WO2021193177A1 - 顕微鏡システム、撮像方法、および撮像装置 - Google Patents

顕微鏡システム、撮像方法、および撮像装置 Download PDF

Info

Publication number
WO2021193177A1
WO2021193177A1 PCT/JP2021/010267 JP2021010267W WO2021193177A1 WO 2021193177 A1 WO2021193177 A1 WO 2021193177A1 JP 2021010267 W JP2021010267 W JP 2021010267W WO 2021193177 A1 WO2021193177 A1 WO 2021193177A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
light
light source
optical signal
control unit
Prior art date
Application number
PCT/JP2021/010267
Other languages
English (en)
French (fr)
Inventor
健 松井
寛和 辰田
植田 充紀
和田 成司
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to US17/906,363 priority Critical patent/US20230111094A1/en
Priority to DE112021001887.6T priority patent/DE112021001887T5/de
Publication of WO2021193177A1 publication Critical patent/WO2021193177A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/241Devices for focusing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/241Devices for focusing
    • G02B21/245Devices for focusing using auxiliary sources, detectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0032Optical details of illumination, e.g. light-sources, pinholes, beam splitters, slits, fibers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/008Details of detection or image processing, including general computer control
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • G02B21/08Condensers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/26Stages; Adjusting means therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/673Focus control based on electronic image sensor signals based on contrast or high frequency components of image signals, e.g. hill climbing method
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/71Circuitry for evaluating the brightness variation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/74Circuitry for compensating brightness variation in the scene by influencing the scene brightness using illuminating means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/02Illuminating scene
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/48Details of cameras or camera bodies; Accessories therefor adapted for combination with other photographic or optical apparatus

