KR20150084656A - 정보 처리 장치 및 방법 - Google Patents

정보 처리 장치 및 방법 Download PDF

Info

Publication number
KR20150084656A
KR20150084656A KR1020150000520A KR20150000520A KR20150084656A KR 20150084656 A KR20150084656 A KR 20150084656A KR 1020150000520 A KR1020150000520 A KR 1020150000520A KR 20150000520 A KR20150000520 A KR 20150000520A KR 20150084656 A KR20150084656 A KR 20150084656A
Authority
KR
South Korea
Prior art keywords
light
distance
unit
section
lens
Prior art date
Application number
KR1020150000520A
Other languages
English (en)
Inventor
아츠시 토다
Original Assignee
소니 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 소니 주식회사 filed Critical 소니 주식회사
Publication of KR20150084656A publication Critical patent/KR20150084656A/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/026Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/14Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/113Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining or recording eye movement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0008Apparatus for testing the eyes; Instruments for examining the eyes provided with illuminating means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • A61B3/0025Operational features thereof characterised by electronic signal processing, e.g. eye models
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/12Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
    • A61B3/1216Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes for diagnostics of the iris
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0081Simple or compound lenses having one or more elements with analytic function to create variable power
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/18Eye characteristics, e.g. of the iris
    • G06V40/19Sensors therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/18Eye characteristics, e.g. of the iris
    • G06V40/197Matching; Classification

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Collating Specific Patterns (AREA)
  • Image Input (AREA)
  • Image Processing (AREA)

Abstract

본 발명은 보다 용이하게 거리를 계측할 수 있도록 하는 것으로서, 광을 발광하는 발광부와, 초점거리를 복수 가지며 비점수차를 발생시키는 비점수차 렌즈를 가지며, 상기 발광부로부터의 광에 대해 광학적 영향을 미치는 광학부와, 상기 발광부에서 발광되고, 상기 광학부를 통하여 외부에 조사되고, 물체에 반사된 반사광을 검출하는 검출부와, 상기 검출부에서 검출된 반사광에서 발생하는 비점수차에 의거하여, 상기 물체까지의 거리를 계측하는 계측부를 구비한다. 본 개시는, 예를 들면, 거리 측정 장치나 그 거리 계측 기능을 갖는 정보 처리 장치에 적용할 수 있다.

