WO2015064098A1 - 全反射顕微鏡 - Google Patents

全反射顕微鏡 Download PDF

Info

Publication number
WO2015064098A1
WO2015064098A1 PCT/JP2014/005474 JP2014005474W WO2015064098A1 WO 2015064098 A1 WO2015064098 A1 WO 2015064098A1 JP 2014005474 W JP2014005474 W JP 2014005474W WO 2015064098 A1 WO2015064098 A1 WO 2015064098A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
total reflection
incident angle
unit
optical axis
Prior art date
Application number
PCT/JP2014/005474
Other languages
English (en)
French (fr)
Inventor
喬之 森田
鈴木 昭俊
小林 智子
恵太 益田
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2015544808A priority Critical patent/JP6172290B2/ja
Publication of WO2015064098A1 publication Critical patent/WO2015064098A1/ja
Priority to US15/142,804 priority patent/US10241312B2/en
Priority to US16/281,636 priority patent/US10809511B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/008Details of detection or image processing, including general computer control
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/16Microscopes adapted for ultraviolet illumination ; Fluorescence microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/56Optics using evanescent waves, i.e. inhomogeneous waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/648Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence

Definitions

  • the present invention relates to a total reflection microscope.
  • the position of the illumination light at the entrance pupil of the objective lens is detected by a CCD or a position-division photodiode (PSD) to calculate and guarantee the total reflection angle (for example, patent document) 1).
  • the position accuracy of the illumination light depends on the resolution of the detection element and the projection magnification of the entrance pupil of the objective lens with respect to the detection element.
  • an expensive detection element with high resolution is used or the projection magnification is increased. Therefore, the detection optical system can only be increased in size.
  • the projection magnification is increased, it is necessary to increase the size of the detection element, resulting in an increase in cost.
  • the position detection resolution of a general CCD or PSD is about several ⁇ m to several tens of ⁇ m, and this is multiplied by the reciprocal of the projection magnification from the entrance pupil of the objective lens to the detection element. This corresponds to the detection accuracy of the illumination light condensing position in the pupil. That is, the higher the projection magnification, the higher the position detection accuracy.
  • the entrance pupil of a 60x to 100x objective lens used for total reflection microscope observation has a diameter of about 6 to 10 mm, and there are generally few detection elements of a size that can be projected at a magnification of 2 or 3 times. It becomes expensive.
  • the difference in the condensing position at the entrance pupil of the objective lens affects the observation image even if it is about several ⁇ m, and changes the penetration depth of the evanescent field.
  • the present invention has been made in view of such problems, and an object thereof is to provide a total reflection microscope that can accurately control the illumination angle of the total reflection microscope with a simple configuration.
  • a total reflection microscope relays light from a light source with a relay optical system to form an image of the light source on or near an entrance pupil plane of an objective lens, and the light is
  • a total reflection microscope having an illumination optical system that irradiates a specimen through an objective lens, an incident angle adjustment unit that changes a position of an image of the light source in a direction orthogonal to an optical axis, and the light is reflected by the specimen
  • a light detection unit that detects the intensity of the return light collected by the objective lens
  • a control unit that determines an operation amount of the incident angle adjustment unit, and the control unit adjusts the incident angle.
  • the operating amount of the incident angle adjusting unit is determined based on a change in the intensity of the return light when the unit is changed.
  • the optical system further includes a focus lens unit that changes the position of the image of the light source in the optical axis direction, and the control unit changes the incident angle adjustment unit and the focus lens unit. It is preferable that the operation amounts of the incident angle adjustment unit and the focus lens unit are determined based on a change in the intensity of the return light.
  • control unit is configured to change the incident angle so that the light is totally reflected by the sample based on a change in the intensity of the return light when the incident angle adjustment unit is changed.
  • the operation amount of the adjustment unit is determined, and the operation amount of the focus lens unit is determined so that the light becomes parallel light based on a change in the intensity of the return light when the focus lens unit is changed. It is preferable.
  • the controller may position the light source image in a direction orthogonal to the optical axis direction at or near the entrance pupil of the objective lens so that the light is totally reflected by the sample. It is preferable to adjust the position of the light source image in the optical axis direction at or near the entrance pupil of the objective lens so that the light becomes parallel light.
  • control unit specifies a boundary between total reflection in the sample and non-total reflection in the sample based on a change in the intensity of the return light.
  • control unit includes a change amount of the incident angle adjustment unit or an optical axis of the relay optical system that changes with an operation of the incident angle adjustment unit. It is preferable to calculate an incident angle of the light with respect to the sample based on a change amount of an angle formed by
  • control unit includes a change amount of the incident angle adjustment unit or an optical axis of the relay optical system that changes with an operation of the incident angle adjustment unit. It is preferable to calculate at least one of the refractive index of the sample and the penetration depth of the evanescent field based on the amount of change in the angle formed by.
  • control unit controls the incident angle adjustment unit so as to obtain a desired penetration depth of the evanescent field.
  • the light detection unit is disposed at a position conjugate with or near the entrance pupil plane.
  • control unit changes the amount of change of the incident angle adjustment unit or the principal axis of the light and the optical axis of the relay optical system that change with the operation of the incident angle adjustment unit. It is preferable to determine the position of the image of the light source in the entrance pupil plane based on the amount of change in the angle between
  • control unit determines at least three positions serving as a boundary between the total reflection and the non-total reflection within the entrance pupil plane, and a center of a circle that is the boundary from the position is determined. Is preferably determined.
  • control unit is configured to adjust the intensity of the return light when the focus lens unit changes the position of the image of the light source in the optical axis direction. It is preferable to detect a condensing state of the image of the light source.
  • the incident angle adjustment unit is disposed on the optical axis of the relay optical system and intersects with a position conjugate with the visual field of the objective lens or the vicinity thereof, and It is preferable to have a reflective surface that reflects, and to change the incident angle by changing an angle of the reflective surface with respect to the optical axis around a point that intersects the optical axis of the reflective surface.
  • the incident angle adjusting unit changes the incident angle by changing a distance from the optical axis of the light source within a plane orthogonal to the optical axis.
  • the incident angle adjustment unit changes the incident angle on the optical axis of the relay optical system and rotates around a position conjugate with or near the field of view of the objective lens. It is preferable to make it.
  • the illumination angle of the total reflection microscope can be accurately controlled with a simple configuration.
  • the total reflection microscope 100 applies the illumination light LI emitted from the light source 1 to the sample ground glass 17 placed on the sample ground glass 17 placed on a sample table (not shown) via the objective lens 11.
  • the illumination optical system 110 irradiating from the 17 side and the fluorescence LO generated from the specimen 12 excited by the illumination light LI are collected by the objective lens 11 and collected on the image pickup surface of the image pickup device 19 such as a CCD.
  • an imaging optical system 120 Note that the light source 1 in FIG. 1 may be an end face of an optical fiber that guides illumination light emitted from another light source device to the illumination optical system 110.
  • the objective lens 11 is a high NA objective lens capable of observation with a total reflection microscope.
  • the illumination optical system 110 sequentially reflects the illumination light LI emitted from the collimator lens 2 and the collimator lens 2 that changes the illumination light LI emitted from the light source 1 into a substantially parallel light beam from the light source 1 side.
  • the angle adjustment mirror 3 having a high angle resolution, which is an incident angle adjustment unit for adjusting the incident angle when the sample 12 is irradiated, and a focus for adjusting the parallelism of the illumination light LI irradiated to the sample 12
  • a lens unit 6, a relay lens 8 comprising at least two lenses for relaying the image of the light source 1, and a dichroic that reflects the illumination light LI toward the objective lens 11 and transmits the fluorescence LO generated from the sample 12.
  • the objective lens 11 is composed of a first optical path branching section 9 composed of a mirror or a half mirror (or half prism) that transmits a part of light and reflects the remaining light.
  • the specimen 12 is arranged on the focal plane on the object side of the objective lens 11.
  • the reflection surface of the angle adjustment mirror 3 is arranged so as to intersect with a position substantially conjugate with the field of view of the objective lens 11 on the optical axis 16 (near the position conjugate with the field of view).
  • the reflecting surface 3 is configured to rotate (swing) around a position conjugate to the field of view on the optical axis 16 or in the vicinity thereof.
  • the illumination light principal ray 4 of the illumination light LI is configured to enter the rotation center.
  • the angle adjusting mirror 3 is rotatable in the X-axis direction and the Y-axis direction when the optical axis 16 is the Z-axis and the directions perpendicular to the optical axis 16 are the X-axis and the Y-axis, respectively. It is configured.
  • the light source 1 is disposed so as to substantially coincide with one focal point of the collimating lens 2.
  • reference numeral 10 in FIG. 1 indicates the position of the exit pupil (pupil plane) of the objective lens 11, and reference numeral 7 indicates the conjugate position (pupil conjugate plane) of the pupil plane 10.
  • the imaging optical system 120 includes an objective lens 11, a first optical path branching unit 9, and an imaging lens 18 in this order from the sample 12 side, and is substantially the same as the image-side focal plane of the imaging lens 18.
  • the imaging surface of the image sensor 19 is arranged so as to match.
  • the illumination light LI emitted from the light source 1 becomes a substantially parallel light beam by the collimator lens 2 and is reflected by the angle adjusting mirror 3. Then, after being focused on the pupil conjugate plane 7 of the objective lens 11 or its vicinity by the focus lens unit 6 to form an image of the light source 1, it is relayed by the relay lens 8 and reflected by the first optical path branching unit 9. Then, the light is condensed on the pupil surface 10 of the objective lens 11 or in the vicinity thereof and the image of the light source 1 is formed again.
  • the illumination light LI is collimated by the objective lens 11 to become a substantially parallel light beam, and is irradiated on the sample ground glass 17.
  • the image of the light source 1 is the pupil plane 10 or the optical axis 16 in the vicinity thereof.
