WO2021197411A1 - 多孔隔膜及其制备方法和应用 - Google Patents

多孔隔膜及其制备方法和应用 Download PDF

Info

Publication number
WO2021197411A1
WO2021197411A1 PCT/CN2021/084894 CN2021084894W WO2021197411A1 WO 2021197411 A1 WO2021197411 A1 WO 2021197411A1 CN 2021084894 W CN2021084894 W CN 2021084894W WO 2021197411 A1 WO2021197411 A1 WO 2021197411A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
membrane
present disclosure
agm
porous membrane
Prior art date
Application number
PCT/CN2021/084894
Other languages
English (en)
French (fr)
Inventor
陈璞
支键
罗小松
Original Assignee
陈璞
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陈璞 filed Critical 陈璞
Publication of WO2021197411A1 publication Critical patent/WO2021197411A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure belongs to the field of batteries, and specifically relates to a porous diaphragm and a preparation method and application thereof.
  • Secondary lithium battery/zinc battery separators generally use PP film, PE film, AGM separator, glued AGM separator or non-woven separator.
  • this type of battery separator is not charged or positively charged, it is impossible to deposit metal ions. At the same time, it can not well inhibit the generation of negative metal dendrites, leading to short circuit of the battery.
  • the mechanical strength of the battery separator is insufficient, and it will dissolve during charging and discharging, and the aqueous electrolyte is not hydrophilic and has low ionic conductivity.
  • an objective of the present disclosure is to provide a porous diaphragm and a preparation method and application thereof, which can effectively inhibit the growth of dendrites on the surface of the metal negative electrode, thereby avoiding short circuits caused by piercing the diaphragm and improving battery safety.
  • the present disclosure proposes a porous membrane.
  • the porous membrane includes:
  • the coating is formed on at least a part of the diaphragm substrate, and the coating is negatively charged.
  • the negatively-charged coating has a good bonding force with the membrane substrate, and is formed on the surface of the membrane substrate.
  • the edge of the negatively charged coating can attract metal cations to conduct along the surface of the porous membrane, while the negatively charged ions such as SO 4 2- and PF 6 - in the electrolyte will migrate in the opposite direction of the metal negative electrode in the middle of the channel, generating similar gas
  • the “deionized impact” of the impact pressure promotes the uniform deposition of Li + and Zn 2+ on the surface of the negative electrode metal, and effectively inhibits the growth of dendrites on the surface of the metal negative electrode.
  • the coating is soluble in the electrolyte, and Zn 2+ -CH or Li + -CH particles are generated between the Zn 2+ or Li + in the electrolyte and the coating due to van der Waals forces. These particles help to relieve dendrites in the negative electrode of the battery. Continuous tip deposition prevents short-circuits caused by piercing the diaphragm and improves battery safety.
  • porous membrane according to the above-mentioned embodiments of the present disclosure may also have the following additional technical features:
  • the membrane matrix is an AGM membrane, a PP membrane, a PE membrane or a non-woven membrane.
  • the thickness of the diaphragm base is 0.1 to 1 mm.
  • the coating includes at least one of collagen, gelatin, polythiophene, polyacrylic acid, and sodium polystyrene sulfonate.
  • the present disclosure proposes a method for preparing the above-mentioned porous membrane. According to an embodiment of the present disclosure, the method includes:
  • the coating is mixed with water to obtain a negatively charged colloid, and then the membrane matrix is immersed in the negatively charged colloid, taken out and dried, namely
  • the foregoing porous separator that can effectively inhibit the growth of dendrites on the surface of the metal negative electrode can be obtained, thereby avoiding short-circuits caused by piercing the separator and improving battery safety.
  • the method for preparing a porous membrane according to the foregoing embodiment of the present disclosure may also have the following additional technical features:
  • step (1) the temperature of the stirring and heating is 55-110 degrees Celsius, and the time is 20-500 minutes.
  • the coating is at least one selected from collagen, gelatin, polythiophene, polyacrylic acid, and sodium polystyrene sulfonate.
  • the concentration of the colloid is 0.1 wt% to 25 wt%.
  • step (2) the drying adopts vacuum drying, and the temperature of the vacuum drying is 80-150 degrees Celsius, and the time is 1-30 hours.
  • the present disclosure proposes an aqueous metal zinc ion battery.
  • the water-based metal zinc ion battery has the aforementioned porous membrane or the porous membrane obtained by the aforementioned method. Therefore, the water-based metal lithium ion battery uses the above-mentioned porous separator that can effectively inhibit the growth of dendrites on the surface of the metal negative electrode, which can prevent the separator from piercing and cause a short circuit and improve the safety of the battery.
  • the present disclosure proposes a method for preparing a separator for an organic lithium ion battery. According to an embodiment of the present disclosure, the method includes:
  • the coating is mixed with water and lithium-containing electrolyte to obtain a negatively charged colloid, and then the separator substrate is immersed in the negatively charged After taking out the colloid and drying, the porous separator that can effectively inhibit the growth of dendrites on the surface of the metal negative electrode can be obtained, thereby avoiding short-circuiting caused by piercing the separator and improving battery safety.
  • the method for preparing a separator for an organic lithium ion battery according to the foregoing embodiment of the present disclosure may also have the following additional technical features:
  • step (a) in step (a), the temperature of the stirring and heating is 55-110 degrees Celsius, and the time is 20-500 minutes.
  • the coating is at least one selected from collagen, gelatin, polythiophene, polyacrylic acid, and sodium polystyrene sulfonate.
  • the concentration of the coating in the mixed colloid is 0.1 wt% to 25 wt%.
  • the concentration of the lithium-containing electrolyte in the mixed colloid is 0.1 wt% to 10 wt%.
  • step (b) the drying adopts vacuum drying, and the temperature of the vacuum drying is 80-150 degrees Celsius, and the time is 1-30 hours.
  • the present disclosure proposes a separator for an organic lithium ion battery.
  • the diaphragm is prepared by the above-mentioned method.
  • the separator can effectively inhibit the dendritic growth of the porous separator on the surface of the metal negative electrode, thereby avoiding short-circuits caused by piercing the separator, and improving battery safety.
  • the present disclosure proposes an organic lithium-ion battery.
  • the organic lithium ion battery has a separator prepared by the above-mentioned method or the above-mentioned separator.
  • the organic lithium ion battery uses the above-mentioned porous separator that can effectively inhibit the growth of dendrites on the surface of the metal negative electrode, which can prevent the separator from being pierced and cause a short circuit, and improve the safety of the battery.
  • Figure 1 is the zata potential diagram of AGM diaphragm at different pH
  • Figure 2 is a schematic diagram of the influence of surface charge on the electrodeposition of metal ions in the AGM diaphragm
  • Figure 3 is a schematic diagram of the influence of the AGM diaphragm on the dendrite formation process
  • Figure 4 is a schematic diagram of the deposition process of Li + or Zn 2+ on the surface of the AGM diaphragm
  • Figure 5 is an SEM image of a porous membrane with a collagen coating formed on the surface of the AGM membrane
  • Figure 6 is a graph of zata potential of a porous membrane with a collagen coating formed on the surface of an AGM membrane at different pH;
  • Figure 7 is a schematic diagram of the influence of surface charge on the electrodeposition of metal ions in a porous membrane with a collagen coating formed on the surface of the AGM membrane;
  • Figure 8 is a schematic diagram of the influence of a porous membrane with a collagen coating on the surface of the AGM membrane on the formation of dendrites;
