WO2021208299A1 - 一种水系钠基混合离子二次电池 - Google Patents

一种水系钠基混合离子二次电池 Download PDF

Info

Publication number
WO2021208299A1
WO2021208299A1 PCT/CN2020/107114 CN2020107114W WO2021208299A1 WO 2021208299 A1 WO2021208299 A1 WO 2021208299A1 CN 2020107114 W CN2020107114 W CN 2020107114W WO 2021208299 A1 WO2021208299 A1 WO 2021208299A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
ion secondary
aqueous sodium
based mixed
mixed ion
Prior art date
Application number
PCT/CN2020/107114
Other languages
English (en)
French (fr)
Inventor
丁波
杨鹏
曹翊
李昌盛
罗刚国
车勇
戴翔
Original Assignee
恩力能源科技(安徽)有限公司
恩力能源科技(南通)有限公司
恩力能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 恩力能源科技(安徽)有限公司, 恩力能源科技(南通)有限公司, 恩力能源科技有限公司 filed Critical 恩力能源科技(安徽)有限公司
Publication of WO2021208299A1 publication Critical patent/WO2021208299A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of batteries, in particular to an aqueous sodium-based mixed ion secondary battery.
  • Water-based ion batteries have the characteristics of high safety, pollution-free, low cost and long life, and can meet the requirements of large-scale energy storage applications. They are one of the key technologies for the development and utilization of renewable energy (light and wind energy, etc.) and the construction of smart grids. , Its research and industrialization have attracted more and more attention. At present, the use of lithium transition metal oxides in water-based ion batteries as cathode materials is the earliest and most extensive research, and it is also the closest to industrialization.
  • the lithium resources on the earth are difficult to support the application requirements of large-scale energy storage systems, let alone the increasing demand for lithium in electric vehicles.
  • the global basic reserve of lithium resources (calculated as lithium carbonate) is about 58M tons, of which the known recoverable reserves are about 25M tons.
  • the current global annual consumption of lithium carbonate is about 70 to 80,000 tons, and the expected mining time is only more than 50 years.
  • sodium and lithium have similar chemical properties, so it is considered to be suitable for water-based ion batteries instead of lithium.
  • Sodium is one of the most abundant resources on the earth, and it can be said to be inexhaustible.
  • the price is also significantly reduced, usually 1/10 of the lithium salt.
  • the water-based ion battery using sodium ions is considered to be one of the most potential batteries suitable for large-scale energy storage systems, and has gradually become the focus of research work in the industry.
  • Aqueous sodium ion batteries rely on the insertion and extraction of metal ions in the anode and cathode materials to realize the storage and release of electric energy.
  • the battery is limited to the insertion and extraction of single ions, there are the following shortcomings in practical applications: First, it has a suitable insertion and deionization potential.
  • the choice of anode and cathode materials is relatively small; secondly, limited by the ion intercalation mechanism, the reversible capacity of the anode and cathode materials is small, resulting in lower energy density of the battery.
  • the above-mentioned technical problems always exist in the application of single-ion batteries, and it is urgent to propose a new battery device that does not limit the single-ion intercalation and release, and improves the energy density of the battery.
  • the purpose of the present invention is to provide a water-based sodium-based mixed ion secondary battery, based on two or more kinds of ions for energy storage at the same time; in the positive electrode of the battery to achieve the insertion and release of sodium ions in the manganese-sodium layered compound, in the negative electrode of the battery Realize the deposition and dissolution reaction or alloying reaction of active metals, overcome the shortcomings of single-ion batteries, show higher energy density, and have better cycle performance.
  • an aqueous sodium-based mixed ion secondary battery including a positive electrode, a negative electrode, a separator and an electrolyte;
  • the negative electrode includes 73wt.%-92wt.% of the anode active material metal oxide, 5wt. %-15wt.% of the second conductive carbon material and 3wt.%-12wt.% of the second binder material
  • the electrolyte is a sodium hydroxide solution in which a saturated an
  • the metal oxide of the negative electrode active material is one or more of aluminum oxide, zinc oxide, magnesium oxide, and calcium oxide.
  • the concentration of the sodium hydroxide solution is 3 mol/L-8 mol/L, and the electrolyte provides an environment for the existence of mixed ions.
  • the membrane is a composite membrane of non-woven fabric and hydrophilic PP.
  • the metal oxide of the negative electrode active material is zinc oxide.
  • the first conductive carbon material is one or more of KS-6, KS-15, SP, AC, and CNT;
  • the first binder material is PTFE, PVDF, PVA, CMC, PAA One or more of.
  • the second conductive carbon material is one or more of conductive carbon fiber, SP, AC; the second binder material is one or more of PTFE, PVA, CMC, SBR, and PAA .
