WO2021200227A1 - ガス供給量測定方法およびガス供給量制御方法 - Google Patents

ガス供給量測定方法およびガス供給量制御方法 Download PDF

Info

Publication number
WO2021200227A1
WO2021200227A1 PCT/JP2021/011117 JP2021011117W WO2021200227A1 WO 2021200227 A1 WO2021200227 A1 WO 2021200227A1 JP 2021011117 W JP2021011117 W JP 2021011117W WO 2021200227 A1 WO2021200227 A1 WO 2021200227A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas supply
supply amount
control valve
flow rate
pulse
Prior art date
Application number
PCT/JP2021/011117
Other languages
English (en)
French (fr)
Inventor
貴紀 中谷
敦志 日高
正明 永瀬
西野 功二
池田 信一
Original Assignee
株式会社フジキン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジキン filed Critical 株式会社フジキン
Priority to US17/906,064 priority Critical patent/US20230121563A1/en
Priority to KR1020227022877A priority patent/KR20220104825A/ko
Priority to JP2022511891A priority patent/JP7376959B2/ja
Publication of WO2021200227A1 publication Critical patent/WO2021200227A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0694Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means or flow sources of very small size, e.g. microfluidics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/005Valves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F22/00Methods or apparatus for measuring volume of fluids or fluent solid material, not otherwise provided for
    • G01F22/02Methods or apparatus for measuring volume of fluids or fluent solid material, not otherwise provided for involving measurement of pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0623Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the set value given to the control element
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41108Controlled parameter such as gas mass flow rate