Definitions

  • the present disclosure relates to a microscope system, an imaging method, and an imaging device.
  • a technique for obtaining an captured image by irradiating a measurement target area with light and receiving light emitted from the measurement target area is disclosed.
  • the line sensor receives the light emitted from the measurement target area by the irradiation of the line illumination.
  • a technique of focusing adjustment is disclosed by adjusting the position of an objective lens that concentrates light on a measurement target region by using the contrast ratio of the light receiving intensity.
  • the present disclosure proposes a microscope system, an imaging method, and an imaging device capable of suppressing detection errors.
  • one form of the microscope system includes a light source unit that irradiates line illumination parallel to the first direction, an objective lens that concentrates the line illumination to a measurement target area, and the like.
  • the light source unit and the first unit based on the acquisition unit that acquires the first optical signal indicating the light intensity value of the light emitted from the measurement target region by the line illumination and the light intensity distribution of the first light signal. It includes a focus control unit that controls at least one of the relative position and the relative posture of the imaging unit that generates an optical signal.
  • FIG. 1 is a schematic view showing an example of the microscope system 1 of the present embodiment.
  • the microscope system 1 is a system that irradiates the measurement target area 25 with line illumination LA and receives the light emitted from the measurement target area 25. Details of the line illumination LA and the measurement target area 25 will be described later.
  • the microscope system 1 includes an imaging device 12.
  • the image pickup device 12 is communicably connected to the server device 10 via, for example, a wireless communication network such as network N or a wired communication network.
  • the server device 10 may be a computer.
  • the direction in which the objective lens 22 and the sample T, which will be described later, are approaching each other and away from each other will be referred to as a Z-axis direction.
  • the Z-axis direction will be described as being coincident with the thickness direction of the sample T.
  • the case where the Z-axis direction and the optical axis A2 of the objective lens 22 are parallel will be described.
  • the stage 26 described later is assumed to be a two-dimensional plane represented by two axes (X-axis direction and Y-axis direction) orthogonal to the Z-axis direction.
  • a plane parallel to the two-dimensional plane of the stage 26 may be referred to as an XY plane. Details of each of these parts will be described later.
  • the imaging device 12 includes a measuring unit 14 and a control device 16.
  • the measuring unit 14 and the control device 16 are connected so as to be able to exchange data or signals.
  • the measuring unit 14 has an optical mechanism for measuring the light emitted from the measurement target area 25.
  • the measuring unit 14 is applied to, for example, an optical microscope.
  • the measuring unit 14 includes a light source unit 18, a split mirror 20, an objective lens 22, a stage 26, a half mirror 28, an imaging unit 31, a third drive unit 46, and a fourth drive unit 47. ..
  • the image pickup unit 31 includes an image pickup optical unit 30 and an image pickup optical unit.
  • the split mirror 20 selects a half mirror or a dichroic mirror according to the measurement target.
  • the light source unit 18 irradiates the line illumination LA and the area illumination LB.
  • the light source unit 18 selectively irradiates the line illumination LA and the area illumination LB by switching between them.
  • the area illumination LB may be replaced by the line illumination LA.
  • the light source unit 18 includes a light source unit 18A, a light source focus lens 18D, and a first drive unit 44.
  • the light source unit 18A includes a light source 18B and a collimator lens 18C.
  • the light source 18B is a light source that selectively switches between line illumination LA and area illumination LB to emit light. Switching to the line illumination LA and the area illumination LB is performed by the control of the control device 16.
  • Line illumination LA is light in the shape of a line parallel to the first direction.
  • the line shape indicates the shape of the cross section of the line illumination LA irradiated from the light source 18B, which is orthogonal to the optical axis A1.
  • the line shape indicates the shape of the illumination light that the line illumination LA emitted from the light source 18B irradiates the sample T.
  • the optical axis A1 indicates an optical axis from the light source 18B to the split mirror 20.
  • the optical axis A1 is the optical axis of the collimator lens 18C and the light source focus lens 18D.
  • the line illumination LA means that the length of the luminous flux in the first direction in the two-dimensional plane orthogonal to the optical axis is several times (for example, 100 times or more) with respect to the direction orthogonal to the first direction. ) It is a light of a length longer than that.
  • first direction which is the longitudinal direction of the line illumination LA
  • substantially parallel is not limited to a form in which the directions are completely the same, and includes a state in which the directions are tilted at an angle within a predetermined range.
  • Area illumination LB is light that is emitted when the sample T, which will be described later, is imaged. Specifically, the area illumination LB is light that irradiates a wider area in the Y-axis direction than the line illumination LA.
  • the light source 18B irradiates the line illumination LA by condensing light in only one direction using a cylindrical lens 18E arranged in the optical path. Further, the light source 18B may irradiate the line illumination LA by irradiating the light through a slit parallel to the X-axis direction.
  • the light source 18B is not limited to a configuration in which a plurality of laser diodes are arranged.
  • a mercury lamp or a halogen lamp having a broad spectral band may be used, or a laser light source having a narrow band may be used.
  • the light source 18B may be a light source 18B that selectively irradiates light in a wavelength region in which the sample T included in the measurement target region 25 emits fluorescence. Further, the light source unit 18 may be provided with a filter that selectively transmits light in the wavelength region.
  • the mode in which the light source 18B irradiates the line illumination LA and the area illumination LB in the wavelength region where the sample T fluoresces will be described as an example. Further, in the present embodiment, the line illumination LA and the area illumination LB may be light in different wavelength regions within the wavelength region in which the sample T fluoresces, or may be light in the same wavelength region. ..
  • the line illumination LA is irradiated from the light source 18B
  • the optical path of the light is the same as that of the line illumination LA.
  • the light source unit 18 is provided with a first drive unit 44.
  • the first drive unit 44 changes the relative position of at least one of the plurality of optical components included in the light source unit 18 along the optical axis A1 direction.
  • the first drive unit 44 is, for example, a known actuator.
  • the actuator may be, for example, a motor, an ultrasonic wave, or a linear motor.
  • a sigma optical machine for the first drive unit 44, for example, a sigma optical machine; SGMV20-35 (X) or the like may be used.
  • the first drive unit 44 moves the light source focus lens 18D in the direction toward or away from the split mirror 20 along the optical axis A1.
  • the distance between the light source focus lens 18D and the split mirror 20 is adjusted by driving the first drive unit 44, and the distance between the light source 18B and the light source 18B is adjusted. By adjusting these intervals, the focus of the light source focus lens 18D is adjusted.
  • the first drive unit 44 may be a drive unit that moves at least one of the light source unit 18A and the light source focus lens 18D along the optical axis A1 in a direction toward or away from each other. Further, the first drive unit 44 may be a drive unit that moves the entire light source unit 18 along the optical axis A1 in the direction toward or away from the split mirror 20. In the present embodiment, a mode in which the first drive unit 44 moves the light source focus lens 18D along the optical axis A1 will be described as an example.
  • the line illumination LA emitted from the light source 18B is made into substantially parallel light by the collimated lens 18C, then is once focused in a line shape by the light source focus lens 18D, and is made into substantially parallel light again by the imaging lens 19. , Reaching the split mirror 20.
  • the cylindrical lens 18E does not have a curvature in the illustrated direction when the line illumination LA is irradiated.
  • the cylindrical lens 18E has a curvature in the illustrated direction.
  • the split mirror 20 reflects the line illumination LA and the area illumination LB, and transmits light in a wavelength region other than the line illumination LA and the area illumination LB. In the present embodiment, the split mirror 20 transmits the light emitted from the measurement target region 25.
  • the line illumination LA is reflected by the split mirror 20 and reaches the objective lens 22.
  • the objective lens 22 is a focus lens that focuses the line illumination LA or the area illumination LB on the measurement target area 25.
  • the objective lens 22 is a lens for irradiating the measurement target area 25 with the line illumination LA or the area illumination LB by condensing the line illumination LA or the area illumination LB on the measurement target area 25.
  • the area illumination LB may be replaced by the line illumination LA.
  • the objective lens 22 is provided with a fourth drive unit 47.
  • the fourth drive unit 47 moves the objective lens 22 in the Z-axis direction in a direction approaching or away from the measurement target region 25. By adjusting the distance between the objective lens 22 and the measurement target area 25, the focus of the objective lens 22 is adjusted.
  • the third drive unit 46 moves the stage 26 in the directions orthogonal to the Z-axis direction (X-axis direction and Y-axis direction). As the stage 26 moves, the sample T placed on the stage 26 moves relative to the objective lens 22 in the X-axis direction or the Y-axis direction.
  • the measurement unit 14 may be configured to include at least one of the third drive unit 46 and the fourth drive unit 47, and is not limited to the configuration including both of them.
  • the longitudinal direction of the line illumination LA when emitted from the light source 18B is substantially parallel to the X-axis direction.
  • the longitudinal direction of the line illumination LA is not limited to a form substantially parallel to the X-axis direction.
  • the longitudinal direction of the line illumination LA when emitted from the light source 18B may be a direction substantially parallel to the Z-axis direction.
  • the measurement target area 25 is a region including the sample T.
  • the measurement target area 25 is composed of the measurement target member 24.
  • the measurement target member 24 is a member containing the sample T.
  • the measurement target member 24 is composed of, for example, a pair of glass members and a sample T placed between the pair of glass members.
  • the glass member is, for example, a slide glass.
  • the glass member is sometimes referred to as a cover glass.
  • the glass member may be any member as long as the sample T can be placed on the glass member, and the glass member is not limited to the member made of glass.
  • the glass member may be a member that transmits the line illumination LA, the area illumination LB, and the light emitted from the sample T. To transmit means that the transmittance of the light to be transmitted is 80% or more.
  • the measurement target member 24 may have a configuration in which the sample T is placed on the glass member, and is not limited to the configuration in which the sample T is placed between the pair of glass members. Further, the sample T may be placed on the measurement target member 24 in a state of being sealed by the sealing material.
  • Specimen T is a measurement target in the microscope system 1. That is, the sample T is an object for which an image captured by the microscope system 1 is obtained. In this embodiment, the sample T will be described as an example in which fluorescence is emitted by irradiation of each of the line illumination LA and the area illumination LB.
  • Specimen T is, for example, microorganisms, cells, liposomes, erythrocytes, leukocytes, platelets, vascular endothelial cells in blood, microcell fragments of epithelial tissue, and histopathological tissue sections of various organs.
  • the sample T may be an object such as a cell labeled with a fluorescent dye that fluoresces when irradiated with the line illumination LA and the area illumination LB. Further, the sample T is not limited to the one that fluoresces by the irradiation of each of the line illumination LA and the area illumination LB. For example, the sample T may be reflected and scattered by each irradiation of the line illumination LA and the area illumination LB.
  • the fluorescence emitted by the sample T due to the irradiation of the line illumination LA and the area illumination LB may be simply referred to as light.
  • the sample T in a state of being enclosed by the encapsulant may be placed in the measurement target area 25.
  • the encapsulating material a known material that transmits each of the line illumination LA, the area illumination LB, and the light emitted by the sample T that are incident on the measurement target region 25 may be used.
  • the encapsulant may be either liquid or solid.
  • the measurement target area 25 is composed of the measurement target member 24 and the calibration area 27.
  • FIG. 2A is a schematic view showing an example of the measurement target region 25 of the present embodiment.
  • the measurement target area 25 is placed on the stage 26.
  • the measurement target member 24 has, for example, a configuration in which the sample T is placed between a pair of slide glasses.
  • the calibration region 27 is a region that emits light in the second specific wavelength region by irradiating light in the first specific wavelength region.
  • the first specific wavelength region is preferably a wavelength region that does not overlap with the wavelength region in which the sample T fluoresces.
  • the first specific wavelength region and the second specific wavelength region may be at least partially overlapping wavelength regions or may be entirely overlapping wavelength regions.
  • the calibration region 27 is a region in which it is specified in advance which wavelength region of light is emitted when the wavelength of which wavelength region is irradiated.
  • fluorescent glass or the like that is excited by irradiation with light in the first specific wavelength region and emits light in the second specific wavelength region is used.
  • the fluorescent glass is, for example, manufactured by Sumita Optical Glass, Inc .; trade name Luminous and the like.
  • the measurement target area 25 may have a configuration in which the measurement target area 25 and the calibration area 27 are arranged side by side along the XY plane on the stage 26.
  • the calibration region 27 can be arranged on the stage 26 without affecting the sample T arranged between the slide glasses.
  • FIG. 2B is a schematic view showing an example of the measurement target region 25.
  • the encapsulation region of the encapsulant enclosed between the pair of slide glasses constituting the measurement target region 25 may be used as the calibration region 27.
  • the region in which the sample T is not provided in the thickness direction of the measurement target region 25 functions as the calibration region 27.
  • a material that emits light in the second specific wavelength region by irradiating light in the first specific wavelength region may be used as the encapsulant.
  • the light emitted from the measurement target region 25 by the line illumination LA passes through the objective lens 22 and the split mirror 20 and reaches the dichroic mirror 92.
  • the light emitted from the measurement target area 25 includes at least one of the reflected light reflected by the measurement target area 25 by the irradiation of the line illumination LA or the area illumination LB and the light emitted by the measurement target area 25.
  • the reflected light includes scattered light.
  • the light emitted by the measurement target region 25 includes the fluorescence emitted by the sample T.
  • the dichroic mirror 92 distributes a part of the light emitted from the measurement target area 25 to the imaging optical unit 30, and distributes the rest to the imaging optical unit.
  • the distribution ratio of light to the imaging optical unit 30 and the imaging optical unit by the dichroic mirror 92 may be the same ratio (for example, 50% or 50%) or may be different ratios. Therefore, a dichroic mirror may be used instead of the half mirror 28.
  • the light transmitted through the dichroic mirror 92 reaches the imaging optical unit 30.
  • the light reflected by the dichroic mirror 92 reaches the focus detection unit 36.
  • the light (line illumination LA, area illumination LB) emitted from the light source unit 18 and the measurement target area 25 are optically conjugated. Further, it is assumed that the light source 18B, the measurement target area 25, the image sensor 34 of the image pickup optical unit 30, and the pupil division image image pickup sensor 42 of the focus detection unit 36 are optically coupled. That is, it is assumed that the measuring unit 14 is a coaxial epi-illumination type microscope optical system.
  • the imaging optical unit 30 includes an aperture member 35, an imaging lens 32, an imaging sensor 34, and a second drive unit 45.
  • the opening member 35 is a plate-shaped member having a two-dimensional plane parallel to a cross section orthogonal to the optical axis direction of light emitted from the measurement target region 25.
  • the opening member 35 has a slit 37.
  • the slit 37 is an opening parallel to the longitudinal direction of the light emitted from the measurement target area 25 by the line illumination LA.
  • FIG. 3A is a schematic view of an example of the opening member 35.
  • FIG. 3A is a plan view of the opening member 35 viewed from the incident surface side of the light emitted from the measurement target region 25.
  • FIG. 3B is an explanatory view of an irradiation region 82 of the opening member 35 of the light emitted from the measurement target region 25 by the line illumination LA.
  • the size of the slit 37 depends on the size of the image sensor 34.
  • the size of the slit 37 is the size of the irradiation area 82 or less. Specifically, for example, the size of the slit 37 is 20 mm in the longitudinal direction (for example, the arrow XC direction) and 10 ⁇ m in the lateral direction (for example, the YC direction).
  • the size of the irradiation region 82 is, for example, 25 mm in the longitudinal direction (X-axis direction) and 15 ⁇ m in the lateral direction (Y-axis direction) length Q4.
  • the size of the slit 37 and the irradiation area 82 is not limited to the above size.
  • the light emitted from the measurement target area 25 by the line illumination LA is focused by the imaging lens 32, is focused to the size of the slit 37, and reaches the image sensor 34.
  • the image sensor 34 receives the light emitted from the measurement target area 25 and outputs an optical signal.
  • the optical signal of the light emitted from the measurement target region 25 by the irradiation of the line illumination LA will be referred to as a first optical signal.
  • the optical signal of the light emitted from the measurement target area 25 by the irradiation of the area illumination LB will be referred to as a second optical signal.
  • the first optical signal and the second optical signal are generically described, they will be referred to as optical signals.
  • the image sensor 34 includes a plurality of light receiving units.
  • the light receiving unit is an element that converts the received light into an electric charge.
  • the light receiving unit is, for example, a photodiode.
  • the image sensor 34 has a configuration in which a plurality of light receiving units 33 are two-dimensionally arranged along the light receiving surface.
  • the image sensor 34 has a configuration in which a plurality of light receiving units are arranged along a light receiving surface that receives light.
  • the image sensor 34 is, for example, a CMOS (Complementary Metal-Oxide Sensor) image sensor, a CCD (Charge Coupled Device) image sensor, an area sensor, or the like.
  • CMOS Complementary Metal-Oxide Sensor
  • CCD Charge Coupled Device
  • the image sensor 34 may be a color line sensor in which a plurality of light receiving units are one-dimensionally arranged along the light receiving surface.
  • the image sensor 34 is preferably a color line sensor.
  • the image sensor 34 may include at least two light receiving units.
  • the image sensor 34 a spectrum camera (slit 37 + spectroscopic optical system + area sensor) equipped with a spectroscopic optical system and a line sensor (without slit 37) are assumed.
  • the light in the short axis direction of the slit 37 is decomposed into wavelengths by the wavelength dispersion element (prism, diffraction grating) by the optical system in the image pickup sensor 34 which is a spectrum camera, and the light image has the dimensions of the space axis and the wavelength axis. Is received by the two-dimensional sensor.
  • the image pickup sensor 34 is an area sensor in which a plurality of light receiving portions are two-dimensionally arranged along the light receiving surface will be described as an example.
  • the optical signal output from the image sensor 34 is a signal indicating the intensity value of the light received by each of the plurality of light receiving units.
  • the optical signal is a signal that defines the light intensity value for each of the plurality of light receiving units.
  • the light intensity value may be referred to as a light intensity value.
  • the light intensity value is a value indicating the intensity of the received light.
  • the light receiving portion of the image sensor 34 is provided for each one or a plurality of pixels.
  • the optical signal is an captured image in which the light intensity value is defined for each pixel corresponding to each of the plurality of light receiving units.
  • the fluorescence intensity value corresponds to the pixel value.
  • the image sensor 34 outputs an optical signal to the control device 16.
  • the image sensor 34 outputs a second optical signal as an optical signal to the control device 16.
  • the imaging optical unit 30 is provided with a second drive unit 45.
  • the second drive unit 45 changes the relative position of at least one of the plurality of optical components included in the imaging optical unit 30 along the optical axis direction.
  • the second drive unit 45 moves the imaging lens 32 in the direction toward or away from the imaging sensor 34 along the optical axis of the imaging lens 32.
  • the focus of the imaging lens 32 is adjusted by adjusting the distance between the imaging lens 32 and the imaging sensor 34 by driving the second driving unit 45.
  • the second drive unit 45 may be configured to move the imaging lens 32, and the second drive unit 45 itself may not move.
  • the second drive unit 45 may be a drive unit that moves at least one of the image pickup lens 32 and the image pickup sensor 34 along the optical axis in a direction approaching or away from each other.
  • a mode in which the imaging lens 32 moves the imaging lens 32 along the optical axis of the imaging lens 32 will be described as an example.
  • the imaging optical unit includes a dichroic mirror 92, an imaging lens 94, and an imaging sensor 96.
  • the dichroic mirror 92 reflects the light emitted from the measurement target region 25.
  • the imaging lens 94 collects the light emitted from the measurement target region 25 on the imaging sensor 96.
  • the image sensor 96 like the image sensor 34, includes a plurality of light receiving units.
  • the image sensor 96 is, for example, a CMOS image sensor, a CCD image sensor, an area sensor, or the like.
  • the image sensor 96 outputs an optical signal of the received light to the control device 16.
  • the image sensor 96 outputs a first optical signal as an optical signal to the control device 16.
  • FIG. 4 is a schematic diagram showing an example of the first optical signal 74.
  • the first optical signal 74 is a signal indicating the light intensity value of the light emitted from the measurement target region 25 by the irradiation of the line illumination LA.
  • the first optical signal 74 is an image captured by the image pickup sensor 96 when the line illumination LA is applied to the measurement target area 25.
  • the first optical signal 74 includes a light receiving region 75.
  • the light receiving region 75 is a region in which the light intensity value is equal to or higher than a predetermined value as compared with other regions. A threshold value for determining that light has been received may be set for the predetermined value. Since the line illumination LA is line-shaped light, the light receiving region 75 is a line-shaped region parallel to a predetermined direction (arrow XA direction). This predetermined direction is a direction that optically corresponds to the X-axis direction, which is the longitudinal direction of the line illumination LA.
  • the vertical direction (arrow YA direction) of the first optical signal 74 shown in FIG. 4 optically corresponds to the Y-axis direction in the measurement target region 25.
  • the horizontal axis direction (arrow XA direction) of the first optical signal 74 shown in FIG. 5 optically corresponds to the X-axis direction in the measurement target region 25.
  • the X-axis direction is the longitudinal direction of the line illumination LA.
  • the depth direction (arrow ZA direction) of the first optical signal 74 shown in FIG. 4 optically corresponds to the Z-axis direction, which is the thickness direction of the measurement target region 25.
  • the measuring unit 14 scans the line illumination LA along the direction (Y-axis direction) orthogonal to the longitudinal direction (X-axis direction) of the line illumination LA to measure the line illumination LA in the measurement target region. Irradiate to 25. That is, in the present embodiment, the Y-axis direction is the scanning direction of the line illumination LA.
  • the scanning method of the line illumination LA is not limited. The scanning method is, for example, a method in which the stage 26 on which the measurement target area 25 is placed is moved in the Y-axis direction by the third drive unit 46, and at least a part of the configuration other than the measurement target area 25 in the measurement unit 14 is the measurement target area. There is a method of moving the 25 in the Y-axis direction and the like.
  • a deflection mirror may be arranged between the split mirror 20 and the objective lens 22, and the line illumination LA may be scanned by the deflection mirror.
  • an observation image which is an image captured image of the entire measurement target area 25 can be obtained.
  • the observation image is an image taken for use in analysis of the sample T or the like.
  • the control device 16 is an example of an information processing device.
  • the control device 16 and each of the light source 18B, the first drive unit 44, the image sensor 34, the second drive unit 45, the pupil split image image sensor 42, the third drive unit 46, and the fourth drive unit 47 are data or. It is connected so that signals can be sent and received.
  • FIG. 5 is a diagram showing an example of the functional configuration of the control device 16. Note that, for the sake of explanation, FIG. 5 shows a light source 18B, an image sensor 34, a pupil split image image sensor 42, a first drive unit 44, a second drive unit 45, a third drive unit 46, and a fourth drive unit 47. Also illustrated.
  • the control device 16 includes a control unit 60, a storage unit 62, and a communication unit 64.
  • the control unit 60, the storage unit 62, and the communication unit 64 are connected to each other so that data or signals can be exchanged.
  • the storage unit 62 is a storage medium for storing various types of data.
  • the storage unit 62 is, for example, a hard disk drive or an external memory.
  • the communication unit 64 communicates with an external device such as the server device 10 via the network N or the like.
  • the control unit 60 includes a light source control unit 60A, an acquisition unit 60B, a reference focus control unit 60C, a focus control unit 60D, a first calculation unit 60E, a drive control unit 60F, an observation image acquisition control unit 60G, and the like. including.
  • a part or all of the light source control unit 60A, the acquisition unit 60B, the reference focus control unit 60C, the focus control unit 60D, the first calculation unit 60E, the drive control unit 60F, and the observation image acquisition control unit 60G may be, for example, a CPU (Central).
  • the program may be executed by a processing unit such as Processing Unit), that is, it may be realized by software, it may be realized by hardware such as IC (Integrated Circuit), or it may be realized by using software and hardware together. It may be realized.
  • the light source control unit 60A controls the light source 18B so as to selectively irradiate the line illumination LA or the area illumination LB.
  • the line illumination LA or the area illumination LB is selectively illuminated from the light source 18B under the control of the light source control unit 60A.
  • the acquisition unit 60B acquires the first optical signal 74 from the image sensor 96 and acquires the second optical signal from the image sensor 34.
  • the reference focus control unit 60C adjusts the initial relative position between the objective lens 22 and the measurement target area 25.
  • the relative position between the objective lens 22 and the measurement target area 25 is the other relative position with respect to either the objective lens 22 or the measurement target area 25. This relative position is determined, for example, by the distance between the objective lens 22 and the measurement target area 25 in the Z-axis direction.
  • the initial relative position means a relative position for pre-adjustment before obtaining an image to be used for analysis of the sample T included in the measurement target area 25. That is, the reference focus control unit 60C executes the reference focus process for pre-adjustment.
  • the reference focus control unit 60C adjusts the focus of the objective lens 22 by the contrast method using the second optical signal acquired by the acquisition unit 60B. Specifically, the reference focus control unit 60C executes the reference focus process by using the second optical signal indicating the light intensity value of the light emitted from the calibration region 27 in the measurement target region 25 by the irradiation of the area illumination LB. do. The reference focus control unit 60C calculates the contrast ratio of the light intensity values between adjacent pixels included in the second optical signal. Then, the reference focus control unit 60C repeats the control of the fourth drive unit 47 and the calculation of the contrast ratio. The reference focus control unit 60C adjusts the initial relative position of the objective lens 22 to the position where the contrast ratio is maximized.
  • the reference focus control unit 60C may adjust the focus of the objective lens 22 by a contrast method using the first optical signal 74.
  • the focus control unit 60D is at least one of a plurality of optical components included in the light source unit 18, the image pickup unit 31, and at least one of the light source unit 18 and the image pickup unit 31 based on the light intensity distribution of the first optical signal 74. , At least one of the relative positions and relative orientations selected from, is changed.
  • Changing the relative position means changing the position relative to at least one of the optical components and at least one of the other optical components.
  • the relative position is defined by, for example, the distance in the direction along the optical axis direction, the relative position coordinates of one optical component with respect to the other optical component, and the like.
  • Changing the relative attitude means changing the relative attitude of at least one optical component to at least one of the other optical components.
  • the relative posture is represented by, for example, a rotation angle from the current posture, a relative angle with respect to other optical components, and the like.
  • the focus control unit 60D changes at least one relative position of a plurality of optical components included in at least one of the light source unit 18 and the imaging optical unit 30 will be described as an example.
  • the focus control unit 60D includes a first calculation unit 60E and a drive control unit 60F.
  • the first calculation unit 60E calculates the distribution width of the light intensity distribution of the first optical signal 74.
  • FIG. 6A is an explanatory diagram of the distribution width W of the light intensity distribution of the first optical signal 74.
  • the first optical signal 74 includes a line-shaped light receiving region 75 corresponding to the area illumination LB.
  • the first calculation unit 60E calculates the width of the light receiving region 75 as the distribution width W.
  • the width of the light receiving region 75 is a length in a direction (arrow YA direction) orthogonal to the longitudinal direction (arrow XA direction) of the light receiving region 75.
  • FIG. 6B is a diagram showing an example of the light intensity distribution 80 of the first optical signal 74.
  • the vertical axis indicates the position of the first optical signal 74 in the arrow YA direction
  • the horizontal axis indicates the light intensity value.
  • the first calculation unit 60E specifies a region having a light intensity value equal to or higher than the threshold value T in the light intensity distribution 80 of the first light signal 74 as the light receiving region 75, and sets the width of the light receiving region 75 in the arrow YA direction. , Calculated as the distribution width W.