  • the separator is a composite separator of non-woven fabric and hydrophilic PP; wherein, the positive electrode includes the positive electrode active material (45-85wt.%), the first conductive carbon material (10-45wt.%) and the first A binder material (5-10wt.%), the negative electrode includes a negative active material (73-92wt.%), a second conductive carbon material (5-15wt.%) and a second binder material (3-12wt.
  • the aqueous sodium-based mixed ion secondary battery of the present invention is based on the energy storage of two or more kinds of ions at the same time, the positive sodium ions of the battery are intercalated and desorbed in the layered compound of sodium manganese Reaction, the negative electrode of the battery causes the deposition and dissolution reaction or alloying reaction of the active metal.
  • the mixed ion design of the present invention overcomes the shortcomings of the single-ion battery.
  • the negative electrode material can be selected according to the type of the inserted positive electrode.
  • the material can be selected with a large margin and the negative electrode has a high specific capacity, so the overall energy density is higher. ,
  • the capacity retention rate after 40 cycles at 1C rate is 92.6%, which has good cycle performance.
  • Figure 1 is a battery cycle performance diagram of Example 1 of the present invention.
  • Figure 2 is a graph of battery cycle performance in Example 2 of the present invention.
  • Figure 3 is a battery cycle performance diagram of Example 3 of the present invention.
  • both aqueous sodium-ion batteries and lithium-ion batteries belong to single-ion batteries, which rely on the insertion and extraction of metal ions in the positive and negative materials to achieve the storage and release of electrical energy, and the choice of positive and negative materials is small and the battery
  • the technical problem of low energy density; the present invention aims to propose a water-based sodium-based mixed-ion secondary battery, based on multiple ions for energy storage at the same time, to overcome the shortcomings of single-ion batteries, a wide selection of positive and negative materials, and has more High energy density and better cycle performance.
  • an aqueous sodium-based mixed ion secondary battery includes a positive electrode, a negative electrode, a separator and an electrolyte.
  • the negative electrode active material preferably zinc oxide, which is made into zinc oxide powder.
  • the first conductive carbon material is selected from one or more of KS-6, KS-15, SP, AC, and CNT.
  • the agent material is one or more of PTFE, PVDF, PVA, CMC, PAA
  • the second conductive carbon material is one or more of conductive carbon fiber, SP, AC, and the second binder material is PTFE, PVA. , CMC, SBR, PAA one or more.
  • the electrolyte is a sodium hydroxide solution with a solubility of 6 mol/L in which saturated zinc oxide is dissolved.
  • the diaphragm is selected as a 0.2mm thick non-woven fabric + hydrophilic PP composite diaphragm, and then assembled into a water-based sodium-based mixed ion secondary For battery A, the capacity retention rate of battery A after 40 cycles at a rate of 1C was measured, and the result is shown in Figure 1.
  • the formula is 92wt.% zinc oxide powder, 3wt.% SP and 2wt.% AC mixed conductive carbon material and 3wt.% CMC as a binder; according to the positive and negative electrode formulations, the positive electrode is prepared through a coating process.
  • the electrolyte is 8mol/L sodium hydroxide solution saturated with zinc oxide; the separator is 0.2mm thick non-woven fabric + hydrophilic PP composite separator, and then assembled into a water-based sodium-based hybrid
  • the capacity retention rate of the battery B after 40 cycles at a rate of 1C was measured, and the result is shown in FIG. 2.
  • the formula is 73wt.% zinc oxide powder, 10wt.% SP and 5wt.% AC mixed conductive carbon material and 12wt.% PTFE as the binder; according to the positive and negative electrode formulas, the thick film is formed by kneading and forming.
  • the electrolyte is 4mol/L sodium hydroxide solution saturated with zinc oxide
  • the separator is 0.2mm thick non-woven fabric + hydrophilic PP composite separator, and then assembled into it.
  • the water-based sodium-based mixed ion secondary battery C was measured for the capacity retention rate of the battery C after 40 cycles at a rate of 1C. The results are shown in FIG. 3.
  • Table 1 shows the discharge capacity retention rates of battery A, battery B, and battery C shown in Figures 1 to 3.
  • the battery obtained by the different production ratios due to the difference in the formula and preparation process of the positive electrode and the negative electrode, causes the battery to exhibit different specific discharge capacities and stable charge-discharge cycles Performance
  • the batteries prepared in Example 1 to Example 3 can be cycled normally at a rate of 1C during the test.
  • the discharge capacity retention rate of Example 1 is 92.6%, and the battery has the best charge-discharge cycle stability.