Definitions

  • the present invention relates to a gas supply amount measuring method and a gas supply amount control method, and more particularly to a gas supply amount measuring method of gas generated in a vaporization unit and supplied in a pulsed manner, and a gas supply amount control method using the same.
  • the pressure type flow rate control device can control the mass flow rate of various fluids with high accuracy by a relatively simple configuration in which a control valve and a throttle portion (for example, an orifice plate or a critical nozzle) on the downstream side thereof are combined.
  • the pressure type flow rate control device has an excellent flow rate control characteristic that stable flow rate control can be performed even if the supply pressure on the primary side fluctuates greatly (for example, Patent Document 1).
  • a piezo element drive type valve (hereinafter, may be referred to as a piezo valve) is used.
  • the piezo valve is configured to open and close the diaphragm valve body by a piezo actuator, and has high responsiveness.
  • the opening degree of the control valve is feedback-controlled based on the output of the pressure sensor that measures the upstream pressure P1, for example, and the flow rate of the gas flowing to the downstream side of the throttle portion can be appropriately controlled. can.
  • HCDS Si 2 Cl 6 : Hexachlorodisilane
  • HCDS is a liquid at room temperature (boiling point: about 144 ° C.)
  • the liquid HCDS may be vaporized using a vaporization supply device and then supplied to the process chamber as a gas.
  • Patent Document 2 the applicant discloses a vaporization supply device for appropriately vaporizing and supplying an organometallic gas such as tetraethyl orthosilicate (TEOS) and HCDS.
  • TEOS tetraethyl orthosilicate
  • the liquid raw material is pumped to the vaporization chamber of the vaporization supply device, heated by the heater, and the vaporized raw material gas is flowed by the pressure type flow control device provided on the downstream side of the vaporization chamber. It is controlled and supplied to the process chamber.
  • the process of supplying HCDS gas, purge gas, ammonia gas, and purge gas to the process chamber in sequence for a short time is repeated.
  • a short time for example, 1 to 10 seconds
  • the ALD process requires a pulsed gas supply in a short time, but the pressure type flow rate control device using the throttle portion and the pressure sensor sometimes has difficulty in supporting the ALD process. .. Further, in the pulse flow rate control, it has been desired that the supply amount (volume and substance amount) of the gas supplied in one pulse is appropriately controlled.
  • the vaporized part of the vaporization supply device or the gas generated in the vaporization device may be supplied in a pulsed manner at a relatively large flow rate.
  • the pressure type flow rate control device since the flow rate is limited by the throttle portion, it may be difficult to flow the gas at a relatively large flow rate.
  • the pulse gas supply at a particularly large flow rate is appropriately controlled.
  • the flow rate is measured and the flow rate is controlled by using the upstream pressure sensor provided between the control valve and the throttle portion, but another method as simple as possible is used. It was advantageous to be able to measure the flow rate and gas supply amount.
  • the present invention has been made to solve the above problems, and a main object of the present invention is to provide a method for measuring a supply amount of gas supplied from a vaporizer and a method for controlling a gas supply amount using the same. And.
  • the gas supply amount measuring method is a supply pressure for measuring the supply pressure between the vaporization unit, the control valve provided on the downstream side of the vaporization unit, and the vaporization unit and the control valve.
  • a step of measuring the supply pressure a plurality of times and a plurality of steps from the time when the pressure drop from the initial supply pressure is started to the time after the predetermined time elapses when the pressure is open for a predetermined time. It includes a step of calculating the gas supply amount when the control valve is opened for a predetermined time based on the measured value of the supply pressure.
  • the step of calculating the gas supply amount by calculation includes a step of calculating the gas supply amount by integrating the flow rate calculated based on the measured value of the supply pressure.
  • the step of calculating the gas supply amount by calculation is based on the initial supply pressure P0i and the measured values P (tun) of the plurality of supply pressures, and the gas supply amount ⁇ Q (tun) ⁇ dt is calculated by the following formula.
  • Q (tun) is the flow rate at time tun
  • dt is the sampling period
  • Qi is the initial supply pressure P0i and the initial flow rate obtained based on the Cv value of the control valve
  • P0 (tun) Is the supply pressure at time tun.
  • ⁇ Q (tun) ⁇ dt ⁇ Qi ⁇ (P0 (tun) / P0i) ⁇ dt
  • control valve when the control valve is opened for a predetermined time, the control valve is opened to a maximum opening corresponding to a maximum set flow rate.
  • control valve is a piezo valve.
  • the gas vaporized in the vaporized section is Si 2 Cl 6 .
  • the gas supply amount control method is a step of opening the control valve for one pulse for a predetermined time based on the pulse flow rate control signal, and a gas supply amount for one pulse by any of the above measurement methods. Based on the step of measuring, the step of correcting the pulse flow rate control signal based on the comparison result between the measured gas supply amount and the preset desired gas supply amount, and the step of correcting the pulse flow rate control signal, and based on the corrected pulse flow rate control signal. It includes a step of opening the control valve for one pulse for a predetermined time.
  • the step of measuring the gas supply for one pulse is performed for the first pulse gas supply in the process of performing the pulse gas supply multiple times, and when the subsequent pulse gas supply is performed, the corrected pulse flow rate control is performed.
  • the signal is used.
  • the gas is supplied by a relatively simple method even when the relatively high temperature gas generated by the vaporizer is supplied in a pulsed manner.
  • the amount can be measured and controlled, and it can be applied to gas supply at a relatively large flow rate.
  • FIG. 1 shows an example of a gas supply system 100 in which the gas supply amount measuring method and the gas supply amount control method of the present embodiment are implemented.
  • the gas supply system 100 is configured to vaporize the liquid raw material L pumped from the liquid raw material source 2 to the vaporization supply device 4 in the vaporization supply device 4 and supply it to the process chamber 6 as gas G.
  • a vacuum pump 8 is connected to the process chamber 6 so that the gas flow path in the process chamber 6 and connected to the process chamber 6 can be evacuated.
  • the liquid flow path is shown by a white line
  • the gas flow path is shown by a thick line.
  • liquid raw material source 2 examples include organic metals such as TEOS (tetraethyl orthosilicate), TMGa (trimethylgallium), and TMAl (trimethylaluminum), HCDS (Si 2 Cl 6 ), and the like.
  • TEOS tetraethyl orthosilicate
  • TMGa trimethylgallium
  • TMAl trimethylaluminum
  • HCDS Si 2 Cl 6
  • the vaporization supply device 4 of the present embodiment includes a vaporization unit (or vaporization device) 10 and a control valve 12 provided on the downstream side of the vaporization unit 10.
  • the vaporization unit 10 is provided with a heater (not shown), and the vaporization unit 10 can vaporize the liquid raw material L.
  • a heater for example, a heater described in Patent Document 2
  • a jacket heater or a heater in which a cartridge heater is embedded in an aluminum plate as a heat transfer member for example, a heater described in Patent Document 2 can be used.
  • the vaporized raw material is supplied to the process chamber 6 at an arbitrary flow rate according to the opening degree of the control valve 12.
  • the control valve 12 for example, a piezo valve configured to open and close the diaphragm valve body by a piezo actuator can be used.
  • the piezo valve is configured so that it can be opened at an arbitrary opening degree by controlling the drive voltage applied to the piezo element.
  • the vaporization supply device 4 of the present embodiment controls the liquid replenishment valve 16 on the upstream side of the vaporization unit 10, the stop valve 18 on the downstream side of the control valve 12, and the gas pressure (supply pressure P0) in the vaporization unit 10.
  • the supply pressure sensor 14 for measuring is provided.
  • AOV air driven valve
  • the gas can be supplied in a pulsed manner by opening and closing the control valve 12 or the stop valve 18 in a pulsed manner.
  • the amount of liquid raw material supplied to the vaporization unit 10 can be controlled by adjusting the opening / closing interval and opening time of the liquid replenishment valve 16.
  • the stop of gas supply to the process chamber 6 can be reliably performed by using the stop valve 18.
  • a three-way valve may be provided between the stop valve 18 and the control valve 12, and if the three-way valve is used, the raw material gas and the purge gas can be switched and flowed at a desired timing.
  • FIG. 2 shows a more specific configuration of the vaporization supply device 4.
  • the vaporization supply device 4 shown in FIG. 2 has a preheating unit 20 on the upstream side of the vaporization unit 10 and the liquid replenishment valve 16.
  • the preheating unit 20 is provided to assist the vaporization in the vaporization unit 10, and by heating the liquid raw material in advance, the required heat amount in the vaporization unit 10 is reduced, and the temperature is lowered at the time of vaporization due to the latent heat of vaporization. Can be suppressed.
  • the preheating section 20 and the vaporizing section 10 are provided with heaters (not shown). Further, another heater (not shown) is also provided in the flow rate control unit composed of the control valve 12. It is possible to control the preheating unit 20, the vaporizing unit 10, and the flow rate control unit (flow path including the control valve 12) to different temperatures, and typically, the vaporizing unit 10 has a higher temperature than the preheating unit 20. The flow rate control unit is maintained at a higher temperature than the vaporization unit 10 in order to prevent reliquefaction.
  • the heater of the vaporization unit 10 is set to a temperature of, for example, 180 to 200 ° C.
  • the downstream side of the control valve 12 is connected to the stop valve 18 via the gasket 13.
  • a downstream pressure sensor 15 for measuring the pressure P1 on the downstream side of the control valve 12 is provided, and the gas supply amount is measured according to the measurement method of the present embodiment described later.
  • the downstream pressure sensor 15 is not always necessary.
  • the gas supply amount measuring method of the present embodiment can also be carried out in a gas supply system in which the flow rate and the gas supply amount are controlled by a pressure type flow rate control device having a throttle portion and a downstream pressure sensor 15.
  • FIG. 2 shows a configuration in which the preheating unit 20, the vaporization unit 10, the control valve 12 (flow rate control unit), and the like are integrally provided on a common base base, and these components are shown. May be arranged in isolation from each other.