  • the threshold value T may be set in advance.
  • the drive control unit 60F moves at least one of a plurality of optical components included in at least one of the light source unit 18 and the imaging optical unit 30 to a relative position where the distribution width W is equal to or less than the first threshold value.
  • the drive control unit 60F will describe, as an example, a mode in which the light source focus lens 18D included in the light source unit 18 is moved to a relative position where the distribution width W is equal to or less than the first threshold value.
  • the distribution width W of the light intensity distribution 80 of the first optical signal 74 also changes.
  • FIG. 7 is a diagram showing an example of the relationship between the relative position of the light source focus lens 18D and the number of pixels indicating the distribution width W.
  • the distance between the light source focus lens 18D and the light source 18B is changed stepwise from a short distance to a long distance, and the distribution width of the first optical signal 74 obtained by the image sensor 34 in each step.
  • the change of W was shown.
  • the distribution width W changes with a change in the relative position of the light source focus lens 18D.
  • FIG. 8 is a schematic diagram showing an example of the first optical signal 74.
  • the first optical signal 74 (first optical signal 74A to first optical signal 74C) shown in FIG. 8 sets the distance between the light source focus lens 18D and the light source 18B from the first optical signal 74A toward the first optical signal 74C. This is an example of the first optical signal 74 detected at each stage when the size is gradually reduced. Further, the first optical signal 74B is an example of the first optical signal 74 when the subject is in focus.
  • the first optical signal 74A is an example of the first optical signal 74 when the relative position of the light source focus lens 18D is at the position of PA in FIG. 7.
  • the first optical signal 74B is an example of the first optical signal 74 when the relative position of the light source focus lens 18D is at the position of PB in FIG. 7.
  • the first optical signal 74C is an example of the first optical signal 74 when the relative position of the light source focus lens 18D is the position of the PC in FIG. 7.
  • the longer the distance between the light source 18B and the light source focus lens 18D the wider the distribution width W. Further, the closer the light source 18B and the light source focus lens 18D are, the wider the distribution width W becomes.
  • the drive control unit 60F moves the light source focus lens 18D to a relative position where the distribution width W is equal to or less than the first threshold value.
  • the drive control unit 60F moves the light source focus lens 18D in the optical axis A direction by controlling the first drive unit 44, and moves the light source focus lens 18D to the relative position.
  • the first threshold value may be set in advance.
  • the drive control unit 60F changes the distance between the light source 18B and the light source focus lens 18D stepwise by driving and controlling the first drive unit 44 provided in the light source unit 18.
  • the first calculation unit 60E calculates the distribution width W of the first optical signal 74 acquired in each step.
  • the drive control unit 60F repeats the movement of the light source focus lens 18D, the acquisition of the first optical signal 74, and the calculation of the distribution width W by a predetermined number of times N.
  • the number of repetitions N may be an integer of 3 or more.
  • the number of repetitions N may be set in advance.
  • the drive control unit 60F may set the minimum value within the distribution width W of the first optical signal 74 acquired in each of the N repetitions as the first threshold value.
  • the drive control unit 60F specifies the relative position of the light source focus lens 18D when the first optical signal 74 having the minimum distribution width W is acquired. Then, the drive control unit 60F moves the light source focus lens 18D to the specified relative position by driving and controlling the first drive unit 44.
  • the drive control unit 60F can move the light source focus lens 18D to a position where the image of the light emitted from the measurement target area 25 is focused on the image sensor 34.
  • the observation image acquisition control unit 60G acquires an observation image.
  • the observation image is an image captured for use in analysis of the sample T or the like.
  • the observation image acquisition control unit 60G drives the third drive unit 46 to move the stage 26 stepwise in the Y-axis direction.
  • the line illumination LA that irradiates the measurement target area 25 placed on the stage 26 is scanned in the scanning direction (Y-axis direction).
  • the observation image acquisition control unit 60G repeatedly executes scanning in the scanning direction of the line illumination LA and imaging by the imaging sensor 34 to acquire an observation image which is an captured image of the entire measurement target region 25. That is, the drive control unit 60F acquires the observation image by acquiring the first optical signal 74 at each scanning position in the scanning direction.
  • the observation image acquisition control unit 60G may control the light source unit 18A so as to irradiate the area illumination LB when the observation image is acquired. In this case, the observation image acquisition control unit 60G acquires the observation image by acquiring the second optical signal.
  • the focus control unit 60D moves the light source focus lens 18D to a position where the image of the light emitted from the measurement target area 25 is focused on the image pickup sensor 34. It is in a state of being. Therefore, the observation image acquisition control unit 60G can acquire the focus-adjusted observation image.
  • the observation image acquisition control unit 60G outputs the acquired observation image to an external device such as the server device 10 via the communication unit 64.
  • the observation image acquisition control unit 60G may store the acquired observation image in the storage unit 62. Further, the observation image acquisition control unit 60G may output the observation image to the display connected to the control unit 60.
  • observation image acquisition control unit 60G may analyze the type of the sample T or the like by analyzing the acquired observation image by a known method, and output the analysis result to the server device 10 or the like.
  • FIG. 9 is a flowchart showing an example of the flow of information processing executed by the control device 16. Before the control device 16 executes the following information processing, it is assumed that the measurement target area 25 including the measurement target member 24 including the sample T and the calibration area 27 is placed. The measurement target area 25 may be placed on the stage 26 manually, or may be automatically controlled by using a loader, a manipulator, or the like.
  • control unit 60 drives and controls the third drive unit 46 so that the calibration area 27 is located within the imaging area of the imaging unit 31.
  • the calibration area 27 is moved into the imaging area of the imaging unit 31 (step S100).
  • the light source control unit 60A controls the light source 18B so as to turn off the line illumination LA and turn on the area illumination LB (step S102).
  • the acquisition unit 60B acquires the second optical signal from the image sensor 34 (step S104).
  • the reference focus control unit 60C executes the reference focus process using the second optical signal acquired in step S104 (step S106). In step S106, the reference focus control unit 60C adjusts the initial relative position of the objective lens 22 to the position where the contrast ratio is maximized by the contrast method.
  • the light source control unit 60A controls the light source 18B so as to turn off the area illumination LB and turn on the line illumination LA (step S108).
  • the acquisition unit 60B acquires the first optical signal 74 from the image sensor 34 (step S116).
  • the first calculation unit 60E of the focus control unit 60D calculates the distribution width W of the first optical signal 74 acquired in step S110 (step S112).
  • the drive control unit 60F drives and controls the first drive unit 44 to move the light source focus lens 18D along the optical axis A1 by a predetermined distance (step S114).
  • the acquisition unit 60B acquires the first optical signal 74 imaged with the light source focus lens 18D moved by the process of step S114 or step S122 described later from the image sensor 34 via the acquisition unit 60B (step S116). ).
  • the first calculation unit 60E calculates the distribution width W of the first optical signal 74 acquired in step S116 (step S118).
  • the drive control unit 60F determines whether or not the distribution width W calculated in step S118 is narrower than the initial distribution width W calculated in step S116 (step S120).
  • step S120 If a negative determination is made in step S120 (step S120: No), the process proceeds to step S122.
  • step S122 the drive control unit 60F moves the light source focus lens 18D along the optical axis A1 by a predetermined distance in the direction opposite to the moving direction of step S114 (step S122). Then, the process returns to step 114.
  • step S120 If an affirmative judgment is made in step S120 (step S120: Yes), the process proceeds to step S124.
  • the drive control unit 60F determines whether or not the processes of steps S114 to S120 have been repeated for a predetermined number of times N (step S124).
  • step S124: No If a negative determination is made in step S124 (step S124: No), the process returns to step S114. If an affirmative determination is made in step S124 (step S124: Yes), the process proceeds to step S126.
  • step S126 the drive control unit 60F moves the light source focus lens 18D to the position of the minimum distribution width, which is the minimum value in the distribution width W of the first optical signal 74 acquired in each of the N times of repetition. (Step S126). That is, the drive control unit 60F moves the light source focus lens 18D to the relative position of the light source focus lens 18D when the first optical signal 74 having the minimum distribution width W is acquired.
  • step S126 the light source focus lens 18D is in a state of being arranged at a position where the image of the light emitted from the measurement target area 25 is focused on the image pickup sensor 34.
  • the observation image acquisition control unit 60G acquires the observation image. Specifically, the observation image acquisition control unit 60G moves the stage 26 to the initial position in the scanning direction (Y-axis direction) of the line illumination LA by driving the third drive unit 46 (step S128).
  • the initial position is a region outside the calibration region 27, that is, a region where the sample T exists.
  • the measurement target region 25 in which the sample T exists is moved into the imaging region of the imaging unit 31 and the imaging optical unit.
  • the observation image acquisition control unit 60G acquires the observation image for one scanning line by acquiring the first optical signal 74 from the image sensor 96 (step S130).
  • the observation image acquisition control unit 60G determines whether or not the first optical signal 74 for all the scanning lines in the measurement target member 24 has been acquired (step S132). If a negative determination is made in step S132 (step S132: No), the process proceeds to step S134.
  • step S134 the observation image acquisition control unit 60G controls the third drive unit 46 so as to move the irradiation region of the line illumination LA in the scanning direction (Y-axis direction) by one step (step S134). Then, the process returns to step S130.
  • step S132 If an affirmative judgment is made in step S132 (step S132: Yes), the process proceeds to step S136.
  • step S136 the observation image acquisition control unit 60G outputs observation images, which are a plurality of first optical signals 74 at each scanning position in the scanning direction, to the server device 10 via the communication unit 64 (step S136). Then, this routine is terminated.
  • steps S102 to S128 may be performed every time an observation image is acquired, or may be performed once before acquiring a plurality of observation images. Further, when the processes of steps S102 to S128 are executed for each acquisition of the plurality of observed images, the frequency of drive control of the light source focus lens 18D may be reduced as the number of executions increases.
  • the microscope system 1 of the present embodiment includes a light source unit 18, an objective lens 22, an acquisition unit 60B, and a focus control unit 60D.
  • the light source unit 18A irradiates the line illumination LA parallel to the first direction.
  • the objective lens 22 concentrates the line illumination LA on the measurement target area 25.
  • the acquisition unit 60B acquires the first optical signal 74 indicating the light intensity value of the light emitted from the measurement target region 25 by the line illumination LA from the imaging unit 31 that captures the optical signal.
  • the focus control unit 60D Based on the light intensity distribution 80 of the first optical signal 74, the focus control unit 60D has at least one of the relative positions and the relative postures of at least one of the plurality of optical components included in at least one of the light source unit 18 and the image pickup unit 31. To change.
  • the intensity of the line illumination LA emitted from the light source unit 18 and the optical distance between the light source unit 18 and the image sensor 34 may fluctuate due to fluctuations in the environmental temperature or the like.
  • At least of the optical components other than the objective lens 22 are based on the light intensity distribution 80 of the first optical signal 74 of the light emitted from the measurement target region 25 by the irradiation of the line illumination LA. Change at least one of one relative position and one relative orientation.
  • the light source unit 18 is a unit that emits line illumination LA due to fluctuations in intensity and optical distance.
  • the image pickup unit 31 is a unit that receives the light emitted from the measurement target region 25 by the irradiation of the line illumination LA. Therefore, the detection error can be suppressed by changing at least one of the relative position and the relative posture of at least one of the plurality of optical components included in at least one of the light source unit 18 and the imaging optical unit 30. ..
  • the microscope system 1 of the present embodiment can suppress the detection error.
  • the relative position of at least one of a plurality of optical components included in at least one of the light source unit 18 and the imaging optical unit 30 is adjusted for the focus shift caused by the fluctuation of the environmental temperature or the like. By doing so, adjust. Therefore, it is not necessary to equip the light source unit 18 with a precise adjustment / fixing mechanism or temperature adjustment system for performing temperature correction. Therefore, in addition to the above effects, the microscope system 1 of the present embodiment can suppress a decrease in light utilization efficiency with a simple configuration.
  • the microscope system 1 of the present embodiment uses the measurement target area 25 including the calibration area 27 as the measurement target area 25. Then, the microscope system 1 is included in at least one of the light source unit 18 and the imaging unit 31 based on the light intensity distribution 80 of the first light signal 74 of the light emitted from the calibration region 27 by the irradiation of the line illumination LA. The relative position and relative orientation of at least one of the optical components of the light source is changed.
  • the microscope system 1C of the present embodiment can perform focus adjustment with high accuracy in addition to the above effects.
  • the microscope system 1 of the present embodiment in addition to the above effects, it is possible to reduce power consumption, suppress consumption of the light source 18B, and reduce costs.
  • the image pickup unit 31 is provided instead of the image pickup optical unit. Further, in the present embodiment, a mode of changing at least one relative position and relative posture of a plurality of optical components included in at least one of the light source unit 18 and the image pickup unit 31 will be described.
  • FIG. 10 is a schematic view showing an example of the microscope system 1B of the present embodiment.
  • the same functions or components as those in the above embodiment are designated by the same reference numerals, and duplicate description will be omitted.
  • the microscope system 1B includes an imaging device 13.
  • the image pickup device 13 is communicably connected to the server device 10 via, for example, a wireless communication network such as network N or a wired communication network.
  • the imaging device 13 includes a control device 17 and a measuring unit 15.
  • the measuring unit 15 has an optical mechanism for measuring the light emitted from the measurement target area 25.
  • the measuring unit 15 is applied to, for example, an optical microscope.
  • the measuring unit 15 includes a fifth driving unit 48 and a sixth driving unit 49 in addition to the configuration of the measuring unit 14 of the first embodiment. Further, the measuring unit 15 includes a focus detecting unit 36 instead of the imaging optical unit. That is, in the present embodiment, the image pickup unit 31 includes an image pickup optical unit 30 and a focus detection unit 36. Further, in the present embodiment, the imaging optical unit 30 includes an imaging spectroscope 34A instead of the imaging sensor 34.
  • the fifth drive unit 48 changes at least one assumed posture of the plurality of optical components included in the light source unit 18.
  • Changing the relative attitude means changing the relative attitude of at least one optical component to at least one of the other optical components.
  • the relative posture is represented by, for example, a rotation angle from the current posture, a relative angle with respect to other optical components, and the like.
  • the fifth drive unit 48 rotates the entire light source 18B with the optical axis A1 of the light source focus lens 18D as the center of rotation.
  • the fifth drive unit 48 describes a mode in which the light source 18B is rotated in the rotation direction (arrow X'direction) as an example.
  • the rotation of the light source 18B changes the longitudinal orientation of the line illumination LA emitted from the light source 18B.
  • the sixth drive unit 49 changes the relative posture of at least one of the plurality of optical components included in the imaging optical unit 30.
  • the sixth drive unit 49 rotationally drives the aperture member 35 with the optical axis of the imaging lens 32 as the center of rotation.
  • the sixth drive unit 49 describes a mode in which the opening member 35 is rotationally driven in the rotation direction (arrow Z'direction) as an example.
  • the rotational drive of the opening member 35 changes the orientation of the slit 37 provided in the opening member 35 in the longitudinal direction.
  • the focus detection unit 36 is an optical unit for dividing the light emitted from the measurement target region 25 irradiated with the line illumination LA into a plurality of (two or more) optical paths and obtaining a phase difference between the obtained images. ..
  • the focus detection unit 36 is an optical unit for obtaining a binocular pupil division image in which the pupil is divided into two by using two separator lenses will be described as an example.
  • the focus detection unit 36 includes a field lens 38, an aperture mask 39, a separator lens 40 including a separator lens 40A and a separator lens 40B, and a pupil division image imaging sensor 42.
  • the separator lens 40 includes a separator lens 40A and a separator lens 40B.
  • the light emitted from the measurement target area 25 by the line illumination LA passes through the objective lens 22 and the split mirror 20 and reaches the half mirror 28.
  • the half mirror 28 distributes a part of the light emitted from the measurement target area 25 to the imaging optical unit 30, and distributes the rest to the focus detection unit 36.
  • the distribution ratio of light to the imaging optical unit 30 and the focus detection unit 36 by the half mirror 28 may be the same ratio (for example, 50% or 50%) or may be different ratios. Therefore, a dichroic mirror may be used instead of the half mirror 28.
  • the light transmitted through the half mirror 28 reaches the imaging optical unit 30.
  • the light reflected by the half mirror 28 reaches the focus detection unit 36.
  • the aperture mask 39 has a pair of openings 39A and 39B at a target position with the optical axis of the field lens 38 as a boundary. The size of these pair of openings 39A and 39B is adjusted so that the depth of field of the separator lens 40A and the separator lens 40B is wider than the depth of field of the objective lens 22.
  • the diaphragm mask 39 divides the light incident from the field lens 38 into two luminous fluxes by a pair of openings 39A and 39B.
  • the separator lens 40A and the separator lens 40B collect the light flux transmitted through each of the openings 39A and 39B of the aperture mask 39 on the pupil split image imaging sensor 42, respectively. Therefore, the pupil division image imaging sensor 42 receives the two divided light fluxes.
  • the focus detection unit 36 may not be provided with the aperture mask 39.
  • the light that reaches the separator lens 40 via the field lens 38 is divided into two light fluxes by the separator lens 40A and the separator lens 40B, and is focused on the pupil division image imaging sensor 42.
  • the pupil split image imaging sensor 42 receives two divided light fluxes.
  • the pupil-divided image imaging sensor 42 captures a pupil-divided image composed of a set of light flux images, and outputs the pupil-divided image to the control device 17.
  • FIG. 11 is a schematic view showing an example of the pupil split image 70.
  • the pupil-split image 70 includes a pupil-split image 72 consisting of a set of images 72A and 72B.
  • the pupil division image 70 is an image corresponding to the position and brightness of the light received by each of the plurality of light receiving units 41 provided in the pupil division image imaging sensor 42.
  • the brightness of the light received by the light receiving unit 41 may be referred to as a light intensity value.
  • the image 72A and the image 72B included in the pupil-divided image 70 are light receiving regions, and are regions having a larger light intensity value than other regions.
  • the light source unit 18 irradiates the measurement target area 25 with the line illumination LA. Therefore, the light emitted from the measurement target region 25 irradiated with the line illumination LA becomes line-shaped light. Therefore, the images 72A and 72B constituting the pupil division image 72 are line-shaped images parallel to a predetermined direction. This predetermined direction is a direction that optically corresponds to the X-axis direction, which is the longitudinal direction of the line illumination LA.
  • the focus detection unit 36 may be an optical unit for obtaining the pupil division image 72, and the obtained pupil division image is not limited to the binocular pupil division image.
  • the focus detection unit 36 may be, for example, an optical unit that obtains a pupil division image of three or more eyes that divides the light emitted from the sample T into three or more light fluxes and receives the light.
  • the imaging optical unit 30 includes an imaging spectroscope 34A instead of the imaging sensor 34. Similar to the imaging sensor 34, the imaging spectroscope 34A receives the light emitted from the measurement target region 25 and outputs an optical signal. The imaging spectroscope 34A outputs a spectral image as an optical signal. Further, in the present embodiment, the first optical signal 74 is an image captured by the imaging spectroscope 34A when the line illumination LA is applied to the measurement target region 25.
  • control device 17 will be described.
  • the control device 17 is an example of an information processing device.
  • Control device 17 light source 18B, first drive unit 44, imaging spectroscope 34A, second drive unit 45, third drive unit 46, fourth drive unit 47, fifth drive unit 48, and sixth drive unit 49. Each is connected so that data or a signal can be exchanged.
  • FIG. 12 is a diagram showing an example of the functional configuration of the control device 17. Note that, for the sake of explanation, FIG. 12 shows a light source 18B, an imaging spectroscope 34A, a pupil split image imaging sensor 42, a first drive unit 44, a second drive unit 45, a third drive unit 46, and a fourth drive unit 47. , The fifth drive unit 48, and the sixth drive unit 49 are also shown.
  • the control device 17 includes a control unit 61, a storage unit 62, and a communication unit 64.
  • the control unit 61, the storage unit 62, and the communication unit 64 are connected to each other so that data or signals can be exchanged.
  • the control unit 61 includes a light source control unit 60A, an acquisition unit 60B, a reference focus control unit 61C, a focus control unit 61D, a second calculation unit 61E, a drive control unit 61F, an observation image acquisition control unit 61G, and the like.
  • the third calculation unit 61H and the like are included.
  • the program may be executed by a processing device such as a CPU, that is, it may be realized by software, it may be realized by hardware such as an IC, or it may be realized by using software and hardware together. May be good.
  • the light source control unit 60A controls the light source 18B so as to selectively irradiate the line illumination LA or the area illumination LB.
  • the acquisition unit 60B acquires the first optical signal 74 or the second optical signal from the imaging spectroscope 34A.
  • the reference focus control unit 61C executes the reference focus process in the same manner as the reference focus control unit 60C of the first embodiment.
  • the longitudinal direction of the slit 37 and the longitudinal direction of the irradiation region 82 in the opening member 35 coincide with each other.
  • the light emitted from the measurement target region 25 by the longitudinal direction of the slit 37 (direction of arrow XC) and the irradiation of the line illumination LA in the opening member 35.
  • the irradiation region 82 optically coincides with the longitudinal direction (arrow XD direction) of the above from the viewpoint of light utilization efficiency and the like.
  • the longitudinal direction of the slit 37 and the longitudinal direction of the irradiation region 82 may not match.
  • the slit 37 and the irradiation region 82 overlap over the entire region from one end to the other end in the longitudinal direction of the slit 37 from the viewpoint of light utilization efficiency and the like.
  • 13A to 13C are explanatory views of the positional relationship between the slit 37 and the irradiation region 82.
  • the irradiation region 82 of the light emitted by the measurement target region 25 due to the irradiation of the line illumination LA in the opening member 35 overlaps the entire region of the slit 37.
  • the longitudinal direction of the irradiation region 82 (arrow XD direction) and the longitudinal direction of the slit 37 (arrow XC direction) coincide with each other.
  • the slit 37 and the irradiation region 82 overlap over the entire region from one end to the other end of the slit 37 in the longitudinal direction.
  • the longitudinal direction of the slit 37 (arrow XC direction) and the longitudinal direction of the irradiation region 82 (arrow XD direction) may not match.
  • only a part of the slit 37 in the longitudinal direction allows the light of the irradiation region 82 to pass through. Therefore, in this case, of the light emitted by the measurement target region 25, only a part of the light in the longitudinal direction of the slit 37 reaches the imaging spectroscope 34A.
  • the line illumination LA it is assumed that a plurality of types of line illumination LAs in different wavelength regions are irradiated.
  • the line illumination LAA and the line illumination LAB in different wavelength regions are irradiated.
  • the line illumination LAA and the line illumination LAB are examples of the line illumination LA.
  • the light emitted from the measurement target region 25 by the irradiation of the line illumination LA in different wavelength regions may have different rotations.
  • the length of the light irradiation region 82 (light intensity distribution 82A, light intensity distribution 82B) emitted by the measurement target region 25 by irradiation of these plurality of types of line illumination LAs (LAA, LAB).
  • the directions XD (XDA, XDB) may be different from each other.
  • FIG. 14A and 14B are explanatory views of the wavelength intensity distribution based on the light intensity distribution 80 when the positional relationship between the slit 37 and the irradiation region 82 is in the state of FIG. 13C.
  • the vertical axis represents wavelength and the horizontal axis represents intensity.
  • a plurality of irradiation regions 82 (82A). , 82B) in the longitudinal direction XD (XDA, XDB) may be different from each other.
  • different light intensity distributions 80 can be obtained depending on the position of the slit 37 in the longitudinal direction (arrow XC direction) according to the inclination of the irradiation region 82. For example, different light intensities can be obtained at different positions n and m in the longitudinal direction of the slit 37.
  • the wavelength intensity distribution based on the light intensity distribution 80A at the position n in the longitudinal direction of the slit 37 and the wavelength intensity distribution based on the light intensity distribution 80B at the position m are different. ..
  • the sample included in the measurement target region 25 by connecting the light intensity distribution 82A and the light intensity distribution 82B of the light emitted from the measurement target region 25 by the irradiation of the line illumination LA of a plurality of different wavelength regions, the sample included in the measurement target region 25.
  • the distinctiveness of the plurality of dyes stained with T is enhanced.
  • the light intensity distribution 80 differs depending on the position of the slit 37 in the longitudinal direction, uneven detection of light by the imaging spectroscope 34A may occur, and the discrimination property of the dye may decrease.
  • the position of the light receiving region 75 in the first optical signal 74 may fluctuate due to fluctuations in the environmental temperature or the like.
  • FIG. 15 is an explanatory diagram of the deviation of the light receiving region 75 in the first optical signal 74.
  • the first optical signal 74D and the first optical signal 74E are examples of the first optical signal 74 acquired at different environmental temperatures.
  • the position of the light receiving region 75 is displaced by the amount of deviation D.
  • FIG. 16 is a diagram showing an example of the relationship between the ambient temperature and the amount of change in the position of the light receiving region 75. As shown in FIG. 16, the position of the light receiving region 75 also changes according to the fluctuation of the environmental temperature. For example, an increase of 5 ° C. from 25 ° C. to 30 ° C. may cause the position of the light receiving region 75 to shift by 55 ⁇ m.
  • the irradiation region 82 of the light emitted from the measurement target region 25 and the slit 37 may be displaced from each other, and the light utilization efficiency of the imaging spectroscope 34A may decrease. Further, when a plurality of dyes are discriminated by using line illumination LA of a plurality of wavelengths, the apparent wavelength characteristics are changed, so that the discriminability between the dyes stained on the sample T is deteriorated.
  • the focus control unit 61D of the present embodiment has at least one relative position of a plurality of optical components included in at least one of the light source unit 18 and the image pickup unit 31 based on the light intensity distribution 80 of the first optical signal 74. Change at least one of the relative postures.
  • the focus control unit 61D has a second calculation unit 61E and a drive control unit 61F.
  • the second calculation unit 61E is the light intensity distribution 80 of the first optical signal 74 acquired in a state where the longitudinal direction of the irradiation region 82 in the opening member 35 and the longitudinal direction of the slit 37 of the opening member 35 intersect. Calculate the maximum light intensity value.
  • the maximum light intensity value of the light intensity distribution 80 means the maximum light intensity value among the light intensity values of each position along the longitudinal direction (arrow XC direction) of the slit 37 in the light intensity distribution 80.
  • the drive control unit 61F moves at least one of the plurality of optical components included in at least one of the light source unit 18 and the imaging optical unit 30 to a relative position where the calculated maximum light intensity value is equal to or higher than the second threshold value.
  • 17A to 17D are explanatory views of relative position control by the second calculation unit 61E and the drive control unit 61F.
  • 17A to 17D show the positional relationship between the slit 37 and the irradiation region 82 when the slit 37 is visually recognized from the direction orthogonal to the optical axis direction.
  • FIGS. 18A to 18D show an example of the light intensity distribution 80 (light intensity distribution 80C to 80F) of the first optical signal 74 corresponding to each of FIGS. 17A to 17D.
  • the horizontal axis corresponds to each position in the longitudinal direction (arrow XC direction) of the slit 37.
  • the vertical axis represents the light intensity value.
  • a plurality of drive control units 61F are included in at least one of the light source unit 18 and the imaging optical unit 30 so that the longitudinal direction of the irradiation region 82 and the longitudinal direction of the slit 37 intersect. Change the relative orientation of at least one of the optics.