  • FIG. 9 is a schematic diagram of the deposition process of Li + or Zn 2+ on the surface of the porous membrane forming a collagen coating on the surface of the AGM membrane of the present application;
  • FIG. 10 is a graph showing the Coulomb efficiency-cycle number of the button-type Li
  • Example 11 is the potential voltage curve of the button type Zn
  • the present disclosure proposes a porous membrane.
  • the porous membrane includes a membrane base and a coating, wherein the coating is formed on at least a part of the membrane base, and the coating is negatively charged.
  • the inventor found that by forming a negatively charged coating on the diaphragm substrate, the negatively charged coating has a good bonding force with the diaphragm substrate, and a negatively charged coating is formed on the surface of the diaphragm substrate.
  • the edge can attract metal cations to conduct conduction along the surface of the porous membrane, while the negatively charged ions such as SO 4 2- and PF 6 - in the electrolyte will migrate in the middle of the channel to the opposite direction of the metal negative electrode, resulting in a “discharge” similar to gas shock pressure. Ion impact" promotes the uniform deposition of Li + and Zn 2+ on the surface of the negative electrode metal, and effectively inhibits the growth of dendrites on the surface of the metal negative electrode. At the same time, when the porous membrane is used in organic or aqueous systems, a small amount of coating will dissolve in the electrolysis.
  • Zn 2+ -CH or Li + -CH particles are generated. These particles help to alleviate the continuous tip deposition of dendrites in the negative electrode of the battery. Thereby avoiding short circuit caused by piercing the diaphragm and improving battery safety.
  • the diaphragm substrate is an AGM diaphragm, a PP film, a PE film or a non-woven diaphragm, and the thickness of the diaphragm substrate is 0.1 to 1 mm, and the coating includes collagen, gelatin, polythiophene, polyacrylic acid, and At least one of sodium polystyrene sulfonate.
  • Figure 1 is the zata potential diagram of the AGM membrane at different pHs.
  • the figure shows that the acidic environment at pH 2-6
  • the lower AGM diaphragm is positively charged, and the positive charge may be derived from the protective glue in the glass fiber manufacturing process
  • Figure 2 is a schematic diagram of the effect of surface charge in the AGM diaphragm on the electrodeposition of metal ions
  • Figure 3 is the AGM diaphragm on the dendrite
  • the schematic diagram of the influence of the formation process as can be seen from Figures 2 and 3, because the AGM diaphragm is positively charged, its edge adsorbs the negative charge in the electrolyte, causing the positively charged metal ions to concentrate in the middle of the channel, and it is easy to produce dendrites when deposited on the metal negative electrode.
  • FIG 4 is a schematic diagram of the deposition process of Li + or Zn 2+ on the surface of the AGM diaphragm. It can be seen from the figure that Li + or Zn 2+ is preferentially deposited at the tip during the deposition process.
  • Figure 5 is an SEM image of a porous membrane with a collagen coating formed on the surface of the AGM membrane of the application. It can be seen from the figure that the porous membrane of the present application has a porous structure formed on the surface.
  • FIG. 6 is the application of collagen on the surface of the AGM membrane.
  • Figure 7 shows the application of the collagen coating on the surface of the AGM membrane.
  • FIG. 8 is a schematic diagram of the influence of the porous membrane forming a collagen coating on the surface of the AGM membrane on the formation process of dendrites. The edge of the diaphragm is negatively charged, which makes the metal ions move along the edge of the porous structure.
  • FIG. 9 is a schematic diagram of the deposition process of Li + or Zn 2+ on the surface of the porous membrane forming a collagen coating on the surface of the AGM membrane of the present application. Helps alleviate the continuous tip deposition of metal ions and effectively inhibits the growth of dendrites.
  • the present disclosure proposes a method for preparing the above-mentioned porous membrane. According to an embodiment of the present disclosure, the method includes:
  • the paint is mixed with water to obtain a colloid.
  • the temperature of stirring and heating is 55-110 degrees Celsius, and the time is 20-500 minutes, preferably stirring and heating at 80 degrees Celsius for 120 minutes, and the coating is at least one selected from collagen, polythiophene and polyacrylic acid
  • the concentration of the colloid is 0.1wt%-25wt%, preferably 5wt%. The inventor found that if the concentration of the colloid is too low, the formed porous membrane contains less negatively charged coating and cannot effectively regulate the deposition of lithium ions; and if the concentration of the colloid is too high, the resulting porous membrane will be negatively charged.
  • the diaphragm base is immersed in the above-mentioned colloid, taken out and dried to obtain a porous diaphragm.
  • the drying adopts vacuum drying, and the temperature of the vacuum drying is 80-150 degrees Celsius, and the time is 1-30 hours, preferably for 12 hours in an environment of 110 degrees Celsius.
  • the coating is mixed with water to obtain a negatively charged colloid, and then the membrane matrix is immersed in the negatively charged colloid, taken out and dried, namely
  • the foregoing porous separator that can effectively inhibit the growth of dendrites on the surface of the metal negative electrode can be obtained, thereby avoiding short-circuits caused by piercing the separator and improving battery safety. It should be noted that the features and advantages described above for the porous membrane are also applicable to the method for preparing the porous membrane, and will not be repeated here.
  • the present disclosure proposes an aqueous metal zinc ion battery.
  • the water-based metal zinc ion battery has the aforementioned porous membrane or the porous membrane obtained by the aforementioned method.
  • the porous membrane in the water-based metal zinc ion battery adopts a hydrophilic PP membrane.
  • At least one of the hydrophilic PE film, AGM membrane, and non-woven fabric membrane, for example, may be an AGM membrane.
  • the water-based metal lithium ion battery uses the above-mentioned porous separator that can effectively inhibit the growth of dendrites on the surface of the metal negative electrode, which can prevent the separator from piercing and cause a short circuit and improve the safety of the battery. It should be noted that the features and advantages described above for the porous membrane and its preparation method are also applicable to the water-based metal zinc ion battery, and will not be repeated here.
  • the present disclosure proposes a method for preparing a separator for an organic lithium ion battery. According to an embodiment of the present disclosure, the method includes:
  • the paint is mixed with water and lithium-containing electrolyte to obtain a mixed colloid.
  • the temperature of stirring and heating is 55-110 degrees Celsius, and the time is 20-500 minutes, for example, stirring and heating at 80 degrees Celsius for 120 minutes, and the coating is at least one selected from collagen, polythiophene and polyacrylic acid
  • the concentration of the paint in the mixed colloid is 0.1wt%-25wt%, for example 5wt%.
  • the concentration of the colloid is 0.1 wt% to 10 wt%, for example, 1 wt%.
  • the separator substrate is immersed in the above-mentioned mixed colloid, taken out, and dried to obtain a separator for an organic lithium ion battery.
  • the drying adopts vacuum drying, and the temperature of the vacuum drying is 80-150 degrees Celsius, and the time is 1-30 hours, for example, the vacuum drying is 12 hours in an environment of 110 degrees Celsius.
  • the coating is mixed with water and lithium-containing electrolyte to obtain a negatively charged colloid, and then the separator substrate is immersed in the negatively charged After taking out the colloid and drying, the porous separator that can effectively inhibit the growth of dendrites on the surface of the metal negative electrode can be obtained, thereby avoiding short-circuiting caused by piercing the separator and improving battery safety.
