WO2021193668A1 - バイオマス灰の改質方法、バイオマス灰のセメント原料化システム、及び改質バイオマス灰 - Google Patents

バイオマス灰の改質方法、バイオマス灰のセメント原料化システム、及び改質バイオマス灰 Download PDF

Info

Publication number
WO2021193668A1
WO2021193668A1 PCT/JP2021/012080 JP2021012080W WO2021193668A1 WO 2021193668 A1 WO2021193668 A1 WO 2021193668A1 JP 2021012080 W JP2021012080 W JP 2021012080W WO 2021193668 A1 WO2021193668 A1 WO 2021193668A1
Authority
WO
WIPO (PCT)
Prior art keywords
biomass ash
ash
slurry
cement
water
Prior art date
Application number
PCT/JP2021/012080
Other languages
English (en)
French (fr)
Inventor
香奈 堀場
裕美 溝渕
大亮 黒川
麻衣子 山口
Original Assignee
太平洋セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太平洋セメント株式会社 filed Critical 太平洋セメント株式会社
Priority to JP2021548251A priority Critical patent/JP7052154B2/ja
Publication of WO2021193668A1 publication Critical patent/WO2021193668A1/ja
Priority to JP2022004293A priority patent/JP2022044668A/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/38Preparing or treating the raw materials individually or as batches, e.g. mixing with fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • Y02P40/18Carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Definitions