  • the drive control unit 61F controls the fifth drive unit 48 so that the longitudinal direction of the slit 37 (arrow XC direction) and the longitudinal direction of the irradiation region 82 (arrow XD direction) intersect at a predetermined angle ⁇ .
  • the light source 18B is rotated.
  • the predetermined angle ⁇ may be predetermined.
  • the predetermined angle ⁇ is, for example, 30 °, but is not limited to 30 °.
  • the drive control unit 61F may rotate the opening member 35 by controlling the sixth drive unit 49.
  • FIG. 18A is a diagram showing an example of the light intensity distribution 80C of the first optical signal 74 when the slit 37 and the irradiation region 82 intersect at a predetermined angle ⁇ in the state shown in FIG. 17A.
  • the second calculation unit 61E calculates the maximum intensity value Imax of the light intensity distribution 80C.
  • the second calculation unit 61E calculates the light intensity value of the peak of the light intensity distribution 80C as the maximum intensity value Imax.
  • the drive control unit 61F maintains at least a state in which the longitudinal direction of the irradiation region 82 and the longitudinal direction of the slit 37 intersect with each other, and at least of a plurality of optical components included in at least one of the light source unit 18 and the imaging optical unit 30. Change one relative position.
  • a mode in which the drive control unit 61F controls the first drive unit 44 to move the light source focus lens 18D included in the light source unit 18 along the optical axis A1 will be described as an example.
  • the drive control unit 61F moves the light source focus lens 18D to a relative position where the maximum light intensity value is equal to or higher than the second threshold value.
  • the second threshold value may be set in advance.
  • the width of the irradiation region 82 changes.
  • 17B to 17D show irradiation when the light source focus lens 18D is moved along the optical axis A1 while maintaining the state of FIG. 17A at which the longitudinal direction of the irradiation region 82 and the longitudinal direction of the slit 37 intersect. It is a figure which shows the region 82.
  • the width of the irradiation region 82 changes depending on the position of the light source focus lens 18D.
  • the light intensity distribution 80 corresponding to each position of the light source focus lens 18D is shown in FIGS. 18B to 18D, for example.
  • 18B to 18D show the light intensity distribution 80 (light intensity distribution 80D to 80F) of the first optical signal 74 when the slit 37 and the irradiation region 82 are in the respective states of FIGS. 17B to 17D, respectively. It is a figure which shows an example.
  • the second calculation unit 61E calculates the maximum intensity value Imax of each of the light intensity distribution 80.
  • the drive control unit 61F changes the distance between the light source 18B and the light source focus lens 18D stepwise by driving and controlling the first drive unit 44.
  • the second calculation unit 61E calculates the maximum light intensity value Imax of the light intensity distribution 80 of the first light signal 74 acquired in each step. Then, the second calculation unit 61E and the drive control unit 61F repeat the movement of the light source focus lens 18D, the acquisition of the first optical signal 74, and the calculation of the maximum light intensity value Imax a predetermined number of times.
  • the number of repetitions M may be an integer of 3 or more. The number of repetitions M may be set in advance.
  • the drive control unit 61F may use the largest maximum light intensity value Imax among the maximum light intensity values Imax of the light intensity distribution 80 of the first light signal 74 acquired in each of the M repetitions as the second threshold value. good. In this case, the drive control unit 61F specifies the relative position of the light source focus lens 18D when the first optical signal 74 having the largest maximum light intensity value Imax is acquired. Then, the drive control unit 61F moves the light source focus lens 18D to the specified relative position by driving and controlling the first drive unit 44.
  • the drive control unit 61F can move the light source focus lens 18D to a position where the image of the light emitted from the measurement target region 25 is focused on the imaging spectroscope 34A.
  • the irradiation region 82 of the light emitted by the calibration region 27 due to the irradiation of the line illumination LA in the opening member 35 overlaps the entire region of the slit 37.
  • the longitudinal direction of the irradiation region 82 (arrow XD direction) and the longitudinal direction of the slit 37 (arrow XC direction) coincide with each other.
  • the slit 37 and the irradiation region 82 overlap over the entire region from one end to the other end of the slit 37 in the longitudinal direction.
  • the focus control unit 61D further executes the line alignment process.
  • the line alignment process is a process of matching the longitudinal direction of the slit 37 with the longitudinal direction of the irradiation region 82.
  • the focus control unit 61D has at least one relative posture of a plurality of optical components included in at least one of the light source unit 18 and the image pickup unit 31 so that the longitudinal direction of the irradiation region 82 and the longitudinal direction of the slit 37 coincide with each other. To change.
  • the second calculation unit 61E uses the light intensity distribution 80 of the first light signal 74 to calculate the difference between the maximum light intensity value and the minimum light intensity value of the light intensity distribution 80. Then, the drive control unit 61F rotates at least one of the slit 37 and the irradiation region 82 until the difference between the maximum light intensity value and the minimum light intensity value becomes equal to or less than the third threshold value.
  • the drive control unit 61F rotates at least one of the slit 37 and the light source 18B by driving and controlling at least one of the sixth drive unit 49 and the fifth drive unit 48. By this process, the drive control unit 61F rotates at least one of the slit 37 and the irradiation region 82.
  • 19A to 19C are explanatory views of the line alignment process.
  • 19A to 19C show the positional relationship between the slit 37 and the irradiation region 82 when the slit 37 is visually recognized from the direction orthogonal to the optical axis direction.
  • FIGS. 20A to 20C show an example of the light intensity distribution 80 (light intensity distribution 80E, 80G, 80H) of the first optical signal 74 corresponding to each of FIGS. 19A to 19C.
  • the horizontal axis corresponds to the position of the slit 37 in the longitudinal direction.
  • the vertical axis represents the light intensity value.
  • the light intensity distribution 80 is shown in FIGS. 20A to 20C by controlling the rotation stepwise so that the longitudinal direction of the slit 37 and the longitudinal direction of the irradiation region 82 coincide with each other. It shows the changes as shown. Further, the closer the longitudinal direction of the slit 37 and the longitudinal direction of the irradiation region 82 are to the same state, the smaller the difference between the maximum light intensity Imax and the minimum light intensity Imin of the light intensity distribution 80 becomes.
  • the second calculation unit 61E determines the maximum light intensity value Imax and the minimum light intensity value Imin of the light intensity distribution 80 for the light intensity distribution 80 of the first light signal 74 obtained in each rotation stage. Calculate the difference between.
  • the drive control unit 61F ends the rotation control when the difference between the maximum light intensity value Imax and the minimum light intensity value Imin of the light intensity distribution 80 becomes equal to or less than the third threshold value.
  • the third threshold value may be set in advance.
  • the difference between the maximum light intensity value Imax and the minimum light intensity value Imin of the light intensity distribution 80 shown in FIG. 20C is equal to or less than the third threshold value.
  • the longitudinal direction of the slit 37 and the longitudinal direction of the irradiation region 82 are substantially coincident, that is, substantially parallel.
  • the focus control unit 61D includes the plurality of optical components included in at least one of the light source unit 18 and the image pickup unit 31 so that the longitudinal direction of the irradiation region 82 and the longitudinal direction of the slit 37 coincide with each other. At least one relative posture can be changed.
  • the focus control unit 61D further performs an adjustment process.
  • the drive control unit 61F of the focus control unit 61D obtains the maximum light intensity value of the first optical signal 74 acquired in a state where the light source focus lens 18D is moved to a relative position specified before the line alignment process. Identify. That is, the drive control unit 61F can move the light source focus lens 18D to a position where the image of the light emitted from the measurement target region 25 is focused on the imaging spectroscope 34A.
  • the drive control unit 61F drives and controls the first drive unit 44 until the first optical signal 74 having the specified maximum light intensity value is acquired.
  • the light source focus lens 18D is moved again by the drive control of the first drive unit 44.
  • the slit 37 and the irradiation region 82 are overlapped over the entire region from one end to the other end in the longitudinal direction of the slit 37.
  • the light intensity distribution 80I obtained in this state has an improved light intensity value as compared with the light intensity distribution 80H (see FIG. 20C) obtained before the treatment.
  • the drive control unit 61F may move the position of the collimator lens 18C along the optical axis A1 by driving and controlling the first drive unit 44. Further, the drive control unit 61F may move both the collimator lens 18C and the light source focus lens 18D by driving and controlling the first drive unit 44. Further, the drive control unit 61F may drive and control an optical device such as a correction mirror while keeping the positions of the collimator lens 18C and the light source focus lens 18D fixed.
  • the focus control unit 61D can move the light source focus lens 18D to a position where the drive control unit 61F focuses the image of the light emitted from the measurement target region 25 on the imaging spectroscope 34A. .. Further, in the focus control unit 61D, the longitudinal direction of the irradiation region 82 and the longitudinal direction of the slit 37 coincide with each other, and the slit 37 and the irradiation region 82 are the entire region from one end to the other end of the slit 37 in the longitudinal direction. It can be adjusted to the overlapping state over.
  • the above processing is performed using the first optical signal 74 of the light from the calibration region 27 due to the irradiation of the line illumination LA.
  • the light intensity value represented by the light intensity distribution 80 of the first light signal 74 may show a different value depending on each position in the longitudinal direction of the slit 37. Specifically, in the light intensity distribution 80, the light intensity value in the central portion may be high and the light intensity value in the peripheral portion may be low.
  • the third calculation unit 61H calculates a correction coefficient for correcting the first optical signal 74.
  • FIG. 22A and 22B are explanatory views for calculating the correction coefficient.
  • FIG. 22A is a diagram showing an example of the light intensity distribution 80I before correction.
  • the light intensity distribution 80I is an example of the light intensity distribution 80.
  • FIG. 22B is a diagram showing an example of the corrected light intensity distribution 80I'.
  • the horizontal axis indicates each position in the arrow XA direction in the first optical signal 74.
  • the vertical axis shows the light intensity value.
  • the third calculation unit 61H normalizes the maximum light intensity value Imax in the light intensity distribution 80 of the light emitted from the calibration region 27 by irradiation with the line illumination LA of the reference wavelength as 1.0. Then, the light intensity distribution 80I shown in FIG. 22A is obtained. The third calculation unit 61H sets the correction coefficient at the pixel position so that the light intensity value represented by the light intensity distribution 80I is 1.0 over the entire region (that is, all pixels) of the first optical signal 74. Calculate for each. Then, the third calculation unit 61H stores the calculated correction coefficient in the storage unit 62 in association with the information indicating each pixel position.
  • the observation image acquisition control unit 61G may use the corrected light intensity distribution 80I'as an observation image.
  • the observation image acquisition control unit 61G acquires the observation image in the same manner as the observation image acquisition control unit 60G.
  • the observation image is an image captured for use in analysis of the sample T or the like.
  • the observation image acquisition control unit 61G drives the third drive unit 46 to move the stage 26 stepwise in the Y-axis direction.
  • the line illumination LA that irradiates the measurement target area 25 placed on the stage 26 is scanned in the scanning direction (Y-axis direction).
  • the observation image acquisition control unit 60G acquires an observation image which is an captured image of the entire measurement target region 25 by scanning the line illumination LA in the scanning direction and imaging with the imaging spectroscope 34A. That is, the drive control unit 60F acquires the observation image by acquiring the first optical signal 74 at each scanning position in the scanning direction.
  • the observation image acquisition control unit 61G corrects the light intensity value of the first optical signal 74 at each scanning position by using the correction coefficient of the corresponding pixel position stored in the storage unit 62. For example, the observation image acquisition control unit 61G smoothes the correction coefficient by creating a moving average or an approximate curve, and multiplies the first optical signal 74, which is the observation image, by the correction coefficient after the smoothing. , The corrected first optical signal 74 is obtained. Then, the observation image acquisition control unit 61G may acquire the corrected first optical signal 74 as an observation image.
  • FIG. 23 is a flowchart showing an example of the flow of information processing executed by the control device 17.
  • the measurement target area 25 including the measurement target member 24 including the sample T and the calibration area 27 is placed on the stage 26. It shall be.
  • the measurement target area 25 may be placed on the stage 26 manually, or may be automatically controlled by using a loader, a manipulator, or the like.
  • control unit 61 drives and controls the third drive unit 46 so that the calibration area 27 is located within the imaging area of the image pickup unit 31.
  • the calibration area 27 is moved into the imaging area of the imaging unit 31 (step S200).
  • the light source control unit 60A controls the light source 18B so as to turn off the line illumination LA and turn on the area illumination LB (step S202).
  • the acquisition unit 60B acquires the second optical signal from the imaging spectroscope 34A (step S204).
  • the reference focus control unit 61C executes the reference focus process using the second optical signal acquired in step S204 (step S206). In step S204, the reference focus control unit 61C adjusts the initial relative position of the objective lens 22 to the position where the contrast ratio is maximized by the contrast method.
  • the light source control unit 60A controls the light source 18B so as to turn off the area illumination LB and turn on the line illumination LA (step S208).
  • the drive control unit 61F of the focus control unit 61D sets at least one of the fifth drive unit 48 and the sixth drive unit 49 so that the longitudinal direction of the irradiation region 82 in the opening member 35 and the longitudinal direction of the slit 37 intersect.
  • Control step S210.
  • at least one of the light source 18B and the opening member 35 is rotationally driven, so that the longitudinal direction of the irradiation region 82 in the opening member 35 and the longitudinal direction of the slit 37 intersect.
  • the acquisition unit 60B acquires the first optical signal 74 from the imaging spectroscope 34A (step S212).
  • the second calculation unit 61E of the focus control unit 61D calculates the maximum light intensity value of the first optical signal 74 acquired in step S212 (step S214).
  • the drive control unit 61F moves the light source focus lens 18D included in the light source unit 18 by a predetermined distance along the optical axis A1 (step S216).
  • the acquisition unit 60B acquires the first optical signal 74 imaged in a state where the light source focus lens 18D is moved by the process of step S216 or step S224 described later from the imaging spectroscope 34A via the acquisition unit 60B (step). S218).
  • the second calculation unit 61E calculates the maximum light intensity value of the first optical signal 74 acquired in step S218 (step S220).
  • the drive control unit 61F determines whether or not the maximum light intensity value calculated in step S220 is less than the initial light intensity value which is the maximum light intensity value calculated in step S214 (step S222).
  • step S222 If a negative judgment is made in step S222 (step S222: No), the process proceeds to step S224.
  • step S224 the drive control unit 61F moves the light source focus lens 18D along the optical axis A1 by a predetermined distance in the direction opposite to the moving direction of step S216 (step S224). Then, the process returns to step 218.
  • step S222 If an affirmative judgment is made in step S222 (step S222: Yes), the process proceeds to step S226.
  • the drive control unit 61F determines whether or not the processes of steps S216 to S222 have been repeated a predetermined number of times M (step S226).
  • step S226 If a negative judgment is made in step S226 (step S226: No), the process returns to step S216. If an affirmative judgment is made in step S226 (step S226: Yes), the process proceeds to step S228.
  • step S228 the drive control unit 61F is relative at the time of acquisition of the first optical signal 74 showing the largest maximum intensity value among the maximum optical intensity values of the first optical signal 74 acquired in each of the M times of repetition.
  • the light source focus lens 18D is moved to the position (step S228).
  • the light source focus lens 18D can move the light source focus lens 18D to a position where the image of the light emitted from the measurement target region 25 is focused on the imaging spectroscope 34A.
  • the reference focus control unit 61C can move the light source focus lens 18D so as to be in the state shown in FIGS. 17C and 18C.
  • the focus control unit 61D further executes the line alignment process.
  • the acquisition unit 60B acquires the first optical signal 74 from the imaging spectroscope 34A (step S230).
  • the second calculation unit 61E of the focus control unit 61D calculates the difference between the maximum light intensity value and the minimum light intensity value of the light intensity distribution 80 of the first optical signal 74 acquired in step S230 (step S232). Then, the drive control unit 61F determines whether or not the difference calculated in step S232 is equal to or less than the third threshold value (step S234). If the difference exceeds the third threshold value (step S234: No), the process proceeds to step S236. In step S236, the drive control unit 61F drives and controls at least one of the sixth drive unit 49 and the fifth drive unit 48 to rotate at least one of the slit 37 and the light source 18B by a predetermined rotation angle (step S236). ). Then, the process returns to step S230.
  • step S234 If an affirmative judgment is made in step S234 (step S234: Yes), the process proceeds to step S238.
  • step S2308 As shown in FIG. 21A, the slit 37 and the irradiation region 82 are overlapped over the entire region from one end to the other end in the longitudinal direction of the slit 37. Further, as shown in FIG. 21B, the light intensity distribution 80I obtained in this state has an improved light intensity value as compared with the light intensity distribution 80H (see FIG. 20C) obtained before the treatment.
  • the third calculation unit 61H calculates a correction coefficient for correcting the first optical signal 74 (step S240).
  • the control unit 61 stores the correction coefficient calculated in step S240 in the storage unit 62 (step S242).
  • the observation image acquisition control unit 61G moves the stage 26 to the initial position in the scanning direction (Y-axis direction) of the line illumination LA by driving the third drive unit 46 (step S244).
  • the initial position in the present embodiment is a region outside the calibration region 27, that is, a region where the sample T exists.
  • the measurement target area 25 in which the sample T exists is moved into the imaging area of the imaging unit 31.
  • the observation image acquisition control unit 61G acquires the observation image for one scanning line by acquiring the first optical signal 74 from the imaging spectroscope 34A (step S246).
  • the observation image acquisition control unit 61G corrects the first optical signal 74 acquired in step S246 by using the correction coefficient stored in the storage unit 62 (step S248).
  • the observation image acquisition control unit 61G determines whether or not the first optical signal 74 for all the scanning lines in the measurement target member 24 has been acquired (step S250). If a negative determination is made in step S250 (step S250: No), the process proceeds to step S252.
  • step S252 the observation image acquisition control unit 61G controls the third drive unit 46 so as to move the irradiation region of the line illumination LA in the scanning direction (Y-axis direction) by one step (step S252). Then, the process returns to step S246.
  • step S250 If an affirmative judgment is made in step S250 (step S250: Yes), the process proceeds to step S254.
  • the observation image acquisition control unit 61G outputs the observation image, which is a plurality of corrected first optical signals 74 at each scanning position in the scanning direction, to the server device 10 via the communication unit 64 (step S254). ). Then, this routine is terminated.
  • the reference focus control unit 61C has acquired the first optical signal in a state where the longitudinal direction of the irradiation region 82 in the aperture member 35 and the longitudinal direction of the slit 37 intersect.
  • the maximum light intensity value of 74 is calculated.
  • at least one relative position of the plurality of optical components included in at least one of the image pickup unit 31 and the light source unit 18 is changed to a relative position where the maximum light intensity value becomes the second threshold value or more.
  • the microscope system 1B of the present embodiment has the following effects in addition to the effects of the first embodiment. That is, in the microscope system 1B, even when the position of the irradiation region 82 in the aperture member 35 fluctuates with respect to the slit 37, the image of the light emitted from the measurement target region 25 is accurately transmitted to the imaging spectroscope 34A. Can be focused.
  • a plurality of focus control units 61D are included in at least one of the light source unit 18 and the image pickup unit 31 so that the longitudinal direction of the irradiation region 82 and the longitudinal direction of the slit 37 coincide with each other. Change the relative orientation of at least one of the optical components of.
  • the microscope system 1B of the present embodiment even when the longitudinal direction of the irradiation region 82 and the longitudinal direction of the slit 37 do not match, it is possible to control so that these longitudinal directions match. Therefore, the microscope system 1B can further improve the light utilization efficiency in addition to the effect of the first embodiment.
  • the microscope system 1B of the present embodiment in addition to the above effects, it is possible to provide an observation image having high dye discrimination.
  • the microscope system 1 may change the relative position of the light source focus lens 18D based on the light distribution of the pupil division image 70 acquired from the focus detection unit 36 included in the image pickup unit 31.
  • the microscope system 1B uses the light intensity distribution of the image 72A or the image 72B, which is the pupil division image 72 included in the pupil division image 70, as the light intensity distribution 80 of the first optical signal 74, and is the same as described above. You just have to execute the process of.
  • the microscope system 1 and the microscope system 1B described in the above embodiment may be combined. That is, the configuration may include both the focus detection unit 36 and the imaging optical unit.
  • FIG. 24 is a schematic view showing an example of the microscope system 1C of this modified example.
  • the microscope system 1C has the same configuration as the microscope system 1 except that, for example, the microscope system 1 of the first embodiment is further provided with the focus detection unit 36.
  • the microscope system 1C includes an imaging device 99 instead of the imaging device 12.
  • the image pickup apparatus 99 includes a measurement unit 98 instead of the measurement unit 14.
  • the measuring unit 98 has the same configuration as the measuring unit 14 of the first embodiment except that the focus detecting unit 36 is further provided.
  • the same processing as in the above embodiment is performed except that the first optical signal 74 obtained by either the focus detection unit 36 or the image sensor 96 is used when the observation image is acquired. good.
  • FIG. 25 is a hardware configuration diagram showing an example of a computer 1000 that realizes the functions of the control device 16 according to the above embodiment and the modified example.
  • the computer 1000 has a CPU 1100, a RAM (Random Access Memory) 1200, a ROM (Read Only Memory) 1300, an HDD (Hard Disk Drive) 1400, a communication interface 1500, and an input / output interface 1600. Each part of the computer 1000 is connected by a bus 1050.
  • the CPU 1100 operates based on the program stored in the ROM 1300 or the HDD 1400, and controls each part. For example, the CPU 1100 expands the program stored in the ROM 1300 or the HDD 1400 into the RAM 1200 and executes a process corresponding to the program.
  • the ROM 1300 stores a boot program such as a BIOS (Basic Input Output System) executed by the CPU 1100 when the computer 1000 is started, a program depending on the hardware of the computer 1000, and the like.
  • BIOS Basic Input Output System
  • the HDD 1400 is a computer-readable recording medium that non-temporarily records a program executed by the CPU 1100 and data used by the program.
  • the HDD 1400 is a recording medium for recording the program according to the present disclosure, which is an example of the program data 1450.
  • the communication interface 1500 is an interface for the computer 1000 to connect to an external network 1550 (for example, the Internet).
  • the CPU 1100 receives data from another device or transmits data generated by the CPU 1100 to another device via the communication interface 1500.
  • the input / output interface 1600 is an interface for connecting the input / output device 1650 and the computer 1000.
  • the CPU 1100 receives data from an input device such as a keyboard or mouse via the input / output interface 1600. Further, the CPU 1100 transmits data to an output device such as a display, a speaker, or a printer via the input / output interface 1600. Further, the input / output interface 1600 may function as a media interface for reading a program or the like recorded on a predetermined recording medium (media).
  • the media includes, for example, an optical recording medium such as a DVD (Digital Paris Disc), a PD (Phase change rewritable Disc), a magneto-optical recording medium such as an MO (Magnet-Optical disc), a tape medium, a magnetic recording medium, a semiconductor memory, or the like.
  • an optical recording medium such as a DVD (Digital entirely Disc), a PD (Phase change rewritable Disc), a magneto-optical recording medium such as an MO (Magnet-Optical disc), a tape medium, a magnetic recording medium, a semiconductor memory, or the like.
  • the CPU 1100 of the computer 1000 executes the program loaded on the RAM 1200 to execute the light source control unit 60A and the acquisition unit 60B.
  • Reference focus control unit 60C, focus control unit 60D, first calculation unit 60E, drive control unit 60F, observation image acquisition control unit 60G, reference focus control unit 61C, focus control unit 61D, second calculation unit 61E, drive control unit 61F , Observation image acquisition control unit 61G, third calculation unit 61H, and the like are realized.
  • the program and data related to the present disclosure are stored in the HDD 1400.
  • the CPU 1100 reads the program data 1450 from the HDD 1400 and executes the program, but as another example, these programs may be acquired from another device via the external network 1550.
  • the present technology can also have the following configurations.
  • a light source unit that irradiates line illumination parallel to the first direction, An objective lens that concentrates the line illumination on the measurement target area, and An acquisition unit that acquires a first optical signal indicating a light intensity value of light emitted from the measurement target region by the line illumination, and an acquisition unit.
  • a focus control unit that controls at least one of the relative position and the relative posture of the light source unit and the imaging unit that generates the first optical signal based on the light intensity distribution of the first optical signal.
  • the focus control unit The first calculation unit that calculates the distribution width of the light intensity distribution of the first optical signal, and A drive control unit that moves at least one of a plurality of optical components included in at least one of the light source unit and the imaging unit to a relative position where the distribution width is equal to or less than the first threshold value.
  • the measurement target area is Includes a sample and a calibration region that emits light in the second specific wavelength region by irradiation with light in the first specific wavelength region.
  • the imaging unit The light emitted from the measurement target region is received through the opening member having a slit parallel to the second direction, and the light is received.
  • the focus control unit At least of a plurality of optical components included in at least one of the light source unit and the imaging unit based on the light intensity distribution of the first optical signal indicating the light intensity value of the light emitted from the calibration region by the line illumination. Change at least one of one relative position and relative orientation, The microscope system according to any one of (1) to (3) above.
  • the focus control unit The maximum light intensity distribution of the first optical signal acquired in a state where the longitudinal direction of the irradiation region of the light emitted from the calibration region by the line illumination and the longitudinal direction of the slit in the opening member intersect.
  • the second calculation unit that calculates the light intensity value and A drive control unit that moves at least one of the plurality of optical components to a relative position where the maximum light intensity value is equal to or higher than a second threshold value.
  • the microscope system according to (4) above.
  • the drive control unit At least one of the light source unit, the image pickup unit, and a plurality of optical components included in at least one of the light source unit and the image pickup unit so that the longitudinal direction of the irradiation region and the longitudinal direction of the slit coincide with each other. Change at least one relative posture selected from, The microscope system according to (5) above.
  • a third calculation unit for calculating a correction coefficient for correcting the light intensity value of the first optical signal is provided.
  • the microscope system according to any one of (1) to (6) above.
  • An imaging method performed by a computer A step of acquiring a first optical signal indicating a light intensity value of light emitted from a measurement target area by line illumination parallel to the first direction, and At least one relative position and relative of a plurality of optical components included in at least one of a light source unit that irradiates the line illumination and an imaging unit that generates the first optical signal based on the light intensity distribution of the first optical signal. Steps to change at least one of the postures, Imaging method including. (9) An imaging device including a measuring unit and software used to control the operation of the measuring unit.
  • the software is installed in the imaging device and
  • the measuring unit A light source unit that irradiates line illumination parallel to the first direction, An objective lens that concentrates the line illumination on the measurement target area, and Equipped with an imaging unit
  • the software A first optical signal indicating the light intensity value of the light emitted from the measurement target region by the line illumination is acquired from the imaging unit. At least one of the relative positions and the relative postures of at least one of the plurality of optical components included in at least one of the light source unit and the imaging unit is changed based on the light intensity distribution of the first optical signal. Imaging device.
  • Microscope system 18 Light source unit 18B Light source 18D Light source Focus lens 22 Objective lens 25 Measurement target area 27 Calibration area 31 Imaging unit 35 Aperture member 37 Slit 44 1st drive unit 45 2nd drive unit 46 3rd drive unit 47 4th drive unit 48 5th drive unit 49 6th drive unit 60B Acquisition unit 60C, 61C Reference focus control unit 60D, 61D Focus control unit 60E 1st calculation unit 60F, 61F Drive control unit 61E 2nd calculation unit 61H 3rd calculation Part 74 1st light signal 80 Light intensity distribution