  • the illumination light LI is irradiated obliquely with a predetermined incident angle with respect to the specimen ground glass 17.
  • the incident angle refers to an angle formed by the principal ray of the illumination light L1 and the normal of the boundary surface between the sample 12 and the sample ground glass 17 (a line substantially parallel to the optical axis 16).
  • the incident angle exceeds the critical angle of the boundary surface between the sample 12 and the sample ground glass 17, the illumination light LI is totally reflected at the boundary surface.
  • Fluorescence LO is generated from the specimen 12 excited by the evanescent light.
  • the fluorescence LO is condensed by the objective lens 11 to become a substantially parallel light beam, and is transmitted through the first optical path branching unit 9 to be connected.
  • the light is condensed on the image pickup surface of the image pickup device 19 by the image lens 18, and an image of the sample 12 is formed by the fluorescence LO.
  • the specimen 12 can be excited in a very dark state with little optical noise on the background, so that an image with high contrast can be acquired.
  • the focusing lens unit 6 By moving the focusing lens unit 6 in the optical axis direction, the position in the optical axis direction of the image of the light source 1 formed at or near the pupil conjugate plane 7 changes, and as a result, the pupil plane 10 or The position in the optical axis direction of the image of the light source 1 formed in the vicinity changes.
  • the image of the light source 1 is made to coincide with the pupil conjugate plane 7 by the focusing lens unit 6, so that this image coincides with the pupil plane 10, thereby illuminating the sample 12 via the objective lens 11.
  • LI can be made into parallel light (parallelism can be adjusted). Further, by changing the angle of the reflecting surface of the angle adjusting mirror 3 with respect to the optical axis 16, the incident angle of the illumination light LI irradiated on the specimen 12 (incident angle with respect to the boundary surface) can be adjusted.
  • the total reflection microscope 100 includes a return light detection unit 130 that detects illumination light LI (hereinafter referred to as “return light”) that is totally reflected at the boundary surface between the specimen ground glass 17 and the specimen 12.
  • the return light detector 130 determines whether or not the illumination light LI is totally reflected at the boundary surface between the specimen ground glass 17 and the specimen 12, and the angle in the boundary state (critical state) between total reflection and non-total reflection Depending on the angle of the adjustment mirror 3, the total reflection illumination state is guaranteed.
  • the return light detection unit 130 is disposed on the optical path between the focusing lens unit 6 and the angle adjustment mirror 3, and on the side of the second optical path branching unit 5.
  • the condensing lens 14 and a light detection unit 15 arranged so that one focal plane of the condensing lens 14 and the detection surface substantially coincide with each other.
  • the second optical path branching unit 5 is configured by a half mirror (or a half prism) that transmits part of light and reflects the remaining light.
  • the second optical path branching unit 5 is disposed in the vicinity of the focal plane on the image side of the objective lens 11 and closer to the sample 12 than the angle adjusting mirror 3.
  • symbol 13 in FIG. 1 has shown the chief ray of the return light.
  • the illumination light (returned light) totally reflected at the boundary surface between the specimen ground glass 17 and the specimen 12 is condensed on the pupil plane 10 by the objective lens 11, then reflected by the first optical path branching section 9, and further relayed.
  • the light is relayed by the lens 8 and the focus lens unit 6, and a part of the light is reflected by the second optical path branching unit 5.
  • the return light reflected by the second optical path branching unit 5 is condensed on the detection surface of the light detection unit 15 by the condenser lens 14.
  • the detection surface of the light detection unit 15 is arranged at a position conjugate to or near the pupil plane 10 of the objective lens 11, a condensing state (focus state) of illumination light condensed on the pupil surface 10 or The condensing position on the pupil surface 10 can be detected, and the light is condensed on the pupil surface 10 by moving the focus lens unit 6 in the optical axis direction or by swinging (rotating or swinging) the angle adjusting mirror 3.
  • the state of the illumination light LI is changed, it is possible to grasp the state.
  • the return light detection unit 130 detects the intensity of the return light, and the total reflection light (illumination light LI totally reflected by the sample ground glass 17 and the sample 12) having an intensity ratio of about 100: 4, the sample 12, and the like. It is possible to distinguish between the reflected light reflected by, and the boundary between total reflection and non-total reflection can be determined from the intensity of light detected by the light detection unit 15. Note that the light detection unit 15 of the return light detection unit 130 is required to be able to detect the focus state and intensity of the light beam condensed on the detection surface, such as a CCD or a position-division photodiode (PSD). .
  • the detection surface of the light detection unit 15 is substantially conjugate with the pupil surface 10, the total reflection angle of the illumination light LI incident on the sample 12 by detecting the position of condensing on the detection surface, the refractive index of the sample 12, It is possible to calculate the penetration depth of the evanescent field, but the accuracy depends on the resolution of the detection element, and the accuracy is not so high.
  • h is the distance between the condensing position of the illumination light LI in the pupil plane 10 and the center of the pupil plane 10, that is, the optical axis 16
  • n 1 is the refractive index of the sample ground glass 17
  • f is the focal length of the objective lens 11.
  • Equation (2) is obtained from the combined focal length f1 of the optical system up to: Note that when the reflection surface of the angle adjustment mirror 3 is changed by the angle ⁇ m , the light reflected by the reflection surface of the angle investigation mirror 3 (the principal ray of light) changes by an angle 2 ⁇ m with respect to the optical axis.
  • the illumination light LI is at the boundary surface. Total reflection occurs, allowing observation with a total reflection microscope.
  • n 1 is the refractive index of the specimen ground glass 17
  • n 2 is the refractive index of the specimen 12.
  • the accurate value of the refractive index of the sample 12 is often not known, and in adjustment for performing observation with the total reflection microscope, it is necessary to search for the angle of illumination light, etc. by hand, but with the total reflection microscope 100 according to the present embodiment, These values can be calculated by the following method.
  • the relationship between the incident angle ⁇ of the illumination light LI with respect to the specimen 12 and the penetration depth of the evanescent field, that is, the depth range d (depth in the optical axis direction from the boundary surface) where the illumination light strikes the specimen 12 is as follows. (4) Where ⁇ is the wavelength of the illumination light.
  • the incident angle ⁇ of the illumination light LI may be adjusted in order to adjust the penetration depth d of the evanescent field, that is, the condensing position of the illumination light LI on the pupil plane 10. h may be adjusted by the angle adjustment mirror 3.
  • the position of the image of the light source 1 on the pupil plane 10 is moved, so that the spot position of the return light collected on the light detection unit 15 of the return light detection unit 130 is changed to this position. It moves within the detection surface of the light detector 15.
  • the center of the light detection unit 15 intersects the optical axis perpendicularly on the detection surface conjugate with the pupil surface 10, the inside of a predetermined circle (circle C in FIG. 2B) centering on the detection surface center.
  • the spot intensity of the return light changes greatly on the outside (FIG. 2 (a)).
  • the spot intensity ratio between the inside and the outside of this circle C is 4: 100, and when the spot is inside the circle C, the illumination light LI is incident on the sample 12 at a total reflection angle or less, and the spot is When the light is outside the circle C, the illumination light LI is incident on the sample 12 at a total reflection angle or more. That is, this circle C indicates the boundary between total reflection and non-total reflection at the boundary surface between the specimen ground glass 17 and the specimen 12, and the angle adjusting mirror 3 is located in the vicinity of this circle C on the detection surface of the light detection unit 15. Is changed so that the spot of the return light intersects the circle C, and the position where the intensity changes is detected, so that the illumination light LI is totally reflected on the boundary surface between the specimen ground glass 17 and the specimen 12.
  • the radius of the circle C depends on the magnification of the objective lens 11, the refractive index of the specimen 12, the wavelength of the illumination light LI, and the like, and the circle is distorted by the optical element in the optical path or the center of the circle is shifted from the center of the optical axis.
  • the angle can be adjusted with high accuracy by determining the angle of total reflection from the intensity of the return light as described above. For example, in observation using an objective lens with a magnification of 60 times NA 1.49, as shown in FIG. 3, the circle PI on the detection surface of the light detection unit 15 corresponds to the pupil diameter of the pupil plane 10.
  • the illumination light LI is incident on the sample 12 at the total reflection critical angle, and the total reflection microscope 100 generally performs observation in this vicinity.
  • the angle adjusting mirror 3 by detecting the angle of the angle adjusting mirror 3 at which the incident angle of the illumination light LI incident on the boundary surface between the sample ground glass 17 and the sample 12 becomes the total reflection critical angle (by the angle adjusting mirror 3).
  • the light reflected by the reflecting surface (convertible to the angle between the principal ray of light) and the optical axis can be observed with a total reflection microscope, but the center position (coordinates) and radius of the circle C described above
  • the total reflection angle ⁇ r of the illumination light LI incident on the specimen 12 is calculated from the spot position, and the refractive index n 2 of the specimen 12 is calculated based on the above-described equations (3) and (4).
  • the penetration depth d of the evanescent field can be calculated.
  • the above-described total reflection position is detected at three or more locations (for example, points P1 to P3 in FIG. 5), and the center O of the circle C is determined from each coordinate.
  • the radius of the circle C can be obtained.
  • the radius of the circle C can be detected more accurately, and the accuracy depends on the intensity detection resolution of the light detection unit 15 but does not depend on the position detection resolution. . That is, by detecting the state of being at the boundary of the total reflection (circle C) from the light detection unit 15, the position of the image of the light source 1 on the pupil plane 10 is calculated from the angle ⁇ m of the angle adjustment mirror 3, The radius of the circle C can be obtained with high accuracy.
  • the intensity detection resolution of a CCD, a position division photodiode (PSD) or the like is 256 gradations or more, and is sufficiently high to distinguish between the reflection and the total reflection, and the influence on the cost is small.
  • the incident angle of the illumination light LI with respect to the specimen 12 in the total reflection microscope 100 that is, the penetration depth of the evanescent field can be managed with high accuracy and at low cost.
  • an angle adjustment actuator 51 that rotates the angle adjustment mirror 3, a position adjustment actuator 52 that moves the focus lens unit 6 in the optical axis direction, and a control unit that controls these operations. 50, and by controlling these actuators 51 and 52 from the control unit 50 based on the detection result from the light detection unit 15 (the intensity of the spot of the return light), the LI of the illumination light irradiated on the specimen 12 The parallelism and incident angle can be controlled.