  • the present invention relates to a technique for recycling combustion ash generated by biomass power generation or the like as a raw material for cement.
  • biomass ash biomass ash
  • Non-Patent Document 1 application of biomass ash to a cement admixture is considered. Further, in Non-Patent Document 2 below, the elution behavior of salts is investigated for the recycling of biomass ash.
  • Non-Patent Document 1 the incinerator ash was used as it was as a cement admixture. Further, in Non-Patent Document 2 above, although the elution behavior of salts has been investigated, the effect of stabilization by elution of salts cannot be said to be sufficient because the method is column filling and sprinkling of water.
  • the present invention is to provide a reforming method thereof and a system for converting biomass ash into a cement raw material for the purpose of reliably recycling biomass ash.
  • Another object of the present invention is to provide a modified biomass ash that exhibits good quality in terms of quality and the like on the cement strength development when used in combination with cement.
  • the present invention in its first aspect, Slurry process by adding water to biomass ash to make a slurry, A water washing step of washing the slurry with water and
  • the present invention provides a method for reforming biomass ash, which comprises a dehydration step of dehydrating the slurry which has been washed with water.
  • water is added to biomass ash to make a slurry, which is washed with water and then dehydrated to obtain the dehydrated product. Therefore, chlorine, which is a cement repellent component, and environmental pollution may occur. It is possible to efficiently remove certain heavy metals such as selenium and chromium. In addition, the easily reactive calcium oxide and calcium hydroxide contained in the biomass ash can be removed to stabilize the quality.
  • the obtained modified biomass ash can be suitably used as a raw material for cement.
  • the cement clinker is put into a mixer for blending raw materials, put into a preheater top or a calciner before a rotary kiln, or put into a rotary kiln kiln or a kiln.
  • Various cement production such as charging, charging to a cleaner cooler to cool the cement clinker obtained by firing, charging to a mill to crush cement clinker, charging to a mixing machine of mixed cement, etc. It can be suitably used as a cement raw material that can be put into a stage.
  • the pH adjustment is preferably by blowing carbon dioxide-containing gas into the slurry.
  • carbon dioxide (CO 2 ) is contained in the combustion exhaust gas of a rotary kiln of a cement manufacturing facility, the combustion exhaust gas of a biomass incineration facility, and a biomass power plant.
  • CO 2 carbon dioxide
  • the effect of immobilizing harmful gases such as sulfur oxides (SOx) contained in the combustion exhaust gas can be expected.
  • the pH adjustment is preferably by adding an acid solution to the slurry.
  • chlorine can be removed more efficiently by adjusting the pH of the slurry to the acidic side with an acid solution.
  • an acid solution such as waste sulfuric acid
  • the calcium component contained in the biomass ash can be easily stabilized in the form of calcium sulfate (gypsum).
  • the modified biomass ash thus obtained also leads to the provision of a new gypsum alternative material.
  • the pH adjustment is to bring the slurry to pH 11 or less. According to this, the above-mentioned reforming effect of biomass ash can be enjoyed more stably.
  • the amine contained in the waste liquid promotes the formation of carbonate ions in the slurry, and it is easier to further stabilize the calcium component in the form of calcium carbonate.
  • the above-mentioned reforming method it is preferable to further include a step of blowing carbon dioxide-containing gas into the dehydrated product after the dehydration step. According to this, by carbonating the easily reactive calcium oxide and calcium hydroxide remaining in the dehydrated product, it is possible to further stabilize the quality of the obtained modified biomass ash. It also helps to dry the water contained in the dehydrated product.
  • the specific surface area of the obtained modified biomass ash can be adjusted to improve the strength development of the cement when used in combination with the cement.
  • the biomass ash is preferably fly ash. According to this, since the obtained modified biomass ash has high reactivity, the decrease in strength development when cemented is suppressed. In addition, the effect of removing cement repellent components such as chlorine by washing with water can be further enjoyed.
  • the biomass ash is preferably dry ash. According to this, cement repellent components such as chlorine in biomass ash can be easily reduced by washing with water.
  • the present invention in its second aspect, A powder dissolution tank for adding water to the contained biomass ash to make a slurry and washing it with water, A solid-liquid separator for dehydrating the slurry discharged from the powder dissolution tank, and
  • the present invention provides a cement raw material system for biomass ash, which comprises a transport device for transporting the dehydrated product separated by the solid-liquid separation device to a cement manufacturing facility.
  • a powder dissolution tank for adding water to biomass ash to make a slurry and washing with water a solid-liquid separation device for dehydrating the slurry, and dehydration thereof. Since it is equipped with a transport device for transporting goods to cement manufacturing facilities, the system can efficiently remove chlorine, which is a cement repellent component, and heavy metals such as selenium and chromium, which may pollute the environment. ..
  • the easily reactive calcium oxide and calcium hydroxide contained in the biomass ash can be removed to stabilize the quality.
  • the obtained modified biomass ash can be suitably used as a raw material for cement.
  • the cement clinker is put into a mixer for blending raw materials, put into a preheater top or a calciner before a rotary kiln, or put into a rotary kiln kiln or a kiln.
  • Various cement production such as charging, charging to a cleaner cooler to cool the cement clinker obtained by firing, charging to a mill to crush cement clinker, charging to a mixing machine of mixed cement, etc. It can be suitably used as a cement raw material that can be put into a stage.
  • the cement raw material system further includes a first carbon dioxide-containing gas supply device for blowing carbon dioxide-containing gas into the slurry housed in the powder dissolution tank.
  • a first carbon dioxide-containing gas supply device for blowing carbon dioxide-containing gas into the slurry housed in the powder dissolution tank.
  • CO 2 carbon dioxide
  • the pH adjustment makes chlorine more efficient than the case where the pH is not adjusted to the acidic side.
  • the calcium component contained in the biomass ash can be made into the form of slow-reactive calcium carbonate or calcium sulfate to make it easier to stabilize the quality of the obtained modified biomass ash.
  • carbon dioxide (CO 2 ) is contained in the combustion exhaust gas of a rotary kiln of a cement manufacturing facility, the combustion exhaust gas of a biomass incineration facility, and a biomass power plant.
  • CO 2 carbon dioxide
  • the effect of immobilizing harmful gases such as sulfur oxides (SOx) contained in the combustion exhaust gas can be expected.
  • the cement raw material system further includes an acid solution supply device for adding an acid solution to the slurry housed in the powder dissolution tank.
  • an acid solution supply device for adding an acid solution to the slurry housed in the powder dissolution tank.
  • the calcium component contained in the biomass ash can be made into the form of slow-reactive calcium carbonate or calcium sulfate to make it easier to stabilize the quality of the obtained modified biomass ash.
  • the calcium component contained in the biomass ash can be easily stabilized in the form of calcium sulfate (gypsum).
  • the modified biomass ash obtained thereby will lead to the provision of a new gypsum substitute material.
  • a pH measuring device for measuring the pH of the slurry contained in the powder dissolving tank and a measured value measured by the pH measuring device are received, and the measured values are adjusted according to the measured values. It is preferable that the control device for controlling the amount of the carbon dioxide-containing gas blown and / or the amount of the acid solution added is further provided. According to this, it becomes easy to adjust the pH to the acidic side according to the pH change of the slurry.
  • the cement raw material system further includes a second carbon dioxide-containing gas supply device for blowing carbon dioxide-containing gas into the dehydrated product separated by the solid-liquid separation device.
  • a second carbon dioxide-containing gas supply device for blowing carbon dioxide-containing gas into the dehydrated product separated by the solid-liquid separation device.
  • the cement manufacturing equipment is a clinker cooler or a mill.
  • the biomass ash is preferably fly ash.
  • a washing of the biomass ashes a K 2 O content is 3-8 wt%, SO 3 content of 0.5 ⁇ 8% by mass, Cl concentration is 0.035% by mass or less, calcium hydroxide content is 0.1% by mass or less, and calcium carbonate content is 8 to 20% by mass. It provides a characteristic modified biomass ash.
  • modified biomass ash provided by the present invention, it exhibits good quality in terms of the quality exerted on the cement strength development when used in combination with cement.
  • the modified biomass ash preferably has a brain specific surface area of 4000 to 10000 cm 2 / g. According to this, the strength development of the cement becomes better when used in combination with the cement.
  • the modified biomass ash preferably has a CaO content of 10 to 40% by mass. According to this, the easily reactive calcium component is reduced, and the effect of further stabilizing the quality can be enjoyed.
  • the elution amount of selenium is 0.01 mg / L or less and the elution amount of hexavalent chromium is 0.1 mg / L or less. According to this, the risk of environmental pollution can be reduced.
  • the biomass ash is preferably fly ash. According to this, since the obtained modified biomass ash has high reactivity, the decrease in strength development when cemented is suppressed.
  • the biomass ash is a fluidized bed fly ash generated by a fluidized bed type combustion furnace. According to this, when the biomass ash, which is a fluidized bed fly ash, contains a large amount of easily reactive calcium components, the effect of further stabilizing the quality of the obtained modified biomass ash can be enjoyed.
  • the modified biomass ash is preferably used as a cement mixture or a concrete admixture. According to this, when used in combination with cement, it is possible to produce concrete with good quality and little variation in quality and workability during production.
  • Biomass ash to which the present invention is applied includes those that are generally biomass combustion ash, and include, for example, combustion ash of plants and bamboo and combustion ash of food residue.
  • these ash vegetation bamboo relatively high content of K 2 O, from the viewpoint of resources as a cement admixture or concrete admixture, because the activity index increases preferable.
  • K 2 O content is preferably from 2 mass% to 10 mass%, more preferably from 3 wt% to 8 wt%, more preferably from a 3% to 5% by weight.
  • K 2 O content of the biomass ash is less than 2 wt%, the strength of the concrete when used as a cement admixture or concrete admixture becomes low.
  • biomass ash When K 2 O content of the biomass ash exceeds 10 wt%, the amount in the case of using as a raw material for cement clinker is limited. Since biomass ash is combustion ash, it contains a glass component having pozzolan reactivity like coal ash, and most of potassium is embedded in the glass phase.
  • co-firing of biomass and coal may be carried out, and the biomass ash to which the present invention is applied includes ash generated when such co-firing is carried out.
  • the general coal ash burning coal in the K 2 O content is lower, the activity of Baimamasu ash through the use of coal at co-firing different. Therefore, from the viewpoint of recycling as a cement mixture or a concrete admixture, in the case of co-firing with coal, it is preferable that the ash is obtained from a fuel having a biomass ratio of 50% by mass or more.
  • palm coconut husk ash obtained by using palm coconut husk as fuel is also preferably exemplified among the combustion ash of vegetation and bamboo.
  • Palm coconut husks are a by-product of palm oil production and are primarily used in the natural biomass energy industry. Palm coconut shell is a yellowish brown fibrous substance with low ash content, its particle size is about 5 mm to 40 mm, and its calorific value is about 4000 Kcal / kg. Therefore, in energy production using renewable resources, palm coconut husks In recent years, shells have been increasingly used as fuel for biomass power generation.
  • a stoker type and a fluidized bed type combustion furnace for such biomass power generation using palm coconut shell as fuel
  • a circulating fluidized bed type or a pressurized fluidized bed type combustion furnace which is a fluidized bed type is a furnace.
  • Limestone is added to perform desulfurization inside. Therefore, the biomass ash from such a combustion furnace contains a large amount of calcium component and sulfur component, and for example, the CaO content is generally 5% by mass to 45% by mass.
  • the added limestone-derived Ca compound includes forms such as CaO (quick lime), Ca (OH) 2 (slaked lime), CaCO 3 (limestone), and CaSO 4 (plaster).
  • the CaO content of the biomass ash to which the present invention is applied is preferably 8% by mass to 30% by mass, preferably 10% by mass, from the viewpoint of the strength of concrete when it is recycled as a cement mixture or a concrete admixture. More preferably, it is ⁇ 25% by mass.
  • the biomass ash to which the present invention is applied may be the main ash that remains unburned at the bottom of the combustion furnace of biomass power generation, etc., and is obtained by collecting soot dust that is contained in the combustion exhaust gas and floats as a gas by a dust collector. It may be fly ash. Of these, fly ash is suitable because it is easy to remove cement repellent components such as chlorine by washing with water. In addition, since fly ash has high reactivity, a decrease in strength development when mixed with cement is suppressed. In addition, fly ash contains more calcium oxide and calcium hydroxide, which are more reactive than main ash.
  • the median diameter (D50) is preferably 100 ⁇ m or less, more preferably 75 ⁇ m or less, and further preferably 50 ⁇ m or less.
  • a laser diffraction / scattering type particle size distribution measuring device can be used for the particle size.
  • the particle size can be measured by using ethanol as a dispersion medium with MW3300EXII manufactured by Microtrac Bell Co., Ltd. and measuring after ultrasonic dispersion for 1 minute. Can be done.
  • the biomass ash to which the present invention is applied it is preferable that the biomass ash has never been sprayed with water.
  • Dry ash refers to ash that has never been sprayed with water and is granular or does not produce hydrates. When water is sprayed and granulated, or when chlorine is incorporated into the produced hydrate, the removal rate of cement repellent components such as chlorine by the modification described later may decrease.
  • the dry ash for example, it is preferable that Friedel's salt or ettringite, which is a hydrate, is not detected by powder X-ray diffraction.
  • the water content is preferably 10% by mass or less, more preferably 5% by mass or less.
  • the ignition loss is preferably 10% or less.
  • the water content can be determined as the mass reduction rate when dried at 105 ° C.
  • the ignition loss can be determined as the mass loss rate when the object dried at 105 ° C. is heated at 975 ° C.
  • FIG. 1 shows a flowchart illustrating an embodiment of the biomass ash reforming method according to the present invention.
  • the solid arrow in FIG. 1 indicates the flow of substances brought into each process (hereinafter, the same applies to FIGS. 2 to 4).
  • the reforming method according to the present invention includes a slurrying step of adding water W1 to biomass ash M1 to form a slurry S1, a washing step of washing the slurry S1 with water, and washing with water thereof. It is provided with a dehydration step of dehydrating the subsequent slurry S2.
  • Slurry can be carried out using a powder dissolution tank equipped with at least a container for accommodating biomass ash M1 and water W1 and a stirring means for mixing them into slurry S1. Washing with water is performed by allowing the slurry S1 to stand or stir for a predetermined time.
  • the slurry S2 is in a state where the soluble component of the biomass ash M1 is eluted in the liquid phase of the slurry.
  • the slurry S2 in that state is discharged from the powder dissolution tank and dehydrated by a solid-liquid separator such as a filter press.
  • the mass ratio (W1 / M1) of biomass ash M1 and water W1 in the slurrying step is preferably 4 to 10, more preferably 4 to 7, and particularly preferably 4 to 5. If the mass ratio (W1 / M1) is smaller than 4, the reforming effect may be insufficient, such as insufficient elution of cement repellent components such as chlorine from the biomass ash M1. Further, if the mass ratio (W1 / P1) is larger than 10, the amount of wastewater W3 increases.
  • the time required for the water washing step is preferably 30 minutes or more, more preferably 45 minutes or more, because the biomass ash M1 is sufficiently reformed with water W1. Further, the higher the temperature condition, the better the elution efficiency of cement repellent components such as chlorine from the biomass ash M1, but from the viewpoint of the cost of treatment, it is preferably 5 ° C to 50 ° C, and 25 ° C to 25 ° C. 50 ° C. is more preferable.
  • the water content of the dehydrated product is preferably 20% by mass to 90% by mass, preferably 30% by mass to 30% by mass. It is more preferably 70% by mass.
  • water W2 is added to the dehydrated product to dehydrate again. According to this, the liquid phase of the slurry S2 is almost replaced with water, which is more preferable.
  • the modified biomass ash M2 thus obtained is sufficiently reduced in cement repellent components such as chlorine, and has easily reactive calcium oxide and water that affect the strength development and fluidity of cement. Since the content of calcium oxide is sufficiently reduced, it becomes easy to maintain a suitable quality as a cement raw material. Therefore, the biomass ash can be reliably recycled.
  • FIG. 2 shows another embodiment of the biomass ash reforming method according to the present invention.
  • a pH adjuster is further added and washing with water is performed.
  • the pH at the time of washing with water to the acidic side that is, by reducing the pH
  • chlorine can be removed more efficiently than when the pH is not adjusted.
  • the calcium component contained in the biomass ash can be easily stabilized in the form of slow-reactive calcium carbonate or calcium sulfate added to the cement clinker during cement production.
  • the pH adjuster is not particularly limited as long as it can reduce the pH of the slurry S1.
  • the acid solution, CO 2 containing gas, and the like are examples of the acid solution, CO 2 containing gas, and the like.
  • a pH adjusting agent may also be a CO 2 containing gas G1. That is, for example, carbon dioxide (CO 2 ) is contained in the combustion exhaust gas of the rotary kiln of the cement production facility, the combustion exhaust gas of the biomass incineration facility, and the biomass power plant. , The pH can be reduced to weakly alkaline.
  • CO 2 containing gas may be contained carbon dioxide, but in order to promote efficient carbonation, carbon dioxide concentration is preferably at least 10%, more preferably 20%.
  • the gas after collecting chlorine bypass dust of the cement manufacturing equipment contains harmful gas such as sulfur oxide (SOx), so that the effect of immobilizing this can be expected.
  • combustion exhaust gas from a biomass incineration facility or biomass power plant it can be reformed with the combustion exhaust gas containing carbon dioxide and biomass ash obtained on the spot, and immediately transported to a cement manufacturing facility as a cement mixture. Available.
  • the pH condition for washing the slurry S1 with water is preferably pH 4 to 12.5, and more preferably pH 5 to 12.
  • the waste liquid B1 obtained from the amine-based carbon dioxide recovery device is further added to the slurry S1 and washed with water.
  • a liquid containing deteriorated amines is discarded, and this is used as waste.
  • Amines are known to have the effect of promoting the production of carbonate ions by reacting with carbon dioxide, and can efficiently promote the carbonation of calcium components.
  • amines are also known to function as a crushing aid when crushed with a cement clinker in a mill.
  • Such amines have an amino group and a hydroxyl group in the molecule
  • amines used as a grinding aid include, for example, monoethanolamine (MEA), diethanolamine (DEA), and triethanol.
  • MDA monoethanolamine
  • Examples include amine (TEA), diglycolamine (DGA), diisopropanolamine (DIPA), methyldiethanolamine (MDEA) and the like. Therefore, when amines are brought into the modified biomass ash M2 from the added waste liquid, it can be expected to impart functionality as a pulverizing aid in such a post-process.
  • FIG. 3 shows still another embodiment of the biomass ash reforming method according to the present invention.
  • the CO 2- containing gas G2 is further blown into the dehydrated product C1 after the dehydration step.
  • the quality of the obtained modified biomass ash can be further stabilized. It also helps to dry the water contained in the dehydrated product C1.
  • the dehydrated product can be brought into contact with the CO 2- containing gas, and the CO 2- containing gas is circulated in a container filled with the dehydrated product, or the gas is passed through the exhaust gas flue. Should be used.
  • carbon dioxide (CO 2 ) is contained in the combustion exhaust gas of the rotary kiln of the cement production facility, the combustion exhaust gas of the biomass incineration facility, and the biomass power plant.