Abstract

顕微鏡システムは、第1方向に平行なライン照明を照射する光源部と、前記ライン照明を測定対象領域へ集光する対物レンズと、前記ライン照明により前記測定対象領域から発せられた光の光強度値を示す第1光信号を取得する取得部と、前記第1光信号の光強度分布に基づいて、前記光源部および前記第1光信号を生成する撮像部の相対位置および相対姿勢のうちの少なくとも1つを制御するフォーカス制御部とを備える。

Description

顕微鏡システム、撮像方法、および撮像装置
 本開示は、顕微鏡システム、撮像方法、および撮像装置に関する。
 測定対象領域へ光を照射し、測定対象領域から発せられた光を受光することで、撮像画像を得る技術が開示されている。例えば、ライン照明の照射により測定対象領域から発せられた光をラインセンサで受光する。そして、光の受光強度のコントラスト比を用いて、測定対象領域へ光を集光させる対物レンズの位置を調整することで、フォーカス調整する技術が開示されている。
特開2005-292839号公報
 しかし、測定された光波長特性によって測定対象領域に含まれる検体の特性を調べる場合には、強度変動が検出誤差につながる恐れがあった。
 そこで、本開示では、検出誤差を抑制可能な、顕微鏡システム、撮像方法、および撮像装置を提案する。
 上記の課題を解決するために、本開示に係る一形態の顕微鏡システムは、第1方向に平行なライン照明を照射する光源部と、前記ライン照明を測定対象領域へ集光する対物レンズと、前記ライン照明により前記測定対象領域から発せられた光の光強度値を示す第1光信号を取得する取得部と、前記第1光信号の光強度分布に基づいて、前記光源部および前記第1光信号を生成する撮像部の相対位置および相対姿勢のうちの少なくとも1つを制御するフォーカス制御部とを備える。
本開示の第1の実施形態に係る顕微鏡システムの一例を示す模式図である。 本開示の第2の実施形態に係る測定対象領域の一例を示す模式図である。 本開示の第2の実施形態に係る測定対象領域の一例を示す模式図である。 本開示の第1の実施形態に係る開口部材の一例の模式図である。 本開示の第1の実施形態に係る照射領域の説明図である。 本開示の第1の実施形態に係る第1光信号の一例を示す模式図である。 本開示の第1の実施形態に係る制御装置の機能的構成の一例を示す図である。 本開示の第1の実施形態に係る第1光信号の光強度分布の分布幅の説明図である。 本開示の第1の実施形態に係る第1光信号の光強度分布の一例を示す線図である。 本開示の第1の実施形態に係る光源フォーカスレンズの相対位置と分布幅との関係の一例を示す線図である。 本開示の第1の実施形態に係る第1光信号の一例を示す模式図である。 本開示の第1の実施形態に係る情報処理の流れの一例を示すフローチャートである。 本開示の第2の実施形態に係る顕微鏡システムの一例を示す模式図である。 本開示の第1の実施形態に係る瞳分割画像の一例を示す模式図である。 本開示の第2の実施形態に係る制御装置の機能的構成の一例を示す図である。 本開示の第2の実施形態に係るスリットと照射領域との位置関係の説明図である。 本開示の第2の実施形態に係るスリットと照射領域との位置関係の説明図である。 本開示の第2の実施形態に係るスリットと照射領域との位置関係の説明図である。 本開示の第2の実施形態に係る光強度分布に基づく波長強度分布の説明図である。 本開示の第2の実施形態に係る光強度分布に基づく波長強度分布の説明図である。 本開示の第2の実施形態に係る光受光領域のずれの説明図である。 本開示の第2の実施形態に係る環境温度と位置変化量との関係の一例を示す図である。 本開示の第2の実施形態に係る相対位置の制御の説明図である。 本開示の第2の実施形態に係る相対位置の制御の説明図である。 本開示の第2の実施形態に係る相対位置の制御の説明図である。 本開示の第2の実施形態に係る相対位置の制御の説明図である。 本開示の第2の実施形態に係る第1光信号の光強度分布の一例を示す図である。 本開示の第2の実施形態に係る第1光信号の光強度分布の一例を示す図である。 本開示の第2の実施形態に係る第1光信号の光強度分布の一例を示す図である。 本開示の第2の実施形態に係る第1光信号の光強度分布の一例を示す図である。 本開示の第2の実施形態に係るライン合わせ処理の説明図である。 本開示の第2の実施形態に係るライン合わせ処理の説明図である。 本開示の第2の実施形態に係るライン合わせ処理の説明図である。 本開示の第2の実施形態に係る第1光信号の光強度分布の一例を示す図である。 本開示の第2の実施形態に係る第1光信号の光強度分布の一例を示す図である。 本開示の第2の実施形態に係る第1光信号の光強度分布の一例を示す図である。 本開示の第2の実施形態に係るスリットと照射領域との位置関係の一例を示す模式図である。 本開示の第2の実施形態に係る第1光信号の光強度分布の一例を示す図である。 本開示の第2の実施形態に係る補正係数算出の説明図である。 本開示の第2の実施形態に係る補正係数算出の説明図である。 本開示の第2の実施形態に係る情報処理の流れの一例を示すフローチャートである。 本開示の変形例に係る顕微鏡システムの一例を示す模式図である。 本開示の実施形態および変形例に係るハードウェア構成図である。
 以下に、本開示の実施形態について図面に基づいて詳細に説明する。なお、以下の実施形態において、同一の部位には同一の符号を付与し、重複する説明を省略する。
(第1の実施形態)
 図1は、本実施形態の顕微鏡システム1の一例を示す模式図である。
 顕微鏡システム1は、ライン照明LAを測定対象領域25へ照射し、測定対象領域25から発せられた光を受光するシステムである。ライン照明LAおよび測定対象領域25の詳細は後述する。
 顕微鏡システム1は、撮像装置12を備える。撮像装置12は、例えば、ネットワークNなどの無線通信網または有線通信網を介してサーバ装置10に通信可能に接続されている。サーバ装置10は、コンピュータでもよい。
 本実施形態では、後述する対物レンズ22と検体Tとが互いに近づく方向および離れる方向に沿った方向を、Z軸方向と称して説明する。また、Z軸方向は、検体Tの厚み方向に一致するものとして説明する。また、本実施形態では、Z軸方向と、対物レンズ22の光軸A2と、が平行である場合を想定して説明する。また、後述するステージ26は、Z軸方向に直交する2軸(X軸方向およびY軸方向)によって表される二次元平面であるものとする。ステージ26の二次元平面に平行な平面を、XY平面と称して説明する場合がある。これらの各部の詳細は後述する。
 撮像装置12は、測定部14と、制御装置16と、を備える。測定部14と制御装置16とは、データまたは信号を授受可能に接続されている。
 測定部14は、測定対象領域25から発せられた光を測定する光学機構を有する。測定部14は、例えば、光学顕微鏡に適用される。
 測定部14は、光源ユニット18と、分割ミラー20と、対物レンズ22と、ステージ26と、ハーフミラー28と、撮像ユニット31と、第3駆動部46と、第4駆動部47と、を備える。撮像ユニット31は、撮像光学ユニット30と、撮像光学ユニットと、を含む。分割ミラー20は、測定対象に応じてハーフミラーもしくはダイクロイックミラーを選択する。
 光源ユニット18は、ライン照明LAと、エリア照明LBと、を照射する。光源ユニット18は、ライン照明LAと、エリア照明LBと、を切替えて選択的に照射する。なお、光源ユニット18は、エリア照明LBをライン照明LAで代用してもよい。
 光源ユニット18は、光源部18Aと、光源フォーカスレンズ18Dと、第1駆動部44と、を備える。光源部18Aは、光源18Bと、コリメータレンズ18Cと、を含む。
 光源18Bは、ライン照明LAとエリア照明LBとを、選択的に切替えて発光する光源である。ライン照明LAおよびエリア照明LBへの切替えは、制御装置16の制御によって行われる。
 ライン照明LAとは、第1方向に平行なライン状の形状の光である。ライン状とは、光源18Bから照射されたライン照明LAの、光軸A1に対する直交断面の形状を示す。言い換えると、ライン状とは、光源18Bから照射されたライン照明LAが検体Tを照射する照明光の形状を示す。光軸A1は、光源18Bから分割ミラー20までの光軸を示す。言い換えると、光軸A1は、コリメータレンズ18Cおよび光源フォーカスレンズ18Dの光軸である。
 詳細には、ライン照明LAとは、光軸に直交する二次元平面における、光束の第1方向の長さが、該第1方向に直交する方向に対して、数倍(例えば、100倍以上)以上の長さの光である。本実施形態では、ライン照明LAの長手方向である第1方向が、図1中のX軸方向に略平行である場合を一例として説明する。X軸方向の詳細は後述する。なお、略平行であるとは、方向が完全に一致する形態に限定されず、所定範囲の角度で傾いた状態も含むものとする。
 エリア照明LBとは、後述する検体Tの撮像時などに照射される光である。具体的には、エリア照明LBは、ライン照明LAよりY軸方向の広い領域に照射される光である。
 例えば、光源18Bは、光路中に配置されたシリンドリカルレンズ18Eを用い、1方向だけに集光することで、ライン照明LAを照射する。また、光源18Bは、X軸方向に平行なスリットを介して光を照射することで、ライン照明LAを照射してもよい。
 なお、光源18Bは、レーザダイオードを複数配列した構成に限定されない。例えば、光源18Bには、ブロードなスペクトル帯域を持つ水銀ランプやハロゲンランプを用いてもよいし、狭帯域なレーザ光源を用いてもよい。
 また、光源18Bは、測定対象領域25に含まれる検体Tが蛍光を発する波長領域の光を選択的に照射する光源18Bであってもよい。また、光源ユニット18に、該波長領域の光を選択的に透過するフィルタを設けた構成としてもよい。本実施形態では、光源18Bは、検体Tが蛍光を発する波長領域の、ライン照明LAおよびエリア照明LBを照射する形態を、一例として説明する。また、本実施形態では、ライン照明LAおよびエリア照明LBは、検体Tが蛍光を発する波長領域内の、互いに異なる波長領域の光であってもよいし、同じ波長領域の光であってもよい。
 光源18Bからライン照明LAが照射された場合を一例として説明する。なお、光源18Bからエリア照明LBが照射された場合についても、光の光路はライン照明LAと同様である。
 光源ユニット18には、第1駆動部44が設けられている。第1駆動部44は、光源ユニット18に含まれる複数の光学部品の少なくとも1つの、光軸A1方向に沿った相対位置を変更する。第1駆動部44は、例えば、公知のアクチュエータである。アクチュエータは、例えば、モータ、超音波、リニアモータ、の何れであってもよい。第1駆動部44には、例えば、シグマ光機;SGMV20-35(X)などを用いればよい。
 本実施形態では、第1駆動部44は、光軸A1に沿って分割ミラー20に近づく方向または離れる方向に、光源フォーカスレンズ18Dを移動させる。第1駆動部44の駆動によって光源フォーカスレンズ18Dと分割ミラー20との間隔が調整され、光源18Bとの間隔が調整される。これらの間隔が調整されることで、光源フォーカスレンズ18Dのフォーカスが調整される。
 なお、第1駆動部44は、光源部18Aおよび光源フォーカスレンズ18Dの少なくとも一方を、互いに近づく方向または離れる方向に光軸A1に沿って移動させる駆動部であってもよい。また、第1駆動部44は、光源ユニット18全体を、分割ミラー20に近づく方向または離れる方向に光軸A1に沿って移動させる駆動部であってもよい。本実施形態では、第1駆動部44は、光源フォーカスレンズ18Dを光軸A1に沿って移動させる形態を、一例として説明する。
 光源18Bから照射されたライン照明LAは、コリメータレンズ18Cによって略平行光とされた後に、光源フォーカスレンズ18Dで一旦ライン状に集光され、結像レンズ19で再度、略平行光にされた後、分割ミラー20に至る。なお、ライン照明LAの照射時には、シリンドリカルレンズ18Eは図示方向に曲率を持たないものとする。一方、エリア照明LBの照射時には、シリンドリカルレンズ18Eは、図示方向に曲率を有するものとする。
 分割ミラー20は、ライン照明LAおよびエリア照明LBを反射し、ライン照明LAおよびエリア照明LB以外の波長領域の光を透過する。本実施形態では、分割ミラー20は、測定対象領域25から発せられた光を透過する。ライン照明LAは、分割ミラー20によって反射され、対物レンズ22へ到る。
 対物レンズ22は、ライン照明LAまたはエリア照明LBを測定対象領域25へ集光させるフォーカスレンズである。詳細には、対物レンズ22は、測定対象領域25へライン照明LAまたはエリア照明LBを集光させることで、測定対象領域25へライン照明LAまたはエリア照明LBを照射するためのレンズである。なお、エリア照明LBは、ライン照明LAで代用してもよい。
 対物レンズ22には、第4駆動部47が設けられている。第4駆動部47は、測定対象領域25に近づく方向または離れる方向に、対物レンズ22をZ軸方向に移動させる。対物レンズ22と測定対象領域25との間隔が調整されることで、対物レンズ22のフォーカスが調整される。
 また、第3駆動部46は、ステージ26をZ軸方向に対して直交する方向(X軸方向、Y軸方向)に移動させる。ステージ26の移動に伴い、ステージ26上に載置された検体Tが、対物レンズ22に対して、X軸方向またはY軸方向に相対的に移動される。
 なお、測定部14は、第3駆動部46および第4駆動部47の少なくとも一方を備えた構成であればよく、これらの双方を備えた構成に限定されない。
 なお、上記には、光源18Bから出射されるときのライン照明LAの長手方向が、X軸方向に略平行であると説明した。しかし、該ライン照明LAの長手方向は、X軸方向に対して略平行である形態に限定されない。例えば、光源18Bから出射されるときのライン照明LAの長手方向は、Z軸方向に略平行な方向であってもよい。
 測定対象領域25は、検体Tを含む領域である。本実施形態では、測定対象領域25は、測定対象部材24によって構成される。
 測定対象部材24は、検体Tを含む部材である。測定対象部材24は、例えば、一対のガラス部材と、一対のガラス部材の間に載置された検体Tと、から構成される。ガラス部材は、例えば、スライドガラスである。ガラス部材は、カバーガラスと称される場合がある。ガラス部材は、検体Tを載置可能な部材であればよく、ガラスによって構成された部材に限定されない。ガラス部材は、ライン照明LA、エリア照明LB、および検体Tから発せられる光、を透過する部材であればよい。透過する、とは、透過対象の光の透過率が80%以上であることを意味する。
 なお、測定対象部材24は、ガラス部材上に検体Tを載置した構成であってもよく、一対のガラス部材間に検体Tを載置した構成に限定されない。また、測定対象部材24には、封入材によって封入された状態で検体Tが載置されていてもよい。
 検体Tは、顕微鏡システム1における測定対象である。すなわち、検体Tは、顕微鏡システム1で撮像画像を得る対象の物である。本実施形態は、検体Tは、ライン照明LAおよびエリア照明LBの各々の照射により蛍光を発する形態を一例として説明する。検体Tは、例えば、微生物、細胞、リポソーム、血液中の赤血球、白血球、血小板、血管内皮細胞、上皮組織の微小細胞片、および、各種臓器の病理組織切片、等である。なお、検体Tは、ライン照明LAおよびエリア照明LBの各々の照射により蛍光を発する蛍光色素によって標識された、細胞などの物体であってもよい。また、検体Tは、ライン照明LAおよびエリア照明LBの各々の照射により蛍光を発する物に限定されない。例えば、検体Tは、ライン照明LAおよびエリア照明LBの各々の照射により、反射、散乱するものであってもよい。
 なお、以下では、ライン照明LAおよびエリア照明LBの各々の照射により検体Tが発する蛍光を、単に、光、と称して説明する場合がある。
 測定対象領域25には、封入材によって封入された状態の検体Tが載置されていてもよい。封入材には、測定対象領域25に入射するライン照明LA、エリア照明LB、および検体Tの発する光、の各々を透過する公知の材料を用いればよい。封入材は、液体、および固体の何れであってもよい。
 本実施形態では、測定対象領域25は、測定対象部材24と、校正領域27と、から構成される。
 図2Aは、本実施形態の測定対象領域25の一例を示す模式図である。測定対象領域25は、ステージ26上に載置される。測定対象部材24は、例えば、一対のスライドガラス間に検体Tを載置した構成である。
 校正領域27は、第1特定波長領域の光の照射により、第2特定波長領域の光を発する領域である。第1特定波長領域は、検体Tが蛍光を発する波長領域に対して非重複の波長領域であることが好ましい。第1特定波長領域と第2特定波長領域とは、少なくとも一部が非重複の波長領域であってもよいし、全体が重複する波長領域であってもよい。
 すなわち、校正領域27は、何れの波長領域の波長を照射したときに、何れの波長領域の波長の光を発するか、が予め特定されている領域である。
 校正領域27には、例えば、第1特定波長領域の光の照射により励起し、第2特定波長領域の光を発する、蛍光ガラスなどを用いる。蛍光ガラスは、例えば、株式会社住田光学ガラス製;商品名ルミナスなどである。
 図2Aに示すように、例えば、測定対象領域25は、ステージ26上に測定対象領域25と校正領域27とをXY平面に沿って並べて配置した構成とすればよい。例えば、検体Tとして蛍光染色された細胞を用いる場合を想定する。この場合、スライドガラス間に配置された検体Tに影響を及ぼすことなく、ステージ26上に校正領域27を配置することができる。
 また、校正領域27を、測定対象領域25内に備えた構成としてもよい。図2Bは、測定対象領域25の一例を示す模式図である。図2Bに示すように、測定対象領域25を構成する一対のスライドガラス間に封入する封入材の封入領域を、校正領域27として用いてもよい。この場合、測定対象領域25の厚み方向における、検体Tの設けられていない領域が、校正領域27として機能することとなる。また、この場合、封入材として、第1特定波長領域の光の照射により、第2特定波長領域の光を発する材料を用いればよい。
 図1に戻り説明を続ける。ライン照明LAの照射により測定対象領域25から発せられた光は、対物レンズ22および分割ミラー20を透過してダイクロイックミラー92へ到る。測定対象領域25から発せられた光とは、ライン照明LAまたはエリア照明LBの照射により測定対象領域25で反射された反射光、および、測定対象領域25が発した光、の少なくとも一方を含む。反射光には、散乱光が含まれる。測定対象領域25が発した光には、検体Tが発した蛍光が含まれる。
 ダイクロイックミラー92は、測定対象領域25から発せられた光の一部を撮像光学ユニット30へ振り分け、残りを撮像光学ユニットへ振り分ける。なお、ダイクロイックミラー92による撮像光学ユニット30および撮像光学ユニットへの光の分配率は、同じ割合(例えば、50%、50%)であってもよいし、異なる割合でもよい。このため、ハーフミラー28に代えて、ダイクロイックミラーを用いてもよい。
 ダイクロイックミラー92を透過した光は、撮像光学ユニット30へ到る。ダイクロイックミラー92で反射された光は、フォーカス検出ユニット36へ到る。
 なお、光源ユニット18から照射される光(ライン照明LA、エリア照明LB)と、測定対象領域25とは、光学的に共役関係にあるものとする。また、光源18Bと、測定対象領域25と、撮像光学ユニット30の撮像センサ34と、フォーカス検出ユニット36の瞳分割像撮像センサ42とは、光学的に共役関係にあるものとする。すなわち、測定部14は、同軸落射照明型の顕微鏡光学系であるものとする。
 撮像光学ユニット30は、開口部材35と、結像レンズ32と、撮像センサ34と、第2駆動部45と、を備える。開口部材35は、測定対象領域25から発せられた光の光軸方向に直交する断面に平行な二次元平面の板状部材である。開口部材35は、スリット37を有する。スリット37は、ライン照明LAにより測定対象領域25から発せられた光の長手方向に平行な開口部である。
 図3Aは、開口部材35の一例の模式図である。図3Aは、開口部材35を、測定対象領域25から発せられた光の入射面側から視認した平面図である。図3Bは、開口部材35における、ライン照明LAにより測定対象領域25から発せられた光の照射領域82の説明図である。
 スリット37の大きさは、撮像センサ34のサイズに依存する。また、スリット37の大きさは、照射領域82以下の大きさである。具体的には、例えば、スリット37の大きさは、長手方向(例えば、矢印XC方向)の長さQ2が20mmであり、短手方向(例えば、YC方向)の長さQ1が10μmである。また、照射領域82の大きさは、例えば、長手方向(X軸方向)の長さが25mmであり、短手方向(Y軸方向)の長さQ4が15μmである。なお、スリット37および照射領域82のサイズは、上記サイズに限定されない。
 図1に戻り説明を続ける。ライン照明LAの照射により測定対象領域25から発せられた光は、結像レンズ32によって集光され、スリット37のサイズに集光され、撮像センサ34へ到る。
 撮像センサ34は、測定対象領域25から発せられた光を受光し、光信号を出力する。以下では、ライン照明LAの照射により測定対象領域25から発せられた光の光信号を、第1光信号と称して説明する。また、エリア照明LBの照射により測定対象領域25から発せられた光の光信号を、第2光信号と称して説明する。また、第1光信号および第2光信号を総称して説明する場合には、光信号と称して説明する。
 撮像センサ34は、複数の受光部を備える。受光部は、受光した光を電荷に変換する素子である。受光部は、例えば、フォトダイオードである。例えば、撮像センサ34は、複数の受光部33を受光面に沿って二次元配列した構成である。
 例えば、撮像センサ34には、光を受光する受光面に沿って、複数の受光部が配列された構成である。撮像センサ34は、例えば、CMOS(Complementary Metal-Oxide Semiconductor)イメージセンサ、または、CCD(Charge Coupled Device)イメージセンサ、エリアセンサ、などである。
 なお、撮像センサ34は、複数の受光部を受光面に沿って一次元配列した、カラーラインセンサであってもよい。この場合、撮像センサ34は、カラーラインセンサであることが好ましい。また、撮像センサ34は、少なくとも2つの受光部を備えていればよい。
 本実施形態では、撮像センサ34として、分光光学系を備えたスペクトルカメラ(スリット37+分光光学系+エリアセンサ)、ラインセンサ(スリット37なし)を想定する。スペクトルカメラである撮像センサ34内の光学系によって、スリット37の短軸方向の光が、波長分散素子(プリズム、回折格子)によって波長に分解され、空間軸、波長軸の次元をもった光像が2次元センサで受光される。
 本実施形態では、撮像センサ34が、複数の受光部を受光面に沿って二次元配列したエリアセンサである場合を、一例として説明する。
 撮像センサ34から出力される光信号は、複数の受光部の各々で受光した光の強度値を示す信号である。言い換えると、光信号は、複数の受光部の各々ごとの光の強度値を規定した信号である。以下では、光の強度値を、光強度値と称して説明する場合がある。光強度値とは、受光した光の強度を示す値である。
 なお、撮像センサ34の受光部が、1または複数の画素ごとに設けられていると想定する。この場合、光信号は、複数の受光部の各々に対応する画素ごとに光強度値を規定した撮像画像である。この場合、蛍光強度値は、画素値に相当する。
 撮像センサ34は、光信号を制御装置16へ出力する。本実施形態では、撮像センサ34は、光信号として、第2光信号を制御装置16へ出力する。
 本実施形態では、撮像光学ユニット30には、第2駆動部45が設けられている。第2駆動部45は、撮像光学ユニット30に含まれる複数の光学部品の少なくとも1つの、光軸方向に沿った相対位置を変更する。
 本実施形態では、第2駆動部45は、結像レンズ32の光軸に沿って撮像センサ34に近づく方向または離れる方向に、結像レンズ32を移動させる。第2駆動部45の駆動によって結像レンズ32と撮像センサ34との間隔が調整されることで、結像レンズ32のフォーカスが調整される。なお、第2駆動部45は、結像レンズ32を移動させる構成であればよく、第2駆動部45自体は動かない構成であってもよい。
 なお、第2駆動部45は、結像レンズ32および撮像センサ34の少なくとも一方を、互いに近づく方向または離れる方向に光軸に沿って移動させる駆動部であってもよい。本実施形態では、第2駆動部45は、結像レンズ32を結像レンズ32の光軸に沿って移動させる形態を、一例として説明する。
 次に、撮像光学ユニットについて説明する。
 撮像光学ユニットは、ダイクロイックミラー92と、結像レンズ94と、撮像センサ96と、を備える。ダイクロイックミラー92は、測定対象領域25から発せられた光を反射する。
 結像レンズ94は、測定対象領域25から発せられた光を撮像センサ96へ集光させる。撮像センサ96は、撮像センサ34と同様に、複数の受光部を備える。撮像センサ96は、例えば、CMOSイメージセンサ、CCDイメージセンサ、または、エリアセンサなどである。
 撮像センサ96は、受光した光の光信号を制御装置16へ出力する。本実施形態では、撮像センサ96は、光信号として、第1光信号を制御装置16へ出力する。
 図4は、第1光信号74の一例を示す模式図である。第1光信号74は、ライン照明LAの照射により測定対象領域25から発せられた光の光強度値を示す信号である。言い換えると、第1光信号74は、ライン照明LAを測定対象領域25へ照射したときの、撮像センサ96による撮像画像である。第1光信号74には、光受光領域75が含まれる。
 光受光領域75は、他の領域に比べて光強度値が所定値以上の領域である。該所定値には、光を受光したと判別するための閾値を定めればよい。ライン照明LAは、ライン状の光であるため、光受光領域75は、所定方向(矢印XA方向)に平行なライン状の領域となる。この所定方向は、ライン照明LAの長手方向であるX軸方向に光学的に対応する方向である。
 詳細には、図4に示す第1光信号74の縦軸方向(矢印YA方向)は、測定対象領域25におけるY軸方向に光学的に対応する。また、図5に示す第1光信号74の横軸方向(矢印XA方向)は、測定対象領域25におけるX軸方向に光学的に対応する。X軸方向は、上述したように、ライン照明LAの長手方向である。また、図4に示す第1光信号74の奥行方向(矢印ZA方向)は、測定対象領域25の厚み方向であるZ軸方向に光学的に対応する。
 図1に戻り説明を続ける。本実施形態では、測定部14は、ライン照明LAを、ライン照明LAの長手方向(X軸方向)に直交する方向(Y軸方向)に沿って走査することで、ライン照明LAを測定対象領域25へ照射する。すなわち、本実施形態では、Y軸方向は、ライン照明LAの走査方向である。ライン照明LAの走査方法は、限定されない。走査方法は、例えば、第3駆動部46によって測定対象領域25を載置したステージ26をY軸方向へ移動させる方法、測定部14における測定対象領域25以外の構成の少なくとも一部を測定対象領域25に対してY軸方向へ移動させる方法、などがある。また、分割ミラー20と対物レンズ22との間に偏向ミラーを配置し、偏向ミラーによってライン照明LAを走査してもよい。
 ライン照明LAを走査方向に走査しながら撮像センサ34による撮像を実行することで、測定対象領域25全体の撮像画像である観察画像が得られる。観察画像は、検体Tの解析などに用いるための撮像画像である。
 次に、制御装置16について説明する。制御装置16は、情報処理装置の一例である。制御装置16と、光源18B、第1駆動部44、撮像センサ34、第2駆動部45、瞳分割像撮像センサ42、第3駆動部46、および第4駆動部47の各々とは、データまたは信号を授受可能に接続されている。
 図5は、制御装置16の機能的構成の一例を示す図である。なお、図5には、説明のために、光源18B、撮像センサ34、瞳分割像撮像センサ42、第1駆動部44、第2駆動部45、第3駆動部46、および第4駆動部47も図示した。
 制御装置16は、制御部60と、記憶部62と、通信部64と、を備える。制御部60と、記憶部62および通信部64とは、データまたは信号を授受可能に接続されている。記憶部62は、各種のデータを記憶する記憶媒体である。記憶部62は、例えば、ハードディスクドライブまたは外部メモリなどである。通信部64は、ネットワークNなどを介してサーバ装置10などの外部装置と通信する。
 制御部60は、光源制御部60Aと、取得部60Bと、基準フォーカス制御部60Cと、フォーカス制御部60Dと、第1算出部60Eと、駆動制御部60Fと、観察画像取得制御部60Gと、を含む。
 光源制御部60A、取得部60B、基準フォーカス制御部60C、フォーカス制御部60D、第1算出部60E、駆動制御部60F、および観察画像取得制御部60Gの一部またはすべては、例えば、CPU(Central Processing Unit)などの処理装置にプログラムを実行させること、すなわち、ソフトウェアにより実現してもよいし、IC(Integrated Circuit)などのハードウェアにより実現してもよいし、ソフトウェアおよびハードウェアを併用して実現してもよい。
 光源制御部60Aは、ライン照明LAまたはエリア照明LBを選択的に照射するように光源18Bを制御する。光源制御部60Aの制御によって光源18Bからライン照明LAまたはエリア照明LBが選択的に照射される。
 取得部60Bは、撮像センサ96から第1光信号74を取得し、撮像センサ34から第2光信号を取得する。
 基準フォーカス制御部60Cは、対物レンズ22と測定対象領域25との初期の相対位置を調整する。対物レンズ22と測定対象領域25との相対位置とは、対物レンズ22および測定対象領域25の何れか一方に対する他方の相対位置である。この相対位置は、例えば、対物レンズ22と測定対象領域25とのZ軸方向の距離によって定まる。
 初期の相対位置とは、測定対象領域25に含まれる検体Tの解析などに用いる撮像画像を得る前の、事前調整のための相対位置を意味する。すなわち、基準フォーカス制御部60Cは、事前調整のための基準フォーカス処理を実行する。
 基準フォーカス制御部60Cは、取得部60Bで取得した第2光信号を用いて、コントラスト法により対物レンズ22のフォーカスを調整する。詳細には、基準フォーカス制御部60Cは、エリア照明LBの照射により、測定対象領域25における校正領域27から発せられた光の光強度値を示す第2光信号を用いて、基準フォーカス処理を実行する。基準フォーカス制御部60Cは、第2光信号に含まれる隣接する画素間の光強度値のコントラスト比を算出する。そして、基準フォーカス制御部60Cは、第4駆動部47の制御とコントラスト比の算出とを繰返す。基準フォーカス制御部60Cは、対物レンズ22の初期の相対位置を、コントラスト比が最大となる位置に調整する。
 なお、基準フォーカス制御部60Cは、第1光信号74を用いたコントラスト法により、対物レンズ22のフォーカスを調整してもよい。
 次に、フォーカス制御部60Dについて説明する。
 フォーカス制御部60Dは、第1光信号74の光強度分布に基づいて、光源ユニット18、撮像ユニット31、および、光源ユニット18および撮像ユニット31の少なくとも一方に含まれる複数の光学部品の少なくとも1つ、から選択される少なくとも1つの相対位置および相対姿勢の少なくとも一方を変更する。
