WO2021200591A1 - 回転電機 - Google Patents

回転電機 Download PDF

Info

Publication number
WO2021200591A1
WO2021200591A1 PCT/JP2021/012696 JP2021012696W WO2021200591A1 WO 2021200591 A1 WO2021200591 A1 WO 2021200591A1 JP 2021012696 W JP2021012696 W JP 2021012696W WO 2021200591 A1 WO2021200591 A1 WO 2021200591A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
case
circuit board
electric machine
rotary electric
Prior art date
Application number
PCT/JP2021/012696
Other languages
English (en)
French (fr)
Inventor
怜史 西本
Original Assignee
平田機工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 平田機工株式会社 filed Critical 平田機工株式会社
Priority to EP21777930.5A priority Critical patent/EP4131745A4/en
Priority to CN202180021935.6A priority patent/CN115298941A/zh
Priority to US17/905,203 priority patent/US20230113985A1/en
Publication of WO2021200591A1 publication Critical patent/WO2021200591A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/25Devices for sensing temperature, or actuated thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/521Fastening salient pole windings or connections thereto applicable to stators only
    • H02K3/522Fastening salient pole windings or connections thereto applicable to stators only for generally annular cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/22Optical devices

Definitions

  • the present invention relates to a rotary electric machine.
  • the present invention claims priority based on Japanese Patent Application No. 2020-62082 filed in Japan on March 31, 2020, the contents of which are incorporated herein by reference.
  • Patent Document 1 discloses a structure in which a resin is injected into a motor case. The resin is filled between the stator and the case, leaving a space in the center where the rotor is inserted.
  • Patent Document 2 discloses a structure including a temperature sensor capable of detecting the temperature of a motor. The temperature sensor is embedded in a coil formed by winding the stator core.
  • an object of the present invention is to suppress a defect due to heat generation of a rotating electric machine by using a temperature sensor.
  • the rotary electric machine includes a tubular stator, a rotor arranged in the internal space of the stator, a tubular or bottomed tubular case accommodating the stator, and the case.
  • the stator includes an end cover attached to an open end on one side and a temperature sensor, and the stator includes a stator core having a plurality of protrusions protruding toward the center of the stator, and an insulator mounted on the stator core.
  • Each of the plurality of protrusions includes a coil in which a winding is wound via the insulator, and the temperature sensor is provided on the side of the end cover of the stator of the winding in the adjacent coil. It is arranged between the bends.
  • the temperature sensor may be in contact with the bent portion of the winding.
  • the rotary electric machine according to (1) or (2) above further includes a circuit board that controls the drive of the rotary electric machine, and the circuit board is arranged inside the outer end in the axial direction of the case. And, it may be arranged between the stator and the end cover.
  • the insulator may have a contact portion that abuts on the surface of the circuit board on the side of the stator.
  • the circuit board has a plurality of engaging portions arranged at intervals in the circumferential direction, and the insulator has the plurality of engagement portions. It may have an engaging portion that engages the circuit board through each of the joint portions.
  • the gaps between the case and the insulator and between the plurality of protrusions in the stator core are filled with resin.
  • the case, the stator, and the temperature sensor may be integrated.
  • the case is a cylindrical case, and the front is attached to the opening end on the other side of the tubular case.
  • a cover and a resin sheet arranged between the front cover and the stator may be further provided.
  • the case is a bottomed cylindrical case having a bottom on the other side, and the bottom and the said.
  • a resin sheet arranged between the stator and the stator may be further provided.
  • the rotary electric machine further includes a circuit board that controls the drive of the rotary electric machine, and the circuit board receives a current supplied to the coil. It has a resistor for detection, and the resistor may be arranged on a surface of the circuit board on the side of the end cover.
  • the circuit board further includes a plurality of field effect transistors and an encoder, and in a plan view, the encoder is one of the plurality of field effect transistors. It may be arranged between the field effect transistor located on the leftmost side and the resistor.
  • the circuit board further includes a plurality of field effect transistors and an encoder, and in a plan view, the resistor is a plurality of field effect transistors. It may be arranged between the field effect transistor located on the leftmost side and the encoder.
  • the temperature sensor by using the temperature sensor, it is possible to suppress a defect due to heat generation of the rotating electric machine.
  • FIG. 5 is a plan view of the circuit board according to the first embodiment as viewed from the other side in the axial direction (plan view of the surface on the opposite side of FIG. 7A). It is explanatory drawing of arrangement of a resistor and the like which concerns on 1st Embodiment. It is the figure which looked at the stator core which concerns on 1st Embodiment from the axial direction. It is explanatory drawing of the resin filling structure in the case which concerns on 1st Embodiment. It is a figure corresponding to FIG. 1 which shows the cross section of the rotary electric machine which concerns on 2nd Embodiment.
  • FIG. 8 shows the arrangement of the resistor and the like which concerns on the 1st modification. It is a figure corresponding to FIG. 8 which shows the arrangement of the resistor and the like which concerns on the 2nd modification. It is a figure corresponding to FIG. 8 which shows the arrangement of the resistor and the like which concerns on the 3rd modification.
  • the rotary electric machine 1 includes a stator 2, a rotor 3, a case 4, an end cover 5, a temperature sensor 6 (see FIG. 3), a circuit board 7, and a first insulating sheet 8.
  • a second insulating sheet 9 and a resin sheet 10 are provided.
  • the case 4 is provided with the stator 2 to form a stator unit.
  • the stator unit is configured as a stator unit assembly by providing the temperature sensor 6 and the circuit board 7.
  • reference numeral 12 indicates a bearing that rotatably supports the shaft 11.
  • the bearing 12 is provided in each of the case 4 and the end cover 5.
  • the shaft 11 of the rotary electric machine 1 is rotatably supported by the case 4 and the end cover 5 via bearings 12, respectively.
  • the direction along the axis CL of the shaft 11 is referred to as the “axial direction”
  • the direction orthogonal to the axis CL is referred to as the “diameter direction”
  • the direction around the axis CL is referred to as the “circumferential direction”.
  • the stator 2 has a cylindrical shape (cylindrical shape).
  • the stator 2 includes a stator core 20, insulators 21 and 22, and a coil 23.
  • the stator core 20 is formed by laminating a plurality of thin iron plate materials (electromagnetic steel plates) in the axial direction.
  • the stator core 20 has an annular shape coaxial with the axis CL.
  • the stator core 20 is fixed to the inner peripheral surface of the case 4.
  • the stator core 20 projects from the annular core body 20a and the inner peripheral surface of the core body 20a toward the radial center (center of the stator 2) by a predetermined length, and the core body 20a.
  • a plurality of (for example, nine in this embodiment) projecting portions 20b formed in the axial direction along the inner peripheral surface of the above are provided.
  • the protruding portion 20b includes a protruding flange portion 20d that further extends in the circumferential direction from the protruding end portion 20c, which is an inner end portion in the radial direction.
  • the protruding flange portion 20d extends with substantially the same length on both sides in the circumferential direction with the protruding end portion 20c as a boundary.
  • the nine protrusions 20b are arranged at substantially the same spacing in the circumferential direction. In the present embodiment, the nine protrusions 20b are arranged at intervals of approximately 40 degrees (central angle) in the circumferential direction.
  • the protruding flange portions 20d provided on the protruding portions 20b are arranged at intervals in the circumferential direction.
  • the stator core 20 has a space 91 surrounded by a protruding end portion 20c of each protruding portion 20b.
  • the insulators 21 and 22 are mounted on the stator core 20.
  • the insulators 21 and 22 can be divided in the axial direction (see FIG. 5).
  • the insulators 21 and 22 are attached to the inner peripheral portion of the core main body 20a (see FIG. 9). Insulators 21 and 22 are mounted on both sides of the stator core 20 in the axial direction.
  • the insulators 21 and 22 are composed of a first insulator 21 mounted on one side of the stator core 20 in the axial direction and a second insulator 22 mounted on the other side of the stator core 20 in the axial direction.
  • the insulators 21 and 22 are formed by combining the first insulator 21 and the second insulator 22.
  • the coil 23 is formed by winding the winding 24 around each of the plurality of protrusions 20b (see FIG. 9) via insulators 21 and 22. As shown in FIG. 3, the coil 23 is composed of three sets of coils 23U, 23V, and 23W having a plurality of different phases (for example, U phase, V phase, and W phase). The U-phase, V-phase, and W-phase coils 23U, 23V, and 23W are arranged in this order along the circumferential direction of the stator core 20. The coils 23 adjacent to each other in the circumferential direction are arranged at intervals. In the present embodiment, the nine coils 23 are arranged at intervals of approximately 40 degrees (central angle) in the circumferential direction.
  • the three sets of coils 23U, 23V, and 23W are arranged at intervals of approximately 120 degrees (central angle) in the circumferential direction.
  • the coil 23 has bent portions 24a in which the windings 24 are bent on both end sides in the axial direction.
  • the bent portions 24a are provided on both sides in the axial direction of the windings 24 of the coils 23 adjacent to each other in the circumferential direction.
  • the bent portions 24a are provided on both sides of the winding 24 of the U-phase, V-phase, and W-phase coils 23U, 23V, and 23W in the axial direction, respectively.
  • the rotor 3 is arranged in the space 91 (internal space) of the stator 2.
  • the rotor 3 is arranged inside the stator 2 in the radial direction at intervals from the stator 2.
  • the rotor 3 is fixed to the shaft 11.
  • the rotor 3 can rotate around the axis CL integrally with the shaft 11.
  • the rotor 3 includes a magnet yoke 30 and a magnet 31.
  • the magnet yoke 30 is made of a metal material such as aluminum.
  • the magnet yoke 30 has an annular shape coaxial with the axis CL.
  • the inner peripheral surface of the magnet yoke 30 is fixed to the outer peripheral surface of the shaft 11 with an adhesive.
  • the magnet 31 is a permanent magnet.
  • the magnet 31 has an annular shape coaxial with the axis CL.
  • the magnet 31 is fixed to the magnet yoke 30 by inserting the magnet yoke 30 into the insertion hole provided in the magnet 31. As a result, the magnet 31 can rotate integrally with the magnet yoke 30 and the shaft 11.
  • the magnet 31 has a plurality of magnetic poles of NS poles at a portion facing the inner peripheral surface of the stator 2.
  • the plurality of magnetic poles of the NS poles are alternately provided in the circumferential direction.
  • the case 4 has a bottomed cylinder (bottomed cylinder) for accommodating the stator 2.
  • the case 4 bottomed cylindrical case
  • the case 4 has an opening end 41 on one side of the case 4 in the axial direction.
  • the case 4 has a bottom portion 42 on the other side of the case 4 in the axial direction.
  • the case 4 is made of a metal such as aluminum.
  • the case 4 includes a cylindrical cylindrical portion 40 extending in the axial direction (hereinafter, also referred to as “case tubular portion 40”) and a bottom portion 42 connected to the other side of the case tubular portion 40 in the axial direction.
  • the case cylinder portion 40 and the bottom portion 42 are integrally formed of the same member.
  • the bottom portion 42 of the case 4 is attached to a mounting member 101 (see FIG. 1) made of a metal plate material such as aluminum.
  • the other surface of the case 4 is a mounting surface for the mounting member 101.
  • the bottom 42 of the case 4 has a communication hole in the center that communicates with one surface and the other surface.
  • the bottom 42 of the case 4 has a bearing mounting portion on which the bearing 12 is mounted. The holes of the bearing 12 mounted on the bearing mounting portion and the communication holes communicate with each other.
  • the case 4 has a step portion 43 on one side in the axial direction of the case cylinder portion 40.
  • the step portion 43 has an annular surface 43a (hereinafter, also referred to as “case-side annular surface 43a”) that is annular when viewed from the axial direction, and a peripheral surface 43b that extends from the outer peripheral edge of the case-side annular surface 43a to one side in the axial direction. (Hereinafter, also referred to as "case side peripheral surface 43b").
  • the axial length of the case-side peripheral surface 43b is larger than the radial length of the case-side annular surface 43a.
  • the end cover 5 is attached to the opening end 41 on one side in the axial direction of the case 4.
  • the end cover 5 is made of a metal such as aluminum.
  • the end cover 5 includes a cylindrical cylindrical portion 50 extending in the axial direction (hereinafter, also referred to as “cover tubular portion 50”) and a lid portion 51 connected to one side of the cover tubular portion 50 in the axial direction. ..
  • the axial length of the cover cylinder 50 is smaller than the axial length of the case cylinder 40.
  • the cover cylinder portion 50 and the lid portion 51 are integrally formed of the same member.
  • the lid portion 51 of the end cover 5 has a bearing mounting portion in which the bearing 12 is mounted in the central portion on the case 4 side.
  • the end cover 5 has a convex portion 52 that rises from the other side in the axial direction of the cover cylinder portion 50 to the other side in the axial direction.
  • the convex portion 52 has an annular surface 52a (hereinafter, also referred to as “cover-side annular surface 52a”) that is annular when viewed from the axial direction, and a peripheral surface 52b that extends from the outer peripheral edge of the cover-side annular surface 52a to one side in the axial direction. (Hereinafter, also referred to as "cover side peripheral surface 52b").
  • the radial length of the cover-side annular surface 52a is larger than the radial length of the case-side annular surface 43a.
  • the axial length of the cover-side peripheral surface 52b is smaller than the axial length of the case-side peripheral surface 43b.
  • the axial length of the cover-side peripheral surface 52b is larger than the radial length of the cover-side annular surface 52a.
  • the end cover 5 is attached to the open end 41 on one side of the case 4 by fitting the convex portion 52 of the cover cylinder portion 50 to the step portion 43 of the case cylinder portion 40.
  • the cover-side peripheral surface 52b is in contact with the case-side peripheral surface 43b.
  • the cover-side annular surface 52a is axially separated from the case-side annular surface 43a.
  • the temperature sensor 6 is a PTC (Positive Temperature Cooperative) thermistor.
  • the temperature sensor 6 is provided on the side of the end cover 5 of the stator 2.
  • the temperature sensor 6 has a function of rapidly increasing the resistance value when the temperature exceeds a certain level.
  • the temperature sensor 6 is electrically connected to each of a motor driving power supply and a circuit board 7 (not shown). For example, the resistance value of the temperature sensor 6 increases so as to stop the power supply to the circuit board 7 when the temperature near the temperature sensor 6 becomes equal to or higher than a predetermined value.
  • the temperature sensor 6 is arranged between the bent portions 24a of the windings 24 in the adjacent coils 23.
  • the temperature sensor 6 is in contact with the bent portion 24a of the winding 24.
  • the temperature sensor 6 is in contact with the bent portion 24a of each winding 24 of two coils 23 (adjacent coils 23V, 23W in the present embodiment) adjacent to each other in the circumferential direction.
  • only one temperature sensor 6 is provided.
  • the temperature sensor 6 is arranged between the bent portion 24a of the winding 24 in the V-phase coil 23V and the W-phase coil 23W that are adjacent to each other in the circumferential direction.
  • the temperature sensor 6 is brought into contact with each of the bent portions 24a of the adjacent windings 24 by a jig (not shown).
  • the resin is filled around the contact portion between the bent portion 24a of the winding 24 and the temperature sensor 6 by a filling device (not shown).
  • the temperature sensor 6 can be kept in contact with the bent portion 24a of the winding 24.
  • the circuit board 7 controls the drive of the rotary electric machine 1. As shown in FIG. 1, the circuit board 7 is arranged inside the case 4 which is inside the outer end in the axial direction of the case 4. The circuit board 7 is supported by a contact portion 82, which will be described later, which is provided so as to project upward from the upper surface of the first insulator 21. The circuit board 7 is arranged at a predetermined distance from the upper surface of the first insulator 21 by the support of the contact portion 82. The circuit board 7 is arranged between the stator 2 and the end cover 5. The circuit board 7 is arranged axially inside the opening end 41 on one side of the case 4. The circuit board 7 is arranged slightly inward in the axial direction with respect to the case-side annular surface 43a (see FIG. 2). The circuit board 7 is fixed to the inner peripheral surface of the case 4.
  • the circuit board 7 includes an annular board body 70 in a plan view, a resistor 75 for detecting a current supplied to a coil 23 (see FIG. 1), and an electric field as a switching element. It includes effect transistors 76A to 76C (FET: Field Effect Transistor), an encoder 78 for detecting the rotation angle of the shaft 11 (see FIG. 1), various electronic components 79, and an IC 102 for a motor controller.
  • FET Field Effect Transistor
  • FIG. 7B is a plan view of the surface (back surface) of the circuit board 7 on the opposite side of FIG. 7A. As shown in FIG. 7B, the circuit board 7 includes magnetic sensors 77A to 77C for detecting the magnetic state (magnitude / direction of the magnetic field) of the magnet 31.
  • the board body 70 electrically connects a shaft hole 71 coaxial with the axis CL, engaging portions 72A to 72C (board-side engaging portions) that engage with the first insulator 21, and a cable 100 (see FIG. 1). It has a connection hole 73 for passing through the lead wire 25A to 25C (see FIG. 3) of the coil 23, and notches 74A to 74C for passing the lead wire 25A to 25C (see FIG. 3).
  • the shaft hole 71 has a circular shape.
  • the diameter of the shaft hole 71 is larger than the outer diameter of the shaft 11.
  • the circuit board 7 is arranged on the outer side in the radial direction of the shaft 11 at intervals from the shaft 11 (see FIG. 1).
  • the engaging portions 72A to 72C have an elongated hole shape extending in the circumferential direction.
  • a plurality of engaging portions 72A to 72C are provided at intervals in the circumferential direction.
  • the three engaging portions 72A to 72C (first engaging portion 72A, second engaging portion 72B, and third engaging portion 72C) are arranged at substantially the same spacing in the circumferential direction.
  • connection hole 73 has a circular shape.
  • a plurality of connection holes 73 (for example, eight in the present embodiment) are provided at intervals in the circumferential direction.
