WO2021200358A1 - 積層ポリエステル樹脂被覆金属板、積層ポリエステル樹脂フィルム、及び缶蓋 - Google Patents

積層ポリエステル樹脂被覆金属板、積層ポリエステル樹脂フィルム、及び缶蓋 Download PDF

Info

Publication number
WO2021200358A1
WO2021200358A1 PCT/JP2021/011836 JP2021011836W WO2021200358A1 WO 2021200358 A1 WO2021200358 A1 WO 2021200358A1 JP 2021011836 W JP2021011836 W JP 2021011836W WO 2021200358 A1 WO2021200358 A1 WO 2021200358A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester resin
metal plate
coated metal
laminated polyester
component
Prior art date
Application number
PCT/JP2021/011836
Other languages
English (en)
French (fr)
Inventor
悟史 河村
優斗 佐藤
伊藤 由実
Original Assignee
東洋鋼鈑株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋鋼鈑株式会社 filed Critical 東洋鋼鈑株式会社
Priority to EP21779255.5A priority Critical patent/EP4129647A4/en
Priority to CN202180021038.5A priority patent/CN115298025B/zh
Priority to US17/907,447 priority patent/US12049060B2/en
Publication of WO2021200358A1 publication Critical patent/WO2021200358A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • B32B2264/1021Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/30Particles characterised by physical dimension
    • B32B2264/301Average diameter smaller than 100 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/308Heat stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2435/00Closures, end caps, stoppers
    • B32B2435/02Closures, end caps, stoppers for containers

