WO2021201508A1 - 열가소성 수지 조성물 및 이로부터 제조된 성형품 - Google Patents

열가소성 수지 조성물 및 이로부터 제조된 성형품 Download PDF

Info

Publication number
WO2021201508A1
WO2021201508A1 PCT/KR2021/003764 KR2021003764W WO2021201508A1 WO 2021201508 A1 WO2021201508 A1 WO 2021201508A1 KR 2021003764 W KR2021003764 W KR 2021003764W WO 2021201508 A1 WO2021201508 A1 WO 2021201508A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide
copolymer
weight
aromatic vinyl
resin composition
Prior art date
Application number
PCT/KR2021/003764
Other languages
English (en)
French (fr)
Inventor
김한나
진영섭
홍상현
송봉준
최원영
Original Assignee
롯데케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데케미칼 주식회사 filed Critical 롯데케미칼 주식회사
Priority to JP2022559848A priority Critical patent/JP2023520033A/ja
Priority to US17/915,659 priority patent/US20230133698A1/en
Publication of WO2021201508A1 publication Critical patent/WO2021201508A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • C08F279/04Vinyl aromatic monomers and nitriles as the only monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L35/06Copolymers with vinyl aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/12Polyester-amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/53Core-shell polymer

Definitions

  • thermoplastic resin composition relates to a thermoplastic resin composition and a molded article prepared therefrom.
  • Styrene-based resins represented by acrylonitrile-butadiene-styrene copolymer (ABS) resins, are widely used in various applications due to their excellent moldability, mechanical properties, appearance, secondary processability, and the like.
  • ABS acrylonitrile-butadiene-styrene copolymer
  • a molded article manufactured using a styrene-based resin may be widely applied to various products requiring painting/no painting, for example, may be applied to various interior/exterior materials of automobiles and/or electronic devices.
  • a painting operation is performed on a molded article manufactured using a styrene-based resin as a method for imparting an aesthetic effect to various interior/exterior materials.
  • the method of coating is not particularly limited, but electrostatic coating is generally used as a widely used coating method.
  • electrostatic painting is a method of applying electrical conductivity to the surface of the molded product and then painting.
  • pretreatment such as a conductive primer on the surface of the molded product.
  • the molded article itself has electrical conductivity above a certain level by further including various conductive materials (eg, carbon nanotubes, etc.) and/or conductivity expression additives in the styrene-based resin. A way to do this has been proposed.
  • various conductive materials eg, carbon nanotubes, etc.
  • thermoplastic resin composition capable of maintaining excellent electrical conductivity and balance of various physical properties.
  • An object of the present invention is to provide a thermoplastic resin composition excellent in both electrical conductivity and balance of physical properties, and a molded article prepared therefrom.
  • the (A1) butadiene-based rubber-modified aromatic vinyl-vinyl cyanide graft copolymer includes a core made of a butadiene-based rubber polymer, and a shell formed by graft polymerization of an aromatic vinyl compound and a vinyl cyanide compound to the core-shell can be a structure.
  • the (A1) butadiene-based rubber-modified aromatic vinyl-vinyl cyanide graft copolymer may have an average particle diameter of 0.2 to 1.0 ⁇ m of the butadiene-based rubbery polymer.
  • the (A1) butadiene-based rubber-modified aromatic vinyl-vinyl cyanide graft copolymer may be an acrylonitrile-butadiene-styrene graft copolymer.
  • the (A2) aromatic vinyl-vinyl cyanide copolymer may contain 55 to 70 wt% of a component derived from an aromatic vinyl compound and 30 to 45 wt% of a component derived from a vinyl cyanide compound based on 100 wt%.
  • the (A2) aromatic vinyl-vinyl cyanide copolymer may have a weight average molecular weight of 80,000 to 300,000 g/mol.
  • the (A2) aromatic vinyl-vinyl cyanide copolymer may be a styrene-acrylonitrile copolymer.
  • the polyamide resin is polyamide 6, polyamide 66, polyamide 46, polyamide 11, polyamide 12, polyamide 610, polyamide 612, polyamide 6I, polyamide 6T, polyamide 4T, polyamide 410, polyamide 510, polyamide 1010, polyamide 1012, polyamide 10T, polyamide 1212, polyamide 12T, polyamide MXD6, or combinations thereof.
  • the (C) polyetheresteramide block copolymer is an aminocarboxylic acid, lactam or diamine-dicarboxylic acid salt having 6 or more carbon atoms; polyalkylene glycol; and a dicarboxylic acid having 4 to 20 carbon atoms.
  • the (D) N-substituted maleimide-aromatic vinyl-maleic anhydride copolymer may include an N-phenyl maleimide-styrene-maleic anhydride copolymer.
  • the (D) N-substituted maleimide-aromatic vinyl-maleic anhydride copolymer may have a glass transition temperature (Tg) of 145 to 200°C.
  • the thermoplastic resin composition may further include at least one additive selected from a nucleating agent, a coupling agent, a filler, a plasticizer, a lubricant, a mold release agent, an antibacterial agent, a heat stabilizer, an antioxidant, a UV stabilizer, a flame retardant, a colorant, and an impact modifier.
  • at least one additive selected from a nucleating agent, a coupling agent, a filler, a plasticizer, a lubricant, a mold release agent, an antibacterial agent, a heat stabilizer, an antioxidant, a UV stabilizer, a flame retardant, a colorant, and an impact modifier.
  • thermoplastic resin composition a molded article prepared from the above-described thermoplastic resin composition.
  • the molded article may have a notch Izod impact strength of 13 to 60 kgf ⁇ cm/cm of a 1/4′′ thick specimen according to ASTM D256.
  • the molded article may have a surface resistance of 10 12 ⁇ /sq or less measured on a 100 mm x 100 mm x 20 mm specimen using a surface resistance measuring device (manufacturer: SIMCO-ION, device name: Worksurface Tester ST-4). .
  • the molded article may have a heat deflection temperature (HDT) of 80 to 100°C according to ASTM D648.
  • HDT heat deflection temperature
  • thermoplastic resin composition according to an embodiment and a molded article using the same exhibit excellent electrical conductivity and balance of physical properties, and thus can be widely applied to the molding of various products used for painting and non-painting, in particular, for painting requiring electrostatic painting It can also be usefully applied to molded products.
  • the average particle diameter is the volume average diameter, and means the Z-average particle diameter measured using a dynamic light scattering analyzer.
  • the weight average molecular weight is measured by dissolving a powder sample in tetrahydrofuran (THF) and then using Agilent Technologies' 1200 series Gel Permeation Chromatography (GPC) (standard sample is polystyrene).
  • GPC Gel Permeation Chromatography
  • thermoplastic resin composition is demonstrated in detail.
  • the butadiene-based rubber-modified aromatic vinyl-vinyl cyanide graft copolymer provides excellent impact resistance to the thermoplastic resin composition.
  • the butadiene-based rubber-modified aromatic vinyl-vinyl cyanide graft copolymer is a core (core) made of a butadiene-based rubbery polymer component and an aromatic vinyl compound and a vinyl cyanide compound in the central portion of the shell by graft polymerization reaction. It may have a core-shell structure in which a shell is formed.
  • the butadiene-based rubber-modified aromatic vinyl-vinyl cyanide graft copolymer according to one embodiment is obtained by adding an aromatic vinyl compound and a vinyl cyanide compound to a butadiene-based rubber polymer, and graft polymerization through conventional polymerization methods such as emulsion polymerization and bulk polymerization. can be manufactured.
  • the butadiene-based rubbery polymer may be selected from the group consisting of butadiene rubbery polymers, butadiene-styrene rubbery polymers, butadiene-acrylonitrile rubbery polymers, butadiene-acrylate rubbery polymers, and mixtures thereof.
  • the aromatic vinyl compound may be selected from the group consisting of styrene, ⁇ -methylstyrene, p-methylstyrene, p-t-butylstyrene, 2,4-dimethylstyrene, chlorostyrene, vinyltoluene, vinylnaphthalene, and mixtures thereof.
  • the vinyl cyanide compound may be selected from the group consisting of acrylonitrile, methacrylonitrile, fumaronitrile, and mixtures thereof.
  • the butadiene-based rubber-modified aromatic vinyl-vinyl cyanide graft copolymer may have an average particle diameter of the butadiene-based rubbery polymer, for example, 0.2 to 1.0 ⁇ m, for example 0.2 to 0.8 ⁇ m, for example 0.25 to 0.40 ⁇ m.
  • the thermoplastic resin composition may exhibit excellent impact resistance and appearance characteristics.
  • the butadiene-based rubbery polymer may be included in an amount of 40 to 70 wt%.
  • the weight ratio of the aromatic vinyl compound and the vinyl cyanide compound that is graft-polymerized in the center made of the butadiene-based rubbery polymer component may be 6:4 to 8:2.
  • the butadiene-based rubber-modified aromatic vinyl-vinyl cyanide graft copolymer may be an acrylonitrile-butadiene-styrene graft copolymer.
  • the butadiene-based rubber-modified aromatic vinyl-vinyl cyanide graft copolymer may be included in an amount of 20 to 40% by weight, for example, 25 to 40% by weight, for example, 25 to 35% by weight based on 100% by weight of the base resin.
  • the amount of the butadiene-based rubber-modified aromatic vinyl-vinyl cyanide graft copolymer in the base resin is less than 20% by weight, it is difficult to achieve excellent impact resistance, and when it exceeds 40% by weight, there is a risk of lowering heat resistance and fluidity.
  • the aromatic vinyl-vinyl cyanide copolymer may improve the fluidity of the thermoplastic resin composition and maintain compatibility between components at a certain level.
  • the aromatic vinyl-vinyl cyanide copolymer has a weight average molecular weight (Mw) of 80,000 g/mol or more, for example 85,000 g/mol or more, for example 90,000 g/mol or more, for example 300,000 g/mol or less, for example, 200,000 g/mol or less, for example, 80,000 to 300,000 g/mol, for example, 80,000 to 200,000 g/mol, may be used.
  • Mw weight average molecular weight
  • the weight average molecular weight is measured by dissolving a powder sample in tetrahydrofuran (THF), and then using Agilent Technologies' 1200 series Gel Permeation Chromatography (GPC) (polystyrene is used as a standard sample).
  • GPC Gel Permeation Chromatography
  • the aromatic vinyl-vinyl cyanide copolymer may be prepared by conventional polymerization methods such as emulsion polymerization, suspension polymerization, solution polymerization, and bulk polymerization of an aromatic vinyl compound and a vinyl cyanide compound.
  • the aromatic vinyl compound may be selected from the group consisting of styrene, ⁇ -methylstyrene, p-methylstyrene, p-t-butylstyrene, 2,4-dimethylstyrene, chlorostyrene, vinyltoluene, vinylnaphthalene, and mixtures thereof.
  • the vinyl cyanide compound may be selected from the group consisting of acrylonitrile, methacrylonitrile, fumaronitrile, and mixtures thereof.
  • the aromatic vinyl-vinyl cyanide copolymer may include, for example, 55 wt% or more, for example, 60 wt% or more, of a component derived from the aromatic vinyl compound based on 100 wt%, for example, 70 wt% Below, for example, it may contain up to 67% by weight, for example, 55 to 70% by weight, for example, may include 60 to 67% by weight.
  • the component derived from the vinyl cyanide compound may be included in, for example, 30% by weight or more, for example, 33% by weight or more, for example, 45% by weight or more. % or less, for example, 40% by weight or less, for example, 30 to 45% by weight, for example, it may include 33 to 40% by weight.
  • the aromatic vinyl-vinyl cyanide copolymer may be a styrene-acrylonitrile copolymer (SAN).
  • SAN styrene-acrylonitrile copolymer
  • the aromatic vinyl-vinyl cyanide copolymer is 30 to 75% by weight, for example 40 to 75% by weight, for example 45 to 75% by weight, for example 45 to 75% by weight based on 100% by weight of the base resin. 70% by weight, for example, 45 to 65% by weight may be included.
  • the aromatic vinyl-vinyl cyanide copolymer is less than 30% by weight, there is a fear that the moldability of the thermoplastic resin composition may decrease, and if it exceeds 75% by weight, there is a risk that the mechanical properties of the molded article using the thermoplastic resin composition may be reduced.
  • the polyamide resin enables the thermoplastic resin composition to implement electrical conductivity without adding an excessive amount of the block copolymer.
  • polyamide resin various polyamide resins known in the art, for example, an aromatic polyamide resin, an aliphatic polyamide resin, or a mixture thereof may be used, but is not particularly limited.
  • the aromatic polyamide resin is a polyamide including an aromatic group in a main chain, and may be a wholly aromatic polyamide, a semi-aromatic polyamide, or a mixture thereof.
  • the wholly aromatic polyamide means a polymer of an aromatic diamine and an aromatic dicarboxylic acid
  • the semi-aromatic polyamide includes at least one aromatic unit and a non-aromatic unit between amide bonds.