Description

정보 처리 장치 및 방법{INFORMATION PROCESSING APPARATUS AND INFORMATION PROCESSING METHOD}
본 출원은, 일본 특허청에 2014년 1월 14일에 출원된 일본 특허출원번호 2014-004259호를 기초로 하여 우선권을 주장하며, 이 출원의 모든 내용을 참조에 의해 본 출원에 원용한다.
본 개시는 정보 처리 장치 및 방법에 관한 것으로, 특히, 보다 용이하게 거리를 계측할 수 있도록 한 정보 처리 장치 및 방법에 관한 것이다.
종래, 딥 프로파일 취득 카메라 시스템에서는, 광조사 없음의 패시브 방식과 광조사 있음의 액티브 방식이 있다. 패시브 방식으로는, 다안(multi-view) 방식 등이 있는데, 어두운 환경하나 콘트라스트가 낮은 피사체에서는 거리 측정의 정밀도가 떨어진다. 액티브 방식으로는, 광절단법(light cut-off)이나 TOF(Time off light)가 있다.
광절단법은, 어느 패턴의 광을 조사하여 촬상한 때의 패턴의 리퍼런스로부터의 어긋남량에 의거하여, 피사체까지의 거리를 측정하는 방법이다(예를 들면, 특허 문헌 1:일본 특개소62-291509호 공보 참조). 또한, TOF는, 광속으로 반사하여 되돌아오는 광의 지연 시간을 측정하고, 그 지연 시간에 의거하여, 피사체까지의 거리를 측정하는 방법이다(예를 들면, 특허 문헌 2:일본 특개2012-194185호 공보 참조).
특허 문헌 1 : 일본 특개소62-291509호 공보 특허 문헌 2 : 일본 특개2012-194185호 공보
그러나, 광절단법의 경우, 미리 리퍼런스의 패턴이나 그 위치를 메모리 등에 입력할 필요가 있다. 따라서 이 방법의 경우, 비용이 증대할 우려가 있다. 또한, 연산에 시간을 필요로 하기 때문에, 충분히 고속으로 처리를 행할 수가 없을 우려가 있다.
또한, TOF의 경우, 반사광의 지연 시간을 측정하기 때문에, 매우 고속의 측정 처리를 행하지 않으면 않 된다. 그 때문에, 특수한 기술이 필요하고, 비용이 증대할 우려가 있다. 이 측정 방법으로서, 예를 들면, 간접법이 있다. 이 때 간접법의 경우, 이미지 센서의 하나의 화소에 2개의 게이트가 마련되고, 최초에 일방의 게이트에서 신호가 판독되고, 다음에 타방의 게이트에서 신호가 판독되고, 이 2개의 신호차로부터, 되돌아오는 광의 지연 시간이 측정된다. 2개의 게이트로 판독함으로써 고속화가 가능해진다. 그러나, 일반적인 CIS(Complementary Metal Oxide Semiconductor Image Sensor)에 비하여 게이트나 축적부를 2개 갖을 필요가 있기 때문에, 화소 사이즈를 작게 하는 것이 곤란하였다. 또한 회로적으로 복잡하게 되기 때문에 비용이 증대할 우려가 있다.
본 개시는, 이와 같은 상황을 감안하여 이루어진 것으로서, 보다 용이하게 거리를 계측할 수 있도록 하는 것이다.
본 기술의 한 측면의 정보 처리 장치는, 광을 발광하는 발광부와, 초점거리를 복수 가지며 비점수차(astigmatism)를 발생시키는 비점수차 렌즈를 가지며, 상기 발광부로부터의 광에 대해 광학적 영향을 미치는 광학부와, 상기 발광부에서 발광되고, 상기 광학부를 통하여 외부에 조사되고, 물체에 반사된 반사광을 검출하는 검출부와, 상기 검출부에서 검출된 반사광에서 발생하는 비점수차에 의거하여, 상기 물체까지의 거리를 계측하는 계측부를 구비하는 정보 처리 장치이다.
상기 계측부는, 상기 물체에서의 상기 광의 조사 형상의 변화에 의거하여 상기 물체까지의 거리를 계측할 수 있다.
상기 계측부는, 복수 방향의 선형상(linearly radiated)으로 조사된 상기 광의, 상기 물체에서의 각 선의 굵기의 변화에 응하여 상기 물체까지의 거리를 계측할 수 있다.
상기 광학부는, 상기 발광부로부터의 광의 조사 형상을 십자형상(cross-shape)으로 하는 슬릿, 도파로, 또는, 회절 광학 소자를 또한 가지며, 상기 계측부는, 상기 물체에서의, 상기 십자형상의 각 선의 굵기의 변화에 응하여 상기 물체까지의 거리를 계측할 수 있다.
상기 광학부는, 상기 발광부로부터의 광의 조사 형상을 방사형상(radial shape)으로 하는 슬릿, 도파로, 또는, 회절 광학 소자를 또한 가지며, 상기 계측부는, 상기 물체에서의, 상기 방사형상의 각 선의 굵기의 변화에 응하여 상기 물체까지의 거리를 계측할 수 있다.
상기 광학부는, 상기 발광부로부터의 광을 복수 개소에 조사시키도록 하는 슬릿, 도파로, 또는, 회절 광학 소자를 또한 가지며, 상기 계측부는, 상기 물체의 복수 개소에 조사된 상기 광의 상기 조사 형상의 변화에 응하여 상기 물체까지의 거리를 계측할 수 있다.
상기 광학부는, 상기 발광부로부터의 광의 조사 형상을 줄무늬형상(stripe shape)으로 하는 슬릿, 도파로, 또는, 회절 광학 소자를 또한 가지며, 상기 계측부는, 상기 물체에서의, 상기 줄무늬형상의 각 선의 굵기의 변화에 응하여 상기 물체까지의 거리를 계측할 수 있다.
상기 비점수차 렌즈는, 상기 비점수차 렌즈의 중심측부터 주연(peripheral)측을 향하는 방사 방향(sagittal)에서 상기 초점거리가 변화하지 않고, 상기 비점수차 렌즈의 중심 또는 그 근방을 중심으로 한 동심원 방향(meridional)에서 상기 초점거리가 연속적으로 변화하는 렌즈인 것으로 할 수 있다.
상기 비점수차 렌즈는, 상기 초점거리가 가변인 초점 가변 렌즈인 것으로 이루어질 수 있다.
상기 초점 가변 렌즈는, 렌티큘러 렌즈(lenticular lens)로 이루어질 수 있다.
상기 비점수차 렌즈는, 복수의 렌즈에 의해 구성되도록 이루어질 수 있다.
상기 계측부는, 또한, 상기 검출부에서 검출된 반사광의 위치 어긋남에 의거하여 상기 물체까지의 거리를 계측하고, 상기 위치 어긋남에 의거한 계측 결과와, 상기 비점수차에 의거한 거리 계측 결과의 양쪽을 이용하여 물체까지의 거리를 계측할 수 있다.
상기 발광부는, 적외광을 발광하고, 상기 검출부는, 상기 광학부를 통하여 외부에 조사되고, 물체에 반사된 적외광의 반사광을 검출할 수 있다.
상기 검출부는, 수광한 가시광과 적외광을 검출 가능한 촬상 소자를 가지며, 상기 촬상 소자를 이용하여 가시광으로 이루어지는 촬상 화상을 얻음과 함께, 상기 적외광의 반사광을 검출할 수 있다.
상기 발광부는, 레이저광을 발광하고, 상기 검출부는, 상기 광학부를 통하여 외부에 조사되고, 물체에 반사된 레이저광의 반사광을 검출할 수 있다.
상기 계측부에 의해 계측된 상기 물체까지의 거리를 이용하여, 상기 물체인 인물의 안구(eyeball)의 홍채(iris)의 주름의 3차원 형상을 인식하는 인식부와, 상기 인식부에 의해 인식된 상기 홍채의 주름의 3차원 형상에 의거하여, 상기 인물의 인증을 행하는 인증부를 더 구비할 수 있다.
상기 계측부에 의해 계측된 상기 물체까지의 거리를 이용하여, 상기 물체인 인물의 각 안구의 홍채의 위치 및 기울기, 및 각 안구까지의 거리를 판정하는 홍채 판정부와, 상기 홍채 판정부에 의해 판정된, 각 안구의 홍채의 위치 및 기울기, 및 각 안구까지의 거리에 의거하여, 상기 인물의 시점(視點)을 판정하는 시점 판정부와, 상기 시점 판정부에 의해 판정된 상기 인물의 시점에 응한 처리를 행하는 정보 처리부를 더 구비할 수 있다.
상기 계측부에 의해 계측된 상기 물체까지의 거리를 이용하여, 상기 물체인 인물의 위치, 자세, 동작을 판정하는 자세 동작 판정부와, 상기 자세 동작 판정부에 의해 판정된 상기 인물의 위치, 자세, 동작에 응한 처리를 행하는 정보 처리부를 더 구비할 수 있다.
피사체로부터의 광을 투과하는 초점거리가 가변인 촬상 광학부와, 상기 촬상 광학부를 통하여 수광한 상기 피사체로부터의 광을 광전 변환하여 상기 피사체의 화상 데이터를 얻는 촬상부와, 상기 계측부에 의해 계측된 상기 물체까지의 거리를 이용하여, 상기 촬상 광학부의 초점거리를 제어하는 초점 제어부를 더 구비할 수 있다.
본 기술의 한 측면의 정보 처리 방법은, 광을 발광하고, 초점거리를 복수 가지며 비점수차를 발생시키는 비점수차 렌즈를 가지며, 상기 광에 대해 광학적 영향을 미치는 광학부를 통하여 외부에 조사되고, 물체에 반사된 반사광을 검출하고, 검출된 반사광에서 발생하는 비점수차에 의거하여, 상기 물체까지의 거리를 계측하는 정보 처리 방법이다.
본 기술의 한 측면에서는, 광이 발광되고, 초점거리를 복수 가지며 비점수차를 발생시키는 비점수차 렌즈를 가지며, 광에 대해 광학적 영향을 미치는 광학부를 통하여 외부에 조사되고, 물체에 반사된 반사광이 검출되고, 검출된 반사광에서 발생하는 비점수차에 의거하여, 물체까지의 거리가 계측된다.
본 개시에 의하면, 신호를 처리할 수 있다. 특히, 보다 용이하게 거리를 계측할 수 있다.
이들 및 또 다른 목적들은 본 발명의 다음의 상세한 설명에 의한 최상의 실시예와 첨부된 도면에 도시된 바와 같이 특징이 명확하게 나타날 것이다.
도 1은 거리 측정 장치의 주된 구성예를 설명하는 도면.
도 2는 비점수차 렌즈를 이용한 거리 계측 방법의 예를 설명하는 도면.
도 3은 거리 산출 방법의 예를 설명하는 도면.
도 4는 거리 산출 방법의 예를 설명하는 도면.
도 5는 거리 산출 방법의 예를 설명하는 도면.
도 6은 십자 광원을 이용한 거리 계측 방법의 예를 설명하는 도면.
도 7은 방사형상의 패턴의 예를 설명하는 도면.
도 8은 십자 복수 광원을 이용한 거리 계측 방법의 예를 설명하는 도면.
도 9는 줄무늬형상 패턴의 예를 설명하는 도면.
도 10은 갈바노미러(galvanometer mirror)의 예를 설명하는 도면.
도 11은 적외광을 이용한 거리 계측 방법의 예를 설명하는 도면.
도 12는 이미지 센서의 예를 설명하는 도면.
도 13은 화소 배열의 예를 설명하는 도면.
도 14는 분광 특성의 예를 설명하는 도면.
도 15는 색 보정 연산 방법의 예를 도시하는 도면.
도 16은 화소 구성의 예를 도시하는 도면.
도 17은 유전체 다층막의 구성예를 도시하는 도면.
도 18은 유전체 다층막의 반사 특성의 예를 도시하는 도면.
도 19는 비점수차 렌즈의 형상의 예를 도시하는 도면.
도 20은 비점수차 렌즈의 형상의 예를 도시하는 도면.
도 21은 비점수차 렌즈의 형상의 예를 도시하는 도면.
도 22는 비점수차 렌즈의 형상의 예를 도시하는 도면.
도 23은 렌티큘러 렌즈를 이용하는 예를 도시하는 도면.
도 24는 액체 렌즈의 예를 도시하는 도면.
도 25는 렌티큘러 렌즈를 이용하는 예를 도시하는 도면.
도 26은 거리 측정 처리의 흐름의 예를 설명하는 플로 차트.
도 27은 인증 장치의 구성예를 도시하는 블록도.
도 28은 인증 처리의 흐름의 예를 설명하는 플로 차트.
도 29는 홍채의 주름형상을 계측하는 예를 도시하는 블록도.
도 30은 아이 트래킹의 양상의 예를 도시하는 도면.
도 31은 아이 트래킹을 행하는 정보 처리 장치의 주된 구성예를 도시하는 블록도.
도 32는 아이 트래킹 처리의 양상의 예를 도시하는 블록도.
도 33은 유저의 제스처를 검출하는 정보 처리 장치의 주된 구성예를 도시하는 블록도.
도 34는 제스처 접수 처리의 흐름의 예를 설명하는 플로 차트.
도 35는 촬상 장치의 자동 초점 조정의 양상의 예를 설명하는 도면.
도 36은 촬상 장치의 주된 구성예를 도시하는 블록도.
도 37은 촬상 처리의 흐름의 예를 설명하는 플로 차트.
도 38은 컴퓨터의 주된 구성예를 도시하는 블록도.
이하, 본 개시를 실시하기 위한 형태(이하 실시의 형태라고 한다)에 관해 설명한다. 또한, 설명은 이하의 순서로 행한다.
1. 제1의 실시의 형태(거리 측정 장치)
2. 제2의 실시의 형태(인증 장치)
3. 제3의 실시의 형태(정보 처리 장치)
4. 제4의 실시의 형태(정보 처리 장치)
5. 제5의 실시의 형태(촬상 장치)
6. 제6의 실시의 형태(컴퓨터)
<1. 제1의 실시의 형태>
<거리 측정 장치>
도 1은, 본 기술을 적용한 정보 처리 장치의 한 실시의 형태인 거리 측정 장치의 주된 구성예를 도시하는 블록도이다. 도 1에 도시되는 거리 측정 장치(100)는, 거리를 측정하는 장치이다. 거리 측정 장치(100)는, 거리 측정 대상인 물체(121)를 향하여 광을 조사하고, 그 피사체에서 반사한 반사광을 검출하고, 그 검출 결과에 의거하여 물체(121)까지의 거리를 계측한다.
도 1에 도시되는 바와 같이, 거리 측정 장치(100)는, 제어부(101), 발광부(102), 광학부(103), 검출부(104) 및 계측부(105)를 갖는다.
제어부(101)는, 발광부(102) 내지 계측부(105)의 각 처리부를 제어하고, 각 처리부에 대해 거리 측정에 관한 처리를 실행시킨다.
발광부(102)는, 예를 들면, 백열전구, 형광등, LED(Light Emitting Diode), 레이저(Laser(Light Amplification by Stimulated Emissionof Radiation)) 등의, 광원으로 이루어지는 임의의 발광체를 가지며, 물체(121)에 조사하는 광을 발광한다. 발광부(102)로부터 발광된 광은, 광학부(103)를 통하여 거리 측정 장치(100)의 외부에 출사된다.
광학부(103)는, 임의의 광학 소자로 이루어지고, 이 광에 대해 광학적 영향을 미친다. 광학부(103)의 구성은 임의이지만, 적어도, 발광부(102)로부터의 광을 투과하고, 투과한 광에 비점수차를 발생시키는 비점수차 렌즈(111)를 갖는다.
광학부(103)를 통하여 거리 측정 장치(100)의 외부에 출사된 광은, 물체(121)에 조사된다. 그 조사광은 물체(121)에서 반사한다. 검출부(104)는, 그 반사광을 검출한다. 검출부(104)는, 예를 들면 CCD(Charge Coupled Device)나 CMOS(Complementary Metal Oxide Semiconductor)의 이미지 센서를 가지며, 물체(121)에서의 반사광을 검출하고, 그 검출 결과를 화상 데이터 등으로서 계측부(105)에 공급한다.
계측부(105)는, 그 검출 결과에 의거하여, 물체(121)까지의 거리를 계측한다. 검출부(104)에서 검출된 반사광에는, 비점수차 렌즈(111)에 의해 비점수차가 발생한다. 계측부(105)는, 검출 결과에 포함되는 이 비점수차의 영향을 이용하여 거리 측정 장치(100)로부터 물체(121)까지의 거리를 계측한다. 계측부(105)는, 그 계측 결과(물체(121)까지의 거리를 나타내는 정보)를 거리 측정 장치(100)의 외부에 출력한다.
계측 결과의 출력 방법은 임의이다. 예를 들면, 외부 출력 단자로부터 디지털 데이터로서 출력하도록 하여도 좋고, 모니터로부터 거리를 나타내는 화상이나 영상으로서 출력하도록 하여도 좋다. 또한, 스피커로부터 거리를 나타내는 음성으로서 출력하도록 하여도 좋다. 또한, 거리 계측 결과는, 기록 매체에 기록되도록 하여도 좋고, 통신 매체를 통하여 다른 장치에 송신되도록 하여도 좋다.
<비점수차>
다음에, 비점수차에 관해 설명한다. 비점수차는, 렌즈에 왜곡이 있음으로써 발생하는 현상으로, 예를 들면, 도 2에 도시되는 바와 같이, 비점수차 렌즈(111)의 종방향측부터 입사한 광선(1점 쇄선)은 앞쪽(手前側)에서 초점을 맺고, 비점수차 렌즈(111)의 횡방향측부터 입사한 광선(실선)는 뒷쪽(奧側)에서 초점을 맺는다. 즉, 비점수차 렌즈(111)는, 위치에 따라 광의 굴절이 일양하지가 않고, 초점 위치가 복수 존재한다.