Abstract

本发明提供了一种水系钠基混合离子二次电池,该电池的正极活性材料为锰酸钠Na xMnO 2(X=0.2~1.0),负极活性材料为金属氧化物,电解液为溶解有上述饱和金属氧化物的氢氧化钠溶液,隔膜为无纺布与亲水PP的复合隔膜;其中,正极包括正极活性材料(45-85wt.%)、第一导电碳材料(10-45wt.%)和第一粘结剂材料(5-10wt.%),负极包括负极活性材料(73-92wt.%)、第二导电碳材料(5-15wt.%)和第二粘结剂材料(3-12wt.%);本发明的水系钠基混合离子二次电池,在1C倍率下循环40圈后的容量保持率为92.6%,有较好的充放电循环稳定性能。

Description

一种水系钠基混合离子二次电池 技术领域
本发明涉及电池技术领域,具体涉及一种水系钠基混合离子二次电池。
背景技术
水系离子电池具有高安全、无污染、低成本和长寿命等特点,能够满足大规模储能应用的要求,作为可再生能源(光能和风能等)开发利用和智能电网构建的关键技术之一,对其的研究与产业化越来越受到关注。目前,锂过渡金属氧化物用于水系离子电池作为正极材料研究的最早最广泛,也最接近产业化。
然而,实际上地球上的锂资源是难以支撑大型储能系统的应用需求的,更不用说日益增长的电动汽车对锂的需求。全球锂资源基础储量(碳酸锂计)约为58M吨,其中已知的可开采储量约为25M吨。可是目前全球碳酸锂年消耗量约为7至8万吨,预计可开采时间不过50多年。另一方面,钠与锂的化学性能类似,因此被认为能够替代锂适用于水系离子电池。钠是地球上储量最丰富的资源之一,可以说是用之不竭。价格也显著降低,通常为锂盐的1/10。使用钠离子的水系离子电池被认为是最有潜力的适合大规模储能系统的电池之一,逐渐成为业界研究工作的焦点。
水系钠离子电池依靠金属离子在正负极材料中嵌入和脱出实现电能的储存和释放,但是由于电池局限于单离子的嵌脱,在实际应用时存在如下不足:首先,具有合适嵌脱离子电位的正负极材料的选择余地较小;其次,受离子嵌脱机制的限制,正负极材料的可逆容量小,导致电池的能量密度较低。单离子电池应用时始终存在上述技术难题,亟待提出一种新的电池装置,不局限单离子嵌脱,提升电池能量密度。
发明内容
本发明目的在于提供一种水系钠基混合离子二次电池,基于二种或二种以 上的离子同时进行能量储存;在电池正极实现钠离子在锰钠层状化合物中的嵌脱,在电池负极实现活泼金属的沉积溶解反应或合金化反应,克服单离子电池的缺点,表现出较高的能量密度,有较好的循环性能。
为达成上述目的,本发明提出如下技术方案:一种水系钠基混合离子二次电池,包括正极、负极、隔膜和电解液;所述正极选用的正极活性材料为Na xMnO 2(x=0.2~1),所述负极选用的负极活性材料为金属氧化物;具体为,所述正极包括45wt.%-85wt.%的正极活性材料锰酸钠Na xMnO 2(x=0.2~1)、10wt.%-45wt.%的第一导电炭材料和5wt.%-10wt.%的第一粘结剂材料;所述负极包括73wt.%-92wt.%的负极活性材料金属氧化物、5wt.%-15wt.%的第二导电炭材料和3wt.%-12wt.%的第二粘结剂材料;所述电解液为溶解有饱和负极活性材料金属氧化物的氢氧化钠溶液。
进一步的,所述负极活性材料金属氧化物为氧化铝、氧化锌、氧化镁和氧化钙中的一种或多种。
进一步的,所述氢氧化钠溶液的浓度为3mol/L-8mol/L,电解液提供了混合离子的存在环境。
进一步的,所述隔膜为无纺布与亲水PP的复合型隔膜。
进一步的,所述负极活性材料金属氧化物为氧化锌。
进一步的,所述第一导电炭材料为KS-6、KS-15、SP、AC、CNT中的一种或多种;所述第一粘结剂材料为PTFE、PVDF、PVA、CMC、PAA中的一种或多种。