 相対位置を変更するとは、光学部品の少なくとも1つの、他の光学部品の少なくとも1つに対する相対的な位置を変更することを意味する。相対位置は、例えば、光軸方向に沿った方向の距離や、一方の光学部品に対する他方の光学部品の相対位置座標、などによって規定される。相対姿勢を変更する、とは、光学部品の少なくとも1つの、他の光学部品の少なくとも1つに対する相対的な姿勢を変更することを意味する。相対姿勢は、例えば、現在の姿勢からの回転角度や、他の光学部品に対する相対的な角度、などによって表される。
 本実施形態では、フォーカス制御部60Dが、光源ユニット18および撮像光学ユニット30の少なくとも一方に含まれる複数の光学部品の少なくとも1つの相対位置を変更する場合を一例として説明する。
 フォーカス制御部60Dは、第1算出部60Eと、駆動制御部60Fと、を有する。
 第1算出部60Eは、第1光信号74の光強度分布の分布幅を算出する。
 図6Aは、第1光信号74の光強度分布の分布幅Wの説明図である。図4を用いて説明したように、第1光信号74には、エリア照明LBに応じたライン状の光受光領域75が含まれる。本実施形態では、第1算出部60Eは、光受光領域75の幅を、分布幅Wとして算出する。光受光領域75の幅とは、光受光領域75の長手方向(矢印XA方向)に対して直交する方向(矢印YA方向)の長さである。
 図6Bは、第1光信号74の光強度分布80の一例を示す線図である。図6B中、縦軸は、第1光信号74における矢印YA方向の位置を示し、横軸は光強度値を示す。例えば、第1算出部60Eは、第1光信号74の光強度分布80における閾値T以上の光強度値の領域を光受光領域75として特定し、該光受光領域75の矢印YA方向の幅を、分布幅Wとして算出する。閾値Tは、予め定めればよい。
 図5に戻り説明を続ける。駆動制御部60Fは、分布幅Wが第1閾値以下となる相対位置に、光源ユニット18および撮像光学ユニット30の少なくとも一方に含まれる複数の光学部品の少なくとも1つを移動させる。本実施形態では、駆動制御部60Fは、分布幅Wが第1閾値以下となる相対位置に、光源ユニット18に含まれる光源フォーカスレンズ18Dを移動させる形態を一例として説明する。
 ここで、光源フォーカスレンズ18Dの光源18Bに対する相対位置が変化すると、第1光信号74の光強度分布80の分布幅Wも変化する。
 図7は、光源フォーカスレンズ18Dの相対位置と分布幅Wを示す画素数との関係の一例を示す線図である。図7には、光源フォーカスレンズ18Dと光源18Bとの距離を、近距離から遠距離となるように段階的に変化させ、各段階において撮像センサ34で得られた第1光信号74の分布幅Wの変化を示した。図7に示すように、分布幅Wは、光源フォーカスレンズ18Dの相対位置の変化に伴って変化する。
 図8は、第1光信号74の一例を示す模式図である。図8に示す第1光信号74(第1光信号74A~第1光信号74C)は、第1光信号74Aから第1光信号74Cに向かって、光源フォーカスレンズ18Dと光源18Bとの距離を段階的に小さくしたときの、各段階で検出された第1光信号74の一例である。また、第1光信号74Bは、合焦しているときの、第1光信号74の一例である。
 詳細には、第1光信号74Aは、図7中、光源フォーカスレンズ18Dの相対位置がPAの位置にあるときの第1光信号74の一例である。第1光信号74Bは、図7中、光源フォーカスレンズ18Dの相対位置がPBの位置にあるときの第1光信号74の一例である。第1光信号74Cは、図7中、光源フォーカスレンズ18Dの相対位置がPCの位置にあるときの第1光信号74の一例である。
 図7および図8に示すように、光源18Bと光源フォーカスレンズ18Dとの距離が遠いほど、分布幅Wは広くなる。また、光源18Bと光源フォーカスレンズ18Dとの距離が近いほど、分布幅Wは広くなる。
 このため、駆動制御部60Fは、分布幅Wが第1閾値以下となる相対位置に、光源フォーカスレンズ18Dを移動させる。駆動制御部60Fは、第1駆動部44を制御することで光源フォーカスレンズ18Dを光軸A方向に移動させ、該相対位置に光源フォーカスレンズ18Dを移動させる。第1閾値は、予め定めればよい。
 例えば、駆動制御部60Fは、光源ユニット18に設けられた第1駆動部44を駆動制御することで、光源18Bと光源フォーカスレンズ18Dとの距離を段階的に変更する。第1算出部60Eは、各段階で取得した第1光信号74の分布幅Wを算出する。そして、駆動制御部60Fは、光源フォーカスレンズ18Dの移動と第1光信号74の取得および分布幅Wの算出を予め定めた回数N繰返す。繰返しの回数Nは、3以上の整数であればよい。この繰返しの回数Nは、予め設定すればよい。そして、駆動制御部60Fは、N回の繰返しの各々で取得した第1光信号74の分布幅Wの内の最小値を、第1閾値としてもよい。この場合、駆動制御部60Fは、最小の分布幅Wの第1光信号74を取得したときの、光源フォーカスレンズ18Dの相対位置を特定する。そして、駆動制御部60Fは、第1駆動部44を駆動制御することで、特定した相対位置に光源フォーカスレンズ18Dを移動させる。
 これらの処理により、駆動制御部60Fは、測定対象領域25から発せられた光の像が撮像センサ34に合焦する位置に、光源フォーカスレンズ18Dを移動させることができる。
 図5に戻り説明を続ける。観察画像取得制御部60Gは、観察画像を取得する。観察画像とは、上述したように、検体Tの解析などに用いるための撮像画像である。観察画像取得制御部60Gは、第3駆動部46を駆動することで、ステージ26をY軸方向に段階的に移動させる。ステージ26の移動によって、ステージ26上に載置された測定対象領域25に照射されるライン照明LAが、走査方向(Y軸方向)に走査される。観察画像取得制御部60Gは、ライン照明LAの走査方向への走査と、撮像センサ34による撮像と、を繰り返し実行することで、測定対象領域25全体の撮像画像である観察画像を取得する。すなわち、駆動制御部60Fは、走査方向の各走査位置における第1光信号74を取得することで、観察画像を取得する。
 なお、観察画像取得制御部60Gは、観察画像の取得時に、エリア照明LBを照射するように光源部18Aを制御してもよい。この場合、観察画像取得制御部60Gは、第2光信号を取得することで観察画像を取得する。
 ここで、観察画像取得制御部60Gによる観察画像の取得時には、フォーカス制御部60Dによって、測定対象領域25から発せられた光の像が撮像センサ34に合焦する位置に、光源フォーカスレンズ18Dが移動された状態にある。このため、観察画像取得制御部60Gは、フォーカス調整された観察画像を取得することができる。
 観察画像取得制御部60Gは、取得した観察画像を、通信部64を介してサーバ装置10などの外部装置へ出力する。なお、観察画像取得制御部60Gは、取得した観察画像を、記憶部62へ記憶してもよい。また、観察画像取得制御部60Gは、観察画像を、制御部60に接続されたディスプレイに出力してもよい。
 また、観察画像取得制御部60Gは、取得した観察画像を公知の方法で解析することで、検体Tの種類などを解析し、解析結果をサーバ装置10などへ出力してもよい。
 次に、本実施形態の制御装置16で実行する情報処理の流れの一例を説明する。
 図9は、制御装置16が実行する情報処理の流れの一例を示す、フローチャートである。なお、制御装置16が以下の情報処理を実行する前に、検体Tを含む測定対象部材24と、校正領域27と、を含む測定対象領域25が、載置されているものとする。ステージ26上への測定対象領域25の載置は、手動で行ってもよいし、ローダまたはマニピュレータなどを用いて自動制御してもよい。
 まず、制御部60は、校正領域27が撮像ユニット31の撮影領域内に位置するように、第3駆動部46を駆動制御する。この駆動制御によって、校正領域27が撮像ユニット31の撮影領域内に移動される(ステップS100)。
 次に、光源制御部60Aが、ライン照明LAをオフとし、エリア照明LBをオンとするように光源18Bを制御する(ステップS102)。
 取得部60Bは、撮像センサ34から第2光信号を取得する(ステップS104)。
 基準フォーカス制御部60Cは、ステップS104で取得した第2光信号を用いて基準フォーカス処理を実行する(ステップS106)。ステップS106では、基準フォーカス制御部60Cは、コントラスト法により、対物レンズ22の初期の相対位置を、コントラスト比が最大となる位置に調整する。
 次に、光源制御部60Aが、エリア照明LBをオフとし、ライン照明LAをオンとするように光源18Bを制御する(ステップS108)。
 取得部60Bは、撮像センサ34から第1光信号74を取得する(ステップS116)。フォーカス制御部60Dの第1算出部60Eは、ステップS110で取得した第1光信号74の分布幅Wを算出する(ステップS112)。
 駆動制御部60Fは、第1駆動部44を駆動制御することで、光源フォーカスレンズ18Dを光軸A1に沿って予め定めた距離移動させる(ステップS114)。
 取得部60Bは、ステップS114または後述するステップS122の処理により光源フォーカスレンズ18Dが移動された状態で撮像された第1光信号74を、撮像センサ34から取得部60Bを介して取得する(ステップS116)。
 第1算出部60Eは、ステップS116で取得した第1光信号74の分布幅Wを算出する(ステップS118)。
 駆動制御部60Fは、ステップS118で算出した分布幅Wが、ステップS116で算出した分布幅Wである初期分布幅より狭いか否かを判断する(ステップS120)。
 ステップS120で否定判断すると(ステップS120:No)、ステップS122へ進む。ステップS122では、駆動制御部60Fは、ステップS114の移動方向とは逆方向に、光源フォーカスレンズ18Dを光軸A1に沿って予め定めた距離移動させる(ステップS122)。そして、上記ステップ114へ戻る。
 ステップS120で肯定判断すると(ステップS120:Yes)、ステップS124へ進む。駆動制御部60Fは、ステップS114~ステップS120の処理を、予め定めた繰返し回数N、繰り返したか否かを判断する(ステップS124)。
 ステップS124で否定判断すると(ステップS124:No)、ステップS114へ戻る。ステップS124で肯定判断すると(ステップS124:Yes)、ステップS126へ進む。
 ステップS126では、駆動制御部60Fは、上記N回の繰返しの各々で取得した第1光信号74の分布幅Wの内の最小値である最小分布幅の位置に、光源フォーカスレンズ18Dを移動させる(ステップS126)。すなわち、駆動制御部60Fは、最小値の分布幅Wの第1光信号74を取得したときの、光源フォーカスレンズ18Dの相対位置に、光源フォーカスレンズ18Dを移動させる。
 ステップS126の処理によって、光源フォーカスレンズ18Dは、測定対象領域25から発せられた光の像が撮像センサ34に合焦する位置に配置された状態となる。
 次に、観察画像取得制御部60Gが、観察画像を取得する。詳細には、観察画像取得制御部60Gは、第3駆動部46を駆動することで、ライン照明LAの走査方向(Y軸方向)の初期位置に、ステージ26を移動させる(ステップS128)。初期位置は、校正領域27から外れた領域、すなわち、検体Tの存在する領域である。この駆動制御によって、検体Tの存在する測定対象領域25が撮像ユニット31および撮像光学ユニットの撮影領域内に移動される。
 次に、観察画像取得制御部60Gは、撮像センサ96から第1光信号74を取得することで、1走査ライン分の観察画像を取得する(ステップS130)。
 観察画像取得制御部60Gは、測定対象部材24における全走査ライン分の第1光信号74を取得したか否かを判断する(ステップS132)。ステップS132で否定判断すると(ステップS132:No)、ステップS134へ進む。
 ステップS134では、観察画像取得制御部60Gは、ライン照明LAの照射領域を、1段階分走査方向(Y軸方向)に移動させるように、第3駆動部46を制御する(ステップS134)。そして、上記ステップS130へ戻る。
 ステップS132で肯定判断すると(ステップS132:Yes)、ステップS136へ進む。ステップS136では、観察画像取得制御部60Gは、走査方向の各走査位置における複数の第1光信号74である観察画像を、通信部64を介してサーバ装置10へ出力する(ステップS136)。そして、本ルーチンを終了する。
 なお、ステップS102~ステップS128の処理は、観察画像の取得毎に行ってもよいし、複数の観察画像の取得前に1回行ってもよい。また、複数の観察画像の各々の取得ごとにステップS102~ステップS128の処理を実行する場合には、実行回数が増えるほど、光源フォーカスレンズ18Dの駆動制御の頻度を低下させてもよい。
 以上説明したように、本実施形態の顕微鏡システム1は、光源ユニット18と、対物レンズ22と、取得部60Bと、フォーカス制御部60Dと、を備える。光源部18Aは、第1方向に平行なライン照明LAを照射する。対物レンズ22は、ライン照明LAを測定対象領域25へ集光する。取得部60Bは、ライン照明LAにより測定対象領域25から発せられた光の光強度値を示す第1光信号74を、光信号を撮像する撮像ユニット31から取得する。フォーカス制御部60Dは、第1光信号74の光強度分布80に基づいて、光源ユニット18および撮像ユニット31の少なくも一方に含まれる複数の光学部品の少なくとも1つの相対位置および相対姿勢の少なくとも一方を変更する。
 ここで、環境温度の変動などにより、光源ユニット18から出射されるライン照明LAの強度や、光源ユニット18と撮像センサ34との光学距離が変動する場合がある。
 従来技術では、測定された光波長特性によって測定対象領域に含まれる検体の特性を調べる場合には、強度変動が検出誤差につながる恐れがあった。また、ライン照明の照射により測定対象領域25で発せられた光が撮像センサ34に合焦されない場合があり、光利用効率が低下する場合があった。
 一方、本実施形態の顕微鏡システム1は、ライン照明LAの照射により測定対象領域25から発せられた光の第1光信号74の光強度分布80に基づいて、対物レンズ22以外の光学部品の少なくとも1つの相対位置および相対姿勢の少なくとも一方を変更する。
 光源ユニット18は、強度や光学距離の変動に起因するライン照明LAを出射するユニットである。また、撮像ユニット31は、ライン照明LAの照射によって測定対象領域25から発せられた光を受光するユニットである。このため、これらの光源ユニット18および撮像光学ユニット30の少なくとも一方に含まれる複数の光学部品の少なくとも一つの相対位置および相対姿勢の少なくとも一方を変更することで、検出誤差の抑制を図ることができる。
 従って、本実施形態の顕微鏡システム1は、検出誤差の抑制を図ることができる。
 また、本実施形態の顕微鏡システム1では、環境温度の変動などに起因するフォーカスずれを、光源ユニット18および撮像光学ユニット30の少なくとも一方に含まれる複数の光学部品の少なくとも一つの相対位置を調整することで、調整する。このため、光源ユニット18に温度補正を行うための精密な調整固定機構や温度調整システムを搭載する必要が無い。このため、本実施形態の顕微鏡システム1は、上記効果に加えて、簡易な構成で、光利用効率の低下を抑制することができる。
 また、本実施形態の顕微鏡システム1は、測定対象領域25として、校正領域27を含む測定対象領域25を用いる。そして、顕微鏡システム1は、ライン照明LAの照射により校正領域27から発せられた光の第1光信号74の光強度分布80に基づいて、光源ユニット18および撮像ユニット31の少なくとも一方に含まれる複数の光学部品の少なくとも1つの相対位置および相対姿勢を、変更する。
 このため、本実施形態の顕微鏡システム1Cは、上記効果に加えて、高精度にフォーカス調整を行うことができる。
 また、本実施形態の顕微鏡システム1では、上記効果に加えて、消費電力の低下、光源18Bの消耗の抑制、およびコスト削減などを図ることができる。
(第2の実施形態)
 本実施形態では、撮像光学ユニットに代えて撮像ユニット31を備える。また、本実施形態では、光源ユニット18および撮像ユニット31の少なくとも一方に含まれる複数の光学部品の少なくとも1つの相対位置および相対姿勢を、変更する形態を説明する。
 図10は、本実施形態の顕微鏡システム1Bの一例を示す模式図である。なお、上記実施形態と同一の機能または構成部分には、同一の符号を付与し、重複する説明を省略する。
 顕微鏡システム1Bは、撮像装置13を備える。撮像装置13は、例えば、ネットワークNなどの無線通信網または有線通信網を介してサーバ装置10に通信可能に接続されている。撮像装置13は、制御装置17と、測定部15と、を備える。
 測定部15は、測定対象領域25から発せられた光を測定する光学機構を有する。測定部15は、例えば、光学顕微鏡に適用される。
 測定部15は、上記第1の実施形態の測定部14の構成に加えて、第5駆動部48および第6駆動部49を備える。また、測定部15は、撮像光学ユニットに代えてフォーカス検出ユニット36を備える。すなわち、本実施形態では、撮像ユニット31は、撮像光学ユニット30およびフォーカス検出ユニット36を含む。また、本実施形態では、撮像光学ユニット30は、撮像センサ34に代えてイメージング分光器34Aを備える。
 第5駆動部48は、光源ユニット18に含まれる複数の光学部品の少なくとも1つの想定姿勢を変更する。相対姿勢を変更する、とは、光学部品の少なくとも1つの、他の光学部品の少なくとも1つに対する相対的な姿勢を変更することを意味する。相対姿勢は、例えば、現在の姿勢からの回転角度や、他の光学部品に対する相対的な角度、などによって表される。
 本実施形態では、第5駆動部48は、光源フォーカスレンズ18Dの光軸A1を回転中心として、光源18B全体を回転させる。例えば、第5駆動部48は、図10に示すように、回転方向(矢印X’方向)に光源18Bを回転させる形態を一例として説明する。光源18Bの回転により、光源18Bから出射されるライン照明LAの長手方向の向きが変更される。
 第6駆動部49は、撮像光学ユニット30に含まれる複数の光学部品の少なくとも1つの相対姿勢を変更する。
 本実施形態では、第6駆動部49は、結像レンズ32の光軸を回転中心として開口部材35を回転駆動させる。例えば、第6駆動部49は、図10に示すように、回転方向(矢印Z’方向)に開口部材35を回転駆動させる形態を一例として説明する。開口部材35の回転駆動により、開口部材35に設けられたスリット37の長手方向の向きが変更される。
 次に、フォーカス検出ユニット36について説明する。フォーカス検出ユニット36は、ライン照明LAを照射された測定対象領域25から発せられた光を複数(2以上)の光路に分割し、得られた像間の位相差を得るための光学ユニットである。本実施形態では、フォーカス検出ユニット36が、二個のセパレータレンズを用いて、瞳を二つに分割した二眼瞳分割像を得るための光学ユニットである場合を、一例として説明する。
 フォーカス検出ユニット36は、フィールドレンズ38と、絞りマスク39と、セパレータレンズ40Aおよびセパレータレンズ40Bからなるセパレータレンズ40と、瞳分割像撮像センサ42と、を有する。セパレータレンズ40は、セパレータレンズ40Aとセパレータレンズ40Bとを含む。
 ライン照明LAの照射により測定対象領域25から発せられた光は、対物レンズ22および分割ミラー20を透過してハーフミラー28へ到る。
 ハーフミラー28は、測定対象領域25から発せられた光の一部を撮像光学ユニット30へ振り分け、残りをフォーカス検出ユニット36へ振り分ける。なお、ハーフミラー28による撮像光学ユニット30およびフォーカス検出ユニット36への光の分配率は、同じ割合(例えば、50%、50%)であってもよいし、異なる割合でもよい。このため、ハーフミラー28に代えて、ダイクロイックミラーを用いてもよい。
 ハーフミラー28を透過した光は、撮像光学ユニット30へ到る。ハーフミラー28で反射された光は、フォーカス検出ユニット36へ到る。
 すなわち、ライン照明LAの照射により測定対象領域25から発せられた光は、フィールドレンズ38を介して絞りマスク39に到る。絞りマスク39は、フィールドレンズ38の光軸を境界として対象となる位置に、一対の開口39A,39Bを有する。これらの一対の開口39A,39Bの大きさは、対物レンズ22の被写体深度よりセパレータレンズ40Aおよびセパレータレンズ40Bの被写体深度が広くなるように調整されている。
 絞りマスク39は、フィールドレンズ38から入射した光を、一対の開口39A,39Bによって2つの光束に分割する。セパレータレンズ40Aおよびセパレータレンズ40Bは、それぞれ、絞りマスク39の開口39A,39Bの各々を透過した光束を、瞳分割像撮像センサ42へ集光させる。このため、瞳分割像撮像センサ42は、分割された2つの光束を受光する。
 なお、フォーカス検出ユニット36は、絞りマスク39を備えない構成であってもよい。この場合、フィールドレンズ38を介してセパレータレンズ40に到達した光は、セパレータレンズ40Aおよびセパレータレンズ40Bによって2つの光束に分割され、瞳分割像撮像センサ42へ集光される。
 瞳分割像撮像センサ42は、分割された2つの光束を受光する。瞳分割像撮像センサ42は、1組の光束の像からなる瞳分割像を撮像し、瞳分割画像を制御装置17へ出力する。
 図11は、瞳分割画像70の一例を示す模式図である。瞳分割画像70は、一組の像72Aおよび像72Bからなる瞳分割像72を含む。
 瞳分割画像70は、瞳分割像撮像センサ42に設けられた複数の受光部41の各々で受光した光の位置と明るさに対応した画像である。以下では、受光部41が受光した光の明るさを、光強度値と称して説明する場合がある。瞳分割画像70に含まれる像72Aおよび像72Bは、光の受光領域であり、他の領域に比べて光強度値の大きい領域である。また、上述したように、光源ユニット18は、ライン照明LAを測定対象領域25へ照射する。このため、ライン照明LAを照射された測定対象領域25から発せられた光は、ライン状の光となる。よって、瞳分割像72を構成する像72Aおよび像72Bは、所定方向に平行なライン状の像となる。この所定方向は、ライン照明LAの長手方向であるX軸方向に光学的に対応する方向である。
 なお、フォーカス検出ユニット36は、瞳分割像72を得るための光学ユニットであればよく、得られる瞳分割像は、2眼瞳分割像に限定されない。フォーカス検出ユニット36は、例えば、検体Tから発せられた光を3つ以上の光束に分割して受光する、3眼以上の瞳分割像を得る光学ユニットであってもよい。
 上述したように、本実施形態では、撮像光学ユニット30は、撮像センサ34に代えてイメージング分光器34Aを備える。イメージング分光器34Aは、撮像センサ34と同様に、測定対象領域25から発せられた光を受光し、光信号を出力する。イメージング分光器34Aは、光信号として、スペクトルイメージを出力する。また、本実施形態では、第1光信号74は、ライン照明LAを測定対象領域25へ照射したときの、イメージング分光器34Aによる撮像画像である。
 次に、制御装置17について説明する。
 制御装置17は、情報処理装置の一例である。制御装置17と、光源18B、第1駆動部44、イメージング分光器34A、第2駆動部45、第3駆動部46、第4駆動部47、第5駆動部48、および第6駆動部49の各々とは、データまたは信号を授受可能に接続されている。
 図12は、制御装置17の機能的構成の一例を示す図である。なお、図12には、説明のために、光源18B、イメージング分光器34A、瞳分割像撮像センサ42、第1駆動部44、第2駆動部45、第3駆動部46、第4駆動部47、第5駆動部48、および第6駆動部49も図示した。
 制御装置17は、制御部61と、記憶部62と、通信部64と、を備える。制御部61と、記憶部62および通信部64とは、データまたは信号を授受可能に接続されている。
 制御部61は、光源制御部60Aと、取得部60Bと、基準フォーカス制御部61Cと、フォーカス制御部61Dと、第2算出部61Eと、駆動制御部61Fと、観察画像取得制御部61Gと、第3算出部61Hと、を含む。
 光源制御部60A、取得部60B、基準フォーカス制御部61C、フォーカス制御部61D、第2算出部61E、駆動制御部61F、観察画像取得制御部61G、および第3算出部61Hの一部またはすべては、例えば、CPUなどの処理装置にプログラムを実行させること、すなわち、ソフトウェアにより実現してもよいし、ICなどのハードウェアにより実現してもよいし、ソフトウェアおよびハードウェアを併用して実現してもよい。
 第1の実施形態と同様に、光源制御部60Aは、ライン照明LAまたはエリア照明LBを選択的に照射するように光源18Bを制御する。取得部60Bは、イメージング分光器34Aから第1光信号74または第2光信号を取得する。
 基準フォーカス制御部61Cは、第1の実施形態の基準フォーカス制御部60Cと同様にして基準フォーカス処理を実行する。
 ここで、スリット37の長手方向と、開口部材35における照射領域82の長手方向とは、一致する方向であることが好ましい。詳細には、上記実施形態の図3Aおよび図3Bに示すように、スリット37の長手方向(矢印XC方向)と、開口部材35における、ライン照明LAの照射により測定対象領域25から発せられた光の照射領域82の長手方向(矢印XD方向)とは、光利用効率の観点などから、光学的に一致することが好ましい。しかし、スリット37の長手方向と、照射領域82の長手方向とは、不一致となる場合がある。
 また、スリット37と、照射領域82とは、スリット37の長手方向の一端部から他端部の全領域に渡って重複していることが、光利用効率の観点などから好ましい。
 図13A~図13Cは、スリット37と照射領域82との位置関係の説明図である。
 図13Aに示すように、開口部材35における、ライン照明LAの照射によって測定対象領域25が発した光の照射領域82は、スリット37の全領域に重複することが理想的である。詳細には、照射領域82の長手方向(矢印XD方向)と、スリット37の長手方向(矢印XC方向)と、が一致することが理想的である。また、スリット37と照射領域82とは、スリット37の長手方向の一端部から他端部の全領域に渡って重複していることが理想的である。
 しかし、図13Bに示すように、スリット37の長手方向(矢印XC方向)と照射領域82の長手方向(矢印XD方向)とが不一致となる場合がある。この場合、スリット37の長手方向における一部の領域のみが、照射領域82の光を通過させる。このため、この場合、測定対象領域25が発した光の内、スリット37の長手方向の一部の光のみしか、イメージング分光器34Aに到達しないこととなる。
 また、ライン照明LAとして、互いに異なる波長領域の複数種類のライン照明LAを照射した場合を想定する。例えば、互いに異なる波長領域のライン照明LAAおよびライン照明LABを照射する場合を想定する。ライン照明LAAおよびライン照明LABは、ライン照明LAの一例である。異なる波長領域のライン照明LAの照射によって測定対象領域25から発せられた光は、異なる回転を有する場合がある。この場合、図13Cに示すように、これらの複数種類のライン照明LA(LAA,LAB)の照射によって測定対象領域25が発する光の照射領域82(光強度分布82A,光強度分布82B)の長手方向XD(XDA,XDB)が、互いに異なる方向となる場合がある。
 図14Aおよび図14Bは、スリット37と照射領域82との位置関係が図13Cの状態にあるときの、光強度分布80に基づく波長強度分布の説明図である。図14B中、縦軸は波長を示し、横軸は強度を示す。
 図14Aに示すように、異なる波長のライン照明LAを照射し、2回の撮影を行った場合(図14A中、上が1波長目、下が2波長目)、複数の照射領域82(82A,82B)の長手方向XD(XDA,XDB)が、互いに異なる方向となる場合がある。この場合、スリット37の長手方向(矢印XC方向)の位置によって、照射領域82の傾きに応じた異なる光強度分布80が得られることとなる。例えば、スリット37の長手方向における互いに異なる位置nと位置mとでは、異なる光強度が得られる。
 詳細には、図14Bに示すように、スリット37の長手方向における位置nの光強度分布80Aに基づく波長強度分布と、位置mの光強度分布80Bに基づく波長強度分布とは、異なるものとなる。
 ここで、異なる複数種類の波長領域のライン照明LAの照射によって測定対象領域25から発せられた光の光強度分布82Aと光強度分布82Bとを連結することで、測定対象領域25に含まれる検体Tに染色された複数の色素の弁別性が高まる。しかし、スリット37の長手方向の位置によって光強度分布80が異なるものとなる場合、イメージング分光器34Aによる光の検出ムラが発生し、色素の弁別性が低下する場合がある。
 また、環境温度の変動などによって、第1光信号74における光受光領域75の位置が変動する場合がある。
 図15は、第1光信号74における光受光領域75のずれの説明図である。第1光信号74Dおよび第1光信号74Eは、互いに異なる環境温度のときに取得された、第1光信号74の一例である。
 図15に示すように、環境温度の変動によって、例えば、光受光領域75の位置がずれ量Dずれた状態となる。
 図16は、環境温度と、光受光領域75の位置変化量と、の関係の一例を示す図である。図16に示すように、環境温度の変動に応じて、光受光領域75の位置も変動する。例えば、25℃から30℃への5℃の上昇で、光受光領域75の位置が55μmずれる場合がある。
 このため、環境温度の変動によって、測定対象領域25から発せられた光の照射領域82とスリット37とがずれた状態となり、イメージング分光器34Aによる光利用効率が低下する場合がある。また、さらに複数波長のライン照明LAをつかって複数の色素を弁別する場合には、見かけ上の波長特性が変わってしまうため検体Tに染色された色素間の弁別性が悪くなる。
 図12に戻り説明を続ける。そこで、本実施形態のフォーカス制御部61Dは、第1光信号74の光強度分布80に基づいて、光源ユニット18および撮像ユニット31の少なくとも一方に含まれる複数の光学部品の少なくとも1つの相対位置および相対姿勢の少なくとも一方を変更する。
 詳細には、フォーカス制御部61Dは、第2算出部61Eと、駆動制御部61Fと、を有する。
 第2算出部61Eは、開口部材35における照射領域82の長手方向と、開口部材35のスリット37の長手方向と、が交差した状態で取得された、第1光信号74の光強度分布80の最大光強度値を算出する。光強度分布80の最大光強度値とは、光強度分布80における、スリット37の長手方向(矢印XC方向)に沿った各位置の光強度値の内、最大の光強度値を意味する。
 ここで、光源フォーカスレンズ18Dの光源18Bに対する相対位置が変化すると、光強度分布80の上記最大光強度値も変化する。そこで、駆動制御部61Fは、算出された最大光強度値が第2閾値以上となる相対位置に、光源ユニット18および撮像光学ユニット30の少なくとも一方に含まれる複数の光学部品の少なくとも1つを移動させる。
 図17A~図17Dは、第2算出部61Eおよび駆動制御部61Fによる相対位置の制御の説明図である。図17A~図17Dには、スリット37を、光軸方向に対して直交する方向側から視認したときの、スリット37と照射領域82との位置関係を示した。また、図18A~図18Dには、図17A~図17Dの各々に対応する第1光信号74の光強度分布80(光強度分布80C~80F)の一例を示した。図18A~図18D中、横軸は、スリット37の長手方向(矢印XC方向)の各位置に相当する。図18A~図18D中、縦軸は、光強度値を示す。
 図17Aに示すように、まず、駆動制御部61Fは、照射領域82の長手方向と、スリット37の長手方向とが交差するように、光源ユニット18および撮像光学ユニット30の少なくとも一方に含まれる複数の光学部品の少なくとも1つの相対姿勢を変化させる。