따라서 예를 들면, 비점수차 렌즈(111)의 종방향측부터 입사한 광선의 초점 위치(앞쪽)에 물체(121)를 위치시키면, 발광부(102)로부터 조사된 광은, 물체(121)의 위치에서 횡방향으로 흐려저서 퍼저 버린다. 그 때문에, 발부(102)가 점광원이라고 하면, 물체(121)에 조사된 광의 형상(스폿 형상)은, 가로로 길게 된다.
또한, 예를 들면, 비점수차 렌즈(111)의 횡방향측부터 입사한 광선의 초점 위치(뒷쪽)에 물체(121)를 위치시키면, 발광부(102)로부터 조사된 광은, 물체(121)의 위치에서 종방향으로 흐려저서 퍼저 버린다. 그 때문에, 발광부(102)가 점광원이라고 하면, 물체(121)에 조사된 광의 형상(스폿 형상)은, 세로로 길게 된다.
즉, 물체(121)의 위치(거리 계측 장치(100)로부터 물체(121)까지의 거리)를 변화시킴에 의해, 스폿 형상이 변형한다. 따라서 역으로, 그 스폿 형상으로부터 물체(121)의 위치(거리 계측 장치(100)로부터 물체(121)까지의 거리)를 구하는 것이 가능하다. 계측부(105)는, 이와 같은 비점수차에 의한 스폿 형상의 변화에 의거하여 물체(121)까지의 거리를 계측한다.
<거리 계측 방법>
다음에, 그 거리 계측 방법의 구체례에 관해 설명한다. 계측 방법은, 비점수차에 의한 스폿 형상의 변화에 의거한 것이면, 어떤 것이라도 좋지만, 예를 들면, 이하와 같이 구하도록 하여도 좋다.
예를 들면, 도 3과 같이, 광원(발광부(102))으로부터의 광이, 광학부(103)의 슬릿, 비점수차 렌즈(111), 및 조리개를 통하여 거리 측정 장치(100)의 외부에 출사된다고 한다. 그리고, 도 2의 예와 같이, 비점수차 렌즈(111)의 종방향측부터 입사한 광이 앞쪽에서 초점을 맺고, 비점수차 렌즈(111)의 횡방향측부터 입사한 광이 뒷쪽에서 초점을 맺는다고 한다. 또한, 도 3에서는, 비점수차 렌즈(111)의 종방향측부터 입사한 광도, 횡방향측부터 입사한 광도, 마찬가지로 도면 중 종방향에 나타내고 있다. 도 3에 도시되는 바와 같이, 조리개로부터 각 초점 위치까지의 거리를 f1 및 f2로 한다. 또한, 비점수차 렌즈(111)의 종방향측의 개구를 D1로 하고, 횡방향측의 개구를 D2로 한다. 또한, 비점수차 렌즈(111)의 종방향측의 끝(端)(조리개 주변)을 통과한 광이 광축과 이루는 각도를 θ1로 하고, 횡방향측의 단을 통과한 광이 광축과 이루는 각도를 θ2로 한다. 이들 각도(θ1 및 θ2)에 관해, 이하의 식(1)과 식(2)이 성립된다.
tanθ1=D1/(2*f1) … (1)
tanθ2=D2/(2*f2) … (2)
도 4는 도 3의 초점을 맺는 위치의 확대도이다. 여기서, 조리개로부터 물체(121)(피사체)까지의 거리를 L로 한다. 여기서 a1와 a2를, 각각 L과 f1, L과 f2의 차분의 절대치라고 하면, 이하의 식(3) 및 식(4)이 성립한다.
a1=|L-f1| … (3)
a2=|f2-L| … (4)
또한 피사체에 광조사한 때의 흐림량을 ε1, ε2로 하면, 이하의 식(5) 및 식(6)이 성립한다.
ε1=2*a1*tanθ1 … (5)
ε2=2*a2*tanθ2 … (6)
D1, D2, f1, f2의 값은, 비점수차 렌즈(111)와 조리개에 의해 정해지기 때문에, 예를 들면, 이하와 같이 구체적으로 정할 수 있다.
D1 =20㎜
D2 =20㎜
f1 =50㎜
f2 =100㎜
즉, 상술한 식(1) 내지 (6)으로부터, L과 흐림량(ε1, ε2)의 관계식을 구할 수 있다. 즉, 예를 들면 도 5의 그래프에 도시되는 바와 같은 L에 대한 흐림량(ε1, ε2)의 의존성을 구할 수 있다. 따라서 계측부(105)는, 2개의 비점수차의 방향의 흐림량(또는 ratio)으로부터, 물체(121)까지의 거리(L)를 측정할 수 있다. 또한, 이상적으로는 초점 위치에서 흐림량이 제로가 되지만, 실제로는 렌즈의 회절 한계 등이 있기 때문에, 흐림량은 제로로는 되지 않고 약간의 폭을 갖는 것이 일반적이다. 단, 초점이 아닌 위치의 경우의 흐림량과 비교하면 충분히 작기 때문에, 이와 같은 초점 위치에서의 흐림량은, 무시할 수 있는 것으로 한다.
이상과 같이 비점수차를 이용하여 거리를 계측함에 의해, 거리 측정 장치(100)는, 보다 용이하며 고정밀도로 거리를 계측할 수 있다.
<흐림량의 계측 : 점광원>
다음에 흐림량의 계측 방법에 관해 설명한다. 흐림량은, 검출부(104)에서 검출되는, 물체(121)에서의 조사광의 조사 형상(스폿 형상)의 변화의 정도에 의해 구하여진다. 물체(121)에 조사하는 광의 형상은 임의이다.
예를 들면, 발광부(102)가 갖는 광원이 점광원인 것으로 하고, 발광부(102)로부터 개략 일양한 평행광이 광학부(103)에 사출되도록 하여도 좋다.
점광원으로부터의 평행광이, 비점수차가 발생하지 않는 렌즈를 평행광으로서 통과하도록 하면, 그 렌즈의 초점 위치에서의 조사광의 스폿 형상은, 이상적으로는 점이 된다. 이에 대해, 점광원으로부터의 평행광이 비점수차 렌즈(111)를 통과하도록 하면, 비점수차에 의해, 그 스폿 형상이 세로로 길게 되거나, 가로로 길게 되거나 한다.
그래서, 계측부(105)가, 검출부(104)에서 검출되는 물체(121)에서의 조사광의 스폿 형상을 관측하고, 그 형상 변화의 정도, 즉, 스폿 형상의 소정의 방향(예를 들면 종방향이나 횡방향)의 길이에 의거하여, 물체(121)까지의 거리를 구하도록 하여도 좋다. 예를 들면, 계측부(105)는, 스폿 형상이 어느 정도 세로로 긴지 또는 가로로 긴지에 따라, 물체(121)가, 2개의 초점 위치의 어느쪽에 어느 정도 가까운지(즉, L)를 구할 수 있다.
스폿 형상의 길이를 구하는 방향은, 비점수차의 영향에 의해 변화하는 방향이라면, 어떤 방향이라도 좋다. 즉, 종방향과 횡방향으로 한정되지 않는다. 예를 들면, 경사 45도의 방향과, 경사 -45도의 방향이라도 좋다. 또한, 길이를 구하는 방향은, 상술한 예와 같이 서로 수직이 아니라도 좋다.
길이를 구하는 방향 수는 임의이지만, 복수 방향인 편이 바람직하다. 단일 방향의 길이로부터는, 도 5의 그래프에 도시되는 바와 같이, 초점 위치의 앞쪽인지 뒷쪽인지를 판단하는 것은 곤란하기 때문이다. 또한, 복수 방향의 길이로부터(즉, 복수의 초점 위치를 기준으로 하여) 구하는 편이, 보다 정확하게 물체(121)까지의 거리(물체(121)의 위치)를 구할 수 있다.
또한, 발광부(102)가 갖는 점광원은, 비점수차 렌즈(111)를 통과하는 광이 개략 평행광이 되는 광원이라면 어떻게 실현하도록 하여도 좋다. 예를 들면, 충분히 작은 형상의 광원을 이용하도록 하여도 좋다.
<흐림량의 계측 : 십자형상>
또한, 예를 들면, 광학부(103)로부터 십자형상의 광이 물체(121)에 조사되도록 하여도 좋다. 이와 같은 십자 광원의 실현 방법은, 임의이지만, 예를 들면, 도 6과 같이, 십자형상의 개구부를 갖는 슬릿(151)을 점광원과 비점수차 렌즈(111) 사이에 마련하도록 하여도 좋다. 예를 들면, 광학부(103)에서, 비점수차 렌즈(111)의 발광부(102)측에 십자형상의 슬릿(151)을 마련하도록 하여도 좋다. 이와 같은 슬릿(151)을 통과한 광의 대부분은, 상술한 바와 같이, 십자형상을 유지한 채로 비점수차 렌즈(111)를 통과하여, 물체(121)에 조사된다. 즉, 검출부(104)는, 물체(121)에서의 십자형상의 스폿 형상을 검출한다.
이와 같은, 십자형상의 광이, 비점수차가 발생하지 않는 렌즈를 통과하도록 하면, 그 렌즈의 초점 위치에서의 조사광의 스폿 형상은, 이상적으로는, 가느다란 십자형상이 된다. 이에 대해, 십자형상의 광이 비점수차 렌즈(111)를 통과하도록 하면, 비점수차에 의해, 그 렌즈의 초점 위치에서의 조사광의 스폿 형상의 십자의 굵기가 변화한다.
예를 들면, 도 6의 경우, 앞쪽(가가운 쪽)의 초점 위치 부근에서는, 횡방향으로 합초하고, 조사광의 스폿 형상은, 십자형상의 종선이 가늘어지고, 횡선이 굵어진다. 또한, 뒷쪽(먼 쪽)의 초점 위치 부근에서는, 종방향으로 합초하고, 조사광의 스폿 형상은, 십자형상의 횡선이 가늘어지고, 종선이 굵어진다. 또한, 량 초점 위치의 중간 부근에서는, 조사광의 스폿 형상은, 십자형상의 횡선과 종선의 굵기가 거의 동일하게 된다.
그래서, 계측부(105)가, 검출부(104)에서 검출된 물체(121)에서의 조사광의 스폿 형상을 관측하고, 그 변화의 정도, 즉, 십자형상이 이루는 스폿 형상의 종선이 어느 정도 굵어졌는지, 횡선이 어느 정도 굵어졌는지에 의해, 2개의 초점 위치의 어느쪽에 어느 정도 가까운지를 구하여, 물체(121)까지의 거리(L)를 구하도록 하여도 좋다.
또한, 슬릿(151)은, 발광부(102)가 갖도록 하여도 물론 좋다. 또한, 슬릿(151) 대신에, 표면 형상을 십자 형상으로 한 도파로를 갖는 도광판을 마련하도록 하여도 좋다. 또한, 슬릿(151) 대신에, 회절 광학 소자(DOE(Diffractive Optical Element))를 이용하여, 십자 형상의 광을 조사하도록 하여도 좋다. 또한, 조사 형상(즉, 슬릿(151)의 개구부의 형상)은, 임의이고, 십자 형상 이외라도 좋다. 예를 들면, 경사 45도의 방향과, 경사 -45도의 방향을 길이(長手) 방향으로 하는 형상(X자 형상)이라도 좋다. 또한, 조사 형상(슬릿(151)의 개구부)의 길이 방향은, 상술한 예와 같이 서로 수직이 아니라도 좋다.
또한, 이 조사 형상(슬릿(151)의 개구부)의 길이 방향의 수는 임의이지만, 복수 방향인 편이 바람직하다. 단일 방향의 선의 굵기만으로는, 도 5의 그래프에 도시되는 바와 같이, 초점 위치의 앞쪽인지 뒷쪽인지를 판단하는 것은 곤란하기 때문이다.
<흐림량의 계측 : 방사형상>
예를 들면, 광학부(103)로부터, 도 7A에 도시되는 바와 같은 방사형상의 광이 물체(121)에 조사되도록 하여도 좋다. 이와 같은 반사광원의 실현 방법은, 임의이지만, 예를 들면, 도 6의 경우와 마찬가지로, 방사형상의 개구부를 갖는 슬릿을 점광원과 비점수차 렌즈(111) 사이에 마련하도록 하여도 좋다.
이와 같은, 방사형상의 광이, 비점수차 렌즈(111)를 통과하여, 물체(121)에 조사되면, 스폿 형상은, 도 7B에 도시되는 예와 같이, 합초하는 방향의 선만이 가늘어지고, 그 밖의 방향의 선이 그보다 굵어진다.
그래서, 계측부(105)가, 검출부(104)에서 검출된 물체(121)에서의 조사광의 스폿 형상을 관측하고, 그 변화의 정도, 즉, 방사형상이 되는 스폿 형상의 각 선이 어느 정도 굵어졌는지에 의해, 복수의 초점 위치의 어느 쪽에 어느 정도 가까운지를 구하여, 물체(121)까지의 거리(L)를 구하도록 하여도 좋다.
이처럼, 조사 형상을 방사형상으로 함에 의해, 십자형상에 대해 경사 방향의 라인도 굵기의 측정 대상에 더하여지기 때문에, 예를 들면, 비점수차 렌즈(111)를 장착할 때에, 수차의 방향이 조사광의 선 방향과 어긋난 경우라도, 오인식의 발생을 보다 저감시킬 수 있고, 보다 고속이면서 고정밀도로 거리를 측정할 수 있다.
또한, 이 방사형상의 각 선의 간격(각도)은, 균일하여도 좋고, 불균일하여도 좋다. 물론 이 경우도, 십자형상의 개구부를 갖는 슬릿의 경우와 마찬가지로, 슬릿을 발광부(102)가 갖도록 하여도 좋다. 또한, 슬릿 대신에, 표면 형상을 방사형상으로 한 도파로를 갖는 도광판을 마련하도록 하여도 좋다. 또한, 슬릿 대신에, 회절 광학 소자(DOE)를 이용하여, 방사형상의 광을 조사하도록 하여도 좋다.
<흐림량의 계측 : 복수 조사광>
또한, 도 8의 예와 같이, 물체(121)에 복수의 조사광을 조사하도록 하여도 좋다. 도 8의 예의 경우, 하나의 광원(발광부(102))으로부터 출사된 광이, 도광판(161)과, 소정의 형상(도 8의 경우, 십자형상)의 개구부를 복수 갖는 슬릿(162)을 통함에 의해, 소정의 조사 형상의 복수의 조사광이 생성된다. 이 복수의 조사광이 비점수차 렌즈(111)를 통하여 물체(121)에 조사된다.
이와 같이 함으로써 화상 전체의 에어리어마다의 거리의 측정이 가능해지다. 또한, 도 8에서는 하나의 비점수차 렌즈(111)를 복수의 조사광이 통과하도록 하고 있지만, 조사광마다 비점수차 렌즈(111)를 각각 배치하도록 하여도 좋다. 또한, 각 조사광의 조사 형상은 임의이고, 예를 들면 방사형상 등, 십자형상 이외라도 좋다. 또한, 상술한 바와 같이, 복수의 조사광 및 각 조사광의 조사 형상은, 슬릿(162) 대신에 도파로 형상 등에 의해 형성되도록 하여도 좋다. 예를 들면, 소정의 표면 형상의 도파로를 복수 가지며, 소정의 조사 형상의 복수의 조사광을 얻을 수 있는 도광판을 슬릿(162) 대신에 이용하도록 하여도 좋다. 또한, 슬릿(162) 대신에, 회절 광학 소자(DOE)를 이용하여, 복수의 조사광 및 각 조사광의 조사 형상을 형성하도록 하여도 좋다. 또한, 각 조사광의 형상이 동일하지 않아도 좋다. 예를 들면, 비점수차 렌즈(111)를 통과하는 위치에 응하여 조사 형상이 다르도록 하여도 좋다.
<흐림량의 계측 : 줄무늬형상>
또한, 조사 형상을, 도 9와 같이 연속한 라인의 줄무늬형상으로 하여도 좋다. 즉, 예를 들면, 도 9A의 우물정자형상의 패턴이나 도 9B의 경사의 라인이 다수 들어간 줄무늬형상 패턴의 조사광을, 검출부(104)가 검출하는 화각(畵角)의 일부 또는 전체에 조사하도록 하여도 좋다. 이와 같이, 조사 형상을, 상술한 조사 형상보다도 다수의 선으로 이루어지는 패턴으로 함에 의해, 계측부(105)는, 패턴의 어느 방향의 라인의 어느 부분에서, 초점이 맞고 있는지(가늘어져 있는지), 맞지 않는지(굵어져 있는지)를 판정할 수 있도록 된다. 즉, 계측부(105)는, 보다 상세한 거리 측정을 행할 수가 있다. 물론, 이 조사 형상의 패턴은, 임의이고, 도 9의 예로 한정되지 않는다. 예를 들면, 곡선을 포함하는 패턴이라도 좋다. 또한, 도 9에 도시되는 패턴과 같이, 전체가 균일한 패턴이 아니라도 좋고, 위치에 따라 패턴이 다르도록 하여도 좋다.
또한, 이와 같은 패턴의 실현 방법은, 임의이다. 예를 들면, 슬릿을 이용하여도 좋고, 도파로 형상 등에 의해 형성되도록 하여도 좋고, 회절 광학 소자(DOE)를 이용하여도 좋다.
<레이저광>
또한, 발광부(102)가 조사광으로서 레이저광을 조사하도록 하여도 좋다. 그 때, 광학부(103)가, 도 10에 도시되는 바와 같은, 레이저광을 반사하는 2축의 갈바노미러(171A 및 171B) 등을 가지며, 발광부(102)로부터의 레이저광을 그 갈바노미러로 스캔함으로써 패턴 조사하도록 하여도 좋다.