  • the opening degree of the control valve 12 may be open-loop controlled based on the input flow rate setting signal. Further, as will be described later, when the pulse flow rate is controlled, the opening degree and the opening / closing time of the control valve 12 are adjusted based on the measurement result of the gas supply amount for one pulse when the gas is first flowed. You may. By correcting the control signal of the control valve 12 based on the measured flow rate, it is possible to supply gas at a desired pulse flow rate (gas supply amount).
  • the gas supply amount on the downstream side of the control valve 12 is measured.
  • the supply pressure sensor 14 after the control valve 12 is closed to open is measured.
  • the gas supply amount is measured based on the output (that is, the measurement result of the supply pressure P0).
  • FIG. 3 shows the time change of the opening / closing signal (flow rate setting signal) Sv of the control valve 12 and the corresponding supply pressure P0 when measuring the gas supply amount.
  • 4 (a) and 4 (b) show the drop time of the supply pressure P0 in FIG. 3 enlarged in the time axis direction
  • FIG. 5 shows the recovery time of the supply pressure P0 in FIG. 3 enlarged in the time axis direction. Shown.
  • the control valve 12 is closed and the supply pressure P0 is maintained at the initial supply pressure P0i in the state before the gas supply amount measurement.
  • the initial supply pressure P0i changes depending on the material to be vaporized and the set temperature of the heater. For example, when HCDS is maintained in a saturated state at 190 ° C., it is maintained at about 250 kPa abs, which is the vapor pressure at that temperature. ..
  • the liquid replenishment valve 16 is maintained in the closed state, and the liquid raw material is not added.
  • the stop valve 18 is maintained in an open state, and the downstream side of the control valve 12 is typically maintained at a vacuum pressure (for example, 100 Torr or less).
  • the control valve 12 when the control valve 12 is opened for a predetermined time (here, 1 second), the gas accumulated on the upstream side of the control valve 12 is released. It flows out to the downstream side via the control valve 12. At this time, in the present embodiment, the control valve 12 is opened to the maximum opening degree (opening corresponding to 100% flow rate setting (IN100%)) according to the flow rate setting signal Sv.
  • a predetermined time here, 1 second
  • the control valve 12 is opened to the maximum opening degree (opening corresponding to 100% flow rate setting (IN100%)) according to the flow rate setting signal Sv.
  • the supply pressure P0 measured by the supply pressure sensor 14 decreases with the outflow of gas.
  • the falling supply pressure P0 is measured every predetermined sampling period (for example, 10 ms), and the result is stored in the memory. Then, based on the measured supply pressure P0, the gas supply amount by integration corresponding to the predetermined time ⁇ t, which is the opening time of the control valve, is obtained. As shown in FIG. 4B, the gas supply amount (gas supply volume and gas supply mass) corresponding to this one pulse corresponds to the integrated value PS of the supply pressure P0.
  • the period for obtaining the integrated gas supply amount is the period from the time t1 when the actual decrease in the supply pressure P0 is confirmed to the time t2 when the predetermined time ⁇ t has elapsed. This is because the actual opening and closing of the control valve 12 may occur with a slight delay from the valve control signal, so it is more appropriate to obtain the integrated gas supply amount for a predetermined period after confirming the actual pressure drop. This is because the data can be obtained.
  • the Cv value (Coefficient of flow) when the control valve 12 is opened to the maximum opening degree is obtained in advance.
  • the Cv value is a general index indicating the ease of flow of a fluid in a valve, and corresponds to the flow rate of gas flowing through the valve when the primary side pressure and the secondary side pressure of the valve are constant.
  • the gas flow rate Q (sccm) is given by, for example, the following equation (1) using the Cv value.
  • the valve primary pressure is the supply pressure P0
  • the valve secondary pressure is the valve downstream pressure P1.
  • Q 34500 ⁇ Cv ⁇ P0 / (Gg ⁇ T) 1/2 ...
  • Q is the flow rate (sccm)
  • Gg is the specific gravity of the gas
  • P0 is the supply pressure, that is, the primary pressure of the valve (kPa abs)
  • T is the temperature (K).
  • the specific density Gg of HCDS is about 9.336.
  • the flow rate Q based on the supply pressure P0 can be obtained based on the above equation (1).
  • the Cv value is not limited to the one according to the above formula (2), and may be obtained by another method.
  • the Cv value can be obtained based on the measurement result of the supply pressure P0 when the gas is flowing at the measured flow rate Q measured by the flow meter provided on the downstream side of the valve.
  • the flow rate Q (t) at each time is obtained from the measurement result of the supply pressure P0, and the gas supply amount at each minute time dt (here, the sampling cycle) is Q (t) ⁇ dt.
  • the initial flow rate Qi is calculated from the above equation (1) using the Cv value of the valve, and the ratio of the measured pressure P0 (t) to the initial supply pressure P0i at time t.
  • the integrated gas supply amount corresponding to the predetermined time ⁇ t can be obtained by measuring the supply pressure P0 many times (n times) over the predetermined time ⁇ t.
  • Q (t1) + Q (t2) + ... + Q (tun) has a magnitude related to the integrated value PS of the measured supply pressure P0.
  • the sampling period dt is set to, for example, 10 msec, and the number of samples n at this time is 100.
  • the sampling period dt and the number of samples n may be arbitrarily set.
  • the shorter the sampling period dt the more accurately the integrated gas supply amount can be obtained. Therefore, the sampling period dt is preferably 50 msec or less (20 or more samples), and 20 msec or less (50 or more samples). ) Is more preferable.
  • the sampling period dt is preferably 5 msec or more (the number of samples is 200 or less).
  • the values of the sampling period dt and the number of samples n may be appropriately set according to the magnitude of the predetermined time ⁇ t.
  • the measurement result of the supply pressure P0 over a predetermined time ⁇ t corresponds to one pulse supplied from the vaporization unit 10 via the control valve 12.
  • the gas supply amount integrated gas supply amount
  • control valve 12 may be operated so as to open at an arbitrary opening degree other than the maximum.
  • the integrated gas supply amount is obtained as described above, it is preferable to obtain the Cv value corresponding to the arbitrary opening degree.
  • the valve body lift amount L in the above formula (2) is set according to the opening degree. By changing to the value, the Cv value at the opening can be obtained.
  • Patent Document 3 by the present applicant, a flow rate is built down by measuring the pressure (supply pressure P0) on the upstream side of the control valve by using an on-off valve provided on the upstream side of the pressure type flow rate control device. The method of monitoring is disclosed. However, Patent Document 3 only discloses a method of detecting only an initial decrease in the supply pressure P0 and measuring the flow rate while flowing a gas at a constant flow rate on the downstream side of the pressure type flow rate control device. It should be noted that the method of measuring the gas supply amount corresponding to one pulse in the pulse flow rate control is not disclosed.
  • control valve 12 is closed as the flow rate setting signal Sv changes to 0%.
  • the supply pressure P0 recovers and typically returns to the initial supply pressure P0i.
  • the recovery of the supply pressure P0 is started with a slight delay from the fall of the flow rate setting signal Sv, but this is because the control signal actually given to the control valve 12 includes a delay, and the flow rate setting signal Sv It is probable that the control valve 12 was not completely shut off for a while after the fall of. Normally, the supply pressure P0 begins to recover immediately after the control valve 12 is actually closed.
  • FIG. 6 shows a flowchart of gas supply amount measurement.
  • step S1 the liquid replenishment valve 16 (LV) is opened for a predetermined time with the control valve 12 (CV) closed.
  • step S1 a predetermined amount of liquid raw material is supplied to the vaporization unit.
  • the supplied raw material is heated by a heater and vaporized.
  • step S2 the initial supply pressure P0i is measured while the heater temperature is kept constant.
  • the pressure (vapor pressure) according to the type of the raw material and the heater temperature is detected.
  • a pressure equal to or lower than the vapor pressure may be detected.
  • step S3 the control valve CV is opened while maintaining the closed state of the liquid replenishment valve LV.
  • the control valve CV is opened up to the maximum opening here.
  • gas flows out to the downstream side through the control valve at a flow rate based on the valve Cv value and the initial supply pressure P0i as described above.
  • step S4 the supply pressure P0 is measured and monitored, and the time t1 at which the supply pressure P0 actually starts to decrease, that is, the time t1 at which the difference between the measured supply pressure P0 and the initial supply pressure P0i exceeds the threshold value is set. Identify. Then, this time t1 is set to the P0 pressure drop start time. Further, the time t2 at which the predetermined time ⁇ t has elapsed from this time t1 is set to the predetermined time t2 indicating the end of measurement.
  • the measurement and recording of the supply pressure P0 are repeatedly executed until the predetermined time t2 is reached.
  • step S7 the integrated gas supply amount is calculated from the measurement result of the supply pressure P0. As a result, the amount of gas supplied corresponding to one pulse can be obtained.
  • the flowchart shown in FIG. 6 does not describe a step in which the control valve CV is closed, this step calculates the integrated gas supply amount when a predetermined time ⁇ t elapses from the time when the control valve CV is opened. It is executed as appropriate in parallel with the desired flow.
  • control signal of the control valve 12 may be corrected based on the gas supply amount measured by this method.
  • CV control valve 12
  • the control valve 12 is opened and closed based on a predetermined pulse flow rate control signal (valve open / close command), and one pulse is supplied by the above-mentioned gas supply amount measurement method.
  • the gas supply is measured.
  • the pulse flow rate control signal is corrected from the next 1-pulse gas supply, and the control valve 12 is opened and closed. Control.
  • the measured gas supply amount is larger than the preset desired amount
  • at least one of the opening time of the control valve 12 and the opening degree of the control valve 12 is set according to the size. Set to a smaller value. As a result, the amount of gas supplied in the next 1-pulse gas supply can be reduced, and the gas can be supplied in a desired amount.
  • the measured gas supply amount is smaller than the desired amount
  • at least one of the opening time of the control valve 12 and the opening degree of the control valve 12 is set to a larger value.
  • the amount of gas supplied in the next 1-pulse gas supply can be increased, and the gas can be supplied in a desired amount.
  • the above correction of the valve opening / closing command may be performed not only at the time of the first 1-pulse gas supply but also after the second time. This makes it possible to repeat the correction and more reliably supply the 1-pulse gas in a desired amount.
  • the gas supply amount measuring method and the gas supply amount control method according to the embodiment of the present invention are preferably used when, for example, pulse flow rate control is performed in a gas supply system.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

