ceramic precursor containing Ti, Hf, Ta, Nb, and Mo.
  • the precursor solution obtained in step (1) is stretched into nanofibers using a pneumatic spinning device, the spinning pressure is 0.2 MPa, the feed rate is 60 mL/h, and the receiving distance is 50 cm;
  • step (2) Place the nanofiber cotton collected in step (2) in a heat treatment device, in an argon atmosphere, at a heating rate of 3.5°C/min, heat up to 600°C and keep it for 3 hours to obtain a debinding fiber;
  • the debinding fiber prepared in step (3) is placed in a heat treatment device, and nitriding in an ammonia atmosphere, the nitriding temperature is 700° C., and the time is 5 hours to obtain nitride high-entropy fiber cotton.
  • the ultra-high temperature performance of the nitride high-entropy ceramic fiber cannot be tested in a general laboratory because it cannot be melted below 3000°C.
  • Example 1 The method described in Example 1 was used to prepare a high-entropy ceramic precursor containing Ti, Hf, Ta, Nb, and Mo.
  • the spinning voltage is 5kV
  • the feeding speed is 10mL/h
  • the receiving distance is 10cm
  • step (2) Place the nanofiber cotton collected in step (2) in a heat treatment device, under a nitrogen atmosphere, at a heating rate of 1.5°C/min, heat up to 500°C and keep it for 2 hours to obtain a debinding fiber;
  • the debinding fiber prepared in step (3) is placed in a heat treatment device, nitriding in an ammonia atmosphere, the nitriding temperature is 1000° C., and the time is 2.5 h, to obtain nitride high-entropy fiber cotton.
  • the ultra-high temperature performance of the nitride high-entropy ceramic fiber cannot be tested in a general laboratory because it cannot be melted below 3000°C.
  • Example 1 The method described in Example 1 was used to prepare a high-entropy ceramic precursor containing Ti, Hf, Ta, Nb, and Mo.
  • the spinning voltage is 10kV
  • the feeding speed is 60mL/h
  • the receiving distance is 50cm
  • step (2) Place the nanofibers collected in step (2) in a heat treatment device, in a helium atmosphere, at a heating rate of 2°C/min, heat up to 600°C, and keep it for 3 hours to obtain a debinding fiber;
  • the debinding fiber prepared in step (3) is placed in a heat treatment device, nitriding in an ammonia atmosphere, the nitriding temperature is 800° C., and the time is 2 h, to obtain nitride high-entropy fiber cotton.
  • the ultra-high temperature performance of the nitride high-entropy ceramic fiber cannot be tested in a general laboratory because it cannot be melted below 3000°C.
  • Example 1 The method described in Example 1 was used to prepare a high-entropy ceramic precursor containing Ti, Hf, Ta, Nb, and Mo.
  • a spinning device is used to stretch the precursor solution obtained in step (1) into fibers, the spinning head speed is 500r/min, and the receiving distance is 20cm;
  • step (2) Place the nanofibers collected in step (2) in a heat treatment device, in a nitrogen atmosphere, at a heating rate of 1.5°C/min, heat up to 600°C, and keep it for 2 hours to obtain a debinding fiber;
  • the debinding fiber prepared in step (3) is placed in a heat treatment device, nitriding in an ammonia atmosphere, the nitriding temperature is 900° C., and the time is 2 h, to obtain nitride high-entropy fiber cotton.
  • the ultra-high temperature performance of the nitride high-entropy ceramic fiber cannot be tested in a general laboratory because it cannot be melted below 3000°C.
  • Example 1 The method described in Example 1 was used to prepare a high-entropy ceramic precursor containing Ti, Hf, Ta, Nb, and Mo.
  • the spinneret rotation speed is 5000r/min, and the receiving distance is 100cm;
  • the nanofibers collected in step (2) are placed in a heat treatment device, and heated to 600°C at a heating rate of 2°C/min under a N 2 atmosphere, and kept for 2 hours to obtain a debinding fiber;
  • the debinding fiber prepared in step (3) is placed in a heat treatment device, nitriding in an ammonia atmosphere, the nitriding temperature is 1000° C., and the time is 2 h, to obtain nitride high-entropy fiber cotton.
  • the ultra-high temperature performance of the nitride high-entropy ceramic fiber cannot be tested in a general laboratory because it cannot be melted below 3000°C.
  • This embodiment is mainly to illustrate the catalytic effect of the nitride high-entropy ceramic fiber prepared by the present invention.
  • pure water and pure carbon dioxide gas are used as raw materials, and the high-entropy nitride ceramic nanofiber cloth prepared in Example 4 is used as a catalyst.
  • Catalytic reaction the mass ratio of the catalyst to carbon dioxide is 1:83.
  • the gas in the reaction vessel is detected by gas chromatography. It is found that carbon dioxide conversion products are formed, and the main product is methane, indicating that the catalyst has high catalytic performance. Selective.
  • the gas chromatogram is shown in Figure 7.
  • the peak position at 0.777 is the generated H 2
  • the 2.543 is the generated CO
  • the 4.685 is the generated CH 4. It can be seen that the photocatalytic product is mainly CH 4 , the catalytic selectivity Above 90%.
  • the present invention has the following beneficial effects compared with the prior art:
  • the present invention uses a high-entropy ceramic polymer precursor containing Ti, Hf, Ta, Nb, and Mo metal elements, each of which accounts for 5 to 35% of the total metal content, as the metal source, and uses gas spinning Silk, electrospinning or spinning is the forming method to prepare nitride high-entropy ceramic fiber, which has the characteristics of uniform diameter and high specific surface area, which expands the existence form of nitride high-entropy ceramic;
  • the high-entropy ceramic precursor spinning solution provided by the present invention has the characteristics of adjustable rheology, improves the spinning performance, and can also make the spinning solution sealed and stored at room temperature for more than 3 weeks, and the viscosity change rate No more than 5%, which reduces the restrictions on subsequent processes (spinning, debinding, nitriding), and further improves spinning efficiency;
  • the present invention adopts air spinning, electrostatic spinning or spinning method to prepare high-entropy ceramic fiber.
  • the equipment is simple, the operation is convenient, and the cost is low.
  • the continuous fiber cotton or fiber non-woven fabric with controllable average diameter can be obtained. Rapidly scale up production;
  • the high-entropy nitride fiber prepared by the present invention has the characteristics of high conversion efficiency in the photocatalytic CO 2 conversion to CH 4 , no need to add a co-catalyst, and the catalyst is easily separated from the raw material product. It is the first application of the nitride high-entropy ceramic to the In the field, a new development direction has been explored for the application of nitride high-entropy ceramics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Fibers (AREA)
  • Catalysts (AREA)

Abstract

一种氮化物高熵陶瓷纤维及其制备方法和应用。所述高熵陶瓷纤维含有Ti、Hf、Ta、Nb和Mo元素,所述氮化物高熵陶瓷纤维呈单一晶相,且其中各元素呈分子级的均匀分布。所述高熵陶瓷纤维的制备方法包括:将含有目标金属元素的高熵陶瓷前驱体、纺丝助剂和溶剂混合均匀制成前驱体纺丝溶液,再经过纺丝、排胶和氮化工序,制得氮化物高熵陶瓷纤维。所述氮化物高熵陶瓷纤维可应用于光催化二氧化碳制备甲烷的工艺中。