  • the control unit 50 includes an input unit 53 operated by an observer, a storage unit 54 that stores information for adjusting total reflection illumination and an image of the specimen 20 acquired by the imaging device 19, and a setting.
  • a display unit 55 is connected to display information and acquired images. Then, the adjustment process of the total reflection illumination by the control part 50 is demonstrated using FIG.
  • a case will be described in which the position where total reflection occurs at three points within the detection surface of the light detection unit 15 is measured and adjusted.
  • the control unit 50 sets the number N of points to be measured for this adjustment (step S400).
  • the number N of measurement points may be stored in advance in the storage unit 53, or may be input by the observer from the input unit 53 (here, N is set to 3 as described above).
  • the control unit 50 first operates the angle adjustment actuator 51 so that the image of the light source 1 is formed at the initial position where the first point of the pupil plane 10 is measured, and the angle of the angle adjustment mirror 3 is set. Is set (step S401).
  • the critical angle at which the illumination light LI is totally reflected at the boundary surface between the specimen ground glass 17 and the specimen 12 is determined from the focal length of the objective lens 11 and the like.
  • the angle of the angle adjusting mirror 3 with respect to the optical axis 16 may be obtained from the operation amount of the angle adjusting actuator 51 or may be configured to be detected by providing an angle detector separately from the actuator 51. .
  • the position of the focus lens unit 6 is the same.
  • a point inside the circle C (point W1 in FIG. 2B) indicating the boundary (critical angle) between total reflection and non-total reflection is set as the initial position. The case where it comprises is demonstrated.
  • the control unit 50 turns on the light source 1 to emit illumination light (step S402), operates the position adjusting actuator 52 to move the focus lens unit 6 in the optical axis direction, and causes the light detection unit 15 to operate. Move to a position where the detected spot diameter is minimum and the peak intensity is maximum (step S403). Thereby, the parallelism of the illumination light LI at the current measurement position with respect to the sample 12 is increased (in the sample 12, the illumination light L1 becomes substantially parallel light). Then, the control unit 50 operates the angle adjustment actuator 51 to rotate the angle adjustment mirror 3 to move the image of the light source 1 in the pupil plane 10 in the direction away from the optical axis 16, as shown in FIG.
  • the angle adjustment mirror 3 is stopped at the position where the intensity of the spot detected by the light detection unit 15 is higher than the initial position (point W2 in FIG. 2B) (step S404), and the light source 1 is turned off. (Step S405).
  • the control unit 50 determines the current image position of the light source 1 (coordinates in the pupil plane 10) from the angle of the angle adjustment mirror 3 and stores it in the storage unit 54 (step S406), and calculates 1 from the number N of measurement points. Subtraction is performed (step S407), it is determined whether or not the number P of measurement points is greater than zero, and the processes of steps S401 to S407 are repeated until the number N of measurement points becomes zero (step S408).
  • control unit 50 obtains the central coordinates and radius of the critical angle circle C from the three coordinates (angle of the angle adjusting mirror 3) measured as described above (step S409).
  • the angle ⁇ m of the angle adjustment mirror 3 is determined and set by the angle adjustment actuator 51 so that the penetration depth d of the evanescent field desired by the observer is obtained from the center coordinates and radius of the angle (step S410).
  • the adjustment processing of the total reflection illumination is finished.
  • the refractive index n 2 of the sample 12 may be calculated.
  • the control by the control unit 50 adjusts the focus by the focus lens unit 6 (processing for matching the image of the light source 1 to the pupil plane 10), and the penetration depth d of the desired evanescent field.
  • the angle adjustment mirror 3 can be automatically adjusted.
  • the light detection unit 15 only needs to be able to detect the intensity of the return light, and it is not necessary to specify the position of the spot on the detection surface.
  • PSD When PSD is used for the light detection unit 15
  • the angle adjustment mirror 3 is swung before the focus lens unit 6 is adjusted, and the spot position of the return light on the light detection unit 15 is moved.
  • the light detection unit 15 is conjugate with the pupil plane 10, and as shown in FIG. 7, the circle PI on the detection plane of the light detection unit 15 corresponds to the pupil diameter of the pupil plane 10, and is outside the circle PI.
  • the spot W4 When the spot W4 is moved, the light returns to the light detection unit 15 and does not reach.
  • the position of the image of the light source 1 deviates from the pupil plane 10 at W4 ′ and W4 ′′ in FIG.
  • the spot diameter of the return light is increased, and the return light is detected when the return light protrudes to the inside of the circle PI.
  • the intensity of the return light spot W4 when the focus adjustment lens unit 6 is moved near the outside of the circle PI is represented by the position of the image of the light source 1 from the pupil plane 10 in the optical axis direction.
  • the focus lens unit 6 Since the return light is detected by the light detection unit 15 when it is deviated (front and back positions of the pupil plane in the optical axis direction), the focus lens unit 6 is moved in the optical axis direction and the return light is not detected. 6 movement ranges By setting the center of (focus range) as the optimum position, that is, the position where the image of the light source 1 is formed on the pupil plane 10, the illumination light beam irradiated onto the specimen 12 becomes parallel. Then, the illumination angle detection accuracy described below is improved.
  • the method of adjusting the incident angle of the illumination light LI to the specimen 12 by the angle adjusting mirror 3 is the same as that in the case where the CCD is used in the above-described light detection unit 15.
  • the total reflection microscope 100 controls the angle of the angle adjustment mirror 3 that reflects the illumination light LI from the light source 1 so that the illumination light LI is a boundary surface between the specimen ground glass 17 and the specimen 12.
  • the total reflection microscope 200 according to the second embodiment moves the light source 1 in the direction perpendicular to the optical axis 16 as shown in FIG. A case will be described in which the principal ray 4 of the illumination light LI radiated from is emitted in parallel with the optical axis so that the position of the image of the light source 1 in the pupil plane 10 is adjusted.
  • symbol is attached
  • the chief ray of the illumination light LI emitted from the light source 1 travels parallel to the optical axis 16 and is converted into a substantially parallel light beam by the collimator lens 2.
  • the light source 1 is held by the light source holding unit 20 and is configured to move the light source 1 in a direction substantially orthogonal to the optical axis 16 while maintaining the radiation direction of the illumination light from the light source 1. Yes. Therefore, the angle formed by the substantially parallel light beam emitted from the collimating lens 2 and the optical axis 16 is determined according to the distance from the optical axis 16 of the light source 1.
  • This substantially flat light beam passes through the second optical path branching section 5, is condensed by the focus lens section 6 on or near the pupil conjugate plane 7 of the objective lens 11, and is further relayed by the relay lens 8, so that the first optical path.
  • the focus adjustment by the focus lens unit 6 (the process of matching the image of the light source 1 with the pupil plane 10) is the same as in the first embodiment.
  • the configuration of the control unit 50 and the like is omitted.
  • the condensing position of the illumination light LI on the pupil plane 10 (the position of the image of the light source 1), that is, the incident angle ⁇ of the illumination light LI incident on the sample 12 is as described above.
  • the light source 1 is moved in a direction orthogonal to the optical axis. That is, the light source holding unit 20 that moves the light source 1 in the optical axis direction functions as an incident angle adjusting unit.
  • the distance h between the condensing position of the illumination light LI in the pupil plane 10 (the position of the image of the light source 1) and the optical axis 16 (the center of the exit pupil of the objective lens 11) is expressed by the following equation (2 ′). Is required.
  • is the projection magnification of the light source 1 onto the pupil plane 10
  • h 0 is the distance between the light source 1 and the optical axis 16.
  • the intensity detection resolution of the light detection unit 15 is low, if the resolution for determining the position of the light source holding unit 20 from the optical axis 16 of the light source 1 is high,
  • the incident angle of the illumination light LI with respect to the specimen 12 in the total reflection microscope 200 that is, the penetration depth of the evanescent field can be managed with high accuracy and at low cost.
  • the total reflection microscope 300 according to the third embodiment in the total reflection microscope 100 according to the first embodiment, instead of the configuration in which the angle of the illumination light LI with respect to the optical axis 16 is changed by the angle adjustment mirror 3, The case where the light source 1 and the condenser lens 2 are configured to rotate (swing) together is shown. Specifically, in the total reflection microscope 300, as shown in FIG. 10, the light source 1 and the collimating lens 2 are integrally held by the light source holding unit 21, and the light is emitted from the light source 1 and is made into a substantially parallel light flux by the condenser lens 2.
  • the light source holder 21 is configured to rotate (swing) around the field conjugate position or its vicinity so that the principal ray 4 of the illumination light LI passes through the field conjugate position on the optical axis 16. . That is, the light source holding unit 21 functions as an incident angle adjusting unit. Other configurations are the same as those of the first embodiment. Also in the total reflection microscope 300 according to the third embodiment, if the resolution of the rotation amount of the light source holding unit 21 is high, the incident angle of the illumination light LI with respect to the sample 12 in the total reflection microscope 300, that is, the penetration of the evanescent field is absorbed. Depth management can be performed with high accuracy and at low cost.
  • the vicinity of the pupil plane 10 of the objective lens 11 is preferably within a range of a position 5 mm from the pupil plane 10.
  • the vicinity of the position conjugate with the pupil plane 10 of the objective lens 11 in each of the above-described embodiments is set based on the magnification of the position conjugate with the pupil plane 10 of the objective lens 11. Specifically, it is the relay lens 8, the focus lens unit 6, and the condenser lens 14 that are involved in the setting of the magnification.
  • the setting method of “near the position conjugate with the field of view of the objective lens 11 on the optical axis 16” in the above-described embodiment will be described.
  • the field of view position of the objective lens 11 that is, the focus position
  • the depth of focus is usually set. Assume degree.
  • n is the refractive index of the medium between the specimen and the objective lens.
  • is the wavelength of light from the light source 1
  • NA is the NA of the objective lens 11.
  • the vicinity of such a position conjugate to the visual field position is set based on the magnification determined by the three lenses of the objective lens 11, the relay lens 8, and the focus lens unit 6.
  • the magnification determined by these three lenses is ⁇ b