  • the semi-aromatic polyamide may be a polymer of an aromatic diamine and an aliphatic dicarboxylic acid, or a polymer of an aliphatic diamine and an aromatic dicarboxylic acid.
  • the aliphatic polyamide refers to a polymer of an aliphatic diamine and an aliphatic dicarboxylic acid.
  • aromatic diamine examples include, but are not limited to, p-xylenediamine and m-xylenediamine. In addition, these may be used alone or in combination of two or more.
  • aromatic dicarboxylic acid examples include, but are not limited to, phthalic acid, isophthalic acid, terephthalic acid, 2,6-naphthalenedicarboxylic acid, and (1,3-phenylenedioxy)diacetic acid. . In addition, these may be used alone or in combination of two or more.
  • aliphatic diamine examples include, but are not limited to, ethylenediamine, trimethylenediamine, hexamethylenediamine, dodecamethylenediamine, piperazine, and the like. In addition, these may be used alone or in combination of two or more.
  • aliphatic dicarboxylic acid examples include adipic acid, sebacic acid, succinic acid, glutaric acid, azelaic acid, dodecanedioic acid, dimer acid, cyclohexanedicarboxylic acid, etc., but are limited thereto no. In addition, these may be used alone or in combination of two or more.
  • the polyamide resin is polyamide 6, polyamide 66, polyamide 46, polyamide 11, polyamide 12, polyamide 610, polyamide 612, polyamide 6I, polyamide 6T, polyamide 4T, poly amide 410, polyamide 510, polyamide 1010, polyamide 1012, polyamide 10T, polyamide 1212, polyamide 12T, polyamide MXD6, or combinations thereof.
  • the polyamide resin may include at least polyamide 6.
  • the polyamide resin is 5 to 40% by weight, for example 5 to 35% by weight, for example 5 to 30% by weight, for example 5 to 25% by weight based on 100% by weight of the base resin, For example, it may be included in 5 to 20% by weight.
  • the thermoplastic resin composition and the molded article prepared therefrom may exhibit excellent rigidity, toughness, abrasion resistance, chemical resistance, and oil resistance due to the polyamide resin.
  • the amount of the polyamide resin is less than 5% by weight, excellent physical properties due to the polyamide resin may be difficult to appear, and when it exceeds 40% by weight, the mechanical strength and/or heat resistance of the thermoplastic resin composition and a molded article using the same There is a risk of deterioration.
  • the polyetheresteramide block copolymer may exhibit predetermined electrical conductivity in the thermoplastic resin composition and molded articles manufactured therefrom.
  • the polyetheresteramide block copolymer may allow the thermoplastic resin composition and a molded article prepared therefrom to exhibit the above-described electrical conductivity while maintaining an excellent balance of physical properties.
  • a polyetheresteramide block copolymer for example, an aminocarboxylic acid, lactam or diamine-dicarboxylic acid salt having 6 or more carbon atoms; polyalkylene glycol; and a reaction mixture of a dicarboxylic acid having 4 to 20 carbon atoms.
  • lactam or diamine-dicarboxylic acid having 6 or more carbon atoms such as argonic acid, ⁇ -aminocapric acid, 11-aminoundecanoic acid, 12-aminododecanoic acid and the like; lactams such as ⁇ -caprolactam, enanthlactam, caprylactam, laurolactam and the like; and diamine-dicarboxylic acid salts such as a salt of hexamethylenediamine-adipic acid, a salt of hexamethylenediamine-isophthalic acid, and the like.
  • polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polyhexamethylene glycol, a block or random copolymer of ethylene glycol and propylene glycol a public of ethylene glycol and tetrahydrofuran synthesis and the like can be exemplified.
  • polyethylene glycol, a copolymer of ethylene glycol and propylene glycol, etc. can be used.
  • examples of the dicarboxylic acid having 4 to 20 carbon atoms include terephthalic acid, 1,4-cyclohexanedicarboxylic acid, sebacic acid, adipic acid, dodecanedioic acid, and the like.
  • the bond between the aminocarboxylic acid, lactam or diamine-dicarboxylic acid salt having 6 or more carbon atoms and the polyalkylene glycol may be an ester bond, and the aminocarboxylic acid, lactam or diamine having 6 or more carbon atoms -
  • the bond between the dicarboxylic acid salt and the dicarboxylic acid having 4 to 20 carbon atoms may be an amide bond, and the bond between the polyalkylene glycol and the dicarboxylic acid having 4 to 20 carbon atoms may be an ester bond.
  • the polyetheresteramide block copolymer may be prepared by a known synthesis method, for example, according to the synthesis method disclosed in Japanese Patent Publication No. 56-045419 and Japanese Patent Publication No. 55-133424. can be manufactured.
  • the polyetheresteramide block copolymer may include 10 to 95% by weight of the polyetherester block.
  • the thermoplastic resin composition may have excellent electrical conductivity and heat resistance.
  • the polyether ester amide block copolymer may be included in an amount of 1 to 15 parts by weight, for example, 2 to 10 parts by weight, based on 100 parts by weight of the base resin.
  • the thermoplastic resin composition and a molded article prepared therefrom may exhibit excellent electrical conductivity while maintaining an excellent balance of physical properties.
  • the N-substituted maleimide-aromatic vinyl-maleic anhydride copolymer may maintain the balance of physical properties of the thermoplastic resin composition and a molded article prepared therefrom at an appropriate level.
  • the N-substituted maleimide-aromatic vinyl-maleic anhydride copolymer has excellent physical properties (eg, impact resistance, heat resistance, etc.) that may be degraded by the addition of the polyetheresteramide block copolymer. can be kept
  • the N-substituted maleimide-aromatic vinyl-maleic anhydride copolymer is a polymerization reaction of an N-substituted maleimide, an aromatic vinyl compound, and a maleic anhydride mixture or an aromatic vinyl compound and a maleic anhydride copolymer. It can be prepared through an imidization reaction.
  • N-substituted maleimide examples include N-methyl maleimide, N-ethyl maleimide, N-butyl maleimide, N-phenyl maleimide or N-cyclohexyl maleimide, or a combination thereof.
  • the aromatic vinyl compound may be selected from the group consisting of styrene, ⁇ -methylstyrene, p-methylstyrene, pt-butylstyrene, 2,4-dimethylstyrene, chlorostyrene, vinyltoluene, vinylnaphthalene, and mixtures thereof, Preferably, it may be styrene.
  • the N-substituted maleimide-aromatic vinyl-maleic anhydride copolymer contains 10 to 55% by weight of a component derived from the N-substituted maleimide, for example 15 to 55% by weight, based on 100% by weight. %, for example 15 to 50% by weight.
  • the N-substituted maleimide-aromatic vinyl-maleic anhydride copolymer may include 40 to 80% by weight of a component derived from the aromatic vinyl compound based on 100% by weight, and the maleic acid 1 to 10% by weight of components derived from anhydrides.
  • N-substituted maleimide-aromatic vinyl-maleic anhydride copolymer when the component derived from N-substituted maleimide in the N-substituted maleimide-aromatic vinyl-maleic anhydride copolymer is less than 10% by weight, in one embodiment N-substituted maleimide-aromatic vinyl-maleic anhydride The effect of maintaining the balance of physical properties by the copolymer is difficult to be expressed, and when it exceeds 55% by weight, there is a fear that the appearance characteristics of the thermoplastic resin composition and the molded article manufactured therefrom may be greatly deteriorated.
  • the glass transition temperature (Tg) of the N-substituted maleimide-aromatic vinyl-maleic anhydride copolymer may be, for example, 145 to 200°C, for example, 155 to 200°C, for example, 165 to 200°C.
  • the N-substituted maleimide-aromatic vinyl-maleic anhydride copolymer may have a weight average molecular weight (Mw) measured by GPC of 10,000 to 300,000 g/mol, for example, 15,000 to 150,000 g/mol. In the above range, the balance of all physical properties of the thermoplastic resin composition and a molded article manufactured therefrom may be excellently maintained.
  • Mw weight average molecular weight
  • the N-substituted maleimide-aromatic vinyl-maleic anhydride copolymer is 0.5 to 10 parts by weight, for example 0.5 to 9 parts by weight, for example 0.5 to 8 parts by weight, for example, based on 100 parts by weight of the base resin.
  • 1 to 8 parts by weight for example, 1 to 7 parts by weight, for example, 1 to 6 parts by weight, for example, 1 to 5 parts by weight may be included.
  • thermoplastic resin composition and a molded article prepared therefrom can exhibit excellent electrical conductivity while maintaining an excellent balance of physical properties.
  • thermoplastic resin composition in addition to the components (A) to (D), in order to balance the respective physical properties under conditions of maintaining excellent electrical conductivity and overall physical property balance, or the final composition of the thermoplastic resin composition It may further include one or more additives required depending on the use.
  • a nucleating agent a coupling agent, a filler, a plasticizer, a lubricant, a mold release agent, an antibacterial agent, a heat stabilizer, an antioxidant, an ultraviolet stabilizer, a flame retardant, a colorant, an impact modifier, etc.
  • a nucleating agent a coupling agent, a filler, a plasticizer, a lubricant, a mold release agent, an antibacterial agent, a heat stabilizer, an antioxidant, an ultraviolet stabilizer, a flame retardant, a colorant, an impact modifier, etc.
  • these may be used alone or in combination of two or more can be used as
  • thermoplastic resin composition may be appropriately included within a range that does not impair the physical properties of the thermoplastic resin composition, and specifically, may be included in an amount of 20 parts by weight or less based on 100 parts by weight of the base resin, but is not limited thereto.
  • thermoplastic resin composition according to the present invention may be prepared by a known method for preparing a thermoplastic resin composition.
  • thermoplastic resin composition according to the present invention may be prepared in the form of pellets by mixing the components of the present invention and other additives at the same time and then melt-kneading in an extruder.
  • the molded article according to an embodiment of the present invention may be prepared from the above-described thermoplastic resin composition.
  • the molded article has a notch Izod impact strength of 13 to 60 kgf cm/cm, for example 13 to 50 kgf cm/cm, for example 13 to 50 kgf cm/cm, of a 1/4" thick specimen according to ASTM D256. 40 kgf ⁇ cm/cm, for example 13 to 35 kgf ⁇ cm/cm, for example 14 to 30 kgf ⁇ cm/cm, for example 15 to 25 kgf ⁇ cm/cm.
  • the molded article has a surface resistance of 10 12 ⁇ measured for a 100 mm x 100 mm x 20 mm specimen using a surface resistance measuring device (manufacturer: SIMCO-ION, device name: Worksurface Tester ST-4) /sq or less, for example, 10 11.5 ⁇ /sq or less, for example, 10 11 ⁇ /sq or less, for example, 10 10.5 ⁇ /sq or less, for example, 10 10 ⁇ /sq or less.
  • a surface resistance measuring device manufactured by a 100 mm x 100 mm x 20 mm specimen using a surface resistance measuring device (manufacturer: SIMCO-ION, device name: Worksurface Tester ST-4) /sq or less, for example, 10 11.5 ⁇ /sq or less, for example, 10 11 ⁇ /sq or less, for example, 10 10.5 ⁇ /sq or less, for example, 10 10 ⁇ /sq or less.
  • the molded article may have a heat deflection temperature (HDT) according to ASTM D648 of 80 to 100 °C, for example 80 to 95 °C, for example 80 to 90 °C.
  • HDT heat deflection temperature
  • thermoplastic resin composition has excellent impact resistance, electrical conductivity, and heat resistance, it can be widely applied to various products used for painting and unpainting, and in particular, it can be usefully applied to molded articles for painting requiring electrostatic painting. have.
  • thermoplastic resin compositions of Examples 1 to 2 and Comparative Examples 1 to 3 were prepared according to the component content ratios shown in Table 1 below.
  • thermoplastic resin composition pelletized through a twin-screw extruder was dried at about 80° C. for about 4 hours, and then specimens for physical property evaluation were prepared using a 120-ton injection molding machine with a cylinder temperature of about 240° C. and a mold temperature of about 60° C. .
  • Polyamide 6 resin with a melting point of about 223°C and a relative viscosity of about 2.3 KP Chemtech, EN-300
  • Polyamide 6-polyethylene oxide block copolymer (PA6-b-PE0) (Sanyo, PELECTRON AS)
  • N-phenyl maleimide-styrene-maleic anhydride copolymer having a glass transition temperature (Tg) of about 185°C (Denka, MS-NJ)
  • an impact was applied to the side of the protrusion of the specimen having a boss shape with an impact hammer of about 420 g, and the impact energy at which the impact hammer struck the protrusion of the specimen was set to 1.8 J.
  • Example 1 Example 2 Comparative Example 1 Comparative Example 2 Comparative Example 3 surface resistance 10 9.5 10 9.8 10 more than 13.5 10 more than 13.5 10 9.5 heat deflection temperature 82 83 85 86 82 impact resistance Type-I 15.6 17.4 8.2 12.3 10.7 Type-II 110 110 95 107 100