ガス供給量測定方法は、気化部と、気化部下流側のコントロール弁と、気化部とコントロール弁との間の供給圧力を測定する供給圧力センサとを備えるガス供給系において行われ、コントロール弁を閉じた状態で供給圧力センサを用いて初期供給圧力を測定するステップと、コントロール弁を所定時間だけ開くステップと、コントロール弁を所定時間だけ開いているときに、初期供給圧力からの圧力降下が開始された時刻から所定時間が経過したあとの時刻までの間において、供給圧力を複数回測定するステップと、複数の供給圧力の測定値に基づいて、コントロール弁を所定時間だけ開いたときのガス供給量を演算により求めるステップとを含む。

Description

ガス供給量測定方法およびガス供給量制御方法
 本発明は、ガス供給量測定方法およびガス供給量制御方法に関し、特に、気化部において生成されてパルス的に供給されるガスの供給量測定方法およびこれを用いたガス供給量制御方法に関する。
 半導体製造設備又は化学プラント等において、原料ガスやエッチングガスなどの種々のプロセスガスがプロセスチャンバへと供給される。供給されるガスの流量を制御する装置としては、マスフローコントローラ(熱式質量流量制御器)や圧力式流量制御装置が知られている。
 圧力式流量制御装置は、コントロール弁とその下流側の絞り部(例えばオリフィスプレートや臨界ノズル)とを組み合せた比較的簡単な構成によって、各種流体の質量流量を高精度に制御することができる。圧力式流量制御装置は、一次側の供給圧力が大きく変動しても安定した流量制御が行えるという、優れた流量制御特性を有している(例えば、特許文献1)。
 圧力式流量制御装置に用いられる流量制御用のコントロール弁としては、ピエゾ素子駆動式バルブ(以下、ピエゾバルブと称することがある)が用いられている。ピエゾバルブは、ピエゾアクチュエータによってダイヤフラム弁体を開閉させるように構成されており、高い応答性を有している。圧力式流量制御装置において、コントロール弁の開度は、例えば、上流圧力P1を測定する圧力センサの出力に基づいてフィードバック制御され、絞り部の下流側に流れるガスの流量を適切に制御することができる。
 近年、半導体製造プロセスにおいて、シリコン窒化膜(SiNx膜)やシリコン酸化膜(SiO2膜)などの絶縁膜の形成のために、HCDS(Si2Cl6:Hexachlorodisilane)ガスを、ALD(Atomic Layer Deposition)プロセスによって供給することが行われている。HCDSは、低温で分解・反応させることができる材料であり、例えば450~600℃での低温半導体製造プロセスを実現させる。
 ただし、HCDSは、室温では液体(沸点:約144℃)であるので、液体のHCDSを、気化供給装置を用いて気化してから、ガスとしてプロセスチャンバンに供給することがある。本出願人は、特許文献2において、オルトケイ酸テトラエチル(TEOS)等の有機金属ガスやHCDSの気化供給を適切に行うための気化供給装置を開示している。この気化供給装置によれば、液体原料は、気化供給装置の気化室に圧送され、ヒータによって加熱され、気化した原料ガスは、気化室の下流側に設けられた圧力式流量制御装置によって流量が制御されてプロセスチャンバへと供給される。
特許第3546153号公報 国際公開第2019/021948号 国際公開第2013/179550号
 ALDプロセスによるシリコン窒化膜の成膜においては、例えば、HCDSガス、パージガス、アンモニアガス、パージガスが短時間(例えば1秒から10秒)ずつ順々にプロセスチャンバに供給する工程が繰り返される。このように、ALDプロセスでは、短時間でのパルス的なガス供給が必要になるが、絞り部や圧力センサを用いる上記の圧力式流量制御装置では、ALDプロセスには対応しづらいときもあった。また、パルス流量制御では、1パルスで供給されるガスの供給量(体積や物質量)が適切に制御されることが望まれていた。
 また、気化供給装置の気化部または気化装置において生成されたガスを、比較的大流量でパルス的に供給する場合がある。この場合に、圧力式流量制御装置では絞り部によって流量が制限されるため、比較的大流量でガスを流しにくいことがあった。また、上記のような有機金属ガスやHCDSガスの供給を行うためには、再液化防止のために供給路の全体を高温(例えば200℃)に保つ必要があるため、高温ガスであっても流量を測定できることが求められていた。
 したがって、気化装置から高温のガスを供給する場合に、特に大流量でのパルスガス供給を適切に制御するという課題があった。このためには、従来の圧力式流量制御装置のように、コントロール弁と絞り部との間に設けた上流圧力センサを用いて流量測定および流量制御を行うのではなく、できるだけ簡便な他の方式によって流量やガス供給量の測定を行うことができることが有利であった。
 本発明は、上記課題を解決するために為されたものであり、気化装置から供給されるガスの供給量を測定する方法およびこれを用いたガス供給量制御方法を提供することをその主たる目的とする。
 本発明の実施態様に係るガス供給量測定方法は、気化部と、前記気化部の下流側に設けられたコントロール弁と、前記気化部と前記コントロール弁との間の供給圧力を測定する供給圧力センサとを備えるガス供給系において行われ、前記コントロール弁を閉じた状態で前記供給圧力センサを用いて初期供給圧力を測定するステップと、前記コントロール弁を所定時間だけ開くステップと、前記コントロール弁を所定時間だけ開いているときに、前記初期供給圧力からの圧力降下が開始された時刻から前記所定時間が経過したあとの時刻までの間において、前記供給圧力を複数回測定するステップと、複数の前記供給圧力の測定値に基づいて、前記コントロール弁を所定時間だけ開いたときのガス供給量を演算により求めるステップとを含む。
 ある実施形態において、前記ガス供給量を演算により求めるステップは、前記供給圧力の測定値に基づいて算出された流量を積算することによって前記ガス供給量を算出するステップを含む。
 ある実施形態において、前記ガス供給量を演算により求めるステップは、初期供給圧力P0iと、前記複数の供給圧力の測定値P(tn)とに基づいて下記式によってガス供給量ΣQ(tn)・dtを求めるステップを含み、下記式において、Q(tn)は時刻tnにおける流量、dtはサンプリング周期、Qiは初期供給圧力P0iおよび前記コントロール弁のCv値に基づいて求められる初期流量、P0(tn)は、時刻tnにおける供給圧力である。
   ΣQ(tn)・dt=ΣQi×(P0(tn)/P0i)・dt
 ある実施形態において、前記コントロール弁を所定時間だけ開くとき、前記コントロール弁は、最大設定流量に対応する最大開度に開かれる。
 ある実施形態において、前記コントロール弁は、ピエゾバルブである。
 ある実施形態において、前記気化部において気化されるガスは、Si2Cl6である。