  • the present disclosure proposes a separator for an organic lithium ion battery.
  • the diaphragm is prepared by the above-mentioned method.
  • the separator can effectively inhibit the dendritic growth of the porous separator on the surface of the metal negative electrode, thereby avoiding short-circuits caused by piercing the separator, and improving battery safety. It should be noted that the features and advantages described above for preparing the separator for organic lithium ion batteries are also applicable to the separator for organic lithium ion batteries, and will not be repeated here.
  • the present disclosure proposes an organic lithium-ion battery.
  • the organic lithium ion battery has a separator prepared by the above-mentioned method or the above-mentioned separator.
  • the organic lithium ion battery uses the above-mentioned porous separator that can effectively inhibit the growth of dendrites on the surface of the metal negative electrode, which can prevent the separator from being pierced and cause a short circuit, and improve the safety of the battery. It should be noted that the features and advantages described above for the preparation of the organic lithium ion battery separator and the preparation method thereof are also applicable to the organic lithium ion battery separator, and will not be repeated here.
  • the method of preparing the porous membrane Accompanied by stirring and heating at 80 degrees Celsius for 120 minutes, the collagen is mixed with water to obtain a colloid with a concentration of 5 wt%, and then the AGM membrane is completely infiltrated into the colloid. After taking it out, it is in an environment of 110 degrees Celsius. Dry under vacuum for 12 hours to obtain a porous membrane (CH@AGM) with a collagen coating formed on the surface of the AGM membrane.
  • CH@AGM porous membrane
  • Example 2 The porous membrane obtained in Example 1 is assembled into a button-type Li
  • the method of preparing the porous membrane is different from Example 1 in that the colloid concentration is 2wt%, the final coulombic efficiency of the button-type Li
  • the method of preparing the porous membrane is different from Example 1 in that the colloid concentration is 15wt%, the final coulombic efficiency of the button-type Li
  • the method of preparing the porous diaphragm is different from that in Example 1 in that the coating is made of polythiophene, the diaphragm substrate is made of PP film, and the button-type Li
  • the final coulombic efficiency is 98.5%, and the final cycle fails by 285 cycles.
  • the method of preparing the porous membrane is different from Example 1 in that the coating is made of polyacrylic acid, the membrane matrix is made of PE film, and the button-type Li
  • the final coulombic efficiency is 98.3%, and the final cycle fails with 281 cycles.
  • the method of preparing the porous membrane is different from Example 1 in that gelatin is used as the coating, and the membrane matrix is made of AGM film, and the button-type Li
  • the final coulombic efficiency is 98.8%, and the final cycle fails with 481 cycles.
  • the method of preparing the porous membrane is different from Example 1 in that the coating is made of sodium polystyrene sulfonate, the membrane matrix is made of AGM membrane, and the button-type Li
  • the final coulombic efficiency is 98.7%, and the final cycle is 471.
  • the circle fails.
  • the method of preparing the porous diaphragm is the same as in Example 1, and the obtained porous diaphragm is assembled into a button type Zn
  • the potential voltage remains stable, indicating that the zinc ion is in the zinc
  • the deposition on the metal surface is very uniform, while the Zn
  • the method of preparing the porous diaphragm is the same as in Example 1.
  • the positive electrode is LMO (lithium manganate)
  • the diaphragm is a layer of AGM (close to the positive electrode)
  • a layer of the porous separator obtained in Example 1 CH@AGM, which is close to the negative electrode
  • metal Zinc anode zinc foil or zinc powder made by drawing slurry
  • electrolyte 1M Li 2 SO 4 +2M ZnSO 4 mixed aqueous solution, 3.6mAh cm -2 active material loading capacity, assembled as LMO
  • the positive electrode uses LMO (lithium manganate)
  • the separator is a layer of AGM
  • the metal zinc negative electrode zinc powder made by drawing slurry
  • electrolyte 1M Li 2 SO 4 + 2M ZnSO 4 mixed aqueous solution, 3.6mAh cm -2 active material loading capacity, assembled into LMO
  • the method of preparing the porous diaphragm is the same as in Example 4.
  • the positive electrode is LMO (lithium manganate)
  • the diaphragm is a layer of PP film (close to the positive electrode), and a layer of the porous separator obtained in Example 1 (CH@PP, which is close to the negative electrode),
  • Metal zinc anode (zinc foil or zinc powder made by drawing slurry), electrolyte: 1M Li 2 SO 4 +2M ZnSO 4 mixed aqueous solution, 3.6mAh cm -2 active material loading capacity, assembled as LMO
  • the method of preparing the porous separator is the same as in Example 5.
  • the positive electrode is LMO (lithium manganate)
  • the separator is a layer of PE film (close to the positive electrode), and one layer of porous separator obtained in Example 1 (CH@PE, which is close to the negative electrode), Metal zinc anode (zinc foil or zinc powder made by drawing slurry), electrolyte: 1M Li 2 SO 4 +2M ZnSO 4 mixed aqueous solution, 3.6mAh cm -2 active material loading capacity, assembled as LMO
  • the method of preparing a porous membrane Accompanied by stirring and heating at 80 degrees Celsius for 120 minutes, the collagen is mixed with water and lithium hydroxide, and the resulting mixed colloid has a collagen concentration of 5 wt% and a lithium hydroxide concentration of 1 wt%, and then The AGM separator was completely infiltrated into the mixed colloid, and after taking it out, it was vacuum-dried for 12 hours in an environment of 110 degrees Celsius to obtain a separator for organic lithium ion batteries (CH@AGM).
  • CH@AGM organic lithium ion batteries
  • LMO lithium manganate
  • the separator is a layer of AGM (close to the positive electrode), and a layer of the organic lithium ion battery separator (CH@AGM, which is close to the negative electrode) obtained in Example 10, the metal lithium negative electrode, electrolysis Liquid: DMC: EC: DEC is a mixed solution of 1M LiPF 6 in 1:1:1, 24mAh cm -2 active material high loading capacity, assembled into LMO
  • the method of preparing the porous membrane Accompanied by stirring and heating at 80 degrees Celsius for 120 minutes, mixing polythiophene with water and lithium hydroxide, the resulting mixed colloid has a polythiophene concentration of 5 wt% and a lithium hydroxide concentration of 1 wt%, and then The PP separator was completely infiltrated into the mixed colloid, and after taking it out, it was vacuum-dried for 12 hours in an environment of 110 degrees Celsius to obtain a separator for organic lithium-ion batteries (CH@PP).
  • CH@PP organic lithium-ion batteries
  • LMO lithium manganate
  • the separator is a layer of PP separator (close to the positive electrode), a layer of the organic lithium ion battery separator (CH@PP, which is close to the negative electrode) obtained in Example 11, and the metal lithium negative electrode.
  • Electrolyte: DMC: EC: DEC is a mixed solution of 1M LiPF 6 in 1:1:1, 24mAh cm -2 active material high loading capacity, assembled into LMO
  • the method of preparing porous membrane Accompanied by stirring and heating at 80 degrees Celsius for 120 minutes, mixing polyacrylic acid with water and lithium hydroxide, the resulting mixed colloid has a polyacrylic acid concentration of 5 wt% and a lithium hydroxide concentration of 1 wt%, and then The PE separator is completely infiltrated into the mixed colloid, and after taking it out, it is vacuum-dried for 12 hours in an environment of 110 degrees Celsius to obtain a separator for organic lithium ion batteries (CH@PE).
  • CH@PE organic lithium ion batteries
  • the positive electrode is LMO (lithium manganate)
  • the separator is a PE separator (close to the positive electrode)
  • a layer of the organic lithium ion battery separator (CH@PE, which is close to the negative electrode) obtained in Example 12 and the metal lithium negative electrode.
  • Electrolyte: DMC: EC: DEC is a mixed solution of 1M LiPF 6 in 1:1:1, 24mAh cm -2 active material high loading capacity, assembled into LMO