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

(A1) 부타디엔계 고무변성 방향족 비닐-시안화 비닐 그라프트 공중합체 20 내지 40 중량%; (A2) 방향족 비닐-시안화 비닐 공중합체 30 내지 75 중량%; 및 (B) 폴리아미드 수지 5 내지 40 중량%;를 포함하는 기초수지 100 중량부에 대해 (C) 폴리에테르 에스테르아미드 블록 공중합체 1 내지 15 중량부; 및 (D) N-치환 말레이미드-방향족 비닐-말레산 무수물 공중합체 0.5 내지 10 중량부를 포함하는 열가소성 수지 조성물, 및 이로부터 제조된 성형품에 관한 것이다.

Description

열가소성 수지 조성물 및 이로부터 제조된 성형품
열가소성 수지 조성물 및 이로부터 제조된 성형품에 관한 것이다.
아크릴로니트릴-부타디엔-스티렌 공중합체(ABS) 수지로 대표되는 스티렌계 수지는 그 우수한 성형성, 기계적 특성, 외관, 2차 가공성 등으로 인해 다양한 용도에 광범위하게 사용되고 있다.
스티렌계 수지를 이용하여 제조되는 성형품은 도장/무도장이 요구되는 여러 제품에 광범위하게 적용될 수 있으며, 예를 들어 자동차 및/또는 전자기기의 각종 내/외장재 등에 적용될 수 있다.
이 중, 각종 내/외장재에 심미적 효과를 부여하기 위한 방안으로 스티렌계 수지를 이용하여 제조된 성형품에 도장 작업을 수행하는 경우가 있다. 도장의 방법은 특별히 제한되지 않으나, 일반적으로 널리 사용되는 도장 방식으로 정전 도장을 들 수 있다. 이러한 정전 도장은 성형품 표면에 전기 전도성을 부여한 다음 도장을 진행하는 방법으로, 대체로 표면저항이 높은 플라스틱 계열 성형품에 정전 도장을 적용하기 위해서는 성형품 표면에 전도성 프라이머(primer) 등의 전처리를 수행해야 할 필요가 있다.
전도성 프라이머의 도포는 공정 수 및 제조시간을 증가시키므로, 최근 스티렌계 수지에 각종 전도성 물질(예컨대, 탄소나노튜브 등) 및/또는 전도성 발현 첨가제를 더 포함시킴으로써 성형품 자체가 일정수준 이상의 전기 전도성을 내재하도록 하는 방법이 제안된 바 있다.
하지만 스티렌계 수지에 전도성 물질 및/또는 전도성 발현 첨가제를 첨가할 경우, 스티렌계 수지의 물성 밸런스가 손상됨에 따라 예기치 않은 각종 물성 저하가 발생할 우려가 있다.
이에 따라, 우수한 전기 전도성 및 제반 물성 밸런스를 유지할 수 있는 열가소성 수지 조성물의 개발이 필요한 실정이다.
전기 전도성 및 제반 물성 밸런스가 모두 우수한 열가소성 수지 조성물, 및 이를 이로부터 제조된 성형품을 제공하고자 한다.
일 구현예에 따르면, (A1) 부타디엔계 고무변성 방향족 비닐-시안화 비닐 그라프트 공중합체 20 내지 40 중량%; (A2) 방향족 비닐-시안화 비닐 공중합체 30 내지 75 중량%; 및 (B) 폴리아미드 수지 5 내지 40 중량%를 포함하는 기초수지 100 중량부에 대해 (C) 폴리에테르에스테르아미드 블록 공중합체 1 내지 15 중량부; 및 (D) N-치환 말레이미드-방향족 비닐-말레산 무수물 공중합체 0.5 내지 10 중량부를 포함하는 열가소성 수지 조성물이 제공된다.
상기 (A1) 부타디엔계 고무변성 방향족 비닐-시안화 비닐 그라프트 공중합체는 부타디엔계 고무질 중합체로 이루어진 코어, 및 방향족 비닐 화합물과 시안화 비닐 화합물이 상기 코어에 그라프트 중합되어 형성된 쉘을 포함하는 코어-쉘 구조일 수 있다.
상기 (A1) 부타디엔계 고무변성 방향족 비닐-시안화 비닐 그라프트 공중합체는 부타디엔계 고무질 중합체의 평균 입경이 0.2 내지 1.0 μm일 수 있다.
상기 (A1) 부타디엔계 고무변성 방향족 비닐-시안화 비닐 그라프트 공중합체는 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체일 수 있다.
상기 (A2) 방향족 비닐-시안화 비닐 공중합체는 100 중량%를 기준으로 방향족 비닐 화합물로부터 유래한 성분 55 내지 70 중량% 및 시안화 비닐 화합물로부터 유래한 성분 30 내지 45 중량%를 포함할 수 있다.
상기 (A2) 방향족 비닐-시안화 비닐 공중합체는 중량평균분자량이 80,000 내지 300,000 g/mol일 수 있다.
상기 (A2) 방향족 비닐-시안화 비닐 공중합체는 스티렌-아크릴로니트릴 공중합체일 수 있다.
상기 (B) 폴리아미드 수지는 폴리아미드 6, 폴리아미드 66, 폴리아미드 46, 폴리아미드 11, 폴리아미드 12, 폴리아미드 610, 폴리아미드 612, 폴리아미드 6I, 폴리아미드 6T, 폴리아미드 4T, 폴리아미드 410, 폴리아미드 510, 폴리아미드 1010, 폴리아미드 1012, 폴리아미드 10T, 폴리아미드 1212, 폴리아미드 12T, 폴리아미드 MXD6, 또는 이들의 조합을 포함할 수 있다.
상기 (C) 폴레에테르에스테르아미드 블록 공중합체는 탄소수 6 이상의 아미노카르복실산, 락탐 또는 디아민-디카르복실산 염; 폴리알킬렌글리콜; 및 탄소수 4 내지 20의 디카르복실산의 반응 혼합물일 수 있다.
상기 (D) N-치환 말레이미드-방향족 비닐-말레산 무수물 공중합체는 N-페닐 말레이미드-스티렌-말레산 무수물 공중합체를 포함할 수 있다.
상기 (D) N-치환 말레이미드-방향족 비닐-말레산 무수물 공중합체는 유리전이온도(Tg)가 145 내지 200℃일 수 있다.
상기 열가소성 수지 조성물은 핵제, 커플링제, 충전제, 가소제, 활제, 이형제, 항균제, 열 안정제, 산화 방지제, 자외선 안정제, 난연제, 착색제, 충격보강제 중에서 선택되는 적어도 하나의 첨가제를 더 포함할 수 있다.
한편, 다른 구현예에 따르면 전술한 열가소성 수지 조성물로부터 제조된 성형품이 제공된다.
상기 성형품은 ASTM D256에 따른 1/4" 두께 시편의 노치 아이조드 충격 강도가 13 내지 60 kgf·cm/cm일 수 있다.
상기 성형품은 표면저항 측정장치(제조사: SIMCO-ION社, 장치명: Worksurface Tester ST-4)를 사용하여 100 mm x 100 mm x 20 mm 시편에 대해 측정한 표면저항이 1012 Ω/sq 이하일 수 있다.
상기 성형품은 ASTM D648에 따른 열변형 온도(HDT)가 80 내지 100℃일 수 있다.
일 구현예에 따른 열가소성 수지 조성물과 이를 이용한 성형품은 우수한 전기 전도성 및 제반 물성 밸런스를 나타내는 바, 도장, 무도장으로 사용하는 여러 가지 제품의 성형에 광범위하게 적용될 수 있으며, 특히, 정전 도장이 필요한 도장용 성형품에도 유용하게 적용될 수 있다.
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 첨부된 청구범위에 의해 정의될 뿐이다.
본 발명에서 특별히 언급하지 않는 한 평균 입경이란 체적평균 직경이고, 동적 광산란(Dynamic light scattering) 분석기기를 이용하여 측정한 Z-평균 입경을 의미한다.
본 발명에서 중량평균 분자량은 분체 시료를 테트라하이드로퓨란(THF)에 녹인 후, Agilent Technologies社의 1200 series 겔 투과 크로마토그래피(Gel Permeation Chromatography; GPC)를 이용하여 측정(표준시료는 폴리스티렌을 사용함)한 것이다.
일 구현예에 따르면, (A1) 부타디엔계 고무변성 방향족 비닐-시안화 비닐 그라프트 공중합체 20 내지 40 중량%; (A2) 방향족 비닐-시안화 비닐 공중합체 30 내지 75 중량%; 및 (B) 폴리아미드 수지 5 내지 40 중량%를 포함하는 기초수지 100 중량부에 대해 (C) 폴리에테르에스테르아미드 블록 공중합체 1 내지 15 중량부; 및 (D) N-치환 말레이미드-방향족 비닐-말레산 무수물 공중합체 0.5 내지 10 중량부를 포함하는 열가소성 수지 조성물이 제공된다.
이하, 상기 열가소성 수지 조성물에 포함되는 각 성분에 대하여 구체적으로 설명한다.
(A1) 부타디엔계 고무변성 방향족 비닐-시안화 비닐 그라프트 공중합체