 本発明の実施形態に係るガス供給量制御方法は、パルス流量制御信号に基づいて、コントロール弁を所定時間だけ1パルス分開くステップと、上記いずれかの測定方法によって、1パルス分のガス供給量を測定するステップと、測定されたガス供給量と予め設定された所望ガス供給量との比較結果に基づいてパルス流量制御信号を補正するステップと、前記補正されたパルス流量制御信号に基づいて、コントロール弁を所定時間だけ1パルス分開くステップとを含む。
 ある実施形態において、1パルス分のガス供給量を測定するステップは、複数回のパルスガス供給を行うプロセスにおける最初のパルスガス供給について行われ、その後のパルスガス供給を行うときには、前記補正されたパルス流量制御信号が用いられる。
 本発明の実施形態に係るガス供給量測定およびガス供給量制御方法によれば、気化装置で生成された比較的高温のガスをパルス的に供給する場合においても、比較的簡便な方法でガス供給量を測定および制御することができ、比較的大流量でのガス供給にも適用できる。
本発明の実施形態に係るガス供給量測定方法が行われるガス供給系を例示的に示す図である。 本発明の実施形態に係るガス供給量測定方法が行われるより具体的なガス供給系を例示的に示す図である。 本発明の実施形態に係るガス供給量測定方法を実施するときの、流量設定信号(コントロール弁の開閉信号)Svおよび気化室内の供給圧力P0の時間変化を示すグラフである。 (a)は、図3に示したグラフにおける供給圧力P0の降下期間を拡大して示すグラフであり、(b)は時間積分したP0の大きさ(面積)を示す。 図3に示したグラフにおける供給圧力P0の回復期間を拡大して示すグラフである。 本発明の実施形態に係るガス供給量測定方法の例示的なフローチャートを示す。
 以下、本発明の実施形態について図面を参照しながら詳細に説明する。ただし、本発明は、以下に説明する実施形態に限定されるものではない。
 図1は、本実施形態のガス供給量測定方法およびガス供給量制御方法が実施されるガス供給系100の一例を示す。ガス供給系100は、液体原料ソース2から気化供給装置4に圧送された液体原料Lを、気化供給装置4において気化し、プロセスチャンバ6にガスGとして供給するように構成されている。プロセスチャンバ6には、真空ポンプ8が接続されており、プロセスチャンバ6内およびプロセスチャンバ6に接続されるガス流路を真空引きすることができる。図1において、液体流路を白抜き線で示し、ガス流路を太線で示している。
 液体原料ソース2としては、例えば、TEOS(オルトケイ酸テトラエチル)、TMGa(トリメチルガリウム)、TMAl(トリメチルアルミニウム)などの有機金属や、HCDS(Si2Cl6)などが挙げられる。以下の実施形態では、HCDSを気化させて供給する例について説明する。HCDSの沸点は約144℃であり、190℃における蒸気圧は約250kPaである。
 本実施形態の気化供給装置4は、気化部(または気化装置)10と、気化部10の下流側に設けられたコントロール弁12とを備えている。気化部10には、図示しないヒータが設けられており、気化部10において、液体原料Lを気化させることができる。ヒータとしては、ジャケットヒータや、伝熱部材としてのアルミニウム板にカートリッジヒータを埋設したヒータ(例えば特許文献2に記載のヒータ)を用いることができる。
 気化した原料は、コントロール弁12の開度に応じて、任意流量でプロセスチャンバ6に供給される。コントロール弁12としては、例えば、ピエゾアクチュエータによってダイヤフラム弁体を開閉させるように構成されたピエゾバルブを用いることができる。ピエゾバルブは、ピエゾ素子に印加する駆動電圧を制御することにより、任意開度に開くことができるように構成されている。
 また、本実施形態の気化供給装置4は、気化部10の上流側の液体補充バルブ16、コントロール弁12の下流側のストップバルブ18、および、気化部10内のガス圧力(供給圧力P0)を測定する供給圧力センサ14を備えている。液体補充バルブ16およびストップバルブ18としては、AOV(空気駆動弁)などが好適に用いられる。供給圧力センサ14としては、高温耐性を有する圧力センサが好適に用いられる。
 気化供給装置4において、コントロール弁12またはストップバルブ18をパルス的に開閉することによって、パルス的にガス供給を行うことができる。
 気化部10への液体原料の供給量は、液体補充バルブ16の開閉間隔や開時間などを調整することによって制御することができる。プロセスチャンバ6へのガス供給の停止は、ストップバルブ18を用いて確実に行うことができる。ストップバルブ18とコントロール弁12との間には三方弁が設けられていてもよく、三方弁を用いれば、所望のタイミングで、原料ガスとパージガスとを切り替えて流すこともできる。
 図2は、気化供給装置4のより具体的な構成を示す。図2に示す気化供給装置4は、気化部10および液体補充バルブ16の上流側において、予加熱部20を有している。予加熱部20は、気化部10における気化を補助するために設けられ、予め液体原料を加熱しておくことによって、気化部10における必要熱量を低下させ、また、気化潜熱による気化時の温度低下を抑制することができる。
 予加熱部20と気化部10とには、図示しないそれぞれのヒータが設けられている。また、コントロール弁12によって構成される流量制御部にも、別のヒータ(図示せず)が設けられている。予加熱部20、気化部10および流量制御部(コントロール弁12を含む流路)を、それぞれ異なる温度に制御することが可能であり、典型的には、予加熱部20より気化部10が高温に維持され、また、再液化防止のために流量制御部は気化部10より高温に維持される。HCDSの気化を行う場合、気化部10のヒータは、例えば180~200℃の温度に設定される。
 図2に示す気化供給装置4では、コントロール弁12の下流側は、ガスケット13を介してストップバルブ18に接続されている。これによって、絞り部を同位置に有する圧力式流量制御装置に比べて、より大流量でガスを流しやすい。また、図2に示す気化供給装置4では、コントロール弁12の下流側の圧力P1を測定する下流圧力センサ15が設けられているが、後述する本実施形態の測定方法に従ってガス供給量の測定を行う場合、下流圧力センサ15は必ずしも必要ではない。ただし、本実施形態のガス供給量測定方法は、絞り部や下流圧力センサ15を有する圧力式流量制御装置によって流量やガス供給量を制御するガス供給系においても実施し得る。
 気化供給装置4としては、本出願人による国際出願番号PCT/JP2020/033395号に開示される縦型構成を採用することもできる。縦型構成において、予加熱部、気化部、および流量制御部は、縦3段に重ねて配置される。また、図2には、予加熱部20、気化部10およびコントロール弁12(流量制御部)等が共通のベース台上に一体的に設けられた構成が示されているが、これらの構成要素は互いに隔離して配置されていてもよい。