Description

一种氮化物高熵陶瓷纤维及其制备方法和应用 技术领域
本发明属于材料领域,涉及一种高熵陶瓷,具体地说,涉及一种氮化物高熵陶瓷纤维及其制备方法和应用。
背景技术
高熵陶瓷是一种由至少五种元素组成的,每种元素含量在5~35%的单一相固溶体陶瓷。到目前为止,人们对于高熵陶瓷的研究仍然比较少,目前高熵陶瓷的存在形式只有粉体,块体和涂层,对高熵陶瓷的性能研究也局限于少数几个领域。
氮化物高熵陶瓷是一种由至少五种金属元素和氮元素组成的单一晶型的陶瓷,目前研究主要集中于氮化物高熵陶瓷涂层和粉体的制备。2012年,罗马尼亚的V.Braic等人采用物理气相沉积的方法在不锈钢表面沉积了一层(TiZrNbHfTa)N涂层,使得表面的硬度提高到33GPa,相比于传统金属涂层,表面硬度提高了三倍以上(V.Braic,Alina Vladescu,Nanostructured multi-element(TiZrNbHfTa)N and(TiZrNbHfTa)C hard coatings,Surface&Coatings Technology,211(2012):117-121),但物理气相沉积方法对设备要求较高,只能制备涂层这种单一的二维材料,应用范围受限;2018年,国内华东理工大学和美国田纳西大学,橡树岭国家实验室联合开发了一种制备高熵氮化物陶瓷粉体的方法,该方法采用金属氯化物和尿素为原料,在800℃制备了单一晶型的(VCrNbMoZr)N纳米粉体,该粉体在超级电容器方面显示出了潜在的应用价值(Tian Jin,Xiahan Sang,Mechanochemical-Assisted Synthesis of High-Entropy Metal Nitride via a Soft Urea Strategy,2018(30):1707512),但粉体材料在制备器件方面存在易脱落,分散不均匀等问题。
纤维是一种一维材料,具有尺寸小,比表面积高等特点,由于维度的限制,相比于粉体,块体和涂层,其物理化学特性会发生明显的改变,在电子信息,能源催化等领域具有广泛的应用前景。
光催化是一种以紫外、可见光为光源,半导体为催化剂,催化有机污染物降解,催化水分解制氢,催化CO 2转化等化学反应发生的过程。目前的光催化剂主要为粉体形式,和催化原料及产物难分离,难以回收重复利用。
而光催化纤维由于具有宏观的棉、布等形态,可以较为便捷的和催化原料及产物分离,有利于催化剂的回收及重复利用,因此光催化纤维成为目前光催化剂的热门发展领域。
目前还没有关于氮化物高熵陶瓷纤维的报道,更没有将氮化物高熵陶瓷应用于光催化领域的先例。
有鉴于此,特提出本发明。
发明公开
本发明要解决的技术问题在于克服现有技术的不足,提供一种氮化物高熵陶瓷纤维及其制备方法。该方法采用气纺丝、静电纺丝或者甩丝法制备纤维原丝,原丝经排胶和氮化制备氮化物高熵陶瓷纤维。本发明克服了高熵氮化物陶瓷目前只能以 粉体,块体和涂层形态存在的局限,将高熵陶瓷的存在形式拓展到了纤维领域,同时本发明将高熵陶瓷的应用范围拓展到了光催化领域。
为解决上述技术问题,本发明采用技术方案的基本构思是:
本发明提供了一种氮化物高熵陶瓷纤维,所述高熵陶瓷纤维含有Ti、Hf、Ta、Nb和Mo元素,所述氮化物高熵陶瓷纤维呈单一晶相,且其中各元素呈分子级的均匀分布。
本发明的进一步方案为:所述高熵陶瓷纤维中各金属元素物质的量均占金属元素总物质的量的5~35%;优选的,所述各金属元素的物质的量相同。
所述高熵陶瓷纤维中还含有氮元素;
所述氮元素的物质的量与所述Ti、Hf、Ta、Nb和Mo元素的总物质的量相同。
上述方案中,所述纤维为致密颗粒堆积结构,其表面光滑,且纤维的长径比不小于50。
上述高熵陶瓷纤维中,各金属元素物质的量的比具体可为Ti:Hf:Ta:Nb:Mo=8-30:5-35:5-35:10-30:5-35或Ti:Hf:Ta:Nb:Mo=10-20:10-30:3-35:15:10-30;更具体可为Ti:Hf:Ta:Nb:Mo=10:35:35:10:10、15:30:35:15:5、20:30:30:15:5、30:5:35:15:15、20:15:5:30:30、8:12:30:15:35、10:10:30:30:20或30:5:35:15:15。
本发明还提供了一种如上所述氮化物高熵陶瓷纤维的制备方法,所述制备方法包括:将含有目标金属元素的高熵陶瓷前驱体、纺丝助剂和溶剂混合均匀制成前驱体纺丝溶液,再经过纺丝、排胶和氮化工序,制得氮化物高熵陶瓷纤维;所述目标金属选自Ti、Hf、Ta、Nb和Mo元素。
也即将Ti、Hf、Ta、Nb和Mo元素的高熵陶瓷前驱体、纺丝助剂和溶剂混合均匀制成前驱体纺丝溶液,再经过纺丝、排胶和氮化工序,制得所述氮化物高熵陶瓷纤维。
根据上述制备方法,所述高熵陶瓷前驱体制备过程包括:
(1)获取金属醇盐络合物:
向含有目标金属元素的金属醇盐M(OR) n中滴入络合剂,滴完继续搅拌0.1~5h制得金属醇盐络合物;
(2)共水解:
选取依步骤(1)制得的包含不同金属元素的金属醇盐络合物,混合均匀后缓慢滴加水和一元醇的混合液,滴完回流1~5h,并常压蒸馏制得金属醇盐共聚物;
(3)制备前驱体:
将步骤(2)制得的金属醇盐共聚物与烯丙基酚醛混合均匀,升温至50~90℃(具体可为80℃),反应0.5~4h(具体可为1h-3h),之后降温得到所述高熵陶瓷前驱体。
根据上述制备方法,所述前驱体纺丝溶液中,高熵陶瓷前驱体、纺丝助剂和溶剂的质量比为1:0.1~1:5~20,
优选为1:0.2~0.5:5~10;更具体为1:0.33-0.4:5-9.5、1:0.33-0.4:5-9.3、 1:0.33-0.4:5-9.67、1:0.33-0.4:5-10、1:0.33-0.4:5-20、1:0.33-0.4:5-5.3或1:0.33-0.4:5-6.2;
上述方案中,纺丝前驱体溶液的制备或混合可借助其他技术手段,包括但不限于搅拌、超声等。
根据上述制备方法,步骤(1)中所述金属醇盐和络合剂的摩尔比为1:(0.15~0.5)n;
所述络合剂为乙酰丙酮和/或乙酰乙酸乙酯;
当金属醇盐中的M为Ti或Hf时,n为4;
当金属醇盐中的M为Nb、Ta或Mo时,n为5;
所述M(OR) n中,R选自C1-C6的烷基和C1-C6的烷氧基中至少一种;
具体选自C1-C4的烷基和C1-C4的烷氧基中至少一种;