进一步的,所述第二导电炭材料为导电碳纤维、SP、AC中的一种或多种;所述第二粘结剂材料为PTFE、PVA、CMC、SBR、PAA中的一种或多种。
由以上技术方案可知,本发明的技术方案提供的水系钠基混合离子二次电池,获得了如下有益效果:
本发明公开的水系钠基混合离子二次电池,电池的正极活性材料为锰酸钠Na xMnO 2(X=0.2~1.0),负极活性材料为金属氧化物,电解液为溶解有上述饱和金 属氧化物的氢氧化钠溶液,隔膜为无纺布与亲水PP的复合隔膜;其中,正极包括正极活性材料(45-85wt.%)、第一导电碳材料(10-45wt.%)和第一粘结剂材料(5-10wt.%),负极包括负极活性材料(73-92wt.%)、第二导电碳材料(5-15wt.%)和第二粘结剂材料(3-12wt.%);本发明的水系钠基混合离子二次电池,混合离子电池基于二种或二种以上的离子同时进行的能量储存,其电池的正极钠离子在锰钠的层状化合物中进行嵌脱反应,电池的负极发生活泼金属的沉积溶解反应或合金化反应。
本发明混合离子的设计克服了单离子电池的缺点,可根据嵌入正极的类型选择相匹配的负极材料,材料可选余地较大,且负极的比容量高,因此整体表现出较高的能量密度,达到在1C倍率下循环40圈后的容量保持率为92.6%,有较好的循环性能。
应当理解,前述构思以及在下面更加详细地描述的额外构思的所有组合只要在这样的构思不相互矛盾的情况下都可以被视为本公开的发明主题的一部分。
结合附图从下面的描述中可以更加全面地理解本发明教导的前述和其他方面、实施例和特征。本发明的其他附加方面例如示例性实施方式的特征和/或有益效果将在下面的描述中显见,或通过根据本发明教导的具体实施方式的实践中得知。
附图说明
附图不意在按比例绘制。在附图中,在各个图中示出的每个相同或近似相同的组成部分可以用相同的标号表示。为了清晰起见,在每个图中,并非每个组成部分均被标记。现在,将通过例子并参考附图来描述本发明的各个方面的实施例,其中:
图1为本发明实施例1电池循环性能图;
图2为本发明实施例2电池循环性能图;
图3为本发明实施例3电池循环性能图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。除非另作定义,此处使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。
本发明专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,除非上下文清楚地指明其它情况,否则单数形式的“一个”“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的特征、整体、步骤、操作、元素和/或组件,并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
基于现有技术中,水系钠离子电池与锂离子电池都属于单离子电池,依靠金属离子在正负极材料中嵌入和脱出实现电能的储存和释放,具有正负极材料的选择余地小和电池的能量密度低的技术问题;本发明旨在提出一种水系钠基混合离子二次电池,基于多种离子同时进行能量存储,克服单离子电池的缺点,正负极材料选择范围广,具有较高的能量密度和较好的循环性能。
具体为,一种水系钠基混合离子二次电池,包括正极、负极、隔膜和电解液,正极选用的正极活性材料为Na xMnO 2(x=0.2~1),所述负极选用的负极活性材料为金属氧化物;其中,所述正极包括45wt.%-85wt.%的正极活性材料锰酸钠Na xMnO 2(x=0.2~1)、10wt.%-45wt.%的第一导电炭材料和5wt.%-10wt.%的第一粘结剂材料;所述负极包括73wt.%-92wt.%的负极活性材料金属氧化物、 5wt.%-15wt.%的第二导电炭材料和3wt.%-12wt.%的第二粘结剂材料;所述电解液为溶解有饱和负极活性材料金属氧化物的氢氧化钠溶液,氢氧化钠溶液的浓度为3mol/L-8mol/L,电解液提供了混合离子的存在环境;所述隔膜为无纺布与亲水PP的复合型隔膜。