 上記のように大流量でガスを流すために絞り部を排除した場合、コントロール弁12の開度は、入力された流量設定信号に基づいて、オープンループ制御されてもよい。また、後述するように、パルス流量制御を行うときには、最初にガスを流したときの1パルス分のガス供給量の測定結果に基づいて、コントロール弁12の開度や開閉時間を調節するようにしてもよい。測定された流量に基づいてコントロール弁12の制御信号を補正することによって、所望のパルス流量(ガス供給量)でのガス供給を行うことが可能である。
 以上のように構成されたガス供給系100において、コントロール弁12の下流側におけるガス供給量の測定を行うが、本実施形態では、コントロール弁12を閉から開にした後の供給圧力センサ14の出力(すなわち供給圧力P0の測定結果)に基づいて、ガス供給量を測定する。以下、具体的に説明する。
 図3は、ガス供給量の測定を行うときの、コントロール弁12の開閉信号(流量設定信号)Svおよび対応する供給圧力P0の時間変化を示す。図4(a)、(b)は、図3における供給圧力P0の降下時期を時間軸方向に拡大して示し、図5は、図3における供給圧力P0の回復時期を時間軸方向に拡大して示す。
 図3、図4(a)、(b)に示すように、ガス供給量測定前の状態において、コントロール弁12は閉じられており、供給圧力P0は、初期供給圧力P0iに維持されている。初期供給圧力P0iは、気化させる材料とヒータの設定温度とによって変化し、例えばHCDSが190℃で飽和状態に維持されているときは、当該温度での蒸気圧である約250kPa absに維持される。
 また、ガス供給量測定中、液体補充バルブ16は閉じた状態に維持されており、液体原料の追加は行われない。一方、ストップバルブ18は開放状態に維持されており、コントロール弁12の下流側は典型的には真空圧(例えば100Torr以下)に維持されている。
 次に、図3および図4(a)、(b)に示すように、コントロール弁12が所定時間(ここでは1秒間)開かれることによって、コントロール弁12の上流側にたまっていたガスが、コントロール弁12を介して下流側に流出する。このとき、本実施形態では、コントロール弁12は、流量設定信号Svに従って、最大開度(100%流量設定(IN100%)に対応する開度)まで開かれる。
 コントロール弁12が開かれている期間、供給圧力センサ14によって測定される供給圧力P0は、ガスの流出とともに低下する。本実施形態では、この降下する供給圧力P0を所定のサンプリング周期(例えば10m秒)ごとに測定し、その結果を、メモリに格納する。そして、測定された供給圧力P0に基づいて、コントロール弁の開放時間である所定時間Δtに対応する積算によるガス供給量を求める。この1パルス分に対応するガス供給量(ガス供給体積やガス供給質量)は、図4(b)に示すように、供給圧力P0の積分値PSに対応するものである。
 ただし、積算ガス供給量を求める期間は、実際の供給圧力P0の低下が確認された時刻t1から、所定時間Δtが経過した時刻t2までの期間とする。これは、コントロール弁12の実際の開閉は、バルブ制御信号から多少遅れて生じることもあるため、実際の圧力降下を確認してから所定期間の積算ガス供給量を求めた方が、より適切なデータが得られるからである。
 以下、供給圧力P0に測定に基づいて、1パルス分のガス供給量を測定する方法の具体例を説明する。
 まず、コントロール弁12を最大開度に開いたときのCv値(Coefficient of flow)が予め求められる。Cv値は、バルブにおける流体の流れやすさを示す一般的な指標であり、バルブの一次側圧力および二次側圧力が一定であるときの、バルブを流れるガスの流量に対応するものである。バルブ二次側圧力≦バルブ一次側圧力/2の条件下(臨界膨張条件下)において、ガスの流量Q(sccm)は、Cv値を用いて例えば以下の式(1)によって与えられる。なお、本実施形態において、バルブ一次側圧力は供給圧力P0であり、バルブ二次側圧力はバルブ下流側の圧力P1である。
   Q=34500・Cv・P0/(Gg・T)1/2   ・・・(1)
 上記式(1)において、Qは流量(sccm)、Ggは気体の比重、P0は供給圧力すなわちバルブの一次側圧力(kPa abs)、Tは温度(K)である。HCDSの比重Ggは、約9.336である。上記のように、供給圧力P0が、下流側の圧力P1の2倍以上大きい条件下において、ガス温度Tが一定であれば、流量Qは、供給圧力P0に比例するものと考えられる。
 また、Cv値は、バルブの流路断面積Aと縮流係数(縮流比)αとを用いて表すことができ、ここで、ピエゾバルブを最大開度に開いたときの流路断面積Aを、シート径D(例えば、約6mm)、弁体リフト量L(例えば、約50μm)を用いてA=πDLと仮定すると、下記の式(2)で与えられる。
   Cv=A・α/17=πDL・α/17   ・・・(2)
 したがって、バルブのCv値がわかっていれば、上記の式(1)に基づいて、供給圧力P0に基づく流量Qを求めることができる。なお、Cv値は、上記式(2)によるものに限られず、他の方法によって求められても良い。例えば、バルブ下流側に設けた流量計によって測定した実測流量Qでガスが流れているときの供給圧力P0の測定結果に基づいて、Cv値を求めておくこともできる。
 このため、供給圧力P0の測定結果から、各時刻における流量Q(t)が求められ、各微小時間dt(ここではサンプリング周期)におけるガス供給量は、Q(t)・dtとなる。例えば、初期供給圧力P0iの測定結果に基づいて、上記式(1)からバルブのCv値を用いて初期流量Qiを算出するとともに、時刻tにおける初期供給圧力P0iに対する測定圧力P0(t)の比を、初期流量Qiに乗じる、すなわち、Q(t)=Qi×(P0(t)/P0i)に従って、各時刻の流量Q(t)と、微小時間dt間に流れたガス供給量(体積や物質量など)Q(t)・dtが求められる。
 そして、コントロール弁12を所定時間Δtだけ開いたときの1パルスにおけるガス供給量は、サンプリングごとの時刻tn(nは自然数)における流量をQ(tn)とすると、ΣQ(tn)・dt=Q(t1)・dt+Q(t2)・dt+・・・+Q(tn)・dtと表すことができる。また、時刻tnにおける供給圧力P0(tn)を用いると、下記の式(3)で表すことができる。
   ΣQ(tn)・dt
    =ΣQi×(P0(tn)/P0i)・dt
    =(Qi・dt/P0i)×(P0(t1)+P0(t2)+・・・+P0(tn))   ・・・(3)
 ここで、サンプリング周期dt、サンプル数nを用いると、上記の所定時間Δtは、Δt=n×dtと表すことができる。したがって、ΣQ(tn)・dt=(1/n)・(Q(t1)+Q(t2)+・・・+Q(tn))・Δtと記載できる。このようにして、所定時間Δtにわたっての供給圧力P0の多数回(n回)の測定によって、所定時間Δtに対応する積算ガス供給量を求めることができる。なお、上記式(1)および(3)からわかるように、Q(t1)+Q(t2)+・・・+Q(tn)は、測定した供給圧力P0の積分値PSに関連する大きさとなる。