更具体选自乙基、乙二醇二乙醚基、i-Pr、-Pr和-CH 2CH 2OCH 3中至少一种。
上述方案中,本发明的工作人员发现,对不同类型的金属元素在形成络合物的过程中反应活性存在差异,若以类似的比例添加络合剂,虽然可以形成络合物但在后续多种金属元素醇盐络合物的混合水解过程中,会由于络合剂加入量的差异产生反应平衡性的倾斜,导致无法形成分子均匀分布的前驱体。而采用本申请所提供的金属醇盐与络合剂比例,则可以克服上述问题,使后续水解形成稳定的体系,以利于形成高熵陶瓷纤维。
更具体的,当金属醇盐中的M为Hf、Nb、Ta或Mo时,所述醇盐按如下方法制备:将金属盐MCl n或M(NO 3) n分散在溶剂中,在-10~5℃条件下滴入一元醇,随后滴入三乙胺,滴加完毕后加热回流1~5h,过滤得到金属醇盐溶液;
其中,金属盐、一元醇和三乙胺的比例为1:(1~2)n:(1~1.5)n;
具体的,金属盐、一元醇和三乙胺的比例为1:4-10:4-7;更具体为1:4:4、1:5:5、1:6:5、1:6:6、1:8:7或1:10:6;
所述溶剂为正己烷、正庚烷、甲苯、二甲苯、乙二醇二甲醚、乙二醇二乙醚、叔丁基甲醚中的一种或几种;
所述一元醇选自甲醇、乙醇、异丙醇、正丙醇、正丁醇、异丁醇、乙二醇甲醚、乙二醇乙醚中的一种或几种;
根据上述制备方法,步骤(2)中水与总金属的摩尔比为0.8~1.3:1;具体为1-1.2:1;一元醇与水的质量比为3~8:1;具体为5:1;
所述一元醇选自甲醇、乙醇、异丙醇、正丙醇、正丁醇、异丁醇、乙二醇甲醚、乙二醇乙醚中的一种或几种;
共水解的温度为室温-90℃。共水解的时间具体为2h;
上述方案中,本发明提供的醇与水的比例,是在考虑不同反应活性的金属醇盐混合的基础上得出的,使得多种金属醇盐在共水解时的反应活性趋于相近,从而得到各元素分子级均匀分布的前驱体。
根据上述制备方法,步骤(3)中金属醇盐共聚物中金属元素的总物质的量与烯丙基酚醛的质量之比为1mol:18~20g;具体为1mol:19.5g;
上述制备方法中,不同金属的摩尔质量不同,不便于按质量统一成同一范围, 本发明在此处按金属醇盐共聚物中的金属总物质的量来计算,而烯丙基酚醛属于非均聚的聚合物,不适宜采用物质的量表示,因此采用物质的量与质量的比值进行表达。
根据上述制备方法,所述氮化包括:在氨气气氛下对排胶后的纤维进行氮化,氮化温度为600~1000℃,具体为700℃-900℃或800℃;氮化时间为0.5~5h;具体为2-3h或2.5h;
根据上述制备方法,所述纺丝助剂选自聚甲基丙烯酸甲酯、聚醋酸乙烯酯、聚乙烯醇缩丁醛、聚乙烯吡咯烷酮中一种或几种;
所述溶剂选自乙醇、丙酮、正丙醇、乙二醇甲醚、N,N-二甲基甲酰胺中的一种或几种。
上述方案中,纺丝助剂有助于改善溶液的流变性,如粘度、分散均匀性和稳定性等,可采用本领域常见的纺丝助剂,优选采用聚甲基丙烯酸甲酯、聚醋酸乙烯酯、聚乙烯醇缩丁醛、聚乙烯吡咯烷酮中的一种或多种的混合,例如聚甲基丙烯酸甲酯与聚醋酸乙烯酯的任意比例混合,或者聚醋酸乙烯酯与聚乙烯醇缩丁醛的任意比例混合,或者聚乙烯醇缩丁醛与聚乙烯吡咯烷酮的任意比例混合。
上述方案中,所用的溶剂是任意的,选用的溶剂有益于原料的溶解和分散,优选乙醇、丙酮、正丙醇、乙二醇甲醚、叔丁基甲醚、N,N-二甲基甲酰胺中的一种或多种的混合。
根据上述制备方法,所述排胶包括:在惰性气氛中,以0.5~5℃/min的升温速率升温至到500~600℃或550℃,并保温2~4h。
所述升温速率具体为1-2℃/min或1.5℃/min;
保温时间具体为3h;
上述方案中,所述惰性气氛选自氮气、氩气、氦气中的一种或几种的混合。
根据上述制备方法,所述纺丝选自气纺丝、静电纺丝或者甩丝中的一种。
上述方案中,所述纺丝优选采用气纺丝技术,
气纺丝条件为:纺丝气压0.02~0.2MPa,具体为0.06MPa;
进料速度10~60mL/h,具体为30mL/h;
接收距离10~50cm,具体为40cm;
进料速度优选为30~60mL/h;
所述气纺丝的气源选自压缩空气,压缩氮气,压缩氩气中的一种或几种的混合;
上述方案中,所述纺丝优选采用静电纺丝技术,
静电纺丝条件为:纺丝电压5~15kV,具体为10kV;
进料速度10~60mL/h,具体为30-40mL/h;
接收距离10~50cm,具体为40-45cm;
进料速度优选为30~60mL/h;
上述方案中,所述纺丝优选采用甩丝技术,
甩丝纺丝条件为:喷丝头转速200~5000r/min,具体为500-1000r/min;
接受距离20~100cm;具体为30cm。
本发明还要求保护前述本发明提供的所述氮化物高熵陶瓷纤维在光催化二氧化碳制备甲烷中的应用及所述氮化物高熵陶瓷纤维在制备甲烷中的应用。
具体的,所述制备甲烷步骤中,所用催化剂为前述本发明提供的所述氮化物高熵陶瓷纤维。
所述催化剂参与的催化反应为光催化;
所述光催化中,所用光源为可见光;
所述光催化中,原料包括二氧化碳;
所述催化剂与所述二氧化碳的质量比为1:80-90;具体为1:83;
具体的,所述原料包括水和二氧化碳。
本发明还提供了一种如上所述氮化物高熵陶瓷纤维在光催化二氧化碳制备甲烷中的应用。与现有氮化物高熵陶瓷的应用相比,本发明将氮化物高熵陶瓷制成纤维并应用于光催化领域,首次提出了将氮化物高熵陶瓷应用于光催化CO 2制备CH 4的工艺,所述氮化物高熵陶瓷纤维具有较高的催化活性,且催化剂与反应物产物易于分离。
附图说明
图1是本发明实施例2得到的纤维XRD图;
图2是本发明实施例3得到的纤维XRD图;
图3是本发明实施例4得到的纤维XRD图;
图4是本发明实施例2得到的纤维SEM图;
图5是本发明实施例3得到的纤维EDS图;
图6是本发明实施例4制得纤维的实物图;
图7是本发明实施例13光催化反应后的气相色谱图。
实施发明的最佳方式
下面结合具体实施例对本发明作进一步阐述,但本发明并不限于以下实施例。所述方法如无特别说明均为常规方法。所述原材料如无特别说明均能从公开商业途径获得。下述实施例中所述腐植酸矿物原料是风化煤或褐煤。
实施例1
本实施例提供了高熵陶瓷前驱体的通用制备方法,具体如下:
(1)获取金属醇盐:
选取含有不同种类元素的过渡金属醇盐,其中当金属醇盐中的M为Hf、Nb、Ta或Mo时,所述醇盐按如下方法制备:将金属盐MCl n或M(NO 3) n分散在溶剂中,在-10~5℃条件下滴入一元醇,随后滴入三乙胺,滴加完毕后加热回流1~5h,过滤得到金属醇盐溶液;