Abstract

 光源(1)からの照明光をリレー光学系(8)でリレーして光源(1)の像を対物レンズ(11)の入射瞳面(10)若しくはその近傍に形成し照明光を対物レンズ(11)を介して標本(12)に照射する照明光学系(110)を有する全反射顕微鏡(100)は、光源(1)の像の位置を光軸と直交する方向に変化させる入射角度調整部である角度調整ミラー(3)と、照明光が標本(12)で反射して対物レンズ(11)で集光された戻り光の強度を検出する光検出部(15)と、角度調整ミラー(3)の作動量を決定する制御部(50)と、を有し、この制御部(50)は、角度調整ミラー(3)を変化させたときの戻り光の強度の変化に基づいて、照明光が標本(12)で全反射するように、角度調整ミラー(3)の作動量を決定する。

Description

全反射顕微鏡
 本発明は、全反射顕微鏡に関する。
 従来の全反射顕微鏡の照明角度検出においてはCCDや位置分割フォトダイオード(PSD)によって対物レンズの入射瞳における照明光の位置を検出して全反射角度を算出、保証していた(例えば、特許文献1参照)。この場合、照明光の位置精度は検出素子の分解能ならびに検出素子に対する対物レンズの入射瞳の投影倍率に依存し、精度向上のためには高分解能で高価な検出素子を用いるか、投影倍率を上げて検出光学系の大型化を許容するしかない。投影倍率を上げた場合、検出素子サイズも大きくする必要がありコスト上昇を招く。具体的に説明すると、一般的なCCDやPSDの位置検出分解能は数μm~数十μm程度であり、これに対物レンズの入射瞳から検出素子への投影倍率の逆数をかけたものがこの入射瞳における照明光の集光位置検出精度に相当する。すなわち投影倍率が高いほど位置検出の精度を高くすることができる。
米国特許公開2010/0171946
 しかしながら全反射顕微鏡観察に用いられる60x~100xの対物レンズの入射瞳は直径6~10mm程度であり、これを2倍、3倍と倍率をかけて投影できるサイズの検出素子は一般的に少なく、高価なものになる。全反射顕微鏡において対物レンズの入射瞳での集光位置の違いは数μm程度でも観察像に影響を及ぼし、エバネッセント場の浸み込み深さを変化させてしまう。これに対し数μmという同程度の分解能しかない検出素子では検出精度を管理、保証することは難しい。
 本発明はこのような課題に鑑みてなされたものであり、簡単な構成で全反射顕微鏡の照明角度を精度よく制御することができる全反射顕微鏡を提供することを目的とする。
 前記課題を解決するために、本発明に係る全反射顕微鏡は、光源からの光をリレー光学系でリレーして前記光源の像を対物レンズの入射瞳面若しくはその近傍に形成し前記光を前記対物レンズを介して標本に照射する照明光学系を有する全反射顕微鏡であって、前記光源の像の位置を光軸と直交する方向に変化させる入射角度調整部と、前記光が前記標本で反射して前記対物レンズで集光された戻り光の強度を検出する光検出部と、前記入射角度調整部の作動量を決定する制御部と、を有し、前記制御部は、前記入射角度調整部を変化させたときの前記戻り光の強度の変化に基づいて、前記入射角度調整部の作動量を決定することを特徴とする。
 このような全反射顕微鏡において、前記光源の像の位置を光軸方向に変化させるフォーカスレンズ部をさらに有し、前記制御部は、前記入射角度調整部および前記フォーカスレンズ部を変化させたときの前記戻り光の強度の変化に基づいて、前記入射角度調整部および前記フォーカスレンズ部の作動量を決定することが好ましい。
 このような全反射顕微鏡において、前記制御部は、前記入射角度調整部を変化させたときの前記戻り光の強度の変化に基づいて、前記光が前記標本で全反射するように、前記入射角度調整部の作動量を決定し、前記フォーカスレンズ部を変化させたときの前記戻り光の強度の変化に基づいて、前記光が平行光になるように、前記フォーカスレンズ部の作動量を決定することが好ましい。
 このような全反射顕微鏡において、前記制御部は、前記光が前記標本で全反射するように、前記対物レンズの入射瞳若しくはその近傍において、光軸方向と直交する方向に、前記光源像の位置を調整し、前記光が平行光になるように、前記対物レンズの入射瞳若しくはその近傍において、前記光軸方向に、前記光源像の位置を調整することが好ましい。
 このような全反射顕微鏡において、前記制御部は、前記戻り光の強度の変化に基づいて、前記標本における全反射と前記標本における非全反射の境界を特定することが好ましい。
 このような全反射顕微鏡において、前記制御部は、前記入射角度調整部の変化量、あるいは前記入射角度調整部の作動に伴って変化する、前記光の主光線と前記リレー光学系の光軸とのなす角の変化量に基づいて、前記光の前記標本に対する入射角度を算出することが好ましい。
 このような全反射顕微鏡において、前記制御部は、前記入射角度調整部の変化量、あるいは前記入射角度調整部の作動に伴って変化する、前記光の主光線と前記リレー光学系の光軸とのなす角の変化量に基づいて、前記標本の屈折率及びエバネッセント場の浸み込み深さの少なくとも一方を算出することが好ましい。
 このような全反射顕微鏡において、前記制御部は、所望のエバネッセント場の浸み込み深さになるように前記入射角度調整部を制御することが好ましい。
 このような全反射顕微鏡において、前記光検出部は、前記入射瞳面と共役な位置若しくはその近傍に配置されていることが好ましい。
 このような全反射顕微鏡において、前記制御部は、前記入射角度調整部の前記変化量、あるいは前記入射角度調整部の作動に伴って変化する、前記光の主光線と前記リレー光学系の光軸とのなす角の変化量に基づいて、前記入射瞳面内における前記光源の像の位置を決定することが好ましい。
 このような全反射顕微鏡において、前記制御部は、前記入射瞳面内における前記全反射と非全反射の境界となる前記位置を少なくとも3箇所以上決定し、当該位置から前記境界である円の中心を決定することが好ましい。
 このような全反射顕微鏡において、前記制御部は、前記フォーカスレンズ部により前記光源の像の位置を光軸方向に変化させたときの前記戻り光の強度の変化に基づいて、前記入射瞳面に対する前記光源の像の集光状態を検出することが好ましい。
 このような全反射顕微鏡において、前記入射角度調整部は、前記リレー光学系の光軸上であって、前記対物レンズの視野と共役な位置若しくはその近傍と交差するように配置され、前記光を反射する反射面を有し、前記反射面の前記光軸に対する角度を当該反射面の前記光軸と交差する点を中心に変化させて前記入射角度を変化させることが好ましい。
 このような全反射顕微鏡において、前記入射角度調整部は、前記光源の光軸からの距離を、前記光軸に直交する面内で変化させて前記入射角度を変化させることが好ましい。
 このような全反射顕微鏡において、前記入射角度調整部は、前記リレー光学系の光軸上であって、前記対物レンズの視野と共役な位置若しくはその近傍を中心に回転させて前記入射角度を変化させることが好ましい。
 本発明によると、簡単な構成で全反射顕微鏡の照明角度を精度よく制御することができる。
第1の実施形態に係る全反射顕微鏡の構成を示す説明図である。 全反射と非全反射の境界を検出する方法を説明するための説明図であって、(a)は境界付近における戻り光の強度の変化を示し、(b)は検出面内における位置を示す。 光検出部上でのスポットの移動を説明するための説明図である。 光検出部上でスポットを移動させたときの強度の変化を示す説明図である。 検出面内の測定点及び全反射と非全反射の境界との関係を説明する説明図である。 全反射と非全反射の境界を検出することにより行う全反射照明の調整方法のフローチャートである。 フォーカス調整用レンズを操作したときにスポットの状態を説明するための説明図である。 フォーカス調整用レンズを操作したときの強度の変化を示す説明図である。 第2の実施形態に係る全反射顕微鏡の構成を示す説明図である。 第3の実施形態に係る全反射顕微鏡の構成を示す説明図である。
[第1の実施形態]
 以下、本発明の好ましい実施形態について図面を参照して説明する。まず、図1を用いて第1の実施形態に係る全反射顕微鏡100の構成について説明する。この全反射顕微鏡100は、図示しない試料台に設置された標本接地ガラス17の上に載せられた標本12に対して、光源1から放射された照明光LIを対物レンズ11を介して標本接地ガラス17側から照射する照明光学系110と、この照明光LIにより励起された標本12から発生する蛍光LOを対物レンズ11で集光し、CCD等からなる撮像素子19の撮像面上に集光する結像光学系120と、を有して構成されている。なお、この図1における光源1は、別の光源装置から放射された照明光をこの照明光学系110に導く光ファイバーの端面でも良い。また、対物レンズ11は、全反射顕微鏡観察が可能な高NA対物レンズである。
 照明光学系110は、光源1側から順に、光源1から放射された照明光LIを略平行光束にするコリメートレンズ2と、コリメートレンズ2から出射した照明光LIを反射し、この照明光LIが標本12に照射されるときの入射角度を調整するための入射角度調整部である、高角度分解能の角度調整ミラー3と、標本12に照射される照明光LIの平行度を調整するためのフォーカスレンズ部6と、光源1の像をリレーするための少なくも2枚のレンズからなるリレーレンズ8と、照明光LIを対物レンズ11側に反射し、標本12から発生した蛍光LOを透過するダイクロイックミラー、又は、一部の光を透過し残りの光を反射するハーフミラー(又はハーフプリズム)で構成された第1の光路分岐部9と、対物レンズ11とから構成されており、対物レンズ11の物体側の焦点面に標本12が配置されている。ここで、角度調整ミラー3の反射面は、光軸16上の対物レンズ11の視野と略共役な位置(視野と共役な位置の近傍)と交差するように配置されており、この角度調整ミラー3の反射面は、光軸16上の視野共役な位置またはその近傍を中心に回転(揺動)するように構成されている。なお、照明光LIの照明光主光線4は、この回転中心に入射するように構成されている。また、角度調整ミラー3は、光軸16をZ軸とし、光軸16に直交する面内で直交する方向をそれぞれX軸及びY軸としたとき、X軸方向及びY軸方向に回転可能に構成されている。また、光源1はコリメートレンズ2の一方の焦点と略一致するように配置されている。また、図1における符号10は、対物レンズ11の射出瞳の位置(瞳面)を示し、符号7は、この瞳面10の共役位置(瞳共役面)を示している。
 また、結像光学系120は標本12側から順に、対物レンズ11と、第1の光路分岐部9と、結像レンズ18とから構成されており、結像レンズ18の像側焦点面と略一致するように撮像素子19の撮像面が配置されている。