일 구현예에서 부타디엔계 고무변성 방향족 비닐-시안화 비닐 그라프트 공중합체는 열가소성 수지 조성물에 우수한 내충격성을 부여한다. 일 구현예에서, 부타디엔계 고무변성 방향족 비닐-시안화 비닐 그라프트 공중합체는 부타디엔계 고무질 중합체 성분으로 된 중심부(코어, core)와 그 중심부에 방향족 비닐 화합물과 시안화 비닐 화합물을 그라프트 중합 반응시켜 쉘(shell)을 형성한 코어-쉘(core-shell) 구조를 가질 수 있다.
일 구현예에 따른 부타디엔계 고무변성 방향족 비닐-시안화 비닐 그라프트 공중합체는 부타디엔계 고무질 중합체에 방향족 비닐 화합물과 시안화 비닐 화합물을 첨가하고 유화중합, 괴상중합 등 통상의 중합방법을 통해 그라프트 중합함으로써 제조될 수 있다.
상기 부타디엔계 고무질 중합체는 부타디엔 고무질 중합체, 부타디엔-스티렌 고무질 중합체, 부타디엔-아크릴로니트릴 고무질 중합체, 부타디엔-아크릴레이트 고무질 중합체 및 이들의 혼합물로 이루어진 군으로부터 선택될 수 있다.
상기 방향족 비닐 화합물은 스티렌, α-메틸스티렌, p-메틸스티렌, p-t-부틸스티렌, 2,4-디메틸스티렌, 클로로스티렌, 비닐톨루엔, 비닐나프탈렌 및 이들의 혼합물로 이루어진 군으로부터 선택될 수 있다.
상기 시안화 비닐 화합물은 아크릴로니트릴, 메타크릴로니트릴, 푸마로니트릴 및 이들의 혼합물로 이루어진 군으로부터 선택될 수 있다.
상기 부타디엔계 고무변성 방향족 비닐-시안화 비닐 그라프트 공중합체는 부타디엔계 고무질 중합체의 평균 입경이 예를 들어 0.2 내지 1.0 μm, 예를 들어 0.2 내지 0.8 μm, 예를 들어 0.25 내지 0.40 μm일 수 있다. 상기 범위를 만족할 경우 열가소성 수지 조성물은 우수한 내충격성 및 외관 특성을 나타낼 수 있다.
상기 부타디엔계 고무변성 방향족 비닐-시안화 비닐 그라프트 공중합체 100 중량%에 대하여, 상기 부타디엔계 고무질 중합체는 40 내지 70 중량%로 포함될 수 있다. 한편, 상기 부타디엔계 고무질 중합체 성분으로 된 중심부에 그라프트 중합되는 상기 방향족 비닐 화합물과 상기 시안화 비닐 화합물의 중량비는 6 : 4 내지 8 : 2 일 수 있다.
일 구현예에서, 상기 부타디엔계 고무변성 방향족 비닐-시안화 비닐 그라프트 공중합체는 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체일 수 있다.
상기 부타디엔계 고무변성 방향족 비닐-시안화 비닐 그라프트 공중합체는 기초수지 100 중량%에 대하여 20 내지 40 중량%, 예를 들어 25 내지 40 중량%, 예를 들어 25 내지 35 중량%로 포함될 수 있다.
기초수지 내 상기 부타디엔계 고무변성 방향족 비닐-시안화 비닐 그라프트 공중합체가 20 중량% 미만일 경우 우수한 내충격성을 달성하기 어렵고, 40 중량%를 초과할 경우 내열성과 유동성이 저하될 우려가 있다.
(A2) 방향족 비닐-시안화 비닐 공중합체
일 구현예에서 방향족 비닐-시안화 비닐 공중합체는 열가소성 수지 조성물의 유동성을 향상시키고 구성요소들 간의 상용성을 일정 수준으로 유지시켜줄 수 있다.
일 구현예에서, 상기 방향족 비닐-시안화 비닐 공중합체는 중량평균 분자량(Mw)이 80,000 g/mol 이상, 예를 들어 85,000 g/mol 이상, 예를 들어 90,000 g/mol 이상이고, 예를 들어 300,000 g/mol 이하, 예를 들어 200,000 g/mol 이하이며, 예를 들어 80,000 내지 300,000 g/mol, 예를 들어 80,000 내지 200,000 g/mol인 것을 사용할 수 있다.
본 발명에서 중량평균 분자량은 분체 시료를 테트라하이드로퓨란(THF)에 녹인 후, Agilent Technologies社의 1200 series 겔 투과 크로마토그래피(Gel Permeation Chromatography; GPC)를 이용하여 측정(표준시료로 폴리스티렌을 사용함)한 것이다.
일 구현예에서, 상기 방향족 비닐-시안화 비닐 공중합체는 방향족 비닐 화합물과 시안화 비닐 화합물을 유화중합, 현탁중합, 용액중합, 괴상중합 등 통상의 중합방법을 통해 제조될 수 있다.
상기 방향족 비닐 화합물은 스티렌, α-메틸스티렌, p-메틸스티렌, p-t-부틸스티렌, 2,4-디메틸스티렌, 클로로스티렌, 비닐톨루엔, 비닐나프탈렌 및 이들의 혼합물로 이루어진 군으로부터 선택될 수 있다.
상기 시안화 비닐 화합물은 아크릴로니트릴, 메타크릴로니트릴, 푸마로니트릴 및 이들의 혼합물로 이루어진 군으로부터 선택될 수 있다.
상기 방향족 비닐-시안화 비닐 공중합체는 100 중량%를 기준으로 상기 방향족 비닐 화합물로부터 유래한 성분을 예를 들어 55 중량% 이상, 예를 들어 60 중량% 이상 포함할 수 있고, 예를 들어 70 중량% 이하, 예를 들어 67 중량% 이하 포함할 수 있으며, 예를 들어 55 내지 70 중량%, 예를 들어 60 내지 67 중량% 포함할 수 있다.
또한, 상기 방향족 비닐-시안화 비닐 공중합체 100 중량%를 기준으로 상기 시안화 비닐 화합물로부터 유래한 성분을 예를 들어 30 중량% 이상, 예를 들어 33 중량% 이상 포함할 수 있고, 예를 들어 45 중량% 이하, 예를 들어 40 중량% 이하 포함할 수 있으며, 예를 들어 30 내지 45 중량%, 예를 들어 33 내지 40 중량% 포함할 수 있다.
일 구현예에서, 상기 방향족 비닐-시안화 비닐 공중합체는 스티렌-아크릴로니트릴 공중합체(SAN)일 수 있다.
일 구현예에서, 상기 방향족 비닐-시안화 비닐 공중합체는 기초수지 100 중량%에 대하여 30 내지 75 중량%, 예를 들어 40 내지 75 중량%, 예를 들어 45 내지 75 중량%, 예를 들어 45 내지 70 중량%, 예를 들어 45 내지 65 중량%로 포함될 수 있다.
상기 방향족 비닐-시안화 비닐 공중합체가 30 중량% 미만이면 열가소성 수지 조성물의 성형성이 저하될 우려가 있고, 75 중량%를 초과할 경우 열가소성 수지 조성물을 이용한 성형품의 기계적 물성이 저하될 우려가 있다.
(B) 폴리아미드 수지
일 구현예에서, 폴리아미드 수지는 상기 블록 공중합체를 과량 투입하지 않고도 열가소성 수지 조성물이 전기 전도성을 구현할 수 있도록 한다.
일 구현예에서, 상기 폴리아미드 수지로는 당해 기술 분야에 알려져 있는 다양한 폴리아미드 수지들, 예를 들면 방향족 폴리아미드 수지, 지방족 폴리아미드 수지 또는 이들의 혼합물이 사용될 수 있으며, 특별히 제한되지 않는다.
상기 방향족 폴리아미드 수지는 주쇄에 방향족 기를 포함하는 폴리아미드로, 전방향족 폴리아미드, 반방향족 폴리아미드 또는 이들의 혼합물일 수 있다.
상기 전방향족 폴리아미드는 방향족 디아민과 방향족 디카르복실산의 중합체를 의미하며, 반방향족 폴리아미드는 아미드 결합 사이에 최소한 하나의 방향족 단위와 비방향족 단위를 포함하는 것을 의미한다. 예를 들면, 상기 반방향족 폴리아미드는 방향족 디아민과 지방족 디카르복실산의 중합체이거나, 또는 지방족 디아민과 방향족 디카르복실산의 중합체일 수 있다.
한편, 상기 지방족 폴리아미드는 지방족 디아민과 지방족 디카르복실산의 중합체를 의미한다.
상기 방향족 디아민의 예로는, p-자일렌디아민, m-자일렌디아민 등을 들 수 있으나, 이에 한정되는 것은 아니다. 또한, 이들은 단독 또는 2종 이상 혼합하여 사용될 수 있다.
상기 방향족 디카르복실산의 예로는, 프탈산, 이소프탈산, 테레프탈산, 2,6-나프탈렌디카르복실산, (1,3-페닐렌디옥시)디아세틱산 등을 들 수 있으나, 이에 한정되는 것은 아니다. 또한, 이들은 단독 또는 2종 이상 혼합하여 사용될 수 있다.
상기 지방족 디아민의 예로는, 에틸렌디아민, 트리메틸렌디아민, 헥사메틸렌디아민, 도데카메틸렌디아민, 피페라진 등을 들 수 있으나, 이에 한정되는 것은 아니다. 또한, 이들은 단독 또는 2종 이상 혼합하여 사용될 수 있다.