갈바노미러(171A)는, 모터(172A)를 구동시킴에 의해, 그 각도를 변경할 수 있다. 갈바노미러(171B)는, 모터(172B)를 구동시킴에 의해, 그 각도를 변경할 수 있다. 이하에서, 갈바노미러(171A)와 갈바노미러(171B)를 서로 구별하여 설명할 필요가 없는 경우, 단지, 갈바노미러(171)라고 칭한다. 또한, 모터(172A)와 모터(172B)를 서로 구별하여 설명할 필요가 없는 경우, 단지, 모터(172)라고 칭한다. 도 10에 도시되는 바와 같은 2축의 갈바노미러(171)에 반사시킴에 의해, 레이저광(173)을 임의의 방향으로 조사시킬 수 있다. 즉, 제어부(101)는, 이들의 모터(172)를 구동시켜, 갈바노미러(171)의 방향을 제어함에 의해, 레이저광(173)의 조사 방향을 제어할 수 있다. 따라서 예를 들면 도 9에 도시되는 바와 같은 줄무늬형상의 패턴으로 조사할 수도 있다. 또한, 레이저광 대신에, LED 와 같은 자연 방출광이라도 렌즈로 평행 빔으로 하는 등으로, 마찬가지로 갈바노미러에 의한 스캔은 가능하다.
<적외광>
또한, 발광부(102)가 조사광으로서 적외광을 조사하도록 하여도 좋다. 적외광을 사용함으로써, 인간의 눈으로는 감지할 수 없기 때문에, 광이 조사되고 있는 것을 의식하는 일 없이, 거리 정보를 취득할 수 있도록 된다. 따라서 예를 들면 게임이나 제스처에 의한 신호 입력 등에 응용할 수 있다.
조사광을 적외광으로 하는 경우도, 검출 방법이나 거리 측정 방법은, 가시광의 경우와 기본적으로 마찬가지로 행할 수 있다. 또한, 발광부(102)가 갖는 광원은, 임의이고, 예를 들면, LED나, 레이저(laser)나, 램프라도 좋다. 램프의 경우, 도 11의 예와 같이, 도광판(161) 및 슬릿(181) 외에, 가시광을 컷트하고 적외광을 투과하는 적외광 컷트 필터(182)를 이용하도록 하여도 좋다. 여기서는 도광판(161)을 이용하여, 면 내에서 균일한 광강도의 조사가 되도록 하고 있다. 슬릿(181)에는, 예를 들면 상술한 바와 같은 각종 패턴을 포함하는 임의의 패턴의 개구부가 마련되도록 하여도 좋다. 또한, 슬릿(181) 대신에, 상술한 바와 같은 각종 패턴을 포함하는 임의의 패턴의 표면 형상으로 한 도파로를 갖는 도광판을 마련하도록 하여도 좋다. 또한 다른 방법으로서, 슬릿(181) 대신에, 회절 광학 소자(DOE)를 이용하여, 임의의 패턴의 형상의 광을 조사하도록 하여도 좋다. 도 11의 예에서는, 가시광 컷트 필터(182)는, 슬릿(181)과 비점수차 렌즈(111) 사이에 마련하고 있지만, 이 장소는 임의이다. 또한 램프를 LED나 레이저(Laser)로 치환하여도 좋지만, 이 경우 가시광 컷트 필터(182)는, 생략하는 것도 가능하다.
검출부(104)(이미지 센서측)는, 적외광을 검출할 수 있으면, 어떤 것이라도 좋다. 단, 예를 들면, 일반적인 촬상과 같이 가시광의 화상을 취득하는 장치나 시스템의 경우, 예를 들면, 도 12에 도시되는 바와 같이, 검출부(104)가, 적외광을 검출함과 함께 가시광의 화상도 취득할 수 있도록 하여도 좋다. 이와 같이 함에 의해, 가시광용과 적외용의 2종류의 이미지 센서를 마련할 필요가 없고, 비용을 저감시킬 수 있다. 또한, 이와 같이 함으로써, 가시광과 적외광의 검출 위치가 일치하기 때문에(어긋남이 생기지 않기 때문에) 보다 정확한 거리 측정이 가능해진다.
그 경우, 검출부(104)의 이미지 센서의 화소 배열은, 도 13의 예와 같이 하여도 좋다. 도 13의 예의 이미지 센서는, 적 필터(R)가 할당된 화소(R화소라고도 칭한다)와, 녹 필터(G)가 할당된 화소(G화소라고도 칭한다)와, 청 필터(B)가 할당된 화소(B화소라고도 칭한다)와, 흑 필터(Bk)가 할당된 화소(Bk화소라고도 칭한다)에 의해 구성된다. R, G, B의 분광은, 가시광에서, 각각, 적, 녹, 청 영역의 광을 투과하고, 그 이외의 영역의 광을 투과시키지 않는 작용이 있다. 그러나, 적외광은 이들의 필터를 투과한다. 이에 대해 Bk는 가시광을 투과시키지 않고, 적외광을 투과하는 작용이 있다.
이와 같은 분광의 예를 도 14에 도시한다. 도 14A는, R, G, B의 각 필터의 투과 특성을 나타내는 그래프이고, 도 14B는, Bk의 투과 특성을 나타내는 그래프이다. 또한, 도 14A에서, R, G, B 분광에 관해서는 실리콘(Si)의 포토 다이오드 상에 필터가 있는 경우의 분광 감도 곡선으로서 나타나고 있다. 또한, 도 14B에서, Bk의 분광에 관해서는, 필터의 투과율 분광 특성으로서 나타나고 있다.
이와 같은 분광 특성으로부터, 적외광의 화상은 Bk화소를 이용하여 얻어진다. 이에 대해, R화소, G화소, 및 B화소로 얻어지는 화상은, 가시광+적외광의 화상이 되어 버린다. 그 때문에, R화소, G화소, 및 B화소에서 얻어지는 화상은, 색 재현성이 나빠지고 색차가 커저 버린다. 이것을 피하기 위해, 적 성분의 진정한 값(R*), 녹 성분의 진정한 값(G*), 및 청 성분의 진정한 값(B*)을, 도 15와 같은 연산식으로 구하고, 또한 통상의 화이트 밸런스나 리니어 매트릭스 연산 처리를 행하도록 하여도 좋다. 이와 같이 함에 의해, R화소, G화소, 및 B화소에서 얻어지는 가시광의 화상의 색 재현성을 향상시킬 수 있다.
상술한 바와 같은 적외/가시 화상을 동시 취득할 수 있는 이미지 센서의 조감도의 예를 도 16에 도시한다. 이 경우, 적외광의 화상을 취득하기 위한 화소로서, 적외광만을 투과한 흑 필터(Bk) 또는 적외광과 가시광의 양쪽을 투과시키는 투명한 필터(A)가 할당된 화소가 존재한다. 화소 배열은 도 13과 같은 배열로 하여도 좋다.
가시광의 화상을 취득하는 가시 인화소에는, RGB의 색 필터가 상부에 배치되어 있고, 그 하부에게 적외광을 반사하고 가시광을 투과한 유전체 다층막이 형성된다. 이와 같이 함으로써, 그 아래의 포토 다이오드(PD)에 입사하는 적외 성분을 저감시킬 수 있다. 이미지 센서를 이와 같은 구성으로 함에 의해, 도 15를 참조하여 상술한 바와 같은 색 보정 연산을 생략할 수 있으면서 색 재현성도 향상시킬 수 있다.
여기서, 적외광을 반사하고 가시광을 투과한 유전체 다층막의 구성예를 도 17에 나타낸다. 도 17에 도시되는 예에서는, 유전체 다층막은, 질화규소(Si3N4(SiN))와 이산화규소(SiO2)의 다층막에 의해 형성된다. 또한, 이 유전체 다층막의 층수와, 반사율과의 관계를 도 18에 나타낸다. 이 도면으로부터 11층의 다층막에서 90% 이상의 적외광이 반사되고 있음을 알 수 있다.
또한, 적외광 화소의 필터를 투명하게 한 경우, 적외광과 가시광의 양쪽을 투과시키기 때문에, 고감도가 되는 이점도 겸비하고, 또한 거리 측정도 동시에 행할 수 있게 된다.
이상과 같이 함으로써, 거리 측정 장치(100)는, 보다 고성능의 거리 측정을 행할 수가 있다.
<비점수차 렌즈 형상>
다음에 비점수차 렌즈(111)에 관해 설명한다. 비점수차는, 렌즈 주위의 동심원 방향으로 얇은 곳과 두꺼운 곳이 존재함(두께에 편차가 있음)으로써 발생한다. 비점수차 렌즈(111)의 형상은, 이와 같은 비점수차를 발생시키는 것, 즉, 렌즈 주위의 동심원 방향에 두께의 편차가 있는 것이면, 어떤 형상이라도 좋다. 예를 들면, 비점수차 렌즈(111)의 중심측부터 주연측을 향하는 방사 방향(sagittal)에서 초점거리가 변화하지 않고, 비점수차 렌즈(111)의 중심 또는 그 근방을 중심으로 한 동심원 방향(meridional)에서의 초점거리가 연속적으로 변화하는 형상이라도 좋다.
예를 들면, 도 19에 도시되는 바와 같이, 동심원 방향으로 90도(90deg)의 회전으로 렌즈 주위가 얇음→ 두꺼움이 되는 형상이라도 좋다. 도 20A 내지 도 20E에 그 조감도를 도시한다. 도 20A 내지 도 20E는, XYZ의 3축으로 표시되는 공간상에 배치한 비점수차 렌즈(111)를 각각의 시점(視點)에서 본 도면이다. 렌즈의 주위가 두꺼운 부분에서는 렌즈의 단면 형상의 곡률 반경이 커지기 때문에 초점거리가 길어진다. 이에 대해, 렌즈의 주위가 얇은 부분에서는 렌즈의 단면 형상의 곡률 반경이 작아지기 때문에 초점거리가 짧아진다. 이 굵기가 중간에 있는 경우에는 중간의 초점거리가 된다. 도 19의 예의 경우, 90도(90deg)의 회전으로 얇음→ 두꺼움이 되기 때문에, 약간의 위치 어긋남이라도 초점거리의 변화량이 커저 버릴 우려가 있다.
그래서 도 21과 같이, 180도(180deg)의 회전으로 렌즈 주위가 얇음→ 두꺼움이 되는 형상으로 하여도 좋다. 도 22A 내지 도 22E에 그 조감도를 나타낸다. 도 22A 내지 도 22E는, XYZ의 3축으로 표시된 공간상에 배치한 비점수차 렌즈(111)를 각각의 시점에서 본 도면이다. 이 경우, 도 19의 예에 비하여 서서히 동심원 방향으로 굵기가 변화하게 되고, 초점거리의 변화도 완만해지기 때문에, 정밀도를 향상시킬 수 있다. 특히, 조사 형상을 도 7의 예와 같이 방사형상으로 함으로써 정밀도를 향상시킬 수 있다. 도 7의 예와 같은 방사형상의 반사광과 도 21의 비점수차 렌즈를 조합시키고, 또한, 계측부(105)가, 어느 방향의 라인에서 가장 초점이 맞고 있는지, 즉 가늘어져 있는지를 조사하도록 함으로써, 거리 측정 정밀도를 비약적으로 향상시킬 수 있다.
<초점 가변 렌즈>
또한, 비점수차 렌즈(111)는, 복수의 렌즈에 의해 구성되도록 하여도 좋다. 또한, 비점수차 렌즈(111)를, 초점거리를 변경 가능한 초점 가변 렌즈로 하여도 좋다.
예를 들면 도 23의 예와 같이, 반원통형(lenticular)의 액체(liquid) 렌즈(201)와 초점 고정의 비점수차 렌즈(111)를 조합시켜서 이용하여, 십자의 종선의 초점거리를 변화시킬 수 있도록 하여도 좋다. 이와 같은 구성으로 함에 의해, 거리 측정 가능 범위를 넓힐 수 있다.
또한, 방사 형상은 임의이고, 십자형상 이외의 형상이라도 좋다. 예를 들면, 도 7의 예와 같은 방사형상이라도 좋고, 도 9의 예와 같이 줄무늬형상의 패턴으로 하여도 좋다. 또한 조사광을 복수로 하여도 좋다.
그런데 액체 렌즈(201)는, 도 24에 도시되는 바와 같이, 전압 제어로 물과 오일의 계면의 형상을 변화시킴으로써, 초점거리를 변화시킬 수 있다. 도 23의 예에서는, 소정의 방향의 초점거리를 변화시킬 수 있도록, 렌티큘러 렌즈로 하고 있다. 도 23의 예의 경우, 렌즈의 횡방향측부터 입사한 광선의 초점거리를 변화시킴으로써, 결과로서, 조사광의 종방향의 라인의 초점거리가 변화하게 된다.
예를 들면, 보다 근거리에서의 거리 측정을 행하는 경우, 렌티큘러 렌즈의 곡률 반경(r)을 작게 하여, 초점거리를 단축하면 좋다. 역으로, 보다 원거리에서의 거리 측정을 행하는 경우, 역으로 렌티큘러 렌즈의 곡률 반경(r)을 크게 하여, 초점거리를 길게 하면 좋다. 또한, 도 23의 예의 경우, 조사광의 횡방향의 라인의 초점거리는 고정된다. 또한, 초점거리 고정의 비점수차 렌즈(111) 대신에, 도 25에 도시되는 바와 같이, 초점 가변의 렌티큘러 렌즈(201)에 대해 90도(90deg)만큼 회전시킨 방향의 렌티큘러 렌즈(202)를 이용하도록 하여도 좋다.
또한, 이 렌티큘러 렌즈(202)를 초점 가변 렌즈로 하여도 좋다. 또한, 렌티큘러 렌즈(201 및 202)의 양쪽을 초점 가변 렌즈로 하여도 좋다.
또한, 3매 이상의 렌즈를 조합시키도록 하여도 좋다. 예를 들면, 3매 이상의 초점 가변인 렌티큘러 렌즈를 조합시켜서, 3방향 이상의 라인의 초점거리를 변화시킬 수 있도록 하여도 좋다.
<거리 측정 방법의 조합>
또한, 이상에 설명한 비점수차를 이용한 거리 측정 방법을, 다른 거리 측정 방법이라고 조합시켜서 이용하도록 하여도 좋다. 예를 들면, 특허 문헌 1에 기재된 광절단법을 병용하도록 하여도 좋다. 즉, 도 1에 도시되는 거리 측정 장치(100)는, 상술한 바와 같이, 거리 측정 대상의 물체(121)를 향하여 광을 조사하고, 그 물체(121)에서 반사한 반사광을 검출하고, 그 스폿 형상의 변화에 의거하여 물체(121)까지의 거리를 계측하지만, 또한, 그 조사광이 물체(121)에 닿는 위치의 어긋남량에 의거하여 거리를 계측하도록 하여도 좋다. 이와 같이 복수의 방법을 이용하여 거리를 측정함에 의해, 그 정밀도를 향상시킬 수 있다.
또한, 상술한 바와 같이, 본 기술을 적용한 거리 측정 방법과 광절단법의 양 방법은, 거리의 계측의 방법 이외에, 기본적으로 같은 구조를 이용하여 행하여지기 때문에, 이 양 방법을 병용하기 위해 새로운 구성을 추가할 필요가 없다. 따라서 용이하며 저비용으로, 이 양 방법을 병용할 수 있다. 또한, 이 양 방법을 병용하는 경우라도, 검출부(104)에 의한 반사광의 검출 결과를 공유할 수 있기 때문에, 보다 고속으로 거리를 계측할 수 있다. 즉, 보다 고속으로, 용이하게, 또한, 비용의 증대를 억제하면서, 거리 측정의 정밀도를 향상시킬 수 있다.
<거리 측정 처리의 흐름>
다음에, 도 1의 거리 측정 장치(100)에 의해 실행되는 거리 측정 처리의 흐름의 예를, 도 26의 플로 차트를 참조하여 설명한다.
거리 측정 처리가 시작되면, 거리 측정 장치(100)의 발광부(102)는, 스탭 S101에서, 거리 측정 대상의 물체(121)를 향하여 광을 발광한다. 발광부(102)로부터 사출된 광은, 광학부(103)(비점수차 렌즈(111))를 통하여 물체(121)에 조사된다. 그 조사광은 물체(121)에서 반사한다.
스탭 S102에서, 검출부(104)는, 그 반사광을 검출한다.
스탭 S103에서, 계측부(105)는, 스탭 S102에서 검출된 반사광의 검출 결과로부터, 그 반사광에 발생하는 비점수차에 의거하여, 물체(121)까지의 거리를 계측한다.
거리가 계측되면, 거리 측정 처리가 종료된다.
이상과 같이 각 처리를 실행함에 의해, 거리 측정 장치(100)는, 보다 용이하며 고정밀도로 거리를 계측할 수 있다.
<2. 제2의 실시의 형태>
<인증 장치>
제1의 실시의 형태에서 설명한 거리 측정 방법은, 임의의 장치에 적용할 수 있다. 예를 들면, 개인 인증에 이용할 수도 있다.
도 27은, 본 기술을 적용한 정보 처리 장치의 한 실시의 형태이다, 인증 장치의 주된 구성예를 도시하는 블록도이다.
도 27에 도시되는 인증 장치(300)는, 인간 눈의 홍채 주름의 3차원 형상을 이용하여 개인 인증을 행하는 장치이다.
인간의 눈의 홍채 패턴은, 각각의 사람마다 특유하고, 또한 생애(生涯) 불변이며, 일란성 쌍생아라도 다르다. 또한 손상을 받기 어렵기 때문에, 개인을 식별하는데에 우수한 방식으로 되어 있다. 또한, 비접촉으로의 인증 가능이라는 것으로서 저항감도 적고, 현재, 널리 응용되고 있다. 종래의 개인 인증은, 단지 홍채 패턴을 취득하고, 비교하는 것이었다. 선명한 홍채 패턴이 찍혀지기 때문에, 근적외광을 조사하는 일이 많다. 그러나, 이 방법의 경우, 인쇄 등에 의해 복제한 홍채 패턴을 이용함에 의해, 부정한 인증을 가능하게 할 우려가 있다.
그런데, 홍채에는 도 29에 도시되는 바와 같은 다양한 주름이 있다. 이 주름의 3차원 형상은, 홍채 패턴과 마찬가지로, 각 개인 마다 특유하고, 또한 생애 불변이고, 일란성 쌍생아라도 다르다. 또한 손상을 받기 어렵다. 그래서, 인증 장치(300)는, 제1의 실시의 형태에서 설명한 거리 측정 방법을 이용하여, 이 주름의 요철을 측정하여 그 형상을 인식(관측)하고, 그 형상을 이용하여 개인 인증을 행한다. 이와 같이 함에 의해, 2차원적으로 인쇄된 위조물로의 오인식을 피하는 것이 가능해진다.