  • the combustion exhaust gas may be blown into the dehydrated product C1.
  • FIG. 4 shows yet another embodiment of the biomass ash reforming method according to the present invention.
  • a pH adjuster is further added for washing with water, and at that time, waste liquid B1 obtained from an amine-based carbon dioxide recovery device is further added, and the waste liquid B1 is further added.
  • a step of injecting the CO 2- containing gas G2 into the dehydrated product C1 after the dehydration step is provided. The technical effects of adopting such a configuration are as described above.
  • FIG. 5 shows a schematic configuration explanatory diagram illustrating an embodiment of the biomass ash cement raw material system according to the present invention.
  • the solid line arrow in FIG. 5 is the flow of solid or liquid such as slurry and washing liquid
  • the dotted line arrow is the flow of gas such as combustion exhaust gas from the firing kiln of the cement manufacturing facility
  • the alternate long and short dash line is the signal such as control signal. (Hereinafter, the same applies to FIGS. 6 to 8).
  • a powder dissolving tank 1 for adding water W1 to the contained biomass ash M1 to form a slurry S1 and washing with water, and washing with water thereof.
  • the solid-liquid separation device 2 for dehydrating the slurry S2 discharged from the powder dissolution tank 1 and the dehydrated product C1 separated by the solid-liquid separation device 2 are transferred to the cement production facility 20 as modified biomass ash M2.
  • the transport device 3 is provided for this purpose.
  • the powder dissolution tank 1 includes a powder supply device 11 for supplying the biomass ash M1 to the powder dissolution tank 1, and a liquid supply device 12 for supplying water W1.
  • An acid solution supply device 13 for supplying the acid solution A1 and a waste liquid supply device 14 for supplying the waste liquid B1 obtained from the amine-based carbon dioxide recovery device are attached. Further, a slurry stirring device 15 provided with a stirring blade is attached for mixing the biomass ash M1 and the water W1 and stirring the slurry S1 produced by the mixing.
  • a slurrying treatment is performed in which biomass ash M1 and water W1 are mixed and stirred to generate a slurry S1, and a water washing treatment in which cement repellent components such as chlorine are eluted into the liquid phase in the slurry S1.
  • a slurry stirring device 15 for that purpose, for example, a paddle type or screw type general stirring device can be used.
  • the slurry S2 in which the cement repellent component such as chlorine is eluted in the liquid phase in the slurry is discharged from the powder dissolution tank 1 and transferred to the solid-liquid separation device 2.
  • a normal slurry liquid transport device such as a slurry centrifugal pump, a piston pump, or a mono pump may be used.
  • the slurry S2 is solid-liquid separated to obtain a dehydrated product C1. Since the component eluted in the liquid phase of the slurry S2 is removed into the waste water W3, the amount of the cement repellent component such as chlorine is reduced in the obtained dehydrated product C1 as compared with the raw ash. On the other hand, since heavy metals and the like contained in the raw ash are also eluted in the wastewater W3, the wastewater W3 may be discharged into the environment after being appropriately treated for water quality.
  • the solid-liquid separation device 2 is provided with a water washing device 21 so that the cake can be washed with water W2. As a result, almost all of the liquid phase of the slurry S2 can be replaced with water, and the removal of the eluted components can be more reliable.
  • a filter press As the solid-liquid separation device 2, a filter press, a pressurized leaf filter, a screw press, a belt press, a belt filter, a normal filtration device such as sedimentation separation, or the like may be used.
  • the dehydrated product C1 separated by the solid-liquid separation device 2 is transported to the cement manufacturing facility 20 by the transport device 3 as the modified biomass ash M2 and recycled as a cement raw material.
  • the transport device 3 for example, a general cake transport device such as a belt conveyor, a screw conveyor, or a pipe conveyor can be used.
  • the combustion exhaust gas G1 generated in the cement manufacturing facility 20 can be supplied to the slurry S1 housed in the powder melting tank 1 via the first carbon dioxide-containing gas supply device 4. ..
  • the pH of the slurry can be adjusted to the acidic side by blowing such CO 2- containing gas G1, and it can also be used for stirring and heating the slurry.
  • the powder dissolution tank 1 is provided with a pH measuring device 16 for measuring the pH of the slurry contained in the powder dissolution tank 1. Then, the measurement result of the pH measuring device 16 is transmitted to the control device 10 at any time, and the control device 10 sends the supply amount of the acidic solution A1 and / or the air supply of the combustion exhaust gas G1 based on the measurement result of the pH measuring device 16. I try to control the amount.
  • the opening degree of the exhaust valve of the acid solution supply device 13 is controlled based on the signal from the control device 10, or the exhaust valve of the first carbon dioxide-containing gas supply device 4 is opened. For example, controlling the degree.
  • pH measuring device 16 a known measuring device may be used, and it is particularly preferable to use a measuring device for a high-concentration suspension.
  • the pH condition of the slurry S1 when washed with water is preferably pH 4 to 13, and more preferably pH 5 to 12.
  • FIG. 6 shows another embodiment of the cement raw material system according to the present invention.
  • the tubular air diffuser 30 is used as the slurry agitator of the embodiment described in FIG. 5, and the combustion exhaust gas G1 generated in the cement manufacturing facility 20 is used as the first carbon dioxide-containing gas supply device 4. It is possible to supply the slurry S1 contained in the powder dissolution tank 1 via the above.
  • the tubular air diffuser 3 is composed of a nozzle 31 for taking in and blowing the combustion exhaust gas G1 from the outside, and a cylindrical cylindrical tube 32 in which the nozzle 31 is arranged at the inner end. Then, the combustion exhaust gas G1 blown from the nozzle 31 rises upward together with the slurry while entraining the slurry inside the cylinder of the cylindrical tube 32, and becomes a mixed jet of the combustion exhaust gas G1 and the slurry S1 to form the upper end of the cylindrical tube 32. It is designed to be ejected from the opening 32a.
  • FIG. 7 shows still another embodiment of the cement raw material system according to the present invention.
  • a second carbon dioxide-containing gas supply device 5 for blowing CO 2-containing gas into the dehydrated product C1 separated by the solid-liquid separation device 2 is further provided. There is. Then, the combustion exhaust gas G2 generated in the cement manufacturing facility 20 can be blown into the dehydrated product C1 via the second carbon dioxide-containing gas supply device 5 before being transported to the cement manufacturing facility 20 by the transport device 3. I am trying to do it.
  • the means for blowing the gas it is sufficient that the dehydrated product can be brought into contact with the CO 2- containing gas, and the CO 2- containing gas is circulated in a container filled with the dehydrated product, or the gas is passed through the exhaust gas flue. Should be used.
  • the easily reactive calcium component remaining in the dehydrated C1 is carbonated, thereby further stabilizing the quality of the obtained modified biomass ash. Can be planned. It also helps to dry the water contained in the dehydrated product C1.
  • FIG. 8 shows yet another embodiment of the cement raw material system according to the present invention.
  • a second carbon dioxide-containing gas supply device 5 for blowing CO 2-containing gas into the dehydrated product C1 separated by the solid-liquid separation device 2 is further provided.
  • the technical effects of adopting such a configuration are as described above.
  • the modified biomass ash obtained by the present invention usually has a chlorine concentration of, for example, typically 0.1% by mass or less, more typically 0.002% by mass to 0.1% by mass. , And even more typically, the concentration is reduced to 0.005% by mass to 0.035% by mass.
  • the elution amount of selenium is typically reduced to 0.02 mg / L or less, and more typically 0.002 mg / L to 0.01 mg / L.
  • the amount of hexavalent chromium eluted is typically reduced to 0.1 mg / L or less, and more typically 0.01 mg / L to 0.05 mg / L.
  • the content of easily reactive calcium oxide and calcium hydroxide that affect the strength development and fluidity of cement is sufficiently reduced, and the calcium component is calcium carbonate or calcium sulfate. It is stabilized in the form of calcium (plaster).
  • the content of calcium hydroxide is typically 0.5% by mass or less, and more typically 0.1% by mass or less.
  • the content of calcium carbonate is typically 8 to 20% by mass, and more typically 10 to 15% by mass.
  • the content of calcium sulfate (gypsum) is typically converted to SO 3 in 0.5 mass% or more, more typically 3 wt% or more.
  • the CaO content in terms of oxide content is typically 10 to 40% by mass, more typically 8% to 30% by mass, and even more typically 10% to 25% by mass. be.
  • the SO 3 content in terms of the amount of oxide, typically 0.5% by mass to 8% by mass, more typically 1% by mass to 3% by mass, and more typically 1.2% by mass. It is ⁇ 2.5% by mass.
  • K 2 O content of oxide amount converted typically 3 wt% to 8 wt%, more typically 3.5% to 6% by weight.
  • the chlorine concentration described above can be measured by a well-known method, and for example, a method of measuring by a potentiometric titration method after acid decomposition treatment is preferably exemplified.
  • the elution amount of selenium (Se) and hexavalent chromium (Cr 6+ ) described above can be measured by a well-known method, for example, JIS K 0058-1 “Slag Chemical Substance Test Method-Part 1”. : Dissolution test method 5. Prepare a test solution according to "Test by actual use”, and measure selenium (Se) by ICP mass analysis method and hexavalent chromium (Cr 6+ ) by diphenylcarbazide absorptiometry. Etc. are preferably exemplified.
  • the above-mentioned calcium hydroxide content can be measured by a well-known method, and for example, a method of obtaining dehydration at around 400 ° C. by DSC (differential calorimetry) by measuring the calorific value is preferably exemplified. ..
  • the above-mentioned calcium sulfate (gypsum) content can be measured by a well-known method, and for example, a method of quantifying by the Rietveld method from the pattern of X-ray powder diffraction is preferably exemplified.
  • the oxide conversion amount of elements such as K, Na, C, Mg, Al, Si, P, S, Ca and Fe can be measured by a well-known method, for example, fundamental using a fluorescent X-ray apparatus.
  • the parameter method (FP method), the fly ash for cement raw materials using a fluorescent X-ray apparatus, the calibration curve method for clay, and the like are preferably exemplified.
  • the present invention reforms biomass ash by a method of washing with water
  • the water used for washing may be brought into the obtained modified biomass ash M2, but the biomass ash reacts with hydrates.
  • the strength development and fluidity of cement may decrease.
  • the obtained modified biomass ash M2 is used with water contained in it, it is preferable to carry it to the cement manufacturing facility 20 and perform a treatment in a heated state in which the contained water evaporates rapidly.
  • the modified biomass ash M2 can be directly charged into the clinker cooler in the cement manufacturing facility 20.
  • Examples of the charging method include a method of dropping from the upper part of the cooler to a position of a desired temperature in the cooler.
  • the input amount is set to be about 0.5 to 20% with respect to the mass of cement. If an air quenching cooler is used, the modified biomass ash M2 can be charged at a predetermined position in the cooler, which is preferable.
  • the modified biomass ash M2 When the modified biomass ash M2 is put into the cooler, it is convenient because the heat energy that is not directly related to the clinker production can be used. Further, in order to prevent a large amount of dust from being generated in the cooler, the modified biomass ash M2 preferably has a water content of 50% by mass or less, and is preferably added in the form of lumps or granules.
  • the temperature inside the clinker cooler is usually 200 to 1200 ° C., and the heating temperature can be selected according to the charging position. However, it is put into a low temperature portion of 200 ° C. to 800 ° C. so that CaCO 3 contained in the modified biomass ash M2 does not decompose to generate quicklime (CaO) or release carbon dioxide. Is preferable.
  • the modified biomass ash M2 can be directly charged into a mill in which cement clinker and, if necessary, gypsum are charged, crushed and mixed.
  • the mill is also called a finishing crusher, and in a cylindrical drum, steel balls, cement clinker, and gypsum are crushed while colliding with each other by the rotation of the drum.
  • the gypsum is not particularly limited, and examples thereof include natural dihydrate gypsum, flue gas desulfurization gypsum, phosphoric acid gypsum, titanium gypsum, and hydrofluoric acid gypsum. These may be used alone or in combination of two or more. If the calcium component in the biomass ash is modified into the form of calcium sulfate (gypsum) by the modification method provided by the present invention, the functionality of the gypsum can be expected.
  • the modified biomass ash M2 replaces a part of the cement, and it is preferable to add 0.5% by mass to 30% by mass with respect to the mass of the cement.
  • the gypsum is preferably converted to SO 3 is to be added 1.5 wt% to 5.0 wt%, preferably in terms of improving the strength development and flowability of the cement.
  • the modified biomass ash M2 When crushing and mixing in the mill, the modified biomass ash M2 can be used for temperature control in the mill in order to prevent the contained water from deteriorating the gypsum. Further, when the water content is excessive, dehydration can be easily performed by sedimentation separation or the like, and when the water content is insufficient, an appropriate amount may be sprinkled on the mill.
  • the above-mentioned waste liquid B1 is used and amines remain in the modified biomass ash M2, it can be expected to have functionality as a pulverizing aid. Further, when the effect due to the residual amines described above cannot be expected, an appropriate pulverizing aid can be appropriately added to improve the pulverization efficiency.
  • the fine powder crushed in the mill is recovered as cement.
  • the modified biomass ash M2 may be separately crushed.
  • the apparatus used for crushing the modified biomass ash is not particularly limited, and examples thereof include a tube mill, a vertical mill, and a jet mill. It can also be done wet with water washing.
  • the modified biomass ash M2 may be classified to recover and use fine powder having a high brain specific surface area.
  • the device used for classification is not particularly limited as long as it can classify at a classification point on the order of several tens of ⁇ m as described above, and for example, a sieve, an inertial classifying device, a centrifugal classifying device, a gravity classifying device, or the like can be used.
  • a cyclone type air separator, a sieving device and the like are preferable. If it is accompanied by washing with water, it can be done wet.
  • the modified biomass ash M2 is preferably pulverized to a brain specific surface area of 4000 cm 2 / g or more from the viewpoint of enhancing the strength development of cement.
  • the gypsum is preferably converted to SO 3 is to be added 1.5 wt% to 5.0 wt%, preferably in terms of improving the strength development of the cement.
  • the specific surface area of the brain is preferably 4250 cm 2 / g or more, and more preferably 5000 cm 2 / g or more.
  • the brain specific surface area of the biomass ash is preferably 10,000 cm 2 / g or less from the viewpoint of ensuring workability when producing a hardened cementum.
  • the modified biomass ash M2 is preferably pulverized to a brain specific surface area of 5500 cm 2 / g or more from the viewpoint of promoting the coagulation of cement.
  • the modified biomass ash obtained by the present invention has chlorine removed and has a higher alkalinity than coal ash, so that it is easier to calcinate during calcination and promotes the initial hydration reaction. Therefore, it can be suitably recycled as a raw material for cement clinker.
  • the amount of hexavalent chromium and selenium eluted is reduced, and it can be used as a cement mixture or an admixture for concrete from the viewpoint of functions such as suppression of rapid heat of hydration, suppression of decrease in fluidity, and replacement of gypsum. It can be suitably recycled.
  • cement containing the above-mentioned modified biomass ash or modified biomass ash can be mixed with cement as an admixture to produce concrete (mortar, concrete or cement paste).
  • the modified biomass ash may be used for kneading with water and other materials together with cement and then curing.
  • the other materials are not particularly limited, and are fine aggregate, coarse aggregate, water, AE agent, water reducing agent, AE water reducing agent, high performance water reducing agent, and high performance AE water reducing agent. Examples thereof include various admixtures such as agents, and various admixtures such as fly ash, silica fume, and fine powder of blast furnace slag.
  • the particle size and ignition loss of the biomass ash used in the following tests were measured as follows.
  • Particle size The sample after being dispersed in ethanol and subjected to ultrasonic dispersion treatment for 1 minute was measured using a particle size distribution measuring device (MW3300EXII manufactured by Microtrac Bell Co., Ltd.).
  • Ignition loss Dry ash that had never been sprayed with water or ash dried at 105 ° C. was heated at 750 ° C. or 975 ° C. until a constant amount was determined, and ignition loss was determined.
  • Table 1 summarizes the level of each washing condition.
  • silica and calcium were the main constituent elements of this biomass ash.
  • K is 2 O content is also 4 wt% or more after washing with water, was found to be useful as a pozzolanic admixture for enhancing the cement strength.
  • Table 4 shows the results of examining the existence form and amount of the calcium component in the ash by the XRD method (X-ray diffraction method).
  • each Ca compound of CaO (quick lime), Ca (OH) 2 (slaked lime), CaCO 3 (calcium carbonate), and CaSO 4 (plaster) is used as the form of calcium component.
  • the existence of was confirmed.
  • Table 5 shows the results of examining the amounts of calcium hydroxide and calcium carbonate in the raw ash and the levels 1-1 and 1-2 after washing with water by thermogravimetric analysis and differential thermal analysis (TG-DTA). Is shown.
  • a high temperature differential scanning calorimeter (DSC404F3 manufactured by NETZSCH) is used to raise the temperature of about 50 mg of the sample to 1000 ° C. in a nitrogen atmosphere at a rate of 10 ° C./ The amount of heat absorbed in the vicinity of 400 ° C. was determined in minutes, and was determined by the ratio of the weight reduction with the standard reagent.
  • a high temperature differential scanning calorimeter (TG-DTA2000SR manufactured by NETZSCH) was used to raise a sample of about 50 mg to 1000 ° C. at a heating rate of 20 ° C./min in a nitrogen atmosphere at 600 ° C. The amount of mass loss in the vicinity of ⁇ 700 ° C. was determined, and was determined by the ratio of the weight loss with the standard reagent.
  • Incinerator fly ash (grain size: median diameter D50 (frequency) 20.0 ⁇ m, dry ash, ignition loss: 750 ° C. from biomass power generation facility B, which uses wood pellets and palm coconut shells as fuel to generate electricity with a stoker furnace. Ignition weight loss 6.1%) was obtained and the same test as in Test Example 1 was conducted.
  • Table 7 summarizes the level of each washing condition.
  • Tables 8 and 9 summarize the results of each quantitative test along with the level of each washing condition.
  • silica and carbon were the main constituent elements of this biomass ash.
  • K 2 O content is 3 mass% or more was found to be useful as a pozzolanic admixture for enhancing the cement strength.
  • Table 10 summarizes the level of each washing condition.
  • level 3-1 and level 3-2 were used in the obtained dry state.
  • Levels 3-3 and 3-4 are ash that has been sprayed with water once, and after adding 20% by mass of water by external division (moisture content 16.7% by mass), store at 20 ° C. for 3 days. , 105 ° C. and used.
  • Tables 11 and 12 summarize the results of each quantitative test together with the level of each washing condition.
  • the chemical composition of this test example was measured by a fluorescent X-ray apparatus (calibration curve method for cement raw material (clay)).
  • the ignition loss was determined by heating at 975 ° C. until the weight became constant.
  • the ignition loss was higher at level 3-2 than at level 3-4. Therefore, it was confirmed that the dry ash, which had not been sprayed with water once, reacted more with the CO 2 gas and the calcium component contained in the raw ash was carbonated into the form of calcium carbonate. In addition, the ignition loss was higher at level 3-1 than at level 3-3, and it was confirmed that hydrate was produced by spraying water once.
  • the kneaded cement paste was packed in a container with a depth of about 6 mm (in this test, a 100 mL inner lid of a PE wide-mouthed bottle was used), and three smooth surfaces were prepared for each level.
  • the temperature inside the moisture box for curing the specimen was 20 ⁇ 1 ° C., and the relative humidity was 90%.
  • the time was defined as the end time, and the time from the time when water was poured into the cement to the end was defined as the end time.
  • the end time was determined when two or more of the three prepared specimens did not leave a trace due to the attached small ring.
  • a similar test was conducted using calcium carbonate powder for comparison.
  • the same test was carried out using calcium carbonate powder (reagent) as a comparative control.