 このような全反射顕微鏡100において、光源1から放射された照明光LIはコリメートレンズ2で略平行光束になり、角度調整ミラー3で反射される。そして、フォーカスレンズ部6で対物レンズ11の瞳共役面7若しくはその近傍に一旦集光されて光源1の像を形成した後、リレーレンズ8でリレーされ、第1の光路分岐部9で反射されて、対物レンズ11の瞳面10若しくはその近傍に集光して光源1の像を再度形成する。そして、照明光LIは、対物レンズ11によりコリメートされて略平行光束となり標本接地ガラス17に照射される。このとき、照明光LIは角度調整ミラー3によりその主光線4が光軸に対して所定の角度をなすように反射されているため、光源1の像は瞳面10若しくはその近傍の光軸16から離れた位置に形成され、照明光LIは標本接地ガラス17に対して所定の入射角度を有して斜めに照射される。ここで、入射角度とは、照明光L1の主光線と標本12と標本接地ガラス17との境界面の法線(光軸16と略平行な線)とのなす角をいう。このとき、この入射角度が標本12と標本接地ガラス17との境界面の臨界角を超えているときは、照明光LIはこの境界面で全反射する。この照明光LIが全反射する標本接地ガラス17と標本12との境界面では、標本12側に光(エバネッセント光)が浸み込んでエバネッセント場を形成し、標本12側の厚さ数十~数百nmの範囲が照明される。このエバネッセント光により励起された標本12からは蛍光LOが発生する。この位置に対物レンズ11の物体側の焦点面が位置するように調整すると、この蛍光LOは対物レンズ11で集光されて略平行光束となって第1の光路分岐部9を透過し、結像レンズ18により撮像素子19の撮像面に集光され、蛍光LOによる標本12の像が形成される。このように、この全反射顕微鏡100によると、背景に光ノイズの少ない非常に暗い状態で標本12を励起することができるので、コントラストの高い像を取得することができる。なお、フォーカス用レンズ部6を光軸方向に移動させることにより、瞳共役面7若しくはその近傍に形成される光源1の像の光軸方向の位置が変化し、その結果、瞳面10若しくはその近傍に形成される光源1の像の光軸方向の位置が変化する。そのため、フォーカス用レンズ部6により光源1の像を瞳共役面7と一致させることにより、この像が瞳面10と一致し、これにより、対物レンズ11を介して標本12に照射される照明光LIを平行光にする(平行度を調整する)ことができる。また、角度調整ミラー3の反射面の光軸16に対する角度を変化させることにより標本12に照射される照明光LIの入射角度(境界面に対する入射角度)を調整することができる。
 このような全反射顕微鏡100において、上述した境界面で浸み込むエバネッセント光の量は、この境界面に入射する照明光LIの入射角度に依存することから、境界面に入射する照明光LIを平行光に近づける必要がある。そのため、この全反射顕微鏡100は、標本接地ガラス17と標本12との境界面で全反射した照明光LI(以下、この照明光を「戻り光」と呼ぶ)を検出する戻り光検出部130を備え、標本接地ガラス17と標本12の境界面で照明光LIが全反射したか否かをこの戻り光検出部130で判別するとともに、全反射と非全反射の境界状態(臨界状態)における角度調整ミラー3の角度により、全反射照明状態を保証するように構成されている。
 戻り光検出部130は、フォーカス用レンズ部6と角度調整ミラー3との間の光路上に配置された第2の光路分岐部5と、この第2の光路分岐部5の側方に配置された集光レンズ14と、この集光レンズ14の一方の焦点面と検出面が略一致するように配置された光検出部15と、から構成される。なお、第2の光路分岐部5は、一部の光を透過し残りの光を反射するハーフミラー(またはハーフプリズム)で構成される。また、この第2の光路分岐部5は、対物レンズ11の像側の焦点面の近傍であって、角度調整ミラー3より標本12側に配置されている。なお、図1における符号13は、戻り光の主光線を示している。
 標本接地ガラス17と標本12との境界面で全反射した照明光(戻り光)は、対物レンズ11で瞳面10に集光された後、第1の光路分岐部9で反射され、さらにリレーレンズ8及びフォーカスレンズ部6でリレーされて第2の光路分岐部5で一部の光が反射される。そして、この第2の光路分岐部5で反射された戻り光は、集光レンズ14により光検出部15の検出面上に集光される。ここで、光検出部15の検出面は対物レンズ11の瞳面10と共役な位置若しくはその近傍に配置されているため、瞳面10に集光する照明光の集光状態(ピント状態)や瞳面10上における集光位置を検出することが可能であり、フォーカスレンズ部6を光軸方向に動かしたり角度調整ミラー3を振ったり(回転又は揺動)することで瞳面10に集光される照明光LIの状態が変化した際、その状態を把握することが可能である。
 さらに、戻り光検出部130では、戻り光の強度を検出することにより強度比率がおよそ100:4である全反射光(標本接地ガラス17と標本12で全反射した照明光LI)と標本12等で反射した反射光とを区別することが可能であり、光検出部15で検出される光の強度から、全反射と非全反射の境界を判断することが可能である。なお、このような戻り光検出部130の光検出部15には、CCDや位置分割フォトダイオード(PSD)など、検出面に集光する光束のピント状態や強度を検出可能であることが求められる。さらに、光検出部15の検出面は瞳面10と略共役なので、この検出面に集光する位置を検出することで標本12に入射する照明光LIの全反射角度、標本12の屈折率、エバネッセント場の浸み込み深さを算出することも可能であるが、その精度は検出素子の分解能に依存し、あまり精度は高くない。
 それでは、光検出部15により戻り光のスポットを検出することにより、標本12に照射される照明光LIの平行度や入射角度を調整する方法について説明する。なお、ここでは、光検出部15にCCDを用いた場合と、位置分割フォトダイオード(PSD)を用いた場合とについて説明を行う。
(光検出部15にCCDを用いた場合)
 まず、光検出部15にCCDを用いた場合の調整方法について説明する。フォーカスレンズ部6を光軸方向に動かすと、戻り光検出部130の光検出部15に集光する戻り光のスポット径が変化し、ピーク強度も変化する。具体的には、光源1の像が瞳面10と一致すると、光検出部15により検出されるスポット径が最小になり、且つ、ピーク強度が最高になる。すなわち、スポットの径が最小になり、且つ、ピーク強度が最高になるようにフォーカスレンズ部6を調整することにより、光源1の像が瞳面10上に位置し、標本12に照射される照明光束が平行になるので、これにより、次に説明する照明角度算出精度が向上する。
 次に、角度調整ミラー3による照明光LIの標本12への入射角度の調整方法について説明する。ここで、標本12に入射する照明光LIの入射角度θと瞳面10内で照明光LIが集光する位置との関係は次の式(1)で求められる。
Figure JPOXMLDOC01-appb-M000001
 この式(1)において、hは瞳面10内における照明光LIの集光位置と瞳面10の中心すなわち光軸16との距離であり、n1は標本接地ガラス17の屈折率であり、fは対物レンズ11の焦点距離である。さらに、角度調整ミラー3の反射面の角度θmが光軸16に対して45°のときを基準位置(0°)としたとき、距離hは角度θmならびに角度調整ミラー3から瞳面10までの光学系の合成焦点距離f1により次の式(2)のように求められる。なお、角度調整ミラー3の反射面を角度θm変化させた場合、角度調査ミラー3の反射面で反射する光(光の主光線)は、光軸に対して角度2θm変化する。
Figure JPOXMLDOC01-appb-M000002
 そして、標本接地ガラス17と標本12との境界面の法線に対する照明光LIの入射角度θが次の式(3)で表される角度θrを超えたとき、照明光LIは境界面で全反射を起こし、全反射顕微鏡観察が可能となる。
Figure JPOXMLDOC01-appb-M000003
 ここでn1は標本接地ガラス17の屈折率であり、n2は標本12の屈折率である。一般に標本12の屈折率について正確な値を知らない場合が多く、全反射顕微鏡観察を行うための調整において照明光の角度など手探りで探さなければならないが、本実施形態に係る全反射顕微鏡100では、以下に示す方法により、これらの値を算出することができるように構成されている。
 また、標本12に対する照明光LIの入射角度θとエバネッセント場の浸み込み深さ、すなわち照明光が標本12に当たる深さ範囲d(境界面からの光軸方向の深さ)との関係は次の式(4)で表される。但しλは照明光の波長である。
Figure JPOXMLDOC01-appb-M000004
 この式(4)から明らかなように、エバネッセント場の浸み込み深さdを調整するには照明光LIの入射角度θを調整すればよく、すなわち瞳面10における照明光LIの集光位置hを角度調整ミラー3で調整すればよい。
 上述したように、角度調整ミラー3を振ると瞳面10における光源1の像の位置が移動し、これにより、戻り光検出部130の光検出部15に集光する戻り光のスポット位置がこの光検出部15の検出面内において移動する。このとき瞳面10と共役な検出面において、光検出部15の中心が光軸と垂直に交わる場合、この検出面中心を中心とする所定の円(図2(b)における円C)の内側と外側で戻り光のスポット強度が大きく変化する(図2(a))。この円Cの内側と外側のスポット強度比は4:100であり、スポットが円Cの内側にあるとき、照明光LIは標本12に全反射角度以下で入射している状態であり、スポットが円Cの外側にあるとき、照明光LIは標本12に全反射角度以上で入射している状態となる。すなわち、この円Cは標本接地ガラス17と標本12との境界面における全反射と非全反射の境界を示しており、光検出部15の検出面におけるこの円Cの近傍で、角度調整ミラー3の角度を変化させて戻り光のスポットが円Cを交差するように移動させ、その強度が変化する位置を検出することにより、照明光LIが標本接地ガラス17と標本12との境界面で全反射する状態に調整することができる。なお、この円Cの半径は対物レンズ11の倍率、標本12の屈折率、照明光LIの波長などに依存し、また光路にある光学素子によって円がゆがんだり円の中心が光軸中心からずれたりすることもあるが、上述のように戻り光の強度から全反射する角度を決定することにより、精度良く調整することができる。例えば、倍率60倍NA1.49の対物レンズを用いた観察において、図3に示すように、光検出部15の検出面における円PIは、瞳面10の瞳径に対応するものであり、円PIの外側から上述した円Cを横切るように(図3に示す矢印に沿って)スポットW3を動かしたとき、図4に示すような、スポットW3の移動と検出強度の関係が得られる。強度が増大している部分が標本面で全反射を起こしている状態であり、これにより全反射境界位置を検出することができる。
 以上より、この円Cの境界上若しくはその外側にスポットがあるとき、照明光LIが全反射臨界角で標本12に入射している状態であり、全反射顕微鏡100では一般にこの近傍で観察を行う。なお、標本接地ガラス17と標本12との境界面に入射する照明光LIの入射角度が全反射臨界角になる角度調整ミラー3の角度を上述の方法により検出することで(角度調整ミラー3の反射面で反射した光(光の主光線)と光軸とのなす角度に換算可能)、全反射顕微鏡観察を行うことが可能であるが、上述の円Cの中心の位置(座標)及び半径をもとに、スポットの位置から標本12に入射する照明光LIの全反射角度θrを算出し、さらに、上述した式(3)及び(4)に基づいて、標本12の屈折率n2及びエバネッセント場の浸み込み深さdを算出することが可能である。具体的には、図5に示すように、上述した全反射する位置の検出を検出面内の3箇所以上(例えば、図5における点P1~P3)で行い、各座標から円Cの中心Oの座標及びこの円Cの半径を求めることができる。
 ここで、角度調整ミラー3の角度分解能が高いと円Cの半径はより正確に検出することができ、その精度は光検出部15の強度検出分解能には依存するが位置検出分解能には依存しない。すなわち、光検出部15からは全反射の境界(円C)にあるという状態を検出し、瞳面10における光源1の像の位置は、角度調整ミラー3の角度θmから算出することにより、精度良く円Cの半径を求めることができる。一般にCCDや位置分割フォトダイオード(PSD)などの強度検出分解能は256階調以上あり上記反射及び全反射の識別をするのに十分高く、コストにも影響が小さい。
 以上の手順により、この全反射顕微鏡100における照明光LIの標本12に対する入射角度すなわちエバネッセント場の浸み込み深さの管理を高精度かつ低コストで行うことが可能となる。