도 27에 도시되는 바와 같이, 인증 장치(300)는, 거리 계측부(301), 주름형상 인식부(302), 인증부(303) 및 개인정보 데이터베이스(304)를 갖는다.
거리 계측부(301)는, 도 1의 거리 측정 장치(100)와 같은 구성을 가지며, 제1의 실시의 형태에서 설명한 바와 같이 비점수차를 이용하여 거리를 계측한다. 거리 계측부(301)는, 그 계측 결과(즉, 거리 정보)를 주름형상 인식부(302)에 공급한다.
주름형상 인식부(302)는, 예를 들면, CPU(Central Processing Unit), RAM(RandomAccess Memory), ROM(Read Only Memory) 등으로 이루어지고, 주름형상 인식에 관한 처리를 실행한다. 또한, 인증부(303)는, CPU, ROM, RAM 등으로 이루어지고, 개인 인증에 관한 처리를 실행한다. 개인정보 데이터베이스(304)는, 예를 들면, 플래시 메모리나 하드디스크 등의 기록 매체 등으로 이루어지고, 미리 등록되어 있는 유저의 개인정보의 제공에 관한 처리를 행한다. 예를 들면, 개인정보 데이터베이스(304)에는, 인증용의 정보로서, 유저의 홍채의 주름의 3차원 형상에 관한 정보가 등록되어 있다.
인증 장치(300)는, 인증을 희망하는 유저(물체(121))의 개인 인증을 행하는 경우, 인증 처리를 실행한다. 이 인증 처리의 흐름의 예를 도 28의 플로 차트를 참조하여 설명한다.
인증 처리가 시작되면, 인증 장치(300)의 거리 계측부(301)는, 스탭 S301에서, 도 26의 플로 차트를 참조하여 설명한 바와 같이 거리 측정 처리를 실행하고, 인증을 희망하는 유저(물체(121))의 홍채까지의 거리를 상세히 계측한다. 거리 계측부(301)는, 그 계측 결과를 주름형상 인식부(302)에 공급한다.
스탭 S302에서, 주름형상 인식부(302)는, 스탭 S301의 처리에 의해 얻어진 계측 결과를 이용하여, 유저(물체(121))의 홍채의 주름형상(3차원 형상)을 인식한다. 주름형상 인식부(302)는, 그 인식 결과(관측된 주름형상)를 인증부(303)에 공급한다.
스탭 S303에서, 인증부(303)는, 개인정보 데이터베이스(304)로부터 유저(물체(121))의 개인정보를 취득하고, 스탭 S302의 처리에 의해 인식된 주름형상(관측된 주름형상)을, 개인정보 데이터베이스(304)에 등록오나료 정보와 비교하고, 개인 인증을 행한다. 양 정보의 주름형상이 일치한 경우, 인증 처리 대상의 유저(물체(121))가 등록완료의 정규의 유저이라고 인증된다. 또한, 주름형상이 일치하지 않은 경우, 인증 처리 대상의 유저(물체(121))가 부정한 유저이라고 판정되고, 거절된다. 인증부(303)는, 그 인증 결과를 인증 장치(300)의 외부에 출력한다.
스탭 S303의 인증이 종료되면, 인증 처리가 종료된다.
이상과 같이, 본 기술(제1의 실시의 형태에서 설명한 거리 측정 방법)을 이용하여 개인 인증을 행함에 의해, 인증 장치(300)는, 위장 등의 부정한 인증을 억제하고, 보다 정확하면서 안전한 인증을 행할 수가 있다. 또한, 거리 계측부(301)는, 유저(물체(121))의 눈을 향하여 광을 조사하기 때문에, 그 조사광은, 예를 들면 적외광 등과 같이 인체에의 영향이 적은 것으로 하는 것이 바람직하다. 또한, 가시광을 조사하는 경우, 그 광강도는, 인체에의 영향이 적은 정도로 하는 것이 바람직하다.
<3. 제3의 실시의 형태>
<아이 트래킹 처리>
제1의 실시의 형태에서 설명한 거리 측정 방법은, 아이 트래킹 처리에 이용할 수도 있다.
아이 트래킹 처리는, 예를 들면, 도 30A와 같이, 스마트 폰이나 퍼스널 컴퓨터 등의 정보 처리 장치(400)가, 그 유저(물체(121))의 눈의 움직임을 카메라 등에 의해 검지하고, 그 움직임에 응한 처리를 행하는 제어 처리이다.
종래는, 화상의 눈의 검은자위(pupil)로부터 시점이 어디에 있는지를 예측하는 것이었지만, 이 방법은, 정밀도 좋게 행할 수가 없었다. 그래서, 제1의 실시의 형태에서 설명한 거리 측정 방법을 이용하여, 유저(물체(121))의 안구(홍채)까지의 거리와 홍채의 면의 위치나 기울기를 측정하여, 그 시점을 예측하도록 한다.
인간의 눈의 경우, 폭주(convergence)가 있기 때문에, 도 30C와 같이 가까운 물건을 보면 사시(斜視)가 되어, 각각의 안구가 다른 방향으로 회전한다. 그 때, 안구의 회전과 함께 홍채의 면이 기울어지게 된다. 시선은, 도 30C에 도시되는 바와 같이, 홍채의 면에 대해 거의 수직이 되고, 또한, 도 30B에 도시되는 바와 같이, 동공의 중심을 통과한다. 따라서 홍채의 기울기와 홍채까지의 거리 및 홍채의 위치로부터 시선을 일의적으로 결정할 수 있다. 또한, 두 눈의 시선으로부터 시점을 구할 수 있다.
도 31은, 본 기술을 적용한 정보 처리 장치의 한 실시의 형태이다, 정보 처리 장치의 주된 구성예를 도시하는 블록도이다. 도 31에 도시되는 정보 처리 장치(400)는, 상술한 바와 같은 아이 트래킹 처리를 행할 수가 있다.
도 31에 도시되는 바와 같이, 정보 처리 장치(400)는, 아이 트래킹 처리부(401)와 정보 처리부(402)를 갖는다. 아이 트래킹 처리부(401)는, 본 기술을 적용한 아이 트래킹 처리를 행하고, 그 처리 결과로서 유저의 시점을 나타내는 정보를 정보 처리부(402)에 공급한다. 정보 처리부(402)는, 공급된 정보에 의거하여, 유저의 시점 또는 그 움직임에 응한 소정의 처리를 실행한다.
아이 트래킹 처리부(401)는, 거리 계측부(411), 홍채 판정부(412), 및 시점 판정부(413)를 갖는다.
거리 계측부(411)는, 도 1의 거리 측정 장치(100)와 같은 구성을 가지며, 제1의 실시의 형태에서 설명한 바와 같이 비점수차를 이용하여 거리를 계측한다. 거리 계측부(411)는, 그 계측 결과(즉, 거리 정보)를 홍채 판정부(412)에 공급한다.
홍채 판정부(412)는, 예를 들면, CPU, ROM, RAM 등으로 이루어지고, 홍채까지의 거리나, 홍채의 위치 및 기울기 등의 판정에 관한 처리를 행한다. 시점 판정부(413)는, 예를 들면, CPU, ROM, RAM 등으로 이루어지고, 유저의 시점의 판정에 관한 처리를 행한다.
정보 처리 장치(400)는, 아이 트래킹 처리를 행하는 경우, 아이 트래킹 처리를 실행한다. 이 아이 트래킹 처리의 흐름의 예를 도 32의 플로 차트를 참조하여 설명한다.
아이 트래킹 처리가 시작되면, 정보 처리 장치(400)의 거리 계측부(411)는, 스탭 S401에서, 도 26의 플로 차트를 참조하여 설명한 바와 같이 거리 측정 처리를 실행하고, 유저(물체(121))의 홍채까지의 거리를 상세히 계측한다. 거리 계측부(411)는, 그 계측 결과를 홍채 판정부(412)에 공급한다.
스탭 S402에서, 홍채 판정부(412)는, 스탭 S401의 처리에 의해 얻어진 계측 결과를 이용하여, 유저(물체(121))의 각 안구의 홍채의 위치 및 기울기, 및 각 안구까지의 거리를 판정한다. 홍채 판정부(412)는, 그 판정 결과를 시점 판정부(413)에 공급한다.
스탭 S403에서, 시점 판정부(413)는, 홍채 판정부(412)로부터 공급된 유저의 각 안구의 홍채의 위치 및 기울기, 및 각 안구까지의 거리에 의거하여, 유저(물체(121))의 시점을 판정한다. 시점 판정부(413)는, 그 판정 결과를 정보 처리부(402)에 공급한다.
스탭 S404에서, 정보 처리부(402)는, 스탭 S403의 처리에 의해 얻어진 유저의 시점에 응한 처리를 행한다.
스탭 S404의 처리가 종료되면, 아이 트래킹 처리가 종료된다. 또한, 이 아이 트래킹 처리는, 연속적으로 반복하여 실행하도록 하여도 좋다.
이상과 같이, 본 기술(제1의 실시의 형태에서 설명한 거리 측정 방법)을 이용하여 아이 트래킹 처리를 행함에 의해, 정보 처리 장치(400)는, 보다 용이하며 정확하게 아이 트래킹 처리를 행할 수가 있다.
<4. 제4의 실시의 형태>
<제스처에 의한 지시 입력의 접수>
제1의 실시의 형태에서 설명한 거리 측정 방법은, 제스처에 의한 지시 입력의 접수 처리에 이용할 수도 있다.
즉, 제1의 실시의 형태에서 설명한 거리 측정 방법을 이용하여, 유저(물체(121))의 제스처(자세나 동작)를 판정하고, 그 제스처에 의한 지시 입력을 접수하도록 하여도 좋다.
도 33은, 본 기술을 적용한 정보 처리 장치의 한 실시의 형태이다, 정보 처리 장치의 주된 구성예를 도시하는 블록도이다. 도 33에 도시되는 정보 처리 장치(500)는, 상술한 바와 같이 제스처에 의한 지시 입력을 접수하고, 그 지시에 응한 처리를 행하는 장치이다.
도 33에 도시되는 바와 같이, 정보 처리 장치(500)는, 제스처 접수부(501)와 정보 처리부(502)를 갖는다. 제스처 접수부(501)는, 본 기술을 적용한 거리 측정을 이용하여 유저(물체(121))의 제스처(자세나 동작)에 의한 지시 입력의 접수에 관한 처리를 행한다. 정보 처리부(502)는, 제스처 접수부(501)에 의해 접수된 유저의 제스처에 응한 소정의 처리를 실행한다.
제스처 접수부(501)는, 거리 계측부(511) 및 자세 동작 판정부(512)를 갖는다.
거리 계측부(511)는, 도 1의 거리 측정 장치(100)와 같은 구성을 가지며, 제1의 실시의 형태에서 설명한 바와 같이 비점수차를 이용하여 거리를 계측한다. 거리 계측부(511)는, 그 계측 결과(즉, 거리 정보)를 자세 동작 판정부(512)에 공급한다.
자세 동작 판정부(512)는, 예를 들면, CPU, ROM, RAM 등으로 이루어지고, 거리 계측부(511)에서 얻어진 계측 결과를 이용하여, 유저(물체(121))의 자세나 동작의 판정에 관한 처리를 행한다.
정보 처리 장치(500)는, 제스처에 의한 지시 입력을 접수하는 경우, 제스처 접수 처리를 실행한다. 이 제스처 접수 처리의 흐름의 예를 도 34의 플로 차트를 참조하여 설명한다.
제스처 접수 처리가 시작되면, 정보 처리 장치(500)의 거리 계측부(511)는, 스탭 S501에서, 도 26의 플로 차트를 참조하여 설명한 바와 같이 거리 측정 처리를 실행하고, 제스처를 행하는 유저(물체(121))까지의 거리를 상세히 계측한다. 거리 계측부(511)는, 그 계측 결과를 자세 동작 판정부(512)에 공급한다.
스탭 S502에서, 자세 동작 판정부(512)는, 스탭 S501의 처리에 의해 얻어진 계측 결과를 이용하여, 유저(물체(121))의 위치, 자세, 동작을 판정한다. 예를 들면, 자세 동작 판정부(512)는, 어느 시각의 계측 결과로부터, 그 시각의 유저(물체(121))의 위치나 자세를 판정한다. 또한, 예를 들면, 자세 동작 판정부(512)는, 복수 시각의 계측 결과로부터(또는, 복수 시각의 유저의 위치나 자세의 판정 결과로부터), 유저(물체(121))의 동작을 판정한다. 자세 동작 판정부(512)는, 그 판정 결과를 정보 처리부(502)에 공급한다.
스탭 S503에서, 정보 처리부(502)는, 스탭 S502의 처리에 의해 얻어진 유저의 위치, 자세, 동작에 응한 처리를 행한다.
스탭 S503의 처리가 종료되면, 제스처 접수 처리가 종료된다. 또한, 이 제스처 접수 처리는, 연속적으로 반복하여 실행하도록 하여도 좋다.
이상과 같이, 본 기술(제1의 실시의 형태에서 설명한 거리 측정 방법)을 이용하여 제스처 접수 처리를 행함에 의해, 정보 처리 장치(500)는, 제스처에 의한 지시 입력을, 보다 용이하며 정확하게 접수할 수 있다.
<5. 제5의 실시의 형태>
<자동 초점 맞춤>
제1의 실시의 형태에서 설명한 거리 측정 방법은, 촬상 장치 등의 자동 초점 정렬(오토 포커스)에 이용할 수도 있다.
종래의 자동 초점 맞춤으로는, 광조사 방식이나 상면(image plane) 위상 방식이 있다. 광조사 방식에서는, 조사 각도에 의해 거리를 검출하는 방식이 있는데, 이 경우, 정밀도를 충분히 높게 하는 것이 곤란하다. 또한 상면 위상차에서는, 광을 2개로 나누어 전용의 센서에 유도하고, 결상한 2개의 화상의 간격으로부터 핀트의 방향과 양을 판단하는 방식인데, 전용의 화소를 별도로 만들 필요가 있다.
그래서, 제1의 실시의 형태에서 설명한 거리 측정 방법을 이용하여, 도 35의 예와 같이 패턴 인식에 의해 거리를 계측하고, 그 계측 결과를 이용하여 자동 초점 맞춤을 행하도록 하여도 좋다.
도 36은, 본 기술을 적용한 정보 처리 장치의 한 실시의 형태이다, 촬상 장치의 주된 구성예를 도시하는 블록도이다. 도 36에 도시되는 촬상 장치(600)는, 피사체(물체(121))를 촬상하고, 촬상 화상을 얻는 장치이다. 촬상 장치(600)는, 제1의 실시의 형태에서 설명한 거리 측정 방법을 이용하여 피사체(물체(121))까지의 거리를 계측하고, 그 계측 결과에 의거하여, 초점거리를 조정한다.
도 36에 도시되는 바와 같이, 촬상 장치(600)는, 거리 계측부(601), 초점 제어부(602), 광학부(603), 촬상부(604), 화상 처리부(605), 기억부(611), 표시부(612), 및 통신부(613)를 갖는다.
거리 계측부(601)는, 도 1의 거리 측정 장치(100)와 같은 구성을 가지며, 제1의 실시의 형태에서 설명한 바와 같이 비점수차를 이용하여 피사체(물체(121))까지의 거리를 계측한다. 거리 계측부(601)는, 그 계측 결과(즉, 거리 정보)를 초점 제어부(602)에 공급한다.
초점 제어부(602)는, 예를 들면, CPU, ROM, RAM, 액추에이터 등으로 이루어지고, 거리 계측부(601)로부터 공급된 피사체(물체(121))까지의 거리 정보에 의거하여, 광학부(603)를 제어하고, 촬상의 초점거리의 조정을 행한다(오토 포커스를 행한다). 예를 들면, 초점 제어부(602)는, 피사체(물체(121))에 합초하도록, 광학부(603)를 제어하여 촬상의 초점거리를 제어한다.
광학부(603)는, 렌즈나 조리개 등의 광학 소자로 이루어지고, 초점 제어부(602)에 의해 제어되어 초점거리를 변경할 수 있다. 광학부(603)는, 촬상할 때에 촬상부(604)에 입사하는 피사체로부터의 광에 대해 광학적인 영향을 미친다.
촬상부(604)는, 예를 들면 CCD나 CMOS 등의 이미지 센서를 가지며, 그 이미지 센서를 이용하여, 광학부(603)를 통하여 입사되는 피사체로부터의 광을 광전 변환하고, 촬상 화상의 화상 데이터를 얻는다. 촬상부(604)는, 얻어진 화상 데이터를 화상 처리부(605)에 공급한다.
화상 처리부(605)는, 예를 들면, CPU, ROM, RAM 등으로 이루어지고, 촬상부(604)로부터 공급되는 화상 데이터에 대해 소정의 화상 처리를 행한다. 화상 처리부(605)는, 화상 처리 후의 화상 데이터를, 기억부(611)에 공급하여 기억시키거나, 표시부(612)에 공급하여, 화상으로서 모니터에 표시시키거나, 통신부(613)에 공급하여, 다른 장치에 전송시키거나 한다.
기억부(611)는, 예를 들면 플래시 메모리나 하드디스크 등의 기억 매체를 가지며, 화상 처리부(605)로부터 공급되는 화상 데이터를 그 기억 매체에 기억한다.