Abstract

バイオマス灰を確実に資源化することを目的として、その改質方法及びバイオマス灰のセメント原料化システムを提供する。また、良好な品質を呈する改質バイオマス灰を提供する。バイオマス灰に水を加えてスラリーにするスラリー化工程と、前記スラリーを水洗する水洗工程と、前記水洗を行った前記スラリーを脱水する脱水工程を備えていることを特徴とするバイオマス灰の改質方法である。また、収容されたバイオマス灰に水を加えてスラリーにして水洗するための粉体溶解槽と、前記粉体溶解槽から排出されたスラリーを脱水するための固液分離装置と、前記固液分離装置で分離された脱水物をセメント製造設備に搬送するための搬送装置を備えていることを特徴とするバイオマス灰のセメント原料化システムである。また、これらの方法又はシステムにより調製し得る改質バイオマス灰である。

Description

バイオマス灰の改質方法、バイオマス灰のセメント原料化システム、及び改質バイオマス灰
 本発明は、バイオマス発電等で発生する燃焼灰をセメント原料などとして資源化する技術に関する。
 近年、再生可能エネルギーの普及に向けた各所事業体における諸般の取り組みにより、バイオマス発電設備の建設・運開ラッシュとなっている。それに伴い、バイオマス発電で発生する燃焼灰(バイオマス灰)の発生量も増大しており、都市ゴミで発生する焼却灰と同様に、セメント原料などとして資源化することが望まれている。
 このような課題に関連して、例えば、下記非特許文献1では、バイオマス灰をセメント混和材に適用することが検討されている。また、下記非特許文献2では、バイオマス灰の資源化のため塩類の溶出挙動について調べられている。
佐川孝広ら著「木質バイオマス焼却灰のセメント混和材への適用」第70回セメント技術大会講演要旨、2016〔1307〕 繁泉恒河ら著「木質廃棄物由来焼却灰の塩類等の溶出挙動」フジタ技術研究報告、第51号、2015年、第79-84頁
 しかしながら、本発明者らの検討によれば、バイオマス灰はセメントやコンクリートにおいて有害となる成分が含まれていたり、易反応性のカルシウム成分の存在により品質の安定性が悪く、それによってセメント原料などとしての資源化が制約を受ける懸念があった。この点、上記非特許文献1では、焼却灰がそのままセメント混和材として使用されていた。また、上記非特許文献2では、塩類の溶出挙動について調べられているものの、カラム充填して散水する方式であるため、その塩類溶出による安定化の効果は十分とはいえなかった。
 よって、本発明は、バイオマス灰を確実に資源化することを目的として、その改質方法及びバイオマス灰のセメント原料化システムを提供することにある。また、セメントと合わせて使用したときのそのセメント強度発現性に及ぼす品質等において良好な品質を呈する改質バイオマス灰を提供することにある。
 上記目的を達成するために、本発明は、その第1の観点では、
 バイオマス灰に水を加えてスラリーにするスラリー化工程と、
 前記スラリーを水洗する水洗工程と、
 前記水洗を行った前記スラリーを脱水する脱水工程を備えていることを特徴とするバイオマス灰の改質方法を提供するものである。
 本発明により提供される改質方法によれば、バイオマス灰に水を加えてスラリーにして水洗した後、脱水してその脱水物を得るので、セメント忌避成分である塩素や、環境汚染のおそれのあるセレンやクロム等の重金属類を効率よく除くことができる。加えて、バイオマス灰中に含まれる易反応性の酸化カルシウムや水酸化カルシウムが除かれて品質を安定化させることができる。得られた改質バイオマス灰は、セメント原料として好適に使用され得る。具体的には、例えばセメント製造設備における、セメントクリンカの原料の調合のための混合機への投入や、ロータリーキルン前のプレヒータートップや仮焼炉への投入や、ロータリーキルン窯尻や窯前への投入や、焼成して得られたセメントクリンカを冷却するためのクリンカクーラーへの投入や、セメントクリンカを粉砕するためのミルへの投入や、混合セメントの混合機への投入など、様々なセメント製造段階に投入可能なセメント原料として好適に使用され得る。
 上記改質方法においては、前記スラリーを酸性側にpH調整して水洗することが好ましい。これによれば、pHを酸性側に調整しない場合に比べて、塩素をより効率よく除くことができる。また、バイオマス灰中に含まれるカルシウム成分を、遅速反応性の炭酸カルシウムや硫酸カルシウムの形態にして、得られる改質バイオマス灰の品質をより安定化させやすい。
 上記改質方法においては、前記pH調整は、前記スラリーへの二酸化炭素含有ガスの吹込みによるものであることが好ましい。これによれば、二酸化炭素(CO)によりpHを酸性側に調整することにより、塩素をより効率よく除くことができるとともに、バイオマス灰中に含まれるカルシウム成分を炭酸化して炭酸カルシウムの形態へとより安定化させやすくなる。また、ガスの吹込みによりスラリーを攪拌するのにも役立つ。特に、例えばセメント製造設備のロータリーキルンの燃焼排ガスやバイオマスの焼却設備やバイオマス発電所の燃焼排ガスには二酸化炭素(CO)が含まれているので、その燃焼排ガスをスラリーに吹込むことにより、pHを酸性側に調整することができるとともに、燃焼排ガスの熱量によりスラリーを加温するのにも役立つ。あるいは燃焼排ガスに含まれる硫黄酸化物(SOx)などの有害ガスを固定化する効果も期待できる。
 上記改質方法においては、前記pH調整は、前記スラリーへの酸溶液の添加によるものであることが好ましい。これによれば、酸溶液によりスラリーのpHを酸性側に調整することにより、塩素をより効率よく除くことができる。また、特に、例えば廃硫酸等の酸溶液を活用すると、バイオマス灰中に含まれるカルシウム成分を硫酸カルシウム(石膏)の形態にして更に安定化させやすい。更に、これにより得られる改質バイオマス灰は、新たな石膏代替素材の提供にもつながる。
 上記改質方法においては、前記pH調整は、前記スラリーをpH11以下にするものであることが好ましい。これによれば、上記したバイオマス灰の改質効果をより安定に享受することができる。
 上記改質方法においては、前記スラリーに、アミン系二酸化炭素回収装置で廃棄される廃液を、該スラリーの一部として混合して水洗することが好ましい。これによれば、廃液に含まれるアミンによりスラリー中での炭酸イオンの形成が促され、カルシウム成分を炭酸カルシウムの形態へと更により安定化させやすい。
 上記改質方法においては、前記脱水工程後の脱水物に二酸化炭素含有ガスを吹込む工程を更に備えることが好ましい。これによれば、脱水物中に残る易反応性の酸化カルシウムや水酸化カルシウムを炭酸化することで、得られる改質バイオマス灰の更なる品質の安定化を図ることができる。また、脱水物中に含まれる水分の乾燥にも役立つ。
 上記改質方法においては、前記脱水工程後の脱水物を粉砕する工程を更に備えることが好ましい。これによれば、得られる改質バイオマス灰の比表面積を調整して、セメントに合わせて使用したときのそのセメントの強度発現性を向上させることができる。
 上記改質方法においては、前記バイオマス灰は、飛灰であることが好ましい。これによれば、得られる改質バイオマス灰の反応性が高いので、セメントにした時の強度発現性の低下が抑制される。また、水洗により塩素等のセメント忌避成分を除去する効果がより享受できる。
 上記改質方法においては、前記バイオマス灰は、乾燥灰であることが好ましい。これによれば、バイオマス灰の塩素等のセメント忌避成分が水洗により低減させやすい。
 上記目的を達成するために、本発明は、その第2の観点では、
 収容されたバイオマス灰に水を加えてスラリーにして水洗するための粉体溶解槽と、
 前記粉体溶解槽から排出されたスラリーを脱水するための固液分離装置と、
 前記固液分離装置で分離された脱水物をセメント製造設備に搬送するための搬送装置を備えていることを特徴とするバイオマス灰のセメント原料化システムを提供するものである。
 本発明により提供されるバイオマス灰のセメント原料化システムよれば、バイオマス灰に水を加えてスラリーにして水洗するための粉体溶解槽と、スラリーを脱水するための固液分離装置と、その脱水物をセメント製造設備に搬送するための搬送装置を備えているので、そのシステムにより、セメント忌避成分である塩素や、環境汚染のおそれのあるセレンやクロム等の重金属類を効率よく除くことができる。加えて、バイオマス灰中に含まれる易反応性の酸化カルシウムや水酸化カルシウムが除かれて品質を安定化させることができる。得られた改質バイオマス灰は、セメント原料として好適に使用され得る。具体的には、例えばセメント製造設備における、セメントクリンカの原料の調合のための混合機への投入や、ロータリーキルン前のプレヒータートップや仮焼炉への投入や、ロータリーキルン窯尻や窯前への投入や、焼成して得られたセメントクリンカを冷却するためのクリンカクーラーへの投入や、セメントクリンカを粉砕するためのミルへの投入や、混合セメントの混合機への投入など、様々なセメント製造段階に投入可能なセメント原料として好適に使用され得る。
 上記セメント原料化システムにおいては、前記粉体溶解槽に収容された前記スラリーに二酸化炭素含有ガスを吹込むための第1二酸化炭素含有ガス供給装置を更に備えていることが好ましい。これによれば、スラリーに二酸化炭素(CO)含有ガスを吹込んで酸性側にpH調整するのが容易となり、そのpH調整により、pHを酸性側に調整しない場合に比べて、塩素をより効率よく除くことができる。また、バイオマス灰中に含まれるカルシウム成分を、遅速反応性の炭酸カルシウムや硫酸カルシウムの形態にして、得られる改質バイオマス灰の品質をより安定化させやすくすることができる。更に、ガスの吹込みによりスラリーを攪拌するのにも役立つ。特に、例えばセメント製造設備のロータリーキルンの燃焼排ガスやバイオマスの焼却設備やバイオマス発電所の燃焼排ガスには二酸化炭素(CO)が含まれているので、その燃焼排ガスをスラリーに吹込むことにより、pHを酸性側に調整することができるとともに、燃焼排ガスの熱量によりスラリーを加温するのにも役立つ。あるいは燃焼排ガスに含まれる硫黄酸化物(SOx)などの有害ガスを固定化する効果も期待できる。
 上記セメント原料化システムにおいては、前記粉体溶解槽に収容された前記スラリーに酸溶液を添加するための酸溶液供給装置を更に備えていることが好ましい。これによれば、スラリーに酸溶液を添加して酸性側にpH調整するのが容易となり、そのpH調整により、pHを酸性側に調整しない場合に比べて、塩素をより効率よく除くことができる。また、バイオマス灰中に含まれるカルシウム成分を、遅速反応性の炭酸カルシウムや硫酸カルシウムの形態にして、得られる改質バイオマス灰の品質をより安定化させやすくすることができる。特に、例えば廃硫酸等の酸溶液を活用すると、バイオマス灰中に含まれるカルシウム成分を硫酸カルシウム(石膏)の形態にして更に安定化させやすい。また、これにより得られる改質バイオマス灰は、新たな石膏代替素材の提供にもつながる。
 上記セメント原料化システムにおいては、前記粉体溶解槽に収容された前記スラリーのpHを測定するためのpH測定装置と、前記pH測定装置により測定された測定値を受信し、その測定値に応じて前記二酸化炭素含有ガスの吹込み量及び/又は前記酸溶液の添加量を制御するための制御装置とを更に備えていることが好ましい。これによれば、スラリーのpH変化に応じて酸性側にpH調整するのが容易となる。
 上記セメント原料化システムにおいては、前記固液分離装置で分離された脱水物に二酸化炭素含有ガスを吹込むための第2二酸化炭素含有ガス供給装置を更に備えていることが好ましい。これによれば、脱水物中に残る易反応性の酸化カルシウムや水酸化カルシウムを炭酸化することで、得られる改質バイオマス灰の更なる品質の安定化を図ることができる。また、脱水物中に含まれる水分の乾燥にも役立つ。
 上記セメント原料化システムにおいては、前記セメント製造設備がクリンカクーラー又はミルであることが好ましい。
 上記セメント原料化システムにおいては、前記バイオマス灰は、飛灰であることが好ましい。
 上記目的を達成するために、本発明は、その第3の観点では、バイオマス灰の水洗物であって、KO含有率が3~8質量%であり、SO含有率が0.5~8質量%であり、Cl濃度が0.035質量%以下であり、水酸化カルシウムの含有量が0.1質量%以下であり、炭酸カルシウムの含有量が8~20質量%であることを特徴とする改質バイオマス灰を提供するものである。
 本発明により提供される改質バイオマス灰によれば、セメントと合わせて使用したときのそのセメント強度発現性に及ぼす品質等において良好な品質を呈する。
 上記改質バイオマス灰においては、ブレーン比表面積が4000~10000cm/gであることが好ましいい。これによれば、セメントと合わせて使用したときのそのセメントの強度発現性がより良好となる。
 上記改質バイオマス灰においては、CaO含有率が10~40質量%であることが好ましいい。これによれば、易反応性のカルシウム成分が低減され、より品質が安定化される効果が享受できる。
 上記改質バイオマス灰においては、セレンの溶出量が0.01mg/L以下であり、六価クロム溶出量が0.1mg/L以下であることが好ましいい。これによれば、環境汚染リスクを低減したものとすることができる。
 上記改質バイオマス灰においては、前記バイオマス灰は、飛灰であることが好ましい。これによれば、得られる改質バイオマス灰の反応性が高いので、セメントにした時の強度発現性の低下が抑制される。
 上記改質バイオマス灰においては、前記バイオマス灰は、流動床式燃焼炉により生じる流動床飛灰であることが好ましい。これによれば、流動床飛灰であるバイオマス灰中には易反応性のカルシウム成分が多く含まれるところ、得られる改質バイオマス灰の品質がより安定化される効果が享受できる。
 上記改質バイオマス灰においては、セメント混合材又はコンクリート用混和材用途であることが好ましい。これによれば、セメントと合わせて使用したとき、良質で品質や製造時の作業性のばらつきが少ないコンクリートを製造できる。
本発明に係るバイオマス灰の改質方法の一実施形態を説明するフローチャートである。 本発明に係るバイオマス灰の改質方法の他の実施形態を説明するフローチャートである。 本発明に係るバイオマス灰の改質方法の更に他の実施形態を説明するフローチャートである。 本発明に係るバイオマス灰の改質方法の更に別の実施形態を説明するフローチャートである。 本発明に係るバイオマス灰のセメント原料化システムの一実施形態を説明する概略構成説明図である。 本発明に係るバイオマス灰のセメント原料化システムの他の実施形態を説明する概略構成説明図である。 本発明に係るバイオマス灰のセメント原料化システムの更に他の実施形態を説明する概略構成説明図である。 本発明に係るバイオマス灰のセメント原料化システムの更に別の実施形態を説明する概略構成説明図である。