为确保水系钠基混合离子二次电池的性能,负极活性材料选择氧化铝、氧化锌、氧化镁和氧化钙中的一种或多种,优选为氧化锌,制成氧化锌粉末。另外,正、负极活性材料就那个涂布等制成电极极片时,第一导电炭材料选用KS-6、KS-15、SP、AC、CNT中的一种或多种,第一粘结剂材料选用PTFE、PVDF、PVA、CMC、PAA中的一种或多种,第二导电炭材料选用导电碳纤维、SP、AC中的一种或多种,第二粘结剂材料选用PTFE、PVA、CMC、SBR、PAA中的一种或多种。
下面结合实施例和附图对实施例组装的二次电池进行性能循环测试结果,对本发明水系钠基混合离子二次电池作进一步介绍。
实施例1
正极配方为50wt.%的锰酸钠Na xMnO 2(X=0.2~1.0)粉末、30wt.%的AC和10wt.%SP混合导电碳材料和10wt.%的PTFE作为粘结剂;负极配方为80wt.%的氧化锌粉末,12%的SP导电碳材料和8%的PTFE作为粘结剂;按正、负极配方通过捏合开炼厚膜成型工艺分别制备正极电极极片和负极电极极片,电解液为溶解有饱和氧化锌的溶度为6mol/L的氢氧化钠溶液,隔膜选为0.2mm厚度无纺布+亲水PP复合型隔膜,按此组装成水系钠基混合离子二次电池A,对电池A测定其在1C倍率下循环40圈后的容量保持率,结果如图1所示。
实施例2
正极配方为85wt.%的锰酸钠Na xMnO 2(X=0.2~1.0)粉末、8wt.%的AC和2wt.%的SP混合导电碳材料和5wt.%的PVA作为粘结剂;负极配方为92wt.%的氧化锌粉末,3wt.%的SP和2wt.%的AC混合导电碳材料和3wt.%的CMC作为粘结剂;按正、负极配方通过涂布工艺分别制备正极电极极片和负极电极 极片,电解液为溶解有饱和氧化锌的8mol/L的氢氧化钠溶液;隔膜选为0.2mm厚度无纺布+亲水PP复合型隔膜,按此组装成水系钠基混合离子二次电池B,对电池B测定其在1C倍率下循环40圈后的容量保持率,结果如图2所示。
实施例3
正极配方为70wt.%的锰酸钠Na xMnO 2(X=0.2~1.0)粉末、10wt.%的AC和10wt.%的SP混合导电碳材料和10wt.%的PTFE作为粘结剂;负极配方为73wt.%的氧化锌粉末,10wt.%的SP和5wt.%的AC混合导电碳材料和12wt.%的PTFE作为粘结剂;按正、负极配方通过捏合开炼厚膜成型工艺分别制备正极电极极片和负极电极极片,电解液为溶解有饱和氧化锌的4mol/L的氢氧化钠溶液,隔膜选为0.2mm厚度无纺布+亲水PP复合型隔膜,按此组装成水系钠基混合离子二次电池C,对电池C测定其在1C倍率下循环40圈后的容量保持率,结果如图3所示。
表1 实施例1至实施例3电池性能循环数据
序号 电池A 电池B 电池C
首圈放电比容量(mAh/g) 55.7 60.7 53.4
尾圈放电比容量(mAh/g) 51.5 39.4 32.3
放电容量保持率(%) 92.6 64.9 60.5
综合图1至图3所示的电池A、电池B和电池C的放电容量保持率如表1所示。根据本发明提供的水系钠基混合离子二次电池的不同制作配比获得的电池,由于正极和负极的配方和制备工艺等因素的差异,致使电池表现出不同的放电比容量和充放电循环稳定性能,实施例1至实施例3制备的电池其在测试时,均可以在1C倍率下能正常循环。其中,实施例1的放电容量保持率为92.6%,电池的充放电循环稳定性能最佳。
虽然本发明已以较佳实施例揭露如上,然其并非用以限定本发明。本发明所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰。因此,本发明的保护范围当视权利要求书所界定者为准。