표시부(612)는, 예를 들면 LCD 등의 모니터를 가지며, 화상 처리부(605)로부터 공급되는 화상 데이터의 화상을 표시한다.
통신부(613)는, 유선 또는 무선의 통신 인터페이스를 가지며, 화상 처리부(605)로부터 공급되는 화상 데이터를, 통신 매체를 통하여 다른 장치에 전송한다.
촬상 장치(600)는, 피사체를 촬상하는 경우, 촬상 처리를 실행한다. 이 촬상 처리의 흐름의 예를 도 37의 플로 차트를 참조하여 설명한다.
촬상 처리가 시작되면, 촬상 장치(600)의 거리 계측부(601)는, 스탭 S601에서, 도 26의 플로 차트를 참조하여 설명한 바와 같이 거리 측정 처리를 실행하고, 피사체(물체(121))까지의 거리를 계측한다. 거리 계측부(601)는, 그 계측 결과를 초점 제어부(602)에 공급한다.
스탭 S602에서, 초점 제어부(602)는, 스탭 S601의 처리에 의해 얻어진 계측 결과를 이용하여, 광학부(603)의 초점거리를 제어한다. 예를 들면, 초점 제어부(602)는, 광학부(603)를 제어하고, 초점거리를, 피사체(물체(121))에 합초시킨다.
스탭 S603에서, 촬상부(604)는, 유저 등의 지시에 의거하여, 피사체(물체(121))를 촬상한다.
스탭 S604에서, 화상 처리부(605)는, 스탭 S603의 촬상에 의해 얻어진 촬상 화상의 화상 데이터에 대해 소정의 화상 처리를 행한다. 화상 처리된 화상 데이터는, 기억부(611)에 공급되고, 기억 매체에 기억되거나, 표시부(612)에 공급되여, 모니터에 촬상 화상이 표시되거나, 통신부(613)에 공급되어, 다른 장치에 전송되거나 한다.
스탭 S604의 처리가 종료되면, 촬상 처리가 종료된다.
이상과 같이, 본 기술(제1의 실시의 형태에서 설명한 거리 측정 방법)을 이용하여 자동 초점 맞춤을 행함에 의해, 촬상 장치(600)는, 보다 정밀도 좋고, 게다가 전용의 화소를 만들는 일 없이, 자동 초점 맞춤을 행할 수가 있다.
<6. 제6의 실시의 형태>
<컴퓨터>
상술한 일련의 처리는, 하드웨어에 의해 실행시킬 수도 있고, 소프트웨어에 의해 실행시킬 수도 있다. 일련의 처리를 소프트웨어에 의해 실행하는 경우에는, 그 소프트웨어를 구성하는 프로그램이, 컴퓨터에 인스톨된다. 여기서 컴퓨터에는, 전용의 하드웨어에 조립되어 있는 컴퓨터나, 각종의 프로그램을 인스톨함으로써, 각종의 기능을 실행하는 것이 가능하다, 예를 들면 범용의 퍼스널 컴퓨터 등이 포함된다.
도 38은, 상술한 일련의 처리를 프로그램에 의해 실행하는 컴퓨터의 하드웨어의 구성예를 도시하는 블록도이다.
도 38에 도시되는 컴퓨터(700)에서, CPU(Central Processing Unit)(701), ROM(Read Only Memory)(702), RAM(Random Access Memory)(703)은, 버스(704)를 통하여 서로 접속되어 있다.
버스(704)에는 또한, 입출력 인터페이스(710)도 접속되어 있다. 입출력 인터페이스(710)에는, 입력부(711), 출력부(712), 기억부(713), 통신부(714), 및 드라이브(715)가 접속되어 있다.
입력부(711)는, 예를 들면, 키보드, 마우스, 마이크로폰, 터치 패널, 입력단자 등으로 이루어진다. 출력부(712)는, 예를 들면, 디스플레이, 스피커, 출력 단자 등으로 이루어진다. 기억부(713)는, 예를 들면, 하드디스크, RAM 디스크, 불휘발성의 메모리 등으로 이루어진다. 통신부(714)는, 예를 들면, 네트워크 인터페이스로 이루어진다. 드라이브(715)는, 자기 디스크, 광디스크, 광자기 디스크, 또는 반도체 메모리 등의 리무버블 미디어(721)를 구동한다.
이상과 같이 구성되는 컴퓨터에서는, CPU(701)가, 예를 들면, 기억부(713)에 기억되어 있는 프로그램을, 입출력 인터페이스(710) 및 버스(704)를 통하여, RAM(703)에 로드하여 실행함에 의해, 상술한 일련의 처리가 행하여진다. RAM(703)에는 또한, CPU(701)가 각종의 처리를 실행하는데 필요한 데이터 등도 적절히 기억된다.
컴퓨터(CPU(701))가 실행하는 프로그램은, 예를 들면, 패키지 미디어 등으로서의 리무버블 미디어(721)에 기록하여 적용할 수 있다. 그 경우, 프로그램은, 리무버블 미디어(721)를 드라이브(715)에 장착함에 의해, 입출력 인터페이스(710)를 통하여, 기억부(713)에 인스톨 할 수 있다.
또한, 이 프로그램은, 로컬 에어리어 네트워크, 인터넷, 디지털 위성 방송이라고는, 유선 또는 무선의 전송 매체를 통하여 제공할 수도 있다. 그 경우, 프로그램은, 통신부(714)에서 수신하고, 기억부(713)에 인스톨할 수 있다.
그 밖에, 이 프로그램은, ROM(702)이나 기억부(713)에, 미리 인스톨하여 둘 수도 있다.
또한, 컴퓨터가 실행하는 프로그램은, 본 명세서에서 설명하는 순서에 따라 시계열로 처리가 행하여지는 프로그램이라도 좋고, 병렬로, 또는 호출이 행하여진 때 등의 필요한 타이밍에서 처리가 행하여지는 프로그램이라도 좋다.
또한, 본 명세서에서, 기록 매체에 기록된 프로그램을 기술(記述)하는 스탭은, 기재된 순서에 따라 시계열적으로 행하여지는 처리는 물론, 반드시 시계열적으로 처리되지 않더라도, 병렬적 또는 개별적으로 실행되는 처리도 포함하는 것이다.
또한, 본 명세서에서, 시스템이란, 복수의 구성 요소(장치, 모듈(부품) 등)의 집합을 의미하고, 모든 구성 요소가 동일 몸체 중에 있는지의 여부는 묻지 않는다. 따라서 별개의 몸체에 수납되고, 네트워크를 통하여 접속되어 있는 복수의 장치, 및, 하나의 몸체의 내에 복수의 모듈이 수납되어 있는 하나의 장치는, 모두, 시스템이다.
또한, 이상에서, 하나의 장치(또는 처리부)로서 설명한 구성을 분할하여, 복수의 장치(또는 처리부)로서 구성하도록 하여도 좋다. 역으로, 이상에서 복수의 장치(또는 처리부)로서 설명한 구성을 종합하여 하나의 장치(또는 처리부)로서 구성되도록 하여도 좋다. 또한, 각 장치(또는각 처리부)의 구성에 상술한 이외의 구성을 부가하도록 하여도 물론 좋다. 또한, 시스템 전체로서의 구성이나 동작이 실질적으로 동일하면, 어느 장치(또는 처리부)의 구성의 일부를 다른 장치(또는 다른 처리부)의 구성에 포함하도록 하여도 좋다.
이상, 첨부 도면을 참조하면서 본 개시된 알맞는 실시 형태에 관해 상세히 설명하였지만, 본 개시된 기술적 범위는 이러한 예로 한정되지 않는다. 본 개시된 기술 분야에서 통상의 지식을 갖는 자라면, 특허청구의 범위에 기재된 기술적 사상의 범주 내에서, 각종의 변경례 또는 수정례에 상도 할 수 있음은 분명하고, 이들에 대해서도, 당연히 본 개시된 기술적 범위에 속하는 것으로 이해된다.
예를 들면, 본 기술은, 하나의 기능을, 네트워크를 통하여 복수의 장치에서 분담, 공동하여 처리하는 클라우드 컴퓨팅의 구성을 취할 수 있다.
또한, 상술의 플로 차트에서 설명한 각 스탭은, 하나의 장치로 실행하는 외에, 복수의 장치에서 분담하여 실행할 수 있다.
또한, 하나의 스탭에 복수의 처리가 포함되는 경우에는, 그 하나의 스탭에 포함되는 복수의 처리는, 하나의 장치로 실행하는 외에, 복수의 장치에서 분담하여 실행할 수 있다.
또한, 본 기술은 이하와 같은 구성도 취할 수 있다.
(1) 광을 발광하는 발광부와,
초점거리를 복수 가지며 비점수차를 발생시키는 비점수차 렌즈를 가지며, 상기 발광부로부터의 광에 대해 광학적 영향을 미치는 광학부와,
상기 발광부에서 발광되고, 상기 광학부를 통하여 외부에 조사되고, 물체에 반사된 반사광을 검출하는 검출부와,
상기 검출부에서 검출된 반사광에서 발생하는 비점수차에 의거하여, 상기 물체까지의 거리를 계측하는 계측부를 구비하는 정보 처리 장치.
(2) 상기 계측부는, 상기 물체에서의 상기 광의 조사 형상의 변화에 의거하여 상기 물체까지의 거리를 계측하는 (1), (3) 내지 (19)의 어느 하나에 기재된 정보 처리 장치.
(3) 상기 계측부는, 복수 방향의 선형상으로 조사된 상기 광의, 상기 물체에서의 각 선의 굵기의 변화에 응하여 상기 물체까지의 거리를 계측하는 (1), (2), (4) 내지 (19)의 어느 하나에 기재된 정보 처리 장치.
(4) 상기 광학부는, 상기 발광부로부터의 광의 조사 형상을 십자형상으로 하는 슬릿, 도파로, 또는, 회절 광학 소자를 또한 가지며,
상기 계측부는, 상기 물체에서의, 상기 십자형상의 각 선의 굵기의 변화에 응하여 상기 물체까지의 거리를 계측하는 (1) 내지 (3), (5) 내지 (19)의 어느 하나에 기재된 정보 처리 장치.
(5) 상기 광학부는, 상기 발광부로부터의 광의 조사 형상을 방사형상으로 하는 슬릿, 도파로, 또는, 회절 광학 소자를 또한 가지며,
상기 계측부는, 상기 물체에서의, 상기 방사형상의 각 선의 굵기의 변화에 응하여 상기 물체까지의 거리를 계측하는 (1) 내지 (4), (6) 내지 (19)의 어느 하나에 기재된 정보 처리 장치.
(6) 상기 광학부는, 상기 발광부로부터의 광을 복수 개소에 조사시키도록 하는 슬릿, 도파로, 또는, 회절 광학 소자를 또한 가지며,
상기 계측부는, 상기 물체의 복수 개소에 조사된 상기 광의 상기 조사 형상의 변화에 응하여 상기 물체까지의 거리를 계측하는 (1) 내지 (5), (7) 내지 (19)의 어느 하나에 기재된 정보 처리 장치.
(7) 상기 광학부는, 상기 발광부로부터의 광의 조사 형상을 줄무늬형상으로 하는 슬릿, 도파로, 또는, 회절 광학 소자를 또한 가지며,
상기 계측부는, 상기 물체에서의, 상기 줄무늬형상의 각 선의 굵기의 변화에 응하여 상기 물체까지의 거리를 계측하는 (1) 내지 (6), (8) 내지 (19)의 어느 하나에 기재된 정보 처리 장치.
(8) 상기 비점수차 렌즈는, 상기 비점수차 렌즈의 중심측부터 주연측을 향하는 방사 방향(sagittal)에서 상기 초점거리가 변화하지 않고, 상기 비점수차 렌즈의 중심 또는 그 근방을 중심으로 한 동심원 방향(메리디오널)에서 상기 초점거리가 연속적으로 변화하는 렌즈인 (1) 내지 (7), (9) 내지 (19)의 어느 하나에 기재된 정보 처리 장치.
(9) 상기 비점수차 렌즈는, 상기 초점거리가 가변인 초점 가변 렌즈인 (1) 내지 (8), (10) 내지 (19)의 어느 하나에 기재된 정보 처리 장치.
(10) 상기 초점 가변 렌즈는, 렌티큘러 렌즈인 (1) 내지 (9), (11) 내지 (19)의 어느 하나에 기재된 정보 처리 장치.
(11) 상기 비점수차 렌즈는, 복수의 렌즈에 의해 구성되는 (1) 내지 (10), (12) 내지 (19)의 어느 하나에 기재된 정보 처리 장치.
(12) 상기 계측부는, 또한, 상기 검출부에서 검출된 반사광의 위치 어긋남에 의거하여 상기 물체까지의 거리를 계측하고, 상기 위치 어긋남에 의거한 계측 결과와, 상기 비점수차에 의거한 거리 계측 결과의 양쪽을 이용하여 물체까지의 거리를 계측하는 (1) 내지 (11), (13) 내지 (19)의 어느 하나에 기재된 정보 처리 장치.
(13) 상기 발광부는, 적외광을 발광하고, 상기 검출부는, 상기 광학부를 통하여 외부에 조사되고, 물체에 반사된 적외광의 반사광을 검출하는 (1) 내지 (12), (14) 내지 (19)의 어느 하나에 기재된 정보 처리 장치.
(14) 상기 검출부는, 수광한 가시광과 적외광을 검출 가능한 촬상 소자를 가지며, 상기 촬상 소자를 이용하여 가시광으로 이루어지는 촬상 화상을 얻음과 함께, 상기 적외광의 반사광을 검출하는 (1) 내지 (13), (15) 내지 (19)의 어느 하나에 기재된 정보 처리 장치.
(15) 상기 발광부는, 레이저광을 발광하고, 상기 검출부는, 상기 광학부를 통하여 외부에 조사되고, 물체에 반사된 레이저광의 반사광을 검출하는 (1) 내지 (14), (16) 내지 (19)의 어느 하나에 기재된 정보 처리 장치.
(16) 상기 계측부에 의해 계측된 상기 물체까지의 거리를 이용하여, 상기 물체인 인물의 안구의 홍채의 주름의 3차원 형상을 인식하는 인식부와,
상기 인식부에 의해 인식된 상기 홍채의 주름의 3차원 형상에 의거하여, 상기 인물의 인증을 행하는 인증부를 또한 구비하는 (1) 내지 (15), (17) 내지 (19)의 어느 하나에 기재된 정보 처리 장치.
(17) 상기 계측부에 의해 계측된 상기 물체까지의 거리를 이용하여, 상기 물체인 인물의 각 안구의 홍채의 위치 및 기울기, 및 각 안구까지의 거리를 판정하는 홍채 판정부와,
상기 홍채 판정부에 의해 판정된, 각 안구의 홍채의 위치 및 기울기, 및 각 안구까지의 거리에 의거하여, 상기 인물의 시점을 판정하는 시점 판정부와,
상기 시점 판정부에 의해 판정된 상기 인물의 시점에 응한 처리를 행하는 정보 처리부를 또한 구비하는 (1) 내지 (16), (18), (19)의 어느 하나에 기재된 정보 처리 장치.
(18) 상기 계측부에 의해 계측된 상기 물체까지의 거리를 이용하여, 상기 물체인 인물의 위치, 자세, 동작을 판정하는 자세 동작 판정부와,
상기 자세 동작 판정부에 의해 판정된 상기 인물의 위치, 자세, 동작에 응한 처리를 행하는 정보 처리부를 또한 구비하는 (1) 내지 (17), (19)의 어느 하나에 기재된 정보 처리 장치.
(19) 피사체로부터의 광을 투과하는 초점거리가 가변인 촬상 광학부와,
상기 촬상 광학부를 통하여 수광한 상기 피사체로부터의 광을 광전 변환하여 상기 피사체의 화상 데이터를 얻는 촬상부와,
상기 계측부에 의해 계측된 상기 물체까지의 거리를 이용하여, 상기 촬상 광학부의 초점거리를 제어하는 초점 제어부를 또한 구비하는 (1) 내지 (18)의 어느 하나에 기재된 정보 처리 장치.
(20) 광을 발광하고,
초점거리를 복수 가지며 비점수차를 발생시키는 비점수차 렌즈를 가지며, 상기 광에 대해 광학적 영향을 미치는 광학부를 통하여 외부에 조사되고, 물체에 반사된 반사광을 검출하고,
검출된 반사광에서 발생하는 비점수차에 의거하여, 상기 물체까지의 거리를 계측하는 정보 처리 방법.
상기와 같은 다양한 변형, 조합, 하부 조합 및 변경들이 첨부된 청구 범위 또는 균등의 범위 내에 있는 것이면 설계 요구 및 다른 요소에 따라 발생할 수 있는 것으로 당업자에게 이해되어질 것이다.
100 : 거리 측정 장치 101 : 제어부
102 : 발광부 103 : 광학부
104 : 검출부 105 : 계측부
111 : 비점수차 렌즈 121 : 물체
151 : 슬릿 161 : 도광판
162 : 슬릿 171 : 갈바노미러
172 : 모터 181 : 슬릿
182 : 가시광 컷트 필터 201 및 202 : 렌티큘러 렌즈
300 : 인증 장치 301 : 거리 계측부
302 : 주름형상 인식부 303 : 인증부
304 : 개인정보 데이터베이스 400 : 정보 처리 장치
401 : 아이 트래킹 처리부 402 : 정보 처리부
411 : 거리 계측부 412 : 홍채 판정부
413 : 시점 판정부 500 : 정보 처리 장치
501 : 제스처 접수부 502 : 정보 처리부
511 : 거리 계측부 512 : 자세 동작 판정부
600 : 촬상 장치 601 : 거리 계측부
602 : 초점 제어부 603 : 광학부
604 : 촬상부 605 : 화상 처리부
611 : 기억부 612 : 표시부
613 : 통신부 700 : 컴퓨터