 まず、本発明が適用されるバイオマス灰について説明する。
 本発明が適用されるバイオマス灰としては、広く一般にバイオマスの燃焼灰であるものを含み、例えば草木竹の燃焼灰や食品残渣の燃焼灰を含む。なかでも草木竹の燃焼灰はKOの含有率が比較的高く、セメント混合材又はコンクリート混和材として資源化する観点から、活性度指数が高くなるので好ましい。KO含有率は、2質量%~10質量%であることが好ましく、3質量%~8質量%であることがより好ましく、3質量%~5質量%であることが更により好ましい。バイオマス灰のKO含有率が2質量%未満であると、セメント混合材又はコンクリート混和材として用いた場合のコンクリートの強度が低くなる。バイオマス灰のKO含有率が10質量%を超えると、セメントクリンカの原料として用いた場合の使用量が制限される。なお、バイオマス灰は燃焼灰であるので、石炭灰と同様にポゾラン反応性を有するガラス成分を含んでおり、カリウムのほとんどはそのガラス相に包埋されて含まれている。
 バイオマス発電所では、バイオマスと石炭との混焼を行う場合もあるが、本発明が適用されるバイオマス灰には、そのような混焼を行う場合に生じる灰も含まれる。ただし、一般に石炭を燃焼した石炭灰はKO含有率が低くなるので、混焼時の石炭の使用量によりバイママス灰の活性が異なる。そのため、セメント混合材又はコンクリート混和材として資源化する観点からは、石炭との混焼である場合、燃料中のバイオマスの比率が50質量%以上のものから得られた灰であることが好ましい。
 本発明が適用されるバイオマス灰としては、草木竹の燃焼灰のなかでもパーム椰子殻を燃料として得られたパーム椰子殻灰(PKS灰)も好適に例示される。パーム椰子殻はパーム油生産の副産物であり、天然バイオマス・エネルギー産業で主に使用されている。パーム椰子殻は、灰分の少ない黄褐色の繊維状物質で、その粒径は5mm~40mm程度であり、発熱量は4000Kcal/kg程度であるため、再生可能資源を用いたエネルギー生産において、パーム椰子殻は、近年、バイオマス発電の燃料としての利用が増えている。
 一般に、このようなパーム椰子殻を燃料とするバイオマス発電の燃焼炉には、ストーカ式や流動床式があるが、流動床式である循環流動床式や加圧式流動床式の燃焼炉では炉内で脱硫を行うために石灰石が投入される。そこで、そのような燃焼炉からのバイオマス灰には、カルシウム成分や硫黄成分が多く含まれており、例えばCaO含有率は、一般に5質量%~45質量%となっている。また、投入した石灰石由来のCa化合物の形態として、CaO(生石灰)、Ca(OH)(消石灰)、CaCO(石灰石)、CaSO(石膏)等の形態が含まれることになる。
 本発明が適用されるバイオマス灰のCaO含有率は、セメント混合材又はコンクリート混和材として資源化した場合のコンクリートの強度の観点から、8質量%~30質量%であることが好ましく、10質量%~25質量%であることがより好ましい。
 本発明が適用されるバイオマス灰としては、バイオマス発電の燃焼炉等で炉底に燃え残る主灰であってもよく、燃焼排ガスに含まれて気体として浮遊する煤塵を集塵機により収集して得られる飛灰であってもよい。このうち飛灰は、水洗により塩素等のセメント忌避成分を除去させやすく好適である。また、飛灰は反応性が高いので、セメントに混合して使用した場合の強度発現性の低下が抑制される。また、飛灰は、主灰より易反応性の酸化カルシウムや水酸化カルシウムが多く含まれる。粒度は、例えば、メジアン径(D50)が100μm以下であることが好ましく、75μm以下であることがより好ましく、50μm以下であることが更に好ましい。粒度は、レーザー回折・散乱式の粒度分布測定装置が使用でき、例えば、マイクロトラック・ベル株式会社製 MW3300EXIIにてエタノールを分散媒とし、1分間の超音波分散後に測定することなどにより測定することができる。
 また、本発明が適用されるバイオマス灰としては、一度も水を噴霧されたことのない乾燥灰であることが好ましい。乾燥灰とは、一度も水を噴霧されたことのなく、粒状であったり、水和物を生成していない灰を指す。水を噴霧され、粒状になったり、生成した水和物に塩素が取り込まれると、後述の改質による塩素等のセメント忌避成分の除去率が低下する場合がある。乾燥灰としては、例えば、粉末X線回折法により水和物であるフリーデル氏塩、またはエトリンガイトが検出されないことが好ましい。または、含水率は10質量%以下が好ましく、5%質量以下がより好ましい。または、強熱減量が10%以下であることが好ましい。含水率は、105℃で乾燥した際の質量減少率として求めることができる。また、強熱減量は、105℃で乾燥された対象物を975℃で加熱した際の質量減少率として求めることができる。
 以下、図面を参照して、本発明の実施形態について更に具体的に説明する。
 図1には、本発明に係るバイオマス灰の改質方法の一実施形態を説明するフローチャートを示す。図1中の実線の矢印は各工程に持ち込まれる物質の流れを表している(以下、図2~図4において同様である。)。
 図1の実施形態に示されるように、本発明に係る改質方法は、バイオマス灰M1に水W1を加えてスラリーS1にするスラリー化工程と、そのスラリーS1を水洗する水洗工程と、その水洗後のスラリーS2を脱水する脱水工程を備えている。スラリー化は、バイオマス灰M1と水W1を収容するための容器と、それらを混合してスラリーS1となすための攪拌手段を少なくとも備えた粉体溶解槽を使用して行い得る。水洗は、スラリーS1を所定時間静置又は攪拌することによりなされる。これにより、バイオマス灰M1の溶解性成分がスラリーの液相に溶出した状態のスラリーS2となる。その状態のスラリーS2を粉体溶解槽から排出して、フィルタープレス等の固液分離装置で脱水する。
 スラリー化工程におけるバイオマス灰M1と水W1との質量比(W1/M1)は、4~10が好ましく、4~7がより好ましく、4~5が特に好ましい。質量比(W1/M1)が4よりも小さいと、バイオマス灰M1からの塩素等のセメント忌避成分の溶出が不十分となるなど、改質効果が不十分となる場合がある。また、質量比(W1/P1)が10よりも大きいと、排水W3の量が多くなってしまう。
 水洗工程の所要時間は、バイオマス灰M1を水W1で十分に改質するため、30分間以上とすることが好ましく、45分間以上がより好ましい。また、温度条件は、高い程、バイオマス灰M1からの塩素等のセメント忌避成分の溶出効率がよくなるが、処理に係るコストの観点からは、5℃~50℃とすることが好ましく、25℃~50℃がより好ましい。
 脱水工程においては、スラリーS2中に含まれる塩素等のセメント忌避成分が液相と共に残留することを防ぐため、脱水物の水分は20質量%~90質量%とすることが好ましく、30質量%~70質量%とすることがより好ましい。また、本発明の限定されない任意の態様においては、脱水物に水W2を加えて再度脱水する。これによれば、スラリーS2の液相がほとんど水に置き換わるので、より好ましい。
 このようにして得られる改質バイオマス灰M2は、塩素等のセメント忌避成分が十分に減じられており、なお且つ、セメントの強度発現性や流動性に影響を及ぼす易反応性の酸化カルシウムや水酸化カルシウムの含有量が十分に減じられているので、セメント原料としての好適な品質を保つことが容易となる。よって、バイオマス灰を確実に資源化するこができる。
 図2には、本発明に係るバイオマス灰の改質方法の他の実施形態が示される。
 図2に示す実施形態では、図1で説明した実施形態において、更にpH調整剤を加えて水洗を行っている。水洗の際のpHを酸性側に調整する、すなわちpHを低減させることで、pH調整しない場合に比べて、塩素をより効率よく除くことができる。また、バイオマス灰中に含まれるカルシウム成分を、遅速反応性の炭酸カルシウムやセメント製造時にセメントクリンカに添加される硫酸カルシウムの形態へと安定化させやすくなる。pH調整剤としては、スラリーS1のpHを低減することができるものであれば特に制限はない。例えば、酸溶液、CО含有ガス等が挙げられる。なかでもpH調整剤の酸溶液A1として廃硫酸を用いると、廃物の資源化になるとともに、バイオマス灰中に含まれるカルシウム成分を硫酸カルシウム(石膏)の形態にして更に安定化させやすい。また、これにより得られる改質バイオマス灰は、新たな石膏代替素材の提供にもつながる。一方、pH調整剤としては、CО含有ガスG1であってもよい。すなわち、例えば、セメント製造設備のロータリーキルンの燃焼排ガスやバイオマスの焼却設備やバイオマス発電所の燃焼排ガスには二酸化炭素(CO)が含まれているので、その燃焼排ガスをスラリーS1に吹込むことにより、pHを弱アルカリ性に低減することができる。これによれば、バイオマス灰中に含まれるカルシウム成分を炭酸化して炭酸カルシウムの形態へとより安定化させやすくなる。CО含有ガスは二酸化炭素が含まれていればよいが、効率的な炭酸化を促すためには、二酸化炭素濃度は10%以上が好ましく、20%がより好ましい。また、燃焼排ガスのなかでも、特にセメント製造設備の塩素バイパスダストを捕集後のガスには硫黄酸化物(SOx)などの有害ガスが含まれるので、これを固定化する効果も期待できる。このようにセメント製造設備の燃焼排ガスを用いれば、その場で二酸化炭素を含有する燃焼排ガスを得てバイオマス灰の改質に利用して、改質されたバイオマス灰はセメント混合材として利用できる。また、バイオマスの焼却設備やバイオマス発電所の燃焼排ガスを用いれば、その場で得た二酸化炭素を含有する燃焼排ガスとバイオマス灰により改質を行い、セメント製造設備に輸送すればすぐさまセメント混合材として利用できる。
 スラリーS1の水洗の際のpH条件としては、pH4~12.5であることが好ましく、pH5~12であることがより好ましい。
 図2に示す実施形態では、更にスラリーS1にアミン系二酸化炭素回収装置から得た廃液B1を加えて水洗を行っている。ここで、工場などの排ガスから二酸化炭素を回収するためのアミン二酸化炭素回収装置では、劣化したアミン類を含む液は廃棄されるので、これを廃物利用するものである。アミン類は、二酸化炭素と反応して炭酸イオンの生成を促進する作用があることが知られており、効率よくカルシウム成分の炭酸化を進めることができる。また、一方、アミン類は、セメントクリンカ合わせてミルでの粉砕する際には、粉砕助剤として機能することも知られている。そのようなアミン類としては、分子内にアミノ基とヒドロキシル基を有するものであり、粉砕助剤として使用されるアミン類としては、例えば、モノエタノールアミン(MEA)、ジエタノールアミン(DEA)、トリエタノールアミン(TEA)、ジグリコールアミン(DGA)、ジイソプロパノールアミン(DIPA)、メチルジエタノールアミン(MDEA)等が挙げられる。よって、添加した廃液からアミン類が改質バイオマス灰M2に持ち込まれた場合、そのような後工程での粉砕助剤としての機能性の付与も期待できる。
 図3には、本発明に係るバイオマス灰の改質方法の更に他の実施形態が示される。
 図3に示す実施形態では、図1で説明した実施形態において、更に脱水工程後の脱水物C1にCO含有ガスG2を吹込んでいる。これによれば、脱水物C1中に残る易反応性のカルシウム成分を炭酸化することで、得られる改質バイオマス灰の更なる品質の安定化を図ることができる。また、脱水物C1中に含まれる水分の乾燥にも役立つ。ガスの吹込み手段としては、脱水物をCO含有ガスと接触させることができればよく、脱水物を充填した容器にCO含有ガスを流通させたり、排ガス煙道中を通過させたりする等の手段を使用すればよい。また、上記したスラリーS1への吹込みと同様に、例えば、セメント製造設備のロータリーキルンの燃焼排ガスやバイオマスの焼却設備やバイオマス発電所の燃焼排ガスには二酸化炭素(CO)が含まれているので、その燃焼排ガスを脱水物C1に吹込むことでもよい。
 図4には、本発明に係るバイオマス灰の改質方法の更に別の実施形態が示される。
 図4に示す実施形態では、図1で説明した実施形態において、更にpH調整剤を加えて水洗を行ったり、その際に更にアミン系二酸化炭素回収装置から得た廃液B1を加えたりするとともに、図3で説明したように、脱水工程後の脱水物C1にCO含有ガスG2を吹込む工程を備えている。そのような構成を採用したことによる技術的効果については、上述したとおりである。
 図5には、本発明に係るバイオマス灰のセメント原料化システムの一実施形態を説明する概略構成説明図を示す。図5中の実線の矢印はスラリー、洗液等の固体又は液体の流れを、点線の矢印はセメント製造設備の焼成キルンからの燃焼排ガス等の気体の流れを、一点鎖線は制御信号等の信号の経路をそれぞれ表わしている(以下、図6~図8において同様である。)。
 図5の実施形態に示されるように、本発明に係るセメント原料化システムは、収容されたバイオマス灰M1に水W1を加えてスラリーS1にして水洗するための粉体溶解槽1と、その水洗後、粉体溶解槽1から排出されたスラリーS2を脱水するための固液分離装置2と、固液分離装置2で分離された脱水物C1を改質バイオマス灰M2としてセメント製造設備20に搬送するための搬送装置3を備えている。更に、図5に示す実施形態では、粉体溶解槽1には、粉体溶解槽1にバイオマス灰M1を供給するための粉体供給装置11、水W1を供給するための液体供給装置12、酸溶液A1を供給するための酸溶液供給装置13、及びアミン系二酸化炭素回収装置から得た廃液B1を供給するための廃液供給装置14が付設されている。また、バイオマス灰M1と水W1の混合、及び、その混合によって生成したスラリーS1の攪拌のために攪拌翼を備えたスラリー攪拌装置15が付設されている。
 粉体溶解槽1では、バイオマス灰M1と水W1を混合撹拌してスラリーS1を生成するスラリー化処理、及び、そのスラリーS1中で塩素等のセメント忌避成分を液相に溶出させる水洗処理が行われる。そのためのスラリー攪拌装置15としては、例えば、パドル型やスクリュー型の一般的な撹拌装置を使用することができる。
 水洗の後、塩素等のセメント忌避成分がスラリー中で液相に溶出された状態となったスラリーS2は、粉体溶解槽1から排出され、固液分離装置2に移送される。スラリーS2の移送には、スラリー用渦巻きポンプ、ピストンポンプ、モーノポンプ等の通常のスラリー液用輸送装置(不図示)を用いればよい。