 なお、図1に示すように、角度調整ミラー3を回転させる角度調整用アクチュエータ51と、フォーカスレンズ部6を光軸方向に移動させる位置調整用アクチュエータ52と、これらの作動の制御を行う制御部50とを設け、光検出部15からの検出結果(戻り光のスポットの強度)に基づいてこれらのアクチュエータ51,52を制御部50から制御することにより、標本12に照射される照明光のLIの平行度と入射角度を制御することができる。また、この制御部50には、観察者が操作をする入力部53、全反射照明を調整するための情報や撮像素子19で取得された標本20の画像を記憶する記憶部54、及び、設定情報や取得した画像の表示等を行う表示部55が接続されている。それでは、図6を用いて制御部50による全反射照明の調整処理について説明する。なお、ここでは、光検出部15の検出面内の3点で全反射となる位置を測定して調整する場合について説明する。
 制御部50は、入力部53より全反射照明の調整処理の開始が指示されると、この調整のために測定する箇所の数Nを設定する(ステップS400)。この測定箇所の数Nは、予め記憶部53に記憶しておいても良いし、観察者に入力部53から入力させても良い(ここでは、上述したようにNに3を設定する)。そして、制御部50は、まず、瞳面10の第1点目の測定を行う初期位置に光源1の像が形成されるように、角度調整用アクチュエータ51を作動させて角度調整ミラー3の角度を設定する(ステップS401)。なお、照明光LIが標本接地ガラス17と標本12との境界面で全反射する臨界角は、対物レンズ11の焦点距離等から決定されるため、測定を開始する初期位置を対物レンズ11の種類毎に、予め記憶部54に記憶させておいても良い。また、角度調整ミラー3の光軸16に対する角度は、角度調整用アクチュエータ51の作動量から求めても良いし、このアクチュエータ51とは別に角度検出器を設けて検出するように構成しても良い。フォーカスレンズ部6の位置も同様である。また、ここでは、図2に示すように、全反射と非全反射との境界(臨界角)を示す円Cの内側の点(図2(b)の点W1)を初期位置とするように構成されている場合について説明する。
 次に制御部50は、光源1をオンにして照明光を放射させ(ステップS402)、位置調整用アクチュエータ52を作動させてフォーカスレンズ部6を光軸方向に移動させて、光検出部15により検出されるスポット径が最小になり、且つ、ピーク強度が最高になる位置に移動させる(ステップS403)。これにより、現在の測定位置での照明光LIの標本12に対する平行度が高くなる(標本12において、照明光L1は略平行光になる)。そして制御部50は、角度調整用アクチュエータ51を作動させて角度調整ミラー3を回転させ、瞳面10内の光源1の像を光軸16から離れる方向に移動させ、図2(a)に示すように、光検出部15に検出されるスポットの強度が初期位置よりも高くなった位置(図2(b)の点W2)で角度調整ミラー3を停止させ(ステップS404)、光源1をオフにする(ステップS405)。制御部50は現在の光源1の像の位置(瞳面10内の座標)を角度調整ミラー3の角度から決定して記憶部54に記憶させ(ステップS406)、測定箇所の数Nから1を減算し(ステップS407)、この測定箇所の数Pが0より大きいかを判断して測定箇所の数Nが0になるまでステップS401~S407の処理を繰り返す(ステップS408)。最後に、制御部50は、上述のようにして測定された3箇所の座標(角度調整ミラー3の角度)から、臨界角の円Cの中心座標及び半径を求め(ステップS409)、この円Cの中心座標及び半径から、観察者が所望するエバネッセント場の浸み込み深さdとなるように、角度調整ミラー3の角度θmを決定して角度調整用アクチュエータ51により設定し(ステップS410)、全反射照明の調整処理を終了する。なお、ステップS409において、標本12の屈折率n2を算出するように構成しても良い。
 以上のように構成すると、制御部50の制御により、フォーカスレンズ部6によるフォーカスの調整(瞳面10に光源1の像を一致させる処理)と、所望のエバネッセント場の浸み込み深さdとなる角度調整ミラー3の調整を自動的に行うことができる。このとき、上述したように、光検出部15は戻り光の強度を検出できれば良く、その検出面でのスポットの位置を特定する必要はない。
(光検出部15にPSDを用いた場合)
 次に、光検出部15にPSDを用いた場合のフォーカスの調整方法について説明する。フォーカスレンズ部6を調整前に角度調整ミラー3を振り、光検出部15上の戻り光のスポット位置を動かす。光検出部15は瞳面10と共役であり、図7に示すように、光検出部15の検出面における円PIは、瞳面10の瞳径に対応するものであり、円PIの外側にスポットW4を動かすと光検出部15に戻り光は届かなくなる。円PIの少し外にスポットW4がくる状態にした上で、フォーカスレンズ部6を光軸方向に動かすと、光源1の像の位置が瞳面10から外れるところでは図7のW4′やW4″のように戻り光のスポット径が大きくなり、円PIの内側に戻り光がはみ出してくることにより戻り光が検出されるようになる。図8は倍率60倍NA1.49の対物レンズを用いた観察において、戻り光のスポットW4を円PIの外側近傍においてフォーカス調整用レンズ部6を動かしたときの強度変化を表したものである。光源1の像の位置が瞳面10から光軸方向に外れた(光軸方向の瞳面の前後位置)ときに、光検出部15で戻り光は検出されるので、フォーカスレンズ部6を光軸方向に動かし、戻り光が検出されないフォーカス調整用レンズ部6の移動範囲(フォーカス範囲)の中心を最適位置とする、つまり、光源1の像が瞳面10上に形成されている位置とすることで、標本12に照射される照明光束が平行になるので、これにより、次に説明する照明角度検出精度が向上する。
 なお、角度調整ミラー3による照明光LIの標本12への入射角度の調整方法は、上述の光検出部15にCCDを用いた場合と同じである。
[第2の実施形態]
 第1の実施形態に係る全反射顕微鏡100は、光源1からの照明光LIを反射する角度調整ミラー3の角度を制御することにより、照明光LIが標本接地ガラス17と標本12との境界面で全反射するように構成していたが、この第2の実施形態に係る全反射顕微鏡200は、図9に示すように、光源1を光軸16と直交する方向に移動させて、この光源から放射される照明光LIの主光線4が光軸と平行に射出させることにより、瞳面10内での光源1の像の位置を調整するように構成した場合について説明する。なお、第1の実施形態に係る全反射顕微鏡100と同一の構成部材については同一の符号を付し詳細な説明は省略する。
 光源1から放射された照明光LIは、その主光線が光軸16に平行に進み、コリメートレンズ2で略平行光束に変換される。このとき、光源1は光源保持部20で保持されており、光源1からの照明光の放射方向を維持したまま、この光源1を光軸16と略直交する方向に移動させるように構成されている。そのため、光源1の光軸16からの距離に応じてコリメートレンズ2から出射した略平行光束と光軸16とのなす角度が決まる。この略平光束は、第2の光路分岐部5を透過し、フォーカスレンズ部6により対物レンズ11の瞳共役面7若しくはその近傍に集光され、さらにリレーレンズ8でリレーされ、第1の光路分岐部9で反射されて対物レンズ11の瞳面若しくはその近傍に光源1の像を形成し、対物レンズ11で略平行光にされ、所定の角度で標本接地ガラス17と標本12との境界面に照射される。なお、フォーカスレンズ部6によりフォーカスの調整(瞳面10に光源1の像を一致させる処理)は第1の実施形態と同じである。また、図9では、制御部50等の構成は省略している。
 この第2の実施形態に係る全反射顕微鏡200において、瞳面10における照明光LIの集光位置(光源1の像の位置)、すなわち標本12に入射する照明光LIの入射角度θは、上述したように、光源1を光軸と直交する方向に移動させることにより行う。すなわち、光源1を光軸方向に移動させる光源保持部20が入射角度調整部として機能する。ここで、瞳面10内における照明光LIの集光位置(光源1の像の位置)と光軸16(対物レンズ11の射出瞳の中心)との距離hは、次の式(2′)で求められる。なお、この式(2′)において、βは光源1の瞳面10への投影倍率であり、h0は光源1と光軸16との距離である。
Figure JPOXMLDOC01-appb-M000005
 この第2の実施形態に係る全反射顕微鏡200においても、光検出部15の強度検出分解能が低くても、光源保持部20の光源1の光軸16からの位置を決定する分解能が高ければ、この全反射顕微鏡200における照明光LIの標本12に対する入射角度すなわちエバネッセント場の浸み込み深さの管理を高精度かつ低コストで行うことが可能となる。
[第3の実施形態]
 第3の実施形態に係る全反射顕微鏡300は、第1の実施形態に係る全反射顕微鏡100において、角度調整ミラー3で照明光LIの光軸16に対する角度を変化させていた構成に代えて、光源1及びコンデンサレンズ2を一体に回転(揺動)させるように構成した場合を示している。具体的には、この全反射顕微鏡300は、図10に示すように、光源保持部21で光源1及びコリメートレンズ2を一体に保持し、光源1から放射されコンデンサレンズ2により略平行光束にされた照明光LIの主光線4が光軸16上の視野共役位置を通過するように、この視野共役位置またはその近傍を中心に光源保持部21を回転(揺動)させるように構成されている。すなわち、この光源保持部21が入射角度調整部として機能する。その他の構成は第1の実施形態と同一である。この第3の実施形態に係る全反射顕微鏡300においても、光源保持部21の回転量の分解能が高ければ、この全反射顕微鏡300における照明光LIの標本12に対する入射角度すなわちエバネッセント場の浸み込み深さの管理を高精度かつ低コストで行うことが可能となる。
 なお、上述の各実施形態において、「対物レンズ11の瞳面10の近傍」は、瞳面10から5mmの位置の範囲内であることが好ましい。
 また、上述の各実施形態における「対物レンズ11の瞳面10と共役な位置の近傍」については、対物レンズ11の瞳面10と共役な位置の倍率に基づき設定される。具体的には、この倍率の設定に関与するのは、リレーレンズ8と、フォーカスレンズ部6と、集光レンズ14であり、これら3枚のレンズで決まる倍率をβaとし、瞳面10近傍をδとすると、共役な位置近傍Δaは、Δa=δ×βa 2となる。例えば、δ=5mm、βa=0.5とすると、Δa=5×0.52=1.25mmとなるので、1.25mmの範囲内となる。
 また、上述の実施形態における「光軸16上の対物レンズ11の視野と共役な位置の近傍」の設定方法について説明すると、まず、対物レンズ11の視野位置、つまりピント位置として、通常、焦点深度程度を想定する。焦点深度Δzは、Δz=n×λ/(2×NA2)の式で表わされる。nは標本と対物レンズの間の媒質の屈折率である。また、λは光源1からの光の波長、NAは対物レンズ11のNAである。そして、このような視野位置と共役な位置の近傍については、対物レンズ11と、リレーレンズ8と、フォーカスレンズ部6の3つのレンズで決まる倍率に基づき設定される。これら3枚のレンズで決まる倍率をβbとすると、近傍な位置Δは、Δ=Δz×βb 2となる。例えば、NA1.49の対物レンズ11で、媒質の屈折率を1.52、光源1からの光が波長λ=480nm(青色)であるとすると、Δz=0.16μmとなる。そして、βb=100とすると、近傍な位置Δは、Δ=Δz×βb 2=0.16×1002=1.6mmとなるので、1.6mmの範囲内となる。
[その他]
 なお、上述の各実施形態の要件は、適宜組み合わせることができる。また、一部の構成要素を用いない場合もある。また、法令で許容される限りにおいて、上述の各実施形態及び変形例で引用した装置などに関する全ての公開公報及び米国特許の開示を援用して本文の記載の一部とする。
1 光源
3 角度調整ミラー(入射角度調整部)
6 フォーカスレンズ部
8 リレー光学系
10 対物レンズの入射瞳面(瞳面)
11 対物レンズ
12 標本
15 光検出部
20,21 光源保持部(入射角度調整部)
50 制御部
100 全反射顕微鏡
110 照明光学系
200,300 全反射顕微鏡
 