Claims (20)

  1. 광을 발광하는 발광부와,
    초점거리를 복수 가지며 비점수차를 발생시키는 비점수차 렌즈를 가지며, 상기 발광부로부터의 광에 대해 광학적 영향을 미치는 광학부와,
    상기 발광부에서 발광되고, 상기 광학부를 통하여 외부에 조사되고, 물체에 반사된 반사광을 검출하는 검출부와,
    상기 검출부에서 검출된 반사광에서 발생하는 비점수차에 의거하여, 상기 물체까지의 거리를 계측하는 계측부를 구비하는 것을 특징으로 하는 정보 처리 장치.
  2. 제 1항에 있어서,
    상기 계측부는, 상기 물체에서의 상기 광의 조사 형상의 변화에 의거하여 상기 물체까지의 거리를 계측하는 것을 특징으로 하는 정보 처리 장치.
  3. 제 2항에 있어서,
    상기 계측부는, 복수 방향의 선형상으로 조사된 상기 광의, 상기 물체에서의 각 선의 굵기의 변화에 응하여 상기 물체까지의 거리를 계측하는 것을 특징으로 하는 정보 처리 장치.
  4. 제 3항에 있어서,
    상기 광학부는, 상기 발광부로부터의 광의 조사 형상을 십자형상으로 하는 슬릿, 도파로, 또는, 회절 광학 소자를 또한 가지며,
    상기 계측부는, 상기 물체에서의, 상기 십자형상의 각 선의 굵기의 변화에 응하여 상기 물체까지의 거리를 계측하는 것을 특징으로 하는 정보 처리 장치.
  5. 제 3항에 있어서,
    상기 광학부는, 상기 발광부로부터의 광의 조사 형상을 방사형상으로 하는 슬릿, 도파로, 또는, 회절 광학 소자를 또한 가지며,
    상기 계측부는, 상기 물체에서의, 상기 방사형상의 각 선의 굵기의 변화에 응하여 상기 물체까지의 거리를 계측하는 것을 특징으로 하는 정보 처리 장치.
  6. 제 3항에 있어서,
    상기 광학부는, 상기 발광부로부터의 광을 복수 개소에 조사시키도록 하는 슬릿, 도파로, 또는, 회절 광학 소자를 또한 가지며,
    상기 계측부는, 상기 물체의 복수 개소에 조사된 상기 광의 상기 조사 형상의 변화에 응하여 상기 물체까지의 거리를 계측하는 것을 특징으로 하는 정보 처리 장치.
  7. 제 3항에 있어서,
    상기 광학부는, 상기 발광부로부터의 광의 조사 형상을 줄무늬형상으로 하는 슬릿, 도파로, 또는, 회절 광학 소자를 또한 가지며,
    상기 계측부는, 상기 물체에서의, 상기 줄무늬형상의 각 선의 굵기의 변화에 응하여 상기 물체까지의 거리를 계측하는 것을 특징으로 하는 정보 처리 장치.
  8. 제 1항에 있어서,
    상기 비점수차 렌즈는, 상기 비점수차 렌즈의 중심측부터 주연측을 향하는 방사 방향(sagittal)에서 상기 초점거리가 변화하지 않고, 상기 비점수차 렌즈의 중심 또는 그 근방을 중심으로 하는 동심원 방향(meridional)에서 상기 초점거리가 연속적으로 변화하는 렌즈인 것을 특징으로 하는 정보 처리 장치.
  9. 제 1항에 있어서,
    상기 비점수차 렌즈는, 상기 초점거리가 가변인 초점 가변 렌즈인 것을 특징으로 하는 정보 처리 장치.
  10. 제 9항에 있어서,
    상기 초점 가변 렌즈는, 렌티큘러 렌즈인 것을 특징으로 하는 정보 처리 장치.
  11. 제 1항에 있어서,
    상기 비점수차 렌즈는, 복수의 렌즈에 의해 구성되는 것을 특징으로 하는 정보 처리 장치.
  12. 제 1항에 있어서,
    상기 계측부는, 또한, 상기 검출부에서 검출된 반사광의 위치 어긋남에 의거하여 상기 물체까지의 거리를 계측하고, 상기 위치 어긋남에 의거한 계측 결과와, 상기 비점수차에 의거한 거리 계측 결과의 양쪽을 이용하여 물체까지의 거리를 계측하는 것을 특징으로 하는 정보 처리 장치.
  13. 제 1항에 있어서,
    상기 발광부는, 적외광을 발광하고,
    상기 검출부는, 상기 광학부를 통하여 외부에 조사되고, 물체에 반사된 적외광의 반사광을 검출하는 것을 특징으로 하는 정보 처리 장치.
  14. 제 13항에 있어서,
    상기 검출부는, 수광한 가시광과 적외광을 검출 가능한 촬상 소자를 가지며, 상기 촬상 소자를 이용하여 가시광으로 이루어지는 촬상 화상을 얻음과 함께, 상기 적외광의 반사광을 검출하는 것을 특징으로 하는 정보 처리 장치.
  15. 제 1항에 있어서,
    상기 발광부는, 레이저광을 발광하고,
    상기 검출부는, 상기 광학부를 통하여 외부에 조사되고, 물체에 반사된 레이저광의 반사광을 검출하는 것을 특징으로 하는 정보 처리 장치.
  16. 제 1항에 있어서,
    상기 계측부에 의해 계측된 상기 물체까지의 거리를 이용하여, 상기 물체인 인물의 안구의 홍채의 주름의 3차원 형상을 인식하는 인식부와,
    상기 인식부에 의해 인식된 상기 홍채의 주름의 3차원 형상에 의거하여, 상기 인물의 인증을 행하는 인증부를 더 구비하는 것을 특징으로 하는 정보 처리 장치.
  17. 제 1항에 있어서,
    상기 계측부에 의해 계측된 상기 물체까지의 거리를 이용하여, 상기 물체인 인물의 각 안구의 홍채의 위치 및 기울기, 및 각 안구까지의 거리를 판정하는 홍채 판정부와,
    상기 홍채 판정부에 의해 판정된, 각 안구의 홍채의 위치 및 기울기, 및 각 안구까지의 거리에 의거하여, 상기 인물의 시점을 판정하는 시점 판정부와,
    상기 시점 판정부에 의해 판정된 상기 인물의 시점에 응한 처리를 행하는 정보 처리부를 더 구비하는 것을 특징으로 하는 정보 처리 장치.
  18. 제 1항에 있어서,
    상기 계측부에 의해 계측된 상기 물체까지의 거리를 이용하여, 상기 물체인 인물의 위치, 자세, 동작을 판정하는 자세 동작 판정부와,
    상기 자세 동작 판정부에 의해 판정된 상기 인물의 위치, 자세, 동작에 응한 처리를 행하는 정보 처리부를 더 구비하는 것을 특징으로 하는 정보 처리 장치.
  19. 제 1항에 있어서,
    피사체로부터의 광을 투과하는 초점거리가 가변인 촬상 광학부와,
    상기 촬상 광학부를 통하여 수광한 상기 피사체로부터의 광을 광전 변환하여 상기 피사체의 화상 데이터를 얻는 촬상부와,
    상기 계측부에 의해 계측된 상기 물체까지의 거리를 이용하여, 상기 촬상 광학부의 초점거리를 제어하는 초점 제어부를 더 구비하는 것을 특징으로 하는 정보 처리 장치.
  20. 광을 발광하고,
    초점거리를 복수 가지며 비점수차를 발생시키는 비점수차 렌즈를 가지며, 상기 광에 대해 광학적 영향을 미치는 광학부를 통하여 외부에 조사되고, 물체에 반사된 반사광을 검출하는 단계와,
    검출된 반사광에서 발생하는 비점수차에 의거하여, 상기 물체까지의 거리를 계측하는 단계를 포함하는 것을 특징으로 하는 정보 처리 방법.
KR1020150000520A 2014-01-14 2015-01-05 정보 처리 장치 및 방법 KR20150084656A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2014-004259 2014-01-14
JP2014004259A JP6075644B2 (ja) 2014-01-14 2014-01-14 情報処理装置および方法