 固液分離装置2では、スラリーS2を固液分離して脱水物C1を得る。スラリーS2の液相に溶出させた成分は排水W3へと除かれるので、得られる脱水物C1は、原灰に比べて塩素等のセメント忌避成分の量が減じられている。一方で、排水W3には、原灰に含まれていた重金属類等も溶出されているので、適宜に水質浄化処理を行ったうえで環境中に放流してもよい。なお、この実施形態では、固液分離装置2に水洗浄装置21を設けて水W2でケーキを洗浄できるようにしている。これにより、スラリーS2の液相のほぼすべてを水で置換でき、溶出させた成分の除去をより確実にすることができる。
 固液分離装置2としては、フィルタープレス、加圧葉状ろ過装置、スクリュープレス、ベルトプレス、ベルトフィルター、沈降分離等の通常のろ過装置等を用いればよい。
 固液分離装置2で分離された脱水物C1は、改質バイオマス灰M2として、搬送装置3によりセメント製造設備20に搬送されてセメント原料として資源化される。搬送装置3としては、例えば、ベルトコンベア、スクリューコンベア、パイプコンベア等の一般的なケーキ輸送装置を使用することができる。
 なお、図5に示す実施形態では、セメント製造設備20で発生した燃焼排ガスG1を第1二酸化炭素含有ガス供給装置4を介して粉体溶解槽1に収容したスラリーS1に供給できるようにしている。上述したように、そのようなCO含有ガスG1の吹込みによりスラリーのpHを酸性側に調整することができるとともに、スラリーの攪拌や加温にも役立てることも可能である。
 更に、図5に示す実施形態では、粉体溶解槽1には、粉体溶解槽1に収容されて生成したスラリーのpHを測定するpH測定装置16が付設されている。そして、pH測定装置16の測定結果が、制御装置10に随時送信され、制御装置10が、pH測定装置16の測定結果に基づいて、酸性溶液A1の供給量及び/又は燃焼排ガスG1の送気量を制御するようにしている。具体的な制御態様としては、例えば、制御装置10からの信号に基づいて、酸溶液供給装置13の排出バルブの開度を制御したり、第1二酸化炭素含有ガス供給装置4の排気バルブの開度を制御したりすることなどが挙げられる。
 pH測定装置16としては、公知の測定機器を用いればよく、特に、高濃度懸濁液用の測定機器を用いることが好ましい。
 スラリーS1の水洗の際のpH条件としては、上述したように、pH4~13であることが好ましく、pH5~12であることがより好ましい。
 図6には、本発明に係るセメント原料化システムの他の実施形態が示される。
 図6に示す実施形態では、図5で説明した実施形態のスラリー攪拌装置として筒型散気装置30が使用され、セメント製造設備20で発生した燃焼排ガスG1を第1二酸化炭素含有ガス供給装置4を介して粉体溶解槽1に収容したスラリーS1に供給できるようにしている。
 筒型散気装置3は、燃焼排ガスG1を外部から取り込んで吹込むためのノズル31と、ノズル31を内部端に配置する円筒状の円筒管32から構成されている。そして、ノズル31から吹込まれた燃焼排ガスG1は、円筒管32の円筒内部のスラリーを巻き込みながらそのスラリーとともに上方に上昇し、燃焼排ガスG1とスラリーS1との混合噴流となって円筒管32の上端開口部32aから噴出されるようにしている。一方、円筒管32の下端開口部32bからは、円筒内部のスラリーの上方への上昇にともなって円筒管32の円筒内部の下方側が上方側に比べて陰圧となることによって、粉体溶解槽1の底部側に滞留したスラリーが円筒管32の円筒内部に吸引されるようにしている。このような筒型散気装置30の機構により、粉体溶解槽1に収容されたスラリーには、その下層及び上層にわたって燃焼排ガスG1がスラリーS1を巻き込みながら還流する、上記スラリーと上記ガスとの混合撹拌流を形成されて、粉体溶解槽1に収容されたスラリーの全体を撹拌するようにしている。
 図7には、本発明に係るセメント原料化システムの更に他の実施形態が示される。
 図7に示す実施形態では、図5で説明した実施形態において、固液分離装置2で分離された脱水物C1にCO含有ガスを吹込むための第2二酸化炭素含有ガス供給装置5を更に備えている。そして、セメント製造設備20で発生した燃焼排ガスG2を、第2二酸化炭素含有ガス供給装置5を介して、搬送装置3によってセメント製造設備20に搬送される前に脱水物C1に吹込むことができるようにしている。ガスの吹込み手段としては、脱水物をCO含有ガスと接触させることができればよく、脱水物を充填した容器にCO含有ガスを流通させたり、排ガス煙道中を通過させたりする等の手段を使用すればよい。上述したように、そのようなCO含有ガスの吹込みにより、脱水物C1中に残る易反応性のカルシウム成分を炭酸化することで、得られる改質バイオマス灰の更なる品質の安定化を図ることができる。また、脱水物C1中に含まれる水分の乾燥にも役立つ。
 図8には、本発明に係るセメント原料化システムの更に別の実施形態が示される。
 図8に示す実施形態では、図6で説明した実施形態において、固液分離装置2で分離された脱水物C1にCO含有ガスを吹込むための第2二酸化炭素含有ガス供給装置5を更に備えている。そのような構成を採用したことによる技術的効果については、上述したとおりである。
 本発明により得られる改質バイオマス灰は、通常、その塩素濃度が、例えば典型的には0.1質量%以下の濃度、より典型的には0.002質量%~0.1質量%の濃度、更により典型的には0.005質量%~0.035質量%の濃度にまで低減している。
 また、セレンの溶出量が、例えば典型的には0.02mg/L以下、より典型的には0.002mg/L~0.01mg/Lにまで低減している。
 また、六価クロム溶出量が、例えば典型的には0.1mg/L以下、より典型的には0.01mg/L~0.05mg/Lにまで低減している。
 また、後述する試験例で示されるように、セメントの強度発現性や流動性に影響を及ぼす易反応性の酸化カルシウムや水酸化カルシウムの含有量が十分に減じられ、カルシウム成分が炭酸カルシウムや硫酸カルシウム(石膏)の形態へと安定化している。
 例えば、水酸化カルシウムの含有量は、典型的には0.5質量%以下、より典型的には0.1質量%以下である。
 また、例えば、炭酸カルシウムの含有量は、典型的には8~20質量%、より典型的には10~15質量%である。
 また、例えば、硫酸カルシウム(石膏)の含有量は、典型的にはSO換算で0.5質量%以上、より典型的には3質量%以上である。
 更に、例えば、酸化物量換算のCaO含有率は、典型的には10~40質量%、より典型的には8質量%~30質量%、更により典型的には10質量%~25質量%である。
 また、例えば、酸化物量換算のSO含有率、典型的には0.5質量%~8質量%、より典型的には1質量%~3質量%、更に典型的には1.2質量%~2.5質量%である。
 また、例えば、酸化物量換算のKO含有率、典型的には3質量%~8質量%、より典型的には3.5質量%~6質量%である。
 なお、上記した塩素濃度は、周知の方法で測定することができ、例えば、酸分解処理した後、電位差滴定法により測定する方法などが好ましく例示される。
 また、上記したセレン(Se)及び六価クロム(Cr6+)の溶出量は、周知の方法で測定することができ、例えば、JIS K 0058-1「スラグ類の化学物質試験方法-第1部:溶出試験方法 5.利用有姿による試験」に準拠し検液を作成し、セレン(Se)はICP質量分析法によって、六価クロム(Cr6+)はジフェニルカルバジド吸光光度法によって測定する方法などが好ましく例示される。
 また、上記した水酸化カルシウムの含有量は、周知の方法で測定することができ、例えば、DSC(示差操作熱量計)による400℃付近の脱水に熱量の測定により求める方法などが好ましく例示される。
 また、上記した硫酸カルシウム(石膏)の含有量は、周知の方法で測定することができ、例えば、X線粉末回折のパターンから、リートベルト法により定量する方法などが好ましく例示される。
 また、K、Na、C、Mg、Al、Si、P、S、Ca、Fe等元素の酸化物換算量は、周知の方法で測定することができ、例えば、蛍光X線装置を使用したファンダメンタルパラメーター法(FP法)、蛍光X線装置を使用したセメント原料用フライアッシュ又は粘土の検量線法などが好ましく例示される。
 本発明は水洗の方法によりバイオマス灰を改質するものであるので、得られる改質バイオマス灰M2には、水洗に使用した水分が持ち込まれる場合があるが、バイオマス灰が反応して水和物を形成し、セメントの混合材として使用した場合に、セメントの強度発現性や流動性が低下することがある。水和物の形成を防ぐには、乾燥状態にして保管することが好ましい。また、得られた改質バイオマス灰M2に水分が含まれたまま使用する場合には、セメント製造設備20に搬送して、含まれる水分が迅速に蒸発する加熱状態の処理を行うことが好ましい。
 以下には、改質バイオマス灰M2のセメント製造設備20に搬送した後の利用態様について、更に具体的な例示を挙げて説明する。
 (クリンカクーラーへの投入)
 改質バイオマス灰M2は、セメント製造設備20におけるクリンカクーラーに直接投入され得る。投入方法としては、クーラー内の所望の温度の位置に、クーラーの上部から落下させる方法が挙げられる。投入量は、セメントの質量に対して0.5~20%程度となるように設定する。なお、エアクエンチングクーラーを使用すれば、クーラー内の所定の位置に改質バイオマス灰M2を投入することができるので、好適である。
 改質バイオマス灰M2をクーラーに投入する場合、クリンカ製造とは直接関係のない熱エネルギーを利用することができ好都合である。また、クーラー内に粉塵が大量に発生することを防ぐ意味から、改質バイオマス灰M2は含水率を好ましくは50質量%以下とし、塊状か粒状のまま投入することが好ましい。
 また、クリンカクーラー内の温度は、通常は200~1200℃であり、その投入位置に応じて加熱温度を選択することができる。しかし、改質バイオマス灰M2に含有されているCaCOが分解して生石灰(CaO)を生成したり、二酸化炭素を放出したりすることがないよう、200℃~800℃の低温部分に投入することが好ましい。
 クーラーから排出された後には、ミルにおいて必要に応じて石膏とともに粉砕・混合されて混合セメントとなる。その際、必要に応じて散水や粉砕助剤を添加することができる。クーラーに投入されたバイオマス灰は、ミルに投入される前に乾燥しているので、粉砕は従来と同様の運転管理で行うことができる。
 (ミルへの投入)
 改質バイオマス灰M2は、セメントクリンカ、必要に応じて石膏を投入して粉砕、混合を行うミルに直接投入され得る。ミルは仕上げ粉砕機とも呼ばれ、円筒状のドラムの中で鋼鉄のボールとセメントクリンカ、石膏がドラムの回転によって互いに衝突しながら粉砕される。石膏を使用する場合、その石膏は、特に限定されるものではなく、例えば、天然二水石膏、排煙脱硫石膏、リン酸石膏、チタン石膏、フッ酸石膏等が例示できる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。なお、本発明により提供される改質方法によって、バイオマス灰中のカルシウム成分が硫酸カルシウム(石膏)の形態に改質していると、その石膏の機能性も期待し得る。
 改質バイオマス灰M2は、セメントの一部と置換するものであり、セメントの質量に対して0.5質量%~30質量%添加することが好ましい。また、石膏は、SO換算で好ましくは1.5質量%~5.0質量%添加することが、セメントの強度発現性および流動性を向上するうえで好ましい。
 ミルでの粉砕・混合の際、改質バイオマス灰M2は、含まれた水分が石膏の変質等を防ぐためにミル内の温度制御のために利用できる。また、水分過剰の場合には沈降分離などで簡易的に脱水可能であるし、水分が不足する場合には適切な量をミルに散水すればよい。なお、上述した廃液B1を使用した場合に、改質バイオマス灰M2にアミン類が残留していると、粉砕助剤としての機能性も期待し得る。また、上述したアミン類の残留による効果が期待できない場合には、適宜に適当な粉砕助剤を添加して、粉砕の効率を向上させることができる。
 ミルにおいて粉砕された微粉末はセメントとして回収される。
 また、改質バイオマス灰M2を別途粉砕してもよい。改質バイオマス灰の粉砕に用いる装置は、特に限定されず、例えば、チューブミル、竪型ミル、ジェットミル等が挙げられる。水洗を伴いながら湿式で行うこともできる。
 また、改質バイオマス灰M2を分級して、ブレーン比表面積の高い微粉分を回収して用いてもよい。分級に用いる装置は、前記のように数十μmオーダーの分級点で分級できる装置であれば特に限定されず、例えば、ふるい、慣性分級装置、遠心分級装置、または重力式分級装置等が使用でき、特に分級精度の観点から、サイクロン型エアセパレータ、およびふるい分け装置等が好ましい。水洗を伴う場合は湿式で行うこともできる。
 改質バイオマス灰M2は、セメントの強度発現性を高める観点からブレーン比表面積が4000cm/g以上に粉砕することが好ましい。また、石膏は、SO換算で好ましくは1.5質量%~5.0質量%添加することが、セメントの強度発現性を向上するうえで好ましい。なお、該ブレーン比表面積は、好ましくは4250cm/g以上、より好ましくは5000cm/g以上である。また、バイオマス灰のブレーン比表面積は、セメント質硬化体を製造する際の作業性を確保する観点から、好ましくは10000cm/g以下である。また、改質バイオマス灰M2は、セメントの凝結を促進する観点からは、ブレーン比表面積が5500cm/g以上に粉砕することが好ましい。
 本発明により得られる改質バイオマス灰は、塩素が除去されており、石炭灰と比較しアルカリ分が高いため、焼成時の易焼性が向上する点や、初期の水和反応を促進する点から、セメントクリンカ原料として好適に資源化され得る。また、六価クロムとセレンの溶出量が低減されており、急激な水和熱の抑制や、流動性低下の抑制、石膏代替などの機能の点から、セメント混合材、あるいはコンクリート用混和材として好適に資源化され得る。
 具体的には、例えば、上記改質バイオマス灰を含むセメント、あるいは改質バイオマス灰を混和材としてセメントに混合してコンクリート(モルタル、コンクリートまたはセメントペースト)を製造することができる。また、上記改質バイオマス灰は、セメントとともに水及び他の材料と混練し、その後養生するように使用してもよい。その場合、他の材料としては、特に限定されるものではなく、細骨材や、粗骨材や、水や、AE剤、減水剤、AE減水剤、高性能減水剤、及び高性能AE減水剤等の各種混和剤や、フライアッシュ、シリカフューム、高炉スラグ微粉末等の各種混和材等が挙げられる。