Definitions

  • the present invention relates to a laminated polyester resin-coated metal plate, a laminated polyester resin film for laminating a metal plate, and a can lid using them.
  • a stayion tab (SOT) type that can be easily opened by hand and the opening is left attached to the can body, or the opening is separated from the can body.
  • Easy-open (EO) lids such as tear-off type lids are widely used.
  • a resin-coated metal plate obtained by forming a resin layer such as polyester resin on a metal base material such as aluminum or steel is known.
  • Patent Document 1 discloses a resin-coated metal plate for the purpose of suppressing the occurrence of a feathering phenomenon when formed on a lid and improving characteristics such as openness.
  • the resin-coated metal plate disclosed in Patent Document 1 As the resin layer laminated on the metal plate, the lower layer in which the olefin polymer is blended with the thermoplastic polyester resin and the crystallinity of the thermoplastic polyester are controlled. A multi-layered resin layer having a surface layer having an elongation of 20% is disclosed. As described above, in Patent Document 1, the resin layer is multi-layered for the purpose of achieving both corrosion resistance and processability. However, in the technique of Patent Document 1, there remains a problem regarding openness (feathering resistance).
  • the resin layer is cut along the score formed on the can lid. That is, it is required to avoid the occurrence of delamination between the metal base material and the resin layer in the opening portion and the phenomenon (feathering phenomenon) in which the stretched inner surface side coating resin remains in the vicinity of the opening portion. In order to improve this openness, it is considered necessary to suppress the softness (elongation) of the resin to some extent.
  • can lids are generally subjected to rib processing for reinforcement and overhang drawing processing as rivet parts, so the resin layer follows the above processing for metal substrates. I need to be able to do it. Further, when the above processing is performed in a heat treatment process such as printing, it is necessary to avoid the occurrence of film cracking, peeling, etc. at the place where the processing is large as described above. And in order to improve such workability, it is necessary that the resin used is soft to some extent. That is, it can be said that the above-mentioned processability and openness are contradictory characteristics, and there has been a demand for the development of a resin that has both of these characteristics in a can lid using a resin-coated metal plate.
  • the present inventors have diligently studied to solve the above problems. As a result, in a laminated polyester resin film for manufacturing a can lid and a laminated polyester resin-coated metal plate, it was found that the above problems can be compatible at a high level by setting the resin layer structure to a predetermined value, and the present invention was conceived. It was done.
  • the laminated polyester resin-coated metal plate includes (1) a metal base material and a laminated polyester resin layer formed on at least one surface of the metal base material.
  • the laminated polyester resin layer contains, in order from the metal base material side, a lower layer made of a polyester resin (A) modified with 2 to 30 mol% of the first copolymerization component, a polyester resin (B), and the polyester resin.
  • the soft component (C) that is incompatible with (B) is contained and the total of the polyester resin (B) and the soft component (C) is 100% by mass
  • the content of the soft component (C) is 2 to 50. It is characterized by having an upper layer which is by mass%.
  • the laminated polyester resin-coated metal plate according to (1) described above is (2) the polyester resin (B) is a thermoplastic polyester resin having a glass transition temperature (Tg1) of 60 ° C. or higher and 90 ° C. or lower, and is flexible.
  • the component (C) is either or both of a polyester-based thermoplastic elastomer and a polyolefin, and the soft component (C) is dispersed in the polyester resin (B), and is in the upper layer of the soft component (C).
  • the absolute value ⁇ Tg of the difference between the glass transition temperature (Tg1) of the polyester resin (B) and the glass transition temperature (Tg2) of the upper layer is ⁇ Tg ⁇ 0.5 ⁇ W. It is preferable to satisfy.
  • the flexible component (C) is dispersed in the polyester resin (B) in an island shape, and the islands are dispersed.
  • the average major axis of the flexible component (C) dispersed in the shape is preferably 0.1 to 5.0 ⁇ m, and the average minor axis is preferably 0.01 to 2 ⁇ m.
  • the polyester resin (A) is mainly composed of polyethylene terephthalate, and isophthalic acid is used as the first copolymerization component. Is preferably included.
  • the laminated polyester resin-coated metal plate according to (4) described above further contains (5) a polyfunctional component in which the lower layer is 0.01 to 0.5 mol%.
  • the laminated polyester resin-coated metal plate according to any one of (1) to (5) described above preferably has (6) a weight average molecular weight of the polyester resin (A) of 40,000 to 80,000.
  • the polyester resin (A) contains inorganic particles having an average particle size of 0.2 to 5.0 ⁇ m. It is preferably contained in an amount of 0.1 to 5.0% by mass.
  • the total thickness of the upper layer and the lower layer is 10 to 50 ⁇ m, and the thickness of the upper layer is 10 to 50 ⁇ m. Is 5 to 40 ⁇ m, and the thickness of the lower layer is preferably 5 to 30 ⁇ m.
  • the lower layer has a elongation at break in an environment of 50 ° C. after heat treatment at 185 ° C. for 10 minutes. Is preferably 50% or less.
  • the laminated polyester resin-coated metal plate according to any one of (1) to (9) described above is formed on the side opposite to the metal base material side of the upper layer (10), and further forms a surface layer made of polyester resin. It is preferable to have.
  • the laminated polyester resin film in one embodiment of the present invention was formed on at least one surface of the (11) metal substrate and modified with 2 to 30 mol% of the first copolymerization component.
  • a lower layer made of a polyester resin (A), a soft component (C) formed on the lower layer and incompatible with the polyester resin (B) and the polyester resin (B), and the polyester resin (B). It is characterized by having an upper layer in which the content of the soft component (C) is 2 to 50% by mass when the total of the soft components (C) is 100% by mass.
  • the can lid in one embodiment of the present invention is (12) using the laminated polyester resin-coated metal plate according to any one of (1) to (10) described above.
  • the can lid in another embodiment of the present invention is made of (13) the laminated polyester resin film described in (11) above.
  • the lamination in addition to the openness at the time of opening, which is suitable for use as a can lid, for example, the lamination has a high degree of suppression of film cracking (processability) in the vicinity of the rivet portion provided on the can lid.
  • a polyester resin-coated metal plate, a laminated polyester resin film, and a can lid can be realized. Further, according to the laminated polyester resin-coated metal plate, the laminated polyester resin film, and the can lid of the present invention, suppression of resin peeling (adhesion) after retort treatment after filling the contents, and a metal base material after aging. It is possible to provide each performance of corrosion suppression (corrosion resistance).
  • FIG. 1 is a schematic view showing a cross section of the laminated polyester resin-coated metal plate 100 of the present embodiment.
  • the laminated polyester resin-coated metal plate, the laminated polyester resin film, and the can lid of the present invention will be described using the embodiments, but the present invention is not limited to the following embodiments.
  • the laminated polyester resin-coated metal plate 100 of the present embodiment has a metal base material MP and a laminated polyester resin layer 200 formed on at least one surface of the metal base material MP.
  • the laminated polyester resin layer 200 includes a lower layer 10 and an upper layer 20 which are sequentially formed on the metal base material MP.
  • the laminated polyester resin-coated metal plate 100 of the present embodiment is formed on at least one surface of the metal base material MP and the metal base material MP, and is modified with 2 to 30 mol% of the first copolymerization component.
  • the polyester resin (A) is formed on the lower layer 10 on the side close to the metal base material MP and on the lower layer 10 (the side opposite to the metal base material MP side), and the polyester resin (B) and the polyester resin (
  • the soft component (C) which is incompatible with B) is contained and the total of the polyester resin (B) and the soft component (C) is 100% by mass
  • the content of the soft component (C) is 2 to 50. It has an upper layer 20 which is a mass%.
  • the laminated polyester resin-coated metal plate 100 of the present embodiment is not limited to the two-layer structure of the lower layer 10 and the upper layer 20 as shown in FIG. 1, and may have a structure of three or more layers as described in detail later.
  • Metal base material MP used for the laminated polyester resin-coated metal plate 100 of the present embodiment a known metal base material MP such as an aluminum material or a steel plate conventionally used for an easy-open lid can be used.
  • the thickness of the aluminum material varies depending on the size of the lid and the like, but it is generally preferably in the range of 0.20 to 0.50 mm, particularly 0.23 to 0.30 mm. Further, a surface treatment film such as chromate treatment, zirconium treatment, phosphoric acid treatment, or polyacrylic acid treatment may be formed on the surface of the aluminum material.
  • the steel sheet various known steel sheets such as a chromate surface-treated steel sheet such as TFS (tin-free steel) and a fluffy steel sheet plated with a tin plating amount of 0.3 to 2.8 g / m 2 can be preferably used. ..
  • the thickness of the steel sheet is preferably in the range of 0.1 to 0.4 mm, particularly 0.12 to 0.35 mm.
  • the lower layer 10 of the laminated polyester resin-coated metal plate 100 of the present embodiment will be described. As shown in FIG. 1, the lower layer 10 is formed on at least one surface of the metal base material MP. Then, of the lower layer 10 and the upper layer 20 of the laminated polyester resin layer 200 described later, the lower layer 10 is formed closer to the metal base material MP.
  • the polyester resin (A) applied to the lower layer 10 of the laminated polyester resin-coated metal plate 100 of the present embodiment is a copolymerized polyester resin, which is modified with 2 to 30 mol% of the first copolymerized component.
  • the polyester resin (A) is preferably a copolymer resin mainly composed of polyethylene terephthalate.
  • the above-mentioned first copolymerization component examples include isophthalic acid (IA), orthophthalic acid, p- ( ⁇ -hydroxyethoxy) benzoic acid, naphthalene 2,6-dicarboxylic acid, diphenoxyethane-4,4'-dicarboxylic acid, and the like. At least one selected from the group consisting of 5-sodium sulfoisophthalic acid, hexahydroterephthalic acid, adipic acid, sebacic acid, trimellitic acid and pyromellitic acid can be mentioned. Of these, the above-mentioned first copolymerization component is preferably isophthalic acid from the viewpoint of processability and adhesion.
  • these first copolymerization components are contained in the copolymerized polyester resin of the lower layer 10 in an amount of 2 to 30 mol%. If the first copolymerization component is less than 2 mol%, the adhesion between the metal base material MP and the lower layer 10 may decrease, which is not preferable. On the other hand, when the amount of the first copolymerization component exceeds 30 mol%, it is not economically preferable and it is not preferable because the film-forming property and the barrier property of the lower layer 10 may be deteriorated.