当金属醇盐中的M为Hf时,n为4;
当金属醇盐中的M为Nb、Ta或Mo时,n为5;
其中,金属盐、一元醇和三乙胺的比例为1:(1~2)n:(1~1.5)n;
所述溶剂为正己烷、正庚烷、甲苯、二甲苯、乙二醇二甲醚、乙二醇二乙醚、叔丁基甲醚中的一种或几种;
所述一元醇选自甲醇、乙醇、异丙醇、正丙醇、正丁醇、异丁醇、乙二醇甲醚、乙二醇乙醚中的一种或几种;
(2)制备金属醇盐络合物:
在室温~80℃的条件下,向步骤(1)选取的金属醇盐M(OR) n中滴入络合剂,滴完继续搅拌0.1~5h制得金属醇盐络合物;
所述金属醇盐和络合剂的摩尔比为1:(0.15~0.5)n;
当金属醇盐中的M为Ti或Hf时,n为4;
当金属醇盐中的M为Nb、Ta或Mo时,n为5;
所述络合剂为乙酰丙酮或乙酰乙酸乙酯中的一种或两种的组合;
(3)共水解:
选取依步骤(2)制得的包含不同金属元素的金属醇盐络合物,混合均匀后,在室温~90℃条件下滴加水和一元醇的混合液,其中水与总金属的摩尔比为0.8~1.3:1,一元醇与水的质量比为3~8:1,滴完回流1~5h,并常压蒸馏制得金属醇盐共聚物;
所述一元醇选自甲醇、乙醇、异丙醇、正丙醇、正丁醇、异丁醇、乙二醇甲醚、乙二醇乙醚中的一种或几种;
(4)制备前驱体:
将步骤(3)制得的金属醇盐共聚物与烯丙基酚醛混合均匀,其中金属元素总物质的量和烯丙基酚醛的质量之比为1mol:18~20g,升温至50~90℃,反应0.5~4h,之后降温得到高熵陶瓷前驱体。
实施例2
本实施例采用如下方法制备氮化物高熵陶瓷纤维:
1.高熵前驱体的制备:按照实施例1的方法制备前驱体,具体步骤如下:
(1)获取金属醇盐:金属醇盐选自Hf(Oi-Pr) 4、Ti(OPr) 4、Ta(OCH 2CH 2OCH 3) 5、Mo(OCH 2CH 2OCH 2CH 3) 5和Nb(OPr) 5,其中Mo(OCH 2CH 2OCH 2CH 3) 5,Hf(Oi-Pr) 4,Ta(OCH 2CH 2OCH 3) 5和Nb(OPr) 5是将金属盐MoCl 5、HfCl 4、TaCl 5、和NbCl 5分别分散在正庚烷中,0℃下,分别滴入乙二醇乙醚、一元醇异丙醇、乙二醇甲醚、一元醇正丙醇,随后分别滴入三乙胺,滴加完毕后加热回流2h,分别过滤得到金属醇盐溶液;其中,金属盐MoCl 5、HfCl 4、TaCl 5、和NbCl 5和一元醇和三乙胺的比例分别为1:6:5、1:4:4、1:10:6、1:6:6;
(2)制备金属醇盐络合物:
在50℃条件下,分别向金属醇盐Hf(Oi-Pr) 4、Ti(OPr) 4、Ta(OCH 2CH 2OCH 3) 5、Mo(OCH 2CH 2OCH 2CH 3) 5和Nb(OPr) 5中滴入乙酰丙酮,滴完继续搅拌1h;
金属醇盐Hf(Oi-Pr) 4、Ti(OPr) 4、Ta(OCH 2CH 2OCH 3) 5、Mo(OCH 2CH 2OCH 2CH 3) 5及Nb(OPr) 5和乙酰丙酮的摩尔比分别为1:1.1、1:0.8、1:1、1:2和1:1.5;
(3)共水解:
将步骤(2)中所得的金属醇盐络合物,按等金属摩尔比混合均匀,70℃,向体系中滴加水和正丙醇的混合溶液,其中水与总金属的摩尔比为1.2:1,正丙醇与水的 质量比为8:1,滴完回流2h;
常压蒸馏得到金属醇盐共聚物;
(4)制备前驱体:
将步骤(3)所得的金属醇盐共聚物与烯丙基酚醛混合均匀,醇盐共聚物中金属元素的总物质的量与烯丙基酚醛的质量之比为1mol:19.5g,升温至80℃,反应1h,降温得到高熵陶瓷前驱体。
2.氮化物高熵陶瓷纤维的制备
(1)可纺性前驱体溶液的配制:
取所述高熵陶瓷前驱体30g,聚乙烯吡咯烷酮10g,乙醇150g,混合搅拌得到棕褐色均匀溶液;
(2)纺丝与收集:
以压缩空气为气源,采用气流纺丝装置将步骤(1)得到的前驱体溶液拉伸为纳米纤维,纺丝气压为0.09MPa,进料速度为30mL/h,接收距离为40cm;
(3)排胶:
将步骤(2)中收集到的纳米纤维棉置于热处理装置中,在氮气气氛下,以1℃/min的升温速率,升温到600℃,保温2h,得到排胶纤维;
(4)氮化:
将步骤(3)所制备的排胶纤维置于热处理装置中,在氨气气氛下氮化,氮化温度为800℃,时间为2h,得到氮化物高熵纤维棉。
所述氮化物高熵陶瓷纤维的XRD如图1所示,由图可看出,纤维形成了单一的晶相结构,表明成功制备出了氮化物高熵陶瓷,其SEM如图4所示,由图可看出,纤维的直径非常均匀。采用比表面积分析仪测试该纤维的比表面积为6m 2/g。
该氮化物高熵陶瓷纤维的超高温性能无法在一般实验室中检测,因在3000℃以下不能熔融。
实施例3
本实施例采用如下方法制备氮化物高熵陶瓷纤维:(1)可纺性前驱体溶液的配制:
采用实施例1记载的方法制备含有Ti、Hf、Ta、Nb、Mo的高熵陶瓷前驱体,具体制备方法与实施例2相同。
取所述高熵陶瓷前驱体30g,聚乙烯醇缩丁醛10g,正丙醇285g,混合搅拌得到棕褐色均匀溶液;
(2)纺丝与收集:
以压缩氮气为气源,采用气流纺丝装置将步骤(1)得到的前驱体溶液进行气纺丝,拉伸为纳米纤维,纺丝气压为0.06MPa,进料速度为30mL/h,接收距离为40cm;
(3)排胶:
将步骤(2)中收集到的纳米纤维棉置于热处理装置中,在氩气气氛下,以1.5℃/min的升温速率,升温到600℃,保温2h,得到排胶纤维;
(4)氮化:
将步骤(3)所制备的排胶纤维置于热处理装置中,在氨气气氛下氮化,氮化温度为900℃,时间为2h,得到氮化物高熵纤维棉。
所述氮化物高熵陶瓷纤维的XRD如图2所示,由图可看出,纤维形成了单一的晶相结构,表明成功制备出了氮化物高熵陶瓷。纤维的EDS图表明,纤维中各元素分布非常均匀(图5)所示。
该氮化物高熵陶瓷纤维的超高温性能无法在一般实验室中检测,因在3000℃以下不能熔融。
实施例4
本实施例采用如下方法制备氮化物高熵陶瓷纤维:
1.高熵前驱体的制备:按照实施例1的方法制备前驱体,具体步骤如下:
(1)获取金属醇盐:金属醇盐选自Hf(OPr) 4、Ti(OPr) 4、Ta(OPr) 5、Mo(OPr) 5和Nb(OCH 2CH 2OCH 3) 5,其中Hf(OPr) 4,Ta(OPr) 5,Mo(OPr) 5和Nb(OCH 2CH 2OCH 3) 5是将金属盐HfCl 4、TaCl 5、MoCl 5和NbCl 5分别分散在正已烷中,-5℃下,分别滴入一元醇正丙醇、正丙醇、正丙醇和乙二醇甲醚,随后分别滴入三乙胺,滴加完毕后加热回流2h,分别过滤得到金属醇盐溶液;其中,金属盐HfCl 4、TaCl 5、MoCl 5和NbCl 5和一元醇和三乙胺的比例分别为1:6:5、1:5:5、1:10:6、1:8:7;
(2)制备金属醇盐络合物:
在室温条件下,分别向金属醇盐Hf(OPr) 4、Ti(OPr) 4、Ta(OPr) 5、Mo(OPr) 5和Nb(OCH 2CH 2OCH 3) 5中滴入乙酰丙酮,滴完继续搅拌1h;
金属醇盐Hf(OPr) 4、Ti(OPr) 4、Ta(OPr) 5、Mo(OPr) 5和Nb(OCH 2CH 2OCH 3) 5和乙酰丙酮的摩尔比分别为1:0.5、1:0.8、1:1、1:2和1:0.9;
(3)共水解:
将步骤(2)中所得的金属醇盐络合物,按等金属摩尔比混合均匀,室温下,向体系中滴加水和正丙醇的混合溶液,其中水与总金属的摩尔比为1:1,正丙醇与水的质量比为5:1,滴完回流2h;
常压蒸馏得到金属醇盐共聚物;
(4)制备前驱体:
将步骤(3)所得的金属醇盐共聚物与烯丙基酚醛混合均匀,醇盐共聚物中金属元素的总物质的量与烯丙基酚醛的质量之比为1mol:18g,升温至90℃,反应3h,降温得到高熵陶瓷前驱体。
2.氮化物高熵陶瓷纤维的制备
(1)可纺性前驱体溶液的配制:
取所述高熵陶瓷前驱体30g,聚醋酸乙烯酯10g,乙醇290g,混合搅拌得到棕褐色均匀溶液;
(2)纺丝与收集:
采用静电纺丝装置将步骤(1)得到的前驱体溶液拉伸为纳米纤维,纺丝电压为10kV,进料速度为40mL/h,接收距离为40cm;
(3)排胶:
将步骤(2)中收集到的纳米纤维棉置于热处理装置中,在氩气气氛下,以1℃/min的升温速率,升温到600℃,保温2h,得到排胶纤维;
(4)氮化:
将步骤(3)所制备的排胶纤维置于热处理装置中,在氨气气氛下氮化,氮化温度为1000℃,时间为2h,得到氮化物高熵陶瓷纤维棉。
所述氮化物高熵陶瓷纤维的XRD如图3所示,实物如图6所示。
该氮化物高熵陶瓷纤维的超高温性能无法在一般实验室中检测,因在3000℃以下不能熔融。
实施例5
本实施例采用如下方法制备氮化物高熵陶瓷纤维:
(1)可纺性前驱体溶液的配制:
采用实施例1记载的方法制备含有Ti、Hf、Ta、Nb、Mo的高熵陶瓷前驱体,具体制备方法与实施例2相同,但是选取金属醇盐络合物共水解时金属的摩尔百分比为Ti:Hf:Ta:Nb:Mo=10:35:35:10:10。
取所述高熵陶瓷前驱体30g,聚甲基丙烯酸甲酯10g,乙二醇甲醚300g,混合搅拌得到棕褐色均匀溶液;
(2)纺丝与收集:
采用静电纺丝装置将步骤(1)得到的前驱体溶液拉伸为纳米纤维,纺丝电压为15kV,进料速度为30mL/h,接收距离为45cm;
(3)排胶:
将步骤(2)中收集到的纳米纤维棉置于热处理装置中,在氩气气氛下,以1.5℃/min的升温速率,升温到600℃,保温2h,得到排胶纤维;
(4)氮化:
将步骤(3)所制备的排胶纤维置于热处理装置中,在氨气气氛下氮化,氮化温度为800℃,时间为2h,得到氮化物高熵纤维棉。
该氮化物高熵陶瓷纤维的超高温性能无法在一般实验室中检测,因在3000℃以下不能熔融。
实施例6
本实施例采用如下方法制备氮化物高熵陶瓷纤维:
(1)可纺性前驱体溶液的配制:
采用实施例1记载的方法制备含有Ti、Hf、Ta、Nb、Mo的高熵陶瓷前驱体,具体制备方法与实施例2相同,但是选取金属醇盐络合物共水解时金属的摩尔百分比为Ti:Hf:Ta:Nb:Mo=15:30:35:15:5。
取所述高熵陶瓷前驱体30g,聚醋酸乙烯酯10g,乙醇290g,混合搅拌得到棕褐色均匀溶液;
(2)纺丝与收集:
采用甩丝装置将步骤(1)得到的前驱体溶液拉伸为纤维,纺丝头转速为1000 r/min,接收距离为30cm;
(3)排胶:
将步骤(2)中收集到的纳米纤维棉置于热处理装置中,在氩气气氛下,以1℃/min的升温速率,升温到600℃,保温2h,得到排胶纤维;
(4)氮化:
将步骤(3)所制备的排胶纤维置于热处理装置中,在氨气气氛下氮化,氮化温度为1000℃,时间为2h,得到氮化物高熵纤维棉。
该氮化物高熵陶瓷纤维的超高温性能无法在一般实验室中检测,因在3000℃以下不能熔融。
实施例7
本实施例采用如下方法制备氮化物高熵陶瓷纤维:
(1)可纺性前驱体溶液的配制:
采用实施例1记载的方法制备含有Ti、Hf、Ta、Nb、Mo的高熵陶瓷前驱体,具体制备方法与实施例4相同,但是选取金属醇盐络合物共水解时金属的摩尔百分比为Ti:Hf:Ta:Nb:Mo=20:30:30:15:5。
取所述高熵陶瓷前驱体30g,聚乙烯醇缩丁醛2g,聚乙烯吡咯烷酮10g,N,N-二甲基甲酰胺600g,混合搅拌得到棕褐色均匀溶液;
(2)纺丝与收集:
以压缩氩气为气源,采用气流纺丝装置将步骤(1)得到的前驱体溶液进行气纺丝,拉伸为纳米纤维,纺丝气压为0.02MPa,进料速度为10mL/h,接收距离为10cm;
(3)排胶:
将步骤(2)中收集到的纳米纤维棉置于热处理装置中,在氮气气氛下,以0.5℃/min的升温速率,升温到550℃,保温4h,得到排胶纤维;
(4)氮化:
将步骤(3)所制备的排胶纤维置于热处理装置中,在氨气气氛下氮化,氮化温度为600℃,时间为0.5h,得到氮化物高熵纤维棉。
该氮化物高熵陶瓷纤维的超高温性能无法在一般实验室中检测,因在3000℃以下不能熔融。
实施例8
本实施例采用如下方法制备氮化物高熵陶瓷纤维:
(1)可纺性前驱体溶液的配制:
采用实施例1记载的方法制备含有Ti、Hf、Ta、Nb、Mo的高熵陶瓷前驱体,具体制备方法与实施例4相同,但是选取金属醇盐络合物共水解时金属的摩尔百分比为Ti:Hf:Ta:Nb:Mo=30:5:35:15:15。
取所述高熵陶瓷前驱体30g,聚醋酸乙烯酯8g,聚乙烯醇缩丁醛7g,正丙醇185g,混合搅拌得到棕褐色均匀溶液;
(2)纺丝与收集:
以压缩氮气为气源,采用气流纺丝装置将步骤(1)得到的前驱体溶液拉伸为纳 米纤维,纺丝气压为0.2MPa,进料速度为60mL/h,接收距离为50cm;
(3)排胶:
将步骤(2)中收集到的纳米纤维棉置于热处理装置中,在氩气气氛下,以3.5℃/min的升温速率,升温到600℃,保温3h,得到排胶纤维;