  • the eight connection holes 73 are arranged between the first engaging portion 72A and the third engaging portion 72C in the circumferential direction.
  • the notches 74A to 74C have a concave shape that opens outward in the radial direction of the circuit board 7.
  • a plurality of notches 74A to 74C are provided at intervals in the circumferential direction.
  • the three notches 74A to 74C (the first notch 74A, the second notch 74B and the third notch 74C) are arranged between the second engaging portion 72B and the third engaging portion 72C in the circumferential direction. ing.
  • the resistor 75 is a shunt resistor. In this embodiment, only one resistor 75 is provided.
  • the resistor 75 is provided on the surface of the substrate body 70 (circuit board 7) on the side of the end cover 5. That is, the resistor 75 is provided on the surface of the substrate body 70 opposite to the surface on the stator 2 side.
  • a plurality of FETs 76A to 76C are provided at intervals in the circumferential direction (for example, three in this embodiment).
  • the FETs 76A to 76C are provided on the surface of the substrate body 70 on the end cover 5 side. That is, the FETs 76A to 76C are provided on the surface of the substrate body 70 on the same side as the resistor 75.
  • the three FETs 76A to 76C are located in the vicinity of the three notches 74A to 74C (first notch 74A, second notch 74B and third notch 74C), respectively. Have been placed. Regions 26A to 26C for soldering the lead wires 25A to 25C (see FIG. 3) of the coil 23 are provided between the three FETs 76A to 76C and the three notches 74A to 74C, respectively.
  • the regions 26A to 26C are arranged in the vicinity of the lead wires 25A to 25C of the coil 23. As a result, it is possible to prevent the lead wires 25A to 25C of the coil 23 from becoming excessively long, and to suppress the generation of noise.
  • the FETs 76A to 76C are electrically connected to the lead wires 25A to 25C of the coil 23.
  • the lead wires 25A to 25C of the coil 23 are soldered in the regions 26A to 26C and then electrically connected to the FETs 76A to 76C by the wiring formed on the circuit board 7. Since the FETs 76A to 76C are arranged in the vicinity of the regions 26A to 26C, the wiring on the circuit board 7 can be shortened and simplified.
  • the magnetic sensors 77A to 77C are Hall elements.
  • a plurality of magnetic sensors 77A to 77C (for example, three in the present embodiment) are provided at intervals in the circumferential direction.
  • the magnetic sensors 77A to 77C are provided on the surface of the substrate body 70 on the stator 2 side (the surface of FIG. 7B).
  • the three magnetic sensors 77A to 77C change the magnetic flux due to the rotation of the magnet 31, respectively, on the substrate on the stationary side. It is detected by a magnetic sensor placed at a specific position on the main body 70.
  • the magnetic sensor is directly above the magnet 31 when viewed in a plan view and is arranged close to the magnet 31 in the axial direction. As a result, the rotation detection sensitivity of the magnet 31 can be improved.
  • the encoder 78 is an optical encoder that uses an infrared light emitting diode (IR LED) as a light emitting element.
  • the encoder 78 detects the rotation of a disc for a detector (a disc having a slit hole) (not shown) attached to the shaft 11 and generates an on / off signal of light.
  • only one encoder 78 is provided.
  • the encoder 78 has the largest installation area among the electronic components provided on the circuit board 7.
  • the encoder 78 is provided on the side of the end cover 5 of the substrate body 70.
  • the encoder 78 is arranged between the first FET 76A located on the leftmost side of the three FETs 76A to 76C and the resistor 75. That is, the encoder 78 is arranged between the first FET 76A and the resistor 75 in the circumferential direction.
  • the resistor 75 is arranged on the side opposite to the second FET 76B with the shaft hole 71 interposed therebetween. Note that in FIG. 8, holes other than the shaft hole 71 of the substrate main body 70, notches, and the like are not shown.
  • the first insulating sheet 8 is arranged between the stator 2 and the rotor 3 and the circuit board 7.
  • the first insulating sheet 8 insulates at least the circuit board 7 and the coil 23.
  • the first insulating sheet 8 has an annular shape when viewed from the axial direction.
  • the first insulating sheet 8 has an inner peripheral edge portion forming an insertion hole through which the shaft 11 is inserted in the central portion.
  • the inner peripheral edge portion of the first insulating sheet 8 is arranged on the radial outer side of the shaft 11 at intervals from the shaft 11.
  • the first insulating sheet 8 allows the shaft 11 to rotate.
  • the first insulating sheet 8 is supported by the first insulator 21. Specifically, the first insulating sheet 8 is supported by a plurality of contact portions 81, which will be described later, provided on the first insulator 21.
  • the second insulating sheet 9 is arranged between the circuit board 7 and the end cover 5.
  • the second insulating sheet 9 is arranged at a position adjacent to the circuit board 7.
  • the second insulating sheet 9 insulates at least the circuit board 7 and the end cover 5.
  • the second insulating sheet 9 has an annular shape larger than that of the first insulating sheet 8 when viewed from the axial direction.
  • the second insulating sheet 9 has an inner peripheral edge portion forming an insertion hole through which the shaft 11 is inserted in the central portion.
  • the inner peripheral edge portion of the second insulating sheet 9 is arranged on the radial outer side of the shaft 11 at intervals from the shaft 11. As a result, the second insulating sheet 9 allows the shaft 11 to rotate.
  • the second insulating sheet 9 extends from the inner peripheral edge to the outer peripheral edge over the entire radial direction.
  • the outer peripheral edge portion of the second insulating sheet 9 is arranged in the vicinity of the case side peripheral surface 43b.
  • the outer peripheral edge of the second insulating sheet 9 is sandwiched between the opening on one side of the case 4 and the tip of the cylindrical portion 50 of the end cover 5.
  • the second insulating sheet 9 is held by being sandwiched between the stepped portion 43 of the case cylinder portion 40 and the convex portion 52 of the cover cylinder portion 50.
  • the second insulating sheet 9 comes into contact with the case-side annular surface 43a and the cover-side annular surface 52a.
  • the second insulating sheet 9 is slightly separated from the case side peripheral surface 43b.
  • the second insulating sheet 9 is slightly separated from the surface of the circuit board 7 on the end cover 5 side in the axial direction. Further insulation between the circuit board 7 and the end cover 5 is ensured by providing a gap between the surface of the circuit board 7 on the end cover 5 side and the second insulating sheet 9.
  • Each of the first insulating sheet 8 and the second insulating sheet 9 is a sheet having both insulating properties and flame retardancy.
  • Each of the first insulating sheet 8 and the second insulating sheet 9 is formed of aramid fibers.
  • each of the first insulating sheet 8 and the second insulating sheet 9 is an insulating paper.
  • Each of the first insulating sheet 8 and the second insulating sheet 9 has a thickness of 0.25 mm or more.
  • each of the first insulating sheet 8 and the second insulating sheet 9 has a thickness of 0.25 mm or more and 0.35 mm or less.
  • each of the first insulating sheet 8 and the second insulating sheet 9 has a thermal conductivity of 0.12 W / m ⁇ K or more and 0.14 W / m ⁇ K at a measurement temperature of 150 ° C. by a measuring method based on ASTM E1530. It is as follows.
  • Each of the first insulating sheet 8 and the second insulating sheet 9 has a LOI (Limiting Oxygen index) value higher than 20.8% in an environment of 220 ° C.
  • the LOI value is a numerical value used as a scale for measuring flame retardancy, and is defined by "JIS K7201 limit oxygen index".
  • each of the first insulating sheet 8 and the second insulating sheet 9 has a LOI value of 22% or more and 25% or less in an environment of 220 ° C. when the thickness is 0.25 mm.
  • the resin sheet 10 is arranged between the bottom portion 42 of the case 4 and the stator 2.
  • the resin sheet 10 is arranged between the bottom portion 42 of the case 4 and the second insulator 22.
  • the resin sheet 10 has an annular shape when viewed from the axial direction.
  • the resin sheet 10 has an inner peripheral edge portion forming an insertion hole through which the shaft 11 is inserted in the central portion.
  • the inner peripheral edge portion of the resin sheet 10 is arranged on the radial outer side of the shaft 11 at intervals from the shaft 11. As a result, the resin sheet 10 allows the shaft 11 to rotate.
  • the bottom portion 42 of the case 4 is provided with an annular convex portion 44 that abuts on the inner peripheral edge of the insertion hole of the resin sheet 10.
  • the height of the annular convex portion 44 in the axial direction is slightly larger than the thickness of the resin sheet 10.
  • the inner diameter of the insertion hole of the resin sheet 10 is designed to match the outer diameter of the annular convex portion 44.
  • the configuration for suppressing the misalignment of the resin sheet 10 is not limited to the provision of the annular convex portion 44.
  • the outer diameter of the resin sheet 10 may be adjusted to the inner diameter of the case 4.
  • the position of the second insulator 22 in the axial direction is determined by abutting on the annular convex portion 44. Therefore, in the axial direction, the resin sheet 10 is separated from the second insulator 22.
  • the present invention is not limited to this, and the resin sheet 10 may be in contact with the second insulator 22.
  • the resin sheet 10 is made of silicone.
  • the resin sheet 10 has a thickness of 0.2 mm or more.
  • the resin sheet 10 has a thickness of 0.2 mm or more and 0.3 mm or less.
  • the resin sheet 10 has a thermal conductivity of 1.0 W / m ⁇ K or more and 1.4 W / m ⁇ K or less at a load of 20 psi according to a measuring method based on ASTM D5470.
  • the resin sheet 10 has V-0 in the UL94 standard, which is a standard indicating the degree of incombustibility of the material.
  • the first insulator 21 has an annular portion 80 coaxial with the stator core 20 and a contact portion 81 (hereinafter, “seat side contact”) that abuts on the surface of the first insulating sheet 8 on the side of the stator 2.
  • the contact portion 81 ”), the contact portion 82 that abuts on the surface of the circuit board 7 on the side of the stator 2 (hereinafter, also referred to as“ substrate side contact portion 82 ”), and the stator 2 of the circuit board 7.
  • Engagement portions 84A to 84C that engage with the circuit board 7 through each of the plurality of extending portions 83 (see FIG. 6) extending toward the side surface and the plurality of engaging portions 72A to 72C of the circuit board 7 (FIG. 6). 5) and.
  • the seat side contact portion 81 extends from the inner peripheral side of the annular portion 80 toward one side in the axial direction.
  • the tip of the sheet-side contact portion 81 is in contact with the surface of the first insulating sheet 8 on the side of the stator 2.
  • a plurality of sheet-side contact portions 81 are provided at intervals in the circumferential direction (see FIG. 6).
  • the nine seat-side contact portions 81 are arranged at substantially the same spacing in the circumferential direction (see FIG. 6).
  • the substrate-side contact portion 82 extends from the outer peripheral side of the annular portion 80 toward one side in the axial direction.
  • the tip of the substrate-side contact portion 82 is in contact with the surface of the circuit board 7 on the side of the stator 2.
  • the substrate-side contact portion 82 extends toward one side in the axial direction longer than each of the seat-side contact portion 81 and the extending portion 83 (see FIG. 6).
  • a plurality of substrate-side contact portions 82 (for example, 11 in the present embodiment) are provided at intervals in the circumferential direction (see FIG. 6).
  • the extending portion 83 extends from the outer peripheral side of the annular portion 80 toward one side in the axial direction.
  • a plurality of extending portions 83 are provided at intervals in the circumferential direction.
  • the tip of the extending portion 83 is separated from the surface of the circuit board 7 on the side of the stator 2. That is, the extending portion 83 is not in contact with the circuit board 7.
  • a gap is formed between the tip of the extending portion 83 and the surface of the circuit board 7 on the side of the stator 2.
  • the gap between the tip of the extending portion 83 and the circuit board 7 is a space in which the wiring portion 1001 of the cable 100 is accommodated when the wiring portion 1001 (see FIG.
  • the engaging portions 84A to 84C extend from the outer peripheral side of the annular portion 80 toward one side in the axial direction.
  • the engaging portions 84A to 84C are longer than the substrate-side contact portion 82 and extend toward one side in the axial direction.
  • the engaging portions 84A to 84C have a hook shape that can be engaged with the circuit board 7 (see FIG. 5).
  • the engaging portions 84A to 84C extend from the annular portion 80 toward one side in the axial direction and then bend outward in the radial direction. As a result, the engaging portions 84A to 84C can maintain the engaged state with the circuit board 7.
  • a plurality of engaging portions 84A to 84C are provided at intervals in the circumferential direction (for example, three in the present embodiment).
  • the three engaging portions 84A to 84C (first engaging portion 84A, second engaging portion 84B, and third engaging portion 84C) are arranged at substantially the same spacing in the circumferential direction.
  • the three engaging portions 84A to 84C (first engaging portion 84A, second engaging portion 84B and third engaging portion 84C) have three engaging portions 72A to 72C (first engaging portion 72A, first engaging portion 72A, first engaging portion 84C), respectively. It engages with the circuit board 7 through the second engaging portion 72B and the third engaging portion 72C) (see FIG. 5).
  • the 11 substrate-side contact portions 82 are the five substrate-side contact portions 82 arranged between the first engaging portion 84A and the second engaging portion 84B in the circumferential direction, and the second in the circumferential direction.
  • Five substrate-side contact portions 82 arranged between the engaging portion 84B and the third engaging portion 84C, and arranged between the first engaging portion 84A and the third engaging portion 84C in the circumferential direction.
  • the four extending portions 83 are arranged between the first engaging portion 84A and the third engaging portion 84C in the circumferential direction.
  • the filling step of filling the case 4 with the resin 90 is performed by the following procedure.
  • the temperature sensor 6 is brought into contact with the bent portion 24a of the coil 23 using a jig (not shown), and the lead wire 60 of the temperature sensor 6 is brought out.
  • the case 4 is filled with the resin 90 (see FIG. 4).
  • the case 4, the stator 2, and the temperature sensor 6 are integrated with the resin 90.
  • the lead wire 60 is passed through a slit (not shown) of the circuit board 7 and soldered to the circuit board 7. In this way, the wiring step of connecting the lead wire 60 to the circuit board 7 is performed.
  • the resin 90 leaves the space 91 in which the shaft 11 and the rotor 3 are inserted in the central portion, and fills the other gaps in the case 4.
  • the resin 90 is a thermosetting resin such as an epoxy resin.
  • the resin 90 is filled in the case 4 to a position where the coil 23 (see FIG. 1) is not exposed in the axial direction.
  • the resin 90 has a thermal conductivity of 0.1 W / m ⁇ K or more and 0.9 W / m ⁇ K or less at a load of 20 psi according to a measuring method based on ASTM D5470.
  • the resin 90 has V-0 in the UL94 standard, which is a standard indicating the degree of incombustibility of the material.
  • Resin 90, volume resistivity under 25 ° C. environment in the measurement method based on ASTM D257 is the 1 ⁇ 10 15 ⁇ ⁇ cm
  • volume resistivity under 100 ° C. environment be 1 ⁇ 10 15 ⁇ ⁇ cm
  • the volume low efficiency under the environment of 150 ° C. is 3 ⁇ 10 13 ⁇ ⁇ cm.
  • the method of manufacturing the stator unit manufactured by installing the stator 2 in the case 4 and filling the case 4 with the resin 90 is performed by the following procedure (step).
  • the resin sheet 10 is placed in the case 4 (sheet arrangement step).
  • the stator 2 is put into the case 4 (stator arrangement step).
  • a cylindrical mold material having substantially the same size as the rotor 3 is placed in the case 4 (first filling preparation step).
  • the mold material has a cylindrical shape having a size such that the plurality of protruding end portions 20c forming the space 91 and the outer peripheral surface of the rotor 3 come into contact with each other.
  • the mold material is, for example, a sheet of polytetrafluoroethylene (PTFE: Polytetrafluoroethylene).
  • PTFE polytetrafluoroethylene
  • the temperature sensor 6 is placed between the bent portions 24a of the adjacent coils 23 in a state of being in contact with the bent portions 24a of the adjacent coils 23 (second filling preparation step).
  • the resin 90 is filled between the inner peripheral surface of the case 4 and the outer peripheral surface of the mold material using a filling device (not shown) (resin filling step).
  • the case 4 filled with the resin 90 is placed in a vacuum chamber, and then evacuated to remove (deaeration) air bubbles contained in the filled resin 90, and the case 4 is evacuated (fill-finish step).
  • the mold material is taken out (filling completion step). As a result, a space 91 in which the rotor 3 enters is formed in the case 4 filled with the resin 90.
  • the rotary electric machine 1 of the above embodiment includes a tubular stator 2, a rotor 3 arranged in the internal space of the stator 2, a bottomed tubular case 4 accommodating the stator 2, and a case.
  • the stator core 20 is provided with an end cover 5 attached to the opening end 41 on one side of 4 and a temperature sensor 6, and the stator 2 has a plurality of projecting portions 20b protruding toward the center of the stator 2.
  • the temperature sensor 6 includes an insulators 21 and 22 mounted on the above, and a coil 23 formed by winding a winding 24 around each of the plurality of projecting portions 20b via insulators 21 and 22, and the temperature sensor 6 is an end cover of the stator 2.
  • the temperature sensor 6 is arranged on the side of the end cover 5 of the stator 2 between the bent portions 24a of the windings 24 in the adjacent coils 23, so that the temperature sensor 6 generates the most heat in the rotary electric machine 1.
  • the temperature of the easily bent portion 24a can be detected.
  • the drive of the rotary electric machine 1 can be optimally operated based on the detection result of the temperature sensor 6 (the temperature of the bent portion 24a of the winding 24 in the coil 23 of the rotary electric machine 1). Therefore, by using the temperature sensor 6, it is possible to suppress a defect due to heat generation of the rotary electric machine 1.
  • the temperature sensor 6 is in contact with the bent portion 24a of the winding 24, so that the temperature of the bent portion 24a of the winding 24 can be directly detected. Therefore, the temperature of the bent portion 24a, which is most likely to generate heat in the rotary electric machine 1, can be detected with higher accuracy.
  • the circuit board 7 that controls the drive of the rotary electric machine 1 is further provided.
  • the circuit board 7 is arranged in the case 4 and is arranged between the stator 2 and the end cover 5, so that the following effects can be obtained.
  • the circuit board 7 can be easily assembled. Therefore, the rotary electric machine 1 can be assembled efficiently.
  • the first insulator 21 has the following effects by having the substrate-side contact portion 82 that abuts on the surface of the circuit board 7 on the side of the stator 2.