 上記の所定時間Δtが1秒間のとき、サンプリング周期dtは、例えば10m秒に設定され、このときのサンプル数nは100となる。ただし、これに限られず、サンプリング周期dtおよびサンプル数nは任意に設定されてよい。ただし、サンプリング周期dtが短いほど、より正確に積算ガス供給量を求めることができるので、サンプリング周期dtは50m秒以下(サンプル数20以上)であることが好ましく、20m秒以下(サンプル数50以上)であることがより好ましい。ただし、サンプル数が大きすぎると演算処理の負荷が増大するので、サンプリング周期dtは5m秒以上(サンプル数200以下)であることが好ましい。もちろん、所定時間Δtの大きさに応じて、サンプリング周期dtやサンプル数nの値を適宜設定してよい。
 以上のようにして、本実施形態のガス供給量測定方法によれば、所定時間Δtにわたる供給圧力P0の測定結果から、気化部10からコントロール弁12を介して供給される1パルス分に対応するガス供給量(積算ガス供給量)を求めることができる。
 なお、上記には、コントロール弁12を所定期間だけ最大設定開度にまで開く態様を説明したがこれに限られない。コントロール弁12は、最大ではない任意開度に開くように操作されてもよい。ただし、上記のようにして積算ガス供給量を求める場合、任意開度に対応するCv値が求められることが好適であり、例えば、上記式(2)における弁体リフト量Lを開度に応じた値に変更することによって、当該開度でのCv値を求め得る。
 なお、本出願人による特許文献3には、圧力式流量制御装置の上流側に設けた開閉弁を用いて、コントロール弁の上流側の圧力(供給圧力P0)の測定により、ビルドダウン方式で流量を監視する方法が開示されている。ただし、特許文献3は、供給圧力P0の初期の低下のみを検出して、圧力式流量制御装置の下流側には一定の流量でガスを流しながら流量測定を行う方法が開示するのみであり、パルス流量制御における1パルスに対応するガス供給量を測定する方法を開示していないことに留意されたい。
 上記のようにして1パルス分のガス供給が終了した後、流量設定信号Svが0%に変化するのに従ってコントロール弁12が閉じられた状態となる。このとき、図3および図5に示すように、供給圧力P0は回復し、典型的には、初期供給圧力P0iに戻ることになる。
 なお、供給圧力P0の回復が、流量設定信号Svの立下りから少し遅れて開始されているが、これは、コントロール弁12に実際に与えられる制御信号は遅延を含んでおり、流量設定信号Svの立下りからしばらくの間はコントロール弁12が完全な遮断状態になっていなかったためと考えられる。通常、実際にコントロール弁12が閉じられた後は、供給圧力P0は即座に回復し始める。
 以下、ガス供給量測定処理フローの具体例を説明する。図6は、ガス供給量測定のフローチャートを示す。まず、ステップS1に示すように、コントロール弁12(CV)が閉じられた状態で、液体補充バルブ16(LV)が所定時間だけ開かれる。これによって、所定量の液体原料が気化部に供給される。供給された原料は、ヒータによって加熱され気化される。
 次に、ステップS2に示すように、ヒータ温度が一定に維持された状態で、初期供給圧力P0iが測定される。気化部に十分な液体原料が供給されている場合、原料の種類およびヒータ温度に応じた圧力(蒸気圧)が検出される。ただし、気化部に供給された液体原料の量によっては、蒸気圧以下の圧力が検出されることもあり得る。
 次に、ステップS3に示すように、液体補充バルブLVの閉鎖状態を維持したまま、コントロール弁CVを開放する。コントロール弁CVは、ここでは最大開度にまで開かれる。コントロール弁CVが開かれることによって、上記のようにバルブのCv値と初期供給圧力P0iとに基づく流量で、ガスがコントロール弁を介して下流側に流れ出す。
 ここで、ステップS4において、供給圧力P0を測定・監視し、供給圧力P0が実際に低下し始める時刻t1、すなわち、測定した供給圧力P0と初期供給圧力P0iとの差が閾値を超える時刻t1を特定する。そして、この時刻t1をP0圧力降下開始時刻に設定する。また、この時刻t1から所定時間Δtが経過した時刻t2を、測定終了時を示す所定時刻t2に設定する。
 その後、ステップS5およびステップS6に示すように、開始時刻t1から所定時刻t2(=t1+Δt)に達するまでの間、供給圧力P0の値をサンプリング周期ごとにメモリに格納する。この供給圧力P0の測定および記録は、所定時刻t2に到達するまで、繰り返して実行される。
 そして、所定時刻t2に達したときは、ステップS7に示すように、供給圧力P0の測定結果から、積算ガス供給量が演算により求められる。これによって、1パルス分に対応するガス供給量が得られる。なお、図6に示すフローチャートには、コントロール弁CVが閉じられるステップが記載されていないが、このステップは、コントロール弁CVが開いた時刻から所定時間Δtが経過したときに、積算ガス供給量を求めるフローと並列して適宜実行される。
 以上、本実施形態によるガス供給量測定方法を説明したが、本方法によって測定されたガス供給量に基づいて、コントロール弁12(CV)の制御信号を補正するようにしてもよい。以下、具体的に説明する。
 まず、プロセス開始時の最初の1パルスガス供給の際に、所定のパルス流量制御信号(バルブ開閉指令)に基づいてコントロール弁12の開閉を行うとともに、上記のガス供給量測定方法によって1パルス分のガス供給量が測定される。そして、測定されたガス供給量が、所望の設定ガス供給量に対して有意な差を有する場合、次の1パルスガス供給からは、パルス流量制御信号を補正して、コントロール弁12の開閉動作を制御する。
 例えば、測定されたガス供給量が、予め設定された所望量に対して大きい場合、その大きさに応じて、コントロール弁12の開時間およびコントロール弁12の開度のうちの少なくともいずれか一方をより小さい値に設定する。これにより、次の1パルスガス供給におけるガス供給量を減少させることができ、所望量でのガス供給を行うことができる。
 一方、測定されたガス供給量が所望量に対して小さい場合、コントロール弁12の開時間およびコントロール弁12の開度のうちの少なくともいずれか一方をより大きい値に設定する。これにより、次の1パルスガス供給におけるガス供給量を増加させることができ、所望量でのガス供給を行うことができる。
 上記のバルブ開閉指令の補正は、最初の1パルスガス供給の際に実行するだけでなく、2回目以降も行うようにしてもよい。これにより、補正を繰り返して、所望量での1パルスガス供給をより確実に行うことが可能となる。
 以上、本発明の実施形態によるガス供給量測定方法およびガス供給量制御方法を説明したが、本発明の趣旨を逸脱しない範囲において、種々の改変が可能である。
 本発明の実施形態によるガス供給量測定方法およびガス供給量制御方法は、例えば、ガス供給システムにおいてパルス流量制御を行うときに好適に利用される。
 2 液体原料ソース
 4 気化供給装置
 6 プロセスチャンバ
 8 真空ポンプ
 10 気化部
 12 コントロール弁
 14 供給圧力センサ
 16 液体補充バルブ
 18 ストップバルブ
 20 予加熱部