(4)氮化:
将步骤(3)所制备的排胶纤维置于热处理装置中,在氨气气氛下氮化,氮化温度为700℃,时间为5h,得到氮化物高熵纤维棉。
该氮化物高熵陶瓷纤维的超高温性能无法在一般实验室中检测,因在3000℃以下不能熔融。
实施例9
本实施例采用如下方法制备氮化物高熵陶瓷纤维:
(1)可纺性前驱体溶液的配制:
采用实施例1记载的方法制备含有Ti、Hf、Ta、Nb、Mo的高熵陶瓷前驱体,具体制备方法与实施例4相同,但是选取金属醇盐络合物共水解时金属的摩尔百分比为Ti:Hf:Ta:Nb:Mo=20:15:5:30:30。
取所述高熵陶瓷前驱体30g,聚甲基丙烯酸甲酯2g,聚醋酸乙烯酯1g,乙醇160g,混合搅拌得到棕褐色均匀溶液;
(2)纺丝与收集:
采用静电纺丝装置将步骤(1)得到的前驱体溶液拉伸为纳米纤维,纺丝电压为5kV,进料速度为10mL/h,接收距离为10cm;
(3)排胶:
将步骤(2)中收集到的纳米纤维棉置于热处理装置中,在氮气气氛下,以1.5℃/min的升温速率,升温到500℃,保温2h,得到排胶纤维;
(4)氮化:
将步骤(3)所制备的排胶纤维置于热处理装置中,在氨气气氛下氮化,氮化温度为1000℃,时间为2.5h,得到氮化物高熵纤维棉。
该氮化物高熵陶瓷纤维的超高温性能无法在一般实验室中检测,因在3000℃以下不能熔融。
实施例10
本实施例采用如下方法制备氮化物高熵陶瓷纤维:
(1)可纺性前驱体溶液的配制:
采用实施例1记载的方法制备含有Ti、Hf、Ta、Nb、Mo的高熵陶瓷前驱体,具体制备方法与实施例4相同,但是选取金属醇盐络合物共水解时金属的摩尔百分比为Ti:Hf:Ta:Nb:Mo=8:12:30:15:35。
取所述高熵陶瓷前驱体30g,聚甲基丙烯酸甲酯15g,乙醇10g,乙二醇甲醚270g,混合搅拌得到棕褐色均匀溶液;
(2)纺丝与收集:
采用静电纺丝装置将步骤(1)得到的前驱体溶液拉伸为纳米纤维,纺丝电压为 10kV,进料速度为60mL/h,接收距离为50cm;
(3)排胶:
将步骤(2)中收集到的纳米纤维置于热处理装置中,在氦气气氛下,以2℃/min的升温速率,升温到600℃,保温3h,得到排胶纤维;
(4)氮化:
将步骤(3)所制备的排胶纤维置于热处理装置中,在氨气气氛下氮化,氮化温度为800℃,时间为2h,得到氮化物高熵纤维棉。
该氮化物高熵陶瓷纤维的超高温性能无法在一般实验室中检测,因在3000℃以下不能熔融。
实施例11
本实施例采用如下方法制备氮化物高熵陶瓷纤维:
(1)可纺性前驱体溶液的配制:
采用实施例1记载的方法制备含有Ti、Hf、Ta、Nb、Mo的高熵陶瓷前驱体,具体制备方法与实施例4相同,但是选取金属醇盐络合物共水解时金属的摩尔百分比为Ti:Hf:Ta:Nb:Mo=10:10:30:30:20。
取所述高熵陶瓷前驱体30g,聚乙烯醇缩丁醛10g,正丙醇130g,丙酮60g,混合搅拌得到棕褐色均匀溶液;
(2)纺丝与收集:
采用甩丝装置将步骤(1)得到的前驱体溶液拉伸为纤维,纺丝头转速为500r/min,接收距离为20cm;
(3)排胶:
将步骤(2)中收集到的纳米纤维置于热处理装置中,在氮气气氛下,以1.5℃/min的升温速率,升温到600℃,保温2h,得到排胶纤维;
(4)氮化:
将步骤(3)所制备的排胶纤维置于热处理装置中,在氨气气氛下氮化,氮化温度为900℃,时间为2h,得到氮化物高熵纤维棉。
该氮化物高熵陶瓷纤维的超高温性能无法在一般实验室中检测,因在3000℃以下不能熔融。
实施例12
本实施例采用如下方法制备氮化物高熵陶瓷纤维:
(1)可纺性前驱体溶液的配制:
采用实施例1记载的方法制备含有Ti、Hf、Ta、Nb、Mo的高熵陶瓷前驱体,具体制备方法与实施例2相同,但是选取金属醇盐络合物共水解时金属的摩尔百分比为Ti:Hf:Ta:Nb:Mo=30:5:35:15:15。
取所述高熵陶瓷前驱体30g,聚乙烯醇缩丁醛10g,乙二醇甲醚190g,混合搅拌得到棕褐色均匀溶液;
(2)纺丝与收集:
采用甩丝装置将步骤(1)得到的前驱体溶液拉伸为纳米纤维,喷丝头转速为 5000r/min,接收距离为100cm;
(3)排胶:
将步骤(2)中收集到的纳米纤维置于热处理装置中,在N 2气氛下,以2℃/min的升温速率,升温到600℃,保温2h,得到排胶纤维;
(4)氮化:
将步骤(3)所制备的排胶纤维置于热处理装置中,在氨气气氛下氮化,氮化温度为1000℃,时间为2h,得到氮化物高熵纤维棉。
该氮化物高熵陶瓷纤维的超高温性能无法在一般实验室中检测,因在3000℃以下不能熔融。
实施例13
本实施例主要是为了说明本发明所制备氮化物高熵陶瓷纤维的催化效果。在CO 2制备CH 4的工艺中,以纯水和纯净的二氧化碳气体为原料,以实施例4中制备得到的高熵氮化物陶瓷纳米纤维布为催化剂,在300W Xe灯照射的条件下进行光催化反应,该催化剂与二氧化碳的质量比为1:83,反应12h后对反应容器中的气体进行气相色谱检测,发现有二氧化碳转化产物生成,且主要产物为甲烷,表明该催化剂具有较高的催化选择性。
气相色谱如图7所示,出峰位置在0.777的为生成的H 2,在2.543的为生成的CO,在4.685的为生成的CH 4,可看出光催化产物主要为CH 4,催化选择性在90%以上。
工业应用
采用上述技术方案后,本发明与现有技术相比具有以下有益效果:
1.本发明以含有Ti、Hf、Ta、Nb和Mo金属元素,各金属元素物质的量均占总金属物质的量5~35%的高熵陶瓷聚合物前驱体为金属源,以气纺丝、静电纺丝或甩丝为成型手段,制备了氮化物高熵陶瓷纤维,所述纤维具有直径均匀,比表面积高等特点,拓展了氮化物高熵陶瓷的存在形式;
2.本发明所提供的高熵陶瓷前驱体纺丝溶液具有流变性可调的特点,提高了纺丝性能的同时,还可使纺丝溶液在室温条件下密闭存储3周以上,粘度变化率不超过5%,降低了对后续工序(纺丝、排胶、氮化)的限制,进一步提高了纺丝效率;
3.本发明采用气纺丝、静电纺丝或甩丝方法制备高熵陶瓷纤维,设备简单,操作方便,成本低廉,可以得到平均直径可控的连续纤维棉或纤维无纺布,并可实现快速放大生产;
4.本发明制备的高熵氮化物纤维在光催化CO 2转化制备CH 4方面具有转化效率高,无需添加助催化剂,催化剂与原料产物易分离等特点,为氮化物高熵陶瓷首次应用于该领域,为氮化物高熵陶瓷的应用探索了新的发展方向。