  • the circuit board 7 can be separated from the coil 23 by the substrate-side contact portion 82 and supported at a predetermined position in the axial direction. Specifically, by arranging the circuit board 7 apart from the coil 23 by the substrate-side contact portion 82, the circuit board 7 can be separated from the coil 23, which is a heat generation source, at a predetermined interval. Further, the magnet 31 of the rotor 3 can be set at a position that can be optimally detected by the three magnetic sensors 77A to 77C.
  • the circuit board 7 has a plurality of engaging portions 72A to 72C arranged at predetermined intervals in the circumferential direction.
  • the first insulator 21 has engaging portions 84A to 84C corresponding to each of the plurality of engaging portions 72A to 72C.
  • the following effects are obtained by engaging the circuit board 7 and the first insulator 21 with the engaging portions 84A to 84C of the first insulator 21 inserted into the plurality of engaging portions 72A to 72C of the circuit board 7. Play.
  • the circuit board 7 can be held while defining the positions in the circumferential direction and the radial direction of the circuit board 7 by the plurality of engaging portions 84A to 84C.
  • the gaps between the case 4 and the insulators 21 and 22 of the stator 2 arranged in the case 4 and between the plurality of protrusions 20b in the stator core 20 are filled with the resin 90, and the case 4
  • the resin 90 filled in the gap in the case 4 improves the thermal conductivity of the heat generated from the coil 23 of the stator 2, and the generated heat is released from the entire case 4 to raise the temperature of the rotary electric machine 1. (The temperature rise of the coil 23) can be suppressed.
  • the contact state of the temperature sensor 6 with respect to the coil 23 of the stator 2 is maintained, which improves the temperature detection accuracy. Therefore, by using the temperature sensor 6, it is possible to more effectively suppress the trouble caused by the heat generation of the rotary electric machine 1 (coil 23).
  • the case 4 is a bottomed cylindrical case having a bottom portion 42 on the other side, and further includes a resin sheet 10 arranged between the bottom portion 42 and the stator 2. It has the following effects.
  • the resin sheet 10 having a higher thermal conductivity than the resin between the bottom 42 of the case 4 and the stator 2, when the bottom 42 of the case 4 is attached to the mounting member 101, the heat generated from the coil 23 is generated. It is possible to promote heat conduction (heat dissipation) to the mounting member 101 and suppress the temperature rise of the rotary electric machine 1 (coil 23). Further, the resin sheet 10 makes it possible to secure the insulating property between the bottom portion 42 of the case 4 and the stator 2 arranged in the case 4.
  • the circuit board 7 has a resistor 75 for detecting the current supplied to the coil 23, and the resistor 75 is arranged on the surface of the circuit board 7 on the end cover 5 side.
  • This has the following effects.
  • the resistor 75 can be separated from the coil 23, and the resistor 75 can be suppressed from being affected by heat. Therefore, it is possible to suppress a decrease in the detection accuracy of the current supplied to the coil 23.
  • the circuit board 7 further includes a plurality of FETs 76A to 76C and an encoder 78, and the encoder 78 is a first FET 76A located on the leftmost side of the plurality of FETs 76A to 76C in a plan view.
  • the encoder 78 is a first FET 76A located on the leftmost side of the plurality of FETs 76A to 76C in a plan view.
  • a first insulating sheet 8 that insulates the circuit board 7 and the coil 23 is arranged between the circuit board 7 and the stator 2, and insulates the circuit board 7 and the end cover 5.
  • the second insulating sheet 9 By arranging the second insulating sheet 9 between the circuit board 7 and the end cover 5, the following effects are obtained.
  • the circuit board 7 and the coil 23 and the circuit board 7 are insulated and cut off by the first insulating sheet 8 and the circuit board 7 and the end cover 5 are insulated by the second insulating sheet 9. And even when the end covers 5 are arranged close to each other, the insulating property can be ensured and the safety can be improved.
  • each of the first insulating sheet 8 and the second insulating sheet 9 is adopted as the insulation in the axial direction, the thickness in the axial direction is increased as compared with the case where the sealing resin (mold resin) is used as the insulating material. Since the size is small, the rotary electric machine 1 can be miniaturized in the axial direction.
  • the resin 90 is filled in the gap between the case 4 and the stator 2 arranged in the case 4, and the coil 23 of the stator 2 is covered with the resin 90 to ensure the insulating property and the first insulating sheet. 8 makes it possible to further secure the insulating property.
  • the metal end cover 5 can be used, electromagnetic compatibility (EMC) is realized, and the electromagnetic compatibility (EMC) is realized.
  • EMC electromagnetic compatibility
  • each of the first insulating sheet 8 and the second insulating sheet 9 has the following effects when the LOI value in the 220 ° C. environment is higher than 20.8%.
  • a material having a LOI value higher than 20.8% in an environment of 220 ° C. has heat resistance and flame retardancy. For example, even if the ambient temperature of the coil 23 rises to 200 ° C. Has almost no effect. As a result, the insulation of the circuit board 7 and the coil 23 and the circuit board 7 and the end cover 5 can be ensured even under high temperature use, and the safety can be further improved.
  • the first insulator 21 has the following effects by having the sheet-side contact portion 81 that contacts the surface of the first insulating sheet 8 on the side of the stator 2.
  • the first insulating sheet 8 can be supported in the axial direction by the sheet-side contact portion 81.
  • the second insulating sheet 9 has the following effects when it is sandwiched between the opening portion on one side of the case 4 and the tip end of the cylindrical portion 50 of the end cover 5.
  • the second insulating sheet 9 can be held by the opening on one side of the case 4 and the tip of the cylindrical portion 50 of the end cover 5, and the second insulating sheet 9 can be positioned at a predetermined position in the axial direction.
  • each of the first insulating sheet 8 and the second insulating sheet 9 is formed of aramid fibers and has a thickness of 0.25 mm or more, thereby exhibiting the following effects.
  • Excellent withstand voltage characteristics for example, withstand voltage of 5000 V in UL standard
  • the circuit board 7 includes magnetic sensors 77A to 77C, and the magnetic sensors 77A to 77C are provided on the surface of the circuit board 7 on the side of the stator 2, so that the following effects are obtained.
  • the magnetic sensors 77A to 77C can be brought closer to the rotor 3, so that the detection accuracy of the magnetic sensors 77A to 77C is improved. be able to.
  • the first insulating sheet 8 when the first insulating sheet 8 is provided between the circuit board 7 and the stator 2, the first insulating sheet 8 can insulate the coil 23 and the magnetic sensors 77A to 77C.
  • the case 4 is a bottomed cylindrical case having a bottom portion 42 on the other side
  • the present invention is not limited to this.
  • the case 204 may be a cylindrical case.
  • the same configurations as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the rotary electric machine 201 is arranged between the cylindrical case 204, the front cover 215 attached to the opening end 245 on the other side of the tubular case 204, and the front cover 215 and the stator 2.
  • a resin sheet 10 is provided.
  • the tubular case 204 has a longer axial length than the bottomed tubular case 4 (see FIG. 1) of the first embodiment.
  • the cylindrical case 204 has a second step portion 246 at a portion on the other side in the axial direction.
  • the second step portion 246 has an annular surface 246a (hereinafter, also referred to as “second case side annular surface 246a”) that is annular when viewed from the axial direction, and the other side in the axial direction from the outer peripheral edge of the second case side annular surface 246a. It has a peripheral surface 246b extending to the side (hereinafter, also referred to as "second case side peripheral surface 246b").
  • the axial length of the second case side peripheral surface 246b is larger than the radial length of the second case side annular surface 246a.
  • the other side portion of the front cover 215 is attached to the attachment member 101 made of a metal plate material such as aluminum.
  • the other surface of the front cover 215 is a mounting surface for the mounting member 101.
  • the front cover 215 is attached to the opening end 245 on the other side of the cylindrical case 204 in the axial direction.
  • the front cover 215 is made of metal such as aluminum.
  • the front cover 215 has an annular surface 215a (hereinafter, also referred to as “front cover side annular surface 215a”) and an outer peripheral edge of the front cover side annular surface 215a on one side in the axial direction when viewed from the axial direction. It has a peripheral surface 215b (hereinafter, also referred to as "front cover side peripheral surface 215b”) extending from the to the other side in the axial direction.
  • the radial length of the front cover side annular surface 215a is larger than the radial length of the second case side annular surface 246a.
  • the axial length of the front cover side peripheral surface 215b is smaller than the axial length of the second case side peripheral surface 246b.
  • the axial length of the front cover side peripheral surface 215b is smaller than the radial length of the front cover side annular surface 215a.
  • the front cover 215 is attached to the opening end 245 on the other side of the tubular case 204 by fitting the outer peripheral portion of the front cover 215 on one side in the axial direction to the second step portion 246 of the cylindrical case 204. There is.
  • the front cover side peripheral surface 215b is in contact with the second case side peripheral surface 246b.
  • the front cover side annular surface 215a is axially separated from the second case side annular surface 246a.
  • the resin sheet 10 is arranged between the front cover 215 and the stator 2.
  • the resin sheet 10 is arranged between the front cover 215 and the second insulator 22.
  • the bottom portion 216 of the front cover 215 is provided with an annular convex portion 217 that abuts on the inner peripheral edge of the insertion hole of the resin sheet 10. ..
  • the axial height of the annular convex portion 217 is slightly larger than the thickness of the resin sheet 10.
  • the inner diameter of the insertion hole of the resin sheet 10 is designed to match the outer diameter of the annular convex portion 217.
  • the configuration for suppressing the misalignment of the resin sheet 10 is not limited to the provision of the annular convex portion 217.
  • the outer diameter of the resin sheet 10 may be adjusted to the inner diameter of the tubular case 204.
  • the position of the second insulator 22 in the axial direction is determined by abutting on the annular convex portion 217. Therefore, in the axial direction, the resin sheet 10 is separated from the second insulator 22.
  • the present invention is not limited to this, and the resin sheet 10 may be in contact with the second insulator 22.
  • the case 204 is a cylindrical case, which is arranged between the front cover 215 attached to the opening end 245 on the other side of the tubular case 204, the front cover 215, and the stator 2.
  • the resin sheet 10 and the resin sheet 10 the following effects can be obtained.
  • the resin sheet 10 having a higher thermal conductivity than the resin between the front cover 215 and the stator 2, when the front cover 215 is attached to the attachment member 101, the heat attachment member 101 generated from the coil 23 is attached. It is possible to promote heat conduction (heat dissipation) to the rotary electric machine 201 (coil 23) and suppress the temperature rise of the rotary electric machine 201 (coil 23).
  • the resin sheet 10 makes it possible to secure the insulating property between the front cover 215 and the stator 2 arranged in the case 204.
  • the encoder 78 in a plan view, the encoder 78 will be described with reference to an example in which the encoder 78 is arranged between the first FET 76A located on the leftmost side of the plurality of FETs 76A to 76C and the resistor 75.
  • the resistor 75 may be arranged between the first FET 76A located on the leftmost side of the plurality of FETs 76A to 76C and the encoder 78. .. That is, the resistor 75 is arranged between the first FET 76A and the encoder 78 in the circumferential direction.
  • the resistor 75 is arranged on the opposite side of the shaft hole 71 from the third FET 76C in a plan view.
  • the encoder 78 is arranged on the opposite side of the shaft hole 71 from the second FET 76B in a plan view.
  • the resistor 75 is arranged between the first FET 76A located on the leftmost side of the plurality of FETs 76A to 76C and the encoder 78, thereby achieving the following effects. Since a plurality of electronic components are mounted on the surface of the circuit board 7A on the end cover 5, the space for arranging each electronic component is limited, but the resistor 75, the encoder 78, and the plurality of FETs 76A to 76C are limited to the circuit. It can be suitably arranged in the space of the substrate 7A.
  • the resistor 75 has been described with reference to an example in which the resistor 75 is arranged on the side opposite to the second FET 76B with the shaft hole 71 interposed therebetween, but the present invention is not limited to this.
  • the resistor 75 may be arranged on the side opposite to the first FET 76A with the shaft hole 71 interposed therebetween.
  • the encoder 78 is arranged on the opposite side of the shaft hole 71 from the second FET 76B in a plan view.
  • the resistor 75 has been described with reference to an example in which the resistor 75 is arranged on the side opposite to the third FET 76C with the shaft hole 71 interposed therebetween, but the present invention is not limited to this.
  • the resistor 75 may be arranged on the side opposite to the second FET 76B with the shaft hole 71 interposed therebetween.
  • the encoder 78 is arranged in the vicinity of the third FET 76C in a plan view.
  • the temperature sensor 6 has been described with reference to an example in which the temperature sensor 6 is in contact with the bent portion 24a of the winding 24, but the present invention is not limited to this.
  • the temperature sensor 6 may be separated from the bent portion 24a of the winding 24.
  • the temperature sensor 6 may be arranged in the vicinity of the bent portion 24a of the winding 24 via the resin 90. Thereby, the temperature of the bent portion 24a of the winding 24 can be detected via the resin 90.
  • the circuit board 7 for controlling the drive of the rotary electric machine 1 (201) is provided, the circuit board 7 is arranged inside the outer end in the axial direction of the case 4 (204), and the stator 2 and the end are provided.
  • the circuit board 7 may be arranged outside the axially outer end of the case 4 (204).
  • the first insulator 21 has been described with an example of having a substrate-side contact portion 82 that abuts on the surface of the circuit board 7 on the side of the stator 2, but the present invention is not limited to this.
  • the first insulator 21 does not have to have the substrate-side contact portion 82.
  • the circuit board 7 may be supported by a support portion different from the substrate side contact portion 82.
  • the circuit board 7 has a plurality of engaging portions 72A to 72C arranged at intervals in the circumferential direction, and the first insulator 21 is a circuit through each of the plurality of engaging portions 72A to 72C.
  • the description has been given with reference to an example in which the engaging portions 84A to 84C are engaged with the substrate 7, but the present invention is not limited to this.
  • the first insulator 21 does not have to have engaging portions 84A to 84C.
  • the circuit board 7 may be engaged by an engaging portion different from the engaging portions 84A to 84C.
  • the gaps between the case 4 (204) and the insulators 21 and 22 and between the plurality of protrusions 20b in the stator core 20 are filled with the resin 90, and the case 4 (204), the stator 2 and the temperature are filled with the resin 90.
  • the present invention is not limited to this.
  • the gaps between the case 4 and the insulators 21 and 22 and between the plurality of protrusions 20b in the stator core 20 may not be filled with the resin 90.
  • the case 4 (204), the stator 2, and the temperature sensor 6 may be integrated by a coupling member different from the resin 90.
  • the present invention is not limited to this.
  • the resin sheet 10 may not be provided on the other side of the stator 2 in the axial direction.
  • an insulating sheet such as an insulating paper may be provided instead of the resin sheet 10.
  • the configuration for insulating the coil 23 can be changed according to the required specifications.
  • the circuit board 7 has a resistor 75 for detecting the current supplied to the coil 23, and the resistor 75 is arranged on the surface of the circuit board 7 on the end cover 5 side.
  • the resistor 75 may be arranged on the surface of the circuit board 7 on the side of the stator 2.
  • a substrate for example, a heat shield plate
  • the resistor 75 may be interposed between the coil 23, which is a heat generation source, and the resistor 75.
  • the rotary electric machine 1 (201) is arranged between the circuit board 7 and the stator 2, and has a first insulating sheet 8 that insulates the circuit board 7 and the coil 23, and the circuit board 7 and the end cover 5.
  • the rotary electric machine 1 (201) may be provided with one that can obtain the same effect instead of the first insulating sheet 8 and the second insulating sheet 9.
  • the rotary electric machine 1 (201) may include a resin sheet in place of each of the first insulating sheet 8 and the second insulating sheet 9.
  • the configuration for insulating the circuit board 7 and the coil 23 and the configuration for insulating the circuit board 7 and the end cover 5 can be changed according to the required specifications.
  • each of the first insulating sheet 8 and the second insulating sheet 9 has been described with an example in which the LOI value in the 220 ° C. environment is higher than 20.8%, but the present invention is not limited to this.
  • each of the first insulating sheet 8 and the second insulating sheet 9 may have a LOI value of 20.8% or less in a 220 ° C. environment.
  • the first insulator 21 has been described with an example of having a sheet-side contact portion 81 that comes into contact with the surface of the first insulating sheet 8 on the side of the stator 2, but the present invention is not limited to this.
  • the first insulator 21 does not have to have the seat side contact portion 81.
  • the first insulating sheet 8 may be supported by a support portion different from the sheet-side contact portion 81.
  • the second insulating sheet 9 has been described with reference to an example in which the second insulating sheet 9 is sandwiched between the opening portion on one side of the case 4 (204) and the tip end of the cylindrical portion 50 of the end cover 5.
  • the second insulating sheet 9 may be supported by a support portion different from the opening portion on one side of the case 4 (204) and the tip end of the cylindrical portion 50 of the end cover 5.
  • each of the first insulating sheet 8 and the second insulating sheet 9 has been described with an example of being formed of aramid fibers and having a thickness of 0.25 mm or more, but the present invention is not limited to this.
  • the materials and thicknesses of the first insulating sheet 8 and the second insulating sheet 9 can be changed according to the required specifications.
  • the circuit board 7 has been described with reference to an example including one resistor 75, three FETs 76A to 76C, and three magnetic sensors 77A to 77C, but the present invention is not limited to this.
  • a plurality of resistors 75 may be provided.
  • the FETs 76A to 76C may be provided with a number other than three.
  • the magnetic sensors 77A to 77C may be provided with a number other than three.
  • the number of resistors 75, FETs 76A to 76C, magnetic sensors 77A to 77C, and encoder 78 installed can be changed according to the required specifications.