  • the amount of the first copolymerization component in the copolymerized polyester resin of the lower layer 10 is more preferably 5 to 15 mol%.
  • the glycol components contained include ethylene glycol, propylene glycol, 1,4-butanediol, diethylene glycol, and 1 , 6-Hexylene glycol, cyclohexanedimethanol, ethylene oxide adduct of bisphenol A, etc., or two or more thereof can be mentioned.
  • the copolymerized polyester resin in the lower layer 10 preferably further contains a second copolymerization component (polyfunctional component) different from the first copolymerization component in an amount of 0.01 to 0.5 mol%.
  • This polyfunctional component is introduced for the purpose of introducing a crosslinked structure and improving openness.
  • gel is likely to be generated in the copolymerized polyester resin of the lower layer 10, and it is preferable from the economical viewpoint. No.
  • polyfunctional component examples include one or more selected from trimellitic acid, trimellitic anhydride, pyromellitic acid, pyromellitic anhydride, trimethylolpropane, and pentaerythritol.
  • trimellitic acid (TMA) or pentaerythritol is particularly preferable from the viewpoint of easy availability.
  • the weight average molecular weight of the lower copolymer polyester resin is preferably 40,000 to 80,000 from the viewpoint of adjusting the viscosity of the lower layer resin and improving the openness. If the weight average molecular weight is less than 40,000, the film-forming property of the resin layer may be deteriorated, which is not preferable. On the other hand, when the weight average molecular weight exceeds 80,000, the torque in the kneader may become too high when the resin layer is formed, which is not preferable. It is more preferable that the weight average molecular weight is 40,000 to 55,000 from the same viewpoint.
  • the lower copolymer polyester resin contains 0.1 to 5.0% by mass of inorganic particles having an average particle size of 0.2 ⁇ m to 5.0 ⁇ m, which improves the winding shape of the film. , It is preferable from the viewpoint of avoiding the occurrence of film wrinkles and improving the openness of the lid. As these inorganic particles, so-called lubricants can be applied. On the other hand, when a method of directly extruding a molten resin onto a metal base material to produce a resin-coated metal plate (also referred to as a direct coat or the like) is adopted, stable production is performed even when the inorganic particles are not contained in the lower layer. Is possible.
  • aliphatic hydrocarbons higher aliphatic alcohols, fatty acids, fatty acid metal salts, ester or amide derivatives of fatty acids, for example, stearic acid amide, oleic acid amide, erucic acid amide, erucic acid amide, behenic acid amide.
  • Organic lubricants such as ethylene bisoleic acid amide, or silica-based such as silicon dioxide, aluminum silicate, magnesium silicate, general inorganic lubricants such as zeolite, calcium carbonate, silicon dioxide, aluminum oxide, barium sulfate, etc. Commercially available lubricants can be used.
  • the average particle size of these inorganic particles is preferably 0.2 ⁇ m to 5.0 ⁇ m, and more preferably 1.0 ⁇ m to 3.0 ⁇ m.
  • the content of these inorganic particles is preferably 0.1 to 5.0% by mass, preferably 0.4 to 3.0% by mass in the lower copolymer polyester resin in the present embodiment. Is even more preferable.
  • the lower layer 10 of the present embodiment preferably has a breaking elongation of 50% or less in an environment of 50 ° C. after heat treatment at 185 ° C. for 10 minutes. That is, the laminated polyester resin-coated metal plate of the present embodiment is heat-treated at the time of printing or retorting at the time of manufacturing the can lid. Generally, in resins, it is known that the elongation at break after heat treatment is lower than the elongation at break before heat treatment. In the present invention, when the film breaking elongation of the lower layer 10 under a specific temperature (under a 50 ° C. environment) is 50% or less after the heat treatment under the above conditions, even in an area where the temperature is high in the obtained can lid. It has been found that it is possible to secure stable openness and to achieve both problems such as workability.
  • the upper layer 20 of the laminated polyester resin-coated metal plate 100 of the present embodiment will be described.
  • the upper layer 20 is formed on the opposite side of the above-mentioned lower layer 10 from the metal base material MP.
  • the lower layer 10 and the upper layer 20 are formed in this order from the metal base material MP. It can also be said that when the lower layer 10 is in the middle, the metal base material MP is formed on one surface and the upper layer 20 is formed on the other surface.
  • the can lid is manufactured so that the upper layer 20 is on the content side of the can.
  • the resin composition of the upper layer 20 contains a polyester resin (B) as a main agent and a softening component (C) that is incompatible with the polyester resin (B).
  • the content of the soft component (C) is 2 to 50% by mass when the total of the polyester resin (B) and the soft component (C) is 100% by mass. be.
  • the component having the highest content (mass ratio) is defined as the main agent.
  • the content of the soft component (C) is less than 2% by mass, the processability of the laminated polyester resin-coated metal plate of the present embodiment may decrease, which is not preferable.
  • the content of the soft component (C) exceeds 50% by mass, the openness of the can lid may decrease, which is not preferable.
  • the content of the softening component (C) is more preferably 5 to 20% by mass.
  • the polyester resin (B) is preferably a thermoplastic polyester resin from the viewpoint of heat resistance and impact resistance.
  • the thermoplastic polyester resin include polyethylene terephthalate (PET), polyethylene isophthalate, and isophthalic acid, terephthalic acid, 2,6-naphthalenedicarboxylic acid, diphenyldicarboxylic acid, diphenylsulfonedicarboxylic acid, and diphenoxyethane.
  • Aromatic dicarboxylic acids such as dicarboxylic acid, diphenyl ether dicarboxylic acid, 5-sulfoisophthalic acid and phthalic acid, aliphatic dicarboxylic acids such as oxalic acid, succinic acid, adipic acid, sebacic acid, dimer acid, maleic acid and fumaric acid, cyclohexane
  • Dicarboxylic acid components such as alicyclic dicarboxylic acids such as dicarboxylic acids; aliphatic glycols such as ethylene glycol, triethylene glycol, polyethylene glycol, polytetramethylene glycol, propanediol, butanediol, pentanediol, hexanediol, and neopentylglycol.
  • thermoplastic resin examples thereof include polyester obtained by copolymerizing aromatic glycols such as bisphenol A and bisphenol S, and alicyclic glycols such as cyclohexanedimethanol. Further, the above-mentioned thermoplastic resin may be used alone or in combination of two or more.
  • thermoplastic polyesters a thermoplastic polyester containing ethylene terephthalate and / or ethylene isophthalate as a main component is preferable from the viewpoint of cost, flavor and the like.
  • the main constituent is 50 mol of the units derived from the terephthalic acid component and the isophthalic acid component, which are dicarboxylic acid components, among the units derived from the total dicarboxylic acid components, among ethylene terephthalate and / or ethylene isophthalate. It means to occupy% or more.
  • thermoplastic polyester used as the polyester resin (B) may be copolymerized with a polyfunctional component selected from a trifunctional or higher functional diprotic acid and a polyhydric alcohol. Due to the copolymerization of the polyfunctional components, the edge (ear) of the film shakes when the film is manufactured at high speed or when the molten film is laminated directly on the metal plate at high speed to manufacture the laminated metal plate. Therefore, draw resonance (ear shaking) in which the film thickness fluctuates is reduced, which is preferable.
  • polyfunctional component selected from trifunctional or higher functional polybasic acids and polyhydric alcohols examples include trimellitic acid, trimellitic anhydride, pyromellitic acid, pyromellitic anhydride, trimethylolpropane, pentaerythritol and the like.
  • the content of these polyfunctional components is 0.01 to 0.5 mol%, preferably 0.07 to 0.3 mol% in the thermoplastic polyester.
  • the draw resonance reducing effect can be appropriately enhanced while suppressing the occurrence of gelation in the thermoplastic polyester.
  • the glass transition temperature (Tg1) of the polyester resin (B) used for the upper layer 20 is preferably 60 ° C. or higher and 90 ° C. or lower, more preferably 65 to 85 ° C., and 70 to 80 ° C. Is more preferable.
  • Tg1 is less than 60 ° C., the heat resistance of the obtained film is lowered and the flavor property may be lowered, which is not preferable.
  • Tg1 exceeds 90 ° C., the processability and impact resistance of the obtained film may decrease, which is not preferable.
  • a known method can be applied as a method for measuring the glass transition temperature, for example, it can be performed at a heating rate of 10 ° C./min using a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • the thermoplastic polyester used as the polyester resin (B) preferably has an ultimate viscosity [ ⁇ ] of 0.5 to 1.4 dl / g, more preferably 0.7 to 1.2 dl / g. It is more preferably 0.8 to 1.0 dl / g.
  • incompatible means a state in which the boundary between the polyester resin (B) and the soft component (C) can be observed when the upper layer 20 is observed.
  • the soft component (C) in the upper layer 20 of the present embodiment is finely dispersed when blended (blended) with the polyester resin (B) as the main agent described above, and can form a sea-island structure (phase separation). Is. Further, the soft component (C) can impart rubber elasticity to the polyester resin (B) as a main agent at room temperature. Further, when the soft component (C) is blended (blended) with the polyester resin (B) as the main agent, it is preferable that the soft component (C) has almost no effect on the glass transition temperature (Tg) of the polyester resin (B).
  • polyester-based thermoplastic elastomer and polyolefin can be specifically used as the softening component (C).
  • the polyester-based thermoplastic elastomer used as the softening component (C) preferably has a glass transition temperature (Tg) of room temperature (25 ° C.) or lower, more preferably less than 20 ° C., and 10 ° C. or lower. Those are more preferable.
  • the lower limit of the glass transition temperature (Tg) of the polyester-based thermoplastic elastomer used in the present embodiment is not particularly limited, but is preferably ⁇ 50 ° C. or higher.
  • the structure of the polyester-based thermoplastic elastomer generally consists of a hard segment forming a hard crystal structure and a soft soft segment.
  • the components constituting the hard segment of the polyester-based thermoplastic elastomer used in the present embodiment include terephthalic acid, isophthalic acid, bisphenol A, bisphenol S, 2,6-naphthalenedicarboxylic acid, ethylene glycol, and 1,4-butanediol. And so on.
  • the components constituting the soft segment include aliphatic dicarboxylic acids such as adipic acid, sebacic acid and dimer acid, and aliphatic diols such as 1,6-hexanediol, 1,8 octanediol and 1,10-decanediol.
  • aliphatic dicarboxylic acids such as adipic acid, sebacic acid and dimer acid
  • aliphatic diols such as 1,6-hexanediol, 1,8 octanediol and 1,10-decanediol.
  • Polyethers such as polyethylene glycol and polytetramethylene glycol are mentioned. Among these, polyethers are preferable, and among the polyethers, polytetramethylene glycol is particularly preferable.
  • polyester-based thermoplastic elastomer a polyether ester in which a hard segment made of a dicarboxylic acid and a soft segment made of a polyether unit are bonded via an ester bond can be mentioned.