상기 지방족 디카르복실산의 예로는, 아디프산, 세바식산, 숙신산, 글루타릭산, 아젤라익산, 도데칸디오익산, 다이머산, 사이클로헥산디카르복실산 등을 들 수 있으나, 이에 한정되는 것은 아니다. 또한, 이들은 단독 또는 2종 이상 혼합하여 사용될 수 있다.
일 구현예에서, 폴리아미드 수지는 폴리아미드 6, 폴리아미드 66, 폴리아미드 46, 폴리아미드 11, 폴리아미드 12, 폴리아미드 610, 폴리아미드 612, 폴리아미드 6I, 폴리아미드 6T, 폴리아미드 4T, 폴리아미드 410, 폴리아미드 510, 폴리아미드 1010, 폴리아미드1012, 폴리아미드 10T, 폴리아미드 1212, 폴리아미드 12T, 폴리아미드 MXD6, 또는 이들의 조합을 포함할 수 있다.
일 구현예에서, 상기 폴리아미드 수지는 적어도 폴리아미드 6을 포함할 수 있다.
일 구현예에서, 상기 폴리아미드 수지는 기초수지 100 중량%에 대하여 5 내지 40 중량%, 예를 들어 5 내지 35 중량%, 예를 들어 5 내지 30 중량%, 예를 들어 5 내지 25 중량%, 예를 들어 5 내지 20 중량%로 포함될 수 있다.
상기 폴리아미드 수지의 함량이 전술한 범위를 만족할 경우 열가소성 수지 조성물 및 이로부터 제조된 성형품은 폴리아미드 수지에 기인한 우수한 강성, 인성, 내마모성, 내약품성, 및 내유성 등을 나타낼 수 있다.
반면, 상기 폴리아미드 수지가 5 중량% 미만인 경우 전술한 폴리아미드 수지에 기인한 우수한 물성들이 나타나기 어려울 수 있고, 40 중량%를 초과할 경우 열가소성 수지 조성물 및 이를 이용한 성형품의 기계적 강도 및/또는 내열성이 저하될 우려가 있다.
(C) 폴리에테르에스테르아미드 블록 공중합체
일 구현예에서 폴리에테르에스테르아미드 블록 공중합체는 열가소성 수지 조성물 및 이로부터 제조된 성형품에 소정의 전기 전도성을 나타내도록 할 수 있다.
또한, 상기 폴리에테르에스테르아미드 블록 공중합체는 열가소성 수지 조성물 및 이로부터 제조된 성형품이 우수한 물성 밸런스를 유지하면서도 전술한 전기 전도성을 나타내도록 할 수 있다.
일 구현예에서, 폴리에테르에스테르아미드 블록 공중합체로, 예를 들면, 탄소수 6 이상의 아미노카르복실산, 락탐 또는 디아민-디카르복실산 염; 폴리알킬렌글리콜; 및 탄소수 4 내지 20의 디카르복실산의 반응 혼합물을 사용할 수 있다.
일 구현예에서, 상기 탄소수 6 이상의 아미노카르복실산, 락탐 또는 디아민-디카르복실산 염으로는, ω-아미노카프로산, ω-아미노에난트산, ω-아미노카프릴산, ω-아미노펠아르곤산, ω-아미노카프르산, 11-아미노운데칸산, 12-아미노도데칸산 등과 같은 아미노카르복실산류; ε-카프로락탐, 에난트락탐, 카프릴락탐, 라우로락탐 등과 같은 락탐류; 및 헥사메틸렌디아민-아디핀산의 염, 헥사메틸렌디아민-이소프탈산의 염등과 같은 디아민-디카르복실산 염 등을 예시할 수 있다. 예를 들면, 12-아미노도데칸산, ε-카프로락탐, 헥사메틸렌디아민-아디핀산의 염 등이 사용될 수 있다.
일 구현예에서, 상기 폴리알킬렌글리콜로는, 폴리에틸렌글리콜, 폴리프로필렌글리콜, 폴리테트라메틸렌글리콜, 폴리헥사메틸렌글리콜, 에틸렌글리콜과 프로필렌글리콜의 블록 또는 랜덤 공중합체, 에틸렌글리콜과 테트라히드로퓨란의 공중합체 등을 예시할 수 있다. 예를 들면, 폴리에틸렌글리콜, 에틸렌글리콜과 프로필렌글리콜의 공중합체 등을 사용할 수 있다.
일 구현예에서, 상기 탄소수 4 내지 20의 디카르복실산으로는, 테레프탈산, 1,4-시클로헥산디카르복실산, 세바신산, 아디프산, 도데칸디오익산 등을 예시할 수 있다.
일 구현예에서, 상기 탄소수 6 이상의 아미노카르복실산, 락탐 또는 디아민-디카르복실산 염과 상기 폴리알킬렌글리콜의 결합은 에스테르 결합일 수 있고, 상기 탄소수 6 이상의 아미노 카르복실산, 락탐 또는 디아민-디카르복실산 염과 상기 탄소수 4 내지 20의 디카르복실산의 결합은 아미드 결합일 수 있고, 상기 폴리알킬렌글리콜과 상기 탄소수 4 내지 20의 디카르복실산의 결합은 에스테르 결합일 수 있다.
일 구현예에서, 상기 폴리에테르에스테르아미드 블록 공중합체는 공지된 합성방법에 의해 제조될 수 있으며, 예를 들면, 일본 특허공보 소56-045419 및 일본 특허공개 소55-133424에 개시된 합성방법에 따라 제조될 수 있다.
일 구현예에서, 상기 폴리에테르에스테르아미드 블록 공중합체는 폴리에테르에스테르 블록을 10 내지 95 중량% 포함할 수 있다. 상기 범위에서 열가소성 수지 조성물의 전기 전도성 및 내열성 등이 우수할 수 있다.
일 구현예에서, 상기 폴리에테르에스테르아미드 블록 공중합체는 상기 기초수지 100 중량부에 대하여, 1 내지 15 중량부, 예를 들면 2 내지 10 중량부로 포함될 수 있다. 상기 폴리에테르에스테르아미드 블록 공중합체의 함량이 전술한 범위를 만족할 경우, 열가소성 수지 조성물 및 이로부터 제조된 성형품이 우수한 물성 밸런스를 유지하면서 동시에 우수한 전기 전도성을 나타낼 수 있다.
(D) N-치환 말레이미드-방향족 비닐-말레산 무수물 공중합체
일 구현예에서 N-치환 말레이미드-방향족 비닐-말레산 무수물 공중합체는 열가소성 수지 조성물 및 이로부터 제조되는 성형품의 물성 밸런스를 적정 수준으로 유지시킬 수 있다. 구체적으로, 상기 N-치환 말레이미드-방향족 비닐-말레산 무수물 공중합체는 전술한 폴리에테르에스테르아미드 블록 공중합체의 첨가에 따라 저하될 수 있는 제반 물성(예를 들어 내충격성, 내열성 등)을 우수하게 유지시킬 수 있다.
일 구현예에서, 상기 N-치환 말레이미드-방향족 비닐-말레산 무수물 공중합체는 N-치환 말레이미드, 방향족 비닐 화합물, 및 말레산 무수물 혼합물의 중합 반응 또는 방향족 비닐 화합물 및 말레산 무수물 공중합체의 이미드화 반응을 통해 제조할 수 있다.
상기 N-치환 말레이미드의 예시로는 N-메틸 말레이미드, N-에틸 말레이미드, N-부틸 말레이미드, N-페닐 말레이미드 또는 N-시클로헥실 말레이미드, 또는 이들의 조합을 들 수 있다.
상기 방향족 비닐 화합물은 스티렌, α-메틸스티렌, p-메틸스티렌, p-t-부틸스티렌, 2,4-디메틸스티렌, 클로로스티렌, 비닐톨루엔, 비닐나프탈렌 및 이들의 혼합물로 이루어진 군으로부터 선택될 수 있고, 바람직하게는 스티렌일 수 있다.
일 구현예에서, 상기 N-치환 말레이미드-방향족 비닐-말레산 무수물 공중합체는 100 중량%를 기준으로 상기 N-치환 말레이미드로부터 유래한 성분 10 내지 55 중량%, 예를 들어 15 내지 55 중량%, 예를 들어 15 내지 50 중량%를 포함할 수 있다.
한편, 일 구현예에서 상기 N-치환 말레이미드-방향족 비닐-말레산 무수물 공중합체는 100 중량%를 기준으로 상기 방향족 비닐 화합물로부터 유래한 성분 40 내지 80 중량%를 포함할 수 있고, 상기 말레산 무수물로부터 유래한 성분 1 내지 10 중량%를 포함할 수 있다.
일 구현예에서 N-치환 말레이미드-방향족 비닐-말레산 무수물 공중합체에서 N-치환 말레이미드로부터 유래한 성분이 10 중량% 미만일 경우 일 구현예에서 N-치환 말레이미드-방향족 비닐-말레산 무수물 공중합체에 의한 물성 밸런스 유지 효과가 발현되기 어렵고, 55 중량%를 초과할 경우 열가소성 수지 조성물과 이로부터 제조된 성형품의 외관 특성이 크게 저하될 우려가 있다.
상기 N-치환 말레이미드-방향족 비닐-말레산 무수물 공중합체의 유리전이온도(Tg)는 예를 들어 145 내지 200℃, 예를 들어 155 내지 200℃, 예를 들어 165 내지 200℃ 일 수 있다.
상기 N-치환 말레이미드-방향족 비닐-말레산 무수물 공중합체는 GPC로 측정한 중량평균분자량(Mw)이 10,000 내지 300,000 g/mol, 예를 들면, 15,000 내지 150,000 g/mol일 수 있다. 상기 범위에서 열가소성 수지 조성물 및 이로부터 제조된 성형품의 제반 물성 밸런스가 우수하게 유지될 수 있다.