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Cell Separators (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

公开了一种多孔隔膜及其制备方法和应用,其中,所述多孔隔膜包括:隔膜基体和涂层,所述涂层形成在所述隔膜基体的至少一部分上,并且所述涂层带有负电荷。

Description

多孔隔膜及其制备方法和应用
优先权信息
本公开请求于2020年04月03日向中国国家知识产权局提交的、专利申请号为202010258213.X、申请名称为“多孔隔膜及其制备方法和应用”的中国专利申请的优先权,并且其全部内容通过引用结合在本公开中。
技术领域
本公开属于电池领域,具体涉及一种多孔隔膜及其制备方法和应用。
背景技术
二次锂电池/锌电池隔膜一般采用PP膜、PE膜、AGM隔膜、涂胶的AGM隔膜或无纺布隔膜,然而由于该类电池隔膜不带电荷或者带正电荷,无法对金属离子沉积进行疏导,同时不能很好的抑制负极金属枝晶的产生,导致电池短路,另外该类电池隔膜力学强度不足,充放电过程中会溶解,并且水系电解液中不亲水、离子电导率低。
因此,现有的电池隔膜有待改进。
公开内容
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本公开的一个目的在于提出一种多孔隔膜及其制备方法和应用,该多孔隔膜可以有效抑制金属负极表面枝晶生长,从而避免刺穿隔膜而发生短路,提高电池安全性。
在本公开的一个方面,本公开提出了一种多孔隔膜。根据本公开的实施例,所述多孔隔膜包括:
隔膜基体;
涂层,所述涂层形成在所述隔膜基体的至少一部分上,并且所述涂层带有负电荷。
根据本公开实施例的多孔隔膜,通过在隔膜基体上形成带有负电荷的涂层,该带负电荷的涂层与隔膜基体之间具有良好的结合力,并且形成在隔膜基体表面的带有负电荷的涂层边缘可以吸引金属阳离子沿着多孔隔膜表面进行传导,而电解液中的SO 4 2-、PF 6 -等负电荷离子会在通道中间向金属负极的反方向迁移,产生类似气体冲击压力的“去离子冲击”,促进Li +和Zn 2+等在负极金属表面的均匀沉积,有效抑制金属负极表面枝晶生长,同时该多孔隔膜用在有机或水系体系时,会有微量的涂层溶于电解液,电解液中的Zn 2+或Li +与涂层之间由于范德华力,生成Zn 2+-CH或者Li +-CH微粒,这种微粒有助于缓解电池负极枝晶持 续的尖端沉积,从而避免刺穿隔膜而发生短路,提高电池安全性。
另外,根据本公开上述实施例的多孔隔膜还可以具有如下附加的技术特征:
在本公开的一些实施例中,所述隔膜基体为AGM隔膜、PP膜、PE膜或无纺布隔膜。
在本公开的一些实施例中,所述隔膜基体的厚度为0.1~1mm。
在本公开的一些实施例中,所述涂层包括胶原蛋白、明胶、聚噻吩、聚丙烯酸和聚苯乙烯磺酸钠中的至少之一。
在本公开的第二个方面,本公开提出了一种制备上述多孔隔膜的方法。根据本公开的实施例,所述方法包括:
(1)伴随着加热搅拌,将涂料与水混合,以便得到胶体;
(2)将隔膜基体浸入到所述胶体中,取出后进行干燥,以便得到多孔隔膜。
根据本公开实施例的制备多孔隔膜的方法,在加热搅拌条件下,将涂料与水混合后得到带负电荷的胶体,然后将隔膜基体浸入到带负电荷的胶体中,取出后进行干燥,即可得到上述能够有效抑制金属负极表面枝晶生长的多孔隔膜,从而避免刺穿隔膜而发生短路,提高电池安全性。
另外,根据本公开上述实施例的制备多孔隔膜的方法还可以具有如下附加的技术特征:
在本公开的一些实施例中,在步骤(1)中,所述搅拌加热的温度为55~110摄氏度,时间为20~500分钟。
在本公开的一些实施例中,在步骤(1)中,所述涂料为选自胶原蛋白、明胶、聚噻吩、聚丙烯酸和聚苯乙烯磺酸钠中的至少之一。
在本公开的一些实施例中,在步骤(1)中,所述胶体的浓度为0.1wt%~25wt%。
在本公开的一些实施例中,在步骤(2)中,所述干燥采用真空干燥,并且所述真空干燥的温度为80~150摄氏度,时间为1~30小时。
在本公开的第三个方面,本公开提出了一种水系金属锌离子电池。根据本公开的实施例,所述水系金属锌离子电池具有上述的多孔隔膜或采用上述的方法得到的所述多孔隔膜。由此,该水系金属锂离子电池使用上述能够有效抑制金属负极表面枝晶生长的多孔隔膜,可以避免刺穿隔膜而发生短路,提高电池安全性。
在本公开的第四个方面,本公开提出了一种制备有机系锂离子电池用隔膜的方法。根据本公开的实施例,所述方法包括:
(a)伴随着加热搅拌,将涂料与水和含锂电解液混合,以便得到混合胶体;
(b)将隔膜基体浸入到所述胶体中,取出后进行干燥,以便得到有机系锂离子电池用隔膜。
根据本公开实施例的制备有机系锂离子电池用隔膜的方法,在加热搅拌条件下,将涂 料与水和含锂电解液混合后得到带负电荷的胶体,然后将隔膜基体浸入到带负电荷的胶体中,取出后进行干燥,即可得到上述能够有效抑制金属负极表面枝晶生长的多孔隔膜,从而避免刺穿隔膜而发生短路,提高电池安全性。
另外,根据本公开上述实施例的制备有机系锂离子电池用隔膜的方法还可以具有如下附加的技术特征:
在本公开的一些实施例中,在步骤(a)中,所述搅拌加热的温度为55~110摄氏度,时间为20~500分钟。
在本公开的一些实施例中,在步骤(a)中,所述涂料为选胶原蛋白、明胶、聚噻吩、聚丙烯酸和聚苯乙烯磺酸钠的至少之一。
在本公开的一些实施例中,在步骤(a)中,所述混合胶体中涂料的浓度为0.1wt%~25wt%。
在本公开的一些实施例中,在步骤(a)中,所述混合胶体中含锂电解液的浓度为0.1wt%~10wt%。
在本公开的一些实施例中,在步骤(b)中,所述干燥采用真空干燥,并且所述真空干燥的温度为80~150摄氏度,时间为1~30小时。
在本公开第五个方面,本公开提出了一种有机系锂离子电池用隔膜。根据本公开的实施例,所述隔膜采用上述的方法制备得到。由此,该隔膜能够有效抑制金属负极表面枝晶生长的多孔隔膜,从而避免刺穿隔膜而发生短路,提高电池安全性。
在本公开的第六个方面,本公开提出了一种有机系锂离子电池。根据本公开的实施例,所述有机系锂离子电池具有采用上述的方法制备得到的隔膜或上述的隔膜。由此,该有机系锂离子电池使用上述能够有效抑制金属负极表面枝晶生长的多孔隔膜,可以避免刺穿隔膜而发生短路,提高电池安全性。
本公开的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是AGM隔膜在不同pH下的zata电位图;
图2是AGM隔膜中表面电荷对金属离子的电沉积影响示意图;
图3是AGM隔膜对枝晶形成过程影响示意图;
图4是Li +或Zn 2+在AGM隔膜表面的沉积过程示意图;
图5是在AGM隔膜表面形成胶原蛋白涂层的多孔隔膜的SEM图;
图6是在AGM隔膜表面形成胶原蛋白涂层的多孔隔膜在不同pH下的zata电位图;
图7是在AGM隔膜表面形成胶原蛋白涂层的多孔隔膜中表面电荷对金属离子的电沉积影响示意图;
图8是在AGM隔膜表面形成胶原蛋白涂层的多孔隔膜对枝晶形成过程影响示意图;
图9是Li +或Zn 2+在本申请的在AGM隔膜表面形成胶原蛋白涂层的多孔隔膜表面的沉积过程示意图;
图10是实施例1得到的扣式Li|CH@AGM|Cu半电池和扣式Li|AGM|Cu半电池的库伦效率-循环次数曲线图;
图11是实施例8得到的扣式Zn|CH@AGM|Zn对称电极和扣式Zn|AGM|Zn对称电极的电势电压曲线;
图12是实施例9得到的LMO|AGM+CH@AGM|Zn电池和LMO|AGM|Zn电池的循环次数-容量保持率-库伦效率曲线;
图13是实施例12得到的LMO|AGM+CH@AGM|Li电池和LMO|AGM|Li电池的循环次数-容量保持率曲线。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
在本公开的一个方面,本公开提出了一种多孔隔膜。根据本公开的实施例,该多孔隔膜包括隔膜基体和涂层,其中,涂层形成在所述隔膜基体的至少一部分上,并且所述涂层带有负电荷。发明人发现,通过在隔膜基体上形成带有负电荷的涂层,该带负电荷的涂层与隔膜基体之间具有良好的结合力,并且形成在隔膜基体表面的带有负电荷的涂层边缘可以吸引金属阳离子沿着多孔隔膜表面进行传导,而电解液中的SO 4 2-、PF 6 -等负电荷离子会在通道中间向金属负极的反方向迁移,产生类似气体冲击压力的“去离子冲击”,促进Li +和Zn 2+等在负极金属表面的均匀沉积,有效抑制金属负极表面枝晶生长,同时该多孔隔膜用在有机或水系体系时,会有微量的涂层溶于电解液,电解液中的Zn 2+或Li +与涂层之间由于范德华力,生成Zn 2+-CH或者Li +-CH微粒,这种微粒有助于缓解电池负极枝晶持续的尖端沉积,从而避免刺穿隔膜而发生短路,提高电池安全性。