  • those containing 50% by mass or more of the polyether unit in the polyester-based thermoplastic elastomer are preferable.
  • the content ratio of the polyether unit in the polyester-based thermoplastic elastomer is more preferably 50 to 70% by mass, and when the content of the above-mentioned polyether unit is less than 50% by mass, it is when melt-kneaded with the thermoplastic polyester. , It becomes easy to be compatible with each other, and the heat resistance of the film is lowered, which is not preferable.
  • the molecular weight of the polyether unit (polyether segment) in the polyester-based thermoplastic elastomer is not particularly limited, but those of 500 to 5000 are preferably used. Further, the polyester-based thermoplastic elastomer may be modified with maleic anhydride or the like in order to improve the adhesion to the metal. It should be noted that at least one polyether unit may be contained in the polyester-based thermoplastic elastomer, and a plurality of polyether units may be contained.
  • a particularly preferable polyester-based thermoplastic elastomer in the present embodiment is a resin obtained by copolymerizing polybutylene terephthalate with polytetramethylene glycol (PTMG).
  • PTMG polytetramethylene glycol
  • Polyolefins used as the softening component (C) include low-density polyethylene, medium-density polyethylene, high-density polyethylene, polypropylene, poly1-butene, poly4-methyl-1-pentene, and ethylene / propylene copolymers. Examples thereof include random copolymers of ⁇ -olefins such as ethylene, propylene, 1-butene and 4-methyl-1-pentene, and chain polyolefin resins such as block copolymers.
  • unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid, fumaric acid, and itaconic acid and their anhydrides in an amount of 2% or less to any of these polyolefins.
  • EVA Ethylene vinyl acetate
  • EVOH ethylene-vinyl alcohol copolymer
  • the melt flow rate (hereinafter, simply referred to as MFR) MFR is preferably 30 g / 10 min or less from the viewpoint of film forming property.
  • an ionomer resin ion-crosslinked olefin copolymer in which a part or all of the carboxyl groups are ion-crosslinked with metal cations can also be used.
  • the ionomer resin is an ionic salt in which some or all of the carboxyl groups in the copolymer of ethylene and ⁇ , ⁇ -unsaturated carboxylic acid are neutralized with metal cations, and the degree of neutralization, that is, ions. Concentration affects its physical properties.
  • the melt flow rate of an ionomer resin (hereinafter, simply referred to as MFR) depends on the ion concentration, and when the ion concentration is high, the MFR is small, and the melting point depends on the carboxyl group concentration. The higher the carboxyl group concentration, the smaller the melting point. Become.
  • the ionomer resin used in the present invention is, of course, not limited to this, but has an MFR of 15 g / 10 min or less, particularly 5 g / 10 min to 0. It is desirable that the temperature is in the range of 5 g / 10 min and the melting point is 100 ° C. or lower, particularly 97 ° C. to 80 ° C.
  • Examples of the metal cation in the ionomer resin include Na +, K +, Li +, Zn +, Z2 +, Mg2 +, Ca2 +, Co2 +, Ni2 +, Mn2 +, Pb2 +, Cu2 + and the like.
  • those neutralized with zinc can be preferably used because the degree of cross-linking is large and the humidity sensitivity is low.
  • some of the residual carboxyl groups that have not been neutralized with metal ions may be esterified with a lower alcohol.
  • the glass transition temperature (Tg1) of the polyester resin (B) and the glass transition temperature (C) after mixing the flexible component (C) with the polyester resin (B) as the main agent Regarding the relationship with Tg2), it is preferable that the following formula (1) is satisfied when the content (mass%) of the soft component (C) in the upper layer 20 is W.
  • ⁇ Tg ⁇ 0.5 ⁇ W ⁇ ⁇ ⁇ (1)
  • ⁇ Tg is an absolute value of the difference between Tg1 and Tg2.
  • the soft component (C) when the soft component (C) is mixed with the polyester resin (B) which is the main component in the upper layer 20, the soft component (C) is an island in the polyester resin (B) of the upper layer. It was found that it constitutes a so-called "sea island structure" dispersed in a shape. In that case, the softening component (C) is incompatible with the polyester resin (B), and by satisfying the above formula (1) with respect to the content of the softening component (C), the softening component is blended. It was found that the change in Tg was also suppressed, thereby satisfying the openness and processability.
  • the soft component (C) is dispersed in an island shape in the polyester resin (B) in the upper layer, and the soft component dispersed in the island shape.
  • the average major axis is 0.1 to 5.0 ⁇ m and the average minor axis is 0.01 to 2 ⁇ m.
  • the dispersed particle size of the soft component is large and the aspect ratio is large, so that the can lid is used. It is not preferable because it may reduce the openness of the product.
  • the laminated polyester resin film of the present embodiment includes a light stabilizer, an impact resistance improver, a compatibilizer, a lubricant, a plasticizer, an antistatic agent, a reaction catalyst, a color inhibitor, a radical prohibitor, a plasticizer, an antistatic agent, and the like.
  • Additives such as end-blocking agents, antioxidants, heat stabilizers, mold release agents, flame retardants, antibacterial agents, and anti-plasticizers may be added.
  • the thickness of the laminated polyester resin layer 200 in this embodiment is preferably in the range of 10 ⁇ m to 50 ⁇ m.
  • the thickness of the laminated polyester resin layer 200 exceeds 50 ⁇ m, it is not preferable from the viewpoint of economy and openness.
  • the thickness of the laminated polyester resin layer 200 is less than 10 ⁇ m, the processability and barrier properties when molding into a can lid may be deteriorated, which is not preferable.
  • each layer is not limited to this, but the upper layer 20 is preferably in the range of 5 ⁇ m to 40 ⁇ m, particularly 5 to 15 ⁇ m. If the upper layer 20 is less than 5 ⁇ m, the workability when molding into a can lid may be deteriorated, which is not preferable.
  • the lower layer 10 is preferably in the range of 5 ⁇ m to 30 ⁇ m, particularly preferably 10 to 25 ⁇ m. If the lower layer 10 is less than 5 ⁇ m, the openness of the can lid may decrease, which is not preferable.
  • the laminated polyester resin layer 200 of the present embodiment may include a layer other than the above-mentioned lower layer 10 and upper layer 20. That is, as described above, when the laminated polyester resin layer 200 of the present embodiment is applied to the can lid, the can lid is preferably manufactured so that the upper layer 20 is closer to the contents of the can. be.
  • the surface layer 30 made of polyester resin can be provided on the side of the upper layer 20 opposite to the metal base material side (the content side of the can).
  • the barrier property of the film can be improved.
  • the surface layer 30 for the purpose of improving the flavor property, that is, for avoiding the change in flavor of the can contents or the adsorption of the aroma component contained in the can contents.
  • a polyethylene terephthalate layer is preferable as the surface layer 30 in the present embodiment.
  • the polyethylene terephthalate layer to be the surface layer 30 may contain a copolymerization component, and may contain, for example, 5 mol% or less of isophthalic acid.
  • the thickness of such a surface layer 30 is preferably in the range of 0.1 to 10 ⁇ m.
  • the laminated polyester resin-coated metal plate 100 of the present invention can be manufactured by a method (direct extrusion method) in which a molten resin film is directly extruded onto a metal base material MP, passed between laminate rolls, and pressed and integrated. At this time, an extruder for the upper layer resin and an extruder for the lower layer resin are used, and the resin flows from each extruder are merged in the multi-layer die so that the lower layer resin is on the metal base material side. It can be manufactured by extruding the resin from the die into a thin film.
  • the manufacturing method of the laminated polyester resin-coated metal plate 100 is not limited to the above.
  • it can also be produced by producing a film having a lower layer 10 and an upper layer 20 by a known method, and then heat-adhering the film to the metal base material MP so that the lower layer 10 is on the metal base material MP side. can.
  • the laminated polyester resin film in the present embodiment can be produced by a known method as described above. For example, using an extruder for resin as the upper layer 20 and an extruder for resin as the lower layer 10, the resin flows from each extruder are merged in a multi-layer die, and the resin is thinned from the T-die.
  • a laminated polyester resin film can be obtained by extruding and then winding it by a known method.
  • the laminated polyester resin-coated metal plate 100 can be manufactured by thermally adhering the lower layer 10 to the metal base material MP so that the lower layer 10 is on the metal base material MP side using the laminated polyester resin film of the present embodiment. ..
  • the can lid of the present embodiment can be formed by using the above-mentioned laminated polyester resin-coated metal plate 100 so that the surface on which the above-mentioned lower layer 10 and upper layer 20 are formed becomes the inner surface side of the can lid.
  • the shape of the can lid of the present embodiment can be a known pull-open type or stay-on tab type easy-open lid. Since a known method can be applied to the method for manufacturing the can lid, the description thereof will be omitted here.
  • TFS titanium-free steel having a plate thickness of 0.22 mm
  • the upper and lower resin materials shown in Table 1 were supplied to a twin-screw extruder, and the barrel and T-die were extruded at a temperature suitable for the resin material to obtain a film, and the film was heated to 250 ° C. above.
  • a laminated polyester resin-coated metal plate was obtained by laminating on an aluminum alloy plate and immediately cooling with water. At this time, the thickness of the resin on the inner surface of the lid was set to the thickness shown in Table 2.
  • the obtained single-sided laminate material was painted on the outer surface side of the lid, and then painted and baked at 185 ° C. for 10 minutes.
  • a lid is formed from a blank having a diameter of 95.0 mm, and score processing (residual pressure 75 ⁇ m), rivet processing, attachment of an opening tab, and a lid are attached to this from the outer surface of the lid. Created.
  • Tg Glass transition temperature
  • Example 1 to 10 ⁇ Examples 1 to 10>
  • a thermoplastic elastomer polytetramethylene glycol copolymer polybutylene terephthalate
  • TMA trimellitic acid
  • Example 9 a lubricant was added to the lower layer.
  • polyolefin MFR: 0.9, melting point 80 ° C., Zn-crosslinked ionomer
  • Example 11 had a three-layer structure in which a 2.0 ⁇ m PET / IA2 (isoisophthalic acid 2 mol% copolymerized polyethylene terephthalate resin) layer was formed on the surface layer.
  • the laminated polyester resin film, the laminated polyester resin-coated metal plate, and the can lid of the present invention all have excellent openness and processability.
  • Comparative Examples 1 to 6 For Comparative Examples 1 to 3, a conventionally known two-layer film was applied. Further, in Comparative Examples 4 to 6, the configurations of the lower layer and the upper layer of the present invention were reversed. The laminated polyester resin film, the laminated polyester resin-coated metal plate, and the can lid shown in the comparative example did not have both openness and processability.
  • the present invention can satisfy product requirements while dealing with complicated and harsh lid making processing, and can be suitably used in the field of metal processing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Wrappers (AREA)