Publications (1)

Publication Number Publication Date
KR20150084656A true KR20150084656A (ko) 2015-07-22

Family

ID=53520283

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150000520A KR20150084656A (ko) 2014-01-14 2015-01-05 정보 처리 장치 및 방법

Country Status (5)

Country Link
US (2) US9504384B2 (ko)
JP (1) JP6075644B2 (ko)
KR (1) KR20150084656A (ko)
CN (1) CN104776801B (ko)
TW (1) TWI655448B (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101712004B1 (ko) * 2015-12-24 2017-03-03 한국과학기술연구원 양안 초점 조절반응 측정장치

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6075644B2 (ja) * 2014-01-14 2017-02-08 ソニー株式会社 情報処理装置および方法
KR102306539B1 (ko) * 2015-03-12 2021-09-29 삼성전자주식회사 홍채를 촬영하기 위하여 이용되는 광을 조사하는 방법 및 디바이스
JP6275087B2 (ja) * 2015-08-03 2018-02-07 株式会社オプティム ヘッドマウントディスプレイ、データ出力方法、及びヘッドマウントディスプレイ用プログラム。
WO2017145564A1 (ja) * 2016-02-23 2017-08-31 富士フイルム株式会社 距離情報取得装置及び距離情報取得方法
JP6504274B2 (ja) * 2016-02-25 2019-04-24 大日本印刷株式会社 三次元形状データおよびテクスチャ情報生成システム、撮影制御プログラム、及び三次元形状データおよびテクスチャ情報生成方法並びに情報記録媒体
CN113727000A (zh) 2016-05-27 2021-11-30 松下知识产权经营株式会社 摄像系统
WO2017217053A1 (ja) * 2016-06-17 2017-12-21 シャープ株式会社 画像撮像装置およびフィルタ
ES2801574T3 (es) * 2016-08-25 2021-01-11 Alcon Inc Iluminador plano para cirugía oftálmica
US10771768B2 (en) * 2016-12-15 2020-09-08 Qualcomm Incorporated Systems and methods for improved depth sensing
JP6805904B2 (ja) * 2017-03-08 2020-12-23 株式会社リコー 計測装置、計測方法およびロボット
US10585291B2 (en) * 2017-04-28 2020-03-10 Yonatan Gerlitz Eye safety system for lasers
US11126060B2 (en) 2017-10-02 2021-09-21 Liqxtal Technology Inc. Tunable light projector
EP3474328B1 (en) 2017-10-20 2021-09-29 Samsung Electronics Co., Ltd. Combination sensors and electronic devices
CN108197560B (zh) * 2017-12-28 2022-06-07 努比亚技术有限公司 人脸图像识别方法、移动终端及计算机可读存储介质
US11112865B1 (en) * 2019-02-13 2021-09-07 Facebook Technologies, Llc Systems and methods for using a display as an illumination source for eye tracking
JP7472468B2 (ja) 2019-03-20 2024-04-23 株式会社リコー 照明装置、投影装置、計測装置、ロボット、電子機器、移動体、および造形装置
CN112540494B (zh) * 2019-09-06 2022-05-03 浙江舜宇光学有限公司 成像装置和成像方法
JP7255513B2 (ja) * 2020-02-18 2023-04-11 株式会社デンソー 物体検出装置、受光部および物体検出装置の制御方法
JP7413426B2 (ja) * 2022-03-18 2024-01-15 維沃移動通信有限公司 投光装置、測距装置及び電子機器
WO2023195394A1 (ja) * 2022-04-05 2023-10-12 富士フイルム株式会社 撮像支援装置、移動体、撮像支援方法、及びプログラム

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60257302A (ja) * 1984-05-31 1985-12-19 スペクトロン・デイベロツプメント・ラボラトリ−ズ・インコ−ポレ−テツド 光プロ−ブ
JPH0789057B2 (ja) 1986-06-11 1995-09-27 キヤノン株式会社 距離測定装置
JP2673196B2 (ja) * 1989-10-13 1997-11-05 株式会社小野測器 三次元形状センサ
JPH0560528A (ja) * 1991-09-03 1993-03-09 Hitachi Ltd 立体情報入力装置
JPH05205030A (ja) * 1992-01-27 1993-08-13 Nippon Telegr & Teleph Corp <Ntt> 撮影人物の視線一致表示装置
JPH11113885A (ja) * 1997-10-08 1999-04-27 Oki Electric Ind Co Ltd 個体識別装置およびその方法
CN1224900C (zh) * 2001-12-29 2005-10-26 上海银晨智能识别科技有限公司 基于dsp的嵌入式人脸自动检测方法
JP4588368B2 (ja) * 2004-06-15 2010-12-01 富士通セミコンダクター株式会社 露光計測方法及び装置、並びに半導体装置の製造方法
JP2006153622A (ja) * 2004-11-29 2006-06-15 Opcell Co Ltd オートフォーカス装置
JP5008269B2 (ja) * 2005-04-08 2012-08-22 キヤノン株式会社 情報処理装置、情報処理方法
US8494252B2 (en) * 2007-06-19 2013-07-23 Primesense Ltd. Depth mapping using optical elements having non-uniform focal characteristics
JP2009300236A (ja) * 2008-06-12 2009-12-24 Sony Corp 変位検出装置
JP2010061768A (ja) * 2008-09-05 2010-03-18 Sony Corp 光ピックアップ及び光ディスク装置
KR101030652B1 (ko) * 2008-12-16 2011-04-20 아이리텍 잉크 홍채인식을 위한 고품질 아이이미지의 획득장치 및 방법
CN101877061A (zh) * 2009-04-30 2010-11-03 宫雅卓 基于单摄像头的双眼虹膜图像采集方法及装置
CN101763212B (zh) * 2009-04-30 2012-08-15 广东国笔科技股份有限公司 人机交互系统及其相关系统、设备和方法
JP2010276716A (ja) * 2009-05-26 2010-12-09 Sony Corp 酸化膜の形成方法、エレクトロウェッティング装置、液体レンズ装置、液滴装置、光学素子、ズームレンズ、撮像装置、光変調装置、表示装置及びストロボ装置
JP2015062207A (ja) * 2012-01-18 2015-04-02 株式会社ニコン 光学装置および収差測定方法
JP5632423B2 (ja) 2012-05-29 2014-11-26 浜松ホトニクス株式会社 距離センサ及び距離画像センサ
KR102252090B1 (ko) * 2013-06-06 2021-05-14 식스 오버 식스 비젼 엘티디 주관적인 거리측정에 기초한 눈의 굴절 이상 측정 시스템 및 방법
JP6075644B2 (ja) * 2014-01-14 2017-02-08 ソニー株式会社 情報処理装置および方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101712004B1 (ko) * 2015-12-24 2017-03-03 한국과학기술연구원 양안 초점 조절반응 측정장치

Also Published As

Publication number Publication date
TWI655448B (zh) 2019-04-01
JP6075644B2 (ja) 2017-02-08
CN104776801B (zh) 2018-12-28
CN104776801A (zh) 2015-07-15
US20170045354A1 (en) 2017-02-16
TW201531730A (zh) 2015-08-16
JP2015132546A (ja) 2015-07-23
US10119806B2 (en) 2018-11-06
US9504384B2 (en) 2016-11-29
US20150196199A1 (en) 2015-07-16

Similar Documents

Publication Publication Date Title
JP6075644B2 (ja) 情報処理装置および方法
US20220214454A1 (en) Optical imaging transmitter with brightness enhancement
EP2458424B1 (en) Beam splitter for 3D camera, and 3D image acquisition apparatus employing the beam splitter
US9213228B2 (en) Device and method for measuring a camera
JP2008541101A (ja) 物体の表面測定装置およびその表面測定方法
US10627514B2 (en) Image ranging system, light source module and image sensing module
TW200912385A (en) Optical characteristic measuring apparatus using light reflected from object to be measured and focus adjusting method therefor
US8982101B2 (en) Optical touch system and optical touch-position detection method
US9329025B2 (en) Measuring device
JP5944156B2 (ja) 照明光学系と結像光学系とが統合された光学系、及びそれを含む3次元映像獲得装置
EP4194897A1 (en) Distance measuring apparatus, distance measuring method, camera and electronic device
US20160069999A1 (en) Depth image obtaining device and display device using same
KR101806753B1 (ko) 스캐닝 엔진에 대한 모듈식 광학계
KR20230028303A (ko) 확산 조명 및 구조화 광을 위한 프로젝터
CN218512314U (zh) 一种基于超透镜的拉曼光谱仪探头及光学系统
US20230090825A1 (en) Optical element assembly, optical apparatus, estimation method, and non-transitory storage medium storing estimation program
US11567565B2 (en) Sensor and use of a sensor in a 3-D position detection system
JP5685961B2 (ja) スポット像位置検出装置
US10467769B2 (en) Thin plate imaging device

Legal Events

Date Code Title Description
A201 Request for examination