 例えば、駆動制御部61Fは、第5駆動部48を制御することで、スリット37の長手方向(矢印XC方向)と照射領域82の長手方向(矢印XD方向)とが所定角度θで交差するように、光源18Bを回転させる。所定角度θは、予め定めればよい。所定角度θは、例えば、30°であるが、30°に限定されない。なお、駆動制御部61Fは、第6駆動部49を制御することで、開口部材35を回転させてもよい。
 図18Aは、スリット37と照射領域82とが所定角度θで交差した図17Aに示す状態にあるときの、第1光信号74の光強度分布80Cの一例を示す図である。第2算出部61Eは、光強度分布80Cの最大強度値Imaxを算出する。第2算出部61Eは、光強度分布80Cのピークの光強度値を、最大強度値Imaxとして算出する。
 そして、駆動制御部61Fは、照射領域82の長手方向とスリット37の長手方向とが交差した状態を維持したまま、光源ユニット18および撮像光学ユニット30の少なくとも一方に含まれる複数の光学部品の少なくとも1つの相対位置を変更する。本実施形態では、駆動制御部61Fは、第1駆動部44を制御することで、光源ユニット18に含まれる光源フォーカスレンズ18Dを光軸A1に沿って移動させる形態を一例として説明する。
 そして、駆動制御部61Fは、最大光強度値が第2閾値以上となる相対位置に、光源フォーカスレンズ18Dを移動させる。第2閾値は、予め定めればよい。
 駆動制御部61Fの駆動によって、光源フォーカスレンズ18Dが光軸A1に沿って移動すると、照射領域82の幅が変化する。図17B~図17Dは、照射領域82の長手方向とスリット37の長手方向とが交差した図17Aの状態を維持したまま、光源フォーカスレンズ18Dを光軸A1に沿って移動させたときの、照射領域82を示す図である。図17A~図17Dに示すように、照射領域82の幅は、光源フォーカスレンズ18Dの位置に応じて変化する。
 このため、光源フォーカスレンズ18Dの各位置に対応する光強度分布80は、例えば、図18B~図18Dに示すものとなる。図18B~図18Dは、それぞれ、スリット37と照射領域82とが図17B~図17Dの各々の状態にあるときの、第1光信号74の光強度分布80(光強度分布80D~80F)の一例を示す図である。図18B~図18Dの各々に示す光強度分布80が得られた場合、第2算出部61Eは、光強度分布80の各々の最大強度値Imaxをそれぞれ算出する。
 すなわち、駆動制御部61Fは、第1駆動部44を駆動制御することで、光源18Bと光源フォーカスレンズ18Dとの距離を段階的に変更する。第2算出部61Eは、各段階で取得した第1光信号74の光強度分布80の最大光強度値Imaxを算出する。そして、第2算出部61Eおよび駆動制御部61Fは、光源フォーカスレンズ18Dの移動と第1光信号74の取得および最大光強度値Imaxの算出を予め定めた回数M繰返す。繰返しの回数Mは、3以上の整数であればよい。この繰返しの回数Mは、予め設定すればよい。
 そして、駆動制御部61Fは、M回の繰返しの各々で取得した第1光信号74の光強度分布80の最大光強度値Imaxのうち、最も大きい最大光強度値Imaxを、第2閾値としてもよい。この場合、駆動制御部61Fは、最も大きい最大光強度値Imaxの第1光信号74を取得したときの、光源フォーカスレンズ18Dの相対位置を特定する。そして、駆動制御部61Fは、第1駆動部44を駆動制御することで、特定した相対位置に光源フォーカスレンズ18Dを移動させる。
 これらの処理により、駆動制御部61Fは、測定対象領域25から発せられた光の像がイメージング分光器34Aに合焦する位置に、光源フォーカスレンズ18Dを移動させることができる。
 ここで、図13Aを用いて説明したように、開口部材35における、ライン照明LAの照射によって校正領域27が発した光の照射領域82が、スリット37の全領域に重複することが理想的である。詳細には、照射領域82の長手方向(矢印XD方向)と、スリット37の長手方向(矢印XC方向)と、が一致することが理想的である。また、スリット37と照射領域82とは、スリット37の長手方向の一端部から他端部の全領域に渡って重複していることが理想的である。
 そこで、フォーカス制御部61Dは、更に、ライン合せ処理を実行する。ライン合わせ処理とは、スリット37の長手方向と照射領域82の長手方向とを一致させる処理である。
 まず、フォーカス制御部61Dは、照射領域82の長手方向とスリット37の長手方向とが一致するように、光源ユニット18および撮像ユニット31の少なくとも一方に含まれる複数の光学部品の少なくとも1つの相対姿勢を変更する。
 詳細には、第2算出部61Eは、第1光信号74の光強度分布80を用いて、該光強度分布80の最大光強度値と、最小光強度値と、の差を算出する。そして、駆動制御部61Fは、最大光強度値と最小光強度値との差が第3閾値以下となるまで、スリット37および照射領域82の少なくとも一方を回転させる。
 例えば、駆動制御部61Fは、第6駆動部49および第5駆動部48の少なくとも一方を駆動制御することで、スリット37および光源18Bの少なくとも一方を回転させる。この処理により、駆動制御部61Fは、スリット37および照射領域82の少なくとも一方を回転させる。
 図19A~図19Cは、ライン合わせ処理の説明図である。図19A~図19Cには、スリット37を、光軸方向に対して直交する方向側から視認したときの、スリット37と照射領域82との位置関係を示した。また、図20A~図20Cには、図19A~図19Cの各々に対応する第1光信号74の光強度分布80(光強度分布80E,80G,80H)の一例を示した。図20A~図20C中、横軸は、スリット37の長手方向の位置に相当する。図20A~図20C中、縦軸は、光強度値を示す。
 図19A~図19Cに示すように、スリット37の長手方向と照射領域82の長手方向とが一致するように段階的に回転制御されることで、光強度分布80は、図20A~図20Cに示すような変化を示す。また、スリット37の長手方向と照射領域82の長手方向とが一致した状態に近づくほど、光強度分布80の最大光強度Imaxと最小光強度Iminとの差が小さくなる。
 そこで、第2算出部61Eは、各回転段階の各々で得られた第1光信号74の光強度分布80について、該光強度分布80の最大光強度値Imaxと、最小光強度値Iminと、の差を算出する。
 そして、駆動制御部61Fは、光強度分布80の最大光強度値Imaxと最小光強度値Iminとの差が第3閾値以下となったときに、回転制御を終了する。第3閾値は、予め定めればよい。
 例えば、図20Cに示す光強度分布80の最大光強度値Imaxと最小光強度値Iminとの差が第3閾値以下であったとする。この場合、図19Cに示すように、スリット37の長手方向と照射領域82の長手方向とが、略一致した、すなわち、略平行な状態となる。
 このため、上記処理によって、フォーカス制御部61Dは、照射領域82の長手方向とスリット37の長手方向とが一致するように、光源ユニット18および撮像ユニット31の少なくとも一方に含まれる複数の光学部品の少なくとも1つの相対姿勢を変更することができる。
 なお、相対姿勢の変更によって、照射領域82とスリット37とが、これらの長手方向に直交する方向にずれた状態となる場合がある(図19C参照)。そこで、フォーカス制御部61Dは、更に、調整処理を行う事が好ましい。
 詳細には、フォーカス制御部61Dの駆動制御部61Fは、ライン合わせ処理の前に特定した相対位置に光源フォーカスレンズ18Dを移動させた状態で取得した、第1光信号74の最大光強度値を特定する。すなわち、駆動制御部61Fは、測定対象領域25から発せられた光の像がイメージング分光器34Aに合焦する位置に、光源フォーカスレンズ18Dを移動させることができる。
 そして、駆動制御部61Fは、特定した最大光強度値の第1光信号74を取得するまで、第1駆動部44を駆動制御する。第1駆動部44の駆動制御によって、光源フォーカスレンズ18Dが再度移動される。この処理により、図21Aに示すように、スリット37と照射領域82とが、スリット37の長手方向の一端部から他端部の全領域に渡って重複した状態となる。また、図21Bに示すように、この状態で得られる光強度分布80Iは、該処理前に得られた光強度分布80H(図20C参照)に比べて、光強度値が向上した状態となる。
 なお、このとき、駆動制御部61Fは、第1駆動部44を駆動制御することで、コリメータレンズ18Cの位置を光軸A1に沿って移動させてもよい。また、駆動制御部61Fは、第1駆動部44を駆動制御することで、コリメータレンズ18Cおよび光源フォーカスレンズ18Dの双方を移動させてもよい。また、駆動制御部61Fは、コリメータレンズ18Cと光源フォーカスレンズ18Dの位置を固定したままとし、補正用ミラーなどの光学デバイスを駆動制御してもよい。
 これらの処理により、フォーカス制御部61Dは、駆動制御部61Fは、測定対象領域25から発せられた光の像がイメージング分光器34Aに合焦する位置に、光源フォーカスレンズ18Dを移動させることができる。また、フォーカス制御部61Dは、照射領域82の長手方向と、スリット37の長手方向とが一致し、且つ、スリット37と照射領域82がスリット37の長手方向の一端部から他端部の全領域に渡って重複した状態に調整することができる。
 なお、本実施形態では、上記第1の実施形態と同様に、ライン照明LAの照射による校正領域27からの光の第1光信号74を用いて、上記処理を行う。ここで、この第1光信号74の光強度分布80によって表される光強度値は、図21Bに示すように、スリット37の長手方向の各位置に応じて異なる値を示す場合がある。具体的には、光強度分布80は、中央部の光強度値が高く、周辺部の光強度値が低くなる場合がある。
 そこで、第3算出部61Hは、第1光信号74を補正するための補正係数を算出する。
 図22Aおよび図22Bは、補正係数算出の説明図である。図22Aは、補正前の光強度分布80Iの一例を示す図である。光強度分布80Iは、光強度分布80の一例である。図22Bは、補正後の光強度分布80I’の一例を示す図である。図22Aおよび図22B中、横軸は、第1光信号74における矢印XA方向の各位置を示す。縦軸は、光強度値を示す。
 第3算出部61Hは、基準波長のライン照明LAの照射により校正領域27から発せられた光の光強度分布80における最大光強度値Imaxを1.0として正規化する。すると、図22Aに示す光強度分布80Iが得られる。第3算出部61Hは、光強度分布80Iによって表される光強度値が、第1光信号74の全領域(すなわち、全画素)に渡って1.0となるように、補正係数を画素位置ごとに算出する。そして、第3算出部61Hは、各画素位置を示す情報に対応付けて、算出した補正係数を記憶部62に記憶する。
 補正係数を用いて光強度分布80Iを補正することで、図22Bに示す光強度分布80I’が得られる。観察画像取得制御部61Gは、補正した光強度分布80I’を観察画像として用いればよい。
 詳細には、観察画像取得制御部61Gは、観察画像取得制御部60Gと同様にして、観察画像を取得する。観察画像とは、上述したように、検体Tの解析などに用いるための撮像画像である。観察画像取得制御部61Gは、第3駆動部46を駆動することで、ステージ26をY軸方向に段階的に移動させる。ステージ26の移動によって、ステージ26上に載置された測定対象領域25に照射されるライン照明LAが、走査方向(Y軸方向)に走査される。観察画像取得制御部60Gは、ライン照明LAの走査方向への走査と、イメージング分光器34Aによる撮像を実行することで、測定対象領域25全体の撮像画像である観察画像を取得する。すなわち、駆動制御部60Fは、走査方向の各走査位置における第1光信号74を取得することで、観察画像を取得する。
 そして、本実施形態では、観察画像取得制御部61Gは、各走査位置における第1光信号74の光強度値を、記憶部62に記憶された対応する画素位置の補正係数を用いて補正する。例えば、観察画像取得制御部61Gは、補正係数を移動平均や近似曲線を作成して平滑化し、観察画像である第1光信号74に対して、この平滑化後の補正係数を乗算することで、補正後の第1光信号74を得る。そして、観察画像取得制御部61Gは、補正後の第1光信号74を、観察画像として取得すればよい。
 次に、本実施形態の制御装置17で実行する情報処理の流れの一例を説明する。
 図23は、制御装置17が実行する情報処理の流れの一例を示す、フローチャートである。なお、制御装置17が以下の情報処理を実行する前に、ステージ26上には、検体Tを含む測定対象部材24と、校正領域27と、を含む測定対象領域25が、載置されているものとする。ステージ26上への測定対象領域25の載置は、手動で行ってもよいし、ローダまたはマニピュレータなどを用いて自動制御してもよい。
 まず、制御部61は、校正領域27が撮像ユニット31の撮影領域内に位置するように、第3駆動部46を駆動制御する。この駆動制御によって、校正領域27が撮像ユニット31の撮影領域内に移動される(ステップS200)。
 次に、光源制御部60Aが、ライン照明LAをオフとし、エリア照明LBをオンとするように光源18Bを制御する(ステップS202)。
 取得部60Bは、イメージング分光器34Aから第2光信号を取得する(ステップS204)。
 基準フォーカス制御部61Cは、ステップS204で取得した第2光信号を用いて基準フォーカス処理を実行する(ステップS206)。ステップS204では、基準フォーカス制御部61Cは、コントラスト法により、対物レンズ22の初期の相対位置を、コントラスト比が最大となる位置に調整する。
 次に、光源制御部60Aが、エリア照明LBをオフとし、ライン照明LAをオンとするように光源18Bを制御する(ステップS208)。
 フォーカス制御部61Dの駆動制御部61Fは、開口部材35における照射領域82の長手方向と、スリット37の長手方向とが交差するように、第5駆動部48および第6駆動部49の少なくとも一方を制御する(ステップS210)。ステップS210の制御によって、光源18Bおよび開口部材35の少なくとも一方が回転駆動され、開口部材35における照射領域82の長手方向と、スリット37の長手方向とが交差した状態となる。
 次に、取得部60Bが、イメージング分光器34Aから第1光信号74を取得する(ステップS212)。フォーカス制御部61Dの第2算出部61Eは、ステップS212で取得した第1光信号74の最大光強度値を算出する(ステップS214)。
 駆動制御部61Fは、光源ユニット18に含まれる光源フォーカスレンズ18Dを光軸A1に沿って予め定めた距離移動させる(ステップS216)。
 取得部60Bは、ステップS216または後述するステップS224の処理により光源フォーカスレンズ18Dが移動された状態で撮像された第1光信号74を、イメージング分光器34Aから取得部60Bを介して取得する(ステップS218)。
 第2算出部61Eは、ステップS218で取得した第1光信号74の最大光強度値を算出する(ステップS220)。駆動制御部61Fは、ステップS220で算出した最大光強度値が、ステップS214で算出した最大光強度値である初期光強度値未満であるか否かを判断する(ステップS222)。
 ステップS222で否定判断すると(ステップS222:No)、ステップS224へ進む。ステップS224では、駆動制御部61Fは、ステップS216の移動方向とは逆方向に、光源フォーカスレンズ18Dを光軸A1に沿って予め定めた距離移動させる(ステップS224)。そして、上記ステップ218へ戻る。
 ステップS222で肯定判断すると(ステップS222:Yes)、ステップS226へ進む。駆動制御部61Fは、ステップS216~ステップS222の処理を、予め定めた繰返し回数M、繰り返したか否かを判断する(ステップS226)。
 ステップS226で否定判断すると(ステップS226:No)、ステップS216へ戻る。ステップS226で肯定判断すると(ステップS226:Yes)、ステップS228へ進む。
 ステップS228では、駆動制御部61Fは、上記M回の繰返しの各々で取得した第1光信号74の最大光強度値の内、最も大きい最大強度値を示す第1光信号74の取得時の相対位置に、光源フォーカスレンズ18Dを移動させる(ステップS228)。
 ステップS228の処理によって、光源フォーカスレンズ18Dは、測定対象領域25から発せられた光の像がイメージング分光器34Aに合焦する位置に、光源フォーカスレンズ18Dを移動させることができる。
 具体的には、ステップS210~ステップS226の処理によって、ハーフミラー28とスリット37との関係および光強度分布80は、図17A~図17Dおよび図18A~図18Dに示すものとなる。そして、基準フォーカス制御部61Cは、図17Cおよび図18Cに示す状態となるように、光源フォーカスレンズ18Dを移動させることができる。
 次に、フォーカス制御部61Dは、更に、ライン合せ処理を実行する。
 詳細には、取得部60Bが、イメージング分光器34Aから第1光信号74を取得する(ステップS230)。
 フォーカス制御部61Dの第2算出部61Eは、ステップS230で取得した第1光信号74の光強度分布80の最大光強度値と、最小光強度値と、の差を算出する(ステップS232)。そして、駆動制御部61Fは、ステップS232で算出された差が第3閾値以下であるか否かを判断する(ステップS234)。該差が第3閾値を超える場合(ステップS234:No)、ステップS236へ進む。ステップS236では、駆動制御部61Fは、第6駆動部49および第5駆動部48の少なくとも一方を駆動制御することで、スリット37および光源18Bの少なくとも一方を予め定めた回転角度回転させる(ステップS236)。そして、上記ステップS230へ戻る。
 ステップS234で肯定判断すると(ステップS234:Yes)、ステップS238へ進む。ステップS238では、フォーカス制御部61Dが調整処理を実行する。詳細には、フォーカス制御部61Dの駆動制御部61Fは、ステップS230で取得した第1光信号74の最大光強度値を特定する。そして、駆動制御部61Fは、特定した最大光強度値の第1光信号74を取得するまで、第1駆動部44を駆動制御する。第1駆動部44の駆動制御によって、光源フォーカスレンズ18Dが再度移動される(ステップS238)。
 ステップS238の処理により、図21Aに示すように、スリット37と照射領域82とが、スリット37の長手方向の一端部から他端部の全領域に渡って重複した状態となる。また、図21Bに示すように、この状態で得られる光強度分布80Iは、該処理前に得られた光強度分布80H(図20C参照)に比べて、光強度値が向上した状態となる。
 次に、第3算出部61Hが、第1光信号74を補正するための補正係数を算出する(ステップS240)。制御部61は、ステップS240で算出した補正係数を、記憶部62へ記憶する(ステップS242)。
 次に、観察画像取得制御部61Gは、第3駆動部46を駆動することで、ライン照明LAの走査方向(Y軸方向)の初期位置に、ステージ26を移動させる(ステップS244)。本実施形態における初期位置は、校正領域27から外れた領域、すなわち、検体Tの存在する領域である。この駆動制御によって、検体Tの存在する測定対象領域25が撮像ユニット31の撮影領域内に移動される。
 次に、観察画像取得制御部61Gは、イメージング分光器34Aから第1光信号74を取得することで、1走査ライン分の観察画像を取得する(ステップS246)。
 次に、観察画像取得制御部61Gは、ステップS246で取得した第1光信号74を、記憶部62に記憶されている補正係数を用いて補正する(ステップS248)。
 観察画像取得制御部61Gは、測定対象部材24における全走査ライン分の第1光信号74を取得したか否かを判断する(ステップS250)。ステップS250で否定判断すると(ステップS250:No)、ステップS252へ進む。
 ステップS252では、観察画像取得制御部61Gは、ライン照明LAの照射領域を、1段階分走査方向(Y軸方向)に移動させるように、第3駆動部46を制御する(ステップS252)。そして、上記ステップS246へ戻る。
 ステップS250で肯定判断すると(ステップS250:Yes)、ステップS254へ進む。ステップS254では、観察画像取得制御部61Gは、走査方向の各走査位置における補正後の複数の第1光信号74である観察画像を、通信部64を介してサーバ装置10へ出力する(ステップS254)。そして、本ルーチンを終了する。
 以上説明したように、本実施形態の顕微鏡システム1Bでは、基準フォーカス制御部61Cが、開口部材35における照射領域82の長手方向とスリット37の長手方向が交差した状態で取得された第1光信号74の最大光強度値を算出する。そして、顕微鏡システム1Bでは、最大光強度値が第2閾値以上となる相対位置に、撮像ユニット31および光源ユニット18の少なくとも一方に含まれる、複数の光学部品の少なくとも1つの相対位置を変更する。
 このため、本実施形態の顕微鏡システム1Bは、上記第1の実施形態の効果に加えて、以下の効果を有する。すなわち、顕微鏡システム1Bでは、開口部材35における照射領域82の位置がスリット37に対して変動した場合であっても、測定対象領域25から発せられた光の像をイメージング分光器34Aに高精度に合焦させることができる。
 また、本実施形態の顕微鏡システム1Bでは、フォーカス制御部61Dが、照射領域82の長手方向とスリット37の長手方向とが一致するように、光源ユニット18および撮像ユニット31の少なくとも一方に含まれる複数の光学部品の少なくとも1つの相対姿勢を変更する。
 このため、本実施形態の顕微鏡システム1Bでは、照射領域82の長手方向とスリット37の長手方向とが不一致な場合であっても、これらの長手方向が一致するように制御することができる。このため、顕微鏡システム1Bは、上記第1の実施形態の効果に加えて、光利用効率の更なる向上を図ることができる。
 また、本実施形態の顕微鏡システム1Bでは、上記効果に加えて、色素の弁別性の高い観察画像を提供することができる。
 また、本実施形態では、イメージング分光器34Aから取得した第1光信号74の光強度分布80に基づいて、光源フォーカスレンズ18Dの相対位置を変更する形態を一例として説明した。しかし、顕微鏡システム1は、撮像ユニット31に含まれるフォーカス検出ユニット36から取得した瞳分割画像70の光分布に基づいて、光源フォーカスレンズ18Dの相対位置を変更してもよい。
 この場合、例えば、顕微鏡システム1Bは、瞳分割画像70に含まれる瞳分割像72である像72Aまたは像72Bの光強度分布を、第1光信号74の光強度分布80として用い、上記と同様の処理を実行すればよい。
(変形例)
 なお、上記実施形態で説明した顕微鏡システム1および顕微鏡システム1Bを組み合わせた構成としてもよい。すなわち、フォーカス検出ユニット36および撮像光学ユニットの双方を備えた構成としてもよい。
 図24は、本変形例の顕微鏡システム1Cの一例を示す模式図である。顕微鏡システム1Cは、例えば、第1の実施形態の顕微鏡システム1に、更に、フォーカス検出ユニット36を備えた構成である点以外は、顕微鏡システム1と同様の構成である。
 詳細には、顕微鏡システム1Cは、撮像装置12に代えて撮像装置99を備える。撮像装置99は、測定部14に代えて測定部98を備える。測定部98は、フォーカス検出ユニット36を更に備えた点以外は、第1の実施形態の測定部14と同様の構成である。
 本変形例においては、観察画像の取得時に、フォーカス検出ユニット36および撮像センサ96の何れか一方で得られた第1光信号74を用いる点以外は、上記実施形態と同様の処理を実行すればよい。
(ハードウェア構成)
 図25は、上記実施形態および変形例に係る制御装置16の機能を実現するコンピュータ1000の一例を示すハードウェア構成図である。
 コンピュータ1000は、CPU1100、RAM(Random Access Memory)1200、ROM(Read Only Memory)1300、HDD(Hard Disk Drive)1400、通信インターフェース1500、及び入出力インターフェース1600を有する。コンピュータ1000の各部は、バス1050によって接続される。
 CPU1100は、ROM1300又はHDD1400に格納されたプログラムに基づいて動作し、各部の制御を行う。例えば、CPU1100は、ROM1300又はHDD1400に格納されたプログラムをRAM1200に展開し、プログラムに対応した処理を実行する。
 ROM1300は、コンピュータ1000の起動時にCPU1100によって実行されるBIOS(Basic Input Output System)等のブートプログラムや、コンピュータ1000のハードウェアに依存するプログラム等を格納する。
 HDD1400は、CPU1100によって実行されるプログラム、及び、かかるプログラムによって使用されるデータ等を非一時的に記録する、コンピュータが読み取り可能な記録媒体である。具体的には、HDD1400は、プログラムデータ1450の一例である本開示に係るプログラムを記録する記録媒体である。
 通信インターフェース1500は、コンピュータ1000が外部ネットワーク1550(例えばインターネット)と接続するためのインターフェースである。例えば、CPU1100は、通信インターフェース1500を介して、他の機器からデータを受信したり、CPU1100が生成したデータを他の機器へ送信する。
 入出力インターフェース1600は、入出力デバイス1650とコンピュータ1000とを接続するためのインターフェースである。例えば、CPU1100は、入出力インターフェース1600を介して、キーボードやマウス等の入力デバイスからデータを受信する。また、CPU1100は、入出力インターフェース1600を介して、ディスプレイやスピーカやプリンタ等の出力デバイスにデータを送信する。また、入出力インターフェース1600は、所定の記録媒体(メディア)に記録されたプログラム等を読み取るメディアインターフェイスとして機能してもよい。メディアとは、例えばDVD(Digital Versatile Disc)、PD(Phase change rewritable Disk)等の光学記録媒体、MO(Magneto-Optical disk)等の光磁気記録媒体、テープ媒体、磁気記録媒体、または半導体メモリ等である。
 例えば、コンピュータ1000が上記実施形態に係る制御装置16または制御装置17として機能する場合、コンピュータ1000のCPU1100は、RAM1200上にロードされたプログラムを実行することにより、光源制御部60A、取得部60B、基準フォーカス制御部60C、フォーカス制御部60D、第1算出部60E、駆動制御部60F、観察画像取得制御部60G、基準フォーカス制御部61C、フォーカス制御部61D、第2算出部61E、駆動制御部61F、観察画像取得制御部61G、および第3算出部61H等の機能を実現する。また、HDD1400には、本開示に係るプログラムおよびデータが格納される。なお、CPU1100は、プログラムデータ1450をHDD1400から読み取って実行するが、他の例として、外部ネットワーク1550を介して、他の装置からこれらのプログラムを取得してもよい。
 なお、本技術は以下のような構成も取ることができる。
(1)
 第1方向に平行なライン照明を照射する光源部と、
 前記ライン照明を測定対象領域へ集光する対物レンズと、
 前記ライン照明により前記測定対象領域から発せられた光の光強度値を示す第1光信号を取得する取得部と、
 前記第1光信号の光強度分布に基づいて、前記光源部および前記第1光信号を生成する撮像部の相対位置および相対姿勢のうちの少なくとも1つを制御するフォーカス制御部と、
 を備える顕微鏡システム。
(2)
 前記フォーカス制御部は、
 前記第1光信号の光強度分布の分布幅を算出する第1算出部と、
 前記分布幅が第1閾値以下となる相対位置に、前記光源部及び前記撮像部の少なくとも一方に含まれる複数の光学部品の少なくとも1つを移動させる駆動制御部と、
 を有する、前記(1)に記載の顕微鏡システム。
(3)
 前記フォーカス制御部は、
 前記第1光信号の光強度分布に基づいて、前記光源部に設けられたフォーカスレンズを光軸方向に移動させる、
 前記(2)に記載の顕微鏡システム。
(4)
 前記測定対象領域は、
 検体と、第1特定波長領域の光の照射により第2特定波長領域の光を発する校正領域と、を含み、
 前記撮像部は、
 第2方向に平行なスリットを有する開口部材を介して、前記測定対象領域から発せられた光を受光し、
 前記フォーカス制御部は、
 前記ライン照明により前記校正領域から発せられた光の光強度値を示す前記第1光信号の光強度分布に基づいて、前記光源部および前記撮像部の少なくとも一方に含まれる複数の光学部品の少なくとも1つの相対位置および相対姿勢の少なくとも一方を変更する、
 前記(1)~(3)の何れか1つに記載の顕微鏡システム。
(5)
 前記フォーカス制御部は、
 前記開口部材における、前記ライン照明により前記校正領域から発せられた光の照射領域の長手方向と前記スリットの長手方向とが交差した状態で取得された、前記第1光信号の光強度分布の最大光強度値を算出する第2算出部と、
 前記最大光強度値が第2閾値以上となる相対位置に、前記複数の光学部品の少なくとも1つを移動させる駆動制御部と、
 を有する、前記(4)に記載の顕微鏡システム。
(6)
 前記駆動制御部は、
 前記照射領域の長手方向と前記スリットの長手方向とが一致するように、前記光源部、前記撮像部、および、前記光源部および前記撮像部の少なくとも一方に含まれる複数の光学部品の少なくとも1つ、から選択される少なくとも1つの相対姿勢を変更する、
 前記(5)に記載の顕微鏡システム。
(7)
 前記第1光信号の光強度値を補正するための補正係数を算出する第3算出部を備える、
 前記(1)~(6)の何れか1つに記載の顕微鏡システム。
(8)
 コンピュータによって実行される撮像方法であって、
 第1方向に平行なライン照明により測定対象領域から発せられた光の光強度値を示す第1光信号を取得するステップと、
 前記第1光信号の光強度分布に基づいて、前記ライン照明を照射する光源部および前記第1光信号を生成する撮像部の少なくとも一方に含まれる複数の光学部品の少なくとも1つの相対位置および相対姿勢の少なくとも一方を変更するステップと、
 を含む撮像方法。
(9)
 測定部と、前記測定部の動作の制御に使われるソフトウェアと、を含んで構成される撮像装置であって、
 前記ソフトウェアは撮像装置に搭載されており、
 前記測定部は、
 第1方向に平行なライン照明を照射する光源部と、
 前記ライン照明を測定対象領域へ集光する対物レンズと、
 撮像部と、を備え、
 前記ソフトウェアは、
 前記ライン照明により前記測定対象領域から発せられた光の光強度値を示す第1光信号を前記撮像部から取得し、
 前記第1光信号の光強度分布に基づいて、前記光源部および前記撮像部の少なくとも一方に含まれる複数の光学部品の少なくとも1つの相対位置および相対姿勢の少なくとも一方を変更する、
 撮像装置。
 1、1B、1C 顕微鏡システム
 18 光源ユニット
 18B 光源
 18D 光源フォーカスレンズ
 22 対物レンズ
 25 測定対象領域
 27 校正領域
 31 撮像ユニット
 35 開口部材
 37 スリット
 44 第1駆動部
 45 第2駆動部
 46 第3駆動部
 47 第4駆動部
 48 第5駆動部
 49 第6駆動部
 60B 取得部
 60C、61C 基準フォーカス制御部
 60D、61D フォーカス制御部
 60E 第1算出部
 60F、61F 駆動制御部
 61E 第2算出部
 61H 第3算出部
 74 第1光信号
 80 光強度分布