Claims (8)

  1.  気化部と、前記気化部の下流側に設けられたコントロール弁と、前記気化部と前記コントロール弁との間の供給圧力を測定する供給圧力センサとを備えるガス供給系において行われるガス供給量測定方法であって、
     前記コントロール弁を閉じた状態で前記供給圧力センサを用いて初期供給圧力を測定するステップと、
     前記コントロール弁を所定時間だけ開くステップと、
     前記コントロール弁を所定時間だけ開いているときに、前記初期供給圧力からの圧力降下が開始された時刻から前記所定時間が経過したあとの時刻までの間において、前記供給圧力を複数回測定するステップと、
     複数の前記供給圧力の測定値に基づいて、前記コントロール弁を所定時間だけ開いたときのガス供給量を演算により求めるステップと
     を含む、ガス供給量測定方法。
  2.  前記ガス供給量を演算により求めるステップは、前記供給圧力の測定値に基づいて算出された流量を積算することによって前記ガス供給量を算出するステップを含む、請求項1に記載のガス供給量測定方法。
  3.  前記ガス供給量を演算により求めるステップは、初期供給圧力P0iと、前記複数の供給圧力の測定値P(tn)とに基づいて下記式によってガス供給量ΣQ(tn)・dtを求めるステップを含み、下記式において、Q(tn)は時刻tnにおける流量、dtはサンプリング周期、Qiは初期供給圧力P0iおよび前記コントロール弁のCv値に基づいて求められる初期流量、P0(tn)は、時刻tnにおける供給圧力である、請求項1または2に記載のガス供給量測定方法。
       ΣQ(tn)・dt=ΣQi×(P0(tn)/P0i)・dt
  4.  前記コントロール弁を所定時間だけ開くステップにおいて、前記コントロール弁は、最大設定流量に対応する最大開度に開かれる、請求項1から3のいずれかに記載のガス供給量測定方法。
  5.  前記コントロール弁は、ピエゾバルブである、請求項1から4のいずれかに記載のガス供給量測定方法。
  6.  前記気化部において気化されるガスは、Si2Cl6である、請求項1から5のいずれかに記載のガス供給量測定方法。
  7.  パルス流量制御信号に基づいて、コントロール弁を所定時間だけ1パルス分開くステップと、
     請求項1から6のいずれかに記載の方法によって、1パルス分のガス供給量を測定するステップと、
     測定されたガス供給量と予め設定された所望ガス供給量との比較結果に基づいてパルス流量制御信号を補正するステップと、
     補正されたパルス流量制御信号に基づいて、コントロール弁を所定時間だけ1パルス分開くステップと
     を含む、ガス供給量制御方法。
  8.  1パルス分のガス供給量を測定するステップは、複数回のパルスガス供給を行うプロセスにおける最初のパルスガス供給について行われ、その後パルスガス供給を行うときには、補正されたパルス流量制御信号が用いられる、請求項7に記載のガス供給量制御方法。
PCT/JP2021/011117 2020-03-30 2021-03-18 ガス供給量測定方法およびガス供給量制御方法 WO2021200227A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/906,064 US20230121563A1 (en) 2020-03-30 2021-03-18 Gas supply amount measurement method and gas supply amount control method
KR1020227022877A KR20220104825A (ko) 2020-03-30 2021-03-18 가스 공급량 측정 방법 및 가스 공급량 제어 방법
JP2022511891A JP7376959B2 (ja) 2020-03-30 2021-03-18 ガス供給量測定方法およびガス供給量制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-060171 2020-03-30
JP2020060171 2020-03-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/889,479 Continuation US20220397758A1 (en) 2021-03-19 2022-08-17 Optical device and display device

Publications (1)

Publication Number Publication Date
WO2021200227A1 true WO2021200227A1 (ja) 2021-10-07

Family

ID=77928827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011117 WO2021200227A1 (ja) 2020-03-30 2021-03-18 ガス供給量測定方法およびガス供給量制御方法

Country Status (5)

Country Link
US (1) US20230121563A1 (ja)
JP (1) JP7376959B2 (ja)
KR (1) KR20220104825A (ja)
TW (1) TWI786577B (ja)
WO (1) WO2021200227A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019016096A (ja) * 2017-07-05 2019-01-31 株式会社堀場エステック 流体制御装置、流体制御方法、及び、流体制御装置用プログラム
WO2019021948A1 (ja) * 2017-07-25 2019-01-31 株式会社フジキン 流体制御装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS601749B2 (ja) 1977-06-17 1985-01-17 ティーディーケイ株式会社 マグネトロン発振装置
JP5082989B2 (ja) * 2008-03-31 2012-11-28 日立金属株式会社 流量制御装置、その検定方法及び流量制御方法
WO2013179550A1 (ja) 2012-05-31 2013-12-05 株式会社フジキン ビルドダウン方式流量モニタ付流量制御装置
JP6230809B2 (ja) * 2013-04-22 2017-11-15 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム
US10866135B2 (en) * 2018-03-26 2020-12-15 Applied Materials, Inc. Methods, systems, and apparatus for mass flow verification based on rate of pressure decay

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019016096A (ja) * 2017-07-05 2019-01-31 株式会社堀場エステック 流体制御装置、流体制御方法、及び、流体制御装置用プログラム
WO2019021948A1 (ja) * 2017-07-25 2019-01-31 株式会社フジキン 流体制御装置

Also Published As

Publication number Publication date
KR20220104825A (ko) 2022-07-26
TWI786577B (zh) 2022-12-11
US20230121563A1 (en) 2023-04-20
JPWO2021200227A1 (ja) 2021-10-07
TW202146855A (zh) 2021-12-16
JP7376959B2 (ja) 2023-11-09

Similar Documents

Publication Publication Date Title
JP5461786B2 (ja) 気化器を備えたガス供給装置
US7628861B2 (en) Pulsed mass flow delivery system and method
TWI355470B (ja)
JP5538119B2 (ja) ガス供給装置用流量制御器の校正方法及び流量計測方法
US7628860B2 (en) Pulsed mass flow delivery system and method
US10287682B2 (en) Substrate processing apparatus, gas supply method, substrate processing method, and film forming method
TWI491761B (zh) 脈波式氣體傳輸之控制及方法
TWI769043B (zh) 用於基於扼流的質量流驗證的方法、系統、電子裝置製造系統及非暫態電腦可讀取儲存媒體
JP5350824B2 (ja) 液体材料の気化供給システム
US20210240208A1 (en) Flow rate control method and flow rate control device
WO2018207553A1 (ja) 液体材料気化供給装置及び制御プログラム
TWI709013B (zh) 流量控制裝置及流量控制方法
EP1585002A1 (en) Flow control method for clustering fluid and flow control device for clustering fluid
TWI773705B (zh) 用於基於熱的質量流量控制器(mfcs)之增進流量偵測可重複性的方法、系統及設備
WO2021200227A1 (ja) ガス供給量測定方法およびガス供給量制御方法
US20230324008A1 (en) Gas supply system and gas supply method
JP2022170043A (ja) ガス供給システムおよびガス供給方法
JP7111408B2 (ja) 流量制御装置の異常検知方法および流量監視方法
JP5302642B2 (ja) 化学気相蒸着工程におけるソース物質の量の測定方法
WO2021124723A1 (ja) 気化供給方法及び気化供給装置
JP2022073411A (ja) 流量制御装置
CN117810130A (zh) 测量气体流量的方法和校准流量控制器的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21779377

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022511891

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227022877

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21779377

Country of ref document: EP

Kind code of ref document: A1