Claims (18)

  1. 一种氮化物高熵陶瓷纤维,其特征在于,所述高熵陶瓷纤维含有Ti、Hf、Ta、Nb和Mo元素,
    所述氮化物高熵陶瓷纤维呈单一晶相,
    且其中各元素呈分子级的均匀分布。
  2. 根据权利要求1所述的氮化物高熵陶瓷纤维,其特征在于,所述高熵陶瓷纤维中各金属元素物质的量均占金属元素总物质的量的5~35%;
    优选的,所述各金属元素的物质的量相同。
  3. 根据权利要求1所述的氮化物高熵陶瓷纤维,其特征在于,所述高熵陶瓷纤维中还含有氮元素;
    所述氮元素的物质的量与所述Ti、Hf、Ta、Nb和Mo元素的总物质的量相同。
  4. 根据权利要求1-3任一所述的氮化物高熵陶瓷纤维,其特征在于,所述高熵陶瓷纤维中还含有氮元素和极少量氧元素;
    所述氮元素的物质的量与所述Ti、Hf、Ta、Nb和Mo元素的总物质的量相同。
  5. 一种如权利要求1-4任一所述氮化物高熵陶瓷纤维的制备方法,其特征在于,所述制备方法包括:
    将Ti、Hf、Ta、Nb和Mo元素的高熵陶瓷前驱体、纺丝助剂和溶剂混合均匀制成前驱体纺丝溶液,再经过纺丝、排胶和氮化工序,制得所述氮化物高熵陶瓷纤维。
  6. 根据权利要求5所述氮化物高熵陶瓷纤维的制备方法,其特征在于,所述高熵陶瓷前驱体制备过程包括:
    (1)获取金属醇盐络合物:
    向含有目标金属元素的金属醇盐M(OR) n中滴入络合剂,滴完继续搅拌0.1~5h制得金属醇盐络合物;
    (2)共水解:
    选取依步骤(1)制得的包含不同金属元素的金属醇盐络合物,混合均匀后滴加水和一元醇的混合液,滴完回流1~5h,并常压蒸馏制得金属醇盐共聚物;
    (3)制备前驱体:
    将步骤(2)制得的金属醇盐共聚物与烯丙基酚醛混合均匀,升温至50~90℃,反应0.5~4h,之后降温得到所述高熵陶瓷前驱体。
  7. 根据权利要求6所述氮化物高熵陶瓷纤维的制备方法,其特征在于,所述步骤1)中,所述金属醇盐和络合剂的摩尔比为1:(0.15~0.5)n;
    所述络合剂为乙酰丙酮和/或乙酰乙酸乙酯;
    所述步骤1)M(OR) n中,
    M为Ti或Hf时,n为4;
    M为Nb、Ta或Mo时,n为5;
    R选自C1-C6的烷基和C1-C6的烷氧基中至少一种;
    具体选自C1-C4的烷基和C1-C4的烷氧基中至少一种;
    更具体选自乙基、乙二醇二乙醚基、i-Pr、-Pr和-CH 2CH 2OCH 3中至少一种。
  8. 根据权利要求6或7所述氮化物高熵陶瓷纤维的制备方法,其特征在于,所述前驱体纺丝溶液中,高熵陶瓷前驱体、纺丝助剂和溶剂的质量比为1:0.1~1:5~20;
    优选为1:0.2~0.5:5~10。
  9. 根据权利要求5-8任一所述氮化物高熵陶瓷纤维的制备方法,其特征在于,所述步骤2)中,水与总金属的摩尔比为0.8~1.3:1,一元醇与水的质量比为3~8:1;
    所述一元醇选自甲醇、乙醇、异丙醇、正丙醇、正丁醇、异丁醇、乙二醇甲醚和乙二醇乙醚中至少一种。
  10. 根据权利要求5-9任一所述氮化物高熵陶瓷纤维的制备方法,其特征在于,所述步骤3)中,所述金属醇盐共聚物中金属元素的总物质的量与烯丙基酚醛的质量之比为1mol:18~20g。
  11. 根据权利要求5-10任一所述氮化物高熵陶瓷纤维的制备方法,其特征在于,所述氮化包括:
    在氨气气氛下对排胶后的纤维进行氮化,氮化温度为600~1000℃,氮化时间为0.5~5h。
  12. 根据权利要求5-11任一所述氮化物高熵陶瓷纤维的制备方法,其特征在于,所述纺丝助剂选自聚甲基丙烯酸甲酯、聚醋酸乙烯酯、聚乙烯醇缩丁醛和聚乙烯吡咯烷酮中至少一种;
    所述溶剂选自乙醇、丙酮、正丙醇、乙二醇甲醚和N,N-二甲基甲酰胺中至少一种。
  13. 根据权利要求5-12任一所述氮化物高熵陶瓷纤维的制备方法,其特征在于,所述排胶包括:
    在惰性气氛中,以0.5~5℃/min的升温速率升温至到500~600℃,并保温2~4h。
  14. 根据权利要求5-13任一所述氮化物高熵陶瓷纤维的制备方法,其特征在于,所述纺丝选自气纺丝、静电纺丝和甩丝中至少一种。
  15. 一种如权利要求1-4任一所述氮化物高熵陶瓷纤维在光催化二氧化碳制备甲烷中的应用。
  16. 权利要求1-4任一所述氮化物高熵陶瓷纤维在制备甲烷中的应用。
  17. 根据权利要求16所述的应用,其特征在于:所述制备甲烷步骤中,所用催化剂为权利要求1-4任一所述氮化物高熵陶瓷纤维。
  18. 根据权利要求16或17所述的应用,其特征在于:所述催化剂参与的催化反应为光催化;
    所述光催化中,所用光源为可见光;
    所述光催化中,原料包括二氧化碳;
    具体的,所述原料包括水和二氧化碳。
PCT/CN2020/127990 2020-04-09 2020-11-11 一种氮化物高熵陶瓷纤维及其制备方法和应用 WO2021203695A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20929908.0A EP3998246A4 (en) 2020-04-09 2020-11-11 NITRIDE-CONTAINING CERAMIC FIBER WITH HIGH ENTROPY, PROCESS FOR THEIR PRODUCTION AND ITS USE
US17/632,916 US20220274888A1 (en) 2020-04-09 2020-11-11 High-entropy nitride ceramic fiber and preparation method and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010273050.2A CN111592361B (zh) 2020-04-09 2020-04-09 一种氮化物高熵陶瓷纤维及其制备方法和应用
CN202010273050.2 2020-04-09