Claims (15)

  1.  光源からの光をリレー光学系でリレーして前記光源の像を対物レンズの入射瞳面若しくはその近傍に形成し前記光を前記対物レンズを介して標本に照射する照明光学系を有する全反射顕微鏡であって、
     前記光源の像の位置を光軸と直交する方向に変化させる入射角度調整部と、
     前記光が前記標本で反射して前記対物レンズで集光された戻り光の強度を検出する光検出部と、
     前記入射角度調整部の作動量を決定する制御部と、を有し、
     前記制御部は、前記入射角度調整部を変化させたときの前記戻り光の強度の変化に基づいて、前記入射角度調整部の作動量を決定することを特徴とする全反射顕微鏡。
  2.  前記光源の像の位置を光軸方向に変化させるフォーカスレンズ部をさらに有し、
     前記制御部は、前記入射角度調整部および前記フォーカスレンズ部を変化させたときの前記戻り光の強度の変化に基づいて、前記入射角度調整部および前記フォーカスレンズ部の作動量を決定することを特徴とする請求項1に記載の全反射顕微鏡。
  3.  前記制御部は、前記入射角度調整部を変化させたときの前記戻り光の強度の変化に基づいて、前記光が前記標本で全反射するように、前記入射角度調整部の作動量を決定し、前記フォーカスレンズ部を変化させたときの前記戻り光の強度の変化に基づいて、前記光が平行光になるように、前記フォーカスレンズ部の作動量を決定することを特徴とする請求項1又は2に記載の全反射顕微鏡。
  4.  前記制御部は、前記光が前記標本で全反射するように、前記対物レンズの入射瞳若しくはその近傍において、光軸方向と直交する方向に、前記光源像の位置を調整し、前記光が平行光になるように、前記対物レンズの入射瞳若しくはその近傍において、前記光軸方向に、前記光源像の位置を調整することを特徴とする請求項1~3のいずれか一項に記載の全反射顕微鏡。
  5.  前記制御部は、前記戻り光の強度の変化に基づいて、前記標本における全反射と前記標本における非全反射の境界を特定することを特徴とする請求項1~4のいずれか一項に記載の全反射顕微鏡。
  6.  前記制御部は、前記入射角度調整部の変化量、あるいは前記入射角度調整部の作動に伴って変化する、前記光の主光線と前記リレー光学系の光軸とのなす角の変化量に基づいて、前記光の前記標本に対する入射角度を算出することを特徴とする請求項1~5のいずれか一項に記載の全反射顕微鏡。
  7.  前記制御部は、前記入射角度調整部の変化量、あるいは前記入射角度調整部の作動に伴って変化する、前記光の主光線と前記リレー光学系の光軸とのなす角の変化量に基づいて、前記標本の屈折率及びエバネッセント場の浸み込み深さの少なくとも一方を算出することを特徴とする請求項1~6のいずれか一項に記載の全反射顕微鏡。
  8.  前記制御部は、所望のエバネッセント場の浸み込み深さになるように前記入射角度調整部を制御することを特徴とする請求項1~7のいずれか一項に記載の全反射顕微鏡。
  9.  前記光検出部は、前記入射瞳面と共役な位置若しくはその近傍に配置されていることを特徴とする請求項1~8のいずれか一項に記載の全反射顕微鏡。
  10.  前記制御部は、前記入射角度調整部の前記変化量、あるいは前記入射角度調整部の作動に伴って変化する、前記光の主光線と前記リレー光学系の光軸とのなす角の変化量に基づいて、前記入射瞳面内における前記光源の像の位置を決定することを特徴とする請求項9に記載の全反射顕微鏡。
  11.  前記制御部は、前記入射瞳面内における前記全反射と非全反射の境界となる前記位置を少なくとも3箇所以上決定し、当該位置から前記境界である円の中心を決定することを特徴とする請求項10に記載の全反射顕微鏡。
  12.  前記制御部は、前記フォーカスレンズ部により前記光源の像の位置を光軸方向に変化させたときの前記戻り光の強度の変化に基づいて、前記入射瞳面に対する前記光源の像の集光状態を検出することを特徴とする請求項9~11のいずれか一項に記載の全反射顕微鏡。
  13.  前記入射角度調整部は、前記リレー光学系の光軸上であって、前記対物レンズの視野と共役な位置若しくはその近傍と交差するように配置され、前記光を反射する反射面を有し、前記反射面の前記光軸に対する角度を当該反射面の前記光軸と交差する点を中心に変化させて前記入射角度を変化させることを特徴とする請求項1~12のいずれか一項に記載の全反射顕微鏡。
  14.  前記入射角度調整部は、前記光源の光軸からの距離を、前記光軸に直交する面内で変化させて前記入射角度を変化させることを特徴とする請求項1~12のいずれか一項に記載の全反射顕微鏡。
  15.  前記入射角度調整部は、前記リレー光学系の光軸上であって、前記対物レンズの視野と共役な位置若しくはその近傍を中心に回転させて前記入射角度を変化させることを特徴とする請求項1~12のいずれか一項に記載の全反射顕微鏡。
PCT/JP2014/005474 2013-10-30 2014-10-29 全反射顕微鏡 WO2015064098A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015544808A JP6172290B2 (ja) 2013-10-30 2014-10-29 全反射顕微鏡
US15/142,804 US10241312B2 (en) 2013-10-30 2016-04-29 Total internal reflection microscope
US16/281,636 US10809511B2 (en) 2013-10-30 2019-02-21 Total internal reflection microscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013224859 2013-10-30
JP2013-224859 2013-10-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/142,804 Continuation US10241312B2 (en) 2013-10-30 2016-04-29 Total internal reflection microscope