Abstract

実施形態の回転電機(1)は、筒状のステータ(2)と、ステータ(2)の内部空間に配置されるロータ(3)と、ステータ(2)を収容する有底筒状のケース(4)と、ケース(4)の一方側の開口端(41)に取り付けられるエンドカバー(5)と、温度センサと、を備え、ステータ(2)は、ステータ(2)の中心に向けて突出する複数の突出部を有するステータコア(20)と、ステータコア(20)に装着されるインシュレータ(21,22)と、複数の突出部のそれぞれにインシュレータ(21,22)を介して巻線(24)を巻回してなるコイル(23)と、を備え、温度センサは、ステータ(2)のエンドカバー(5)の側において、隣り合うコイル(23)における巻線(24)の屈曲部の間に配置されている。

Description

回転電機
 本発明は、回転電機に関する。
 本発明は、2020年3月31日に、日本に出願された特願2020-062082号に基づき優先権を主張し、その内容をここに援用する。
 従来、回転電機において、インナロータ型のブラシレスDCモータが知られている(例えば、特許文献1及び2参照)。
 例えば、特許文献1には、モータのケース内に樹脂が注入された構造が開示されている。樹脂は、ロータが挿入される空間を中心部分に残し、ステータとケースとの間に充填されている。
 例えば、特許文献2には、モータの温度を検出し得る温度センサを備えた構造が開示されている。温度センサは、ステータコアに巻線を施してなるコイル内に埋め込まれている。
特許第3318531号公報 特許第3612715号公報
 しかし、温度センサを用いることによる完全性を向上し、モータの発熱による不具合を抑制する上で改善の余地があった。
 そこで本発明は、温度センサを用いることにより、回転電機の発熱による不具合を抑制することを目的とする。
 上記課題の解決手段として、本発明の態様は以下の構成を有する。
(1)本発明の態様に係る回転電機は、筒状のステータと、前記ステータの内部空間に配置されるロータと、前記ステータを収容する筒状又は有底筒状のケースと、前記ケースの一方側の開口端に取り付けられるエンドカバーと、温度センサと、を備え、前記ステータは、前記ステータの中心に向けて突出する複数の突出部を有するステータコアと、前記ステータコアに装着されるインシュレータと、前記複数の突出部のそれぞれに前記インシュレータを介して巻線を巻回してなるコイルと、を備え、前記温度センサは、前記ステータの前記エンドカバーの側において、隣り合う前記コイルにおける前記巻線の屈曲部の間に配置されている。
(2)上記(1)に記載の回転電機では、前記温度センサは、前記巻線の屈曲部に当接していてもよい。
(3)上記(1)又は(2)に記載の回転電機では、前記回転電機の駆動を制御する回路基板を更に備え、前記回路基板は、前記ケースの軸方向外端よりも内側に配置され、かつ、前記ステータと前記エンドカバーとの間に配置されていてもよい。
(4)上記(3)に記載の回転電機では、前記インシュレータは、前記回路基板の前記ステータの側の面に当接する当接部を有していてもよい。
(5)上記(3)又は(4)に記載の回転電機では、前記回路基板は、周方向に間隔をあけて配置される複数の係合部を有し、前記インシュレータは、前記複数の係合部のそれぞれを通じて前記回路基板に係合する係合部を有してもよい。
(6)上記(1)から(5)の何れか一項に記載の回転電機では、前記ケースと前記インシュレータとの間及び前記ステータコアにおける前記複数の突出部のそれぞれの間の隙間が樹脂により充填され、前記ケース、前記ステータ及び前記温度センサが一体化されていてもよい。
(7)上記(1)から(6)の何れか一項に記載の回転電機では、前記ケースは、筒状の筒状ケースであり、前記筒状ケースの他方側の開口端に取り付けられるフロントカバーと、前記フロントカバーと前記ステータとの間に配置される樹脂シートと、を更に備えてもよい。
(8)上記(1)から(6)の何れか一項に記載の回転電機では、前記ケースは、他方側に底部を有する有底筒状の有底筒状ケースであり、前記底部と前記ステータとの間に配置される樹脂シートを更に備えてもよい。
(9)上記(1)から(8)の何れか一項に記載の回転電機では、前記回転電機の駆動を制御する回路基板を更に備え、前記回路基板は、前記コイルに供給される電流を検出するための抵抗器を有し、前記抵抗器は、前記回路基板の前記エンドカバーの側の面に配置されていてもよい。
(10)上記(9)に記載の回転電機では、前記回路基板は、複数の電界効果トランジスタと、エンコーダと、を更に有し、平面視で、前記エンコーダは、前記複数の電界効果トランジスタのうち最も左側に位置する電界効果トランジスタと前記抵抗器との間に配置されていてもよい。
(11)上記(9)に記載の回転電機では、前記回路基板は、複数の電界効果トランジスタと、エンコーダと、を更に有し、平面視で、前記抵抗器は、前記複数の電界効果トランジスタのうち最も左側に位置する電界効果トランジスタと前記エンコーダとの間に配置されていてもよい。
 本発明によれば、温度センサを用いることにより、回転電機の発熱による不具合を抑制することができる。
第一実施形態に係る回転電機の軸線を含む断面図である。 図1のII囲み部の拡大図である。 第一実施形態に係る回転電機を軸方向の一方側から見た図である。 第一実施形態に係る回転電機を径方向外側から見た図である。 第一実施形態に係る回転電機を回路基板の側から見た斜視図である。 第一実施形態に係る回転電機を第一インシュレータの側から見た斜視図である。 第一実施形態に係る回路基板を軸方向の一方側から見た平面図である。 第一実施形態に係る回路基板を軸方向の他方側から見た平面図(図7Aの反対側の面の平面図)である。 第一実施形態に係る抵抗器等の配置の説明図である。 第一実施形態に係るステータコアを軸方向から見た図である。 第一実施形態に係るケース内の樹脂の充填構造の説明図である。 第二実施形態に係る回転電機の断面を示す、図1に相当する図である。 図11のXII囲み部の拡大図である。 第一変形例に係る抵抗器等の配置を示す、図8に相当する図である。 第二変形例に係る抵抗器等の配置を示す、図8に相当する図である。 第三変形例に係る抵抗器等の配置を示す、図8に相当する図である。
 以下、本発明の実施形態について図面を参照して説明する。以下の説明では、回転電機の一例であるインナロータ型のブラシレスDCモータを挙げて説明する。
[第一実施形態]
<回転電機>
 図1に示すように、回転電機1は、ステータ2と、ロータ3と、ケース4と、エンドカバー5と、温度センサ6(図3参照)と、回路基板7と、第一絶縁シート8と、第二絶縁シート9と、樹脂シート10と、を備える。本実施形態では、ケース4にステータ2が設けられることで、ステータユニットとして構成される。また、ステータユニットに温度センサ6と回路基板7とが設けられることで、ステータユニット組立体として構成される。
 図1において符号12は、シャフト11を回転可能に支持する軸受を示す。軸受12は、ケース4及びエンドカバー5のそれぞれに設けられている。回転電機1のシャフト11は、ケース4及びエンドカバー5にそれぞれ軸受12を介して回転可能に支持されている。以下、シャフト11の軸線CLに沿う方向を「軸方向」、軸線CLに直交する方向を「径方向」、軸線CL周りの方向を「周方向」とする。
<ステータ>
 ステータ2は、円筒状(筒状)を有する。ステータ2は、ステータコア20と、インシュレータ21,22と、コイル23と、を備える。
 例えば、ステータコア20は、鉄製の薄板材(電磁鋼板)を軸方向に複数枚積層することにより形成されている。ステータコア20は、軸線CLと同軸の環状を有する。ステータコア20は、ケース4の内周面に固定されている。
 図9に示すように、ステータコア20は、円環状のコア本体20aと、コア本体20aの内周面から径方向中心(ステータ2の中心)に向けて所定の長さで突出すると共にコア本体20aの内周面に沿って軸方向に所定の長さで形成される複数(例えば本実施形態では9つ)の突出部20bと、を備える。
 突出部20bは、径方向の内側端部である突出端部20cから更に周方向に延びる突出フランジ部20dを備える。本実施形態では、突出フランジ部20dは、突出端部20cを境に周方向両側に略同じ長さで延びている。9つの突出部20bは、それぞれ周方向に略同じ間隔をあけて配置されている。本実施形態では、9つの突出部20bは、それぞれ周方向に略40度(中心角)の間隔で配置されている。
 各突出部20bに設けられる突出フランジ部20dは、それぞれ周方向に間隔をあけて配置されている。ステータコア20は、それぞれの突出部20bの突出端部20cで囲まれる空間91を有する。
<インシュレータ>
 図1に示すように、インシュレータ21,22は、ステータコア20に装着されている。インシュレータ21,22は、軸方向に分割可能とされている(図5参照)。インシュレータ21,22は、コア本体20a(図9参照)の内周部に装着されている。インシュレータ21,22は、ステータコア20の軸方向の両側に装着されている。インシュレータ21,22は、ステータコア20の軸方向の一方側に装着された第一インシュレータ21と、ステータコア20の軸方向の他方側に装着された第二インシュレータ22と、により構成される。本実施形態では、第一インシュレータ21と第二インシュレータ22とを組み合わせることにより、インシュレータ21,22が形成される。
 コイル23は、複数の突出部20b(図9参照)のそれぞれにインシュレータ21,22を介して巻線24を巻回してなる。図3に示すように、コイル23は、複数の異なる相(例えば、U相、V相、W相)のコイル23U,23V,23Wを一組とし、三組からなる。U相、V相、W相のコイル23U,23V,23Wは、ステータコア20の周方向に沿ってこの順に配列されている。周方向に隣り合うコイル23同士は、間隔をあけて配置されている。本実施形態では、9つのコイル23は、それぞれ周方向に略40度(中心角)の間隔で配置されている。すなわち、三組のコイル23U,23V,23Wは、それぞれ周方向に略120度(中心角)の間隔で配置されている。図4に示すように、コイル23は、軸方向両端側で巻線24が屈曲した屈曲部24aをそれぞれ有する。屈曲部24aは、周方向に隣り合うコイル23の巻線24の軸方向両側にそれぞれ設けられている。屈曲部24aは、U相、V相、W相のコイル23U,23V,23Wの巻線24の軸方向両側にそれぞれ設けられている。
<ロータ>
 図1に示すように、ロータ3は、ステータ2の空間91(内部空間)に配置されている。ロータ3は、ステータ2の径方向内側にステータ2と間隔をあけて配置されている。ロータ3は、シャフト11に固定されている。ロータ3は、軸線CL周りにシャフト11と一体で回転可能である。ロータ3は、マグネットヨーク30と、マグネット31と、を備える。
 例えば、マグネットヨーク30は、アルミニウム等の金属材により形成されている。マグネットヨーク30は、軸線CLと同軸の環状を有する。例えば、マグネットヨーク30の内周面は、接着剤によりシャフト11の外周面に固定されている。
 例えば、マグネット31は、永久磁石である。マグネット31は、軸線CLと同軸の環状を有する。マグネット31は、マグネット31に設けられた挿入孔にマグネットヨーク30を挿入することでマグネットヨーク30に固定されている。これにより、マグネット31は、マグネットヨーク30及びシャフト11と一体に回転できる。なお、マグネット31は、ステータ2の内周面に対向する部位にN-S極の複数の磁極を有する。N-S極の複数の磁極は、周方向に交互に設けられている。
<ケース>
 ケース4は、ステータ2を収容する有底円筒状(有底筒状)を有する。ケース4(有底筒状ケース)は、ケース4の軸方向の一方側に開口端41を有する。ケース4は、ケース4の軸方向の他方側に底部42を有する。例えば、ケース4は、アルミニウム等の金属製である。
 ケース4は、軸方向に延びる円筒状の円筒部40(以下「ケース筒部40」ともいう。)と、ケース筒部40の軸方向の他方側に連結される底部42と、を備える。ケース筒部40及び底部42は、同一の部材で一体に形成されている。例えば、ケース4の底部42は、アルミニウム等の金属製板材で形成された取付部材101(図1参照)に取り付けられる。ケース4の他方面は、取付部材101への取付面となる。
 ケース4の底部42は、中央部に一方の面と他方の面とに連通する連通孔を有する。ケース4の底部42は、軸受12が装着される軸受装着部を有する。軸受装着部に装着される軸受12の孔と連通孔とは、互いに連通している。
 図2に示すように、ケース4は、ケース筒部40の軸方向の一方側に段部43を有する。段部43は、軸方向から見て円環状の環状面43a(以下「ケース側環状面43a」ともいう。)と、ケース側環状面43aの外周縁から軸方向の一方側に延びる周面43b(以下「ケース側周面43b」ともいう。)と、を有する。
 ケース側周面43bの軸方向の長さは、ケース側環状面43aの径方向の長さよりも大きい。
<エンドカバー> 
 図1に示すように、エンドカバー5は、ケース4の軸方向の一方側の開口端41に取り付けられている。例えば、エンドカバー5は、アルミニウム等の金属製である。エンドカバー5は、軸方向に延びる円筒状の円筒部50(以下「カバー筒部50」ともいう。)と、カバー筒部50の軸方向の一方側に連結される蓋部51と、を備える。カバー筒部50の軸方向の長さは、ケース筒部40の軸方向の長さよりも小さい。カバー筒部50及び蓋部51は、同一の部材で一体に形成されている。エンドカバー5の蓋部51は、ケース4側の中央部に軸受12が装着される軸受装着部を有する。
 図2に示すように、エンドカバー5は、カバー筒部50の軸方向の他方側から軸方向の他方側に起立する凸部52を有する。凸部52は、軸方向から見て円環状の環状面52a(以下「カバー側環状面52a」ともいう。)と、カバー側環状面52aの外周縁から軸方向の一方側に延びる周面52b(以下「カバー側周面52b」ともいう。)と、を有する。
 カバー側環状面52aの径方向の長さは、ケース側環状面43aの径方向の長さよりも大きい。
 カバー側周面52bの軸方向の長さは、ケース側周面43bの軸方向の長さよりも小さい。
 カバー側周面52bの軸方向の長さは、カバー側環状面52aの径方向の長さよりも大きい。
 エンドカバー5は、カバー筒部50の凸部52がケース筒部40の段部43に嵌め合わされることにより、ケース4の一方側の開口端41に取り付けられている。カバー側周面52bは、ケース側周面43bに当接している。カバー側環状面52aは、ケース側環状面43aに対し軸方向に離れている。