根据本公开的实施例,所述隔膜基体为AGM隔膜、PP膜、PE膜或无纺布隔膜,并且隔膜基体的厚度为0.1~1mm,涂层包括胶原蛋白、明胶、聚噻吩、聚丙烯酸和聚苯乙烯磺酸钠中的至少之一。
具体的,参考图1和2,以隔膜基体为AGM隔膜、涂层包括胶原蛋白为例,图1为AGM隔膜在不同pH下的zata电位图,由图可知在pH为2~6的酸性环境下AGM隔膜带正电荷,而该正电荷可能来源于玻璃纤维制造过程中的保护胶等物质;图2为AGM隔膜中表面电荷对金属离子的电沉积影响示意图,图3为AGM隔膜对枝晶形成过程影响示意图,由图2和3可知,由于AGM隔膜带正电,其边缘吸附电解液中负电荷,导致带正电荷的金属离子集中于通道正中间,沉积到金属负极上容易产生枝晶,此外电解液中的SO 4 -或者PF 6 -向金属负极的反方向迁移时,有相当一部分会遇到通道中间的金属正离子,正负电荷相消除,阻碍离子扩散。图4为Li +或Zn 2+在AGM隔膜表面的沉积过程示意图,由图可知,Li +或Zn 2+在沉积过程优先选择尖端沉积。图5为本申请的在AGM隔膜表面形成胶原蛋白涂层的多孔隔膜的SEM图,由图可知,本申请的多孔隔膜表面形成有多孔结构,图6为本申请的在AGM隔膜表面形成胶原蛋白涂层的多孔隔膜在不同pH下的zata电位图,由图可知在pH为2~6的酸性环境下该多孔隔膜带负电荷;图7为本申请的在AGM隔膜表面形成胶原蛋白涂层的多孔隔膜中表面电荷对金属离子的电沉积影响示意图,图8为本申请的在AGM隔膜表面形成胶原蛋白涂层的多孔隔膜对枝晶形成过程影响示意图,由图7和8可知,由于该多孔隔膜边缘带负电荷,使得金属离子沿着多孔结构的边缘移动,电解液中的SO 4 -或者PF 6 -负电荷离子会在通道中间向金属负极的反方向迁移,会产生一种类似气体冲击压力的“去离子冲击”,导致到金属表面进行冲击电沉积,从而有效抑制枝晶生长。图9为Li +或Zn 2+在本申请的在AGM隔膜表面形成胶原蛋白涂层的多孔隔膜表面的沉积过程示意图,由图可知,胶原蛋白与部分金属阳离子通过范德华力作用结合在一起,有助于缓解金属离子持续的尖端沉积,有效抑制枝晶生长。
在本公开的第二个方面,本公开提出了一种制备上述多孔隔膜的方法。根据本公开的实施例,该方法包括:
S100:伴随着加热搅拌,将涂料与水混合
该步骤中,伴随着加热搅拌,将涂料与水混合,得到胶体。优选的,搅拌加热的温度为55~110摄氏度,时间为20~500分钟,优选在80摄氏度下搅拌加热120分钟,并且所述涂料为选自胶原蛋白、聚噻吩和聚丙烯酸中的至少之一,并且胶体的浓度为0.1wt%~25wt%,优选5wt%。发明人发现,若胶体浓度过低,则形成的多孔隔膜中带负电荷的涂层含量较少,不能有效疏导锂离子的沉积;而若胶体浓度过高,导致形成的多孔隔膜中带负电荷的涂层含量过多,导致大量锂离子被负电荷牵制,沉积动力减弱,导电性受到影响。由此,采用上述的浓度范围的胶体浓度可以在有效疏导锂离子沉积的同时提高电池导电性。
S200:将隔膜基体浸入到胶体中,取出后进行干燥
该步骤中,将隔膜基体浸入到上述胶体中,取出后进行干燥,得到多孔隔膜。具体的, 干燥采用真空干燥,并且真空干燥的温度为80~150摄氏度,时间为1~30小时,优选在110摄氏度的环境下真空干燥12小时。
根据本公开实施例的制备多孔隔膜的方法,在加热搅拌条件下,将涂料与水混合后得到带负电荷的胶体,然后将隔膜基体浸入到带负电荷的胶体中,取出后进行干燥,即可得到上述能够有效抑制金属负极表面枝晶生长的多孔隔膜,从而避免刺穿隔膜而发生短路,提高电池安全性。需要说明的是,上述针对多孔隔膜所描述的特征和优点同样适用于该制备多孔隔膜的方法,此处不再赘述。
在本公开的第三个方面,本公开提出了一种水系金属锌离子电池。根据本公开的实施例,所述水系金属锌离子电池具有上述的多孔隔膜或采用上述的方法得到的所述多孔隔膜,具体的,该水系金属锌离子电池中的多孔隔膜采用亲水性PP膜、亲水性PE膜、AGM隔膜和无纺布隔膜中的至少之一,例如可以为AGM隔膜。由此,该水系金属锂离子电池使用上述能够有效抑制金属负极表面枝晶生长的多孔隔膜,可以避免刺穿隔膜而发生短路,提高电池安全性。需要说明的是,上述针对多孔隔膜及其制备方法所描述的特征和优点同样适用于该水系金属锌离子电池,此处不再赘述。
在本公开的第四个方面,本公开提出了一种制备有机系锂离子电池用隔膜的方法。根据本公开的实施例,该方法包括:
Sa:伴随着加热搅拌,将涂料与水和含锂电解液混合
该步骤中,伴随着加热搅拌,将涂料与水和含锂电解液混合,得到混合胶体。优选的,搅拌加热的温度为55~110摄氏度,时间为20~500分钟,例如在80摄氏度下搅拌加热120分钟,并且所述涂料为选自胶原蛋白、聚噻吩和聚丙烯酸中的至少之一,并且混合胶体中涂料的浓度为0.1wt%~25wt%,例如5wt%,若胶体浓度过低,则形成的多孔隔膜中带负电荷的涂层含量较少,不能有效疏导锂离子的沉积;而若胶体浓度浓度过高,导致形成的多孔隔膜中带负电荷的涂层含量过多,导致大量锂离子被负电荷牵制,沉积动力减弱,导电性受到影响。由此,采用上述的浓度范围的胶体浓度可以在有效疏导锂离子沉积的同时提高电池导电性。进一步地,含锂电解液的浓度为0.1wt%~10wt%,例如1wt%。发明人发现,若电解液浓度过高,电解液的粘度和离子缔合的程度也会随锂盐浓度增加而增大,会降低电导率,并且容易造成负极膨胀率增高,对电性能产生负面影响;而若电解液浓度过低,电解液锂离子浓度过低,也会影响电导率。需要说明的是,含锂电解液为电池领域常规使用的电解液,本领域技术人员可以根据实际需要进行选择,例如含锂电解液采用LiOH溶液。
Sb:将隔膜基体浸入到混合胶体中,取出后进行干燥
该步骤中,将隔膜基体浸入到上述混合胶体中,取出后进行干燥,得到有机系锂离子电池用隔膜。具体的,干燥采用真空干燥,并且真空干燥的温度为80~150摄氏度,时间为 1~30小时,例如在110摄氏度的环境下真空干燥12小时。
根据本公开实施例的制备有机系锂离子电池用隔膜的方法,在加热搅拌条件下,将涂料与水和含锂电解液混合后得到带负电荷的胶体,然后将隔膜基体浸入到带负电荷的胶体中,取出后进行干燥,即可得到上述能够有效抑制金属负极表面枝晶生长的多孔隔膜,从而避免刺穿隔膜而发生短路,提高电池安全性。
在本公开第五个方面,本公开提出了一种有机系锂离子电池用隔膜。根据本公开的实施例,所述隔膜采用上述的方法制备得到。由此,该隔膜能够有效抑制金属负极表面枝晶生长的多孔隔膜,从而避免刺穿隔膜而发生短路,提高电池安全性。需要说明的是,上述针对制备有机系锂离子电池用隔膜所描述的特征和优点同样适用于该有机系锂离子电池用隔膜,此处不再赘述。
在本公开的第六个方面,本公开提出了一种有机系锂离子电池。根据本公开的实施例,所述有机系锂离子电池具有采用上述的方法制备得到的隔膜或上述的隔膜。由此,该有机系锂离子电池使用上述能够有效抑制金属负极表面枝晶生长的多孔隔膜,可以避免刺穿隔膜而发生短路,提高电池安全性。需要说明的是,上述针对制备有机系锂离子电池用隔膜及其制备方法所描述的特征和优点同样适用于该有机系锂离子电池用隔膜,此处不再赘述。
下面详细描述本公开的实施例,需要说明的是下面描述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。另外,如果没有明确说明,在下面的实施例中所采用的所有试剂均为市场上可以购得的,或者可以按照本文或已知的方法合成的,对于没有列出的反应条件,也均为本领域技术人员容易获得的。
实施例1
制备多孔隔膜的方法:伴随着在80摄氏度下搅拌加热120分钟,将胶原蛋白与水混合,得到浓度为5wt%的胶体,然后将AGM隔膜完全浸润到到胶体中,取出后在110摄氏度的环境下真空干燥12小时,得到在AGM隔膜表面形成胶原蛋白涂层的多孔隔膜(CH@AGM)。