Abstract

【課題】開口時における開口性に加え、缶蓋に設けられるリベット部付近のフィルム割れの抑制(加工性)、内容物充填後におけるレトルト処理後の樹脂剥離の抑制(密着性)、及び、経時後における金属基材の腐食抑制(耐食性)の各々の性能を高度な次元で兼ね備えた積層ポリエステル樹脂被覆金属板を提供する。 【解決手段】本発明の積層ポリエステル樹脂被覆金属板は、金属基材と、前記金属基材の少なくとも一方の面に形成されて、2~30mol%の第1共重合成分で変性されたポリエステル樹脂(A)からなる下層と、前記下層の上に形成され、ポリエステル樹脂(B)及び当該ポリエステル樹脂(B)に非相溶である柔軟成分(C)を含み、ポリエステル樹脂(B)と柔軟成分(C)の合計を100質量%とした場合に柔軟成分(C)の含有量が2~50質量%である上層と、を有する。

Description

積層ポリエステル樹脂被覆金属板、積層ポリエステル樹脂フィルム、及び缶蓋
 本発明は、積層ポリエステル樹脂被覆金属板、金属板ラミネート用の積層ポリエステル樹脂フィルム、及びそれらを用いた缶蓋に関する。
 従来、飲料や食品用の金属缶に使用される缶蓋として、手で容易に開口でき開口部分を缶体に付着させたまま残すステイオンタブ(SOT)式や、開口部分を缶体と分離するティアオフ式等のイージーオープン(EO)蓋が広く使用されている。
 このような缶蓋の素材として、アルミやスチール等の金属基材上にポリエステル樹脂等の樹脂層を形成してなる樹脂被覆金属板が知られている。
 缶蓋に用いられる樹脂被覆金属板に対する要求としては、上述の開口部分がスムーズに開口できることが求められる。例えば特許文献1には蓋に形成された場合にフェザリング現象の発生が抑制され開口性等の特性を向上させることを目的とした樹脂被覆金属板が開示されている。
特許4236514号公報
 特許文献1に開示された樹脂被覆金属板において、金属板上に積層された樹脂層としては、熱可塑性ポリエステル樹脂にオレフィン系重合体を配合された下層と、熱可塑性ポリエステルの結晶性を制御し伸度20%とした表層と、を有する多層構成の樹脂層が開示されている。このように特許文献1においては、耐食性及び加工性を両立させることを目的として樹脂層が多層化されているものである。しかしながらこの特許文献1の技術においては、開口性(耐フェザリング性)については課題が残されていた。
 すなわち、樹脂被覆金属板を用いた缶蓋に対する要求として、上述したような開口時のフェザリング現象発生の抑制(開口性)と、缶蓋におけるフィルム割れ等の発生抑制(加工性)を両立することが求められる。
 開口性に関し、缶蓋の開口時には、缶蓋上に形成されたスコアに沿って樹脂層が切断される。すなわち、開口部分における金属基材と樹脂層との間のデラミネーションの発生や、開口部付近に引き伸ばされた内面側被覆樹脂が残存する現象(フェザリング現象)の回避が求められる。この開口性の向上のためには、樹脂の軟らかさ(伸び)をある程度抑える必要があると考えられる。
 一方で加工性に関しては、缶蓋には一般的にスコア加工のほか、補強のためのリブ加工やリベット部となる張出し絞り加工が施されるため、金属基材に対する上記加工に樹脂層が追従できる必要がある。さらに、印刷等の熱処理工程に上記加工を施した場合において、上記のような加工が大きい箇所でのフィルム割れや剥離等の発生が回避される必要がある。そしてこのような加工性の向上のためには、使用する樹脂がある程度軟らかいことが必要とされる。
 すなわち、上述の加工性と開口性とは相反する特徴であると言うことができ、樹脂被覆金属板を用いた缶蓋においてこれらの特徴を両立する樹脂の開発が求められていた。
 また缶蓋における一般的な課題として、内容物充填後におけるレトルト処理後の樹脂剥離の抑制(密着性)、及び、経時後における金属基材の腐食抑制(耐食性)の性能を備える必要があることは言うまでもない。
 本発明者らは上記課題を解決するため鋭意検討した。その結果、缶蓋製造用の積層ポリエステル樹脂フィルムや積層ポリエステル樹脂被覆金属板において、樹脂層の構成を所定のものとすることにより上記課題を高い次元で両立し得ることを見出し、本発明に想到したものである。
 上記目的を達成するため、本発明の一実施形態における積層ポリエステル樹脂被覆金属板は、(1)金属基材と、前記金属基材の少なくとも一方の面に形成された積層ポリエステル樹脂層と、を含み、前記積層ポリエステル樹脂層は、前記金属基材側から順に、2~30mol%の第1共重合成分で変性されたポリエステル樹脂(A)からなる下層と、ポリエステル樹脂(B)及び当該ポリエステル樹脂(B)に非相溶である柔軟成分(C)を含み、ポリエステル樹脂(B)と柔軟成分(C)の合計を100質量%とした場合に柔軟成分(C)の含有量が2~50質量%である上層と、を有することを特徴とする。
 なお上記した(1)に記載の積層ポリエステル樹脂被覆金属板は、(2)前記ポリエステル樹脂(B)はガラス転移温度(Tg1)が60℃以上90℃以下の熱可塑性ポリエステル樹脂であり、前記柔軟成分(C)はポリエステル系熱可塑性エラストマー及びポリオレフィンのいずれか又は両方であり、前記柔軟成分(C)が前記ポリエステル樹脂(B)中に分散されており、前記柔軟成分(C)の上層中における含有量(質量%)をWとしたとき、前記ポリエステル樹脂(B)のガラス転移温度(Tg1)と、前記上層のガラス転移温度(Tg2)の差の絶対値ΔTgがΔTg<0.5×Wを満たすことが好ましい。
 また、上記した(1)又は(2)に記載の積層ポリエステル樹脂被覆金属板は、(3)前記柔軟成分(C)が前記ポリエステル樹脂(B)中において島状に分散されており、前記島状に分散された柔軟成分(C)の平均長径が0.1~5.0μmであり、平均短径が0.01~2μmであることが好ましい。
 また、上記した(1)~(3)のいずれかに記載の積層ポリエステル樹脂被覆金属板は、(4)上記ポリエステル樹脂(A)がポリエチレンテレフタレートを主体とし、前記第1共重合成分としてイソフタル酸を含むことが好ましい。
 また、上記した(4)に記載の積層ポリエステル樹脂被覆金属板は、(5)前記下層が0.01~0.5mol%の多官能成分をさらに含むことが好ましい。
 また、上記した(1)~(5)のいずれかに記載の積層ポリエステル樹脂被覆金属板は、(6)前記ポリエステル樹脂(A)の重量平均分子量が40000~80000であることが好ましい。
 また、上記した(1)~(6)のいずれかに記載の積層ポリエステル樹脂被覆金属板は、(7)前記ポリエステル樹脂(A)に、平均粒径0.2~5.0μmの無機粒子が0.1~5.0質量%含有されてなることが好ましい。
 また、上記した(1)~(7)のいずれかに記載の積層ポリエステル樹脂被覆金属板は、(8)前記上層と前記下層の合計の厚さが10~50μmであり、前記上層の厚さが5~40μmであり、且つ、前記下層の厚さが5~30μmであることが好ましい。
 また、上記した(1)~(8)のいずれかに記載の積層ポリエステル樹脂被覆金属板は、(9)前記下層が、185℃・10分間の熱処理後、50℃環境下での破断伸度が50%以下であることが好ましい。
 また、上記した(1)~(9)のいずれかに記載の積層ポリエステル樹脂被覆金属板は、(10)前記上層の金属基材側と反対側に形成されて、ポリエステル樹脂からなる表層をさらに有することが好ましい。
 また上記目的を達成するため、本発明の一実施形態における積層ポリエステル樹脂フィルムは、(11)金属基材の少なくとも一方の面に形成され、2~30mol%の第1共重合成分で変性されたポリエステル樹脂(A)からなる下層と、前記下層の上に形成され、ポリエステル樹脂(B)及び当該ポリエステル樹脂(B)に非相溶である柔軟成分(C)を含み、ポリエステル樹脂(B)と柔軟成分(C)の合計を100質量%とした場合に柔軟成分(C)の含有量が2~50質量%である上層と、を有することを特徴とする。
 また上記目的を達成するため、本発明の一実施形態における缶蓋は、(12)上記した(1)~(10)のいずれかに記載の積層ポリエステル樹脂被覆金属板を用いてなる。
 また上記目的を達成するため、本発明の他の一実施形態における缶蓋は、(13)上記した(11)に記載の積層ポリエステル樹脂フィルムを用いてなる。
 本発明によれば、例えば缶蓋としての用途に好適な、開口時における開口性に加え、缶蓋に設けられるリベット部付近のフィルム割れの抑制(加工性)、を高度な次元で兼ね備えた積層ポリエステル樹脂被覆金属板、積層ポリエステル樹脂フィルム、及び缶蓋を実現できる。また、本発明の積層ポリエステル樹脂被覆金属板、積層ポリエステル樹脂フィルム、及び缶蓋によれば、内容物充填後におけるレトルト処理後の樹脂剥離の抑制(密着性)、及び、経時後における金属基材の腐食抑制(耐食性)の各々の性能をも備えることが可能となる。
図1は本実施形態の積層ポリエステル樹脂被覆金属板100の断面を示す模式図である。
 以下、実施形態を用いて本発明の積層ポリエステル樹脂被覆金属板、積層ポリエステル樹脂フィルム、及び缶蓋について説明するが、本発明は以下の実施形態に限定されるものではない。
[積層ポリエステル樹脂被覆金属板]
 まず本実施形態の積層ポリエステル樹脂被覆金属板100について図1を用いて説明する。本実施形態の積層ポリエステル樹脂被覆金属板100は、金属基材MPと、金属基材MP上の少なくとも一方の面に形成された積層ポリエステル樹脂層200と、を有する。そして、積層ポリエステル樹脂層200は、金属基材MP上に順に形成された下層10と上層20を含む。
 換言すれば、本実施形態の積層ポリエステル樹脂被覆金属板100は、金属基材MPと、金属基材MPの少なくとも一方の面に形成されて、2~30mol%の第1共重合成分で変性されたポリエステル樹脂(A)からなり金属基材MPに近い側の下層10と、前記下層10の上(金属基材MP側とは反対側)に形成され、ポリエステル樹脂(B)及び当該ポリエステル樹脂(B)に非相溶である柔軟成分(C)とを含み、ポリエステル樹脂(B)と柔軟成分(C)の合計を100質量%とした場合に柔軟成分(C)の含有量が2~50質量%である上層20と、を有する。
 なお本実施形態の積層ポリエステル樹脂被覆金属板100は、図1に示されるような下層10と上層20の2層構成に限られず、詳細は後述するとおり3層以上の構成であってもよい。
<金属基材>
 本実施形態の積層ポリエステル樹脂被覆金属板100に用いる金属基材MPとしては、従来イージーオープン蓋に使用されているアルミ材や鋼板等の公知の金属基材MPを使用することができる。
 アルミ材としては、純アルミやアルミ合金が使用される。アルミ材の厚みは蓋の大きさ等によっても相違するが、一般に0.20乃至0.50mm、特に0.23乃至0.30mmの範囲内にあるのがよい。またアルミ材の表面にはクロメート処理、ジルコニウム処理、リン酸処理、ポリアクリル酸処理等の表面処理膜が形成されていてもよい。
 鋼板としては、例えばTFS(ティンフリースチール)などのクロメート表面処理鋼板や、錫めっき量を0.3~2.8g/mでめっき処理したぶりき鋼板など公知の種々の鋼板を好ましく使用できる。鋼板の厚みは0.1乃至0.4mm、特に0.12乃至0.35mmの範囲にあるのが望ましい。
<下層>
 次に本実施形態の積層ポリエステル樹脂被覆金属板100における下層10について説明する。下層10は図1に示すように、金属基材MPの少なくとも一方の面に形成される。そして後述する積層ポリエステル樹脂層200における下層10と上層20のうち、下層10は金属基材MPに近い方に形成される。
 本実施形態の積層ポリエステル樹脂被覆金属板100おける下層10に適用されるポリエステル樹脂(A)は、共重合ポリエステル樹脂であり、2~30mol%の第1共重合成分で変性されている。ポリエステル樹脂(A)は具体的にはポリエチレンテレフタレートを主体とした共重合樹脂であることが好ましい。
 上述の第1共重合成分としては、イソフタル酸(IA)、オルソフタル酸、p-(β-ヒドロキシエトキシ)安息香酸、ナフタレン2,6-ジカルボン酸、ジフェノキシエタン-4,4′-ジカルボン酸、5-ナトリウムスルホイソフタル酸、ヘキサヒドロテレフタル酸、アジピン酸、セバシン酸、トリメリット酸及びピロメリット酸から成る群より選ばれた少なくとも一種を挙げることができる。このうち、上記の第1共重合成分は、イソフタル酸であることが加工性や密着性の観点からは好ましい。
 これらの第1共重合成分は、下層10の共重合ポリエステル樹脂中に2~30mol%含まれることが好ましい。第1共重合成分が2mol%未満の場合、金属基材MPと下層10との密着性が低下する可能性があり好ましくない。一方で第1共重合成分が30mol%を超える場合には、経済的に好ましくないことに加え、下層10の製膜性やバリア性が低下する可能性があるため好ましくない。
 なお、下層10の共重合ポリエステル樹脂中における第1共重合成分の量は、5~15mol%であることがより好ましい。
 なお本実施形態の積層ポリエステル樹脂被覆金属板100における下層10に適用される共重合ポリエステル樹脂において、含まれるグリコール成分としては、エチレングリコールの他、プロピレングリコール、1,4-ブタンジオール、ジエチレングリコール、1,6-ヘキシレングリコール、シクロヘキサンジメタノール、ビスフェノールAのエチレンオキサイド付加物等の一種又は二種以上を挙げることができる。