Claims (10)

  1. 一种水系钠基混合离子二次电池,包括正极、负极、隔膜和电解液,其特征在于,所述水系钠基混合离子二次电池的正极活性材料为Na xMnO 2(x=0.2~1),负极活性材料为金属氧化物。
  2. 根据权利要求1所述的水系钠基混合离子二次电池,其特征在于,所述正极包括45wt.%-85wt.%的正极活性材料锰酸钠Na xMnO 2(x=0.2~1)、10wt.%-45wt.%的第一导电炭材料和5wt.%-10wt.%的第一粘结剂材料。
  3. 根据权利要求1所述的水系钠基混合离子二次电池,其特征在于,所述负极包括73wt.%-92wt.%的负极活性材料金属氧化物、5wt.%-15wt.%的第二导电炭材料和3wt.%-12wt.%的第二粘结剂材料。
  4. 根据权利要求3所述的水系钠基混合离子二次电池,其特征在于,所述负极活性材料金属氧化物为氧化铝、氧化锌、氧化镁和氧化钙中的一种或多种。
  5. 根据权利要求1所述的水系钠基混合离子二次电池,其特征在于,所述电解液为溶解有饱和负极活性材料金属氧化物的氢氧化钠溶液。
  6. 根据权利要求5所述的水系钠基混合离子二次电池,其特征在于,所述氢氧化钠溶液的浓度为3mol/L-8mol/L。
  7. 根据权利要求1所述的水系钠基混合离子二次电池,其特征在于,所述隔膜为无纺布与亲水PP的复合型隔膜。
  8. 根据权利要求4所述的水系钠基混合离子二次电池,其特征在于,所述负极活性材料金属氧化物为氧化锌。
  9. 根据权利要求2所述的水系钠基混合离子二次电池,其特征在于,所述第一导电炭材料为KS-6、KS-15、SP、AC、CNT中的一种或多种;所述第一粘结剂材料为PTFE、PVDF、PVA、CMC、PAA中的一种或多种。
  10. 根据权利要求3所述的水系钠基混合离子二次电池,其特征在于,所述第二导电炭材料为导电碳纤维、SP、AC中的一种或多种;所述第二粘结剂材料为PTFE、PVA、CMC、SBR、PAA中的一种或多种。
PCT/CN2020/107114 2020-04-17 2020-08-05 一种水系钠基混合离子二次电池 WO2021208299A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010302952.4 2020-04-17
CN202010302952.4A CN111477853B (zh) 2020-04-17 2020-04-17 一种水系钠基混合离子二次电池

Publications (1)

Publication Number Publication Date
WO2021208299A1 true WO2021208299A1 (zh) 2021-10-21

Family

ID=71754250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/107114 WO2021208299A1 (zh) 2020-04-17 2020-08-05 一种水系钠基混合离子二次电池

Country Status (2)