结论:并实施例1得到的多孔隔膜组装为扣式Li|CH@AGM|Cu半电池,将AGM隔膜组装为扣式Li|AGM|Cu半电池,然后在1:1:1DMC:EC:DEC中使用1M LiPF 6作为电解质,在1mA/cm 2电流密度下测试其库伦效率和循环次数,测试曲线如图10所示,Li|CH@AGM|Cu半电池显示了良好的可逆性能,最终循环500圈失效,库伦效率为99.5%,而Li|AGM|Cu半电池在循环80圈后失效(枝晶产生刺穿隔膜,发生短路)。
实施例2
制备多孔隔膜的方法与实施例1区别在于得到胶体浓度为2wt%,组装为扣式Li|CH@AGM|Cu半电池最终库伦效率为99.2%,最终循环350圈失效。
实施例3
制备多孔隔膜的方法与实施例1区别在于得到胶体浓度为15wt%,组装为扣式Li|CH@AGM|Cu半电池最终库伦效率为98.9%,最终循环305圈失效。
实施例4
制备多孔隔膜的方法与实施例1区别在于得到涂料采用聚噻吩,隔膜基体采用PP膜,组装为扣式Li|CH@PP|Cu半电池最终库伦效率为98.5%,最终循环285圈失效。
实施例5
制备多孔隔膜的方法与实施例1区别在于得到涂料采用聚丙烯酸,隔膜基体采用PE膜,组装为扣式Li|CH@PE|Cu半电池最终库伦效率为98.3%,最终循环281圈失效。
实施例6
制备多孔隔膜的方法与实施例1区别在于得到涂料采用明胶,隔膜基体采用AGM膜,组装为扣式Li|CH@PE|Cu半电池最终库伦效率为98.8%,最终循环481圈失效。
实施例7
制备多孔隔膜的方法与实施例1区别在于得到涂料采用聚苯乙烯磺酸钠,隔膜基体采用AGM膜,组装为扣式Li|CH@PE|Cu半电池最终库伦效率为98.7%,最终循环471圈失效。
实施例8
制备多孔隔膜的方法同于实施例1,并且把得到的多孔隔膜组装成扣式Zn|CH@AGM|Zn对称电极,将AGM隔膜组装为扣式Zn|AGM|Zn对称电极,以1M ZnSO 4作为电解质,在1mA/cm 2电流密度下,其电势电压曲线如图11所示,Zn|CH@AGM|Zn对称电极长达3300min的沉积/溶解后,电势电压保持平稳,表明锌离子在锌金属表面的沉积非常均匀,而Zn|AGM|Zn对称电极,随着时间延长,电压波动明显,最终失效。
实施例9
制备多孔隔膜的方法同于实施例1,正极选用LMO(锰酸锂),隔膜为一层AGM(靠近正极),一层实施例1得到的多孔隔膜(CH@AGM,其靠近负极),金属锌负极(锌箔或者拉浆制得的锌粉),电解液:1M Li 2SO 4+2M ZnSO 4混合水溶液,3.6mAh cm -2活性物质负载量,组装为LMO|AGM+CH@AGM|Zn电池,同时正极选用LMO(锰酸锂),隔膜为一层AGM,金属锌负极(锌箔或者拉浆制得的锌粉),电解液:1M Li 2SO 4+2M ZnSO 4混合水溶液,3.6mAh cm -2活性物质负载量,组装为LMO|AGM|Zn电池,在1C倍率,电压范围1.4~2.1V的其循环次数-容量保持率-库伦效率曲线如图12所示,由图可知,LMO|AGM+CH@AGM|Zn电池1200次循环后,容量保持90%,1200圈的库伦效率为99.1%;而LMO|AGM|Zn电池1200次循环后,容量保持80.2%,1200圈的库伦效率为97.9%。
实施例10
制备多孔隔膜的方法同于实施例4,正极选用LMO(锰酸锂),隔膜为一层PP膜(靠近正极),一层实施例1得到的多孔隔膜(CH@PP,其靠近负极),金属锌负极(锌箔或者拉浆制得的锌粉),电解液:1M Li 2SO 4+2M ZnSO 4混合水溶液,3.6mAh cm -2活性物质负载量,组装为LMO|PP+CH@PP|Zn电池,同时正极选用LMO(锰酸锂),隔膜为一层PP膜,金属锌负极(锌箔或者拉浆制得的锌粉),电解液:1M Li 2SO 4+2M ZnSO 4混合水溶液,3.6mAh cm -2活性物质负载量,组装为LMO|PP|Zn电池,在1C倍率,电压范围1.4~2.1V LMO|PP+CH@PP|Zn电池780次循环后,容量保持80.1%,780圈的库伦效率为96.3%;而LMO|PP|Zn电池230次循环后,容量保持69.5%,230圈的库伦效率为91.1%。
实施例11
制备多孔隔膜的方法同于实施例5,正极选用LMO(锰酸锂),隔膜为一层PE膜(靠近正极),一层实施例1得到的多孔隔膜(CH@PE,其靠近负极),金属锌负极(锌箔或者拉浆制得的锌粉),电解液:1M Li 2SO 4+2M ZnSO 4混合水溶液,3.6mAh cm -2活性物质负载量,组装为LMO|PE+CH@PE|Zn电池,同时正极选用LMO(锰酸锂),隔膜为一层PE膜,金属锌负极(锌箔或者拉浆制得的锌粉),电解液:1M Li 2SO 4+2M ZnSO 4混合水溶液,3.6mAh cm -2活性物质负载量,组装为LMO|PE|Zn电池,在1C倍率,电压范围1.4~2.1V LMO|PE+CH@PE|Zn电池765次循环后,容量保持79.2%,765圈的库伦效率为94.4%;而LMO|PE|Zn电池226次循环后,容量保持70.9%,226圈的库伦效率为90.6%。
实施例12
制备多孔隔膜的方法:伴随着在80摄氏度下搅拌加热120分钟,将胶原蛋白与水和氢氧化锂混合,得到的混合胶体中胶原蛋白浓度为5wt%,氢氧化锂浓度为1wt%,然后将AGM隔膜完全浸润到到混合胶体中,取出后在110摄氏度的环境下真空干燥12小时,得到有机系锂离子电池用隔膜(CH@AGM)。
结论:正极选用LMO(锰酸锂),隔膜为一层AGM(靠近正极),一层实施例10得到的有机系锂离子电池用隔膜(CH@AGM,其靠近负极),金属锂负极,电解液:DMC:EC:DEC为1:1:1中使用1M LiPF 6的混合溶液,24mAh cm -2活性物质高负载量,组装为LMO|AGM+CH@AGM|Li电池,同时正极选用LMO(锰酸锂),隔膜为一层AGM,金属锂负极,电解液:DMC:EC:DEC为1:1:1中使用1M LiPF 6的混合溶液,24mAh cm -2活性物质高负载量,组装为LMO|AGM|Li电池,在1C倍率,电压范围3.5~4.3V的其循环次数-容量保持率曲线如图13所示,由图可知,LMO|AGM+CH@AGM|Li电池600次循环后,容量保持62.5%;而LMO|AGM|Li电池不能正常工作。
实施例13
制备多孔隔膜的方法:伴随着在80摄氏度下搅拌加热120分钟,将聚噻吩与水和氢氧化锂混合,得到的混合胶体中聚噻吩浓度为5wt%,氢氧化锂浓度为1wt%,然后将PP隔膜完全浸润到到混合胶体中,取出后在110摄氏度的环境下真空干燥12小时,得到有机系锂离子电池用隔膜(CH@PP)。
结论:正极选用LMO(锰酸锂),隔膜为一层PP隔膜(靠近正极),一层实施例11得到的有机系锂离子电池用隔膜(CH@PP,其靠近负极),金属锂负极,电解液:DMC:EC:DEC为1:1:1中使用1M LiPF 6的混合溶液,24mAh cm -2活性物质高负载量,组装为LMO|PP+CH@PP|Li电池,同时正极选用LMO(锰酸锂),隔膜为一层PP,金属锂负极,电解液:DMC:EC:DEC为1:1:1中使用1M LiPF 6的混合溶液,24mAh cm -2活性物质高负载量,组装为LMO|AGM|Li电池,在1C倍率,电压范围3.5~4.3V下,LMO|PP+CH@PP|Li电池500次循环后,容量保持78%;而LMO|PP|Li电池不能正常工作。
实施例14
制备多孔隔膜的方法:伴随着在80摄氏度下搅拌加热120分钟,将聚丙烯酸与水和氢氧化锂混合,得到的混合胶体中聚丙烯酸浓度为5wt%,氢氧化锂浓度为1wt%,然后将PE隔膜完全浸润到到混合胶体中,取出后在110摄氏度的环境下真空干燥12小时,得到有机系锂离子电池用隔膜(CH@PE)。
结论:正极选用LMO(锰酸锂),隔膜为一层PE隔膜(靠近正极),一层实施例12得到的有机系锂离子电池用隔膜(CH@PE,其靠近负极),金属锂负极,电解液:DMC:EC:DEC为1:1:1中使用1M LiPF 6的混合溶液,24mAh cm -2活性物质高负载量,组装为LMO|PP+CH@PP|Li电池,同时正极选用LMO(锰酸锂),隔膜为一层PE,金属锂负极,电解液:DMC:EC:DEC为1:1:1中使用1M LiPF 6的混合溶液,24mAh cm -2活性物质高负载量,组装为LMO|PE|Li电池,在1C倍率,电压范围3.5~4.3V下,LMO|PE+CH@PE|Li电池500次循环后,容量保持75.4%;而LMO|PE|Li电池不能正常工作。
以上详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (18)