상기 N-치환 말레이미드-방향족 비닐-말레산 무수물 공중합체는 기초수지 100 중량부에 대하여 0.5 내지 10 중량부, 예를 들어 0.5 내지 9 중량부, 예를 들어 0.5 내지 8 중량부, 예를 들어 1 내지 8 중량부, 예를 들어 1 내지 7 중량부, 예를 들어 1 내지 6 중량부, 예를 들어 1 내지 5 중량부 포함될 수 있다.
상기 N-치환 말레이미드-방향족 비닐-말레산 무수물 공중합체의 함량이 전술한 범위를 만족할 경우, 열가소성 수지 조성물 및 이로부터 제조된 성형품이 우수한 물성 밸런스를 유지하면서 동시에 우수한 전기 전도성을 나타낼 수 있다.
(E) 기타 첨가제
일 구현예에 따른 열가소성 수지 조성물은 상기 성분 (A) 내지 (D) 외에도, 전기 전도성과 제반 물성 밸런스를 모두 우수하게 유지하는 조건 하에 각 물성들 간의 균형을 맞추기 위해, 혹은 상기 열가소성 수지 조성물의 최종 용도에 따라 필요한 1종 이상의 첨가제를 더 포함할 수 있다.
구체적으로, 상기 첨가제로서는, 핵제, 커플링제, 충전제, 가소제, 활제, 이형제, 항균제, 열 안정제, 산화 방지제, 자외선 안정제, 난연제, 착색제, 충격보강제 등이 사용될 수 있고 이들은 단독으로 혹은 2종 이상의 조합으로 사용될 수 있다.
이들 첨가제는 열가소성 수지 조성물의 물성을 저해하지 않는 범위 내에서 적절히 포함될 수 있고, 구체적으로는 기초수지 100 중량부에 대하여 20 중량부 이하로 포함될 수 있으나, 이에 제한되는 것은 아니다.
본 발명에 따른 열가소성 수지 조성물은 열가소성 수지 조성물을 제조하는 공지의 방법에 의해서 제조될 수 있다.
예를 들어, 본 발명에 따른 열가소성 수지 조성물은 본 발명의 구성 성분과 기타 첨가제들을 동시에 혼합한 후 압출기 내에서 용융 혼련하여 펠렛(pellet) 형태로 제조할 수 있다.
본 발명의 일 구현예에 따른 성형품은 상술한 열가소성 수지 조성물로부터 제조될 수 있다.
일 구현예에서, 상기 성형품은 ASTM D256에 따른 1/4" 두께 시편의 노치 아이조드 충격강도가 13 내지 60 kgf·cm/cm, 예를 들어 13 내지 50 kgf·cm/cm, 예를 들어 13 내지 40 kgf·cm/cm, 예를 들어 13 내지 35 kgf·cm/cm, 예를 들어 14 내지 30 kgf·cm/cm, 예를 들어 15 내지 25 kgf·cm/cm 일 수 있다.
일 구현예에서, 상기 성형품은 표면저항 측정장치(제조사: SIMCO-ION사, 장치명: Worksurface Tester ST-4)를 사용하여 100 mm x 100 mm x 20 mm 시편에 대해 측정한 표면저항이 1012 Ω/sq 이하, 예를 들어 1011.5 Ω/sq 이하, 예를 들어 1011 Ω/sq 이하, 예를 들어 1010.5 Ω/sq 이하, 예를 들어 1010 Ω/sq 이하일 수 있다.
일 구현예에서, 상기 성형품은 ASTM D648에 따른 열변형 온도(HDT)가 80 내지 100℃, 예를 들어 80 내지 95℃, 예를 들어 80 내지 90℃일 수 있다.
이와 같이, 상기 열가소성 수지 조성물은 우수한 내충격성, 전기 전도성, 및 내열성을 가지므로 도장, 무도장으로 사용하는 여러 가지 제품에 광범위하게 적용될 수 있으며, 특히, 정전 도장이 필요한 도장용 성형품에도 유용하게 적용될 수 있다.
이하에서 본 발명을 실시예 및 비교예를 통하여 보다 상세하게 설명하고자 하나, 하기의 실시예 및 비교예는 설명의 목적을 위한 것으로 본 발명을 제한하고자 하는 것은 아니다.
실시예 1 내지 2 및 비교예 1 내지 3
실시예 1 내지 2 및 비교예 1 내지 3의 열가소성 수지 조성물은 하기 표 1 에 기재된 성분 함량비에 따라 제조되었다.
표 1에서, (A1), (A2), (B)는 기초수지에 포함되는 것으로 기초수지 총 중량을 기준으로 중량%로 나타내었고, (C), (D)는 기초수지에 첨가되는 것으로서 기초수지 100 중량부에 대한 중량부로 나타내었다.
표 1에 기재된 성분을 건식 혼합하고 이축 압출기(L/D=44, φ=45mm)의 공급부에 정량적으로 연속 투입하여 용융/혼련하였다. 이어서 이축 압출기를 통해 펠렛화된 열가소성 수지 조성물을 약 80℃에서 약 4 시간 동안 건조한 후, 실린더 온도 약 240℃, 금형 온도 약 60℃의 120톤 사출 성형기를 사용하여 물성 평가용 시편을 각각 제조하였다.
구분 실시예 1 실시예 2 비교예 1 비교예 2 비교예 3
기초 수지 (A1) 32 32 32 32 32
(A2) 53 53 53 53 53
(B) 15 15 15 15 15
(C) 6 6 0 0 6
(D) 1 2 0 2 0
상기 표 1 에 기재된 각 구성에 대한 설명은 다음과 같다. (A1) 부타디엔계 고무변성 방향족 비닐-시안화 비닐 그라프트 공중합체
부타디엔 고무질 중합체로 이루어진 코어(평균 입경: 약 0.25 μm) 약 58 중량%에 아크릴로니트릴과 스티렌(아크릴로니트릴 : 스티렌 중량비 = 약 2.5 : 약 7.5)이 상기 코어에 그라프트 중합되어 형성된 쉘을 포함하는 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체(롯데케미칼社)
(A2) 방향족 비닐-시안화 비닐 공중합체
아크릴로니트릴 약 34 중량% 및 스티렌 약 66 중량%를 포함하는 단량체 혼합물로부터 공중합된 중량평균분자량이 약 85,000 g/mol인 스티렌-아크릴로니트릴 공중합체(롯데케미칼社)
(B) 폴리아미드 수지
융점 약 223℃, 상대점도 약 2.3의 폴리아미드 6 수지(케이피켐텍社, EN-300)
(C) 폴리에테르에스테르아미드 블록 공중합체
폴리아미드 6-폴리에틸렌 옥사이드 블록 공중합체(PA6-b-PE0)(Sanyo社, PELECTRON AS)
(D) N-치환 말레이미드-방향족 비닐-말레산 무수물 공중합체
유리전이온도(Tg)가 약 185℃인 N-페닐 말레이미드-스티렌-말레산 무수물 공중합체(Denka社, MS-NJ)
실험예
실험 결과를 하기 표 2에 나타내었다.
(1) 표면저항 (단위: Ω/sq): 표면저항 측정장치(제조사: SIMCO-ION社, 장치명: Worksurface Tester ST-4)를 사용하여 100 mm x 100 mm x 20 mm 시편에 대해 표면저항을 측정하였다.
(2) 내열성(단위: ℃): ASTM D648에 따라 열변형 온도(HDT)를 측정하였다.
(3) 내충격성 Type-I(단위: kgf·cm/cm): ASTM D256에 따라 1/4" 두께 시편에 대한 노치 아이조드 충격 강도를 측정하였다.
(4) 내충격성 Type-II(단위: N): 하기 실험방법에 따라 보스(boss) 형상을 갖는 시편(돌출부 외경: 6 mm, 돌출부 내경: 3.5 mm, 돌출부 높이: 20 mm)의 보스 충격강도를 측정하였다.
구체적으로, 보스 형상을 갖는 시편의 돌출부 측면을 약 420 g의 충격 해머(impact hammer)로 충격을 가하였으며, 충격 해머가 시편 돌출부를 강타하는 충격 에너지는 1.8 J로 설정하였다.
실시예 1 실시예 2 비교예 1 비교예 2 비교예 3
표면 저항 109.5 109.8 1013.5 초과 1013.5 초과 109.5
열변형 온도 82 83 85 86 82
내충격성 Type-I 15.6 17.4 8.2 12.3 10.7
Type- II 110 110 95 107 100
상기 표 1 내지 2로부터, 실시예 1 내지 4와 같이 부타디엔계 고무변성 방향족 비닐-시안화 비닐 그라프트 공중합체, 방향족 비닐-시안화 비닐 공중합체, 폴리아미드 수지, 폴리에테르에스테르아미드 블록 공중합체, 및 N-치환 말레이미드-방향족 비닐-말레산 무수물 공중합체를 최적의 함량으로 사용함으로써, 비교예들 대비 우수한 전기 전도성, 내충격성, 및 내열성을 나타내는 열가소성 수지 조성물 및 이를 이용한 성형품을 제공할 수 있다는 것을 확인할 수 있다.이상에서 본 발명을 앞서 기재한 바에 따라 바람직한 실시예를 통해 설명하였지만, 본 발명은 이에 한정되지 않으며 다음에 기재하는 특허청구범위의 개념과 범위를 벗어나지 않는 한, 다양한 수정 및 변형이 가능하다는 것을 본 발명이 속하는 기술 분야에 종사하는 자들은 쉽게 이해할 것이다.