 なお本実施形態において下層10の共重合ポリエステル樹脂中には、さらに上記第1共重合成分とは異なる第2共重合成分(多官能成分)を0.01~0.5mol%含むことが好ましい。この多官能成分は、架橋構造を導入し開口性を向上させることを目的として導入される。なお、この第2共重合成分(多官能成分)の含有量が0.5mol%を超える場合には、下層10の共重合ポリエステル樹脂中においてゲルが発生しやすいこと、及び経済的な観点から好ましくない。
 多官能成分としては例えば、トリメリット酸、無水トリメリット酸、ピロメリット酸、無水ピロメリット酸、トリメチロールプロパン、ペンタエリスリトールから選択される1種類又は2種類以上を挙げることができる。このうち特に、トリメリット酸(TMA)又はペンタエリスリトールが入手し易さ等の観点からは好ましい。
 本実施形態において下層の共重合ポリエステル樹脂の重量平均分子量が40000~80000であることが、下層樹脂の粘度調整の観点、及び開口性向上の観点等から好ましい。重量平均分子量が40000未満である場合、樹脂層の製膜性が低下する可能性があるため好ましくない。一方で重量平均分子量が80000を超える場合には、樹脂層の製膜時に混練機中におけるトルクが高くなりすぎる可能性があり、好ましくない。なお、重量平均分子量が40000~55000であることが同様の観点からはより好ましい。
 本実施形態において下層の共重合ポリエステル樹脂は、平均粒径0.2μm~5.0μmの無機粒子が0.1~5.0質量%含有されてなることが、フィルムの巻取り形状の改善や、フィルムしわ発生回避、蓋の開口性向上等の観点から好ましい。なお、これらの無機粒子としてはいわゆる滑剤と呼ばれるものを適用できる。
 一方で、金属基材に溶融樹脂を直接押し出して樹脂被覆金属板を製造する方法(ダイレクトコート等とも称する)を採用する場合には、上記無機粒子が下層に含有されていない場合でも安定した生産が可能である。
 具体的には、脂肪族炭化水素系、高級脂肪族アルコール、脂肪酸、脂肪酸金属塩、脂肪酸のエステルあるいはアミド誘導体、たとえば、ステアリン酸アミド、オレイン酸アミド、エルシン酸アミド、エルカ酸アミド、ベヘン酸アミド、エチレンビスオレイン酸アミドなどの有機系滑剤、あるいは二酸化ケイ素、ケイ酸アルミニウム、ケイ酸マグネシウムなどのシリカ系、ゼオライト、炭酸カルシウム、二酸化珪素、酸化アルミニウム、硫酸バリウムなどの無機系滑剤などの一般的な市販の滑剤を用いることができる。
 これらの無機粒子の粒径としては、上述のとおり平均粒径0.2μm~5.0μmであることが好ましく、1.0μm~3.0μmであることがより好ましい。また、これらの無機粒子の含有量としては、本実施形態における下層の共重合ポリエステル樹脂中に0.1~5.0質量%であることが好ましく、0.4~3.0質量%であることがさらに好ましい。
 本実施形態の下層10は、185℃・10分間の熱処理後、50℃環境下での破断伸度が50%以下であることが好ましい。
 すなわち本実施形態の積層ポリエステル樹脂被覆金属板は、缶蓋製造時において、印刷時やレトルト処理時に熱処理がなされる。一般的に樹脂においては、熱処理後の破断伸度は、熱処理前の破断伸度よりも低下することが知られている。本発明においては、下層10が、上記条件の熱処理後において特定温度下(50℃環境下)でのフィルム破断伸度が50%以下であるとき、得られた缶蓋において気温が高い地域においても安定した開口性を確保するとともに加工性等の課題をも両立し得ることを見出した。
<上層>
 次に本実施形態の積層ポリエステル樹脂被覆金属板100における上層20について説明する。上層20は、図1に示すように、上述した下層10の、金属基材MPとは反対側に形成される。換言すれば、金属基材MPから順に、下層10、上層20の順に形成される。また、下層10を中間にした場合に一方の面に金属基材MP、他方の面に上層20が形成されていると言うこともできる。
 なお、缶蓋に適用された場合においては、この上層20が缶の内容物側になるように缶蓋が製造されることが好ましい。
 上記上層20の樹脂組成としては、主剤としてのポリエステル樹脂(B)と、当該ポリエステル樹脂(B)に非相溶である柔軟成分(C)と、を含有する。また、当該柔軟成分(C)の含有量としては、ポリエステル樹脂(B)と柔軟成分(C)の合計を100質量%とした場合に柔軟成分(C)の含有量が2~50質量%である。
 なお上記においては、上層20を形成する固形成分(水や溶剤などの揮発する物質を除いた不揮発成分)の中で、最も含有量(質量割合)が多い成分を、主剤として定義する。
 上記柔軟成分(C)の含有量が2質量%未満の場合、本実施形態の積層ポリエステル樹脂被覆金属板の加工性が低下する可能性があるため好ましくない。一方で柔軟成分(C)の含有量が50質量%を超える場合、缶蓋とした際の開口性が低下する可能性があるため好ましくない。本実施形態において、柔軟成分(C)の含有量は、5~20質量%であることがより好ましい。
 上記ポリエステル樹脂(B)は、熱可塑性ポリエステル樹脂であることが、耐熱性や耐衝撃性の観点からは好ましい。熱可塑性ポリエステル樹脂の具体例としては例えば、ポリエチレンテレフタレート(PET)、ポリエチレンイソフタレートおよび、これらにイソフタル酸、テレフタル酸、2,6-ナフタレンジカルボン酸、ジフェニルジカルボン酸、ジフェニルスルホンジカルボン酸、ジフェノキシエタンジカルボン酸、ジフェニルエーテルジカルボン酸、5-スルホイソフタル酸、フタル酸等の芳香族ジカルボン酸、シュウ酸、コハク酸、アジピン酸、セバシン酸、ダイマー酸、マレイン酸、フマル酸等の脂肪族ジカルボン酸、シクロヘキサンジカルボン酸等の脂環族ジカルボン酸等のジカルボン酸成分;エチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリテトラメチレングリコール、プロパンジオール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ネオペンチルグリコール等の脂肪族グリコール;ビスフェノールA、ビスフェノールS等の芳香族グリコール、シクロヘキサンジメタノール等の脂環族グリコール等;を共重合したポリエステルが挙げられる。また、上述した熱可塑性樹脂は単独で使用してもよいし、2種以上を組み合わせて用いてもよい。
 熱可塑性ポリエステルのなかでも、エチレンテレフタレート及び/又はエチレンイソフタレートを主たる構成成分とする熱可塑性ポリエステルが、コストやフレーバー性等の観点から好ましい。この場合、主たる構成成分とは、エチレンテレフタレートおよび/またはエチレンイソフタレートのうち、ジカルボン酸成分であるテレフタル酸成分、イソフタル酸成分に由来の単位が、全ジカルボン酸成分に由来の単位のうち、50mol%以上を占めることをいう。
 また、ポリエステル樹脂(B)として用いる熱可塑性ポリエステルには、3官能以上の多塩基酸および多価アルコールから選択される多官能成分が共重合されていてもよい。多官能成分が共重合されることで、フィルムを高速で製造する際や溶融したフィルムを高速で直接金属板にラミネートしてラミネート金属板を製造する際に、フィルムの端部(耳)が揺れて、膜厚が変動するドローレソナンス(耳揺れ)が低減されるため好ましい。3官能以上の多塩基酸および多価アルコールから選択される多官能成分としては、トリメリット酸、無水トリメリット酸、ピロメリット酸、無水ピロメリット酸、トリメチロールプロパン、ペンタエリスリトール等が挙げられる。これらの多官能成分の含有量は、熱可塑性ポリエステル中、0.01~0.5mol%、好ましくは0.07~0.3mol%である。多官能成分の含有量が上記範囲であると、熱可塑性ポリエステル中におけるゲル化の発生を抑制しながら、ドローレソナンス低減効果を適切に高めることができる。
 上層20に用いられる上記ポリエステル樹脂(B)のガラス転移温度(Tg1)は、60℃以上90℃以下であることが好ましく、65~85℃であることがさらに好ましく、70~80℃であることがより好ましい。Tg1が60℃未満である場合には、得られるフィルムの耐熱性が低くなること、及びフレーバー性が低下する可能性があることから好ましくない。一方でTg1が90℃を超えると、得られるフィルムの加工性や耐衝撃性が低下する可能性があるため好ましくない。
 なおガラス転移温度の測定方法としては公知の方法を適用することが可能であり、たとえば示差走査熱量計(DSC)を用いて10℃/分の昇温速度で行うことが可能である。
 ポリエステル樹脂(B)として用いられる熱可塑性ポリエステルは、極限粘度〔η〕が0.5~1.4dl/gであることが好ましく、0.7~1.2dl/gであることがより好ましく、0.8~1.0dl/gであることがさらに好ましい。なお極限粘度〔η〕は、フェノール/1,1,2,2-テトラクロロエタン=1/1の混合溶媒に溶解させて、30℃で測定した値とするものである。極限粘度〔η〕を上記範囲とすることにより、得られるフィルムの耐衝撃性を良好なものとしながら、フィルムとする際における成形性をより高めることができる。
 次に、本実施形態の上層20において、主剤としてのポリエステル樹脂(B)にブレンドされ、当該ポリエステル樹脂(B)に非相溶である柔軟成分(C)について説明する。なおここで「非相溶である」とは、上層20を観察したときにポリエステル樹脂(B)と柔軟成分(C)との境界が観察し得る状態を意味する。
 本実施形態の上層20における柔軟成分(C)としては、上述した主剤としてのポリエステル樹脂(B)に配合(ブレンド)された際に微細に分散され、海島構造(相分離)を構成し得るものである。また柔軟成分(C)は主剤としてのポリエステル樹脂(B)に室温においてゴム弾性を付与し得る。さらに柔軟成分(C)が主剤としてのポリエステル樹脂(B)に配合(ブレンド)された場合、ポリエステル樹脂(B)のガラス転移温度(Tg)へはほとんど影響しないことが好ましい。
 このような観点から本実施形態においては、柔軟成分(C)として具体的には、ポリエステル系熱可塑性エラストマー、及びポリオレフィンの、いずれか又は両方を用いることができる。
 柔軟成分(C)として用いられるポリエステル系熱可塑性エラストマーとしては、ガラス転移温度(Tg)が室温(25℃)以下であるものが好ましく、20℃未満であるものがより好ましく、10℃以下であるものがさらに好ましい。なお、本実施形態で用いられるポリエステル系熱可塑性エラストマーのガラス転移温度(Tg)の下限は、特に限定されないが、好ましくは-50℃以上である。
 上記ポリエステル系熱可塑性エラストマーの構造は、一般的に硬い結晶構造を形成するハードセグメントと柔らかいソフトセグメントからなる。本実施形態において用いられるポリエステル系熱可塑性エラストマーのハードセグメントを構成する成分としては、テレフタル酸、イソフタル酸、ビスフェノールA、ビスフェノールS、2,6-ナフタレンジカルボン酸、エチレングリコール、1,4-ブタンジオール等が挙げられる。
 またソフトセグメントを構成する成分としては、アジピン酸、セバシン酸、ダイマー酸等の脂肪族ジカルボン酸、および1,6-ヘキサンジオール、1,8オクタンジオール、1,10-デカンジオール等の脂肪族ジオール、ポリエチレングリコール、ポリテトラメチレングリコール等のポリエーテルが挙げられ、これらの中でもポリエーテルが好ましく、ポリエーテルの中でも特にポリテトラメチレングリコールが好ましい。
 そして、好ましいポリエステル系熱可塑性エラストマーとしては、ジカルボン酸からなるハードセグメントと、ポリエーテル単位からなるソフトセグメントとが、エステル結合を介して結合されてなるポリエーテルエステルが挙げられる。これらの中で、ポリエーテル単位をポリエステル系熱可塑性エラストマー中において50質量%以上含むものが好ましい。 ポリエステル系熱可塑性エラストマー中のポリエーテル単位の含有割合は、より好ましくは50~70質量%であり、上記ポリエーテル単位の含有量が50質量%未満の場合は、熱可塑性ポリエステルと溶融混練した際、相溶化しやすくなり、フィルムの耐熱性が低下するため好ましくない。
 ポリエステル系熱可塑性エラストマー中のポリエーテル単位(ポリエーテルセグメント)の分子量は特に限定されないが、500~5000のものが好ましく用いられる。さらに、金属との密着性向上のため、ポリエステル系熱可塑性エラストマーは、無水マレイン酸等で変性されていてもよい。なおポリエーテル単位は、ポリエステル系熱可塑性エラストマー中に、少なくとも1つ含まれていればよく、複数含まれていてもよい。
 本実施形態において特に好ましいポリエステル系熱可塑性エラストマーとしては、ポリブチレンテレフタレートにポリテトラメチレングリコール(PTMG)を共重合した樹脂が挙げられる。