<温度センサ>
 例えば、温度センサ6は、PTC(Positive Temperature Coefficient)サーミスタである。温度センサ6は、ステータ2のエンドカバー5の側に設けられている。
 温度センサ6は、温度が一定以上になると抵抗値が急激に増加する機能を有する。温度センサ6は、不図示のモータ駆動用電源及び回路基板7のそれぞれに電気的に接続されている。例えば、温度センサ6は、温度センサ6付近の温度が所定値以上となった場合に、回路基板7への電力供給を停止するよう抵抗値が増加する。
 図4に示すように、温度センサ6は、隣り合うコイル23における巻線24の屈曲部24aの間に配置されている。温度センサ6は、巻線24の屈曲部24aに当接している。温度センサ6は、周方向に隣り合う2つのコイル23(本実施形態では隣り合うコイル23V,23W)のそれぞれの巻線24の屈曲部24aに当接している。本実施形態では、温度センサ6は1つのみ設けられている。本実施形態では、温度センサ6は、周方向に隣り合うV相コイル23VとW相コイル23Wとにおける巻線24の屈曲部24aの間に配置されている。
 例えば、不図示の治具により温度センサ6を隣り合う巻線24の屈曲部24aのそれぞれに当接させる。この状態で、不図示の充填装置により、巻線24の屈曲部24aと温度センサ6との当接部の周囲に樹脂を充填する。これにより、温度センサ6が巻線24の屈曲部24aに当接した状態を保持することができる。
<回路基板>
 回路基板7は、回転電機1の駆動を制御する。図1に示すように、回路基板7は、ケース4の軸方向外端より内側となるケース4内部に配置されている。回路基板7は、第一インシュレータ21の上面から上方に突出して設けられる後述の当接部82により支持されている。回路基板7は、当接部82の支持により、第一インシュレータ21の上面から所定の間隔をあけて配置されている。回路基板7は、ステータ2とエンドカバー5との間に配置されている。回路基板7は、ケース4の一方側の開口端41よりも軸方向内側に配置されている。回路基板7は、ケース側環状面43aよりも僅かに軸方向内側に配置されている(図2参照)。回路基板7は、ケース4の内周面に固定されている。
 図7Aに示すように、回路基板7は、平面視で円環状の基板本体70と、コイル23(図1参照)に供給される電流を検出するための抵抗器75と、スイッチング素子としての電界効果トランジスタ76A~76C(FET:Field Effect Transistor」)と、シャフト11(図1参照)の回転角度を検出するためのエンコーダ78と、各種の電子部品79と、モータコントローラ用IC102と、を備える。
 モータコントローラ用IC102は、各FET76A~76Cを所定の順序で選択的にオン・オフさせることによりU相、V相、W相のコイル23U,23V,23Wの各相に電流を発生させる。
 図7Bは、回路基板7において図7Aの反対側の面(裏面)を平面視した図である。
 図7Bに示すように、回路基板7は、マグネット31の磁気の状態(磁場の大きさ・方向)を検出するための磁気センサ77A~77Cを備える。
 基板本体70は、軸線CLと同軸の軸孔71と、第一インシュレータ21と係合する係合部72A~72C(基板側係合部)と、ケーブル100(図1参照)を電気的に接続するための接続孔73と、コイル23の引き出し線25A~25C(図3参照)を通すための切欠き74A~74Cと、を有する。
 平面視で、軸孔71は、円形状を有する。軸孔71の直径は、シャフト11の外径よりも大きい。回路基板7は、シャフト11の径方向外側にシャフト11と間隔をあけて配置されている(図1参照)。
 平面視で、係合部72A~72Cは、周方向に延びる長孔形状を有する。係合部72A~72Cは、周方向に間隔をあけて複数(例えば本実施形態では3つ)設けられている。3つの係合部72A~72C(第一係合部72A、第二係合部72B及び第三係合部72C)は、それぞれ周方向に略同じ間隔をあけて配置されている。
 平面視で、接続孔73は、円形状を有する。接続孔73は、周方向に間隔をあけて複数(例えば本実施形態では8つ)設けられている。8つの接続孔73は、周方向において第一係合部72Aと第三係合部72Cとの間に配置されている。
 平面視で、切欠き74A~74Cは、回路基板7の径方向外方に開口する凹形状を有する。切欠き74A~74Cは、周方向に間隔をあけて複数(例えば本実施形態では3つ)設けられている。3つの切欠き74A~74C(第一切欠き74A、第二切欠き74B及び第三切欠き74C)は、周方向において第二係合部72Bと第三係合部72Cとの間に配置されている。
 例えば、抵抗器75は、シャント抵抗器である。本実施形態では、抵抗器75は、1つのみ設けられている。抵抗器75は、基板本体70(回路基板7)のエンドカバー5の側の面に設けられている。すなわち、抵抗器75は、基板本体70のステータ2側の面とは反対側の面に設けられている。
 FET76A~76Cは、周方向に間隔をあけて複数(例えば本実施形態では3つ)設けられている。FET76A~76Cは、基板本体70のエンドカバー5の側の面に設けられている。すなわち、FET76A~76Cは、基板本体70において抵抗器75と同じ側の面に設けられている。
 3つのFET76A~76C(第一FET76A、第二FET76B及び第三FET76C)は、それぞれ3つの切欠き74A~74C(第一切欠き74A、第二切欠き74B及び第三切欠き74C)の近傍に配置されている。3つのFET76A~76Cと3つの切欠き74A~74Cとの間には、それぞれコイル23の引き出し線25A~25C(図3参照)を半田付けするための領域26A~26Cが設けられている。
 領域26A~26Cは、コイル23の引き出し線25A~25Cの近傍に配置されている。これにより、コイル23の引き出し線25A~25Cが過度に長くなることを抑制し、ノイズの発生を抑えることができる。
 FET76A~76Cは、コイル23の引き出し線25A~25Cと電気的に接続されている。例えば、コイル23の引き出し線25A~25Cは、領域26A~26Cで半田付けされた後、回路基板7上に形成された配線によって、FET76A~76Cに電気的に接続される。FET76A~76Cは、領域26A~26Cの近傍に配置されていることにより、回路基板7上の配線の短縮化、単純化を図ることができる。
 例えば、磁気センサ77A~77Cは、ホール素子である。磁気センサ77A~77Cは、周方向に間隔をあけて複数(例えば本実施形態では3つ)設けられている。磁気センサ77A~77Cは、基板本体70のステータ2側の面(図7Bの面)に設けられている。
 図7Bの平面視で、3つの磁気センサ77A~77C(第一磁気センサ77A、第二磁気センサ77B及び第三磁気センサ77C)は、それぞれマグネット31の回転による磁束の変化を、静止側の基板本体70の特定位置に置かれた磁気センサで検出する。
 例えば、磁気センサは、平面視で見たときのマグネット31の直上であって、軸方向においてマグネット31に近接して配置されているとよい。これにより、マグネット31の回転検出感度を向上することができる。
 例えば、エンコーダ78は、発光素子に赤外線発光ダイオード(IR LED)を使用した光学式エンコーダである。例えば、エンコーダ78は、シャフト11に取り付けられた不図示の検出体用円板(スリット孔を有する円板)の回転を検出し、光のオン/オフ信号を発生させる。本実施形態では、エンコーダ78は、1つのみ設けられている。エンコーダ78は、回路基板7に設けられる電子部品の中で最も大きい設置面積を有する。エンコーダ78は、基板本体70のエンドカバー5の側に設けられている。
 図8に示すように、平面視で、エンコーダ78は、3つのFET76A~76Cのうち最も左側に位置する第一FET76Aと抵抗器75との間に配置されている。すなわち、エンコーダ78は、周方向において第一FET76Aと抵抗器75との間に配置されている。本実施形態では、平面視で、抵抗器75は、軸孔71を挟んで第二FET76Bとは反対側に配置されている。なお、図8においては、基板本体70の軸孔71以外の孔、切欠き等の図示を省略している。
<第一絶縁シート>
 図1に示すように、第一絶縁シート8は、ステータ2及びロータ3と回路基板7との間に配置されている。第一絶縁シート8は、少なくとも回路基板7とコイル23とを絶縁する。第一絶縁シート8は、軸方向から見て、円環状を有する。第一絶縁シート8は、中央部にシャフト11が挿通される挿通孔を形成する内周縁部を有する。第一絶縁シート8の内周縁部は、シャフト11の径方向外側にシャフト11と間隔をあけて配置されている。これにより、第一絶縁シート8は、シャフト11の回転を許容する。第一絶縁シート8は、第一インシュレータ21により支持されている。具体的には、第一絶縁シート8は、第一インシュレータ21に複数設けられる後述の当接部81に支持されている。
<第二絶縁シート>
 第二絶縁シート9は、回路基板7とエンドカバー5との間に配置されている。第二絶縁シート9は、回路基板7と隣り合う位置に配置されている。第二絶縁シート9は、少なくとも回路基板7とエンドカバー5とを絶縁する。第二絶縁シート9は、軸方向から見て、第一絶縁シート8よりも大きい円環状を有する。第二絶縁シート9は、中央部にシャフト11が挿通される挿通孔を形成する内周縁部を有する。第二絶縁シート9の内周縁部は、シャフト11の径方向外側にシャフト11と間隔をあけて配置されている。これにより、第二絶縁シート9は、シャフト11の回転を許容する。
 図2に示すように、第二絶縁シート9は、内周縁から外周縁に向けて径方向全体にわたって延びている。第二絶縁シート9の外周縁部は、ケース側周面43bの近傍に配置されている。第二絶縁シート9の外周縁部は、ケース4の一方側の開口部分とエンドカバー5の円筒部50の先端とに挟まれている。第二絶縁シート9は、ケース筒部40の段部43とカバー筒部50の凸部52とに挟まれることにより、保持されている。第二絶縁シート9は、ケース側環状面43aとカバー側環状面52aとに当接する。第二絶縁シート9は、ケース側周面43bから僅かに離れている。第二絶縁シート9は、軸方向において回路基板7のエンドカバー5の側の面から僅かに離れている。回路基板7のエンドカバー5の側の面と第二絶縁シート9との間に空隙を設けることにより、回路基板7とエンドカバー5との更なる絶縁性を確保している。
<第一絶縁シート及び第二絶縁シートの特性>
 第一絶縁シート8及び第二絶縁シート9のそれぞれは、絶縁性及び難燃性を兼ね備えるシートである。第一絶縁シート8及び第二絶縁シート9のそれぞれは、アラミド繊維により形成されている。例えば、第一絶縁シート8及び第二絶縁シート9のそれぞれは、絶縁紙である。第一絶縁シート8及び第二絶縁シート9のそれぞれは、0.25mm以上の厚みを有する。例えば、第一絶縁シート8及び第二絶縁シート9のそれぞれは、0.25mm以上0.35mm以下の厚みを有する。
 例えば、第一絶縁シート8及び第二絶縁シート9のそれぞれは、ASTM E1530に準拠した測定方法での測定温度150℃における熱伝導率が0.12W/m・K以上0.14W/m・K以下である。
 第一絶縁シート8及び第二絶縁シート9のそれぞれは、220℃環境下におけるLOI(Limiting Oxygen index)値が20.8%より高い。ここで、LOI値は、難燃性を測る尺度として用いられる数値であり、「JIS K7201限界酸素指数」で規定されている。例えば、第一絶縁シート8及び第二絶縁シート9のそれぞれは、厚みが0.25mmの場合、220℃環境下におけるLOI値が22%以上25%以下である。
<樹脂シート>
 図1に示すように、樹脂シート10は、ケース4の底部42とステータ2との間に配置されている。樹脂シート10は、ケース4の底部42と第二インシュレータ22との間に配置されている。樹脂シート10は、軸方向から見て、円環状を有する。樹脂シート10は、中央部にシャフト11が挿通される挿通孔を形成する内周縁部を有する。樹脂シート10の内周縁部は、シャフト11の径方向外側にシャフト11と間隔をあけて配置されている。これにより、樹脂シート10は、シャフト11の回転を許容する。
 本実施形態では、樹脂シート10の位置ずれを抑制するために、ケース4の底部42に、樹脂シート10の挿通孔の内周縁と当接する円環状の環状凸部44が設けられている。環状凸部44の軸方向の高さは、樹脂シート10の厚さよりも僅かに大きい。例えば、樹脂シート10の挿通孔の内径は、環状凸部44の外径に合わせて設計されている。
 なお、樹脂シート10の位置ずれを抑制するための構成は、環状凸部44を設けることに限らない。例えば、環状凸部44を設ける代わりに、樹脂シート10の外径をケース4の内径に合わせてもよい。
 本実施形態では、第二インシュレータ22は、環状凸部44に当接することにより軸方向の位置が決まる。よって、軸方向において、樹脂シート10は、第二インシュレータ22から離れている。しかし、これに限らず、樹脂シート10は、第二インシュレータ22に当接していてもよい。
 樹脂シート10は、シリコーンにより形成されている。樹脂シート10は、0.2mm以上の厚みを有する。例えば、樹脂シート10は、0.2mm以上0.3mm以下の厚みを有する。
 例えば、樹脂シート10は、ASTM D5470に準拠した測定方法での荷重20psiにおける熱伝導率が1.0W/m・K以上1.4W/m・K以下である。
 樹脂シート10は、材料の燃えにくさの度合いを表す規格であるUL94規格においてV-0を有する。
<第一インシュレータ>
 図1に示すように、第一インシュレータ21は、ステータコア20と同軸の環状の環状部80と、第一絶縁シート8のステータ2の側の面に当接する当接部81(以下「シート側当接部81」ともいう。)と、回路基板7のステータ2の側の面に当接する当接部82(以下「基板側当接部82」ともいう。)と、回路基板7のステータ2の側の面に向けて延びる複数の延在部83(図6参照)と、回路基板7の複数の係合部72A~72Cのそれぞれを通じて回路基板7に係合する係合部84A~84C(図5参照)と、を備える。
 シート側当接部81は、環状部80の内周側から軸方向の一方側に向けて延びている。シート側当接部81の先端は、第一絶縁シート8のステータ2の側の面に当接している。シート側当接部81は、周方向に間隔をあけて複数(例えば本実施形態では9つ)設けられている(図6参照)。9つのシート側当接部81は、それぞれ周方向に略同じ間隔をあけて配置されている(図6参照)。
 基板側当接部82は、環状部80の外周側から軸方向の一方側に向けて延びている。基板側当接部82の先端は、回路基板7のステータ2の側の面に当接している。基板側当接部82は、シート側当接部81及び延在部83のそれぞれよりも長く軸方向の一方側に向けて延びている(図6参照)。基板側当接部82は、周方向に間隔をあけて複数(例えば本実施形態では11個)設けられている(図6参照)。
 図6に示すように、延在部83は、環状部80の外周側から軸方向の一方側に向けて延びている。延在部83は、周方向に間隔をあけて複数(例えば本実施形態では4つ)設けられている。延在部83の先端は、回路基板7のステータ2の側の面から離れている。すなわち、延在部83は、回路基板7に当接していない。延在部83の先端と回路基板7のステータ2の側の面との間には、隙間が形成される。延在部83の先端と回路基板7との間の隙間は、ケーブル100の配線部1001(図2参照)を回路基板7に電気的に接続する際に、配線部1001が収容される空間のための隙間である。この隙間は、下記の如く出っ張った配線部1001の逃げとして機能する。具体的には、配線部1001を接続孔73に挿通した状態で配線部1001を回路基板7に半田付けを行う。すると、配線部1001及び半田が回路基板7のステータ2の側の面からステータ2の側に出っ張る。この出っ張った配線部1001の逃げとして隙間を設けている。
 図6に示すように、係合部84A~84C(インシュレータ側係合部)は、環状部80の外周側から軸方向の一方側に向けて延びている。係合部84A~84Cは、基板側当接部82よりも長く軸方向の一方側に向けて延びている。係合部84A~84Cは、回路基板7に係合可能なフック形状を有する(図5参照)。係合部84A~84Cは、環状部80から軸方向の一方側に向けて延びた後に径方向外方へ向けて屈曲している。これにより、係合部84A~84Cは、は、回路基板7との係合状態を維持可能にする。
 係合部84A~84Cは、周方向に間隔をあけて複数(例えば本実施形態では3つ)設けられている。3つの係合部84A~84C(第一係合部84A、第二係合部84B及び第三係合部84C)は、それぞれ周方向に略同じ間隔をあけて配置されている。3つの係合部84A~84C(第一係合部84A、第二係合部84B及び第三係合部84C)は、それぞれ3つの係合部72A~72C(第一係合部72A、第二係合部72B及び第三係合部72C)を通じて回路基板7に係合する(図5参照)。
 11個の基板側当接部82は、周方向において第一係合部84Aと第二係合部84Bとの間に配置された5個の基板側当接部82と、周方向において第二係合部84Bと第三係合部84Cとの間に配置された5個の基板側当接部82と、周方向において第一係合部84Aと第三係合部84Cとの間に配置された1個の基板側当接部82と、である。
 4個の延在部83は、周方向において第一係合部84Aと第三係合部84Cとの間に配置されている。
<ケース内の樹脂の充填構造>
 図10に示すように、ケース4とインシュレータ21,22(第一インシュレータ21及び第二インシュレータ22)との間の隙間は、樹脂90により充填されている。これにより、ケース4とインシュレータ21,22との間の隙間は、樹脂90で満たされている。ステータコア20における複数の突出部20b(図9参照)のそれぞれの間の隙間は、樹脂90により充填されている。これにより、ステータコア20における複数の突出部20bのそれぞれの間の隙間は、樹脂90で満たされている。ケース4、ステータ2及び温度センサ6(図4参照)は、樹脂90により一体化されている。
 例えば、樹脂90をケース4内に充填する充填工程は、以下の手順で行う。
 例えば、コイル23の屈曲部24aに温度センサ6を不図示の治具を用いて当接し、温度センサ6のリード線60を外に出す。その後、この状態で、ケース4内に樹脂90を充填する(図4参照)。これにより、ケース4、ステータ2及び温度センサ6は、樹脂90により一体化される。その後、リード線60を回路基板7のスリット(不図示)に通して回路基板7に半田付けする。このようにして、リード線60を回路基板7に接続する配線工程が行われる。
 樹脂90は、シャフト11及びロータ3が挿入される空間91を中心部分に残し、それ以外のケース4内の隙間に充填されている。例えば、樹脂90は、エポキシ樹脂等の熱硬化性樹脂である。樹脂90は、ケース4内の軸方向においてコイル23(図1参照)が露出しない位置まで充填されている。
 例えば、樹脂90は、ASTM D5470に準拠した測定方法での荷重20psiにおける熱伝導率が0.1W/m・K以上0.9W/m・K以下である。樹脂90は、材料の燃えにくさの度合いを表す規格であるUL94規格においてV-0を有する。樹脂90は、ASTM D257に準拠した測定方法での25℃環境下における体積低効率が1×1015Ω・cmであり、100℃環境下における体積低効率が1×1015Ω・cmであり、150℃環境下における体積低効率が3×1013Ω・cmである。
 例えば、ケース4にステータ2を設置し、樹脂90をケース4内に充填させることにより製造するステータユニットの製造方法は、以下の手順(工程)により行う。
 先ず、ケース4内に樹脂シート10を入れる(シート配置工程)。
 次に、ケース4内にステータ2を入れる(ステータ配置工程)。
 次に、ケース4内にロータ3と略同じ大きさの円筒状の型材を入れる(第一充填準備工程)。例えば、型材は、空間91を形成する複数の突出端部20cとロータ3の外周面とが当接する大きさの円筒状を有する。型材は、例えば、ポリテトラフルオロエチレン(PTFE:Polytetrafluoroethylene)のシートである。
 次に、不図示の治具を用いて温度センサ6を隣り合うコイル23の屈曲部24aに当接した状態で隣り合うコイル23の屈曲部24aの間に配置する(第二充填準備工程)。
 次に、ケース4の内周面と型材の外周面との間に樹脂90を不図示の充填装置を用いて充填する(樹脂充填工程)。
 次に、樹脂90を充填したケース4を真空槽に入れてから充填させた樹脂90内に含まれる気泡を除去(脱気)するため真空引きし、脱気する(充填仕上げ工程)。
 次に、型材を取り出す(充填完了工程)。これにより、樹脂90を充填したケース4内にロータ3が入る空間91が形成される。
<作用効果>
 以上説明したように、上記実施形態の回転電機1は、筒状のステータ2と、ステータ2の内部空間に配置されるロータ3と、ステータ2を収容する有底筒状のケース4と、ケース4の一方側の開口端41に取り付けられるエンドカバー5と、温度センサ6と、を備え、ステータ2は、ステータ2の中心に向けて突出する複数の突出部20bを有するステータコア20と、ステータコア20に装着されるインシュレータ21,22と、複数の突出部20bのそれぞれにインシュレータ21,22を介して巻線24を巻回してなるコイル23と、を備え、温度センサ6は、ステータ2のエンドカバー5の側において、隣り合うコイル23における巻線24の屈曲部24aの間に配置されている。
 この構成によれば、温度センサ6は、ステータ2のエンドカバー5の側において、隣り合うコイル23における巻線24の屈曲部24aの間に配置されていることで、回転電機1において最も発熱し易い屈曲部24aの温度を検出することができる。例えば、温度センサ6の検出結果(回転電機1のコイル23における巻線24の屈曲部24aの温度)に基づいて、回転電機1の駆動を最適に動作させることができる。したがって、温度センサ6を用いることにより、回転電機1の発熱による不具合を抑制することができる。
 上記実施形態では、温度センサ6は、巻線24の屈曲部24aに当接していることで、巻線24の屈曲部24aの温度を直に検出することができる。したがって、回転電機1において最も発熱し易い屈曲部24aの温度をより高い精度で検出することができる。
 上記実施形態では、回転電機1の駆動を制御する回路基板7を更に備える。回路基板7は、ケース4内に配置され、かつ、ステータ2とエンドカバー5との間に配置されていることで、以下の効果を奏する。
 回路基板7がケース4外(エンドカバー5内)に配置される場合と比較して、回路基板7の組付けが容易となる。したがって、回転電機1の組立を効率良く行うことができる。
 上記実施形態では、第一インシュレータ21は、回路基板7のステータ2の側の面に当接する基板側当接部82を有することで、以下の効果を奏する。
 基板側当接部82により回路基板7をコイル23から離間させて軸方向の所定の位置で支持することができる。具体的には、基板側当接部82により回路基板7をコイル23から離間させて配置することで、発熱源であるコイル23から回路基板7を所定の間隔で離間することができる。また、ロータ3のマグネット31を3つの磁気センサ77A~77Cにより最適に検出可能な位置に設定することができる。
 上記実施形態では、回路基板7は、周方向に所定の間隔をあけて配置される複数の係合部72A~72Cを有する。第一インシュレータ21は、複数の係合部72A~72Cのそれぞれに対応する係合部84A~84Cを有する。回路基板7の複数の係合部72A~72Cに第一インシュレータ21の係合部84A~84Cが挿通された状態で回路基板7と第一インシュレータ21とが係合することで、以下の効果を奏する。
 複数の係合部84A~84Cにより回路基板7の周方向及び径方向の位置を規定しつつ回路基板7を保持することができる。
 上記実施形態では、ケース4とケース4内に配置されたステータ2のインシュレータ21,22との間及びステータコア20における複数の突出部20bのそれぞれの間の隙間が樹脂90により満たされ、ケース4、ステータ2及び温度センサ6が一体化されていることで、以下の効果を奏する。
 ケース4内の隙間に充填した樹脂90によりステータ2のコイル23から発せられた熱の熱伝導性が向上され、発せられた熱がケース4全体から放たれることで、回転電機1の昇温(コイル23の昇温)を抑制することができる。加えて、ステータ2のコイル23に対する温度センサ6の接触状態が維持されることで良好となり、温度の検出精度が向上する。したがって、温度センサ6を用いることにより、回転電機1(コイル23)の発熱による不具合をより効果的に抑制することができる。
 上記実施形態では、ケース4は、他方側に底部42を有する有底筒状の有底筒状ケースであり、底部42とステータ2との間に配置される樹脂シート10を更に備えることで、以下の効果を奏する。
 ケース4の底部42とステータ2との間に樹脂よりも更に熱伝導率の高い樹脂シート10を配置することにより、ケース4の底部42が取付部材101に取り付けられる場合、コイル23から発生する熱の取付部材101への熱伝導(放熱)を促進し、回転電機1(コイル23)の昇温を抑制することができる。また、ケース4の底部42とケース4内に配置されるステータ2との間の絶縁性を、樹脂シート10により確保することが可能となる。
 上記実施形態では、回路基板7は、コイル23に供給される電流を検出するための抵抗器75を有し、抵抗器75は、回路基板7のエンドカバー5の側の面に配置されていることで、以下の効果を奏する。
 発熱源であるコイル23と抵抗器75との間に回路基板7が介在することで、抵抗器75をコイル23から離し、抵抗器75が熱の影響を受けることを抑制することができる。したがって、コイル23に供給される電流の検出精度の低下を抑制することができる。
 上記実施形態では、回路基板7は、複数のFET76A~76Cと、エンコーダ78と、を更に有し、平面視で、エンコーダ78は、複数のFET76A~76Cのうち最も左側に位置する第一FET76Aと抵抗器75との間に配置されていることで、以下の効果を奏する。
 回路基板7のエンドカバー5の側の面は、複数の電子部品が取り付けられるため、各電子部品の配置スペースは限られるものの、抵抗器75、エンコーダ78及び複数のFET76A~76Cを限られた回路基板7のスペースに好適に配置することができる。
 上記実施形態では、回転電機1は、回路基板7とコイル23とを絶縁する第一絶縁シート8が回路基板7とステータ2との間に配置され、回路基板7とエンドカバー5とを絶縁する第二絶縁シート9が回路基板7とエンドカバー5との間に配置されることで、以下の効果を奏する。
 第一絶縁シート8により回路基板7とコイル23とを絶縁すると共に遮断し、第二絶縁シート9により回路基板7とエンドカバー5とを絶縁することで、回路基板7及びコイル23並びに回路基板7及びエンドカバー5を近接して配置した場合においても、絶縁性の確保が可能となり、安全性を向上することができる。加えて、軸方向の絶縁として第一絶縁シート8及び第二絶縁シート9のそれぞれを採用することにより、封止樹脂(モールド樹脂)を絶縁材として用いた場合と比較して軸方向の厚みが小さくて済むため、軸方向において回転電機1を小型化することができる。
 加えて、ケース4とケース4内に配置されるステータ2との隙間に樹脂90が充填され、ステータ2のコイル23が樹脂90で覆われることにより絶縁性が確保されると共に、第一絶縁シート8により更なる絶縁性の確保が可能となる。加えて、第二絶縁シート9により回路基板7とエンドカバー5とが絶縁されることで、金属製のエンドカバー5を使用可能となり、電磁両立性(EMC:Electromagnetic Compatibility)を実現し、かつ、放熱効果を高めることができる。
 上記実施形態では、第一絶縁シート8及び第二絶縁シート9のそれぞれは、220℃環境下におけるLOI値が20.8%より高いことで、以下の効果を奏する。
 220℃環境下におけるLOI値が20.8%より高い材料は、耐熱性、難燃性を有し、例えばコイル23の周辺温度が200℃まで上がったとしても電気的特性、機械的特性に対してほとんど影響がない。これにより、高温使用下においても、回路基板7及びコイル23並びに回路基板7及びエンドカバー5の絶縁性の確保が可能となり、安全性を更に向上することができる。
 上記実施形態では、第一インシュレータ21は、第一絶縁シート8のステータ2の側の面に当接するシート側当接部81を有することで、以下の効果を奏する。
 シート側当接部81により第一絶縁シート8を軸方向において支持することができる。
 上記実施形態では、第二絶縁シート9は、ケース4の一方側の開口部分とエンドカバー5の円筒部50の先端とに挟まれていることで、以下の効果を奏する。
 ケース4の一方側の開口部分とエンドカバー5の円筒部50の先端とにより第二絶縁シート9を保持し、第二絶縁シート9を軸方向の所定の位置で位置決めすることができる。
 上記実施形態では、第一絶縁シート8及び第二絶縁シート9のそれぞれは、アラミド繊維により形成され、0.25mm以上の厚みを有することで、以下の効果を奏する。
 第一絶縁シート8及び第二絶縁シート9のそれぞれにおいて、優れた耐電圧特性(例えば、UL規格において耐電圧5000V)を得ることができる。
 上記実施形態では、回路基板7は、磁気センサ77A~77Cを備え、磁気センサ77A~77Cは、回路基板7のステータ2の側の面に設けられていることで、以下の効果を奏する。
 磁気センサ77A~77Cが回路基板7のエンドカバー5の側に設けられる場合と比較して、磁気センサ77A~77Cをロータ3に近づけることができるため、磁気センサ77A~77Cの検出精度を向上することができる。加えて、回路基板7とステータ2との間に第一絶縁シート8が設けられている場合、第一絶縁シート8によりコイル23と磁気センサ77A~77Cとの間の絶縁を行うことができる。
[第二実施形態]
 上述した第一実施形態では、ケース4が他方側に底部42を有する有底筒状の有底筒状ケースである例を挙げて説明したが、これに限らない。例えば、図11に示すように、ケース204は、筒状の筒状ケースであってもよい。図11において、上記第一実施形態と同一の構成には同一の符号を付し、その詳細説明は省略する。
 図11に示すように、回転電機201は、筒状ケース204と、筒状ケース204の他方側の開口端245に取り付けられるフロントカバー215と、フロントカバー215とステータ2との間に配置される樹脂シート10と、を備える。
 筒状ケース204は、上記第一実施形態の有底筒状ケース4(図1参照)よりも軸方向の長さが大きい。図12に示すように、筒状ケース204は、軸方向の他方側の部位に第二段部246を有する。第二段部246は、軸方向から見て円環状の環状面246a(以下「第二ケース側環状面246a」ともいう。)と、第二ケース側環状面246aの外周縁から軸方向の他方側に延びる周面246b(以下「第二ケース側周面246b」ともいう。)と、を有する。第二ケース側周面246bの軸方向の長さは、第二ケース側環状面246aの径方向の長さよりも大きい。
 例えば、フロントカバー215の他方側の部分は、アルミニウム等の金属製板材で形成された取付部材101に取り付けられる。フロントカバー215の他方面は、取付部材101への取付面となる。
 フロントカバー215は、筒状ケース204の軸方向の他方側の開口端245に取り付けられている。例えば、フロントカバー215は、アルミニウム等の金属製である。フロントカバー215は、軸方向の一方側の部分に、軸方向から見て円環状の環状面215a(以下「フロントカバー側環状面215a」ともいう。)と、フロントカバー側環状面215aの外周縁から軸方向の他方側に延びる周面215b(以下「フロントカバー側周面215b」ともいう。)と、を有する。
 フロントカバー側環状面215aの径方向の長さは、第二ケース側環状面246aの径方向の長さよりも大きい。
 フロントカバー側周面215bの軸方向の長さは、第二ケース側周面246bの軸方向の長さよりも小さい。
 フロントカバー側周面215bの軸方向の長さは、フロントカバー側環状面215aの径方向の長さよりも小さい。
 フロントカバー215は、フロントカバー215の軸方向の一方側の外周部分が筒状ケース204の第二段部246に嵌め合わされることにより、筒状ケース204の他方側の開口端245に取り付けられている。フロントカバー側周面215bは、第二ケース側周面246bに当接している。フロントカバー側環状面215aは、第二ケース側環状面246aに対し軸方向に離れている。
 樹脂シート10は、フロントカバー215とステータ2との間に配置されている。樹脂シート10は、フロントカバー215と第二インシュレータ22との間に配置されている。第二実施形態では、樹脂シート10の位置ずれを抑制するために、フロントカバー215の底部216に、樹脂シート10の挿通孔の内周縁と当接する円環状の環状凸部217が設けられている。環状凸部217の軸方向の高さは、樹脂シート10の厚さよりも僅かに大きい。例えば、樹脂シート10の挿通孔の内径は、環状凸部217の外径に合わせて設計されている。
 なお、樹脂シート10の位置ずれを抑制するための構成は、環状凸部217を設けることに限らない。例えば、環状凸部217を設ける代わりに、樹脂シート10の外径を筒状ケース204の内径に合わせてもよい。
 第二実施形態では、第二インシュレータ22は、環状凸部217に当接することにより軸方向の位置が決まる。よって、軸方向において、樹脂シート10は、第二インシュレータ22から離れている。しかし、これに限らず、樹脂シート10は、第二インシュレータ22に当接していてもよい。
 第二実施形態では、ケース204は、筒状の筒状ケースであり、筒状ケース204の他方側の開口端245に取り付けられるフロントカバー215と、フロントカバー215とステータ2との間に配置される樹脂シート10と、を備えることで、以下の効果を奏する。
フロントカバー215とステータ2との間に樹脂よりも更に熱伝導率の高い樹脂シート10を配置することにより、フロントカバー215が取付部材101に取り付けられる場合、コイル23から発生する熱の取付部材101への熱伝導(放熱)を促進し、回転電機201(コイル23)の昇温を抑制することができる。また、フロントカバー215とケース204内に配置されるステータ2との間の絶縁性を、樹脂シート10により確保することが可能となる。
<変形例>
 なお、本発明の技術範囲は上述した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば、上述した第一実施形態では、平面視で、エンコーダ78は、複数のFET76A~76Cのうち最も左側に位置する第一FET76Aと抵抗器75との間に配置されている例を挙げて説明したが、これに限らない。
 例えば、図13に示すように、回路基板7Aの平面視で、抵抗器75は、複数のFET76A~76Cのうち最も左側に位置する第一FET76Aとエンコーダ78との間に配置されていてもよい。すなわち、抵抗器75は、周方向において第一FET76Aとエンコーダ78との間に配置されている。本変形例では、平面視で、抵抗器75は、軸孔71を挟んで第三FET76Cとは反対側に配置されている。本変形例では、平面視で、エンコーダ78は、軸孔71を挟んで第二FET76Bとは反対側に配置されている。
 本変形例では、平面視で、抵抗器75は、複数のFET76A~76Cのうち最も左側に位置する第一FET76Aとエンコーダ78との間に配置されていることで、以下の効果を奏する。
 回路基板7Aのエンドカバー5の側の面は、複数の電子部品が取り付けられるため、各電子部品の配置スペースは限られるものの、抵抗器75、エンコーダ78及び複数のFET76A~76Cを限られた回路基板7Aのスペースに好適に配置することができる。
 上述した第一実施形態では、平面視で、抵抗器75は、軸孔71を挟んで第二FET76Bとは反対側に配置されている例を挙げて説明したが、これに限らない。
 例えば、図14に示すように、回路基板7Bの平面視で、抵抗器75は、軸孔71を挟んで第一FET76Aとは反対側に配置されていてもよい。本変形例では、平面視で、エンコーダ78は、軸孔71を挟んで第二FET76Bとは反対側に配置されている。
 図13の例では、平面視で、抵抗器75は、軸孔71を挟んで第三FET76Cとは反対側に配置されている例を挙げて説明したが、これに限らない。
 例えば、図15に示すように、回路基板7Cの平面視で、抵抗器75は、軸孔71を挟んで第二FET76Bとは反対側に配置されていてもよい。本変形例では、平面視で、エンコーダ78は、第三FET76Cの近傍に配置されている。
 上記実施形態では、温度センサ6は、巻線24の屈曲部24aに当接している例を挙げて説明したが、これに限らない。例えば、温度センサ6は、巻線24の屈曲部24aから離れていてもよい。例えば、温度センサ6は、樹脂90を介して巻線24の屈曲部24aの近傍に配置されていてもよい。これにより、樹脂90を介して巻線24の屈曲部24aの温度を検出することができる。
 上記実施形態では、回転電機1(201)の駆動を制御する回路基板7を備え、回路基板7は、ケース4(204)の軸方向外端よりも内側に配置され、かつ、ステータ2とエンドカバー5との間に配置されている例を挙げて説明したが、これに限らない。例えば、回路基板7は、ケース4(204)の軸方向外端よりも外側に配置されていてもよい。
 上記実施形態では、第一インシュレータ21は、回路基板7のステータ2の側の面に当接する基板側当接部82を有する例を挙げて説明したが、これに限らない。例えば、第一インシュレータ21は、基板側当接部82を有しなくてもよい。例えば、回路基板7は、基板側当接部82とは別の支持部により支持されていてもよい。
 上記実施形態では、回路基板7は、周方向に間隔をあけて配置される複数の係合部72A~72Cを有し、第一インシュレータ21は、複数の係合部72A~72Cのそれぞれを通じて回路基板7に係合する係合部84A~84Cを有する例を挙げて説明したが、これに限らない。例えば、第一インシュレータ21は、係合部84A~84Cを有しなくてもよい。例えば、回路基板7は、係合部84A~84Cとは別の係合部により係合されていてもよい。
 上記実施形態では、ケース4(204)とインシュレータ21,22との間及びステータコア20における複数の突出部20bのそれぞれの間の隙間が樹脂90により満たされ、ケース4(204)、ステータ2及び温度センサ6が一体化されている例を挙げて説明したが、これに限らない。例えば、ケース4とインシュレータ21,22との間及びステータコア20における複数の突出部20bのそれぞれの間の隙間は、樹脂90が充填されていなくてもよい。例えば、ケース4(204)、ステータ2及び温度センサ6は、樹脂90とは別の結合部材により一体化されていてもよい。
 上記実施形態では、ステータ2の軸方向他方側に樹脂シート10が設けられている例を挙げて説明したが、これに限らない。例えば、ステータ2の軸方向他方側に樹脂シート10が設けられていなくてもよい。例えば、樹脂シート10に替えて絶縁紙等の絶縁シートが設けられていてもよい。例えば、コイル23を絶縁する構成は、要求仕様に応じて変更することができる。
 上記実施形態では、回路基板7は、コイル23に供給される電流を検出するための抵抗器75を有し、抵抗器75は、回路基板7のエンドカバー5の側の面に配置されている例を挙げて説明したが、これに限らない。例えば、抵抗器75は、回路基板7のステータ2の側の面に配置されていてもよい。例えば、発熱源であるコイル23と抵抗器75との間に、回路基板7とは別の基板(例えば遮熱板)が介在していてもよい。
 上記実施形態では、回転電機1(201)は、回路基板7とステータ2との間に配置され、回路基板7とコイル23とを絶縁する第一絶縁シート8と、回路基板7とエンドカバー5との間に配置され、回路基板7とエンドカバー5とを絶縁する第二絶縁シート9と、を備える例を挙げて説明したが、これに限らない。例えば、回転電機1(201)は、第一絶縁シート8及び第二絶縁シート9に替えて、同様の効果を得られるものを備えていてもよい。例えば、回転電機1(201)は、第一絶縁シート8及び第二絶縁シート9のそれぞれに替えて樹脂シートを備えていてもよい。例えば、回路基板7とコイル23とを絶縁する構成、及び回路基板7とエンドカバー5とを絶縁する構成は、要求仕様に応じて変更することができる。
 上記実施形態では、第一絶縁シート8及び第二絶縁シート9のそれぞれは、220℃環境下におけるLOI値が20.8%より高い例を挙げて説明したが、これに限らない。例えば、第一絶縁シート8及び第二絶縁シート9のそれぞれは、220℃環境下におけるLOI値が20.8%以下であってもよい。
 上記実施形態では、第一インシュレータ21は、第一絶縁シート8のステータ2の側の面に当接するシート側当接部81を有する例を挙げて説明したが、これに限らない。例えば、第一インシュレータ21は、シート側当接部81を有しなくてもよい。例えば、第一絶縁シート8は、シート側当接部81とは別の支持部により支持されていてもよい。
 上記実施形態では、第二絶縁シート9は、ケース4(204)の一方側の開口部分とエンドカバー5の円筒部50の先端とに挟まれている例を挙げて説明したが、これに限らない。例えば、第二絶縁シート9は、ケース4(204)の一方側の開口部分及びエンドカバー5の円筒部50の先端とは別の支持部により支持されていてもよい。
 上記実施形態では、第一絶縁シート8及び第二絶縁シート9のそれぞれは、アラミド繊維により形成され、0.25mm以上の厚みを有する例を挙げて説明したが、これに限らない。例えば、第一絶縁シート8及び第二絶縁シート9のそれぞれの素材、厚みは、要求仕様に応じて変更することができる。
 上記実施形態では、温度センサ6が1つのみ設けられている例を挙げて説明したが、これに限らない。例えば、温度センサ6は、複数設けられていてもよい。例えば、温度センサ6の設置数は、要求仕様に応じて変更することができる。
 上記実施形態では、回路基板7は、1つの抵抗器75と、3つのFET76A~76Cと、3つの磁気センサ77A~77Cと、を備える例を挙げて説明したが、これに限らない。例えば、抵抗器75は、複数設けられていてもよい。例えば、FET76A~76Cは、3つ以外の数が設けられていてもよい。例えば、磁気センサ77A~77Cは、3つ以外の数が設けられていてもよい。例えば、抵抗器75、FET76A~76C、磁気センサ77A~77C及びエンコーダ78の設置数は、要求仕様に応じて変更することができる。
 その他、本発明の趣旨を逸脱しない範囲で、上記した実施形態における構成要素を周知の構成要素に置き換えることは可能である。また、上述した各変形例を組み合わせても構わない。
 1 回転電機
 2 ステータ
 3 ロータ
 4 有底筒状ケース(ケース)
 5 エンドカバー
 6 温度センサ
 7,7A,7B,7C 回路基板
 10 樹脂シート
 20 ステータコア
 20b 突出部
 21 第一インシュレータ(インシュレータ)
 23 コイル
 24 巻線
 24a 屈曲部
 41 一方側の開口端
 42 底部
 72A 第一係合部(係合部)
 72B 第二係合部(係合部)
 72C 第三係合部(係合部)
 75 抵抗器
 76A 第一FET(電界効果トランジスタ)
 76B 第二FET(電界効果トランジスタ)
 76C 第三FET(電界効果トランジスタ)
 78 エンコーダ
 82 基板側当接部(当接部)
 84A 第一係合部(係合部)
 84B 第二係合部(係合部)
 84C 第三係合部(係合部)
 90 樹脂
 91 空間(ステータの内部空間)
 201 回転電機
 204 筒状ケース(ケース)
 215 フロントカバー
 245 他方側の開口端