Claims (16)

  1. (A1) 부타디엔계 고무변성 방향족 비닐-시안화 비닐 그라프트 공중합체 20 내지 40 중량%;
    (A2) 방향족 비닐-시안화 비닐 공중합체 30 내지 75 중량%; 및
    (B) 폴리아미드 수지 5 내지 40 중량%;
    를 포함하는 기초수지 100 중량부에 대해
    (C) 폴리에테르에스테르아미드 블록 공중합체 1 내지 15 중량부; 및
    (D) N-치환 말레이미드-방향족 비닐-말레산 무수물 공중합체 0.5 내지 10 중량부
    를 포함하는 열가소성 수지 조성물.
  2. 제1항에서,
    상기 (A1) 부타디엔계 고무변성 방향족 비닐-시안화 비닐 그라프트 공중합체는
    부타디엔계 고무질 중합체로 이루어진 코어, 및
    방향족 비닐 화합물과 시안화 비닐 화합물이 상기 코어에 그라프트 중합되어 형성된 쉘을 포함하는 코어-쉘 구조인 열가소성 수지 조성물.
  3. 제1항 또는 제2항에서,
    상기 (A1) 부타디엔계 고무변성 방향족 비닐-시안화 비닐 그라프트 공중합체는 고무질 중합체의 평균 입경이 0.2 내지 1.0 μm인 열가소성 수지 조성물.
  4. 제1항 내지 제3항 중 어느 한 항에서,
    상기 (A1) 부타디엔계 고무변성 방향족 비닐-시안화 비닐 그라프트 공중합체는 아크릴로니트릴-부타디엔-스티렌 공중합체인 열가소성 수지 조성물.
  5. 제1항 내지 제4항 중 어느 한 항에서,
    상기 (A2) 방향족 비닐-시안화 비닐 공중합체는 100 중량%를 기준으로 방향족 비닐 화합물로부터 유래한 성분 55 내지 70 중량% 및 시안화 비닐 화합물로부터 유래한 성분 30 내지 45 중량%를 포함하는 열가소성 수지 조성물.
  6. 제1항 내지 제5항 중 어느 한 항에서,
    상기 (A2) 방향족 비닐-시안화 비닐 공중합체는 중량평균분자량이 80,000 내지 300,000 g/mol인 열가소성 수지 조성물.
  7. 제1항 내지 제6항 중 어느 한 항에서,
    상기 (A2) 방향족 비닐-시안화 비닐 공중합체는 스티렌-아크릴로니트릴 공중합체인 열가소성 수지 조성물.
  8. 제1항 내지 제7항 중 어느 한 항에서,
    상기 (B) 폴리아미드 수지는 폴리아미드 6, 폴리아미드 66, 폴리아미드 46, 폴리아미드 11, 폴리아미드 12, 폴리아미드 610, 폴리아미드 612, 폴리아미드 6I, 폴리아미드 6T, 폴리아미드 4T, 폴리아미드 410, 폴리아미드 510, 폴리아미드 1010, 폴리아미드 1012, 폴리아미드 10T, 폴리아미드 1212, 폴리아미드 12T, 폴리아미드 MXD6, 또는 이들의 조합을 포함하는 열가소성 수지 조성물.
  9. 제1항 내지 제8항 중 어느 한 항에서,
    상기 폴리에테르에스테르아미드 블록 공중합체는 탄소수 6 이상의 아미노카르복실산, 락탐 또는 디아민-디카르복실산 염; 폴리알킬렌글리콜; 및 탄소수 4 내지 20의 디카르복실산의 반응 혼합물인, 열가소성 수지 조성물.
  10. 제1항 내지 제9항 중 어느 한 항에서,
    상기 (D) N-치환 말레이미드-방향족 비닐-말레산 무수물 공중합체는 N-페닐 말레이미드-스티렌-말레산 무수물 공중합체인 열가소성 수지 조성물.
  11. 제1항 내지 제10항 중 어느 한 항에서,
    상기 (D) N-치환 말레이미드-방향족 비닐-말레산 무수물 공중합체는 유리전이온도(Tg)가 145 내지 200℃인 열가소성 수지 조성물.
  12. 제1항 내지 제11항 중 어느 한 항에서,
    핵제, 커플링제, 충전제, 가소제, 활제, 이형제, 항균제, 열 안정제, 산화 방지제, 자외선 안정제, 난연제, 착색제, 충격보강제 중에서 선택되는 적어도 하나의 첨가제를 더 포함하는 열가소성 수지 조성물.
  13. 제1항 내지 제12항 중 어느 한 항에 따른 열가소성 수지 조성물로부터 제조된 성형품.
  14. 제13항에서,
    상기 성형품은 ASTM D256에 따른 1/4" 두께 시편의 노치 아이조드 충격 강도가 13 내지 60 kgf·cm/cm인 성형품.
  15. 제13항 또는 제14항에서,
    상기 성형품은 표면저항 측정장치(제조사: SIMCO-ION社, 장치명: Worksurface Tester ST-4)를 사용하여 100 mm x 100 mm x 20 mm 시편에 대해 측정한 표면저항이 1012 Ω/sq 이하인 성형품.
  16. 제13항 내지 제15항 중 어느 한 항에서,
    상기 성형품은 ASTM D648에 따른 열변형 온도(HDT)가 80 내지 100℃인 성형품.
PCT/KR2021/003764 2020-03-31 2021-03-26 열가소성 수지 조성물 및 이로부터 제조된 성형품 WO2021201508A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022559848A JP2023520033A (ja) 2020-03-31 2021-03-26 熱可塑性樹脂組成物およびこれから製造された成形品
US17/915,659 US20230133698A1 (en) 2020-03-31 2021-03-26 Thermoplastic Resin Composition and Molded Product Manufactured Therefrom