Publications (1)

Publication Number Publication Date
WO2015064098A1 true WO2015064098A1 (ja) 2015-05-07

Family

ID=53003725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005474 WO2015064098A1 (ja) 2013-10-30 2014-10-29 全反射顕微鏡

Country Status (3)

Country Link
US (2) US10241312B2 (ja)
JP (3) JP6172290B2 (ja)
WO (1) WO2015064098A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7243245B2 (ja) * 2019-02-07 2023-03-22 株式会社島津製作所 光源装置、及びホログラフィ観察装置
CN111818239B (zh) * 2020-03-12 2023-05-02 成都微光集电科技有限公司 一种图像传感器中镜头阴影校正方法
WO2021193177A1 (ja) * 2020-03-27 2021-09-30 ソニーグループ株式会社 顕微鏡システム、撮像方法、および撮像装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003098439A (ja) * 2001-09-25 2003-04-03 Olympus Optical Co Ltd 観察切り替え可能な顕微鏡
JP2004021222A (ja) * 2002-06-20 2004-01-22 Nikon Corp 顕微鏡標本の照明方法とこれを用いた照明装置を有する顕微鏡
JP2009505126A (ja) * 2005-08-12 2009-02-05 ライカ マイクロシステムス ツェーエムエス ゲーエムベーハー 全反射顕微鏡検査用の顕微鏡および方法
JP2011118265A (ja) * 2009-12-07 2011-06-16 Nikon Corp 顕微鏡装置
JP2013221960A (ja) * 2012-04-13 2013-10-28 Nikon Corp 顕微鏡の調整方法及び顕微鏡

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4932162B2 (ja) * 2005-01-20 2012-05-16 オリンパス株式会社 焦点検出装置とそれを用いた蛍光観察装置
DE102007015063B4 (de) 2007-03-29 2019-10-17 Carl Zeiss Microscopy Gmbh Optische Anordnung zum Erzeugen eines Lichtblattes
JP5003404B2 (ja) 2007-10-15 2012-08-15 株式会社ニコン 顕微鏡用照明装置
DE102008021577A1 (de) * 2008-04-30 2009-11-05 Carl Zeiss Microlmaging Gmbh Verfahren zum Kalibrieren einer Ablenkeinheit in einem TIRF-Mikroskop, TIRF-Mikroskop und Verfahren zu dessen Betrieb
US9213176B2 (en) * 2008-12-02 2015-12-15 The Regents Of The University Of California Imaging arrangement and microscope
US8174761B2 (en) * 2009-06-10 2012-05-08 Universitat Heidelberg Total internal reflection interferometer with laterally structured illumination
JP2011118069A (ja) 2009-12-02 2011-06-16 Nikon Corp 顕微鏡用照明装置および顕微鏡
US8964288B2 (en) * 2011-01-12 2015-02-24 Ge Healthcare Bio-Sciences Corp. Systems for chromatic aberration correction in total internal reflection fluorescence microscopy
CN102540447B (zh) * 2012-02-17 2014-06-11 中国科学技术大学 一种俘获及探测复用的扫描光镊系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003098439A (ja) * 2001-09-25 2003-04-03 Olympus Optical Co Ltd 観察切り替え可能な顕微鏡
JP2004021222A (ja) * 2002-06-20 2004-01-22 Nikon Corp 顕微鏡標本の照明方法とこれを用いた照明装置を有する顕微鏡
JP2009505126A (ja) * 2005-08-12 2009-02-05 ライカ マイクロシステムス ツェーエムエス ゲーエムベーハー 全反射顕微鏡検査用の顕微鏡および方法
JP2011118265A (ja) * 2009-12-07 2011-06-16 Nikon Corp 顕微鏡装置
JP2013221960A (ja) * 2012-04-13 2013-10-28 Nikon Corp 顕微鏡の調整方法及び顕微鏡

Also Published As

Publication number Publication date
JP6172290B2 (ja) 2017-08-02
JP2019086799A (ja) 2019-06-06
US10809511B2 (en) 2020-10-20
JP2017187802A (ja) 2017-10-12
JP6485498B2 (ja) 2019-03-20
US10241312B2 (en) 2019-03-26
JP6848995B2 (ja) 2021-03-24
US20160246043A1 (en) 2016-08-25
US20190187449A1 (en) 2019-06-20
JPWO2015064098A1 (ja) 2017-03-09

Similar Documents

Publication Publication Date Title
TWI699523B (zh) 光學特性檢測裝置及光學系統
KR100923059B1 (ko) 편심량 측정 방법
JP5580206B2 (ja) レーザ光機械加工
TWI292033B (ja)
US8456725B2 (en) Optical system that selectively provides either of a collimated light beam or a convergent light beam
JPWO2009113484A1 (ja) 基準球検出装置、基準球位置検出装置、及び、三次元座標測定装置
JP6848995B2 (ja) 全反射顕微鏡及び全反射顕微鏡の調整方法
US8772688B2 (en) Autofocus device including line image forming unit and rotation unit that rotates line image
JP5459944B2 (ja) 表面形状測定装置および応力測定装置、並びに、表面形状測定方法および応力測定方法
US5309214A (en) Method for measuring distributed dispersion of gradient-index optical elements and optical system to be used for carrying out the method
JP7401595B2 (ja) カソードルミネッセンス光学部品の軸合わせのための系および方法
JP5734758B2 (ja) レーザー顕微鏡
JP2006251209A (ja) 顕微鏡
CN110017968B (zh) 高层析、抗散射激光差动共焦层析定焦方法与装置
JP4136911B2 (ja) 赤外顕微鏡及びその測定位置確定方法
WO2005093483A1 (ja) 標本合焦位置高精度計測法
US8108942B2 (en) Probe microscope
US20210341281A1 (en) Method and microscope for determining a tilt of a cover slip
JP2010145313A (ja) オートコリメータ装置
JP2008261829A (ja) 表面測定装置
JP6642108B2 (ja) 赤外顕微鏡及び赤外顕微鏡システム
RU2012135405A (ru) Двухфотонный сканирующий микроскоп с автоматической точной фокусировкой изображения и способ автоматической точной фокусировки изображения
JP7404005B2 (ja) 偏心測定装置及び偏心測定方法
KR102116618B1 (ko) 광학 시편 표면 검사 장치 및 그 제어 방법
KR102069647B1 (ko) 광 간섭 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14858940

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015544808

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14858940

Country of ref document: EP

Kind code of ref document: A1