 最後に、試験例を挙げて本発明について更に詳細に説明する。ただし、これらの試験例は本発明の範囲を限定するものではない。
 以下の試験において使用したバイオマス灰の粒度、強熱減量を以下のようにして測定した。
 (粒度)
 エタノールに分散させたうえ1分間の超音波分散処理後の試料に対して、粒度分布測定装置(マイクロトラック・ベル株式会社製 MW3300EXII)を使用して測定した。
 (強熱減量)
 一度も水を噴霧されたことのない乾燥灰又は105℃で乾燥した灰を、750℃又は975℃にて恒量になるまで加熱して、強熱減量を求めた。
 [試験例1]
 木質バイオマス(間伐材)を燃料にして循環流動床炉による発電を実施しているバイオマス発電施設Aから飛灰(粒度:メジアン径D50(頻度)が45.3μm、乾燥灰、強熱減量:750℃における強熱減量2.3%)を入手して、これを水洗すること、ならびにその水洗の際のpH条件が成分組成にどのような影響を与えるか調べた。具体的に、以下の手順で試験を行った。
 〔1.試験〕
(a)バイオマス灰100gと水道水400gをビーカーに投入し、スラリーにして、攪拌機にて400rpmで30分間攪拌した。
(b)pH調整して洗浄を行う場合には、上記スラリーに10wt%硫酸水溶液を加えることで所定のpHに調整後、30分間攪拌した。
(c)また、pH調整を硫酸水溶液に代えてCOガス(二酸化炭素100%)で行う場合には、pHメーターで液中pHを監視しながら流量を調整した。
(d)攪拌を停止後、ブフナーロートを使用して濾別し、得られた濾紙上のケーキには更に水道水400gを投入してスラリーを洗浄後、回収した。
(e)回収したケーキを自然乾燥後、重量を測定し、各種分析を行った。
 表1には、各水洗条件の水準をまとめた。
Figure JPOXMLDOC01-appb-T000001
 〔2.分析〕
 ・Clの定量:試料を硝酸分解処理した後、電位差滴定法により測定した。
 ・K,Naの定量:試料を酸分解処理した後、ICP発行分光分析法により測定した。
 ・Se,Cr6+の溶出試験:JIS K 0058-1「スラグ類の化学物質試験方法-第1部:溶出試験方法 5.利用有姿による試験」に準拠し検液を作成し、SeはICP質量分析法によって、Cr6+はジフェニルカルバジド吸光光度法によって測定した。
 ・C,Mg,Al,Si,P,S,Ca,Feの定量:40℃乾燥処理を施した試料を蛍光X線装置(FP法:ファンダメンタルパラメーター法)によって測定した。結果は、酸化物量換算で示した。
(1-1.灰組成定量及び溶出試験)
 表2、3には、各水洗条件の水準とともに各定量試験または溶出試験の結果をまとめて示す。なお、水準1-1のスラリーのpHは12.7となった。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 その結果、表2に示されるように、原灰を水洗することによりセメント忌避成分である塩素が有効に除かれ、セメントを水硬化した後の鉄筋等への腐食作用の虞がないと評価される許容基準0.035質量%以下を満たすことができた。これに対して、カリウムやナトリウムはほとんどが灰にとどまる傾向となった。これは、原灰が燃焼灰でありガラス相を含むため、これらの成分はそのガラス相に包埋された形態で存在しているためと考えられた。
 一方、原灰に含まれる水溶性セレンや六価クロムも水洗により有効に除かれており、混合材として用いた場合の重金属類の溶出の虞も低減することが明らかとなった。
 表3に示されるように、このバイオマス灰は、シリカやカルシウムが主要な構成元素であった。なかでもKO含有率は水洗後も4質量%以上であり、セメント強度を高めるためのポゾラン混和材として有用であることが明らかとなった。
 また、水洗を、COガスを吹き込みながら行うとCO含有率が上昇し、硫酸を添加して行うとSO含有率が上昇することが明らかとなった。よって、これらのpH調整のための成分は、水洗の操作後にはその少なくとも一部が灰中に固定化されているものと考えられた。
(1-2.カルシウム形態の特定)
 表4には、XRD法(X線回折法)により灰中のカルシウム成分の存在形態とその量を調べた結果を示す。
Figure JPOXMLDOC01-appb-T000004
 その結果、表4に示されるように、原灰ではカルシウム成分の形態として、CaO(生石灰)、Ca(OH)(消石灰)、CaCO(炭酸カルシウム)、CaSO(石膏)の各Ca化合物の存在が確認された。これに対して、pH調整せずに水洗した水準1-1では、CaO(生石灰)の存在は消失し、Ca(OH)(消石灰)の存在の減少がみられた。また、COガスを吹込みながらpH9の条件で水洗した水準1-2では、CaO(生石灰)とCa(OH)(消石灰)の存在が消失した。硫酸水溶液を添加しpH9の条件で水洗した水準1-3でも、同様に、CaO(生石灰)とCa(OH)(消石灰)の存在が消失した。一方、硫酸水溶液の添加によりpH7又は5に調整した水準1-4、1-5では、更にCaCO(炭酸カルシウム)の存在の減少もみられ、バイオマス灰中に含まれるCa化合物の形態がCaSO(石膏)へと収束する傾向が確認された。
(1-3.カルシウム成分の定量)
 表5には、原灰ならびに水洗後の水準1-1及び水準1-2について、熱重量・示差熱同時測定(TG-DTA)により灰中の水酸化カルシウムと炭酸カルシウムの量を調べた結果を示す。
 具体的には、水酸化カルシウム(Ca(OH))は、高温示差走査熱量計(NETZSCH社製DSC404F3)を使用して、窒素雰囲気中で試料約50mgを1000℃まで昇温速度10℃/分にて400℃付近の吸熱量を求め、標準試薬との重量減少との比率により求めた。また、炭酸カルシウム(CaCO)は、高温示差走査熱量計(NETZSCH社製TG-DTA2000SR)を使用して、窒素雰囲気中で試料約50mgを1000℃まで昇温速度20℃/分にて600℃~700℃付近の質量減少量を求め、標準試薬との重量減少との比率により求めた。
Figure JPOXMLDOC01-appb-T000005
 その結果、表5に示されるように、上記表4に示したXRD法(X線回折法)による試験結果と同様の傾向が確認できた。すなわち、原灰ではカルシウム成分の形態として、Ca(OH)(消石灰)及びCaCO(炭酸カルシウム)の各Ca化合物の存在が確認された。また、pH調整せずに水洗した水準1-1では、原灰に比べてCa(OH)(消石灰)の量が顕著に減少した。これに対して、COガスを吹込みながらpH9の条件で水洗した水準1-2では、Ca(OH)(消石灰)の量の減少が顕著であるとともにCaCO(炭酸カルシウム)の量が顕著に増加した。よって、原灰の水洗を、COガスを吹込みながら行うことにより、原灰に含まれるカルシウム成分が炭酸カルシウムの形態へと炭酸化されることが確認された。
(1-4.セメント試験)
 上記に使用した原灰ならびに水洗後の水準1-1及び水準1-2について、JIS R 5201「セメントの物理試験方法」に従い、ブレーン比表面積を測定した。また、水準1-2を更に粉砕した試料を調製し、そのブレーン比表面積を測定した。
 これら試料について、普通ポルトランドセメントに30質量%混合し、JIS R 5201「セメントの物理試験方法」に従い、28日圧縮強さを測定した。また、比較対照として炭酸カルシウム粉末(試薬)を用いて同様に試験した。
Figure JPOXMLDOC01-appb-T000006
 その結果、表6に示されるように、pH調整せずに水洗した水準1-1では、原灰を用いた水準に比べて若干の強度の低下がみられた。これに対して、COガスを吹込みながらpH9の条件で水洗した水準1-2では、炭酸カルシウム粉末を用いた水準と同等の強度が得られた。また、水準1-2を粉砕することにより、炭酸カルシウム粉末を用いた水準に比べて更に強度発現性に優れることが明らかとなった。
 [試験例2]
 木質ペレットおよびパーム椰子殻を燃料にしてストーカ炉による発電を実施しているバイオマス発電施設Bから焼却飛灰(粒度:メジアン径D50(頻度)が20.0μm、乾燥灰、強熱減量:750℃における強熱減量6.1%)を入手して、試験例1と同様の試験を行った。
 表7には、各水洗条件の水準をまとめた。
Figure JPOXMLDOC01-appb-T000007
 また、表8,9には、各水洗条件の水準とともに各定量試験の結果をまとめて示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 その結果、表8に示されるように、原灰を水洗することによりセメント忌避成分である塩素が有効に除かれ、セメントを水硬化した後の鉄筋等への腐食作用の虞がないと評価される許容基準0.035質量%以下を満たすことができた。これに対して、カリウムはほとんどが灰にとどまる傾向となった。これは、原灰が燃焼灰でありガラス相を含むため、カリウムはそのガラス相に包埋された形態で存在しているためと考えられた。
 表9に示されるように、このバイオマス灰は、シリカやカーボンが主要な構成元素であった。なかでもKO含有率は3質量%以上であり、セメント強度を高めるためのポゾラン混和材として有用であることが明らかとなった。
 また、水洗を、硫酸を添加して行うとSO含有率が上昇することが明らかとなった。よって、pH調整のための硫酸成分は、水洗の操作後にはその少なくとも一部が灰中に固定化されているものと考えられた。
 [試験例3]
 木質バイオマス(間伐材)を燃料にして循環流動床炉による発電を実施しているバイオマス発電施設Cから飛灰(粒度:メジアン径D50(頻度)が47.2μm、乾燥灰、強熱減量:975℃における強熱減量4.17%)を入手して、試験例1と同様の試験を行った。
 表10には、各水洗条件の水準をまとめた。なお、水準3-1及び水準3-2は入手した乾燥状態のまま使用した。水準3-3及び水準3-4は、一度水を散布された灰であり、外割で20質量%の水を加えた(含水率16.7質量%)のちに20℃で3日間保管し、105℃で乾燥し使用した。
Figure JPOXMLDOC01-appb-T000010
(3-1.灰組成定量)
 表11,12には、各水洗条件の水準とともに各定量試験の結果をまとめて示す。なお、本試験例の化学成分は、蛍光X線装置(セメント原料(粘土)の検量線法)によって測定した。強熱減量は、975℃にて恒量になるまで加熱して求めた。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 その結果、表11に示されるように、原灰を水洗することによりセメント忌避成分である塩素が有効にとり除かれ、セメントを水硬化した後の鉄筋等への腐食作用の虞がないと評価される許容基準0.035質量%以下を満たすことができた。なかでもCOガスを吹込みながらpH9の条件で水洗した水準では、より塩素が有効にとり除かれていた。また、乾燥灰は一度水を散布された灰よりもより塩素が有効にとり除かれていた。
 また、表12に示されるように、COガスを吹込みながらpH9の条件で水洗した水準では、水準3-4よりも水準3-2のほうが、強熱減量が高かった。よって、一度水を散布されたことのない乾燥灰のほうが、COガスとより反応し、原灰に含まれるカルシウム成分が炭酸カルシウムの形態へと炭酸化されることが確認された。また、強熱減量は水準3-3よりも水準3-1のほうが高く、一度水を散布されることで水和物が生成したことが確認された。
(3-2.カルシウム成分の定量)
 表13には、原灰ならびに水洗後の水準3-1及び水準3-2について、上述した熱重量・示差熱同時測定(TG-DTA)により灰中の水酸化カルシウムと炭酸カルシウムの量を調べた結果を示す。
Figure JPOXMLDOC01-appb-T000013
 その結果、表13に示されるように、原灰ではカルシウム成分の形態として、Ca(OH)(消石灰)及びCaCO(炭酸カルシウム)の各Ca化合物の存在が確認された。また、pH調整せずに水洗した水準3-1では、原灰に比べてCa(OH)(消石灰)の量の若干の減少がみられた。これに対して、COガスを吹込みながらpH9の条件で水洗した水準3-2では、Ca(OH)(消石灰)の量の減少が顕著であるとともにCaCO(炭酸カルシウム)の量が顕著に増加した。よって、原灰の水洗を、COガスを吹込みながら行うことにより、原灰に含まれるカルシウム成分が炭酸カルシウムの形態へと炭酸化されることが確認された。
(3-3.セメント試験)
 上記に使用した原灰ならびに水準3-1及び水準3-2について、粉砕によりブレーン比表面積がおよそ5500cm/g程度になるよう調整したうえ、普通ポルトランドセメントに5質量%又は10質量%混合して、これら試料について凝結試験を行った。
 凝結試験では、水セメント比は基材セメントの標準軟度水量(W/C=0.277)とした。練り混ぜたセメントペーストを深さ6mm程度の容器(本試験ではPE広口瓶100mLの内蓋を使用)に詰め、表面を平滑にしたものを各水準3つずつ用意した。供試体を養生する湿気箱内の温度は20±1℃とし、相対湿度は90%とした。終結時間の測定には、ビガー針装置に終結用標準針を取り付け、セメントペースト表面に徐々に降下させ、セメントペーストの表面に残る跡が、付属小片環による跡を残さないようになったときの時間を終結とし、セメントに注水したときから終結までの時間をもって終結時間とした。ただし、作製した3つの供試体のうち2つ以上の供試体で針による跡が付属小片環による跡を残さない場合となった時点で終結時間と判定した。また、比較として炭酸カルシウム粉末を用いて同様に試験した。また、比較対照として炭酸カルシウム粉末(試薬)を用いて同様に試験した。
Figure JPOXMLDOC01-appb-T000014
 その結果、表14に示されるように、pH調整せずに水洗した水準3-1やCOガスを吹込みながらpH9の条件で水洗した水準3-2では、炭酸カルシウム粉末を用いた水準に比べてセメントの凝結が促進されていた。
1…粉体溶解槽、11…粉体供給装置、12…液体供給装置、13…酸溶液供給装置、14…廃液供給装置、15…スラリー攪拌装置、16…pH測定装置、2…固液分離装置、21…水洗浄装置、3…搬送装置、4…第1二酸化炭素含有ガス供給装置、5…第2二酸化炭素含有ガス供給装置、10…制御装置、30…筒型散気装置、31…ノズル、3…円筒管、32a…上端開口部、32b…下端開口部、A1…pH調整剤(酸溶液)、B1…廃液、C1…脱水物、M1…バイオマス灰、M2…改質バイオマス灰、S1…スラリー(水洗前)、S2…スラリー(水洗後)、W1、W2…水、W3…排水
 