  1. 一种多孔隔膜,其中,包括:
    隔膜基体;
    涂层,所述涂层形成在所述隔膜基体的至少一部分上,并且所述涂层带有负电荷。
  2. 根据权利要求1所述的多孔隔膜,其中,所述隔膜基体为AGM隔膜、PP膜、PE膜或无纺布隔膜。
  3. 根据权利要求1或2所述的多孔隔膜,其中,所述隔膜基体的厚度为0.1~1mm。
  4. 根据权利要求1-3中任一项所述的多孔隔膜,其中,所述涂层包括胶原蛋白、明胶、聚噻吩、聚丙烯酸和聚苯乙烯磺酸钠中的至少之一。
  5. 一种制备权利要求1-4中任一项所述多孔隔膜的方法,其中,包括:
    (1)伴随着加热搅拌,将涂料与水混合,以便得到胶体;
    (2)将隔膜基体浸入到所述胶体中,取出后进行干燥,以便得到多孔隔膜。
  6. 根据权利要求5所述的方法,其中,在步骤(1)中,所述搅拌加热的温度为55~110摄氏度,时间为20~500分钟。
  7. 根据权利要求5或6所述的方法,其中,在步骤(1)中,所述涂料为选自胶原蛋白、明胶、聚噻吩、聚丙烯酸和聚苯乙烯磺酸钠中的至少之一。
  8. 根据权利要求5-7中任一项所述的方法,其中,在步骤(1)中,所述胶体的浓度为0.1wt%~25wt%。
  9. 根据权利要求5-8中任一项所述的方法,其中,在步骤(2)中,所述干燥采用真空干燥,并且所述真空干燥的温度为80~150摄氏度,时间为1~30小时。
  10. 一种水系金属锌离子电池,其中,所述水系金属锌离子电池具有权利要求1-4中任一项所述的多孔隔膜或采用权利要求5-9中任一项所述的方法得到的所述多孔隔膜。
  11. 一种制备有机系锂离子电池用隔膜的方法,其中,包括:
    (a)伴随着加热搅拌,将涂料与水和含锂电解液混合,以便得到混合胶体;
    (b)将隔膜基体浸入到所述胶体中,取出后进行干燥,以便得到有机系锂离子电池用隔膜。
  12. 根据权利要求11所述的方法,其中,在步骤(a)中,所述搅拌加热的温度为55~110摄氏度,时间为20~500分钟。
  13. 根据权利要求11或12所述的方法,其中,在步骤(a)中,所述涂料为选自胶原蛋白、明胶、聚噻吩、聚丙烯酸和聚苯乙烯磺酸钠中的至少之一。
  14. 根据权利要求11-13中任一项所述的方法,其中,在步骤(a)中,所述混合胶体 中涂料的浓度为0.1wt%~25wt%。
  15. 根据权利要求11-14中任一项所述的方法,其中,在步骤(a)中,所述混合胶体中含锂电解液的浓度为0.1wt%~10wt%。
  16. 根据权利要求11-15中任一项所述的方法,其中,在步骤(b)中,所述干燥采用真空干燥,并且所述真空干燥的温度为80~150摄氏度,时间为1~30小时。
  17. 一种有机系锂离子电池用隔膜,其中,所述隔膜采用权利要求11-16中任一项所述的方法制备得到。
  18. 一种有机系锂离子电池,其中,所述有机系锂离子电池具有采用权利要求11-16中任一项所述的方法制备得到的隔膜或权利要求17所述的隔膜。
PCT/CN2021/084894 2020-04-03 2021-04-01 多孔隔膜及其制备方法和应用 WO2021197411A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010258213.X 2020-04-03
CN202010258213.XA CN111477815A (zh) 2020-04-03 2020-04-03 多孔隔膜及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2021197411A1 true WO2021197411A1 (zh) 2021-10-07