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200039187A KR102486051B1 (ko) 2020-03-31 2020-03-31 열가소성 수지 조성물 및 이로부터 제조된 성형품
KR10-2020-0039187 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021201508A1 true WO2021201508A1 (ko) 2021-10-07

Family

ID=77930244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/003764 WO2021201508A1 (ko) 2020-03-31 2021-03-26 열가소성 수지 조성물 및 이로부터 제조된 성형품

Country Status (4)

Country Link
US (1) US20230133698A1 (ko)
JP (1) JP2023520033A (ko)
KR (1) KR102486051B1 (ko)
WO (1) WO2021201508A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5071910A (en) * 1986-12-20 1991-12-10 Stamicarbon B.V. Thermoplastic polymer mixtures
KR950013363A (ko) * 1993-11-30 1995-06-15 류이찌 오무라 가이드 부착 진출간의 간끝 보호커버
KR20140117459A (ko) * 2012-01-11 2014-10-07 스티롤루션 유럽 게엠베하 스티렌 공중합체 및 폴리아미드를 기재로 한 향상된 인성을 갖는 내후성 열가소성 성형 배합물
KR20180136793A (ko) * 2017-06-15 2018-12-26 금호석유화학 주식회사 내화학성이 향상된 열가소성 수지 조성물
KR101972232B1 (ko) * 2017-10-16 2019-04-24 롯데첨단소재(주) 열가소성 수지 조성물 및 이로부터 형성된 성형품
KR20190082074A (ko) * 2017-12-29 2019-07-09 롯데첨단소재(주) 열가소성 수지 조성물 및 이를 이용한 성형품

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5071910A (en) * 1986-12-20 1991-12-10 Stamicarbon B.V. Thermoplastic polymer mixtures
KR950013363A (ko) * 1993-11-30 1995-06-15 류이찌 오무라 가이드 부착 진출간의 간끝 보호커버
KR20140117459A (ko) * 2012-01-11 2014-10-07 스티롤루션 유럽 게엠베하 스티렌 공중합체 및 폴리아미드를 기재로 한 향상된 인성을 갖는 내후성 열가소성 성형 배합물
KR20180136793A (ko) * 2017-06-15 2018-12-26 금호석유화학 주식회사 내화학성이 향상된 열가소성 수지 조성물
KR101972232B1 (ko) * 2017-10-16 2019-04-24 롯데첨단소재(주) 열가소성 수지 조성물 및 이로부터 형성된 성형품
KR20190082074A (ko) * 2017-12-29 2019-07-09 롯데첨단소재(주) 열가소성 수지 조성물 및 이를 이용한 성형품

Also Published As

Publication number Publication date
JP2023520033A (ja) 2023-05-15
KR20210121837A (ko) 2021-10-08
KR102486051B1 (ko) 2023-01-06
US20230133698A1 (en) 2023-05-04

Similar Documents

Publication Publication Date Title
WO2019078464A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2011052848A1 (ko) 폴리페닐렌에테르계 수지 조성물 및 이를 이용한 성형품
WO2020111552A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2018124657A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2022045736A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2021201508A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2021172827A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
KR101971804B1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2022114778A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2022114777A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2022114779A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2023277501A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2023033492A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2020091343A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
KR20200104502A (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2020222510A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2022231220A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2020222511A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2023128306A1 (ko) 항바이러스성 성형품
WO2021221429A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
KR100602846B1 (ko) 내충격성이 우수한 열가소성 수지 조성물
WO2023054916A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2022182138A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
JPH04239045A (ja) 帯電防止性樹脂組成物
WO2023054894A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21780978

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022559848

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21780978

Country of ref document: EP

Kind code of ref document: A1