Claims (11)

  1.  筒状のステータと、
     前記ステータの内部空間に配置されるロータと、
     前記ステータを収容する筒状又は有底筒状のケースと、
     前記ケースの一方側の開口端に取り付けられるエンドカバーと、
     温度センサと、を備え、
     前記ステータは、
      前記ステータの中心に向けて突出する複数の突出部を有するステータコアと、
      前記ステータコアに装着されるインシュレータと、
      前記複数の突出部のそれぞれに前記インシュレータを介して巻線を巻回してなるコイルと、を備え、
     前記温度センサは、前記ステータの前記エンドカバーの側において、隣り合う前記コイルにおける前記巻線の屈曲部の間に配置されていることを特徴とする
     回転電機。
  2.  前記温度センサは、前記巻線の屈曲部に当接していることを特徴とする
     請求項1に記載の回転電機。
  3.  前記回転電機の駆動を制御する回路基板を更に備え、
     前記回路基板は、前記ケースの軸方向外端よりも内側に配置され、かつ、前記ステータと前記エンドカバーとの間に配置されていることを特徴とする
     請求項1又は2に記載の回転電機。
  4.  前記インシュレータは、前記回路基板の前記ステータの側の面に当接する当接部を有することを特徴とする
     請求項3に記載の回転電機。
  5.  前記回路基板は、周方向に間隔をあけて配置される複数の係合部を有し、
     前記インシュレータは、前記複数の係合部のそれぞれを通じて前記回路基板に係合する係合部を有することを特徴とする
     請求項3又は4に記載の回転電機。
  6.  前記ケースと前記インシュレータとの間及び前記ステータコアにおける前記複数の突出部のそれぞれの間の隙間が樹脂により充填され、前記ケース、前記ステータ及び前記温度センサが一体化されていることを特徴とする
     請求項1から5の何れか一項に記載の回転電機。
  7.  前記ケースは、筒状の筒状ケースであり、
     前記筒状ケースの他方側の開口端に取り付けられるフロントカバーと、
     前記フロントカバーと前記ステータとの間に配置される樹脂シートと、を更に備えることを特徴とする
     請求項1から6の何れか一項に記載の回転電機。
  8.  前記ケースは、他方側に底部を有する有底筒状の有底筒状ケースであり、
     前記底部と前記ステータとの間に配置される樹脂シートを更に備えることを特徴とする
     請求項1から6の何れか一項に記載の回転電機。
  9.  前記回転電機の駆動を制御する回路基板を更に備え、
     前記回路基板は、前記コイルに供給される電流を検出するための抵抗器を有し、
     前記抵抗器は、前記回路基板の前記エンドカバーの側の面に設けられていることを特徴とする
     請求項1から8の何れか一項に記載の回転電機。
  10.  前記回路基板は、複数の電界効果トランジスタと、エンコーダと、を更に有し、
     平面視で、前記エンコーダは、前記複数の電界効果トランジスタのうち最も左側に位置する電界効果トランジスタと前記抵抗器との間に配置されていることを特徴とする
     請求項9に記載の回転電機。
  11.  前記回路基板は、複数の電界効果トランジスタと、エンコーダと、を更に有し、
     平面視で、前記抵抗器は、前記複数の電界効果トランジスタのうち最も左側に位置する電界効果トランジスタと前記エンコーダとの間に配置されていることを特徴とする
     請求項9に記載の回転電機。
PCT/JP2021/012696 2020-03-31 2021-03-25 回転電機 WO2021200591A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21777930.5A EP4131745A4 (en) 2020-03-31 2021-03-25 ROTARY MOTOR
CN202180021935.6A CN115298941A (zh) 2020-03-31 2021-03-25 旋转电机
US17/905,203 US20230113985A1 (en) 2020-03-31 2021-03-25 Dynamo-electric machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-062082 2020-03-31
JP2020062082A JP7478010B2 (ja) 2020-03-31 2020-03-31 回転電機

Publications (1)

Publication Number Publication Date
WO2021200591A1 true WO2021200591A1 (ja) 2021-10-07

Family

ID=77929346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012696 WO2021200591A1 (ja) 2020-03-31 2021-03-25 回転電機

Country Status (6)

Country Link
US (1) US20230113985A1 (ja)
EP (1) EP4131745A4 (ja)
JP (1) JP7478010B2 (ja)
CN (1) CN115298941A (ja)
TW (1) TWI783422B (ja)
WO (1) WO2021200591A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS612715B2 (ja) 1981-10-21 1986-01-27 Neos Kk
JP2000069715A (ja) * 1998-08-24 2000-03-03 Denso Corp 温度センサ付き回転電機
JP3318531B2 (ja) 1998-08-04 2002-08-26 ミネベア株式会社 回転電機及びその軸受構造
JP2008306886A (ja) * 2007-06-11 2008-12-18 Sanyo Electric Co Ltd モータ及びモータの製造方法
JP2010130706A (ja) * 2008-11-25 2010-06-10 Panasonic Corp 電動機及びそれを搭載した送風装置
JP2010141962A (ja) * 2008-12-09 2010-06-24 Toyota Motor Corp 回転電機と回転電機の製造方法
JP2015192544A (ja) * 2014-03-28 2015-11-02 株式会社富士通ゼネラル 電動機
WO2017098907A1 (ja) * 2015-12-09 2017-06-15 日本電産テクノモータ株式会社 モータ
JP2019075872A (ja) * 2017-10-13 2019-05-16 株式会社ジェイテクト 制御機能付きアクチュエータ及び電動ポンプ
JP2020062082A (ja) 2018-10-15 2020-04-23 住友ゴム工業株式会社 表面改質方法及び注射器用ガスケット

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0326782Y2 (ja) * 1985-12-11 1991-06-10
US7180212B2 (en) * 2004-07-02 2007-02-20 Visteon Global Technologies, Inc. Electric machine with integrated electronics in a circular/closed-loop arrangement
JP2006340580A (ja) * 2005-06-06 2006-12-14 Toyota Motor Corp 回転電機
JP2010273514A (ja) * 2009-05-25 2010-12-02 Toyota Motor Corp ステータ
JP5039171B2 (ja) * 2010-05-11 2012-10-03 三菱電機株式会社 電動式駆動装置およびその電動式駆動装置を搭載した電動式パワーステアリング装置
JP2013153544A (ja) * 2010-08-20 2013-08-08 Nippon Densan Corp モータ
US20140265661A1 (en) * 2013-03-14 2014-09-18 Remy Technologies, Llc Sheet metal cooling jacket with baffles
JP6221804B2 (ja) * 2014-02-13 2017-11-01 トヨタ自動車株式会社 回転電機のステータ
JP6179476B2 (ja) * 2014-07-31 2017-08-16 株式会社デンソー 駆動装置、および、これを用いた電動パワーステアリング装置
WO2018138852A1 (ja) * 2017-01-27 2018-08-02 株式会社日立産機システム 回転電機
JP7063573B2 (ja) 2017-10-30 2022-05-09 ミネベアミツミ株式会社 モータ

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS612715B2 (ja) 1981-10-21 1986-01-27 Neos Kk
JP3318531B2 (ja) 1998-08-04 2002-08-26 ミネベア株式会社 回転電機及びその軸受構造
JP2000069715A (ja) * 1998-08-24 2000-03-03 Denso Corp 温度センサ付き回転電機
JP2008306886A (ja) * 2007-06-11 2008-12-18 Sanyo Electric Co Ltd モータ及びモータの製造方法
JP2010130706A (ja) * 2008-11-25 2010-06-10 Panasonic Corp 電動機及びそれを搭載した送風装置
JP2010141962A (ja) * 2008-12-09 2010-06-24 Toyota Motor Corp 回転電機と回転電機の製造方法
JP2015192544A (ja) * 2014-03-28 2015-11-02 株式会社富士通ゼネラル 電動機
WO2017098907A1 (ja) * 2015-12-09 2017-06-15 日本電産テクノモータ株式会社 モータ
JP2019075872A (ja) * 2017-10-13 2019-05-16 株式会社ジェイテクト 制御機能付きアクチュエータ及び電動ポンプ
JP2020062082A (ja) 2018-10-15 2020-04-23 住友ゴム工業株式会社 表面改質方法及び注射器用ガスケット

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4131745A4

Also Published As

Publication number Publication date
TW202141918A (zh) 2021-11-01
EP4131745A1 (en) 2023-02-08
CN115298941A (zh) 2022-11-04
TWI783422B (zh) 2022-11-11
EP4131745A4 (en) 2024-04-24
JP7478010B2 (ja) 2024-05-02
US20230113985A1 (en) 2023-04-13
JP2021164227A (ja) 2021-10-11

Similar Documents

Publication Publication Date Title
JP4246068B2 (ja) 固定子と回転子との心合わせを可能にするハウジングを有するブラシレスモータ
CN110383643B (zh) 模制马达
US11258330B2 (en) Rotating electrical device
JP6554690B2 (ja) モータ
JP5186180B2 (ja) ブラシレスモータ
JP5268845B2 (ja) Dcブラシレスモータ及び換気扇
WO2021199236A1 (ja) 回転電機
US11043881B2 (en) Component-mounting device and electronic apparatus
WO2021200591A1 (ja) 回転電機
JP5697627B2 (ja) 電動機及び換気扇
JP6052867B2 (ja) 電動機及び換気扇
JP5591183B2 (ja) 電動機および換気扇
JP5748698B2 (ja) 電動機
US20200235646A1 (en) Component-mounting device and electronic apparatus
JP2012253845A (ja) 電動機および換気扇
JP5591184B2 (ja) 電動機
JP2006014410A (ja) モールドモータ
JP7255623B2 (ja) 電動機
JP7255622B2 (ja) 電動機
JP7210331B2 (ja) モータユニットおよびファン
JP2023019431A (ja) 電動機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21777930

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021777930

Country of ref document: EP

Effective date: 20221031