Publications (1)

Publication Number Publication Date
WO2021203695A1 true WO2021203695A1 (zh) 2021-10-14

Family

ID=72188690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127990 WO2021203695A1 (zh) 2020-04-09 2020-11-11 一种氮化物高熵陶瓷纤维及其制备方法和应用

Country Status (4)

Country Link
US (1) US20220274888A1 (zh)
EP (1) EP3998246A4 (zh)
CN (1) CN111592361B (zh)
WO (1) WO2021203695A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114262813A (zh) * 2021-12-27 2022-04-01 安徽工业大学 一种内生纳米高熵碳化物增强高熵合金基复合材料及其制备方法
CN114843493A (zh) * 2022-05-23 2022-08-02 合肥精创科技有限公司 一种一维高熵氧化物纳米材料及其制备方法和应用
CN114988869A (zh) * 2022-05-09 2022-09-02 厦门稀土材料研究所 一种稀土中高熵铪酸盐基陶瓷材料及其制备方法和应用
CN115572880A (zh) * 2022-09-23 2023-01-06 华南理工大学 高熵金属烯及其制备方法和应用
CN116237214A (zh) * 2022-12-13 2023-06-09 中国科学院合肥物质科学研究院 一种Al-Y-Cr-Fe-Er-O高熵复合氧化物阻氢涂层及其制备方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111592361B (zh) * 2020-04-09 2021-08-03 中国科学院化学研究所 一种氮化物高熵陶瓷纤维及其制备方法和应用
CN113023787B (zh) * 2021-02-01 2022-04-12 浙江大学 一种高导热二维高熵金属氧化物组装体及其制备方法
CN113135755B (zh) * 2021-04-14 2023-03-17 厦门稀土材料研究所 一种柔性铈酸稀土高熵纳米纤维陶瓷膜及其制备方法和应用
CN113307632B (zh) * 2021-05-26 2022-04-12 山东大学 一种氧化物高熵陶瓷纤维的制备方法
CN114804887A (zh) * 2022-03-22 2022-07-29 武汉科技大学 一种(CoCrFeMnNi)N高熵陶瓷粉体及其制备方法
CN115611242B (zh) * 2022-10-08 2024-02-02 武汉理工大学 一种难熔金属高熵氮化物粉体及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007061698A (ja) * 2005-08-30 2007-03-15 Hitachi Ltd 燃料電池用電極触媒、膜/電極接合体、燃料電池および携帯用電子機器
CN105671392A (zh) * 2014-11-19 2016-06-15 北京科技大学 一种氮强化的TiZrHfNb基高熵合金及其制备方法
CN105671406A (zh) * 2016-02-19 2016-06-15 中原工学院 一种pcbn专用氮化物基高熵合金陶瓷结合剂
CN111592361A (zh) * 2020-04-09 2020-08-28 中国科学院化学研究所 一种氮化物高熵陶瓷纤维及其制备方法和应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4889836A (en) * 1988-02-22 1989-12-26 Gte Laboratories Incorporated Titanium diboride-based composite articles with improved fracture toughness
US20020165332A1 (en) * 1999-06-03 2002-11-07 Pope Edward J. A. Preceramic polymers to hafnium carbide and hafnium nitride ceramic fibers and matrices
CN104988604B (zh) * 2015-07-31 2018-01-30 安徽恒硕纺织品有限公司 一种碳化锆微纳米纤维的制备方法
CN107266077B (zh) * 2016-04-08 2019-12-06 中国科学院化学研究所 一种超细碳化锆陶瓷纤维及其制备方法
CN108786887A (zh) * 2018-06-20 2018-11-13 上海电力学院 一种用于光催化水分解制氢的催化剂及制备方法
CN110590372A (zh) * 2019-10-14 2019-12-20 石家庄铁道大学 一种过渡金属碳氮化物高熵陶瓷及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007061698A (ja) * 2005-08-30 2007-03-15 Hitachi Ltd 燃料電池用電極触媒、膜/電極接合体、燃料電池および携帯用電子機器
CN105671392A (zh) * 2014-11-19 2016-06-15 北京科技大学 一种氮强化的TiZrHfNb基高熵合金及其制备方法
CN105671406A (zh) * 2016-02-19 2016-06-15 中原工学院 一种pcbn专用氮化物基高熵合金陶瓷结合剂
CN111592361A (zh) * 2020-04-09 2020-08-28 中国科学院化学研究所 一种氮化物高熵陶瓷纤维及其制备方法和应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DONGYUE LI ET AL.: "High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures", 《ACTA MATERIALIA》, vol. 123, 29 October 2016 (2016-10-29), XP029808190, ISSN: 1359-6454, DOI: 10.1016/j.actamat.2016.10.038 *
LU YAN, YE LI, HAN WEIJIAN, SUN YANAN, QIU WENFENG, ZHAO TONG: "Synthesis, characterization and microstructure of tantalum carbide-based ceramics by liquid polymeric precursor method", CERAMICS INTERNATIONAL, vol. 41, no. 9, 1 November 2015 (2015-11-01), pages 12475 - 12479, XP055856223, ISSN: 0272-8842, DOI: 10.1016/j.ceramint.2015.06.023 *
NELLAIAPPAN SUBRAMANIAN, KUMAR NIRMAL, KUMAR RITESH, PARUI ARKO, DEO KIRTIMAN, ALVIYA M, ϒ, PRADEEP K G, SINGH ABHISHEK K, SHARMA: "Nobel metal based high entropy alloy for conversion of carbon dioxide (CO2) to hydrocarbon", CHEMRXIV, 9 September 2019 (2019-09-09), pages 1 - 18, XP055856228, ISSN: 2573-2293, DOI: 10.26434/chemrxiv.9777218.v1 *
See also references of EP3998246A4
V BRAICALINA VLADESCU: "Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings", SURFACE & COATINGS TECHNOLOGY, vol. 211, 2012, pages 117 - 121, XP028957284, DOI: 10.1016/j.surfcoat.2011.09.033

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114262813A (zh) * 2021-12-27 2022-04-01 安徽工业大学 一种内生纳米高熵碳化物增强高熵合金基复合材料及其制备方法
CN114262813B (zh) * 2021-12-27 2022-05-20 安徽工业大学 一种内生纳米高熵碳化物增强高熵合金基复合材料及其制备方法
CN114988869A (zh) * 2022-05-09 2022-09-02 厦门稀土材料研究所 一种稀土中高熵铪酸盐基陶瓷材料及其制备方法和应用
CN114988869B (zh) * 2022-05-09 2023-10-03 厦门稀土材料研究所 一种稀土中高熵铪酸盐基陶瓷材料及其制备方法和应用
CN114843493A (zh) * 2022-05-23 2022-08-02 合肥精创科技有限公司 一种一维高熵氧化物纳米材料及其制备方法和应用
CN115572880A (zh) * 2022-09-23 2023-01-06 华南理工大学 高熵金属烯及其制备方法和应用
CN115572880B (zh) * 2022-09-23 2023-06-16 华南理工大学 高熵金属烯及其制备方法和应用
CN116237214A (zh) * 2022-12-13 2023-06-09 中国科学院合肥物质科学研究院 一种Al-Y-Cr-Fe-Er-O高熵复合氧化物阻氢涂层及其制备方法
CN116237214B (zh) * 2022-12-13 2024-01-26 中国科学院合肥物质科学研究院 一种Al-Y-Cr-Fe-Er-O高熵复合氧化物阻氢涂层及其制备方法

Also Published As

Publication number Publication date
EP3998246A4 (en) 2022-11-02
US20220274888A1 (en) 2022-09-01
CN111592361A (zh) 2020-08-28
EP3998246A1 (en) 2022-05-18
CN111592361B (zh) 2021-08-03

Similar Documents

Publication Publication Date Title
WO2021203695A1 (zh) 一种氮化物高熵陶瓷纤维及其制备方法和应用
WO2021179654A1 (zh) 一种碳化物高熵陶瓷及含稀土的碳化物高熵陶瓷及其纤维与前驱体及其制备方法
Jin et al. Highly ordered mesoporous carbon nitride nanoparticles with high nitrogen content: a metal‐free basic catalyst
KR101100297B1 (ko) 금속 화합물 미세 분말의 제조방법
KR102053726B1 (ko) 연속식 공정을 이용한 다중벽 탄소나노튜브의 제조방법
CN111592358B (zh) 一种碳化物高熵陶瓷纤维及制备方法
CN102812587B (zh) 质子传导膜
CN114367299A (zh) 光催化产氢用石墨相氮化碳光催化剂及其制备方法
CN105195238A (zh) 一种分子层沉积制备金属-氧化物复合纳米催化剂的方法
CN107265433A (zh) 三维多孔掺氮碳材料及其制备方法和应用
CN113457649A (zh) 一种整构式硼掺杂ts-1催化剂载体及其制备和应用
KR101091803B1 (ko) 금속산화물 안정화제를 포함한 다공성 지르코니아 담체에 담지된 니켈 촉매, 그 제조방법 및 상기 촉매를 이용한 에탄올의 자열개질반응에 의한 수소 제조방법
CN107376936B (zh) 一种铂-钴/凹凸棒石催化剂及其制备方法和应用
KR101952479B1 (ko) 탄소섬유의 제조 방법 및 탄소섬유
KR100684649B1 (ko) 금속 도핑된 폴리카보실란의 제조 방법, 이를 포함하는나노결정형 실리콘 카바이드 섬유를 제조하는 방법 및 그에의해 제조되는 SiC 섬유
CN108950734A (zh) 一种沟壑状MoO3的合成方法及其产品
CN113559942A (zh) 一种负载型催化剂的制备方法及负载型催化剂
CN109371505B (zh) 一种生物质基螺旋状碳纤维及其制备方法
KR101426528B1 (ko) 글리세롤의 액상 개질 반응을 위한 개선된 페로브스카이트계 촉매 및 이의 제조방법
CN102502591B (zh) 纳米碳纤维的制备方法和设备
CN1243142C (zh) 连续大量制备纳米碳纤维的方法
CN112892239A (zh) 一种中空纤维膜的制备
CN111468187A (zh) 基于表面聚合反应的高分散性单原子催化剂的制备方法
CN114452975B (zh) 一种蜂窝陶瓷负载钯基催化剂及其在hbiw氢解脱苄中的应用
CN101962328A (zh) 一种制备抗抑郁药氟西汀的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20929908

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020929908

Country of ref document: EP

Effective date: 20220210

NENP Non-entry into the national phase

Ref country code: DE