Country Link
CN (1) CN111477853B (zh)
WO (1) WO2021208299A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114400303A (zh) * 2021-11-25 2022-04-26 四川英能基科技有限公司 用于钠离子电池的正极浆料、应用及制备工艺
CN114937774A (zh) * 2022-05-16 2022-08-23 中国科学技术大学 一种p2和p3混合相层状氧化物钠离子电池正极材料及其制备方法和应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111477853B (zh) * 2020-04-17 2022-06-10 北京恩力动力科技有限公司 一种水系钠基混合离子二次电池
CN115954558A (zh) * 2022-11-29 2023-04-11 蚌埠学院 一种水系离子二次电池
CN115986122B (zh) * 2023-01-19 2023-06-30 蚌埠学院 一种水系钠离子电池电极极片、电池及它们的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101087018A (zh) * 2007-06-28 2007-12-12 复旦大学 一种水溶液可充钠离子电池
CN103441260A (zh) * 2013-08-12 2013-12-11 恩力能源科技(南通)有限公司 一种水系碱性电化学储能器件
CN104769757A (zh) * 2012-11-08 2015-07-08 丰田自动车株式会社 正极活性物质和混合离子电池
CN105489949A (zh) * 2016-01-28 2016-04-13 吉首大学 一种基于嵌钠正极材料的混合水溶液电池制备方法
CN105826520A (zh) * 2016-03-28 2016-08-03 中国科学院青岛生物能源与过程研究所 一种基于锌-磷酸铁锰锂的水系高电压混合离子二次电池
JP2019091528A (ja) * 2017-11-10 2019-06-13 住友電気工業株式会社 ナトリウムイオン二次電池用電極活物質およびその製造方法
CN111477853A (zh) * 2020-04-17 2020-07-31 恩力能源科技(安徽)有限公司 一种水系钠基混合离子二次电池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106654154A (zh) * 2016-12-26 2017-05-10 浙江瓦力新能源科技有限公司 一种水系离子电池极板制作工艺
CN110993944B (zh) * 2019-11-08 2023-07-25 宁波锋成先进能源材料研究院 一种水系离子电池及其应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101087018A (zh) * 2007-06-28 2007-12-12 复旦大学 一种水溶液可充钠离子电池
CN104769757A (zh) * 2012-11-08 2015-07-08 丰田自动车株式会社 正极活性物质和混合离子电池
CN103441260A (zh) * 2013-08-12 2013-12-11 恩力能源科技(南通)有限公司 一种水系碱性电化学储能器件
CN105489949A (zh) * 2016-01-28 2016-04-13 吉首大学 一种基于嵌钠正极材料的混合水溶液电池制备方法
CN105826520A (zh) * 2016-03-28 2016-08-03 中国科学院青岛生物能源与过程研究所 一种基于锌-磷酸铁锰锂的水系高电压混合离子二次电池
JP2019091528A (ja) * 2017-11-10 2019-06-13 住友電気工業株式会社 ナトリウムイオン二次電池用電極活物質およびその製造方法
CN111477853A (zh) * 2020-04-17 2020-07-31 恩力能源科技(安徽)有限公司 一种水系钠基混合离子二次电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG LIMING , YANHUI ZHANG , ZHI SU , HUALING TIAN , LEI WANG: "Synthesis and Electrochemical Characterization of α-NaMnO2 as a Cathode Material for Hybrid Na/Li-Ion Batteries", INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, vol. 14, no. 3, 7 February 2019 (2019-02-07), pages 2422 - 2429, XP055857423, ISSN: 1452-3981 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114400303A (zh) * 2021-11-25 2022-04-26 四川英能基科技有限公司 用于钠离子电池的正极浆料、应用及制备工艺
CN114937774A (zh) * 2022-05-16 2022-08-23 中国科学技术大学 一种p2和p3混合相层状氧化物钠离子电池正极材料及其制备方法和应用
CN114937774B (zh) * 2022-05-16 2024-02-23 中国科学技术大学 一种p2和p3混合相层状氧化物钠离子电池正极材料及其制备方法和应用

Also Published As

Publication number Publication date
CN111477853A (zh) 2020-07-31
CN111477853B (zh) 2022-06-10

Similar Documents

Publication Publication Date Title
WO2021208299A1 (zh) 一种水系钠基混合离子二次电池
KR101758967B1 (ko) 전지
CN108428926B (zh) 正负两极均为沉积/溶解反应的铜-锰水系二次电池
CN110190243A (zh) 一种具有复合膜的锂金属负极的制备及应用
WO2017020860A1 (zh) 电池、电池组以及不间断电源
WO2011079482A1 (zh) 一种电池
CN103107373B (zh) 电池
JP2023548105A (ja) ナトリウムイオン電池の負極極片、電気化学装置及び電子デバイス
CN103219551A (zh) 一种水系碱金属离子储能器件
WO2014206352A1 (zh) 电解液及电池
CN106549189A (zh) 电池、电池组以及不间断电源
CN107403968A (zh) 水系二次电池
US10522869B2 (en) Battery, battery pack, and uninterruptible power supply
CN114373982B (zh) 一种基于液态醚类有机电解液的少负极二次钠电池及其制备方法
CN110265656A (zh) 一种以硫单质或硫化物为正极的水系锌离子二次电池
CN113690397B (zh) 一种锌负极极片及其制备方法和应用
CN108390110B (zh) 一种铅-锰二次电池
CN112928343B (zh) 一种适用于大规模储能应用的水系铜离子电池
CN109119635B (zh) 电池
WO2016202276A1 (zh) 正极材料及电池
CN103427119B (zh) 电池
WO2012094761A1 (en) Ion-exchange battery
CN116093417A (zh) 钠离子电池和储能设备
CN109659475A (zh) 一种高性能高压锂离子电池的制备方法
CN112510196A (zh) 一种锰基金属氧化物正极的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930795

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20930795

Country of ref document: EP

Kind code of ref document: A1