 次に、本実施形態の上層20における柔軟成分(C)のうち、ポリオレフィンについて説明する。柔軟成分(C)として用いられるポリオレフィンとしては、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、ポリ1-ブテン、ポリ4-メチル-1-ペンテン、またはエチレン/プロピレン共重合体をはじめとするエチレン、プロピレン、1-ブテン、4-メチル-1-ペンテンなどのα-オレフィン同士のランダム共重合体またはブロック共重合体などの鎖式ポリオレフィン樹脂が挙げられる。また、これらのポリオレフィンのいずれかに、アクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸などの不飽和カルボン酸やそれらの無水物を2%以下グラフト重合してなる、いわゆる酸変性ポリオレフィンを用いることができる。エチレン酢酸ビニル(EVA)、エチレン-ビニルアルコール共重合体(EVOH)等も用いることができる。
 上記したポリオレフィンにおいては製膜性の観点から、メルトフローレート(以下、単にMFRという)MFRが30g/10min以下であることが好ましい。
 さらには、上記ポリオレフィンのいずれかにおいて、カルボキシル基の一部又は全部が金属陽イオンでイオン架橋されたアイオノマー樹脂(イオン架橋オレフィン共重合体)等をも用いることができる。
 アイオノマー樹脂は、エチレンとα,β-不飽和カルボン酸との共重合体中のカルボキシル基の一部又は全部が金属陽イオンで中和されたイオン性塩であり、中和の程度、すなわちイオン濃度がその物理的性質に影響を及ぼしている。一般に、アイオノマー樹脂のメルトフローレート(以下、単にMFRという)はイオン濃度に左右され、イオン濃度が大きいとMFRが小さく、また融点はカルボキシル基濃度に左右され、カルボキシル基濃度が大きいほど融点も小さくなる。従って、本発明に用いるアイオノマー樹脂としては、勿論これに限定されるものではないが、MFRが15g/10min以下、特に5g/10min乃至0 . 5g/10minの範囲にあり、且つ融点が100℃以下、特に97℃乃至80 ℃の範囲にあるものであることが望ましい。
 アイオノマー樹脂中の金属陽イオンとしては、Na+,K+,Li+,Zn+,Z2 +,Mg2+,Ca2+,Co2+,Ni2+,Mn2+,Pb2+,Cu2+ 等を挙げることができる。本実施形態においては、特に亜鉛により中和されているものが、架橋の程度が大きく、湿度敏感性が少ないことから、好適に用いることができる。また、金属イオンで中和されていない残余のカルボキシル基の一部は低級アルコールでエステル化されていてもよい。
 本実施形態における上層20中において、前記ポリエステル樹脂(B)のガラス転移温度(Tg1)と、この主剤としてのポリエステル樹脂(B)に前記柔軟成分(C)を混合させた後のガラス転移温度(Tg2)との関係としては、上層20中の前記柔軟成分(C)の含有量(質量%)をWとしたとき、下記式(1)を満たすことが好ましい。
 ΔTg<0.5×W ・・・ (1)
 ただし、ΔTgはTg1とTg2との差の絶対値とする。
 本発明者らが鋭意検討した結果、上層20中において柔軟成分(C)を主剤であるポリエステル樹脂(B)に混合した場合、柔軟成分(C)が前記上層のポリエステル樹脂(B)中において島状に分散したいわゆる「海島構造」を構成することを見出した。その場合、柔軟成分(C)はポリエステル樹脂(B)に非相溶であり、且つ柔軟成分(C)の含有量に対して上記式(1)を満たすことにより、柔軟成分をブレンドした後におけるTgの変化も抑制し、これにより開口性と加工性を満たすことを見出した。
 上記の式(1)において、△Tgが0.5×W以上の場合は、耐衝撃性を向上させるためにポリエステル系熱可塑性エラストマーの含有量を増やすと、フィルムのTgが低下して耐熱性が低下するため、フィルムの耐衝撃性と耐熱性を両立できない。
 なお特に好ましくは、下記式(2)を満たすことが好ましい。
 ΔTg<0.2×W ・・・ (2)
 また、本実施形態における積層ポリエステル樹脂フィルムの上層中において、前記柔軟成分(C)が前記上層のポリエステル樹脂(B)中において島状に分散してなり、前記島状に分散された柔軟成分の平均長径が0.1~5.0μmであり、平均短径が0.01~2μmであることが好ましい。
 上記平均長径と平均短径に関して、平均長径と平均短径のいずれかの値が上記数値範囲を超える場合には、柔軟成分の分散粒径が大きく、且つアスペクト比が大きいため、缶蓋としたときの開口性が低下する可能性があり好ましくない。
 本実施形態の積層ポリエステル樹脂フィルムは、光安定剤、耐衝撃改良剤、相溶化剤、滑剤、可塑剤、帯電防止剤、反応触媒、着色防止剤、ラジカル禁止剤、可塑剤、帯電防止剤、末端封鎖剤、酸化防止剤、熱安定剤、離型剤、難燃剤、抗菌剤、抗黴剤等の添加剤を添加してもよい。
 次に、本実施形態における積層ポリエステル樹脂層200の厚みについて説明する。本実施形態における積層ポリエステル樹脂層200の厚みとしては10μm~50μmの範囲内であることが好ましい。積層ポリエステル樹脂層200の厚みが50μmを超える場合には経済的な観点や開口性の観点から好ましくない。一方で積層ポリエステル樹脂層200の厚みが10μm未満の場合には缶蓋に成形する場合の加工性やバリア性が低下する可能性があるため好ましくない。
 また本実施形態における積層ポリエステル樹脂層200において、下層10と上層20との厚み比は、下層:上層=1:5乃至3:1の範囲にあることが、開口性及び加工性の両方を満足する上で好ましい。すなわち、上記範囲よりも下層が厚いと開口性や耐衝撃性が不充分になるおそれがあり、また上記範囲よりも下層が薄いと加工性や耐食性が不充分になるおそれがある。なお、下層10と上層20との厚み比は、下層:上層=1:3乃至1:1の範囲にあることがさらに好ましい。
 また各層の厚みはこれに限定されないが、上層20は5μm乃至40μm、特に5乃至15μmの範囲にあることが好ましい。上層20が5μm未満の場合、缶蓋に成形する場合の加工性が低下する可能性があり好ましくない。
 また下層10は5μm乃至30μm、特に10乃至25μmの範囲にあることが好ましい。下層10が5μm未満の場合、缶蓋としての開口性が低下する可能性があり好ましくない。
 本実施形態の積層ポリエステル樹脂層200は、上述の下層10及び上層20以外の層を含むものであってもよい。すなわち、本実施形態の積層ポリエステル樹脂層200は、缶蓋に適用された場合は上層20が缶の内容物に近い側になるように缶蓋が製造されることが好ましいことは上述したとおりである。その場合、例えば上層20のさらに金属基材側と反対側(缶の内容物側)に、ポリエステル樹脂からなる表層30を設けることが可能である。例えば表層30としてポリエチレンテレフタレート層を設けることで、フィルムのフレーバー性を向上させたり、ポリエチレンナフタレート層を設けることでフィルムのバリア性を向上させることができる。
 本実施形態においては、フレーバー性を向上させる目的、すなわち、缶内容物の風味変化を回避する、あるいは缶内容物に含まれる香気成分の吸着を回避するために表層30を形成することが好ましい。これらの目的のため本実施形態において、表層30としてはポリエチレンテレフタレート層が好ましい。表層30となるポリエチレンテレフタレート層は共重合成分を含んでいてもよく、例えばイソフタル酸を5mol%以下含んでいてもよい。このような表層30の厚みとしては、0.1~乃至10μmの範囲にあることが好ましい。
[積層ポリエステル樹脂被覆金属板の製造方法]
 本発明の積層ポリエステル樹脂被覆金属板100は、溶融樹脂膜を金属基材MP上に直接押し出してラミネートロール間に通して押圧一体化させることによる方法(直接押出法)によって製造することができる。この際、上層樹脂用の押出機及び下層樹脂用の押出機を使用し、各押出機からの樹脂流を多重多層ダイ内で合流させ、下層樹脂が金属基材側となるようにしてT-ダイから樹脂を薄膜状に押し出すことにより製造することが可能である。
 また、積層ポリエステル樹脂被覆金属板100の製造方法は上記に限られるものではない。たとえば、公知の方法で下層10と上層20とを有するフィルムを製造し、次いで当該フィルムを金属基材MPに下層10が金属基材MP側となるように熱接着させることによっても製造することができる。
[積層ポリエステル樹脂フィルム]
 本実施形態における積層ポリエステル樹脂フィルムは、上述のとおり公知の方法で製造することが可能である。例えば、上層20となる樹脂用の押出機及び下層10となる樹脂用の押出機を使用し、各押出機からの樹脂流を多重多層ダイ内で合流させ、T-ダイから樹脂を薄膜状に押し出した後に公知の方法によって巻き取ることによって、積層ポリエステル樹脂フィルムを得ることができる。本実施形態の積層ポリエステル樹脂フィルムを用いて、金属基材MPに下層10が金属基材MP側となるように熱接着させることによって、積層ポリエステル樹脂被覆金属板100を製造することが可能である。
[缶蓋]
 本実施形態の缶蓋は、上述した積層ポリエステル樹脂被覆金属板100を用いて、上述の下層10及び上層20が形成された面を缶蓋の内面側となるようにして成形することができる。なお、本実施形態の缶蓋の形状は、公知のプルオープン方式やステイオンタブ方式のイージーオープン蓋とすることができる。なお、缶蓋の製造方法は公知の方法を適用できるため、ここでは説明を省略する。
 次に、本発明を以下の実施例を用いてさらに詳細に説明するが、本発明はこれに限定されるものではない。なお、各特性の評価方法は、以下のとおりである。
〔評価および測定方法〕
(積層ポリエステル樹脂被覆金属板の製造方法)
 板厚0.22mmのTFS(ティンフリースチール)を金属基材として用いた。表1に示す上層及び下層の樹脂材料を2軸押出機に供給し、バレルおよびTダイの温度を樹脂材料に適した温度で押出すことでフィルムを得、そのフィルムを250℃に加熱した上記アルミニウム合金板上にラミネートし、直ちに水冷することで、積層ポリエステル樹脂被覆金属板を得た。このとき、蓋内面樹脂厚みが表2に示す厚みとなるようにした。得られた片面ラミネート材の蓋外面となる側に塗装をした後、185℃で10分間塗装焼き付けした。
(缶蓋の製造方法)
 EO蓋については、上記積層ポリエステル樹脂被覆金属板について、直径95.0mmブランクから蓋を成形し、これに蓋の外面からスコア加工(残圧75μm)、リベット加工ならびに開封用タブの取り付け、蓋を作成した。
(開口性評価)
 上記のようにして得られた蓋に対して、120℃60分のレトルト処理を行った。その後、50℃付近の温度で蓋を手で開口し、開口部周辺を目視で観察し、評価した。評価基準として、蓋開口時の板とフィルムの剥離の長さ(デラミ長さ)、開口部のフィルム伸びの最大値を計測し以下のとおり評価した。結果を表2に示す。
   デラミ長さ  ◎:0.5mm以下
          ○:0.5mm超1.0mm以下
          ×:1.0mm超
   フィルム伸び ◎:0.5mm以下
          ○:0.5mm超1.0mm以下
          ×:1.0mm超
(加工性評価)
 得られた缶蓋の内面全体に6.30Vの電圧を4.0秒間かけた時の電流値で評価した。
        ◎:0.01mA以下
        ○:0.01mA超0.5mA以下
        ×:0.5mA超
<ガラス転移温度(Tg)>
 示差走査熱量計(商品名「DSC8500」、パーキンエルマー社製)にて溶融後、200℃/分で-50℃まで冷却した。そして-50℃から280℃まで10℃/分で昇温したときに観測されるガラス転移の補外開始温度をガラス転移温度(Tg)とした。
<上層中に分散した柔軟成分の長径、短径>
 フィルムの断面を走査電子顕微鏡で観察し、10μm四方中に分散しているポリエステル系熱可塑性エラストマー又はポリオレフィンの長径と短径を測定し、それぞれを平均することで、平均長径および平均短径を求めた。
<実施例1~10>
 実施例1~実施例9は、上層に柔軟成分として熱可塑性エラストマー(ポリテトラメチレングリコール共重合ポリブチレンテレフタレート)を用いた。実施例4~6、8は下層に多官能成分としてトリメリット酸(TMA)を含有させた。実施例9は、下層に滑剤を添加した。実施例10は上層に柔軟成分としてポリオレフィン(MFR:0.9、融点80℃、Zn架橋のアイオノマー)を用いた。実施例11は表層に2.0μmのPET/IA2(イソイソフタル酸2mol%共重合ポリエチレンテレフタレート樹脂)層を形成した3層構成とした。
 実施例により示されるように、本発明の積層ポリエステル樹脂フィルム、積層ポリエステル樹脂被覆金属板及び缶蓋はいずれも優れた開口性及び加工性を兼ね備えるものである。
<比較例1~6>
 比較例1~3は、従来公知の2層フィルムを適用した。また、比較例4~6は、本発明の下層と上層の構成を逆にしたものとした。比較例に示す本発明の積層ポリエステル樹脂フィルム、積層ポリエステル樹脂被覆金属板及び缶蓋は、開口性及び加工性を兼ね備えるものではなかった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明は、複雑かつ過酷な製蓋加工に対応しつつ製品要求を満たすことが可能であり、金属加工の分野において好適に利用することが可能である。
 MP   金属基材
 100  積層ポリエステル樹脂被覆金属板
  10   下層
  20   上層
  30   表層
 200  積層ポリエステル樹脂層