Family

ID=71749776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084894 WO2021197411A1 (zh) 2020-04-03 2021-04-01 多孔隔膜及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN111477815A (zh)
WO (1) WO2021197411A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114709554A (zh) * 2022-03-31 2022-07-05 西北工业大学 一种离子电池功能化纺织棉布隔膜及其制备方法和应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111477815A (zh) * 2020-04-03 2020-07-31 陈璞 多孔隔膜及其制备方法和应用
CN114497617B (zh) * 2020-11-12 2023-11-21 中国科学院大连化学物理研究所 一种锌溴液流电池用隔膜及应用
CN112563446A (zh) * 2020-11-22 2021-03-26 扬州大学 具有生物聚合物涂层的电极及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108949074A (zh) * 2018-06-05 2018-12-07 深圳市辰玉科技有限公司 一种锂离子电池隔膜涂层用粘结剂及制备方法
CN110061309A (zh) * 2019-04-29 2019-07-26 陈璞 电池
CN110165308A (zh) * 2018-02-13 2019-08-23 中国科学院大连化学物理研究所 一种带负电荷的多孔离子传导膜在碱性锌基电池中的应用
CN111477815A (zh) * 2020-04-03 2020-07-31 陈璞 多孔隔膜及其制备方法和应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040185284A1 (en) * 2003-03-18 2004-09-23 Lucent Technologies, Inc. Ultrathin charge dissipation coatings
US9373829B2 (en) * 2013-10-11 2016-06-21 GM Global Technology Operations LLC Porous interlayer for a lithium-sulfur battery
KR101677794B1 (ko) * 2014-01-10 2016-11-21 한양대학교 산학협력단 이차전지용 유무기 복합 분리막, 그 제조 방법, 및 이를 이용한 이차전지
KR101725650B1 (ko) * 2014-10-29 2017-04-12 주식회사 엘지화학 리튬 황 전지
KR101897206B1 (ko) * 2017-02-22 2018-09-11 한국과학기술연구원 기능화된 금속산화물 나노입자 및 그를 포함하는 리튬-황 전지용 음극
CN110165128B (zh) * 2018-02-13 2020-08-14 中国科学院大连化学物理研究所 一种膜表面带负电荷的多孔离子传导膜在碱性锌基电池中的应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110165308A (zh) * 2018-02-13 2019-08-23 中国科学院大连化学物理研究所 一种带负电荷的多孔离子传导膜在碱性锌基电池中的应用
CN108949074A (zh) * 2018-06-05 2018-12-07 深圳市辰玉科技有限公司 一种锂离子电池隔膜涂层用粘结剂及制备方法
CN110061309A (zh) * 2019-04-29 2019-07-26 陈璞 电池
CN111477815A (zh) * 2020-04-03 2020-07-31 陈璞 多孔隔膜及其制备方法和应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114709554A (zh) * 2022-03-31 2022-07-05 西北工业大学 一种离子电池功能化纺织棉布隔膜及其制备方法和应用

Also Published As

Publication number Publication date
CN111477815A (zh) 2020-07-31

Similar Documents

Publication Publication Date Title
WO2021197411A1 (zh) 多孔隔膜及其制备方法和应用
JP6514290B2 (ja) 制御された樹枝状結晶成長を有する充電可能なアルカリ金属電極およびアルカリ土類電極、ならびにそれらの製造方法および使用方法
US10340508B2 (en) Porous silicon oxide (SiO) anode enabled by a conductive polymer binder and performance enhancement by stabilized lithium metal power (SLMP)
US10763512B2 (en) Lithium deposition with multilayer nanomebrane
CN108550858A (zh) 一种抑制锂枝晶的铜锌合金集流体
WO2017020860A1 (zh) 电池、电池组以及不间断电源
US11211635B2 (en) Battery, battery pack, and uninterruptible power supply
WO2021208299A1 (zh) 一种水系钠基混合离子二次电池
CN103035920A (zh) 一种锂离子电池及其制备方法
CN110911689A (zh) 集流体及其制备方法、电极片和二次电池
CN113937269B (zh) 一种银颗粒涂层修饰的三维多孔铜集流体-锂负极一体结构及其制备方法和应用
Zhang et al. Regulating lithium nucleation and growth by zinc modified current collectors
CN113054263A (zh) 一种锌离子电池及其制备方法
CN113066990B (zh) 一种锌负极改性三维集流体的制备方法及应用
CN113036100B (zh) 一种含刚性颗粒骨架的锂金属复合负极及其制备方法
CN110444730B (zh) 一种三维网状结构纳米层锌负极的制备方法和应用
CN113471512A (zh) 一种低温锂电池
WO2018209762A1 (zh) 锂电池负极及其制备方法和应用
CN110085919B (zh) 一种全固态电池电解质界面修饰方法及其应用
WO2016202276A1 (zh) 正极材料及电池
WO2023134234A1 (zh) 正极复合材料、其制备方法、正极以及锂离子二次电池
JP2018113142A (ja) リチウム硫黄電池
CN101393980A (zh) 硅负极和包括该负极的锂离子二次电池及它们的制备方法
CN110911662A (zh) 一种具有保护层的锂负极及其制备方法和应用
CN109659475A (zh) 一种高性能高压锂离子电池的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21781005

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21781005

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/03/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21781005

Country of ref document: EP

Kind code of ref document: A1