Claims (24)

  1.  バイオマス灰に水を加えてスラリーにするスラリー化工程と、
     前記スラリーを水洗する水洗工程と、
     前記水洗を行った前記スラリーを脱水する脱水工程を備えていることを特徴とするバイオマス灰の改質方法。
  2.  前記スラリーを酸性側にpH調整して水洗する、請求項1記載のバイオマス灰の改質方法。
  3.  前記pH調整は、前記スラリーへの二酸化炭素含有ガスの吹込みによるものである、請求項2記載のバイオマス灰の改質方法。
  4.  前記pH調整は、前記スラリーへの酸溶液の添加によるものである、請求項2又は3に記載のバイオマス灰の改質方法。
  5.  前記pH調整は、前記スラリーをpH11以下にするものである、請求項2~4のいずれか1項に記載のバイオマス灰の改質方法。
  6.  前記スラリーに、アミン系二酸化炭素回収装置で廃棄される廃液を、該スラリーの一部として混合して水洗する、請求項1~5のいずれか1項に記載のバイオマス灰の改質方法。
  7.  前記脱水工程後の脱水物に二酸化炭素含有ガスを吹込む工程を更に備える、請求項1~6のいずれか1項に記載のバイオマス灰の改質方法。
  8.  前記脱水工程後の脱水物を粉砕する工程を更に備える、請求項1~7のいずれか1項に記載のバイオマス灰の改質方法。
  9.  前記バイオマス灰は、飛灰である、請求項1~8のいずれか1項に記載のバイオマス灰の改質方法。
  10.  前記バイオマス灰は、乾燥灰である、請求項1~9のいずれか1項に記載のバイオマス灰の改質方法。
  11.  収容されたバイオマス灰に水を加えてスラリーにして水洗するための粉体溶解槽と、
     前記粉体溶解槽から排出されたスラリーを脱水するための固液分離装置と、
     前記固液分離装置で分離された脱水物をセメント製造設備に搬送するための搬送装置を備えていることを特徴とするバイオマス灰のセメント原料化システム。
  12.  前記粉体溶解槽に収容された前記スラリーに二酸化炭素含有ガスを吹込むための第1二酸化炭素含有ガス供給装置を更に備えている、請求項11に記載のバイオマス灰のセメント原料化システム。
  13.  前記粉体溶解槽に収容された前記スラリーに酸溶液を添加するための酸溶液供給装置を更に備えている、請求項11又は12に記載のバイオマス灰のセメント原料化システム。
  14.  前記粉体溶解槽に収容された前記スラリーのpHを測定するためのpH測定装置と、前記pH測定装置により測定された測定値を受信し、その測定値に応じて前記二酸化炭素含有ガスの吹込み量及び/又は前記酸溶液の添加量を制御するための制御装置とを更に備えている、請求項12又は13に記載のバイオマス灰のセメント原料化システム。
  15.  前記固液分離装置で分離された脱水物に二酸化炭素含有ガスを吹込むための第2二酸化炭素含有ガス供給装置を更に備えている、請求項11~14のいずれか1項に記載のバイオマス灰のセメント原料化システム。
  16.  前記セメント製造設備がクリンカクーラー又はミルである、請求項11~15のいずれか1項に記載のバイオマス灰のセメント原料化システム。
  17.  前記バイオマス灰は、飛灰である、請求項11~16のいずれか1項に記載のバイオマス灰のセメント原料化システム。
  18.  バイオマス灰の水洗物であって、
     KO含有率が3~8質量%であり、
     SO含有率が0.5~8質量%であり、
     Cl濃度が0.035質量%以下であり、
     水酸化カルシウムの含有量が0.1質量%以下であり、
     炭酸カルシウムの含有量が8~20質量%であることを特徴とする改質バイオマス灰。
  19.  ブレーン比表面積が4000~10000cm/gである、請求項18記載の改質バイオマス灰。
  20.  CaO含有率が10~40質量%である、請求項18又は19に記載の改質バイオマス灰。
  21.  セレンの溶出量が0.01mg/L以下であり、六価クロム溶出量が0.1mg/L以下である、請求項18~20のいずれか1項に記載の改質バイオマス灰。
  22.  前記バイオマス灰は、飛灰である、請求項18~21のいずれか1項に記載の改質バイオマス灰。
  23.  前記バイオマス灰は、流動床式燃焼炉により生じる流動床飛灰である、請求項22記載の改質バイオマス灰。
  24.  セメント混合材又はコンクリート用混和材用途であることを特徴とする、請求項18~23のいずれか1項に記載の改質バイオマス灰。
     
PCT/JP2021/012080 2020-03-24 2021-03-23 バイオマス灰の改質方法、バイオマス灰のセメント原料化システム、及び改質バイオマス灰 WO2021193668A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021548251A JP7052154B2 (ja) 2020-03-24 2021-03-23 バイオマス灰の改質方法、バイオマス灰のセメント原料化システム、及び改質バイオマス灰
JP2022004293A JP2022044668A (ja) 2020-03-24 2022-01-14 セメント原料組成物の製造方法及びセメント原料組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-053176 2020-03-24
JP2020053176 2020-03-24

Publications (1)

Publication Number Publication Date
WO2021193668A1 true WO2021193668A1 (ja) 2021-09-30

Family

ID=77892168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012080 WO2021193668A1 (ja) 2020-03-24 2021-03-23 バイオマス灰の改質方法、バイオマス灰のセメント原料化システム、及び改質バイオマス灰

Country Status (2)

Country Link
JP (2) JP7052154B2 (ja)
WO (1) WO2021193668A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2607406A (en) * 2021-03-22 2022-12-07 Innovative Ash Solutions Ltd Process for ash remediation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115594429B (zh) * 2022-09-25 2023-06-09 浙江大学 基于氨基碳酸化改性联合水泥固化飞灰建材化利用的方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338970A (ja) * 2001-05-17 2002-11-27 Nikkiso Co Ltd 廃棄物有効処理システム
JP2012101191A (ja) * 2010-11-11 2012-05-31 Sumitomo Heavy Industries Environment Co Ltd 焼却灰の水洗処理方法及び水洗処理システム
JP2013013843A (ja) * 2011-07-01 2013-01-24 Taiheiyo Cement Corp アルカリ金属含有廃棄物の処理方法
CN106396551A (zh) * 2016-08-31 2017-02-15 苏州赛华仪控股份有限公司 一种生物质灰渣砖及其制备方法与应用
JP2017218355A (ja) * 2016-06-09 2017-12-14 宇部興産株式会社 セメント組成物およびその製造方法
JP2018058059A (ja) * 2016-09-28 2018-04-12 太平洋セメント株式会社 焼却灰の処理装置及び処理方法
JP2018154544A (ja) * 2017-03-17 2018-10-04 太平洋セメント株式会社 塩素含有粉体の処理方法及び塩素含有粉体の処理システム
JP2019001696A (ja) * 2017-06-20 2019-01-10 宇部興産株式会社 石炭灰硬化物
JP2019048270A (ja) * 2017-09-11 2019-03-28 住友大阪セメント株式会社 排水の処理方法
JP2019107620A (ja) * 2017-12-19 2019-07-04 太平洋セメント株式会社 改質フライアッシュの製造方法、及び、改質フライアッシュの製造装置
JP2019107618A (ja) * 2017-12-19 2019-07-04 太平洋セメント株式会社 改質フライアッシュの製造方法、及び、改質フライアッシュの製造装置
CN110508594A (zh) * 2019-08-21 2019-11-29 山东大学 一种生物质灰渣的处理方法及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5341320B2 (ja) * 1971-08-17 1978-11-01
JP5748418B2 (ja) * 2010-06-03 2015-07-15 日本製紙株式会社 焼却灰の脱水性向上方法
JP2017023895A (ja) * 2015-07-16 2017-02-02 株式会社トクヤマ 石炭灰の管理方法
JP2018058717A (ja) * 2016-10-04 2018-04-12 三井造船株式会社 焼却灰粒子、有機ケイ素素材、研磨剤、及び有機ケイ素素材の製造方法
JP7079049B2 (ja) * 2018-05-08 2022-06-01 Ube株式会社 石炭灰混合セメント組成物および製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338970A (ja) * 2001-05-17 2002-11-27 Nikkiso Co Ltd 廃棄物有効処理システム
JP2012101191A (ja) * 2010-11-11 2012-05-31 Sumitomo Heavy Industries Environment Co Ltd 焼却灰の水洗処理方法及び水洗処理システム
JP2013013843A (ja) * 2011-07-01 2013-01-24 Taiheiyo Cement Corp アルカリ金属含有廃棄物の処理方法
JP2017218355A (ja) * 2016-06-09 2017-12-14 宇部興産株式会社 セメント組成物およびその製造方法
CN106396551A (zh) * 2016-08-31 2017-02-15 苏州赛华仪控股份有限公司 一种生物质灰渣砖及其制备方法与应用
JP2018058059A (ja) * 2016-09-28 2018-04-12 太平洋セメント株式会社 焼却灰の処理装置及び処理方法
JP2018154544A (ja) * 2017-03-17 2018-10-04 太平洋セメント株式会社 塩素含有粉体の処理方法及び塩素含有粉体の処理システム
JP2019001696A (ja) * 2017-06-20 2019-01-10 宇部興産株式会社 石炭灰硬化物
JP2019048270A (ja) * 2017-09-11 2019-03-28 住友大阪セメント株式会社 排水の処理方法
JP2019107620A (ja) * 2017-12-19 2019-07-04 太平洋セメント株式会社 改質フライアッシュの製造方法、及び、改質フライアッシュの製造装置
JP2019107618A (ja) * 2017-12-19 2019-07-04 太平洋セメント株式会社 改質フライアッシュの製造方法、及び、改質フライアッシュの製造装置
CN110508594A (zh) * 2019-08-21 2019-11-29 山东大学 一种生物质灰渣的处理方法及系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2607406A (en) * 2021-03-22 2022-12-07 Innovative Ash Solutions Ltd Process for ash remediation

Also Published As

Publication number Publication date
JPWO2021193668A1 (ja) 2021-09-30
JP2022044668A (ja) 2022-03-17
JP7052154B2 (ja) 2022-04-11

Similar Documents

Publication Publication Date Title
AU2018382566B2 (en) Method for simultaneous exhaust gas cleaning and manufacturing of supplementary cementitious material
Viet et al. The use of fly ashes from waste-to-energy processes as mineral CO2 sequesters and supplementary cementitious materials
EP3581257A1 (en) Method using recycled concrete fines for co2/sox removal from exhaust gas
WO2021193668A1 (ja) バイオマス灰の改質方法、バイオマス灰のセメント原料化システム、及び改質バイオマス灰
JP7406994B2 (ja) セメント組成物の製造方法
JP7450409B2 (ja) セメント混合材、混合セメントおよび炭酸ガス吸着材の製造方法
CN114728848A (zh) 利用天然矿物相进行co2矿化的方法及所获产品的用途
JP2022044571A (ja) セメント製造方法、セメント製造システム、セメント硬化物の製造方法
JP2023181518A (ja) セメント製造方法
WO2022050407A1 (ja) セメント製造方法、セメント混練体の製造方法、バイオマス灰粉粒物
JP2022044570A (ja) セメント製造方法、セメント製造システム、セメント硬化物の製造方法
JP7398349B2 (ja) セメント又はセメント硬化物の製造方法及びその製造システム
EP4059905A1 (en) Method and device for carbonation
JP2009234859A (ja) セメント製造排ガスの脱硫方法
JP6977801B2 (ja) 硫黄含有化合物及びその製造方法、セメント組成物及びその製造方法、並びに硫黄含有化合物の製造装置
KR102649805B1 (ko) 슬래그 자극재를 포함한 활성 고로슬래그 미분말
JP6977805B2 (ja) 硫黄含有組成物、脱硫生成物、クリンカー、及びセメント組成物の製造方法
JP6977788B2 (ja) セメント組成物の製造方法、及びセメント組成物の製造システム
JP2022150926A (ja) 硫黄含有組成物、セメント組成物及び地盤改良材の製造方法
EP4241874A1 (en) Improvement of reactivity by oxidation
US20240043324A1 (en) Process for production of hydraulic-carbonating binder systems through mechanochemical activation of minerals
JP2024032602A (ja) ウォラストナイト含有焼成物の製造方法
WO2023170202A1 (en) Improvement of reactivity by oxidation
JP2023130121A (ja) ウォラストナイト含有焼成物の製造方法及び該焼成物の利用
JP2022149321A (ja) 硫黄含有組成物、セメント組成物及び地盤改良材の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021548251

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21776974

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21776974

Country of ref document: EP

Kind code of ref document: A1