Claims (13)

  1.  金属基材と、
     前記金属基材の少なくとも一方の面に形成された積層ポリエステル樹脂層と、を含み、
     前記積層ポリエステル樹脂層は、前記金属基材側から順に、
     2~30mol%の第1共重合成分で変性されたポリエステル樹脂(A)からなる下層と、
     ポリエステル樹脂(B)及び当該ポリエステル樹脂(B)に非相溶である柔軟成分(C)を含み、ポリエステル樹脂(B)と柔軟成分(C)の合計を100質量%とした場合に柔軟成分(C)の含有量が2~50質量%である上層と、
     を有することを特徴とする、積層ポリエステル樹脂被覆金属板。
  2.  前記ポリエステル樹脂(B)はガラス転移温度(Tg1)が60℃以上90℃以下の熱可塑性ポリエステル樹脂であり、
     前記柔軟成分(C)はポリエステル系熱可塑性エラストマー及びポリオレフィンのいずれか又は両方であり、
     前記柔軟成分(C)が前記ポリエステル樹脂(B)中に分散されており、
     前記柔軟成分(C)の上層中における含有量(質量%)をWとしたとき、前記ポリエステル樹脂(B)のガラス転移温度(Tg1)と、前記上層のガラス転移温度(Tg2)の差の絶対値ΔTgが下記式(1)を満たす、請求項1に記載の積層ポリエステル樹脂被覆金属板。
     ΔTg<0.5×W ・・・ (1)
  3.  前記柔軟成分(C)が前記ポリエステル樹脂(B)中において島状に分散されており、前記島状に分散された柔軟成分(C)の平均長径が0.1~5.0μmであり、平均短径が0.01~2μmである、請求項1又は2に記載の積層ポリエステル樹脂被覆金属板。
  4.  上記ポリエステル樹脂(A)がポリエチレンテレフタレートを主体とし、前記第1共重合成分としてイソフタル酸を含む、請求項1~3のいずれか一項に記載の積層ポリエステル樹脂被覆金属板。
  5.  前記下層が0.01~0.5mol%の多官能成分をさらに含む、請求項4に記載の積層ポリエステル樹脂被覆金属板。
  6.  前記ポリエステル樹脂(A)の重量平均分子量が40000~80000である、請求項1~5のいずれか一項に記載の積層ポリエステル樹脂被覆金属板。
  7.  前記ポリエステル樹脂(A)に、平均粒径0.2~5.0μmの無機粒子が0.1~5.0質量%含有されてなる、請求項1~6のいずれか一項に記載の積層ポリエステル樹脂被覆金属板。
  8.  前記上層と前記下層の合計の厚さが10~50μmであり、前記上層の厚さが5~40μmであり、且つ、前記下層の厚さが5~30μmである、請求項1~7のいずれか一項に記載の積層ポリエステル樹脂被覆金属板。
  9.  前記下層が、185℃・10分間の熱処理後、50℃環境下での破断伸度が50%以下である、請求項1~8のいずれか一項に記載の積層ポリエステル樹脂被覆金属板。
  10.  前記上層の金属基材側と反対側に形成されて、ポリエステル樹脂からなる表層をさらに有する、請求項1~9のいずれか一項に記載の積層ポリエステル樹脂被覆金属板。
  11.  金属基材の少なくとも一方の面に形成され、2~30mol%の第1共重合成分で変性されたポリエステル樹脂(A)からなる下層と、
     前記下層の上に形成され、ポリエステル樹脂(B)及び当該ポリエステル樹脂(B)に非相溶である柔軟成分(C)を含み、ポリエステル樹脂(B)と柔軟成分(C)の合計を100質量%とした場合に柔軟成分(C)の含有量が2~50質量%である上層と、
     を有する積層ポリエステル樹脂フィルム。
  12.  請求項1~請求項10のいずれか一項に記載の積層ポリエステル樹脂被覆金属板を用いた缶蓋。
  13.  請求項11に記載の積層ポリエステル樹脂フィルムを用いた缶蓋。
PCT/JP2021/011836 2020-04-03 2021-03-23 積層ポリエステル樹脂被覆金属板、積層ポリエステル樹脂フィルム、及び缶蓋 WO2021200358A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21779255.5A EP4129647A4 (en) 2020-04-03 2021-03-23 LAYERED POLYESTER RESIN COATED METAL PLATE, LAYERED POLYESTER RESIN FILM AND CAN LID
CN202180021038.5A CN115298025B (zh) 2020-04-03 2021-03-23 层叠聚酯树脂被覆金属板、层叠聚酯树脂膜和罐盖
US17/907,447 US12049060B2 (en) 2020-04-03 2021-03-23 Multilayered polyester resin-coated metal sheet, multilayered polyester resin film, and can lid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020067721A JP7517857B2 (ja) 2020-04-03 2020-04-03 積層ポリエステル樹脂被覆金属板、積層ポリエステル樹脂フィルム、及び缶蓋
JP2020-067721 2020-04-03

Publications (1)

Publication Number Publication Date
WO2021200358A1 true WO2021200358A1 (ja) 2021-10-07

Family

ID=77929874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011836 WO2021200358A1 (ja) 2020-04-03 2021-03-23 積層ポリエステル樹脂被覆金属板、積層ポリエステル樹脂フィルム、及び缶蓋

Country Status (5)

Country Link
US (1) US12049060B2 (ja)
EP (1) EP4129647A4 (ja)
JP (1) JP7517857B2 (ja)
CN (1) CN115298025B (ja)
WO (1) WO2021200358A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2024053188A1 (ja) * 2022-09-06 2024-03-14

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001341258A (ja) * 2000-06-01 2001-12-11 Nkk Corp 金属板ラミネート用樹脂フィルムおよびラミネート金属板並びにその製造方法
JP2002347176A (ja) * 2001-03-21 2002-12-04 Toyo Kohan Co Ltd 熱可塑性樹脂被覆金属板およびそれを用いた缶
JP2004216891A (ja) * 2002-12-26 2004-08-05 Toyobo Co Ltd 金属板貼合せ用ポリエステル系フィルム
JP2005161707A (ja) * 2003-12-03 2005-06-23 Jfe Steel Kk 容器用樹脂被覆金属板及びその製造方法
JP2005254630A (ja) * 2004-03-11 2005-09-22 Jfe Steel Kk 缶用ラミネート金属板
JP4236514B2 (ja) 2003-05-23 2009-03-11 東洋鋼鈑株式会社 イージーオープン蓋用樹脂被覆金属板及びこの樹脂被覆金属板から成るイージーオープン蓋

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997045483A1 (fr) * 1996-05-31 1997-12-04 Kanebo, Limited Composition de resine polyester, film obtenu a partir de cette composition, film composite polyester, laminat metallique obtenu a partir de ce film et procede permettant de diminuer le contenu d'un polyester en composes de faible poids moleculaire
ATE297444T1 (de) * 2000-09-05 2005-06-15 Toyo Boseki Polyesterfolie, ihre verwendung und aus dieser folie hergestelltes laminiertes metallblech, und aus diesem blech hergestellte metalldose und metalldeckel
US20050100749A1 (en) * 2001-03-21 2005-05-12 Lianchun Hu Metal sheet coated with thermoplastic resin and can obtained therefrom
US7220477B2 (en) * 2003-03-19 2007-05-22 Toyo Seikan Kaisha, Ltd. Film for lamination and laminated member using the film
JP2005035674A (ja) * 2003-07-01 2005-02-10 Toyo Kohan Co Ltd 缶蓋用樹脂フィルム、および缶蓋用樹脂フィルムを被覆してなる缶蓋用樹脂フィルム被覆金属板、ならびにそれを用いた缶蓋
JP2007044997A (ja) * 2005-08-10 2007-02-22 Jfe Steel Kk 金属板ラミネート用熱可塑性ポリエステル樹脂フィルムおよびラミネート金属板
CN101646712A (zh) * 2007-03-27 2010-02-10 东洋制罐株式会社 金属板包覆用聚酯树脂及其制备方法
TWI483842B (zh) * 2011-09-28 2015-05-11 Jfe Steel Corp 容器用樹脂包覆金屬板
JP6303299B2 (ja) * 2013-06-21 2018-04-04 東洋製罐株式会社 熱可塑性樹脂被覆金属板及びこれから成る缶体並びに缶蓋
US20180050518A1 (en) * 2015-03-10 2018-02-22 Toyobo Co., Ltd. Polyester-based film for laminating metal plate
WO2017102143A1 (en) * 2015-12-17 2017-06-22 Tata Steel Ijmuiden B.V. Process for laminating a polymeric film to a metal strip substrate and a metal strip substrate produced thereby
WO2019077746A1 (ja) * 2017-10-20 2019-04-25 東洋製罐グループホールディングス株式会社 有機樹脂被覆表面処理金属板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001341258A (ja) * 2000-06-01 2001-12-11 Nkk Corp 金属板ラミネート用樹脂フィルムおよびラミネート金属板並びにその製造方法
JP2002347176A (ja) * 2001-03-21 2002-12-04 Toyo Kohan Co Ltd 熱可塑性樹脂被覆金属板およびそれを用いた缶
JP2004216891A (ja) * 2002-12-26 2004-08-05 Toyobo Co Ltd 金属板貼合せ用ポリエステル系フィルム
JP4236514B2 (ja) 2003-05-23 2009-03-11 東洋鋼鈑株式会社 イージーオープン蓋用樹脂被覆金属板及びこの樹脂被覆金属板から成るイージーオープン蓋
JP2005161707A (ja) * 2003-12-03 2005-06-23 Jfe Steel Kk 容器用樹脂被覆金属板及びその製造方法
JP2005254630A (ja) * 2004-03-11 2005-09-22 Jfe Steel Kk 缶用ラミネート金属板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4129647A4

Also Published As

Publication number Publication date
US12049060B2 (en) 2024-07-30
EP4129647A4 (en) 2024-05-01
US20230132293A1 (en) 2023-04-27
CN115298025B (zh) 2024-10-15
JP2021160330A (ja) 2021-10-11
EP4129647A1 (en) 2023-02-08
JP7517857B2 (ja) 2024-07-17
CN115298025A (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
JP3982385B2 (ja) 金属板ラミネート用樹脂フィルム、その製造方法、樹脂ラミネート金属板並びにその製造方法
JP5082844B2 (ja) 樹脂被覆金属板、金属缶及び蓋
WO2021200358A1 (ja) 積層ポリエステル樹脂被覆金属板、積層ポリエステル樹脂フィルム、及び缶蓋
JP4208042B2 (ja) 樹脂被覆金属板、金属缶及び缶蓋
JP4725477B2 (ja) 金属板ラミネート用樹脂フィルム、その製造方法、樹脂ラミネート金属板並びにその製造方法
JP5146171B2 (ja) 有機樹脂ラミネート鋼板
KR100965464B1 (ko) 라미네이트용 필름 및 이것을 이용하여 이루어지는라미네이트재
JP5146170B2 (ja) 有機樹脂ラミネート鋼板
JP2007044944A (ja) ラミネート金属板および金属板ラミネート用樹脂フィルム
JP3083508B2 (ja) 金属板ラミネート用ポリエステルフィルム
JP4364630B2 (ja) 金属板貼合せ用ポリエステル系フィルム
JP2004083736A (ja) キャストフィルム、樹脂被覆金属板、缶及び缶蓋
JP2000345013A (ja) 成形用ポリエステル樹脂
JP2010240985A (ja) 金属板ラミネートフィルム
JP7295226B2 (ja) 金属板ラミネート用樹脂フィルムおよびそれを用いたラミネート金属板
WO1995015852A1 (fr) Film de polyester stratifie pour stratification avec un metal
JP4462722B2 (ja) 金属板表面被覆用ポリエステル積層体
JP4236514B2 (ja) イージーオープン蓋用樹脂被覆金属板及びこの樹脂被覆金属板から成るイージーオープン蓋
JP2001353814A (ja) 樹脂被覆金属板、缶及び缶蓋
WO2020045086A1 (ja) 金属板ラミネート用樹脂フィルムおよびそれを用いたラミネート金属板
JP5664529B2 (ja) ラミネート金属板の製造方法およびラミネート金属板
JP2005194472A (ja) 金属板被覆用樹脂組成物、樹脂被覆金属板、缶及び缶蓋
JP2007044943A (ja) ラミネート金属板の製造方法およびラミネート金属板
JP2004067865A (ja) 金属板貼り合わせ用ポリエステルフィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21779255

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021779255

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021779255

Country of ref document: EP

Effective date: 20221103

NENP Non-entry into the national phase

Ref country code: DE