Claims (9)

  1.  第1方向に平行なライン照明を照射する光源部と、
     前記ライン照明を測定対象領域へ集光する対物レンズと、
     前記ライン照明により前記測定対象領域から発せられた光の光強度値を示す第1光信号を取得する取得部と、
     前記第1光信号の光強度分布に基づいて、前記光源部および前記第1光信号を生成する撮像部の相対位置および相対姿勢のうちの少なくとも1つを制御するフォーカス制御部と、
     を備える顕微鏡システム。
  2.  前記フォーカス制御部は、
     前記第1光信号の光強度分布の分布幅を算出する第1算出部と、
     前記分布幅が第1閾値以下となる相対位置に、前記光源部及び前記撮像部の少なくとも一方に含まれる複数の光学部品の少なくとも1つを移動させる駆動制御部と、
     を有する、請求項1に記載の顕微鏡システム。
  3.  前記フォーカス制御部は、
     前記第1光信号の光強度分布に基づいて、前記光源部に設けられたフォーカスレンズを光軸方向に移動させる、
     請求項2に記載の顕微鏡システム。
  4.  前記測定対象領域は、
     検体と、第1特定波長領域の光の照射により第2特定波長領域の光を発する校正領域と、を含み、
     前記撮像部は、
     第2方向に平行なスリットを有する開口部材を介して、前記測定対象領域から発せられた光を受光し、
     前記フォーカス制御部は、
     前記ライン照明により前記校正領域から発せられた光の光強度値を示す前記第1光信号の光強度分布に基づいて、前記光源部および前記撮像部の少なくとも一方に含まれる複数の光学部品の少なくとも1つの相対位置および相対姿勢の少なくとも一方を変更する、
     請求項1に記載の顕微鏡システム。
  5.  前記フォーカス制御部は、
     前記開口部材における、前記ライン照明により前記校正領域から発せられた光の照射領域の長手方向と前記スリットの長手方向とが交差した状態で取得された、前記第1光信号の光強度分布の最大光強度値を算出する第2算出部と、
     前記最大光強度値が第2閾値以上となる相対位置に、前記複数の光学部品の少なくとも1つを移動させる駆動制御部と、
     を有する、請求項4に記載の顕微鏡システム。
  6.  前記駆動制御部は、
     前記照射領域の長手方向と前記スリットの長手方向とが一致するように、前記光源部、前記撮像部、および、前記光源部および前記撮像部の少なくとも一方に含まれる複数の光学部品の少なくとも1つ、から選択される少なくとも1つの相対姿勢を変更する、
     請求項5に記載の顕微鏡システム。
  7.  前記第1光信号の光強度値を補正するための補正係数を算出する第3算出部を備える、
     請求項1に記載の顕微鏡システム。
  8.  コンピュータによって実行される撮像方法であって、
     第1方向に平行なライン照明により測定対象領域から発せられた光の光強度値を示す第1光信号を取得するステップと、
     前記第1光信号の光強度分布に基づいて、前記ライン照明を照射する光源部および前記第1光信号を生成する撮像部の少なくとも一方に含まれる複数の光学部品の少なくとも1つの相対位置および相対姿勢の少なくとも一方を変更するステップと、
     を含む撮像方法。
  9.  測定部と、前記測定部の動作の制御に使われるソフトウェアと、を含んで構成される撮像装置であって、
     前記ソフトウェアは撮像装置に搭載されており、
     前記測定部は、
     第1方向に平行なライン照明を照射する光源部と、
     前記ライン照明を測定対象領域へ集光する対物レンズと、
     撮像部と、を備え、
     前記ソフトウェアは、
     前記ライン照明により前記測定対象領域から発せられた光の光強度値を示す第1光信号を前記撮像部から取得し、
     前記第1光信号の光強度分布に基づいて、前記光源部および前記撮像部の少なくとも一方に含まれる複数の光学部品の少なくとも1つの相対位置および相対姿勢の少なくとも一方を変更する、
     撮像装置。
PCT/JP2021/010267 2020-03-27 2021-03-15 顕微鏡システム、撮像方法、および撮像装置 WO2021193177A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/906,363 US20230111094A1 (en) 2020-03-27 2021-03-15 Microscope system, imaging method, and imaging device
DE112021001887.6T DE112021001887T5 (de) 2020-03-27 2021-03-15 Mikroskopsystem, bildgebungsverfahren und bildgebungsvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020057779 2020-03-27
JP2020-057779 2020-03-27

Publications (1)

Publication Number Publication Date
WO2021193177A1 true WO2021193177A1 (ja) 2021-09-30

Family

ID=77891899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010267 WO2021193177A1 (ja) 2020-03-27 2021-03-15 顕微鏡システム、撮像方法、および撮像装置

Country Status (3)

Country Link
US (1) US20230111094A1 (ja)
DE (1) DE112021001887T5 (ja)
WO (1) WO2021193177A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116972769A (zh) * 2022-12-27 2023-10-31 深圳市中图仪器股份有限公司 具有补偿测量的重建方法、重建装置和重建系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005292839A (ja) * 2004-04-05 2005-10-20 Fujifilm Electronic Imaging Ltd スリット共焦点顕微鏡およびその作動方法
JP2015522850A (ja) * 2012-07-05 2015-08-06 ナショナル ユニバーシティ オブ シンガポール 光学顕微鏡およびその制御方法
JP2015187748A (ja) * 2011-07-29 2015-10-29 エフエフイーアイ リミティド イメージ走査のための方法及び装置
JP2019079049A (ja) * 2017-10-24 2019-05-23 オリンパス株式会社 顕微鏡システム、観察方法、及び観察プログラム
JP2019207444A (ja) * 2019-09-17 2019-12-05 株式会社ニコン 焦点調節装置、顕微鏡装置、焦点調節方法、及び制御プログラム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3544914B2 (ja) * 2000-03-17 2004-07-21 住友化学工業株式会社 光学顕微鏡装置および顕微鏡観察方法。
DE10246274B4 (de) * 2002-10-02 2006-06-01 Leica Microsystems Cms Gmbh Mikroskop mit Korrektur und Verfahren zur Korrektur der durch Temperaturänderung hervorgerufenen XYZ-Drift
WO2015064098A1 (ja) * 2013-10-30 2015-05-07 株式会社ニコン 全反射顕微鏡
JP6171970B2 (ja) * 2014-02-10 2017-08-02 ソニー株式会社 レーザ走査型顕微鏡装置および制御方法
WO2015164844A1 (en) * 2014-04-24 2015-10-29 Vutara, Inc. Super resolution microscopy
US10473906B2 (en) * 2014-05-30 2019-11-12 Nikon Corporation Microscope
JP6380983B2 (ja) * 2014-11-26 2018-08-29 富士フイルム株式会社 位相差顕微鏡
US9772465B2 (en) * 2015-06-04 2017-09-26 Qualcomm Incorporated Methods and devices for thin camera focusing alignment
JP6523106B2 (ja) * 2015-08-28 2019-05-29 オリンパス株式会社 顕微鏡システム、顕微鏡システムの制御方法及び顕微鏡システムの制御プログラム
EP3382441A4 (en) * 2015-11-27 2019-08-07 Nikon Corporation MICROSCOPE, CONSIDERATION PROCEDURE AND CONTROL PROGRAM
DE112016006183T5 (de) * 2016-01-08 2018-09-27 Olympus Corporation Probenform-Messverfahren und Probenform-Messvorrichtung
WO2017149687A1 (ja) * 2016-03-02 2017-09-08 株式会社日立製作所 撮像装置
JP2020046455A (ja) * 2018-09-14 2020-03-26 キヤノン株式会社 光学装置及び加工装置
WO2021167044A1 (ja) * 2020-02-20 2021-08-26 ソニーグループ株式会社 顕微鏡システム、撮像方法、および撮像装置
WO2022138374A1 (ja) * 2020-12-24 2022-06-30 ソニーグループ株式会社 データ生成方法、蛍光観察システムおよび情報処理装置
EP4310570A1 (en) * 2021-03-18 2024-01-24 Evident Corporation Microscope system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005292839A (ja) * 2004-04-05 2005-10-20 Fujifilm Electronic Imaging Ltd スリット共焦点顕微鏡およびその作動方法
JP2015187748A (ja) * 2011-07-29 2015-10-29 エフエフイーアイ リミティド イメージ走査のための方法及び装置
JP2015522850A (ja) * 2012-07-05 2015-08-06 ナショナル ユニバーシティ オブ シンガポール 光学顕微鏡およびその制御方法
JP2019079049A (ja) * 2017-10-24 2019-05-23 オリンパス株式会社 顕微鏡システム、観察方法、及び観察プログラム
JP2019207444A (ja) * 2019-09-17 2019-12-05 株式会社ニコン 焦点調節装置、顕微鏡装置、焦点調節方法、及び制御プログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116972769A (zh) * 2022-12-27 2023-10-31 深圳市中图仪器股份有限公司 具有补偿测量的重建方法、重建装置和重建系统
CN116972769B (zh) * 2022-12-27 2024-04-05 深圳市中图仪器股份有限公司 具有补偿测量的重建方法、重建装置和重建系统

Also Published As

Publication number Publication date
US20230111094A1 (en) 2023-04-13
DE112021001887T5 (de) 2023-01-05

Similar Documents

Publication Publication Date Title
US9832365B2 (en) Autofocus based on differential measurements
JP6284629B2 (ja) 高エネルギービームの焦点位置を決定する装置および方法
JP4887464B2 (ja) 生体試料を撮像するように構成された撮像機器の焦点位置を決定するための方法及び装置
US10365468B2 (en) Autofocus imaging
CN101303269B (zh) 光学系统评价装置及光学系统评价方法
CN108572439B (zh) 用于高通量测序的激光线照明器
JP6087993B2 (ja) イメージ走査のための方法及び装置
TWI292033B (ja)
JP6985506B2 (ja) リアルタイムオートフォーカス合焦アルゴリズム
KR20150084656A (ko) 정보 처리 장치 및 방법
CN1511248A (zh) 共焦点显微镜、光学式高度测定方法及自动聚焦方法
US20230194667A1 (en) Distance Measuring Apparatus, Distance Measuring Method, Camera and Electronic Device
WO2021193177A1 (ja) 顕微鏡システム、撮像方法、および撮像装置
US10697764B2 (en) Sample shape measuring apparatus for calculating a shape of a sample disposed between an illumination optical system and an observation optical system
JP5070995B2 (ja) 共焦点顕微鏡装置
JP5471715B2 (ja) 合焦装置、合焦方法、合焦プログラム及び顕微鏡
US20220276478A1 (en) Method and apparatus for analysis of a sample by light sheet microscopy
TWI699510B (zh) 增加用於檢測和度量之高度感測器之動態範圍
US7977616B2 (en) Microscope equipped with automatic focusing mechanism and adjustment method thereof
JP3611211B2 (ja) 光ピックアップの非点収差測定方法、非点収差調整方法、及び非点収差測定装置
JP2006118944A (ja) レンズの評価装置
JP2003177292A (ja) レンズの調整装置および調整方法
WO2021193325A1 (ja) 顕微鏡システム、撮像方法、および撮像装置
JP4381687B2 (ja) 全反射蛍光顕微測定装置
JP2012141452A (ja) 自動合焦機構および顕微鏡装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21774098

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21774098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP