WO2021186290A1 - 二次電池、電子機器、及び車両 - Google Patents

二次電池、電子機器、及び車両 Download PDF

Info

Publication number
WO2021186290A1
WO2021186290A1 PCT/IB2021/051926 IB2021051926W WO2021186290A1 WO 2021186290 A1 WO2021186290 A1 WO 2021186290A1 IB 2021051926 W IB2021051926 W IB 2021051926W WO 2021186290 A1 WO2021186290 A1 WO 2021186290A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
secondary battery
positive electrode
active material
electrode active
Prior art date
Application number
PCT/IB2021/051926
Other languages
English (en)
French (fr)
Inventor
安部寛太
門馬洋平
岩城裕司
山崎舜平
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to KR1020227029474A priority Critical patent/KR20220155986A/ko
Priority to US17/905,298 priority patent/US20230129659A1/en
Priority to JP2022508605A priority patent/JPWO2021186290A1/ja
Priority to CN202180022195.8A priority patent/CN115280555A/zh
Publication of WO2021186290A1 publication Critical patent/WO2021186290A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery using a positive electrode active material and a method for producing the secondary battery. Alternatively, it relates to an electronic device having a secondary battery, a vehicle, or the like.
  • the homogeneity of the present invention relates to a product, a method, or a manufacturing method.
  • the present invention relates to a process, machine, manufacture, or composition (composition of matter).
  • One aspect of the present invention relates to a semiconductor device, a display device, a light emitting device, a power storage device, a lighting device, an electronic device, or a method for manufacturing the same.
  • the electronic device refers to all devices having a power storage device, and the electro-optical device having the power storage device, the information terminal device having the power storage device, and the like are all electronic devices.
  • a power storage device refers to an element having a power storage function and a device in general.
  • a power storage device also referred to as a secondary battery
  • a lithium ion secondary battery such as a lithium ion secondary battery, a lithium ion capacitor, an electric double layer capacitor, and the like.
  • Lithium-ion secondary batteries which have particularly high output and high energy density, are mobile information terminals such as mobile phones, smartphones, or notebook computers, portable music players, digital cameras, medical devices, hybrid vehicles (HVs), and electric vehicles.
  • HVs hybrid vehicles
  • electric vehicles EVs
  • PSVs plug-in hybrid vehicles
  • Patent Document 1 improvement of the positive electrode active material is being studied (for example, Patent Document 1 and Non-Patent Document 1).
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2019-21456 [Non-Patent Document 1]
  • One aspect of the present invention is to provide a positive electrode active material having a large charge / discharge capacity.
  • one of the issues is to provide a positive electrode active material having a high charge / discharge voltage.
  • one of the issues is to provide a positive electrode active material with less deterioration.
  • one of the issues is to provide a new positive electrode active material.
  • Another issue is to provide a secondary battery having a large charge / discharge capacity.
  • Another issue is to provide a secondary battery having a high charge / discharge voltage.
  • one of the issues is to provide a secondary battery having high safety or reliability.
  • one of the issues is to provide a secondary battery with less deterioration.
  • one of the issues is to provide a secondary battery having a long life.
  • one of the issues is to provide a new secondary battery.
  • Another object of one aspect of the present invention is to provide a novel substance, an active material, a power storage device, or a method for producing the same.
  • Another object of the present invention is to provide a vehicle equipped with the secondary battery of one aspect of the present invention and having a long cruising range, specifically, a vehicle having a one-charge mileage (charging mileage) of 300 km or more, preferably 500 km or more.
  • the one-charge mileage refers to the mileage that the vehicle actually travels from charging the in-vehicle secondary battery with an external power source such as a charging stand to charging with the external power source again. That is, the one-charge mileage corresponds to the longest mileage that can be traveled from a state in which the secondary battery is charged once using an external power source and is fully charged, and can be said to be the mileage per charge.
  • Another object of the present invention is to provide a vehicle having a battery module weight of 300 kg or less by mounting the secondary battery of one aspect of the present invention and increasing the density.
  • one of the problems is to realize a vehicle in which the weight of the battery module is 300 kg or less and the mileage per charge is 300 km or more, preferably 500 km or more.
  • One aspect of the present invention is a secondary battery having a positive electrode active material, which has a first region and a second region provided inside the first region.
  • the first region and the second region each have lithium, oxygen, and one or more selected from a first transition metal, a second transition metal, and a third transition metal, the first.
  • the transition metal of is nickel, the second transition metal is cobalt, the third transition metal is manganese, and the concentration of nickel is higher in the first region than in the second region, secondary. It is a battery.
  • the concentration of manganese is preferably higher in the first region than in the second region.
  • the positive electrode active material has an impurity region having an impurity element, and the impurity region is provided between the first region and the second region.
  • the impurity region preferably has a function of suppressing mutual diffusion of elements possessed by the first region and the second region.
  • the impurity region may function as a separation layer so that the materials do not mix with each other.
  • the impurity element is preferably at least one or more of titanium, fluorine, magnesium, aluminum, zirconium, calcium, gallium, niobium, phosphorus, boron and silicon.
  • the impurity region preferably has a function of suppressing mutual diffusion of elements possessed by the first region and the second region.
  • the form of the present invention is not limited to the double structure, and may be a multiple structure having a triple structure or more.
  • a triple structure it can be called a region including a central portion, an intermediate layer surrounding the region, and a surface layer portion surrounding the intermediate layer.
  • n-fold structure or more it can be said that the number of intermediate layers is increased by (n-2).
  • Another aspect of the present invention is a secondary battery having a positive electrode active material, wherein the positive electrode active material has a multiple structure and is provided in a first region and a second region inside the first region. And a third region provided inside the second region, the first region, the second region, and the third region are lithium, oxygen, and the first region, respectively.
  • the first transition metal is nickel
  • the second transition metal is cobalt
  • the third has one or more selected from the transition metal, the second transition metal and the third transition metal.
  • the transition metal is manganese, and the concentration of nickel is higher in the second region than in the third region, which is a secondary battery.
  • the nickel concentration is preferably higher in the second region than in the first region.
  • the positive electrode active material has an impurity region having an impurity element, and the impurity region is provided between the second region and the third region.
  • the impurity region preferably has a function of suppressing mutual diffusion of elements possessed by the second region and the third region.
  • a second impurity region may be further provided between the first region and the second region. These impurity regions may function as a separation layer so that the materials do not mix with each other.
  • Nickel is richer in resources than cobalt and can be said to be an environmentally friendly transition metal. When producing a low-priced secondary battery, it is preferable to use more nickel than cobalt.
  • the first region promotes the diffusion of lithium during charging and discharging and contributes to the stabilization of the positive electrode active material.
  • the first region is a region that is at least partially in contact with any one or more of the electrolytic solution, the conductive auxiliary agent, and the binder.
  • the second region may be exposed at a portion where the film thickness of the first region is thinner than the other regions or for some reason.
  • the secondary battery preferably has a carbon material, and the carbon material is preferably at least one or more of fibrous carbon, graphene, and particulate carbon.
  • These carbon materials are used as a conductive auxiliary agent (also referred to as a conductive imparting agent or a conductive material). By adhering a conductive auxiliary agent between the plurality of active materials, the plurality of active materials are electrically connected to each other, and the conductivity is enhanced.
  • fibrous carbon refers to carbon nanotubes (also referred to as CNT) and the like.
  • graphene Since graphene has a thin planar shape, it can form an efficient conduction path with a smaller amount than other carbon materials, and the proportion of active material can be increased, so that the capacity per volume of the electrode is improved. As a result, the size and capacity of the secondary battery can be increased. Further, by using graphene, it is possible to suppress a decrease in capacity due to rapid charging / discharging.
  • graphene includes not only single layer but also multi-graphene and multi-layer graphene. Multilayer graphene refers to those having, for example, two or more and 100 or less carbon sheets.
  • the particulate carbon refers to carbon black (furness black, acetylene black (also referred to as AB), graphite, etc.).
  • the conductive auxiliary agent preferably contains graphene.
  • graphene As a conductive auxiliary agent, there is a possibility that deterioration of the positive electrode active material due to charging and discharging can be suppressed.
  • the surface layer portion of the positive electrode active material may be deteriorated due to the influence of cation mixing.
  • the deterioration may be suppressed by including graphene as the conductive auxiliary agent.
  • Various combinations can be used as the conductive auxiliary agent.
  • Typical combinations used for conductive aids include a configuration in which graphene and particulate carbon (eg, acetylene black) are combined, and a combination of fibrous carbon (eg, carbon nanotubes) and particulate carbon (eg, acetylene black).
  • the configuration and the like are suitable.
  • the material used for forming graphene may be mixed with graphene.
  • particles used as a catalyst in forming graphene may be mixed together.
  • the catalyst for forming graphene include particles having silicon oxide (SiO 2 , SiO x (x ⁇ 2)), aluminum oxide, iron, nickel, ruthenium, iridium, platinum, copper, germanium and the like.
  • the average particle size (D50) of the particles is preferably 1 ⁇ m or less, and more preferably 100 nm or less.
  • Another aspect of the present invention is the electronic device having the secondary battery described above.
  • Another aspect of the present invention is a vehicle having the secondary battery described above.
  • the above-mentioned positive electrode active material it is possible to realize a secondary battery having high energy density and high safety or reliability. Therefore, next-generation clean energy in which a large battery containing a plurality of secondary batteries is mounted. It is preferable for automobiles, for example, hybrid vehicles, electric vehicles, plug-in hybrid vehicles, and the like.
  • a positive electrode active material having a high energy density and a large charge / discharge capacity it is possible to provide a positive electrode active material having a high energy density and a high charge / discharge voltage. Alternatively, it is possible to provide a positive electrode active material with less deterioration. Alternatively, a novel positive electrode active material can be provided. Alternatively, a secondary battery having a large charge / discharge capacity can be provided. Alternatively, a secondary battery having a high charge / discharge voltage can be provided. Alternatively, a safe or reliable secondary battery can be provided. Alternatively, it is possible to provide a secondary battery with less deterioration. Alternatively, a long-life secondary battery can be provided. Alternatively, a new secondary battery can be provided.
  • the one-charge mileage can be extended with almost no change in the total weight of the vehicle equipped with the secondary battery of the same weight.
  • 1A to 1C are examples of cross-sectional views of the positive electrode active material.
  • 2A to 2C are examples of cross-sectional views of the positive electrode active material.
  • 3A and 3B are examples of cross-sectional views of the positive electrode active material.
  • 4A1, FIG. 4B1, FIG. 4C1, FIG. 4D1 and FIG. 4E1 are examples of perspective views of the positive electrode active material.
  • 4A2, 4B2, 4C2, 4D2 and 4E2 are examples of cross-sectional views of the positive electrode active material.
  • 5A and 5B are diagrams illustrating an example of a method for producing a positive electrode active material.
  • FIG. 6 is a diagram for explaining the charging depth and the crystal structure of the positive electrode active material.
  • FIG. 7 is a diagram illustrating the charging depth and the crystal structure of the positive electrode active material.
  • 8A, 8B, 8C, and 8D are cross-sectional views illustrating an example of a positive electrode of a secondary battery.
  • 9A and 9B are diagrams illustrating an example of a secondary battery.
  • 10A, 10B, and 10C are diagrams illustrating an example of a secondary battery.
  • 11A and 11B are diagrams illustrating an example of a secondary battery.
  • 12A, 12B, and 12C are diagrams illustrating a coin-type secondary battery.
  • FIG. 13A is a top view for explaining the secondary battery
  • FIG. 13B is a cross-sectional view for explaining the secondary battery.
  • 14A to 14C are diagrams illustrating a secondary battery.
  • FIGS. 18C to 18F are diagrams for explaining an example of a transportation vehicle.
  • FIG. 19A is a diagram showing an electric bicycle
  • FIG. 19B is a diagram showing a secondary battery of the electric bicycle
  • FIG. 19C is a diagram illustrating an electric bicycle.
  • 20A shows an example of a wearable device
  • FIG. 20B shows a perspective view of the wristwatch-type device
  • FIG. 20C is a diagram illustrating a side surface of the wristwatch-type device
  • FIG. 20D shows a head-mounted display. It is a perspective view to explain.
  • 21A is a diagram showing a calculation model
  • FIG. 21B is a graph of the radius and the discharge capacity per weight of the region 191 when LiCoO 2 is used for the region 191 and NCM811 is used for the region 193.
  • the crystal plane and the crystal direction are described using the Miller index.
  • the notation of crystal plane, crystal direction, and space group has a superscript bar attached to the number, but in this specification and the like, due to format restrictions, instead of adding a bar above the number, the number is preceded. It may be expressed with a- (minus sign).
  • the individual orientation indicating the direction in the crystal is []
  • the gathering orientation indicating all the equivalent directions is ⁇ >
  • the individual plane indicating the crystal plane is ()
  • the gathering plane having equivalent symmetry is ⁇ .
  • the trigonal crystal represented by the space group R-3m is generally represented by a hexagonal composite hexagonal lattice for easy understanding of the structure, and (hkl) as well as (hkl) is used as the Miller index. There is. Where i is ⁇ (h + k).
  • uneven distribution means a phenomenon in which a certain element (for example, B) is spatially unevenly distributed in a solid composed of a plurality of elements (for example, A, B, C).
  • the surface layer portion of the particles of the active material or the like is, for example, a region within 50 nm, more preferably 35 nm or less, still more preferably 20 nm or less, and most preferably 10 nm or less from the surface.
  • the surface created by cracks and cracks can also be called the surface.
  • the area deeper than the surface layer is called the inside.
  • the particle is not limited to referring only to a sphere (the cross-sectional shape is a circle), and the cross-sectional shape of each particle is an ellipse, a rectangle, a trapezoid, a cone, a quadrangle with rounded corners, and an asymmetry.
  • the shape of each particle may be indefinite.
  • the layered rock salt type crystal structure of the composite oxide containing lithium and the transition metal has a rock salt type ion arrangement in which cations and anions are alternately arranged, and the transition metal and lithium are present.
  • a crystal structure capable of two-dimensional diffusion of lithium because it is regularly arranged to form a two-dimensional plane.
  • the layered rock salt crystal structure may have a distorted lattice of rock salt crystals.
  • the rock salt type crystal structure means a structure in which cations and anions are alternately arranged. There may be a cation or anion deficiency.
  • the O3'type (also referred to as pseudo-spinel type) crystal structure of the composite oxide containing lithium and the transition metal belongs to the space group R-3m, and ions such as cobalt and magnesium are oxygen. Occupies 6 coordination positions. Further, the symmetry of the CoO 2 layer of the structure is the same as type O3. Therefore, this structure is referred to as an O3'type crystal structure in the present specification and the like. Further, in both the O3 type crystal structure and the O3'type crystal structure, it is preferable that magnesium is dilutely present between the CoO 2 layers, that is, in the lithium site. Further, it is preferable that fluorine is randomly and dilutely present at the oxygen site.
  • the O3'type crystal structure has Li randomly between layers, but is similar to the CdCl 2 type crystal structure.
  • This crystal structure similar to CdCl type 2 is similar to the crystal structure when lithium nickel oxide is charged to a charging depth of 0.94 (Li 0.06 NiO 2 ), but contains a large amount of pure lithium cobalt oxide or cobalt. It is known that the layered rock salt type positive electrode active material usually does not have this crystal structure.
  • Layered rock salt crystals and anions of rock salt crystals have a cubic closest packed structure (face-centered cubic lattice structure). It is presumed that the anion also has a cubic closest packed structure in the O3'type crystal.
  • the anion has a structure in which three layers are stacked so as to be displaced from each other like ABCABC, it is referred to as cubic close-packed packing. Therefore, the anions do not have to be strictly cubic lattices. At the same time, the actual crystal always has defects, so the analysis result does not necessarily have to be as theoretical. For example, in FFT (Fast Fourier Transform) such as electron diffraction or TEM image, a spot may appear at a position slightly different from the theoretical position. For example, if the orientation with the theoretical position is 5 degrees or less, or 2.5 degrees or less, it can be said that a cubic close-packed structure is adopted.
  • FFT Fast Fourier Transform
  • the anions on the (111) plane of the cubic crystal structure have a triangular arrangement.
  • the layered rock salt type is a space group R-3 m and has a rhombohedral structure, but is generally represented by a composite hexagonal lattice to facilitate understanding of the structure, and the layered rock salt type (000 l) plane has a hexagonal lattice.
  • the cubic (111) plane triangular lattice has an atomic arrangement similar to that of the layered rock salt type (000 l) plane hexagonal lattice. It can be said that the orientation of the cubic close-packed structure is aligned when both lattices are consistent.
  • the space group of layered rock salt type crystals and O3'type crystals is R-3m, which is different from the space group Fm-3m (general rock salt type crystal space group) and Fd-3m of rock salt type crystals.
  • the mirror index of the crystal plane satisfying the above conditions is different between the layered rock salt type crystal and the O3'type crystal and the rock salt type crystal.
  • the orientations of the crystals are substantially the same when the orientations of the cubic closest packed structures composed of anions are aligned. be.
  • TEM Transmission Electron Microscope, Transmission Electron Microscope
  • STEM Scanning Transmission Electron Microscope, Scanning Transmission Electron Microscope
  • HAADF-STEM High-Schem Scanning TEM, high-angle scattering annular dark-field scanning transmission electron microscope) image
  • ABF-STEM Annal Bright-Field Scanning Transmission Electron Microscopic, annular bright-field scanning transmission electron microscope
  • electron beam diffraction, TEM image, etc. can do.
  • XRD X-ray Diffraction, X-ray diffraction
  • neutron diffraction etc.
  • the theoretical capacity of the positive electrode active material means the amount of electricity when all the lithium that can be inserted and removed from the positive electrode active material is desorbed.
  • the theoretical capacity of LiCoO 2 is 274 mAh / g
  • the theoretical capacity of LiNiO 2 is 274 mAh / g
  • the theoretical capacity of LiMn 2 O 4 is 148 mAh / g.
  • the charging depth when all the lithium that can be inserted and removed is inserted is 0, and the charging depth when all the lithium that can be inserted and removed from the positive electrode active material is removed is 1. And.
  • charging means moving lithium ions from the positive electrode to the negative electrode in the battery and moving electrons from the positive electrode to the negative electrode in an external circuit.
  • the positive electrode active material the release of lithium ions is called charging.
  • a positive electrode active material having a charging depth of 0.7 or more and 0.9 or less may be referred to as a positive electrode active material charged at a high voltage.
  • discharging means moving lithium ions from the negative electrode to the positive electrode in the battery and moving electrons from the negative electrode to the positive electrode in an external circuit.
  • inserting lithium ions is called electric discharge.
  • a positive electrode active material having a charging depth of 0.06 or less, or a positive electrode active material in which a capacity of 90% or more of the charging capacity is discharged from a state of being charged at a high voltage is defined as a sufficiently discharged positive electrode active material. ..
  • the non-equilibrium phase change means a phenomenon that causes a non-linear change of a physical quantity.
  • a non-equilibrium phase change occurs before and after the peak in the dQ / dV curve obtained by differentiating the capacitance (Q) with the voltage (V) (dQ / dV), and the crystal structure changes significantly. ..
  • the secondary battery has, for example, a positive electrode and a negative electrode.
  • a positive electrode active material As a material constituting the positive electrode, there is a positive electrode active material.
  • the positive electrode active material is, for example, a substance that undergoes a reaction that contributes to the charge / discharge capacity.
  • the positive electrode active material may contain a substance that does not contribute to the charge / discharge capacity as a part thereof.
  • the positive electrode active material of one aspect of the present invention may be expressed as a positive electrode material, a positive electrode material for a secondary battery, or the like. Further, in the present specification and the like, the positive electrode active material according to one aspect of the present invention preferably has a compound. Further, in the present specification and the like, it is preferable that the positive electrode active material of one aspect of the present invention has a composition. Further, in the present specification and the like, the positive electrode active material according to one aspect of the present invention preferably has a complex.
  • the discharge rate is a relative ratio of the current at the time of discharge to the battery capacity, and is expressed in the unit C.
  • the current corresponding to 1C is X (A).
  • X (A) When discharged with a current of 2X (A), it is said to be discharged at 2C, and when discharged with a current of X / 5 (A), it is said to be discharged at 0.2C.
  • the charging rate is also the same.
  • When charged with a current of 2X (A) it is said to be charged with 2C, and when charged with a current of X / 5 (A), it is charged with 0.2C. It is said that
  • Constant current charging refers to, for example, a method of charging with a constant charging rate.
  • Constant voltage charging refers to, for example, a method of charging by keeping the voltage constant when the charging reaches the upper limit voltage.
  • the constant current discharge refers to, for example, a method of discharging with a constant discharge rate.
  • the value in the vicinity of a certain numerical value A means a value of 0.9A or more and 1.1A or less.
  • the particles of one aspect of the present invention can be used as a material for electrodes of a secondary battery. Further, the particles of one aspect of the present invention function as an active material.
  • the active material is, for example, a substance that undergoes a reaction that contributes to the charge / discharge capacity.
  • the active material may contain a substance that does not contribute to the charge / discharge capacity.
  • the particles of one aspect of the present invention can be used as a positive electrode material of a secondary battery in particular. Further, the particles of one aspect of the present invention particularly function as a positive electrode active material.
  • the positive electrode active material is, for example, a substance that undergoes a reaction that contributes to the charge / discharge capacity, and is a substance used as a material for the positive electrode.
  • the positive electrode active material may contain a substance that does not contribute to the charge / discharge capacity as a part thereof.
  • Particles, active materials, positive electrode materials or positive electrode active materials having at least lithium, transition metals and oxygen may be referred to as composite oxides.
  • FIG. 1A is an example of a cross section of the particle 190 according to an aspect of the present invention.
  • the particle 190 shown in FIG. 1A has a region 191 and a region 192 and a region 193.
  • the region 191 is provided inside the region 193.
  • region 193 is a region including the surface layer portion of the particles 190.
  • Region 192 is a region located inside region 193.
  • Region 191 is a region located inside the region 192.
  • the region 191 is the inside of the particle 190, and is, for example, a region (also called a central portion) including the center of the particle.
  • the center of the particle means the center of gravity of the particle, and its position can be specified by an electron microscope or the like. For example, when the particles are cut and the cross section is observed, the center of the circle when the cross section having the maximum cross section or the circumscribed circle which is the smallest with respect to the cross section having a cross section of 90% or more is drawn. Point to.
  • Region 192 is, for example, a region located between region 191 and region 193.
  • Region 191 may be referred to as a "core” and region 193 may be referred to as a "shell”.
  • the "shell” can also be called the peripheral tissue or outer shell.
  • core does not mean the core of the entire particle, but is used to indicate the positional relationship between the center of the particle and the outer shell.
  • the “core” can also be called a core material.
  • the region 191 and the region 192 may be collectively referred to as a "core", and the region 193 may be referred to as a "shell".
  • the region 192 may be expressed as a surface layer portion of the “core”. Further, the region 192 may be expressed as an impurity region.
  • the particle 190 has a core-shell structure (also referred to as a core-shell type structure).
  • the average particle size (median diameter, also referred to as D50) of the particles 190 is preferably 0.1 ⁇ m or more and 50 ⁇ m or less, and more preferably 1 ⁇ m or more and 30 ⁇ m or less.
  • Region 191 has a particulate shape.
  • Region 191 is preferably the area ratio S 191 / S 190 occupying the cross-section of the particles 190 is less than 96.0% or more 0.04%, more preferably 90% or less than 30% or more 64% It is more preferably 90% or less.
  • the area of the region 191 is S 191 and the area of the region 192 is S 192
  • the area of the region 193 is S 193
  • S 190 S 191 + S 192 + S 193 .
  • the region 192 is at least partially in contact with the particle-shaped surface of the region 191. Alternatively, it is preferably provided so as to cover at least a part of the particle-shaped surface of the region 191. It is preferable that at least a part of the region 192 is arranged at a position where the distance from the center of the particles 190 is farther than that of the region 191.
  • the layer covers at least a part of the particle-shaped surface of the region 191.
  • the region 192 is, for example, preferably a layer having a thickness of 0.5 nm or more and 100 nm or less, and more preferably a layer having a thickness of 1 nm or more and 30 nm or less.
  • the thickness of the region 192 does not necessarily have to be uniform.
  • the region 192 preferably has a function of suppressing mutual diffusion of the elements of the region 191 and the region 193 during synthesis. Further, it is preferable that it does not inhibit the mutual diffusion of lithium during charging and discharging, or has a function of promoting the mutual diffusion of lithium.
  • the region 193 is arranged at a position where the distance from the center of the particle 190 is farther than that of the region 191 and the region 192.
  • Region 193 preferably overlaps with at least one of region 191 and region 192.
  • Region 193 is preferably layered.
  • the area ratio of the region 193 to the cross section of the particles 190 is preferably 4% or more and 99.96% or less, more preferably 10% or more and 70% or less, and 10% or more and 36% or less. Is even more preferable.
  • the thickness of the region 193 does not necessarily have to be uniform.
  • the region 193 preferably has a function of promoting the diffusion of lithium during charging and discharging and contributing to the stabilization of the positive electrode active material. Further, the region 193 preferably has a function of suppressing deterioration of the positive electrode active material due to charging / discharging. For example, during charging and discharging, the surface layer portion of the positive electrode active material may be deteriorated due to the influence of cation mixing. In this case, the region 193 may be configured to be less susceptible to the cation mixing. Further, the region 193 is not limited to one region, and may have two or more regions. For example, as shown in FIG. 1C, as the region 193, it is possible to have two plurality of regions in which the region 193b is provided inside and the region 193a is provided outside the region 193b.
  • the particle 190 may have a region 194.
  • the area 194 is provided outside the area 193.
  • the area 193 and the area 194 may be collectively referred to as a "shell".
  • Region 194 may also be described as including the surface of the "shell", the surface of the particles 190, or the surface of the particles 190.
  • the region 194 may be expressed as an impurity region.
  • the area of the region 194 is S 194
  • the region 194 is arranged at a position where the distance from the center of the particles 190 is farther than that of the region 193.
  • the region 194 preferably overlaps with at least one of the region 191 and the region 192 and the region 193. Further, at least a part of the region 194 overlaps with the region 193.
  • the region 194 is, for example, preferably a layer having a thickness of 0.5 nm or more and 100 nm or less, and more preferably a layer having a thickness of 1 nm or more and 30 nm or less. The thickness of the region 194 does not necessarily have to be uniform.
  • the region 194 is also preferably configured to be less susceptible to cation mixing.
  • this is the outermost region of the particles 190, if the cation mixing of the region 194 is suppressed and the collapse of the crystal structure is suppressed, there is a high possibility that the effect of suppressing deterioration such as charge / discharge characteristics is particularly high. There is.
  • the particle size of the particles can be evaluated by, for example, a particle size distribution meter.
  • the area ratio in the cross section of the region 191 or the region 193 or the like can be evaluated by cross-section observation, various line analysis, surface analysis, etc. after the cross section of the particle 190 is exposed by processing.
  • each region can be evaluated by cross-section observation after exposing the cross-section by processing, various line analysis, surface analysis, and the like.
  • a material capable of inserting and removing lithium ions can be used.
  • the carrier ion is an alkali metal ion other than lithium ion or an alkaline earth metal ion, instead of lithium, an alkali metal (for example, sodium or potassium), an alkaline earth metal (for example, calcium, strontium, etc.) Barium, beryllium, magnesium, etc.) may be used.
  • the region 191 and the region 193 are composed of a material that functions as a positive electrode active material, for example, it is preferable to use a compound having an olivine type crystal structure, a layered rock salt type crystal structure, a spinel type crystal structure, or the like. ..
  • the compound having a layered rock salt type crystal structure includes a so-called lithium excess compound in which the atomic number ratio of lithium to the transition metal is larger than 1.
  • Regions 191 and 193 each preferably have a transition metal. Specifically, it preferably has one or more of cobalt, nickel, and manganese.
  • the concentration of at least one of the transition metals contained in the region 191 and the region 193 is different between the region 191 and the region 193.
  • regions 191 and 193 are lithium cobalt oxide, lithium nickel oxide, lithium cobalt oxide in which a part of cobalt is substituted with manganese, lithium cobalt oxide in which a part of cobalt is substituted with nickel, and nickel-manganese-, respectively. It can have a composite oxide containing lithium and a transition metal, such as lithium cobalt oxide.
  • Example of particles 1> As a specific example of the particle 190, an example in which LCO is used for the core and NCM is used for the shell, that is, Li-Co oxide is used as the region 191, cobalt is used as the first transition metal in region 193, nickel is used as the second transition metal, and the second transition metal is used. An example of using a lithium composite oxide using three kinds of transition metals of manganese as the transition metal of No. 3 is shown. In the case of a configuration in which LCO is used for the core and NCM is used for the shell, the cobalt content of the entire positive electrode active material can be reduced. Therefore, the price of the entire positive electrode active material is higher than that of the positive electrode active material of LCO alone. Can be cheaper.
  • a sufficient discharge capacity can be secured for a charging voltage in the range of 4.5 V or more and less than 4.8 V (vs. Li / Li +). ..
  • Cobalt for example, as a lithium composite oxide with nickel and manganese, LiNi x Co y Mn z O 2 (x> 0, y> 0,0.8 ⁇ x + y + z ⁇ 1.2) NiCoMn system represented by (NCM Also called) can be used.
  • it is preferable that x, y and z satisfy a value of x: y: z 9: 0.5: 0.5 or a value in the vicinity thereof.
  • the above description can be referred to as the material constituting the region 192 and the region 194.
  • the region 193 may further have a plurality of regions. For example, as shown in FIG. 1C, it may have a region 193a and a region 193b. At this time, it is preferable that the concentration of at least one of the transition metals is different between the region 193a and the region 193b.
  • a value of 1 or its vicinity may be satisfied.
  • the area of the region 193a is S 193a
  • the area of the region 193b is S 193b
  • S 193 S 193a + S 193b .
  • ⁇ Particle example 2> As a specific example of the particles 190, an example in which LCO is used for the core and LFP is used for the shell, that is, an example in which Li-Co oxide is used as the region 191 and Li-iron phosphate (LiFePO 4 ) is used as the region 193 is shown.
  • the region 193 not only LiFePO 4 but also other positive electrode materials having an olivine type crystal structure may be used as the region 193.
  • the polyanion skeleton composed of phosphorus and oxygen is stable even when all lithium is released, so that the crystal structure is unlikely to collapse. Therefore, a composite oxide having an olivine-type crystal structure is suitable for region 193, which is a shell.
  • the region 192 has a function as a buffer layer and a function of promoting the intergranular diffusion of lithium.
  • the region 192 preferably has a function of strengthening the physical connection between the region 191 and the region 193.
  • Example 3 of particles As a specific example of the particle 190, an example in which the first NCM is used for the core and the second NCM is used for the shell, that is, the region 191 is cobalt as the first transition metal, nickel as the second transition metal, and the third transition metal.
  • a lithium composite oxide using three kinds of transition metals of manganese is used as a region, and three kinds of transitions of cobalt as a first transition metal, nickel as a second transition metal, and manganese as a third transition metal are used as region 193.
  • An example of using a lithium composite oxide using a metal is shown.
  • the atomic number ratio of the second NCM is not limited to the above. For example, by making the ratio of nickel smaller than that of the first NCM, the same effect as the above-mentioned atomic number ratio may be obtained.
  • the above description can be referred to as the material constituting the region 192 and the region 194.
  • the crystal orientations of the region 191 and the region 192 are substantially the same.
  • the crystal orientations of the regions 192 and 193 are substantially the same.
  • the region 194 it is preferable that the crystal orientations of the region 193 and the region 194 are substantially the same.
  • the region 193a and the region 193b are provided, it is preferable that the crystal orientations of the region 193a and the region 193b are substantially the same.
  • the region 192 has a function as a buffer layer.
  • charging means moving lithium ions from the positive electrode to the negative electrode in the battery, and moving electrons from the positive electrode to the negative electrode in an external circuit. That is, when charged, lithium ions are separated from the positive electrode active material.
  • a positive electrode active material having a layered crystal structure represented by a composite oxide containing lithium and a transition metal can realize a secondary battery having a high lithium content per volume and a high capacity per volume. There is.
  • the amount of lithium desorbed per volume due to charging is large, and in order to perform stable charging and discharging, stabilization of the crystal structure after desorption is required.
  • high-speed charging and high-speed discharging may be hindered due to the collapse of the crystal structure during charging and discharging. Further, when the crystal structure is broken, the region where lithium can be normally inserted and removed is reduced, and the charge capacity and the discharge capacity may be lowered.
  • the displacement of the layered structure composed of the octahedron of cobalt and oxygen may be suppressed. Therefore, the crystal structure may become more stable especially in a charged state at a high temperature, which is preferable.
  • nickel When nickel is contained in addition to cobalt as a transition metal, it may be possible to suppress the displacement of the layered structure due to the elimination of lithium by increasing the concentration of nickel. Therefore, even if more lithium is desorbed, charging / discharging may be stably repeated. That is, the capacity can be increased.
  • the crystal structure may easily collapse at a high charging voltage. This is because the ionic radii of the lithium ion and the nickel ion are close to each other, so that cation mixing in which nickel moves to the lithium site is likely to occur. That is, in order to charge at a high voltage, it is preferable that the nickel concentration does not become too high.
  • the region 192 and the region 194 are preferably regions having the element X and halogen.
  • Elements X and halogens may be referred to as impurity elements.
  • the element X is one or more selected from titanium, magnesium, aluminum, zirconium, vanadium, iron, chromium, niobium, cobalt, arsenic, zinc, silicon, sulfur, phosphorus, boron, calcium, gallium, and silicon. Further, the element X is preferably one or more elements containing magnesium.
  • the halogen is preferably one or more of fluorine and chlorine, and particularly preferably fluorine.
  • the region having the element X and the halogen the region in which the element X and the halogen are added to the composite oxide represented by LiMO 2 is used.
  • the complex oxide represented by LiMO 2 may have the element X and a halogen to further stabilize the crystal structure.
  • Regions with element X and halogen include lithium cobalt oxide with magnesium and fluorine, lithium cobalt oxide with magnesium, fluorine and titanium, lithium nickel cobalt oxide with magnesium and fluorine, magnesium and fluorine. It has added lithium cobalt-cobalt-lithium aluminate, nickel-cobalt-lithium aluminate, magnesium and fluorine-added lithium nickel-cobalt-aluminate, magnesium and fluorine-added lithium nickel-manganese-lithium cobalt oxide, etc. You may.
  • an additive instead of an additive, it may be referred to as a mixture, a part of a raw material, an impurity or the like.
  • the region having the element X and the halogen may be, for example, a region having a bond between oxygen and the element X.
  • the bond between oxygen and element X can be analyzed, for example, by XPS analysis.
  • the region having the element X and the halogen may have magnesium oxide.
  • the regions having the element X and the halogen may have different elements, different crystal structures, different bonds, and the like.
  • a region having the element X and a halogen that is, a region 194 or an outer peripheral portion of the particle, so that the layered structure of the composite oxide does not collapse even if the metal to be a carrier ion is removed from the composite oxide by charging.
  • a region 192 arranged between the region 191 having the composite oxide and the region 193 having the composite oxide reinforces.
  • Magnesium which is one of the elements X, is divalent and is more stable in the lithium site than in the transition metal site in the layered rock salt type crystal structure, so that it easily enters the lithium site.
  • the presence of magnesium at an appropriate concentration in the lithium sites in the region having the element X and halogen makes it easier to retain the layered rock salt type crystal structure.
  • Magnesium is preferable because it does not adversely affect the insertion and removal of lithium during charging and discharging if the concentration is appropriate. However, if it is excessive, the insertion and removal of lithium may be adversely affected.
  • Aluminum which is one of the elements X, is trivalent and has a strong binding force with oxygen. Therefore, when aluminum is used as an additive, changes in the crystal structure can be suppressed when it enters the lithium site. Therefore, it is possible to obtain particles 190 whose crystal structure does not easily collapse even after repeated charging and discharging.
  • Titanium oxide is known to have superhydrophilicity. Therefore, having the titanium oxide in the region having the element X and the halogen may improve the wettability with respect to a highly polar solvent. When a secondary battery is used, the contact between the particles 190 and the highly polar electrolytic solution is good, and there is a possibility that an increase in internal resistance can be suppressed. In addition, titanium oxide easily diffuses lithium and does not easily release oxygen during charging and discharging. For these reasons, titanium is particularly suitable as the element X.
  • the positive electrode active material of one aspect of the present invention has a stable crystal structure even at a high voltage. Since the crystal structure of the positive electrode active material is stable in the charged state, it is possible to suppress a decrease in charge / discharge capacity due to repeated charging / discharging.
  • a short circuit of the secondary battery not only causes a problem in the charging operation and the discharging operation of the secondary battery, but also may cause heat generation and ignition.
  • the short-circuit current is suppressed even at a high charging voltage.
  • a short-circuit current is suppressed even at a high charging voltage. Therefore, it is possible to obtain a secondary battery having both high charge / discharge capacity and safety.
  • the secondary battery using the positive electrode active material 100 of one aspect of the present invention can preferably simultaneously satisfy high charge / discharge capacity, excellent charge / discharge cycle characteristics, and safety.
  • the particles 190 (regions 191 and 192 and regions 193) of one aspect of the present invention may be polycrystalline in each of or one of the regions 191 and 192 and 193.
  • the element X or halogen contained in the particles 190 (region 191 and region 192 and region 193) of one aspect of the present invention may be randomly and rarely present in the internal region.
  • the element X in this case is preferably magnesium or titanium.
  • the concentration of the element X and the halogen in the crystal grain boundary 197 and its vicinity shown in FIG. 3 is high, even if a crack occurs along the grain boundary of the particle 190 of one aspect of the present invention, the surface generated by the crack. Element X and halogen concentrations increase in the vicinity of. Therefore, the corrosion resistance to hydrofluoric acid can be enhanced even in the positive electrode active material after cracks have occurred.
  • the vicinity of the crystal grain boundary means a region from the grain boundary to about 10 nm.
  • the particles 190 may have defects, cracks, irregularities, cracks, etc. in addition to the grain boundaries. Further, there may be a portion lacking the region 192, the region 193 and the region 194. 3A and 3B show modified examples of the particles 190 shown in FIGS. 1 and 2. For example, as shown in the region 196a of FIGS. 3A and 3B, there may be a portion where the region 193 does not exist and the region 192 appears on the surface, or a portion where the region 194 and the region 192 are in contact with each other.
  • region 196b of FIGS. 3A and 3B there may be a portion where the region 192 and the region 193 are in contact with each other without the region 192.
  • the region 194, the region 193 and the region 192 may be absent, and the region 191 may have a portion appearing on the surface.
  • the defect, crack, unevenness, crack, grain boundary may have a region 195 having a composition different from the others.
  • Region 195 is a region having an element different from that of regions 191 to 194, a region having a different composition, or a region having a different crystal structure.
  • the region 195 By having the region 195, excess impurity elements may be unevenly distributed in the region 195, and the impurity elements contained in the regions 191 to 194 may be kept in a preferable range. Therefore, by having the region 195, it may be possible to obtain a secondary battery having good rate characteristics or charge / discharge characteristics.
  • each of the above-mentioned regions is a different region by various analyzes or a combination thereof.
  • the analysis include electron microscope images such as TEM, STEM, HAADF-STEM, and ABF-STEM, diffraction images such as SIMS, ToF-SIMS, X-ray diffraction (XRD), electron beam diffraction, and neutron beam diffraction, and electron beam microscopic images.
  • Examples include an analyzer (EPMA) and an energy dispersive X-ray analysis (EDX).
  • EMA energy dispersive X-ray analysis
  • the boundary of each of the above-mentioned regions may not be clear.
  • the concentration of the element may have a concentration gradient between adjacent regions. Further, the concentration of the element may be continuously changed. Further, the concentration of the element may be changed stepwise. Alternatively, the concentration of the element may be a gradation. In that case, the boundary of each region can be, for example, a portion where the concentration of the element peculiar to either region becomes 50%.
  • FIG. 4A1 is a perspective view of the particle 190
  • FIG. 4A2 is a cross-sectional view of FIG. 4A1. In this way, it may be a cube (dice type).
  • FIG. 4B1 is a perspective view of the particles 190
  • FIG. 4B2 is a cross-sectional view of FIG. 4B1.
  • the rectangular parallelepiped particle 190 may be used.
  • FIG. 4C1 is a perspective view of the particle 190
  • FIG. 4C2 is a cross-sectional view of FIG. 4C1.
  • the hexagonal columnar particles 190 may be used.
  • FIG. 4D1 is a perspective view of the particle 190
  • FIG. 4D2 is a cross-sectional view of FIG. 4D1.
  • the octahedral particles 190 may be used.
  • FIG. 4E1 is a perspective view of the particle 190
  • FIG. 4E2 is a cross-sectional view of FIG. 4E1.
  • the outer shape of the particle 190 and the shapes of the region 191 and the region 192 may be different.
  • step S11 a lithium source and a transition metal source (M 191 source) are prepared.
  • step S12 the lithium source and the transition metal source are mixed and synthesized.
  • a synthesis method for example, there is a method in which a lithium source and a transition metal source possessed by the region 191 are mixed by a solid phase method and then heated.
  • cobalt is used as the transition metal source.
  • lithium cobalt oxide particles (trade name: CellSeed C-10N) manufactured by Nippon Chemical Industrial Co., Ltd. are used. It has an average particle size (D50) of about 12 ⁇ m.
  • an X source (X 192 source) and a halogen source are prepared.
  • Lithium fluoride (LiF) is prepared as the halogen source.
  • LiF is preferable because it has a cation in common with LiCoO 2. Further, LiF is preferable because it has a relatively low melting point of 848 ° C. and is easily melted in the annealing step described later.
  • MgF 2 may be used in addition to LiF.
  • the fluoride that can be used in one aspect of the present invention is not limited to LiF and MgF 2.
  • step S31 the composite oxide, the X source, and the halogen source are mixed and synthesized.
  • a synthesis method for example, there is a method of mixing these by a solid phase method and then heating them.
  • the heating temperature needs to be equal to or lower than the decomposition temperature of LiCoO 2 (1130 ° C.).
  • the decomposition temperature of LiCoO 2 is 1130 ° C., but at a temperature in the vicinity thereof, there is a concern that LiCoO 2 may be decomposed, albeit in a small amount. Therefore, the annealing temperature is preferably 1130 ° C. or lower, more preferably 1000 ° C. or lower. Specifically, the temperature can be lowered to 735 ° C.
  • the heating time is preferably, for example, 3 hours or more, and more preferably 10 hours or more.
  • the heating time is preferably, for example, 1 hour or more and 10 hours or less, and more preferably about 2 hours.
  • the temperature lowering time after heating is preferably, for example, 10 hours or more and 50 hours or less.
  • the composite oxide used for the region 191 and the region 192 is produced (step S32).
  • the region 192 contains fluorine and magnesium as impurities.
  • the presence of magnesium in the region 192 is presumed from the fact that when a part of the particles in step S32 is measured by EDX, a magnesium peak can be confirmed in the surface layer of the particles.
  • the magnesium concentration in the region 192 in step S32 can be regarded as a value obtained by elemental analysis of the entire particle using, for example, ICP-MS or the like.
  • the relative value of the magnesium concentration when the cobalt concentration was 1, preferably 0.4 or more and 1.5 or less, and 0.45 or more and less than 1.00. Is more preferable.
  • the relative value of the fluorine concentration is preferably 0.05 or more and 1.5 or less, and more preferably 0.3 or more and 1.00 or less.
  • step S41 a lithium source and a transition metal source (M 193 source) are prepared.
  • nickel and manganese are used as transition metal sources.
  • step S71 the composite oxide used for the region 191 and the region 192, the lithium source, and the transition metal source contained in the region 193 are synthesized.
  • a synthesis method for example, there is a method of mixing these by a solid phase method and then heating them.
  • the composite oxide used in region 191 is preferably a material having a higher melting point than the composite oxide used in region 193.
  • the composite oxide used for region 191 is preferably a material having higher thermal stability than the composite oxide possessed by region 193. Due to this difference in melting point or thermal stability, for example, the temperature and time during which the composite oxide contained in the region 193 sufficiently interdiffuses while the composite oxide used in the region 191 is stable when heated in the synthesis of step S71. Can be set to.
  • the ionic radius of the cation of the element X used in the region 192 is larger than the ionic radius of the cation of the metal used in the region 191. Due to such a difference in ionic radius, the element X tends to be unevenly distributed in the region 192. Further, the region 192 tends to exert a function of suppressing mutual diffusion of elements in the region 191 and the region 193.
  • Particle 190 having regions 191 to 194 can be produced, for example, as shown in FIG. 5B.
  • Steps S11 to S41 can be produced in the same manner as in FIG. 5A.
  • step S51 the composite oxide, the lithium source, and the transition metal source are mixed and synthesized.
  • a synthesis method for example, there is a method of mixing these by a solid phase method and then heating them.
  • step S52 the composite oxide used for the regions 191 to 193 is produced.
  • step S61 an X source (X 194 source) and a halogen source are prepared.
  • step S71 the composite oxide, the X source, and the halogen source are mixed and synthesized.
  • a synthesis method for example, there is a method of mixing these by a solid phase method and then heating them.
  • the ionic radius of the cation of the element X used in the region 194 is larger than the ionic radius of the cation of the metal used in the region 193. Due to such a difference in ionic radius, the element X tends to be unevenly distributed in the region 194.
  • This embodiment can be used in combination with other embodiments.
  • FIG. 1A An example of the material used for the region 191 (core) shown in FIG. 1A is shown.
  • a material having a layered rock salt type crystal structure such as lithium cobalt oxide (LiCoO 2 ) as region 191 has a high discharge capacity and is excellent as a positive electrode active material for a secondary battery.
  • Examples of the material having a layered rock salt type crystal structure include a composite oxide represented by LiMO 2.
  • the positive electrode active material having the crystal structure shown in FIG. 6 is lithium cobalt oxide, that is, lithium cobalt oxide (LiCoO 2 ) to which halogen and magnesium are not added, which can be produced by the production method described later.
  • the crystal structure of the lithium cobalt oxide changes depending on the charging depth.
  • lithium cobalt oxide having a charging depth of 0 has a region having a crystal structure of the space group R-3 m, lithium occupies an octahedral site, and a unit cell.
  • CoO 2 layer exists three layers in. Therefore, this crystal structure may be referred to as an O3 type crystal structure.
  • the CoO 2 layer is a structure in which an octahedral structure in which oxygen is coordinated to cobalt is continuous with a plane in a state of sharing a ridge.
  • the space group P-3m1 has a crystal structure, and one CoO 2 layer exists in the unit cell. Therefore, this crystal structure may be referred to as an O1 type crystal structure.
  • lithium cobalt oxide when the charging depth is about 0.8 has a crystal structure of the space group R-3 m.
  • This structure can be said to be a structure in which a structure of CoO 2 such as P-3m1 (O1) and a structure of LiCoO 2 such as R-3m (O3) are alternately laminated. Therefore, this crystal structure may be referred to as an H1-3 type crystal structure.
  • the number of cobalt atoms per unit cell is twice that of other structures.
  • the c-axis of the H1-3 type crystal structure is shown in a diagram in which the c-axis is halved of the unit cell.
  • the coordinates of cobalt and oxygen in the unit cell are set to Co (0, 0 , 0.42150 ⁇ 0.00016), O 1 (0). , 0, 0.27671 ⁇ 0.00045), O 2 (0, 0, 0.11535 ⁇ 0.00045).
  • O 1 and O 2 are oxygen atoms, respectively.
  • the H1-3 type crystal structure is represented by a unit cell using one cobalt and two oxygens.
  • the material used for the region 193 and the region 194 shown in FIG. 1B preferably has lithium, cobalt as the transition metal M, oxygen, and magnesium. Further, the impurities in the regions 192 and 194 preferably have halogens such as fluorine and chlorine.
  • the crystal structure at a charging depth of 0 (discharged state) is R-3m (O3), but when the charging depth is fully charged, H1- It has a crystal with a structure different from that of the type 3 crystal structure.
  • This structure belongs to the space group R-3m, and ions such as cobalt and magnesium occupy the oxygen 6 coordination position. Further, the symmetry of the CoO 2 layer of the structure is the same as type O3. Therefore, this structure is referred to as an O3'type crystal structure in the present specification and the like.
  • magnesium is dilutely present between the CoO 2 layers, that is, in the lithium site. Further, it is preferable that fluorine is randomly and dilutely present at the oxygen site.
  • the O3'type crystal structure is preferably represented by a unit cell using one cobalt and one oxygen. This is because the symmetry of cobalt and oxygen differs between the O3'type crystal structure and the H1-3 type crystal structure, and the O3'type crystal structure is different from the H1-3 type crystal structure. It shows that the change from the structure of O3 is small. It is more preferable to use which unit cell to represent the crystal structure of the positive electrode active material. For example, in the Rietveld analysis of XRD, the GOF (goodness of fitness) value should be selected to be smaller. Just do it.
  • a light element such as lithium may occupy the oxygen 4-coordination position.
  • FIG. 7 which shows the crystal structure of the positive electrode active material
  • lithium is present in all lithium sites with the same probability
  • the O3'type crystal structure is not limited to this. It may be biased to some lithium sites.
  • the distribution of lithium can be analyzed, for example, by neutron diffraction.
  • the crystal structure of FIG. 7 has a lattice constant of 2.871 ⁇ on the a-axis and a lattice constant of 13.781 ⁇ on the c-axis.
  • the O3'type crystal structure has Li randomly between layers, but is similar to the CdCl 2 type crystal structure.
  • This crystal structure similar to CdCl type 2 is similar to the crystal structure when lithium nickel oxide is charged to a charging depth of 0.94 (Li 0.06 NiO 2 ), but contains a large amount of pure lithium cobalt oxide or cobalt. It is known that the layered rock salt type positive electrode active material usually does not have this crystal structure.
  • the change in the crystal structure when charged at a high voltage and a large amount of lithium is released is suppressed as compared with the crystal structure shown in FIG. For example, as shown by a dotted line in FIG. 7, there is little deviation of CoO 2 layers in these crystal structures.
  • the positive electrode active material having the crystal structure shown in FIG. 7 has high crystal structure stability even when the charging voltage is high.
  • the crystal structure of R-3m (O3) is obtained even at a charging voltage having an H1-3 type crystal structure, for example, a voltage of about 4.6 V based on the potential of lithium metal.
  • a charging voltage having an H1-3 type crystal structure for example, a voltage of about 4.6 V based on the potential of lithium metal.
  • H1-3 type crystals may be observed only.
  • the charging voltage is lower (for example, even if the charging voltage is 4.5 V or more and less than 4.6 V with respect to the potential of the lithium metal, the O3'type crystal structure may be obtained.
  • the positive electrode active material having the crystal structure shown in FIG. 7 can be said to be suitable for the core because the crystal structure does not easily collapse even if charging and discharging are repeated at a high voltage.
  • lithium cobalt oxide LiCoO 2
  • LiCoO 2 lithium cobalt oxide
  • the coordinates of cobalt and oxygen in the unit cell are in the range of Co (0,0,0.5), O (0,0,x), 0.20 ⁇ x ⁇ 0.25. Can be shown within.
  • a material that functions as a flux to lithium cobalt oxide before the heat treatment for distributing magnesium throughout the particles.
  • This causes a melting point depression. By lowering the melting point, it becomes easy to distribute magnesium throughout the particles at a temperature at which cationic mixing is unlikely to occur.
  • the material that functions as a flux has fluorine, it can be expected that the corrosion resistance to hydrofluoric acid generated by the decomposition of the electrolytic solution will be improved.
  • the number of atoms of magnesium contained in the positive electrode active material having a crystal structure shown in FIG. 7 is preferably 0.001 times or more and 0.1 times or less the number of atoms of the transition metal M, more than 0.01 and less than 0.04. It is preferable, and more preferably about 0.02. Alternatively, it is preferably 0.001 times or more and less than 0.04. Alternatively, it is preferably 0.01 or more and 0.1 or less.
  • the concentration of magnesium shown here may be, for example, a value obtained by elemental analysis of the entire particles of the positive electrode active material using ICP-MS or the like, or a value of the blending of raw materials in the process of producing the positive electrode active material. It may be based.
  • One or more metals selected from, for example, nickel, aluminum, manganese, titanium, vanadium and chromium may be added to lithium cobaltate as a metal other than cobalt (hereinafter referred to as metal Z), particularly one or more of nickel and aluminum. It is preferable to add it.
  • Metal Z a metal other than cobalt
  • the positive electrode active material having the crystal structure shown in FIG. 7 may have a more stable crystal structure, for example, in a state of being charged at a high voltage.
  • the metal Z is preferably added at a concentration that does not significantly change the crystallinity of lithium cobalt oxide.
  • the amount is preferably such that the above-mentioned Jahn-Teller effect and the like are not exhibited.
  • transition metals such as nickel and manganese and aluminum are preferably present at cobalt sites, but some may be present at lithium sites.
  • Magnesium is preferably present at lithium sites.
  • Oxygen may be partially replaced with fluorine.
  • the charge / discharge capacity of the positive electrode active material may decrease.
  • the inclusion of magnesium in the lithium site may reduce the amount of lithium that contributes to charging and discharging.
  • excess magnesium may produce magnesium compounds that do not contribute to charging and discharging.
  • the positive electrode active material having the crystal structure shown in FIG. 7 has nickel as the metal Z in addition to magnesium
  • the charge / discharge capacity per weight and per volume may be increased.
  • the positive electrode active material having the crystal structure shown in FIG. 7 has aluminum as the metal Z in addition to magnesium
  • the charge / discharge capacity per weight and per volume may be increased.
  • the positive electrode active material having the crystal structure shown in FIG. 7 has nickel and aluminum in addition to magnesium, it may be possible to increase the charge / discharge capacity per weight and per volume.
  • preferable concentrations of elements such as magnesium and metal Z contained in the positive electrode active material having a crystal structure shown in FIG. 7 are represented by using the number of atoms.
  • the number of nickel atoms contained in the positive electrode active material having a crystal structure shown in FIG. 7 is preferably more than 0% of the atomic number of cobalt and 7.5% or less, more preferably 0.05% or more and 4% or less, and 0. .1% or more and 2% or less is more preferable. Alternatively, it is preferably more than 0% and 4% or less. Alternatively, it is preferably more than 0% and 2% or less. Alternatively, it is preferably 0.05% or more and 7.5% or less. Alternatively, it is preferably 0.05% or more and 2% or less. Alternatively, 0.1% or more and 7.5% or less are preferable. Alternatively, 0.1% or more and 4% or less are preferable.
  • the concentration of nickel shown here may be, for example, a value obtained by elemental analysis of the entire particles of the positive electrode active material using ICP-MS or the like, or a value of the blending of raw materials in the process of producing the positive electrode active material. It may be based.
  • Nickel contained in the above concentration easily dissolves uniformly in the entire positive electrode active material having the crystal structure shown in FIG. 7, and thus contributes particularly to the stabilization of the crystal structure of the internal 100b. Further, when divalent nickel is present in the internal 100b, there is a possibility that a divalent additive element, for example, magnesium, which is randomly and dilutely present in the lithium site, can be present more stably in the vicinity thereof. Therefore, the elution of magnesium can be suppressed even after charging and discharging at a high voltage. Therefore, the charge / discharge cycle characteristics can be improved. As described above, when both the effect of nickel on the internal 100b and the effect of magnesium, aluminum, titanium, fluorine and the like on the surface layer portion 100a are combined, it is extremely effective in stabilizing the crystal structure at the time of high voltage charging.
  • the number of aluminum atoms contained in the positive electrode active material having a crystal structure shown in FIG. 7 is preferably 0.05% or more and 4% or less, more preferably 0.1% or more and 2% or less, and 0.3% of the atomic number of cobalt. % Or more and 1.5% or less are more preferable. Alternatively, it is preferably 0.05% or more and 2% or less. Alternatively, 0.1% or more and 4% or less are preferable.
  • the concentration of aluminum shown here may be, for example, a value obtained by elemental analysis of the entire particles of the positive electrode active material using GD-MS, ICP-MS, or the like, or a raw material in the process of producing the positive electrode active material. It may be based on the value of the formulation.
  • the stability in a high voltage charging state is extremely high.
  • the element X is phosphorus
  • the atomic number of phosphorus is preferably 1% or more and 20% or less, more preferably 2% or more and 10% or less, and further preferably 3% or more and 8% or less of the atomic number of cobalt.
  • it is preferably 1% or more and 10% or less.
  • it is preferably 1% or more and 8% or less.
  • it is preferably 2% or more and 20% or less.
  • it is preferably 2% or more and 8% or less.
  • it is preferably 3% or more and 20% or less.
  • the atomic number of magnesium is preferably 0.1% or more and 10% or less, more preferably 0.5% or more and 5% or less, and further preferably 0.7% or more and 4% or less of the atomic number of cobalt.
  • 0.1% or more and 5% or less are preferable.
  • 0.1% or more and 4% or less are preferable.
  • 0.5% or more and 10% or less are preferable.
  • 0.5% or more and 4% or less are preferable.
  • it is preferably 0.7% or more and 10% or less.
  • it is preferably 0.7% or more and 5% or less.
  • concentrations of phosphorus and magnesium shown here may be values obtained by elemental analysis of the entire particles of the positive electrode active material using, for example, ICP-MS, or the blending of the raw materials in the process of producing the positive electrode active material. It may be based on a value.
  • the positive electrode active material having the above configuration can reduce the deviation of the CoO 2 layer in repeated charging and discharging of a high voltage. Furthermore, the change in volume can be reduced. Therefore, a secondary battery using a positive electrode active material having the crystal structure shown in FIG. 7 at least in a part of the core can realize excellent cycle characteristics. Further, the positive electrode active material having the crystal structure shown in FIG. 7 in the core can have a stable crystal structure in a high voltage charging state. Therefore, the secondary battery using the positive electrode active material having the crystal structure shown in FIG. 7 in the core may not easily cause a short circuit when the high voltage charged state is maintained. In such a case, the safety of the secondary battery is further improved, which is preferable.
  • the positive electrode active material having the crystal structure shown in FIG. 7 in the core has a volume when compared with respect to changes in the crystal structure and the same number of transition metal atoms in a fully discharged state and a state charged at a high voltage. The difference is small.
  • the space group of the crystal structure is identified by XRD, electron diffraction, neutron diffraction and the like. Therefore, in the present specification and the like, belonging to a certain space group or being a certain space group can be paraphrased as being identified by a certain space group.
  • the particles 190 described in the first embodiment are used for producing a positive electrode.
  • the secondary battery has at least an exterior body, a current collector, an active material (positive electrode active material or negative electrode active material), a conductive auxiliary agent, and a binder. It also has an electrolytic solution in which a lithium salt or the like is dissolved. In the case of a secondary battery using an electrolytic solution, a separator is provided between the positive electrode, the negative electrode, and the positive electrode and the negative electrode.
  • the positive electrode has a positive electrode active material layer and a current collector.
  • FIG. 8A shows an example of a schematic view of a cross section of the positive electrode.
  • the current collector 500 is a metal foil, and a positive electrode is formed by applying a slurry on the metal foil and drying it. After drying, additional press may be added.
  • the positive electrode has an active material layer formed on the current collector 500.
  • the slurry is a material liquid used for forming an active material layer on the current collector 500, and refers to a material liquid containing at least an active material, a binder, and a solvent, and preferably further mixed with a conductive auxiliary agent. ..
  • the slurry may be called an electrode slurry or an active material slurry, a positive electrode slurry may be used when forming a positive electrode active material layer, and a negative electrode slurry may be used when forming a negative electrode active material layer.
  • the conductive auxiliary agent is also called a conductive imparting agent or a conductive material, and a carbon material is used. By adhering a conductive auxiliary agent between the plurality of active materials, the plurality of active materials are electrically connected to each other, and the conductivity is enhanced.
  • adheresion does not only mean that the active material and the conductive auxiliary agent are physically in close contact with each other, but also when a covalent bond occurs, when the active material is bonded by van der Waals force, the active material
  • the concept includes a case where a part of the surface is covered with a conductive auxiliary agent, a case where the conductive auxiliary agent fits into the surface unevenness of the active material, a case where the conductive auxiliary agent is electrically connected even if they are not in contact with each other, and the like.
  • Carbon black is a typical carbon material used as a conductive auxiliary agent.
  • FIG. 8A acetylene black 503 is illustrated as a conductive auxiliary agent. Further, FIG. 8A shows an example in which a second active material 502 having a particle size smaller than that of the particles 190 described in the first embodiment is mixed. A high-density positive electrode can be obtained by mixing particles of different sizes. The particles 190 described in the first embodiment correspond to the active material 501 of FIG. 8A.
  • a binder (resin) is mixed in order to fix the current collector 500 such as a metal foil and the active material. Binders are also called binders.
  • the binder is a polymer material, and if a large amount of the binder is contained, the proportion of the active material in the positive electrode decreases, and the discharge capacity of the secondary battery decreases. Therefore, the amount of binder is mixed to the minimum.
  • the region not filled with the active material 501, the second active material 502, and the acetylene black 503 refers to a void or a binder.
  • FIG. 8A the boundary between the core region and the shell region of the active material 501 is shown by a dotted line inside the active material 501.
  • FIG. 8A shows an example in which the active material 501 is shown as a sphere, it is not particularly limited and may have various shapes.
  • the cross-sectional shape of the active material 501 may be elliptical, rectangular, trapezoidal, conical, quadrangular with rounded corners, or asymmetrical.
  • FIG. 8B the active material 501 is illustrated in various shapes.
  • FIG. 8B shows an example different from that of FIG. 8A.
  • graphene 504 is used as the carbon material used as the conductive auxiliary agent.
  • Graphene is a carbon material that is expected to be applied in various fields such as field effect transistors and solar cells using graphene because it has amazing properties electrically, mechanically, or chemically.
  • a positive electrode active material layer having active material 501, graphene 504, and acetylene black 503 is formed on the current collector 500.
  • the weight of the mixed carbon black is 1.5 times or more and 20 times or less, preferably 2 times or more and 9.5 times or less the weight of graphene. It is preferable to do so.
  • the electrode density can be higher than that of the positive electrode using only acetylene black 503 as the conductive auxiliary agent. By increasing the electrode density, the capacity per weight unit can be increased. Specifically, the density of the positive electrode active material layer measured by weight can be higher than 3.5 g / cc.
  • the particles 190 described in the first embodiment are used as the positive electrode and the mixture of graphene 504 and acetylene black 503 is within the above range, a synergistic effect can be expected for a higher capacity of the secondary battery, which is preferable.
  • the electrode density is lower than that of the positive electrode using only graphene as the conductive auxiliary agent, quick charging is possible by setting the mixture of the first carbon material (graphene) and the second carbon material (acetylene black) in the above range. Can be dealt with. Further, when the particles 190 described in the first embodiment are used as the positive electrode and the mixture of graphene 504 and acetylene black 503 is within the above range, the secondary battery is more stable and can be charged further quickly. The effect can be expected and is preferable.
  • the energy to be moved increases and the cruising range also decreases.
  • the cruising range can be maintained with almost no change in the total weight of the vehicle equipped with the secondary battery of the same weight.
  • the particles 190 described in the first embodiment as the positive electrode and setting the mixing ratio of acetylene black and graphene to the optimum range, it is possible to achieve both high density of the electrodes and creation of an appropriate gap required for ion conduction. This makes it possible to obtain an in-vehicle secondary battery having a high energy density and good output characteristics.
  • This configuration is also effective in a portable information terminal, and the secondary battery is downsized by using the particles 190 described in the first embodiment as the positive electrode and setting the mixing ratio of acetylene black and graphene to the optimum range. , High capacity is also possible. In addition, by setting the mixing ratio of acetylene black and graphene to the optimum range, it is possible to quickly charge a mobile information terminal.
  • the boundary between the core region and the shell region of the active material 501 is shown by a dotted line inside the active material 501.
  • the region not filled with the active material 501, graphene 504, and acetylene black 503 refers to a void or a binder.
  • the voids are necessary for the penetration of the electrolytic solution, but if it is too large, the electrode density will decrease, and if it is too small, the electrolytic solution will not penetrate and will remain as voids even after the secondary battery, resulting in reduced efficiency. Resulting in.
  • the particles 190 described in the first embodiment as the positive electrode and setting the mixing ratio of acetylene black and graphene to the optimum range, it is possible to achieve both high density of the electrodes and creation of an appropriate gap required for ion conduction. This makes it possible to obtain a secondary battery having a high energy density and good output characteristics.
  • FIG. 8C illustrates an example of a positive electrode using carbon nanotube 505 instead of graphene.
  • FIG. 8C shows an example different from that of FIG. 8B.
  • carbon nanotubes 505 it is possible to prevent agglomeration of carbon black such as acetylene black 503 and enhance dispersibility.
  • the region not filled with the active material 501, the carbon nanotube 505, and the acetylene black 503 refers to a void or a binder.
  • FIG. 8D shows an example in which carbon nanotubes 505 are used in addition to graphene 504.
  • carbon nanotubes 505 are used in addition to graphene 504.
  • the region not filled with the active material 501, the carbon nanotube 505, the graphene 504, and the acetylene black 503 refers to a void or a binder.
  • a separator is laminated on the positive electrode, and a container (exterior body, metal can, etc.) containing a laminated body in which the negative electrode is laminated on the separator is used.
  • a secondary battery can be manufactured by putting it in and filling the container with an electrolytic solution.
  • the above configuration shows an example of a secondary battery using an electrolytic solution, but is not particularly limited.
  • a semi-solid-state battery or an all-solid-state battery can be manufactured using the particles 190 described in the first embodiment.
  • the semi-solid battery means a battery having a semi-solid material in at least one of an electrolyte layer, a positive electrode, and a negative electrode.
  • the term "semi-solid” as used herein does not mean that the ratio of solid materials is 50%.
  • Semi-solid means that while having solid properties such as small volume change, it also has some properties close to liquid such as flexibility. As long as these properties are satisfied, it may be a single material or a plurality of materials. For example, a liquid material may be infiltrated into a porous solid material.
  • the polymer electrolyte secondary battery refers to a secondary battery having a polymer in the electrolyte layer between the positive electrode and the negative electrode.
  • Polymer electrolyte secondary batteries include dry (or intrinsic) polymer electrolyte batteries, and polymer gel electrolyte batteries. Further, the polymer electrolyte secondary battery may be called a semi-solid state battery.
  • the semi-solid-state battery becomes a secondary battery having a large charge / discharge capacity. Further, a semi-solid state battery having a high charge / discharge voltage can be used. Alternatively, a semi-solid-state battery with high safety or reliability can be realized.
  • the negative electrode has a negative electrode active material layer and a negative electrode current collector. Further, the negative electrode active material layer may have a conductive auxiliary agent and a binder.
  • Niobium electrode active material for example, an alloy-based material, a carbon-based material, or the like can be used.
  • an element capable of performing a charge / discharge reaction by an alloying / dealloying reaction with lithium can be used.
  • a material containing at least one of silicon, tin, gallium, aluminum, germanium, lead, antimony, bismuth, silver, zinc, cadmium, indium and the like can be used.
  • Such elements have a larger capacity than carbon, and silicon in particular has a high theoretical capacity of 4200 mAh / g. Therefore, it is preferable to use silicon as the negative electrode active material. Moreover, you may use the compound which has these elements.
  • an element capable of performing a charge / discharge reaction by an alloying / dealloying reaction with lithium, a compound having the element, and the like may be referred to as an alloy-based material.
  • SiO refers to, for example, silicon monoxide.
  • SiO can also be expressed as SiO x.
  • x preferably has a value of 1 or a value close to 1.
  • x is preferably 0.2 or more and 1.5 or less, and more preferably 0.3 or more and 1.2 or less.
  • carbon-based material graphite, easily graphitizable carbon (soft carbon), non-graphitizable carbon (hard carbon), carbon nanotubes, graphene, carbon black and the like may be used.
  • Examples of graphite include artificial graphite and natural graphite.
  • Examples of artificial graphite include mesocarbon microbeads (MCMB), coke-based artificial graphite, and pitch-based artificial graphite.
  • MCMB mesocarbon microbeads
  • the artificial graphite spheroidal graphite having a spherical shape can be used.
  • MCMB may have a spherical shape, which is preferable.
  • MCMB is relatively easy to reduce its surface area and may be preferable.
  • Examples of natural graphite include scaly graphite, spheroidized natural graphite and the like.
  • graphite When lithium ions are inserted into lithium (when a lithium-lithium interlayer compound is formed), graphite shows a potential as low as that of lithium metal (0.05 V or more and 0.3 V or less vs. Li / Li +). As a result, the lithium ion secondary battery can exhibit a high operating voltage. Further, graphite is preferable because it has advantages such as relatively high capacity per unit volume, relatively small volume expansion, low cost, and high safety as compared with lithium metal.
  • titanium dioxide TiO 2
  • lithium titanium oxide Li 4 Ti 5 O 12
  • lithium-graphite interlayer compound Li x C 6
  • niobium pentoxide Nb 2 O 5
  • Oxides such as tungsten (WO 2 ) and molybdenum oxide (MoO 2 ) can be used.
  • Li 2.6 Co 0.4 N 3 shows a large charge / discharge capacity (900 mAh / g, 1890 mAh / cm 3 ) and is preferable.
  • lithium ions are contained in the negative electrode active material, so that it can be combined with materials such as V 2 O 5 and Cr 3 O 8 which do not contain lithium ions as the positive electrode active material, which is preferable. .. Even when a material containing lithium ions is used as the positive electrode active material, a double nitride of lithium and a transition metal can be used as the negative electrode active material by desorbing the lithium ions contained in the positive electrode active material in advance.
  • a material that causes a conversion reaction can also be used as the negative electrode active material.
  • a transition metal oxide that does not form an alloy with lithium such as cobalt oxide (CoO), nickel oxide (NiO), and iron oxide (FeO)
  • Materials that cause a conversion reaction include oxides such as Fe 2 O 3 , CuO, Cu 2 O, RuO 2 , Cr 2 O 3 , sulfides such as CoS 0.89 , NiS, and CuS, and Zn 3 N 2. , Cu 3 N, Ge 3 N 4 and other nitrides, NiP 2 , FeP 2 and CoP 3 and other phosphates, and FeF 3 and BiF 3 and other fluorides.
  • the same materials as the conductive auxiliary agent and the binder that the positive electrode active material layer can have can be used.
  • the same material as the positive electrode current collector can be used for the negative electrode current collector.
  • the negative electrode current collector preferably uses a material that does not alloy with carrier ions such as lithium.
  • a separator is placed between the positive electrode and the negative electrode.
  • the separator include fibers having cellulose such as paper, non-woven fabrics, glass fibers, ceramics, or synthetic fibers using nylon (polyamide), vinylon (polyvinyl alcohol-based fiber), polyester, acrylic, polyolefin, and polyurethane. It is possible to use the one formed by. It is preferable that the separator is processed into a bag shape and arranged so as to wrap either the positive electrode or the negative electrode.
  • the separator may have a multi-layer structure.
  • an organic material film such as polypropylene or polyethylene can be coated with a ceramic material, a fluorine material, a polyamide material, or a mixture thereof.
  • the ceramic material for example, aluminum oxide particles, silicon oxide particles and the like can be used.
  • the fluorine-based material for example, PVDF, polytetrafluoroethylene and the like can be used.
  • the polyamide-based material for example, nylon, aramid (meth-based aramid, para-based aramid) and the like can be used.
  • the oxidation resistance is improved by coating with a ceramic material, deterioration of the separator during high voltage charging / discharging can be suppressed, and the reliability of the secondary battery can be improved. Further, when a fluorine-based material is coated, the separator and the electrode are easily brought into close contact with each other, and the output characteristics can be improved. Coating a polyamide-based material, particularly aramid, improves heat resistance and thus can improve the safety of the secondary battery.
  • a mixed material of aluminum oxide and aramid may be coated on both sides of a polypropylene film.
  • the surface of the polypropylene film in contact with the positive electrode may be coated with a mixed material of aluminum oxide and aramid, and the surface in contact with the negative electrode may be coated with a fluorine-based material.
  • the safety of the secondary battery can be maintained even if the thickness of the entire separator is thin, so that the capacity per volume of the secondary battery can be increased.
  • the electrolytic solution has a solvent and an electrolyte.
  • the solvent of the electrolytic solution is preferably an aproton organic solvent, for example, ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate, chloroethylene carbonate, vinylene carbonate, ⁇ -butylolactone, ⁇ -valerolactone, dimethyl carbonate.
  • DMC diethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • methyl formate methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, propyl propionate, methyl butyrate, 1,3-dioxane, 1,4 -Use one of dioxane, dimethoxyethane (DME), dimethyl sulfoxide, diethyl ether, methyl diglyme, acetonitrile, benzonitrile, tetrahydrofuran, sulfolane, sulton, etc., or two or more of these in any combination and ratio. be able to.
  • Ionic liquids normally temperature molten salt
  • Ionic liquids consist of cations and anions, including organic cations and anions.
  • organic cation used in the electrolytic solution examples include aliphatic onium cations such as quaternary ammonium cation, tertiary sulfonium cation, and quaternary phosphonium cation, and aromatic cations such as imidazolium cation and pyridinium cation.
  • organic cation used in the electrolytic solution monovalent amide anion, monovalent methide anion, fluorosulfonic acid anion, perfluoroalkyl sulfonic acid anion, tetrafluoroborate anion, perfluoroalkyl borate anion, hexafluorophosphate anion. , Or perfluoroalkyl phosphate anion and the like.
  • the electrolytic solution used for the secondary battery it is preferable to use a highly purified electrolytic solution having a small content of elements other than granular dust and constituent elements of the electrolytic solution (hereinafter, also simply referred to as “impurities”).
  • the weight ratio of impurities to the electrolytic solution is preferably 1% or less, preferably 0.1% or less, and more preferably 0.01% or less.
  • the electrolytic solution includes vinylene carbonate, propane sultone (PS), tert-butylbenzene (TBB), fluoroethylene carbonate (FEC), lithium bis (oxalate) borate (LiBOB), and dinitrile compounds such as succinonitrile and adiponitrile.
  • Additives may be added.
  • the concentration of the additive may be, for example, 0.1 wt% or more and 5 wt% or less with respect to the entire solvent.
  • a polymer gel electrolyte obtained by swelling the polymer with an electrolytic solution may be used.
  • the secondary battery can be made thinner and lighter.
  • silicone gel silicone gel, acrylic gel, acrylonitrile gel, polyethylene oxide gel, polypropylene oxide gel, fluoropolymer gel and the like
  • a polymer having a polyalkylene oxide structure such as polyethylene oxide (PEO), PVDF, polyacrylonitrile, and the like, and a copolymer containing them
  • PVDF-HFP which is a copolymer of PVDF and hexafluoropropylene (HFP)
  • the polymer to be formed may have a porous shape.
  • a solid electrolyte having an inorganic material such as a sulfide type or an oxide type, or a solid electrolyte having a polymer material such as PEO (polyethylene oxide) type can be used.
  • PEO polyethylene oxide
  • the particle 190 described in the first embodiment can be applied to an all-solid-state battery.
  • an all-solid-state battery having high safety and good characteristics can be obtained.
  • the secondary battery 400 of one aspect of the present invention has a positive electrode 410, a solid electrolyte layer 420, and a negative electrode 430.
  • the positive electrode 410 has a positive electrode current collector 413 and a positive electrode active material layer 414.
  • the positive electrode active material layer 414 has a positive electrode active material 411 and a solid electrolyte 421.
  • the particles 190 described in the first embodiment are used as the positive electrode active material 411, and the boundary between the core region and the shell region is shown by a dotted line. Further, the positive electrode active material layer 414 may have a conductive auxiliary agent and a binder.
  • the solid electrolyte layer 420 has a solid electrolyte 421.
  • the solid electrolyte layer 420 is located between the positive electrode 410 and the negative electrode 430, and is a region having neither the positive electrode active material 411 nor the negative electrode active material 431.
  • the negative electrode 430 has a negative electrode current collector 433 and a negative electrode active material layer 434.
  • the negative electrode active material layer 434 has a negative electrode active material 431 and a solid electrolyte 421. Further, the negative electrode active material layer 434 may have a conductive auxiliary agent and a binder.
  • metallic lithium is used for the negative electrode 430, the negative electrode 430 does not have the solid electrolyte 421 as shown in FIG. 9B. It is preferable to use metallic lithium for the negative electrode 430 because the energy density of the secondary battery 400 can be improved.
  • solid electrolyte 421 of the solid electrolyte layer 420 for example, a sulfide-based solid electrolyte, an oxide-based solid electrolyte, a halide-based solid electrolyte, or the like can be used.
  • Sulfide-based solid electrolytes include thiosilicon- based (Li 10 GeP 2 S 12 , Li 3.25 Ge 0.25 P 0.75 S 4, etc.) and sulfide glass (70Li 2 S / 30P 2 S 5 , 30 Li).
  • sulfide crystallized glass Li 7 P 3 S 11 , Li 3.25 P 0.95 S 4 etc.
  • the sulfide-based solid electrolyte has advantages such as having a material having high conductivity, being able to be synthesized at a low temperature, and being relatively soft so that the conductive path can be easily maintained even after charging and discharging.
  • Oxide-based solid electrolytes include materials having a perovskite-type crystal structure (La 2 / 3-x Li 3x TIO 3, etc.) and materials having a NASICON-type crystal structure (Li 1-Y Al Y Ti 2-Y (PO 4).
  • Oxide-based solid electrolytes have the advantage of being stable in the atmosphere.
  • the halide-based solid electrolyte includes LiAlCl 4 , Li 3 InBr 6 , LiF, LiCl, LiBr, LiI and the like. Further, a composite material in which the pores of porous aluminum oxide or porous silica are filled with these halide-based solid electrolytes can also be used as the solid electrolyte.
  • Li 1 + x Al x Ti 2-x (PO 4 ) 3 (0 [x] 1) (hereinafter referred to as LATP) having a NASICON type crystal structure is a secondary battery 400 of one aspect of the present invention, which is aluminum and titanium. Since the positive electrode active material used in the above contains elements that may be contained, a synergistic effect can be expected for improving the cycle characteristics, which is preferable. In addition, productivity can be expected to improve by reducing the number of processes.
  • the NASICON type crystal structure is a compound represented by M 2 (XO 4 ) 3 (M: transition metal, X: S, P, As, Mo, W, etc.), and is MO 6 It refers to having an octahedral and XO 4 tetrahedra are arranged three-dimensionally share vertices structure.
  • the exterior body of the secondary battery 400 As the exterior body of the secondary battery 400 according to one aspect of the present invention, various materials and shapes can be used, but it is preferable that the exterior body has a function of pressurizing the positive electrode, the solid electrolyte layer, and the negative electrode.
  • FIG. 10 is an example of a cell for evaluating the material of an all-solid-state battery.
  • FIG. 10A is a schematic cross-sectional view of the evaluation cell.
  • the evaluation cell has a lower member 761 and an upper member 762, and a fixing screw and a wing nut 764 for fixing them.
  • the plate 753 is pressed to fix the evaluation material.
  • An insulator 766 is provided between the lower member 761 made of a stainless steel material and the upper member 762. Further, an O-ring 765 for sealing is provided between the upper member 762 and the pressing screw 763.
  • FIG. 10B is an enlarged perspective view of the periphery of the evaluation material.
  • FIG. 10C As an evaluation material, an example of laminating a positive electrode 750a, a solid electrolyte layer 750b, and a negative electrode 750c is shown, and a cross-sectional view is shown in FIG. 10C.
  • FIG. 10A, FIG. 10B, and FIG. 10C the same reference numerals are used for the same parts.
  • the electrode plate 751 and the lower member 761 electrically connected to the positive electrode 750a correspond to the positive electrode terminals. It can be said that the electrode plate 753 and the upper member 762 that are electrically connected to the negative electrode 750c correspond to the negative electrode terminals.
  • the electrical resistance and the like can be measured while pressing the evaluation material through the electrode plate 751 and the electrode plate 753.
  • a package having excellent airtightness for the exterior body of the secondary battery according to one aspect of the present invention For example, a ceramic package or a resin package can be used. Further, when sealing the exterior body, it is preferable to shut off the outside air and perform it in a closed atmosphere, for example, in a glove box.
  • FIG. 11A shows a perspective view of a secondary battery of one aspect of the present invention having an exterior body and a shape different from that of FIG.
  • the secondary battery of FIG. 11A has external electrodes 771 and 772, and is sealed with an exterior body having a plurality of package members.
  • FIG. 11B An example of the cross section cut by the alternate long and short dash line in FIG. 11A is shown in FIG. 11B.
  • the laminate having the positive electrode 750a, the solid electrolyte layer 750b, and the negative electrode 750c is a package member 770a having an electrode layer 773a provided on a flat plate, a frame-shaped package member 770b, and a package member 770c provided with an electrode layer 773b on a flat plate. It has a sealed structure surrounded by. Insulating materials such as resin materials and ceramics can be used for the package members 770a, 770b, and 770c.
  • the external electrode 771 is electrically connected to the positive electrode 750a via the electrode layer 773a and functions as a positive electrode terminal. Further, the external electrode 772 is electrically connected to the negative electrode 750c via the electrode layer 773b and functions as a negative electrode terminal.
  • an all-solid-state secondary battery having a high energy density and good output characteristics can be realized.
  • This embodiment can be used in combination with other embodiments as appropriate.
  • FIG. 12A is an external view of a coin-type (single-layer flat type) secondary battery
  • FIG. 12B is a cross-sectional view thereof.
  • a positive electrode can 301 that also serves as a positive electrode terminal and a negative electrode can 302 that also serves as a negative electrode terminal are insulated and sealed with a gasket 303 that is made of polypropylene or the like.
  • the positive electrode 304 is formed by a positive electrode current collector 305 and a positive electrode active material layer 306 provided in contact with the positive electrode current collector 305.
  • the negative electrode 307 is formed by a negative electrode current collector 308 and a negative electrode active material layer 309 provided in contact with the negative electrode current collector 308.
  • the positive electrode 304 and the negative electrode 307 used in the coin-type secondary battery 300 may have an active material layer formed on only one side thereof.
  • the positive electrode can 301 and the negative electrode can 302 metals such as nickel, aluminum, and titanium that are corrosion resistant to the electrolytic solution, or alloys thereof or alloys of these and other metals (for example, stainless steel) may be used. can. Further, in order to prevent corrosion by the electrolytic solution, it is preferable to coat with nickel, aluminum or the like.
  • the positive electrode can 301 is electrically connected to the positive electrode 304
  • the negative electrode can 302 is electrically connected to the negative electrode 307.
  • the electrolyte is impregnated with the negative electrode 307, the positive electrode 304, and the separator 310, and as shown in FIG. 12B, the positive electrode 304, the separator 310, the negative electrode 307, and the negative electrode can 302 are laminated in this order with the positive electrode can 301 facing down, and the positive electrode can The 301 and the negative electrode can 302 are crimped via the gasket 303 to manufacture the coin-shaped secondary battery 300.
  • a coin-type secondary battery 300 having a high charge / discharge capacity and excellent cycle characteristics can be obtained.
  • the flow of current during charging of the secondary battery will be described with reference to FIG. 12C.
  • a secondary battery using lithium is regarded as one closed circuit, the movement of lithium ions and the flow of current are in the same direction.
  • the anode (anode) and the cathode (cathode) are exchanged by charging and discharging, and the oxidation reaction and the reduction reaction are exchanged. Therefore, an electrode having a high reaction potential is called a positive electrode.
  • An electrode having a low reaction potential is called a negative electrode. Therefore, in the present specification, the positive electrode is the "positive electrode” or “positive electrode” regardless of whether the battery is being charged, discharged, a reverse pulse current is applied, or a charging current is applied.
  • the negative electrode is referred to as the "positive electrode” and the negative electrode is referred to as the "negative electrode” or the "-pole (negative electrode)".
  • anode (anode) and cathode (cathode) related to oxidation reaction and reduction reaction are used, they are reversed between charging and discharging, which may cause confusion. Therefore, the terms anode (anode) and cathode (cathode) are not used herein. If the terms anode (anode) and cathode (cathode) are used, specify whether they are charging or discharging, and also indicate whether they correspond to the positive electrode (positive electrode) or the negative electrode (negative electrode). do.
  • a charger is connected to the two terminals shown in FIG. 12C, and the secondary battery 300 is charged. As the charging of the secondary battery 300 progresses, the potential difference between the electrodes increases.
  • the secondary battery of one aspect of the present invention may be a secondary battery 700 in which a plurality of electrodes are laminated as shown in FIGS. 13A and 13B.
  • the electrodes and the exterior body are not limited to the L shape, and may be rectangular.
  • the laminated secondary battery 700 shown in FIG. 13A has a positive electrode 703 having an L-shaped positive electrode current collector 701 and a positive electrode active material layer 702, and an L-shaped negative electrode current collector 704 and a negative electrode active material layer 705. It has a negative electrode 706, an electrolyte layer 707, and an exterior body 709. An electrolyte layer 707 is installed between the positive electrode 703 and the negative electrode 706 provided in the exterior body 709.
  • the positive electrode current collector 701 and the negative electrode current collector 704 also serve as terminals for obtaining electrical contact with the outside. Therefore, a part of the positive electrode current collector 701 and the negative electrode current collector 704 may be arranged so as to be exposed to the outside from the exterior body 709. Further, the positive electrode current collector 701 and the negative electrode current collector 704 are not exposed to the outside from the exterior body 709, and the lead electrode is ultrasonically joined to the positive electrode current collector 701 or the negative electrode current collector 704 using a lead electrode. The lead electrode may be exposed to the outside.
  • the exterior body 709 is formed on a film made of a material such as polyethylene, polypropylene, polycarbonate, ionomer, or polyamide, and a metal thin film having excellent flexibility such as aluminum, stainless steel, copper, and nickel.
  • a three-layered laminated film in which an insulating synthetic resin film such as a polyamide resin or a polyester resin is provided on the metal thin film as the outer surface of the exterior body can be used.
  • FIG. 13B an example of the cross-sectional structure of the laminated type secondary battery is shown in FIG. 13B.
  • FIG. 13A shows an excerpt of one set of electrodes and one electrolyte layer for clarifying the figure
  • FIG. 13B the configuration has a plurality of electrodes and a plurality of electrolyte layers. Is preferable.
  • the number of electrodes is 16 as an example.
  • FIG. 13B shows a structure in which the negative electrode current collector 704 has eight layers and the positive electrode current collector 701 has eight layers, for a total of 16 layers.
  • FIG. 13B shows a cross section of a positive electrode take-out portion cut by the chain line of FIG. 13A, and eight layers of negative electrode current collectors 704 are ultrasonically bonded.
  • the number of electrode layers is not limited to 16, and may be large or small.
  • FIG. 14A shows a positive electrode having an L-shaped positive electrode current collector 701 and a positive electrode active material layer 702 included in the secondary battery 700. Further, the positive electrode has a region (hereinafter, referred to as a tab region) in which the positive electrode current collector 701 is partially exposed. Further, FIG. 14B shows a negative electrode having an L-shaped negative electrode current collector 704 and a negative electrode active material layer 705 of the secondary battery 700. The negative electrode has a region where the negative electrode current collector 704 is partially exposed, that is, a tab region.
  • FIG. 14C shows a perspective view in which four layers of the positive electrode 703 and four layers of the negative electrode 706 are laminated.
  • the electrolyte layer 707 provided between the positive electrode 703 and the negative electrode 706 is shown by a dotted line.
  • the secondary battery of one aspect of the present invention may be a secondary battery 950 having a winding body 951 in an exterior body 960 as shown in FIGS. 15A to 15C.
  • the wound body 951 shown in FIG. 15A has a negative electrode 107, a positive electrode 106, and an electrolyte layer 103.
  • the negative electrode 107 has a negative electrode active material layer 104 and a negative electrode current collector 105.
  • the positive electrode 106 has a positive electrode active material layer 102 and a positive electrode current collector 101.
  • the electrolyte layer 103 has a wider width than the negative electrode active material layer 104 and the positive electrode active material layer 102, and is wound so as to overlap the negative electrode active material layer 104 and the positive electrode active material layer 102. Since the electrolyte layer 103 having the lithium ion conductive polymer and the lithium salt is flexible, it can be wound in this way. It is preferable that the negative electrode active material layer 104 has a wider width than the positive electrode active material layer 102 from the viewpoint of safety. Further, the wound body 951 having such a shape is preferable because of its good safety and productivity.
  • the negative electrode 107 is electrically connected to the terminal 961.
  • the terminal 961 is electrically connected to the terminal 963.
  • the positive electrode 106 is electrically connected to the terminal 962.
  • the terminal 962 is electrically connected to the terminal 964.
  • the secondary battery 950 may have a plurality of winding bodies 951. By using a plurality of winding bodies 951, a secondary battery 950 having a larger charge / discharge capacity can be obtained.
  • a secondary battery 950 having a high charge / discharge capacity and excellent cycle characteristics can be obtained.
  • This embodiment can be used in combination with other embodiments.
  • FIG. 16C shows a block diagram of an electric vehicle.
  • the electric vehicle is provided with the first batteries 1301a and 1301b shown in FIG. 16C as the main driving secondary batteries and the second battery 1311 for supplying electric power to the inverter 1312 for starting the motor 1304.
  • the second battery 1311 is also called a cranking battery (also called a starter battery).
  • the second battery 1311 only needs to have a high output, and a large capacity is not required so much, and the capacity of the second battery 1311 is smaller than that of the first batteries 1301a and 1301b.
  • the internal structure of the first battery 1301a may be the winding type shown in FIG. 15A, or the laminated type shown in FIGS. 13A, 13B, 14A, 14B, or 14C. .. Further, as the first battery 1301a, the all-solid-state battery of the fourth embodiment may be used. By using the all-solid-state battery of the fourth embodiment for the first battery 1301a, the capacity can be increased, the safety can be improved, and the size and weight can be reduced.
  • first batteries 1301a and 1301b are connected in parallel, but three or more batteries may be connected in parallel. Further, if the first battery 1301a can store sufficient electric power, the first battery 1301b may not be necessary.
  • the plurality of secondary batteries may be connected in parallel, may be connected in series, or may be connected in parallel and then further connected in series.
  • a plurality of secondary batteries are also called assembled batteries.
  • a service plug or a circuit breaker capable of cutting off a high voltage without using a tool is provided, and the first battery 1301a has. Provided.
  • the electric power of the first batteries 1301a and 1301b is mainly used to rotate the motor 1304, but 42V in-vehicle parts (electric power steering 1307, heater 1308, defogger 1309, etc.) via the DCDC circuit 1306. Power to. Even when the rear motor 1317 is provided on the rear wheel, the first battery 1301a is used to rotate the rear motor 1317.
  • the second battery 1311 supplies electric power to 14V in-vehicle components (audio 1313, power window 1314, lamps 1315, etc.) via the DCDC circuit 1310.
  • first battery 1301a will be described with reference to FIG. 16A.
  • FIG. 16A shows an example in which nine square secondary batteries 1300 are used as one battery pack 1415. Further, nine square secondary batteries 1300 are connected in series, one electrode is fixed by a fixing portion 1413 made of an insulator, and the other electrode is fixed by a fixing portion 1414 made of an insulator. In the present embodiment, an example of fixing by the fixing portions 1413 and 1414 is shown, but the configuration may be such that the batteries are stored in a battery storage box (also referred to as a housing). Since it is assumed that the vehicle is vibrated or shaken from the outside (road surface or the like), it is preferable to fix a plurality of secondary batteries with fixing portions 1413, 1414, a battery storage box, or the like. Further, one electrode is electrically connected to the control circuit unit 1320 by the wiring 1421. The other electrode is electrically connected to the control circuit unit 1320 by wiring 1422.
  • control circuit unit 1320 may use a memory circuit including a transistor using an oxide semiconductor.
  • a charge control circuit or a battery control system having a memory circuit including a transistor using an oxide semiconductor may be referred to as a BTOS (Battery operating system or Battery oxide semiconductor).
  • a metal oxide that functions as an oxide semiconductor For example, as oxides, In-M-Zn oxide (element M is aluminum, gallium, yttrium, copper, vanadium, beryllium, boron, titanium, iron, nickel, germanium, zirconium, molybdenum, lantern, cerium, neodymium, etc. It is preferable to use a metal oxide such as one or more selected from hafnium, tantalum, tungsten, gallium and the like.
  • the In-M-Zn oxide that can be applied as an oxide is preferably CAAC-OS (C-Axis Defined Crystal Oxide Semiconductor) or CAC-OS (Cloud-Aligned Compound Semiconductor).
  • CAAC-OS is an oxide semiconductor having a plurality of crystal regions, and the plurality of crystal regions are oriented in a specific direction on the c-axis. The specific direction is the thickness direction of the CAAC-OS film, the normal direction of the surface to be formed of the CAAC-OS film, or the normal direction of the surface of the CAAC-OS film.
  • the crystal region is a region having periodicity in the atomic arrangement.
  • the crystal region is also a region in which the lattice arrangement is aligned.
  • the CAAC-OS has a region in which a plurality of crystal regions are connected in the ab plane direction, and the region may have distortion.
  • the strain refers to a region in which a plurality of crystal regions are connected in which the orientation of the lattice arrangement changes between a region in which the lattice arrangement is aligned and a region in which another grid arrangement is aligned. That is, CAAC-OS is an oxide semiconductor that is c-axis oriented and not clearly oriented in the ab plane direction.
  • CAC-OS is, for example, a composition of a material in which elements constituting a metal oxide are unevenly distributed in a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or a size close thereto.
  • the metal oxide one or more metal elements are unevenly distributed, and the region having the metal element has a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or a size close thereto.
  • the mixed state is also called a mosaic shape or a patch shape.
  • CAC-OS has a structure in which the material is separated into a first region and a second region to form a mosaic shape, and the first region is distributed in the film (hereinafter, also referred to as a cloud shape). It says.). That is, CAC-OS is a composite metal oxide having a structure in which the first region and the second region are mixed.
  • the atomic number ratios of In, Ga, and Zn with respect to the metal elements constituting CAC-OS in the In-Ga-Zn oxide are expressed as [In], [Ga], and [Zn], respectively.
  • the first region is a region in which [In] is larger than [In] in the composition of the CAC-OS film.
  • the second region is a region in which [Ga] is larger than [Ga] in the composition of the CAC-OS film.
  • the first region is a region in which [In] is larger than [In] in the second region and [Ga] is smaller than [Ga] in the second region.
  • the second region is a region in which [Ga] is larger than [Ga] in the first region and [In] is smaller than [In] in the first region.
  • the first region is a region in which indium oxide, indium zinc oxide, or the like is the main component.
  • the second region is a region in which gallium oxide, gallium zinc oxide, or the like is the main component. That is, the first region can be rephrased as a region containing In as a main component. Further, the second region can be rephrased as a region containing Ga as a main component.
  • a region containing In as a main component (No. 1) by EDX mapping acquired by using energy dispersive X-ray spectroscopy (EDX: Energy Dispersive X-ray spectroscopy). It can be confirmed that the region (1 region) and the region containing Ga as a main component (second region) have a structure in which they are unevenly distributed and mixed.
  • EDX Energy Dispersive X-ray spectroscopy
  • CAC-OS When CAC-OS is used for a transistor, the conductivity caused by the first region and the insulating property caused by the second region act in a complementary manner to switch the switching function (On / Off function). Can be added to the CAC-OS. That is, the CAC-OS has a conductive function in a part of the material and an insulating function in a part of the material, and has a function as a semiconductor in the whole material. By separating the conductive function and the insulating function, both functions can be maximized. Therefore, by using CAC-OS for the transistor, high on-current ( Ion ), high field effect mobility ( ⁇ ), and good switching operation can be realized.
  • Ion on-current
  • high field effect mobility
  • Oxide semiconductors have various structures, and each has different characteristics.
  • the oxide semiconductor of one aspect of the present invention has two or more of amorphous oxide semiconductor, polycrystalline oxide semiconductor, a-like OS, CAC-OS, nc-OS, and CAAC-OS. You may.
  • the control circuit unit 1320 uses a transistor using an oxide semiconductor.
  • the control circuit unit 1320 may be formed by using a unipolar transistor.
  • a transistor using an oxide semiconductor for the semiconductor layer has an operating ambient temperature wider than that of single crystal Si and is -40 ° C or higher and 150 ° C or lower, and its characteristic change is smaller than that of single crystal Si even when the secondary battery is heated.
  • the off-current of a transistor using an oxide semiconductor is below the lower limit of measurement regardless of the temperature even at 150 ° C., but the off-current characteristics of a single crystal Si transistor are highly temperature-dependent.
  • the off-current of the single crystal Si transistor increases, and the current on / off ratio does not become sufficiently large.
  • the control circuit unit 1320 can improve the safety. Further, by combining the particles 190 described in the first embodiment with a secondary battery using the positive electrode, a synergistic effect on safety can be obtained.
  • the secondary battery and the control circuit unit 1320 using the particles 190 described in the first embodiment as the positive electrode can greatly contribute to the eradication of accidents such as fires caused by the secondary battery.
  • the control circuit unit 1320 using a memory circuit including a transistor using an oxide semiconductor can also function as an automatic control device for a secondary battery against the causes of instability of 10 items such as micro shorts.
  • Functions that eliminate the causes of instability in 10 items include prevention of overcharging, prevention of overcurrent, overheating control during charging, cell balance with assembled batteries, prevention of overdischarge, fuel gauge, and charging according to temperature. Examples include automatic control of voltage and current amount, charge current amount control according to the degree of deterioration, detection of abnormal behavior of micro short circuit, abnormality prediction related to micro short circuit, and the like, and the control circuit unit 1320 has at least one or more functions thereof.
  • the automatic control device for the secondary battery can be miniaturized.
  • the micro short circuit refers to a minute short circuit inside the secondary battery, and does not mean that the positive electrode and the negative electrode of the secondary battery are short-circuited and cannot be charged or discharged. It refers to the phenomenon that a short-circuit current flows slightly in the part. Since a large voltage change occurs in a relatively short time and even in a small place, the abnormal voltage value may affect the subsequent estimation.
  • micro short circuits due to the uneven distribution of the positive electrode active material due to multiple charging and discharging, local current concentration occurs in a part of the positive electrode and a part of the negative electrode, and the separator It is said that there are some parts that do not function, or that micro short circuits occur due to the generation of side reactants due to side reactions.
  • control circuit unit 1320 detects the terminal voltage of the secondary battery and manages the charge / discharge state of the secondary battery. For example, both the output transistor of the charging circuit and the cutoff switch can be turned off at almost the same time in order to prevent overcharging.
  • FIG. 16B An example of a block diagram of the battery pack 1415 shown in FIG. 16A is shown in FIG. 16B.
  • the control circuit unit 1320 includes at least a switch for preventing overcharging, a switch unit 1324 including a switch for preventing overdischarge, a control circuit 1322 for controlling the switch unit 1324, a voltage measuring unit for the first battery 1301a, and the like.
  • the control circuit unit 1320 is set to the upper limit voltage and the lower limit voltage of the secondary battery to be used, and limits the upper limit of the current from the outside, the upper limit of the output current to the outside, and the like.
  • the range of the lower limit voltage or more and the upper limit voltage or less of the secondary battery is within the voltage range recommended for use, and when it is out of the range, the switch unit 1324 operates and functions as a protection circuit.
  • control circuit unit 1320 can also be called a protection circuit because it controls the switch unit 1324 to prevent over-discharging and over-charging. For example, when the control circuit 1322 detects a voltage that is likely to cause overcharging, the current is cut off by turning off the switch of the switch unit 1324. Further, a PTC element may be provided in the charge / discharge path to provide a function of interrupting the current as the temperature rises. Further, the control circuit unit 1320 has an external terminal 1325 (+ IN) and an external terminal 1326 ( ⁇ IN).
  • the switch unit 1324 can be configured by combining an n-channel type transistor and a p-channel type transistor.
  • the switch unit 1324 is not limited to a switch having a Si transistor using single crystal Si, and is, for example, Ge (germanium), SiGe (silicon germanium), GaAs (gallium arsenide), GaAlAs (gallium arsenide), InP (phosphide).
  • the switch portion 1324 may be formed by a power transistor having (indium), SiC (silicon carbide), ZnSe (zinc selenium), GaN (gallium arsenide), GaOx (gallium oxide: x is a real number larger than 0) and the like.
  • the storage element using the OS transistor can be freely arranged by stacking it on a circuit using a Si transistor or the like, integration can be easily performed.
  • the OS transistor can be manufactured by using the same manufacturing apparatus as the Si transistor, it can be manufactured at low cost. That is, a control circuit unit 1320 using an OS transistor can be stacked on the switch unit 1324 and integrated into one chip. Since the occupied volume of the control circuit unit 1320 can be reduced, the size can be reduced.
  • the first batteries 1301a and 1301b mainly supply electric power to a 42V system (high voltage system) in-vehicle device, and the second battery 1311 supplies electric power to a 14V system (low voltage system) in-vehicle device.
  • the second battery 1311 is often adopted because a lead storage battery is advantageous in terms of cost.
  • Lead-acid batteries have a drawback that they have a larger self-discharge than lithium-ion secondary batteries and are easily deteriorated by a phenomenon called sulfation.
  • the second battery 1311 As a lithium ion secondary battery, there is a merit of making it maintenance-free, but if it is used for a long period of time, for example, 3 years or more, there is a possibility that an abnormality that cannot be identified at the time of manufacture may occur.
  • the second battery 1311 for starting the inverter becomes inoperable, the second battery 1311 is lead-acid in order to prevent the motor from being unable to start even if the first batteries 1301a and 1301b have remaining capacities.
  • power is supplied from the first battery to the second battery, and the battery is charged so as to always maintain a fully charged state.
  • a lithium ion secondary battery is used for both the first battery 1301a (or the first battery 1301b) and the second battery 1311.
  • the second battery 1311 may use a lead storage battery, an all-solid-state battery, or an electric double layer capacitor.
  • the all-solid-state battery of the fourth embodiment may be used. By using the all-solid-state battery of the fourth embodiment for the second battery 1311, the capacity can be increased, and the size and weight can be reduced.
  • the regenerative energy due to the rotation of the tire 1316 is sent to the motor 1304 via the gear 1305, and is charged from the motor controller 1303 and the battery controller 1302 to the second battery 1311 via the control circuit unit 1321.
  • the first battery 1301a is charged from the battery controller 1302 via the control circuit unit 1320.
  • the first battery 1301b is charged from the battery controller 1302 via the control circuit unit 1320. In order to efficiently charge the regenerative energy, it is desirable that the first batteries 1301a and 1301b can be quickly charged.
  • the battery controller 1302 can set the charging voltage, charging current, and the like of the first batteries 1301a and 1301b.
  • the battery controller 1302 can set charging conditions according to the charging characteristics of the secondary battery to be used and can charge the battery quickly.
  • the outlet of the charger or the connection cable of the charger is electrically connected to the battery controller 1302.
  • the electric power supplied from the external charger charges the first batteries 1301a and 1301b via the battery controller 1302.
  • a control circuit may be provided and the function of the battery controller 1302 may not be used, but the first batteries 1301a and 1301b are charged via the control circuit unit 1320 in order to prevent overcharging. Is preferable.
  • the connection cable or the connection cable of the charger is provided with a control circuit.
  • the control circuit unit 1320 is sometimes called an ECU (Electronic Control Unit).
  • the ECU is connected to a CAN (Control Area Area Network) provided in the electric vehicle.
  • CAN is one of the serial communication standards used as an in-vehicle LAN.
  • the ECU also includes a microcomputer. Further, the ECU uses a CPU or GPU.
  • External chargers installed in charging stands and the like include 100V outlets, 200V outlets, three-phase 200V and 50kW. It is also possible to charge by receiving power supply from an external charging facility by a non-contact power supply method or the like.
  • the secondary battery of the present embodiment described above has a high-density positive electrode by using the particles 190 described in the first embodiment. Further, even if graphene is used as the conductive auxiliary agent and the electrode layer is thickened to increase the supported amount, the decrease in capacity can be suppressed. Further, maintaining a high capacity is obtained as a synergistic effect, and a secondary battery having significantly improved electrical characteristics can be realized. In particular, it is effective for a secondary battery used in a vehicle, and provides a vehicle having a long cruising range, specifically a one-charge mileage of 500 km or more, without increasing the ratio of the weight of the secondary battery to the total weight of the vehicle. be able to.
  • the operating voltage of the secondary battery can be increased by using the particles 190 described in the first embodiment, and the usable capacity is increased as the charging voltage increases. Can be increased. Further, by using the particles 190 described in the first embodiment as the positive electrode, it is possible to provide a secondary battery for a vehicle having excellent cycle characteristics.
  • Electronic devices to which a secondary battery is applied include, for example, television devices (also called televisions or television receivers), monitors for computers, digital cameras, digital video cameras, digital photo frames, mobile phones (mobile phones, mobile phones, etc.).
  • television devices also called televisions or television receivers
  • monitors for computers digital cameras, digital video cameras, digital photo frames, mobile phones (mobile phones, mobile phones, etc.).
  • mobile phones mobile phones, mobile phones, etc.
  • a mobile phone device a portable game machine
  • a mobile information terminal a portable game machine
  • sound reproduction device such as a pachinko machine, and the like.
  • a secondary battery can be applied to a moving body, typically an automobile.
  • automobiles include next-generation clean energy vehicles such as hybrid vehicles (HVs), electric vehicles (EVs), and plug-in hybrid vehicles (also referred to as PHEVs or PHVs), and one of the power sources to be installed in the vehicles is.
  • a secondary battery can be applied.
  • Mobiles are not limited to automobiles.
  • moving objects include trains, monorails, ships, flying objects (helicopters, unmanned aerial vehicles (drones), airplanes, rockets), electric bicycles, electric motorcycles, and the like.
  • the secondary battery of the embodiment can be applied.
  • the secondary battery of the present embodiment may be applied to a ground-mounted charging device provided in a house or a charging station provided in a commercial facility.
  • FIGS. 17A and 17B An example of mounting a secondary battery, which is one aspect of the present invention, in a building will be described with reference to FIGS. 17A and 17B.
  • the house shown in FIG. 17A has a power storage device 2612 having a secondary battery and a solar panel 2610, which is one aspect of the present invention.
  • the power storage device 2612 is electrically connected to the solar panel 2610 via wiring 2611 and the like. Further, the power storage device 2612 and the ground-mounted charging device 2604 may be electrically connected.
  • the electric power obtained by the solar panel 2610 can be charged to the power storage device 2612. Further, the electric power stored in the power storage device 2612 can be charged to the secondary battery 2602 of the vehicle 2603 via the charging device 2604.
  • the power storage device 2612 is preferably installed in the underfloor space. By installing it in the underfloor space, the space above the floor can be used effectively. Alternatively, the power storage device 2612 may be installed on the floor.
  • the electric power stored in the power storage device 2612 can also supply electric power to other electronic devices in the house. Therefore, even when power cannot be supplied from the commercial power supply due to a power failure or the like, the electronic device can be used by using the power storage device 2612 according to one aspect of the present invention as an uninterruptible power supply.
  • FIG. 17B shows an example of the power storage device 800 according to one aspect of the present invention.
  • the power storage device 891 according to one aspect of the present invention is installed in the underfloor space portion 896 of the building 899.
  • the power storage device 891 may be provided with the control circuit described in the sixth embodiment, and the safety can be improved by using a secondary battery using the particles 190 described in the first embodiment as the positive electrode in the power storage device 891. A synergistic effect can be obtained.
  • the secondary battery using the control circuit described in the sixth embodiment and the particle 190 described in the first embodiment as the positive electrode can greatly contribute to the eradication of accidents such as fire by the power storage device 891 having the secondary battery. ..
  • a control device 890 is installed in the power storage device 891, and the control device 890 is connected to a distribution board 803, a power storage controller 805 (also referred to as a control device), a display 806, and a router 809 by wiring. It is electrically connected.
  • Electric power is sent from the commercial power supply 801 to the distribution board 803 via the drop line mounting portion 810. Further, electric power is transmitted to the distribution board 803 from the power storage device 891 and the commercial power supply 801.
  • the distribution board 803 transmits the transmitted electric power through an outlet (not shown) to a general load. It supplies 807 and the power storage system load 808.
  • the general load 807 is, for example, an electric device such as a television or a personal computer
  • the power storage system load 808 is, for example, an electric device such as a microwave oven, a refrigerator, or an air conditioner.
  • the power storage controller 805 has a measurement unit 811, a prediction unit 812, and a planning unit 813.
  • the measuring unit 811 has a function of measuring the amount of electric power consumed by the general load 807 and the power storage system load 808 during one day (for example, from 0:00 to 24:00). Further, the measuring unit 811 may have a function of measuring the electric energy of the power storage device 891 and the electric energy supplied from the commercial power source 801.
  • the prediction unit 812 determines the demand consumed by the general load 807 and the power storage system load 808 during the next day based on the amount of power consumed by the general load 807 and the power storage system load 808 during the next day. It has a function of predicting the amount of electric power.
  • the planning unit 813 has a function of making a charge / discharge plan of the power storage device 891 based on the power demand amount predicted by the prediction unit 812.
  • the amount of electric power consumed by the general load 807 and the power storage system load 808 measured by the measuring unit 811 can be confirmed by the display 806. It can also be confirmed in an electric device such as a television or a personal computer via a router 809. Further, it can be confirmed by a portable electronic terminal such as a smartphone or a tablet via the router 809. In addition, the amount of power demand for each time zone (or every hour) predicted by the prediction unit 812 can be confirmed by the display 806, the electric device, and the portable electronic terminal.
  • FIG. 18A shows an example of a mobile phone.
  • the mobile phone 2100 includes an operation button 2103, an external connection port 2104, a speaker 2105, a microphone 2106, and the like, in addition to the display unit 2102 incorporated in the housing 2101.
  • the mobile phone 2100 has a secondary battery 2107.
  • the mobile phone 2100 can execute various applications such as mobile phones, e-mails, text viewing and creation, music playback, Internet communication, and computer games.
  • the operation button 2103 can have various functions such as power on / off operation, wireless communication on / off operation, manner mode execution / cancellation, and power saving mode execution / cancellation. ..
  • the function of the operation button 2103 can be freely set by the operating system incorporated in the mobile phone 2100.
  • the mobile phone 2100 can execute short-range wireless communication standardized for communication. For example, by communicating with a headset capable of wireless communication, it is possible to make a hands-free call.
  • the mobile phone 2100 is provided with an external connection port 2104, and data can be directly exchanged with another information terminal via a connector. It can also be charged via the external connection port 2104. The charging operation may be performed by wireless power supply without going through the external connection port 2104.
  • the mobile phone 2100 preferably has a sensor.
  • a human body sensor such as a fingerprint sensor, a pulse sensor, or a body temperature sensor, a touch sensor, a pressure sensor, an acceleration sensor, or the like is preferably mounted.
  • FIG. 18B is an unmanned aerial vehicle 2300 with a plurality of rotors 2302.
  • the unmanned aerial vehicle 2300 is sometimes called a drone.
  • the unmanned aerial vehicle 2300 has a secondary battery 2301, a camera 2303, and an antenna (not shown), which is one aspect of the present invention.
  • the unmanned aerial vehicle 2300 can be remotely controlled via an antenna.
  • the secondary battery using the particles 190 described in the first embodiment as the positive electrode has a high energy density and high safety, so that it can be safely used for a long period of time and is mounted on the unmanned aerial vehicle 2300. Suitable as a secondary battery.
  • FIGS. 18C to 18F an example of a transportation vehicle using one aspect of the present invention is shown in FIGS. 18C to 18F.
  • the automobile 2001 shown in FIG. 18C is an electric vehicle that uses an electric motor as a power source for traveling. Alternatively, it is a hybrid vehicle in which an electric motor and an engine can be appropriately selected and used as a power source for traveling.
  • an example of the secondary battery shown in the fifth embodiment is installed at one place or a plurality of places.
  • a secondary battery using the particles 190 described in the first embodiment as the positive electrode a synergistic effect on safety can be obtained.
  • the secondary battery using the particles 190 described in the first embodiment as the positive electrode can greatly contribute to the eradication of accidents such as fires caused by the secondary battery.
  • the automobile 2001 shown in FIG. 18C has a battery pack 2200, and the battery pack has a secondary battery module to which a plurality of secondary batteries are connected. Further, it is preferable to have a charge control device that is electrically connected to the secondary battery module.
  • the weight of the secondary battery module refers to the weight of a battery pack to which a plurality of secondary batteries are connected, and when the battery pack incorporates a charge control device, the charge control device is included.
  • the automobile 2001 can charge the secondary battery of the automobile 2001 by receiving electric power from an external charging facility by a plug-in method, a non-contact power supply method, or the like.
  • the charging method, connector standard, etc. may be appropriately performed by a predetermined method such as CHAdeMO (registered trademark) or combo.
  • the secondary battery may be a charging station provided in a commercial facility or a household power source.
  • the plug-in technology can charge the power storage device mounted on the automobile 2001 by supplying electric power from the outside. Charging can be performed by converting AC power into DC power via a conversion device such as an ACDC converter.
  • a power receiving device on the vehicle and supply electric power from a ground power transmission device in a non-contact manner to charge the vehicle.
  • this non-contact power supply system by incorporating a power transmission device on the road or the outer wall, it is possible to charge the battery not only while the vehicle is stopped but also while the vehicle is running. Further, electric power may be transmitted and received between two vehicles by using this non-contact power feeding method. Further, a solar cell may be provided on the exterior of the vehicle to charge the secondary battery when the vehicle is stopped or running. An electromagnetic induction method or a magnetic field resonance method can be used for such non-contact power supply.
  • FIG. 18D shows a large transport vehicle 2002 having an electrically controlled motor as an example of a transport vehicle.
  • the secondary battery module of the transport vehicle 2002 has, for example, a secondary battery of 3.5 V or more and 4.7 V or less as a four-cell unit, and has a maximum voltage of 170 V in which 48 cells are connected in series. Since it has the same functions as those in FIG. 18A except that the number of secondary batteries constituting the secondary battery module of the battery pack 2201 is different, the description thereof will be omitted.
  • FIG. 18E shows, as an example, a large transport vehicle 2003 having a motor controlled by electricity.
  • the secondary battery module of the transport vehicle 2003 has, for example, a maximum voltage of 600 V in which 100 or more secondary batteries of 3.5 V or more and 4.7 V or less are connected in series. Therefore, a secondary battery having a small variation in characteristics is required.
  • a highly safe secondary battery can be manufactured, and mass production is possible at low cost from the viewpoint of yield. Further, since it has the same functions as those in FIG. 18C except that the number of secondary batteries constituting the secondary battery module of the battery pack 2202 is different, the description thereof will be omitted.
  • FIG. 18F shows, as an example, an aircraft 2004 having an engine that burns fuel. Since the aircraft 2004 shown in FIG. 18F has wheels for takeoff and landing, it can be said that it is a part of a transportation vehicle, and a plurality of secondary batteries are connected to form a secondary battery module, which is charged with the secondary battery module. It has a battery pack 2203 including a control device.
  • the secondary battery module of the aircraft 2004 has, for example, a maximum voltage of 32V in which eight 4V secondary batteries are connected in series. Since it has the same functions as those in FIG. 18C except that the number of secondary batteries constituting the secondary battery module of the battery pack 2203 is different, the description thereof will be omitted.
  • FIG. 19A an example of an electric bicycle to which the secondary battery of one aspect of the present invention is applied is shown in FIG. 19A.
  • One aspect of the power storage device of the present invention can be applied to the electric bicycle 8700 shown in FIG. 19A.
  • the power storage device of one aspect of the present invention includes, for example, a plurality of storage batteries and a protection circuit.
  • the electric bicycle 8700 includes a power storage device 8702.
  • the power storage device 8702 can supply electricity to a motor that assists the driver. Further, the power storage device 8702 is portable, and FIG. 19B shows a state in which the power storage device 8702 is removed from the bicycle. Further, the power storage device 8702 incorporates a plurality of storage batteries 8701 included in the power storage device of one aspect of the present invention, and the remaining battery level and the like can be displayed on the display unit 8703. Further, the power storage device 8702 has a control circuit 8704 capable of charging control or abnormality detection of the secondary battery shown as an example in the sixth embodiment. The control circuit 8704 is electrically connected to the positive electrode and the negative electrode of the storage battery 8701.
  • control circuit 8704 may be provided with the small solid-state secondary batteries shown in FIGS. 11A and 11B.
  • the small solid-state secondary battery shown in FIGS. 11A and 11B in the control circuit 8704, it is possible to supply electric power to hold the data of the memory circuit included in the control circuit 8704 for a long time.
  • a synergistic effect on safety can be obtained.
  • the secondary battery and the control circuit 8704 using the particles 190 described in the first embodiment as the positive electrode can greatly contribute to the eradication of accidents such as fires caused by the secondary battery.
  • the scooter 8600 shown in FIG. 19C includes a power storage device 8602, a side mirror 8601, and a turn signal 8603.
  • the power storage device 8602 can supply electricity to the turn signal 8603.
  • the power storage device 8602 can be stored in the storage under the seat 8604.
  • the power storage device 8602 can be stored in the under-seat storage 8604 even if the under-seat storage 8604 is small.
  • FIG. 20A shows an example of a wearable device.
  • Wearable devices use a secondary battery as a power source.
  • a wearable device that can perform wireless charging as well as wired charging with the connector part to be connected is exposed. It is desired.
  • the secondary battery according to one aspect of the present invention can be mounted on the spectacle-type device 4000 as shown in FIG. 20A.
  • the spectacle-type device 4000 has a frame 4000a and a display unit 4000b.
  • By mounting the secondary battery on the temple portion of the curved frame 4000a it is possible to obtain a spectacle-type device 4000 that is lightweight, has a good weight balance, and has a long continuous use time.
  • the capacity can be increased, and a configuration capable of saving space due to the miniaturization of the housing can be realized. can.
  • the headset type device 4001 can be equipped with a secondary battery, which is one aspect of the present invention.
  • the headset-type device 4001 has at least a microphone unit 4001a, a flexible pipe 4001b, and an earphone unit 4001c.
  • a secondary battery can be provided in the flexible pipe 4001b or in the earphone portion 4001c.
  • a secondary battery using the particles 190 described in the first embodiment as the positive electrode can be mounted on the device 4002 that can be directly attached to the body.
  • the secondary battery 4002b can be provided in the thin housing 4002a of the device 4002.
  • the secondary battery according to one aspect of the present invention can be mounted on the device 4003 that can be attached to clothes.
  • the secondary battery 4003b can be provided in the thin housing 4003a of the device 4003.
  • the belt type device 4006 can be equipped with a secondary battery which is one aspect of the present invention.
  • the belt-type device 4006 has a belt portion 4006a and a wireless power supply receiving portion 4006b, and a secondary battery can be mounted inside the belt portion 4006a.
  • the wristwatch type device 4005 can be equipped with a secondary battery using the particles 190 described in the first embodiment as the positive electrode.
  • the wristwatch-type device 4005 has a display unit 4005a and a belt unit 4005b, and a secondary battery can be provided on the display unit 4005a or the belt unit 4005b.
  • the wristwatch type device 4005 is a wearable device of a type that is directly wrapped around the wrist, a sensor for measuring the pulse, blood pressure, etc. of the user may be mounted. It is possible to manage the health by accumulating data on the amount of exercise and health of the user.
  • FIG. 20B shows a perspective view of the wristwatch-type device 4005 removed from the wrist.
  • FIG. 20C shows a state in which the secondary battery 700 is built in. Although the external shape is different from that of the secondary battery 700 of FIG. 13, the internal structure is the same, so the same reference numerals are used.
  • the secondary battery 700 is provided at a position overlapping the display unit 4005a, and is compact and lightweight.
  • the head-mounted display 8300 shown in FIG. 20D includes a housing 8301, a display unit 8302, a band-shaped fixture 8304, a pair of lenses 8305, and a secondary battery 700.
  • a secondary battery 700 Although the outer shape is different from that of the secondary battery 700 of FIG. 13, the same reference numerals are used because the internal structure is the same. Further, in order to install the fixture 8304, two rectangular secondary batteries 700 are provided as an example.
  • the head-mounted display 8300 has a circuit unit 8306 and an image pickup device 8307.
  • Image data (hereinafter, image data A1) is given to the display unit 8302 included in the head-mounted display 8300.
  • the image data A1 is configured by using the image data (hereinafter, image data B1) generated by the circuit unit 8306 of the head-mounted display 8300 and the data (hereinafter, data C1) generated by the information processing apparatus. .. Alternatively, the image data B1 may be generated by an external circuit of the head-mounted display 8300.
  • the data C1 is information about the controller, and is data that is updated at any time when the user operates the controller.
  • the head-mounted display 8300 is displayed as a device for VR (Virtual Reality). , AR (Augmented Reality) equipment, MR (Mixed Reality) equipment, and the like.
  • the head-mounted display 8300 may have a line-of-sight input device.
  • the information processing device may use a signal detected by the line-of-sight input device in addition to the image data B1 and the data C1 when the image data A1 is generated.
  • the line-of-sight input device can detect the line of sight.
  • the line of sight can be detected, for example, by detecting the iris of the human pupil or the pupil.
  • the line of sight can be detected by capturing the movement of the eyeball and eyelids.
  • the line of sight can be detected by providing an electrode so as to touch the user and detecting the current flowing through the electrode as the eyeball moves.
  • Video data can be generated by combining the image data A1 and the audio data.
  • the display unit 8302 has a function of displaying the video data.
  • the head-mounted display 8300 preferably has a sensor element having a function of receiving electromagnetic waves emitted by the light emitting element.
  • the image pickup apparatus 8307 can be used as a configuration having a sensor element having a function of receiving the electromagnetic wave emitted by the light emitting element.
  • the particles 190 described in the first embodiment are used for the positive electrode of the secondary battery 700 to have a high energy density and a small size.
  • the next battery can be 700.
  • This embodiment can be used in combination with other embodiments as appropriate.
  • the particle 190 of one aspect of the present invention is spherical like the particle shown in FIG. 21A. Further, since the area 192 is not directly related to the charging capacity, it is excluded from the calculation of this embodiment.
  • the radius of the region 191 is preferably 3.5 ⁇ m or less (0.7 or less of the radius of the particle 190), and more preferably 3.0 ⁇ m or less (0.6 or less of the radius of the particle 190).
  • the radius of the region 191 is preferably 3.5 ⁇ m or less (0.7 or less of the radius of the particle 190), and more preferably 3.0 ⁇ m or less (0.6 or less of the radius of the particle 190).
  • the ratio of cross-sectional areas can be obtained by squared the ratio of radii.
  • the ratio of the radii of the region 191 is 0.02, the area of the region 191 is 0.04% of S 190.
  • the ratio of the radii of the region 191 is 0.55, the area of the region 191 is about 30% of S 190.
  • the ratio of the radii of the region 191 is 0.8, the area of the region 191 is about 64% of S 190.
  • the ratio of the radii of the region 191 is 0.95, the area of the region 191 is about 90% of S 190.
  • the ratio of the radii of the region 191 is 0.98, the area of the region 191 is about 96% of S 190.
  • the cross-sectional area ratio of the region 191 or the region 193 or the like can be evaluated by cross-section observation after exposing the cross-section of the particles 190 by processing, various line analysis, surface analysis, or the like.
  • a cross section that sufficiently reflects the internal structure of the particles 190.
  • the maximum width of the cross section is 80% or more of the average particle size (D50).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

充放電容量の大きい正極活物質を提供する。または充放電電圧の高い正極活物質を提供する。または劣化が少ない蓄電装置を提供する。または安全性の高い蓄電装置を提供する。または新規な蓄電装置を提供する。 リチウムと、複数の遷移金属と、酸素と、不純物元素と、を有する正極活物質。正極活物質は、表層部を含む第1の領域と、内部に設けられる第2の領域と、を有し、第1の領域は、前記第2の領域よりも遷移金属の濃度が高い。また第1の領域と第2の領域の間に不純物領域を有する。

Description

二次電池、電子機器、及び車両
正極活物質を用いる二次電池及びその作製方法に関する。または、二次電池を有する電子機器、車両等に関する。
本発明の一様態は、物、方法、又は、製造方法に関する。または、本発明は、プロセス、マシン、マニュファクチャ、又は、組成物(コンポジション・オブ・マター)に関する。本発明の一態様は、半導体装置、表示装置、発光装置、蓄電装置、照明装置、電子機器、またはそれらの製造方法に関する。
なお、本明細書中において電子機器とは、蓄電装置を有する装置全般を指し、蓄電装置を有する電気光学装置、蓄電装置を有する情報端末装置などは全て電子機器である。
なお、本明細書中において、蓄電装置とは、蓄電機能を有する素子及び装置全般を指すものである。例えば、リチウムイオン二次電池などの蓄電装置(二次電池ともいう)、リチウムイオンキャパシタ、及び電気二重層キャパシタなどを含む。
近年、リチウムイオン二次電池、リチウムイオンキャパシタ、空気電池等、種々の蓄電装置の開発が盛んに行われている。特に高出力、高エネルギー密度であるリチウムイオン二次電池は、携帯電話、スマートフォン、もしくはノート型コンピュータ等の携帯情報端末、携帯音楽プレーヤ、デジタルカメラ、医療機器、又は、ハイブリッド車(HV)、電気自動車(EV)、もしくはプラグインハイブリッド車(PHV)等の次世代クリーンエネルギー自動車など、半導体産業の発展と併せて急速にその需要が拡大し、繰り返し充電可能なエネルギーの供給源として現代の情報化社会に不可欠なものとなっている。
そのため、リチウムイオン二次電池のサイクル特性の向上および高容量化のために、正極活物質の改良が検討されている(たとえば特許文献1、非特許文献1)。
また、蓄電装置に要求されている特性としては、様々な動作環境での安全性、長期信頼性の向上などがある。
[先行技術文献]
[特許文献]
[特許文献1]特開2019−21456号公報
[非特許文献1]
Yang−Kook Sun et.al.,High−energy cathode material for long−life and safe lithium batteries,NATURE MATERIALS VOL 8 APRIL 2009
本発明の一態様は、充放電容量の大きい正極活物質を提供することを課題の一とする。または、充放電電圧の高い正極活物質を提供することを課題の一とする。または、劣化が少ない正極活物質を提供することを課題の一とする。または、新規な正極活物質を提供することを課題の一とする。または、充放電容量の大きい二次電池を提供することを課題の一とする。または、充放電電圧の高い二次電池を提供することを課題の一とする。または、安全性または信頼性の高い二次電池を提供することを課題の一とする。または、劣化が少ない二次電池を提供することを課題の一とする。または、長寿命の二次電池を提供することを課題の一とする。または、新規な二次電池を提供することを課題の一とする。
また本発明の一態様は、新規な物質、活物質、蓄電装置、又はそれらの作製方法を提供することを課題の一とする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、明細書、図面、請求項の記載から、これら以外の課題を抽出することが可能である。
また、本発明の一態様の二次電池を搭載し、航続距離が長い、具体的には一充電走行距離(充電走行距離)が300km以上、好ましくは500km以上の車両を提供することも課題の一つとする。なお、一充電走行距離とは、充電スタンドなどの外部電源によって車載の二次電池を充電してから、再び外部電源を用いて充電するまでに車両が実際に走行する走行距離を指している。即ち、一充電走行距離とは、外部電源を用いて二次電池を1回充電して満充電にした状態から走行可能な最長距離に相当し、1回の充電当たりの走行距離といえる。
また、本発明の一態様の二次電池を搭載し、高密度化することで電池モジュール重量を300kg以下の車両を提供することも課題の一つとする。望ましくは、電池モジュール重量を300kg以下とし、且つ、一充電走行距離が300km以上、好ましくは500km以上の車両を実現することも課題の一つとする。
本発明の一態様は、正極活物質を有する二次電池であって、正極活物質は、第1の領域と、第1の領域よりも内側に設けられる第2の領域と、を有し、第1の領域と、第2の領域はそれぞれ、リチウムと、酸素と、第1の遷移金属、第2の遷移金属および第3の遷移金属の中から選ばれる一または複数を有し、第1の遷移金属はニッケルであり、第2の遷移金属はコバルトであり、第3の遷移金属はマンガンであり、ニッケルの濃度は、第1の領域の方が第2の領域よりも高い、二次電池である。
上記において、マンガンの濃度は、第1の領域の方が第2の領域よりも高いことが好ましい。
上記において、正極活物質は不純物元素を有する不純物領域を有し、不純物領域は第1の領域と第2の領域の間に設けられることが好ましい。
上記において、不純物領域は、第1の領域と第2の領域が有する元素の相互拡散を抑制する機能を有することが好ましい。不純物領域は、材料同士が混ざらないように分離層として機能する場合がある。
上記において、不純物元素は、チタン、フッ素、マグネシウム、アルミニウム、ジルコニウム、カルシウム、ガリウム、ニオブ、リン、ホウ素、シリコンのうち少なくとも一以上であることが好ましい。
また上記において、不純物領域は、第1の領域と第2の領域が有する元素の相互拡散を抑制する機能を有することが好ましい。
また、本発明の形態は、二重構造に限定されず、三重構造以上の多重構造としてもよい。例えば、三重構造の場合、中心部を含む領域、該領域を囲む中間層、該中間層を囲む表層部と呼べる。多重構造(n重構造以上)の場合、中間層が(n−2)層増える構造と言える。本発明の別の一態様は、正極活物質を有する二次電池であって、正極活物質は、多重構造を有し、第1の領域と、第1の領域よりも内側に設けられる第2の領域と、第2の領域よりも内側に設けられる第3の領域とを有し、第1の領域と、第2の領域と、第3の領域はそれぞれ、リチウムと、酸素と、第1の遷移金属、第2の遷移金属および第3の遷移金属の中から選ばれる一または複数を有し、第1の遷移金属はニッケルであり、第2の遷移金属はコバルトであり、第3の遷移金属はマンガンであり、ニッケルの濃度は、第2の領域の方が第3の領域よりも高い、二次電池である。
上記において、ニッケルの濃度は、第2の領域の方が第1の領域よりも高いことが好ましい。
上記三重構造において、正極活物質は不純物元素を有する不純物領域を有し、不純物領域は第2の領域と第3の領域の間に設けられることが好ましい。
上記三重構造において、不純物領域は、第2の領域と第3の領域が有する元素の相互拡散を抑制する機能を有することが好ましい。
また、上記三重構造において、さらに第1の領域と第2の領域の間に第2の不純物領域を有する構成としてもよい。これらの不純物領域は、材料同士が混ざらないように分離層として機能する場合がある。
コバルトは資源が限定されることから、コバルトの使用量を削減すると活物質の材料価格を削減することができる。ニッケルはコバルトに比べて資源が豊富であり、且つ環境にやさしい遷移金属と言え、低価格の二次電池を作製する場合には、コバルトよりもニッケルを多く用いることが好ましい。
また上記各構成において、第1の領域は、充放電に伴うリチウムの拡散を促進し、正極活物質の安定化に寄与することが好ましい。二重構造であっても三重構造であっても多層構造であれば、第1の領域が電解液または導電助剤またはバインダーのいずれか一または複数と少なくとも一部接する領域となる。第1の領域の膜厚が他の領域よりも薄い部分または何らかの原因で第2の領域が露出する場合もある。
また上記において、二次電池は炭素材料を有し、炭素材料は繊維状炭素、グラフェン、粒子状炭素のうち少なくとも一以上であることが好ましい。これらの炭素材料は、導電助剤(導電付与剤、導電材とも呼ばれる)として用いられる。複数の活物質の間に導電助剤を付着させることで複数の活物質同士が電気的に接続され、導電性が高まる。なお、「付着」とは、活物質と導電助剤が物理的に密着していることのみを指しているのではなく、共有結合が生じる場合、ファンデルワールス力により結合する場合、活物質の表面の一部を導電助剤が覆う場合、活物質の表面凹凸に導電助剤がはまりこむ場合、互いに接していなくとも電気的に接続される場合などを含む概念とする。なお、繊維状炭素は、カーボンナノチューブ(CNTとも呼ぶ)などを指している。グラフェンは薄い面状の形であるため、他の炭素材料よりも少ない量で効率よい伝導パスを形成でき、活物質の割合を多くできるため、電極の体積当たりの容量が向上する。それにより、二次電池の小型化、高容量化が可能になる。また、グラフェンを用いることで急速充放電での容量低下を抑制できる。本明細書等においてグラフェンは単層だけでなくマルチグラフェン、多層グラフェンを含む。多層グラフェンはたとえば2層以上100層以下の炭素シートを有するものをいう。また、粒子状炭素は、カーボンブラック(ファーネスブラック、アセチレンブラック(ABとも呼ぶ)、黒鉛など)を指している。なお、導電助剤としては、グラフェンを含む構成が好ましい。導電助剤としてグラフェンを用いることで、充放電に伴う正極活物質の劣化を抑制できる可能性がある。例えば、充放電の際に、カチオンミキシングの影響により、正極活物質の表層部から劣化する場合がある。この場合、導電助剤としてグラフェンを含む構成とすることで、当該劣化を抑制できる可能性がある。なお、導電助剤としては、様々な組み合わせを用いることができる。導電助剤に用いる代表的な組み合わせとしては、グラフェンと粒子状炭素(例えば、アセチレンブラック)とを組み合わせる構成、繊維状炭素(例えば、カーボンナノチューブ)と粒子状炭素(例えば、アセチレンブラック)とを組み合わせる構成などが好適である。またグラフェンと共に、グラフェンを形成する際に用いる材料を混合してもよい。たとえばグラフェンを形成する際の触媒として用いる粒子を共に混合してもよい。グラフェンを形成する際の触媒としてはたとえば、酸化ケイ素(SiO、SiO(x<2))、酸化アルミニウム、鉄、ニッケル、ルテニウム、イリジウム、プラチナ、銅、ゲルマニウム等を有する粒子が挙げられる。該粒子は平均粒径(D50)が1μm以下であると好ましく、100nm以下であることがより好ましい。
また本発明の別の一態様は、上記に記載の二次電池を有する電子機器である。
また本発明の別の一態様は、上記に記載の二次電池を有する車両である。上記正極活物質を用いることは、高いエネルギー密度を有し、安全性または信頼性の高い二次電池を実現できるため、複数の二次電池が収納された大型電池が搭載される次世代クリーンエネルギー自動車、例えば、ハイブリッド車、電気自動車、プラグインハイブリッド車等に好ましい。
本発明の一態様により、高エネルギー密度であり、且つ、充放電容量の大きい正極活物質を提供することができる。または、高エネルギー密度であり、且つ、充放電電圧の高い正極活物質を提供することができる。または、劣化が少ない正極活物質を提供することができる。または、新規な正極活物質を提供することができる。または、充放電容量の大きい二次電池を提供することができる。または、充放電電圧の高い二次電池を提供することができる。または、安全性または信頼性の高い二次電池を提供することができる。または、劣化が少ない二次電池を提供することができる。または、長寿命の二次電池を提供することができる。または、新規な二次電池を提供することができる。
一充電走行距離を伸ばすため、二次電池の数を増やして容量を増やそうとすると車両の総重量が増加し、車両を移動させるエネルギーが増加してしまい、一充電走行距離が短くなる恐れがある。本発明の一態様で開示する高エネルギー密度の二次電池を用いることで同じ重量の二次電池を搭載する車両の総重量をほとんど変えることなく一充電走行距離を伸ばすことができる。
従って、本発明の一態様によって新規な蓄電装置を搭載した車両を提供することができる。
また本発明の一態様により、新規な物質、活物質、蓄電装置、又はそれらの作製方法を提供することができる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。
図1A乃至図1Cは正極活物質の断面図の例である。
図2A乃至図2Cは正極活物質の断面図の例である。
図3Aおよび図3Bは正極活物質の断面図の例である。
図4A1、図4B1、図4C1、図4D1および図4E1は正極活物質の斜視図の例である。図4A2、図4B2、図4C2、図4D2および図4E2は正極活物質の断面図の例である。
図5Aおよび図5Bは正極活物質の作製方法の例を説明する図である。
図6は、正極活物質の充電深度と結晶構造を説明する図である。
図7は、正極活物質の充電深度と結晶構造を説明する図である。
図8A、図8B、図8C、図8Dは二次電池の正極の例を説明する断面図である。
図9A、図9Bは二次電池の例を説明する図である。
図10A、図10B、図10Cは二次電池の例を説明する図である。
図11A、図11Bは二次電池の例を説明する図である。
図12A、図12B、図12Cはコイン型二次電池を説明する図である。
図13Aは二次電池を説明する上面図、図13Bは二次電池を説明する断面図である。
図14A乃至図14Cは二次電池を説明する図である。
図15A乃至図15Cは二次電池を説明する図である。
図16Aは本発明の一態様を示す電池パックの斜視図であり、図16Bは電池パックのブロック図であり、図16Cはモータを有する車両のブロック図である。
図17Aおよび図17Bは、本発明の一態様に係る蓄電装置を説明する図である。
図18A及び図18Bは、電子機器の一例を説明する図であり、図18C乃至図18Fは、輸送用車両の一例を説明する図である。
図19Aは電動自転車を示す図であり、図19Bは電動自転車の二次電池を示す図であり、図19Cは電動バイクを説明する図である。
図20Aはウェアラブルデバイスの例を示しており、図20Bは腕時計型デバイスの斜視図を示しており、図20Cは、腕時計型デバイスの側面を説明する図であり、図20Dは、ヘッドマウントディスプレイを説明する斜視図である。
図21Aは計算モデルを示す図であり、図21Bは、領域191にLiCoO、領域193にNCM811を用いた場合の、領域191の半径と重量あたり放電容量のグラフである。
以下では、本発明の実施の形態について図面を用いて詳細に説明する。ただし、本発明は以下の説明に限定されず、その形態および詳細を様々に変更し得ることは、当業者であれば容易に理解される。また、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
本明細書等ではミラー指数を用いて結晶面及び結晶方向を表記する。結晶面、結晶方向及び空間群の表記は、結晶学上、数字に上付きのバーを付すが、本明細書等では書式の制約上、数字の上にバーを付す代わりに、数字の前に−(マイナス符号)を付して表現する場合がある。また、結晶内の方向を示す個別方位は[ ]で、等価な方向すべてを示す集合方位は< >で、結晶面を示す個別面は( )で、等価な対称性を有する集合面は{ }でそれぞれ表現する。また空間群R−3mで表される三方晶は、構造の理解のしやすさのため、一般に六方晶の複合六方格子で表され、ミラー指数として(hkl)だけでなく(hkil)を用いることがある。ここでiは−(h+k)である。
本明細書等において、偏在とは、複数の元素(例えばA,B,C)からなる固体において、ある元素(例えばB)が空間的に不均一に分布する現象をいう。
本明細書等において、活物質等の粒子の表層部とは例えば、表面から50nm以内、より好ましくは35nm以内、さらに好ましくは20nm以内、最も好ましくは10nm以内の領域である。ひびやクラックにより生じた面も表面といってよい。また表層部より深い領域を、内部という。また、本明細書等において粒子とは球形(断面形状が円)のみを指すことに限定されず、個々の粒子の断面形状が楕円形、長方形、台形、錐形、角が丸まった四角形、非対称の形状などが挙げられ、さらに個々の粒子は不定形であってもよい。
本明細書等において、リチウムと遷移金属を含む複合酸化物が有する層状岩塩型の結晶構造とは、陽イオンと陰イオンが交互に配列する岩塩型のイオン配列を有し、遷移金属とリチウムが規則配列して二次元平面を形成するため、リチウムの二次元的拡散が可能である結晶構造をいう。なお陽イオンまたは陰イオンの欠損等の欠陥があってもよい。また、層状岩塩型結晶構造は、厳密に言えば、岩塩型結晶の格子が歪んだ構造となっている場合がある。
また本明細書等において、岩塩型の結晶構造とは、陽イオンと陰イオンが交互に配列している構造をいう。なお陽イオンまたは陰イオンの欠損があってもよい。
また本明細書等において、リチウムと遷移金属を含む複合酸化物が有するO3’型(擬スピネル型とも呼ぶ)の結晶構造は、空間群R−3mに帰属され、コバルト、マグネシウム等のイオンが酸素6配位位置を占める。また、本構造のCoO層の対称性はO3型と同じである。よって、本構造を本明細書等ではO3’型の結晶構造と呼ぶ。また、O3型結晶構造及びO3’型結晶構造のいずれの場合も、CoO層の間、つまりリチウムサイトに、希薄にマグネシウムが存在することが好ましい。また、酸素サイトに、ランダムかつ希薄に、フッ素が存在することが好ましい。
またO3’型の結晶構造は、層間にランダムにLiを有するもののCdCl型の結晶構造に類似する結晶構造であるということもできる。このCdCl型に類似した結晶構造は、ニッケル酸リチウムを充電深度0.94まで充電したとき(Li0.06NiO)の結晶構造と近いが、純粋なコバルト酸リチウム、またはコバルトを多く含む層状岩塩型の正極活物質では通常この結晶構造を取らないことが知られている。
層状岩塩型結晶、および岩塩型結晶の陰イオンは立方最密充填構造(面心立方格子構造)をとる。O3’型結晶も、陰イオンは立方最密充填構造をとると推定される。
なお、本明細書等では、陰イオンがABCABCのように3層が互いにずれて積み重なる構造であれば、立方最密充填と呼ぶこととする。そのため陰イオンは厳密に立方格子でなくてもよい。同時に現実の結晶は必ず欠陥を有するため、分析結果が必ずしも理論通りでなくともよい。たとえば電子線回折またはTEM像等のFFT(高速フーリエ変換)において、理論上の位置と若干異なる位置にスポットが現れてもよい。たとえば理論上の位置との方位が5度以下、または2.5度以下であれば立方最密充填構造をとるといってよい。
層状岩塩型結晶と岩塩型結晶が接するとき、陰イオンにより構成される立方最密充填構造の向きが揃う結晶面が存在する。
または、上記現象は以下のように説明することもできる。立方晶の結晶構造の(111)面における陰イオンは三角形状の配列を有する。層状岩塩型は空間群R−3mであって、菱面体構造であるが、構造の理解を容易にするため一般に複合六方格子で表現され、層状岩塩型の(000l)面は六角格子を有する。立方晶(111)面の三角格子は、層状岩塩型の(000l)面の六角格子と同様の原子配列を有する。両者の格子が整合性を持つことを、立方最密充填構造の向きが揃うということができる。
ただし、層状岩塩型結晶およびO3’型結晶の空間群はR−3mであり、岩塩型結晶の空間群Fm−3m(一般的な岩塩型結晶の空間群)およびFd−3mとは異なるため、上記の条件を満たす結晶面のミラー指数は層状岩塩型結晶およびO3’型結晶と、岩塩型結晶では異なる。本明細書では、層状岩塩型結晶、O3’型結晶、および岩塩型結晶において、陰イオンにより構成される立方最密充填構造の向きが揃うとき、結晶の配向が概略一致する、と言う場合がある。
二つの領域の結晶の配向が概略一致することは、TEM(Transmission Electron Microscope、透過電子顕微鏡)像、STEM(Scanning Transmission Electron Microscope、走査透過電子顕微鏡)像、HAADF−STEM(High−angle Annular Dark Field Scanning TEM、高角散乱環状暗視野走査透過電子顕微鏡)像、ABF−STEM(Annular Bright−Field Scanning Transmission Electron Microscopy、環状明視野走査透過電子顕微鏡)像、電子線回折、TEM像等のFFT等から判断することができる。XRD(X−ray Diffraction、X線回折)、中性子線回折等も判断の材料にすることができる。
また本明細書等において、正極活物質の理論容量とは、正極活物質が有する挿入脱離可能なリチウムが全て脱離した場合の電気量をいう。例えばLiCoOの理論容量は274mAh/g、LiNiOの理論容量は274mAh/g、LiMnの理論容量は148mAh/gである。
また本明細書等において、挿入脱離可能なリチウムが全て挿入されているときの充電深度を0、正極活物質が有する挿入脱離可能なリチウムが全て脱離したときの充電深度を1ということとする。
また本明細書等において、充電とは、電池内において正極から負極にリチウムイオンを移動させ、外部回路において正極から負極に電子を移動させることをいう。正極活物質については、リチウムイオンを離脱させることを充電という。また充電深度が0.7以上0.9以下の正極活物質を、高電圧で充電された正極活物質と呼ぶ場合がある。
同様に、放電とは、電池内において負極から正極にリチウムイオンを移動させ、外部回路において負極から正極に電子を移動させることをいう。正極活物質については、リチウムイオンを挿入することを放電という。また充電深度が0.06以下の正極活物質、または高電圧で充電された状態から充電容量の90%以上の容量を放電した正極活物質を、十分に放電された正極活物質ということとする。
また本明細書等において、非平衡な相変化とは、物理量の非線形変化を起こす現象をいうこととする。例えば容量(Q)を電圧(V)で微分(dQ/dV)することで得られるdQ/dV曲線におけるピークの前後では、非平衡な相変化が起き、結晶構造が大きく変わっていると考えられる。
二次電池は例えば正極および負極を有する。正極を構成する材料として、正極活物質がある。正極活物質は例えば、充放電の容量に寄与する反応を行う物質である。なお、正極活物質は、その一部に、充放電の容量に寄与しない物質を含んでもよい。
本明細書等において、本発明の一態様の正極活物質は、正極材料、あるいは二次電池用正極材、等と表現される場合がある。また本明細書等において、本発明の一態様の正極活物質は、化合物を有することが好ましい。また本明細書等において、本発明の一態様の正極活物質は、組成物を有することが好ましい。また本明細書等において、本発明の一態様の正極活物質は、複合体を有することが好ましい。
放電レートとは、電池容量に対する放電時の電流の相対的な比率であり、単位Cで表される。定格容量X(Ah)の電池において、1C相当の電流は、X(A)である。2X(A)の電流で放電させた場合は、2Cで放電させたといい、X/5(A)の電流で放電させた場合は、0.2Cで放電させたという。また、充電レートも同様であり、2X(A)の電流で充電させた場合は、2Cで充電させたといい、X/5(A)の電流で充電させた場合は、0.2Cで充電させたという。
定電流充電とは例えば、充電レートを一定として充電を行う方法を指す。定電圧充電とは例えば、充電が上限電圧に達したら、電圧を一定とし、充電を行う方法を指す。定電流放電とは例えば、放電レートを一定として放電を行う方法を指す。
また本明細書等において、ある数値Aの近傍の値とは、0.9A以上1.1A以下の値をいうこととする。
(実施の形態1)
本発明の一態様の粒子は、二次電池の電極の材料として用いることができる。また、本発明の一態様の粒子は、活物質として機能する。活物質は例えば、充放電の容量に寄与する反応を行う物質である。なお、活物質は、その一部に、充放電の容量に寄与しない物質を含んでもよい。
また、本発明の一態様の粒子は特に、二次電池の正極材料として用いることができる。また、本発明の一態様の粒子は特に、正極活物質として機能する。正極活物質は例えば、充放電の容量に寄与する反応を行う物質であり、正極の材料として用いられる物質である。なお、正極活物質は、その一部に、充放電の容量に寄与しない物質を含んでもよい。少なくともリチウムと遷移金属と酸素とを有する、粒子、活物質、正極材料または正極活物質を、複合酸化物と呼んでもよい。
図1Aは本発明の一態様の粒子190の断面の一例である。図1Aに示す粒子190は、領域191、領域192および領域193を有する。
領域191は、領域193よりも内側に設けられる。
また領域193は、粒子190の表層部を含む領域である。領域192は、領域193の内側に位置する領域である。領域191は、領域192の内側に位置する領域である。領域191は粒子190の内部であり、例えば粒子の中心を含む領域(中心部とも呼べる)である。粒子の中心とは、粒子の重心をいい、その位置は電子顕微鏡などで特定可能である。例えば、粒子を切断して断面を観察した時、断面積が最大となる断面、またはそれより90%以上の断面積を有する断面に対して最小となる外接円を描いたときの円の中心を指す。
領域192は例えば、領域191と領域193との間に位置する領域である。
領域191を「コア」、領域193を「シェル」と呼ぶ場合がある。「シェル」は周辺組織、または外殻とも呼べる。なお、「コア」は粒子全体の核という意味ではなく、粒子の中心部と外殻の位置関係を示すために用いている。また、「コア」は芯材とも呼べる。
あるいは、領域191と領域192を合わせて「コア」、領域193を「シェル」と呼ぶ場合がある。このような場合には、領域192は、「コア」の表層部と表現される場合がある。また領域192は不純物領域と表現される場合がある。
粒子190がコア−シェル構造(コアシェル型構造とも呼ぶ)を有する、と表現する場合がある。
粒子190の平均粒径(メディアン径、D50ともいう)は、0.1μm以上50μm以下であることが好ましく、1μm以上30μm以下がより好ましい。
領域191は粒子状の形状を有する。領域191は、粒子190の断面に占める面積比S191/S190が0.04%以上96.0%以下であることが好ましく、30%以上90%以下であることがより好ましく、64%以上90%以下であることがさらに好ましい。図2Aに示すように、領域191の面積はS191、領域192の面積はS192、領域193の面積はS193、粒子190の断面積はS190(S190=S191+S192+S193)とする。
領域192は、領域191が有する粒子状の形状の表面に、少なくとも一部が接することが好ましい。あるいは、領域191が有する粒子状の形状の表面の少なくとも一部を覆うように設けられることが好ましい。領域192は、粒子190の中心からの距離が、領域191に比べて遠い位置に、少なくとも一部が配置されることが好ましい。
領域191が有する粒子状の形状の表面の少なくとも一部を覆うような層であることが好ましい。領域192は例えば、厚さが0.5nm以上100nm以下の層であることが好ましく、1nm以上30nm以下の層であることがより好ましい。なお領域192の厚さは必ずしも均一でなくてもよい。
領域192は、領域191と領域193が有する元素の合成時の相互拡散を抑制する機能を有することが好ましい。また充放電時のリチウムの相互拡散を阻害しない、またはリチウムの相互拡散を促進する機能を有することが好ましい。
領域193は、粒子190の中心からの距離が、領域191および領域192に比べて遠い位置に、少なくとも一部が配置されることが好ましい。領域193は領域191および領域192の少なくとも一と重畳することが好ましい。領域193は層状であることが好ましい。または領域193は、粒子190の断面に占める面積比が4%以上99.96%以下であることが好ましく、10%以上70%以下であることがより好ましく、10%以上36%以下であることがさらに好ましい。なお領域193の厚さは必ずしも均一でなくてもよい。
領域193は、充放電に伴うリチウムの拡散を促進し、正極活物質の安定化に寄与する機能を有することが好ましい。また、領域193は、充放電に伴う正極活物質の劣化を抑制する機能を有することが好ましい。例えば、充放電の際に、カチオンミキシングの影響により、正極活物質の表層部から劣化する場合がある。この場合、領域193は、当該カチオンミキシングの影響を受けにくい構成とすればよい。また、領域193は、1つの領域に限定されず、2以上の複数の領域を有していてもよい。例えば、図1Cに示すように領域193として、内側に領域193bを設け、領域193bの外側に領域193aを設ける2つの複数の領域を有することができる。
また図1Bに示すように、粒子190は領域194を有していてもよい。領域194は領域193の外側に設けられる。この場合、領域193と領域194を合わせて「シェル」と呼ぶ場合がある。また領域194は、「シェル」の表層部、粒子190の表層部、または粒子190の表面を含む、と表現される場合がある。また領域194は不純物領域と表現される場合がある。また図2Bに示すように領域194の面積はS194とし、領域194を有する場合の粒子190の面積はS190(S190=S191+S192+S193+S194)とする。
また領域194は、粒子190の中心からの距離が、領域193に比べて遠い位置に、少なくとも一部が配置されることが好ましい。領域194は領域191、領域192および領域193の少なくとも一と重畳することが好ましい。また、領域194は領域193と少なくとも一部が重畳する。領域194は例えば、厚さが0.5nm以上100nm以下の層であることが好ましく、1nm以上30nm以下の層であることがより好ましい。なお領域194の厚さは必ずしも均一でなくてもよい。
領域194も、カチオンミキシングの影響を受けにくい構成とすることが好ましい。領域194を有する場合、これが粒子190の最も外側の領域であるので、領域194のカチオンミキシングが抑制され、結晶構造の崩壊が抑制されると特に充放電特性等劣化を抑制する効果が高い可能性がある。
粒子の粒径は例えば、粒度分布計により評価することができる。領域191または領域193等の断面における面積比は、粒子190を加工により断面を露出させた後の断面観察および各種線分析、面分析等により評価することができる。面積比を評価する場合には、粒子190の内部構造を十分に反映した断面を用いることが好ましい。例えば断面の最大幅が平均粒径(D50)の80%以上である断面を用いることが好ましい。
各領域の厚さ等も同様に、加工により断面を露出させた後の断面観察および各種線分析、面分析等により評価することができる。
<複合酸化物>
領域191および領域193として、リチウムイオンの挿入及び脱離が可能な材料を用いることができる。なお、キャリアイオンが、リチウムイオン以外のアルカリ金属イオンや、アルカリ土類金属イオンの場合、リチウムの代わりに、アルカリ金属(例えば、ナトリウムやカリウム等)、アルカリ土類金属(例えば、カルシウム、ストロンチウム、バリウム、ベリリウム、マグネシウム等)を用いてもよい。領域191および領域193が正極活物質として機能する材料で構成される場合には例えば、オリビン型の結晶構造、層状岩塩型の結晶構造、スピネル型の結晶構造、等を有する化合物を用いることが好ましい。層状岩塩型の結晶構造を有する化合物には、遷移金属に対するリチウムの原子数比が1よりも大きい、いわゆるリチウム過剰系の化合物を含む。特に、層状岩塩型の結晶構造を有し、空間群R−3mに属する複合酸化物を用いることが好ましい。なお、領域191および領域193に持たせたい機能によってはこの限りではない。
領域191および領域193はそれぞれ、遷移金属を有することが好ましい。具体的には、コバルト、ニッケル、およびマンガンのうち一以上を有することが好ましい。
また領域191および領域193が有する遷移金属のうち、少なくとも一の濃度が、領域191と領域193とで異なっていることが好ましい。
なお、遷移金属として2種以上を用いる場合、コバルトとマンガンの2種、またはコバルトとニッケルの2種、ニッケルとマンガンの2種を用いてもよい。また、遷移金属として、コバルト、マンガン、ニッケルの3種を用いてもよい。つまり、領域191および領域193はそれぞれ、コバルト酸リチウム、ニッケル酸リチウム、コバルトの一部がマンガンで置換されたコバルト酸リチウム、コバルトの一部がニッケルで置換されたコバルト酸リチウム、ニッケル−マンガン−コバルト酸リチウム等の、リチウムと遷移金属を含む複合酸化物を有することができる。
<粒子の例1>
粒子190の具体例として、コアにLCO、シェルにNCMを用いる例、すなわち領域191としてLi−Co酸化物を用い、領域193の第1の遷移金属としてコバルト、第2の遷移金属としてニッケル、第3の遷移金属としてマンガンの3種の遷移金属を用いたリチウム複合酸化物を用いる例を示す。コアにLCO、シェルにNCMを用いる構成の場合、正極活物質全体として、コバルト含有量を少なくすることが可能な構成となるため、LCO単体の正極活物質に比べて、正極活物質全体の価格を安くすることができる。また、コアにLCO、シェルにNCMを用いる構成の場合、4.5V以上4.8V未満(vs.Li/Li)の範囲の充電電圧に対して、十分な放電容量を確保することができる。
コバルト、ニッケルおよびマンガンを用いたリチウム複合酸化物として例えば、LiNiCoMn(x>0、y>0、0.8<x+y+z<1.2)で表されるNiCoMn系(NCMともいう)を用いることができる。具体的には例えば、0.1x<y<8xかつ0.1x<z<8xを満たすことが好ましい。一例として、x、yおよびzは、x:y:z=1:1:1またはその近傍の値を満たすことが好ましい。または一例として、x、yおよびzは、x:y:z=5:2:3またはその近傍の値を満たすことが好ましい。または一例として、x、yおよびzは、x:y:z=8:1:1またはその近傍の値を満たすことが好ましい。または一例として、x、yおよびzは、x:y:z=9:0.5:0.5またはその近傍の値を満たすことが好ましい。または一例として、x、yおよびzは、x:y:z=6:2:2またはその近傍の値を満たすことが好ましい。または一例として、x、yおよびzは、x:y:z=1:4:1またはその近傍の値を満たすことが好ましい。
領域192および領域194を構成する材料として、上記の記載を参照することができる。
また領域193はさらに複数の領域を有していてもよい。たとえば図1Cに示すように、領域193aおよび領域193bを有していてもよい。このとき領域193aと、領域193bと、で遷移金属のうち少なくとも一の濃度が異なっていることが好ましい。
たとえば領域193aとしてx、yおよびzは、x:y:z=1:1:1またはその近傍の値を満たし、領域193bとしてx、yおよびzは、x:y:z=8:1:1またはその近傍の値を満たすことが好ましい。または領域193aとしてx、yおよびzは、x:y:z=1:1:1またはその近傍の値を満たし、領域193bとしてx、yおよびzは、x:y:z=9:0.5:0.5またはその近傍の値を満たすことが好ましい。
あるいは領域193aとしてx、yおよびzは、x:y:z=8:1:1またはその近傍の値を満たし、領域193bとしてx、yおよびzは、x:y:z=1:1:1またはその近傍の値を満たしてもよい。または領域193aとしてx、yおよびzは、x:y:z=9:0.5:0.5またはその近傍の値を満たし、領域193bとしてx、yおよびzは、x:y:z=1:1:1またはその近傍の値を満たしてもよい。
このとき図2Cに示すように領域193aの面積はS193aとし、領域193bの面積はS193bとし、S193=S193a+S193bとする。
<粒子の例2>
粒子190の具体例として、コアにLCO、シェルにLFPを用いる例、すなわち領域191としてLi−Co酸化物を用い、領域193としてLi−リン酸鉄(LiFePO)を用いる例を示す。
またLiFePOに限らず、その他のオリビン型の結晶構造を有する正極材料を領域193として用いてもよい。オリビン型の結晶構造はすべてのリチウムを放出した状態でも、リンと酸素からなるポリアニオン骨格が安定であるため、結晶構造が崩壊しにくい。そのためオリビン型の結晶構造を有する複合酸化物はシェルである領域193に好適である。しかし領域191と領域193とで異なる結晶構造の複合酸化物を適用する場合は、領域192はバッファ層としての機能を有しリチウムの粒界拡散を促進する機能を有することが好ましい。または領域192は領域191と領域193の物理的な接合を強化する機能を有することが好ましい。
<粒子の例3>
粒子190の具体例として、コアに第1のNCM、シェルに第2のNCMを用いる例、すなわち領域191として、第1の遷移金属としてコバルト、第2の遷移金属としてニッケル、第3の遷移金属としてマンガンの3種の遷移金属を用いたリチウム複合酸化物を用い、領域193として、第1の遷移金属としてコバルト、第2の遷移金属としてニッケル、第3の遷移金属としてマンガンの3種の遷移金属を用いたリチウム複合酸化物を用いる例を示す。
第1のNCMとして、x:y:z=8:1:1、またはx:y:z=9:0.5:0.5で表されるLiNiCoMn複合酸化物を用い、第2のNCMとして、x:y:z=1:1:1で表されるLiNiCoMn複合酸化物を用いることができる。なお、第2のNCMの原子数比は上記に限定されない。例えば、第1のNCMよりもニッケルの比率を小さくすることで、上記の原子数比と同様の効果を奏する場合がある。
領域192および領域194を構成する材料として、上記の記載を参照することができる。
また領域191と領域192は、結晶の配向が概略一致していることが好ましい。同様に領域192と領域193は、結晶の配向が概略一致していることが好ましい。同様に領域194を有する場合は、領域193と領域194は結晶の配向が概略一致していることが好ましい。同様に領域193aおよび領域193bを有する場合は、領域193aと領域193bは結晶の配向が概略一致していることが好ましい。
結晶の配向が概略一致していると、リチウムの拡散経路が良好に確保され、レート特性または充放電特性の良好な二次電池とすることができ好ましい。領域191と領域193の複合酸化物の間で多少のイオン半径の差などが生じる場合は、領域192はバッファ層としての機能を有することが好ましい。
ここで、充電とは、電池内において正極から負極にリチウムイオンを移動させ、外部回路において正極から負極に電子を移動することである。つまり、充電した場合、正極活物質からリチウムイオンが離脱する。リチウムと遷移金属を含む複合酸化物に代表されるような層状の結晶構造を有する正極活物質では、体積あたりのリチウム含有量が多く体積あたりの容量が高い二次電池を実現することができる場合がある。しかし、このような正極活物質では、充電に伴う体積あたりのリチウムの脱離量も多く、安定した充放電を行うためには、脱離した後の結晶構造の安定化が求められる。また充放電において結晶構造が崩れることにより高速充電や高速放電が阻害される場合がある。また、結晶構造が崩れることによりリチウムの挿入と脱離を正常に行うことができる領域が減少し充電容量や放電容量が低下する場合がある。
粒子の例3の粒子のように遷移金属としてコバルトに加えてニッケルを有すると、コバルトと酸素の八面体からなる層状構造のずれを抑制する場合がある。そのため特に高温での充電状態において結晶構造がより安定になる場合があり好ましい。
遷移金属としてコバルトに加えてニッケルを有する場合において、ニッケルの濃度を高くすることにより、リチウムの脱離に伴う層状構造のずれを抑制できる場合がある。よって、より多くのリチウムを脱離しても、安定に充放電を繰り返し行える場合がある。すなわち、容量を高めることができる。
一方、遷移金属としてコバルトに加えてニッケルを有する場合において、ニッケルの濃度を高くすると、高い充電電圧において結晶構造が崩れやすい場合がある。リチウムイオンと、ニッケルイオンのイオン半径が近いため、ニッケルがリチウムサイトに移動するカチオンミキシングが生じやすいためである。すなわち、高い電圧において充電を行うためには、ニッケルの濃度が高くなりすぎないことが好ましい。
<元素Xおよびハロゲンを有する領域>
領域192および領域194は元素Xおよびハロゲンを有する領域であることが好ましい。元素Xおよびハロゲンは、不純物元素と表現される場合がある。元素Xは、チタン、マグネシウム、アルミニウム、ジルコニウム、バナジウム、鉄、クロム、ニオブ、コバルト、ヒ素、亜鉛、ケイ素、硫黄、リン、ホウ素、カルシウム、ガリウム、シリコンから選ばれる一以上である。また、元素Xはマグネシウムを含む一以上の元素であることが好ましい。ハロゲンは、フッ素および塩素の一以上であることが好ましく、特にフッ素であることが好ましい。
元素Xおよびハロゲンを有する領域として、LiMOで表される複合酸化物に元素Xおよびハロゲンが添加された領域を用いる。ここで複合酸化物は、LiMOで表される複合酸化物に元素Xおよびハロゲンが添加された領域の結晶構造を有すればよく、その組成が厳密にLi:M:O=1:1:2に限定されるものではない。
LiMOで表される複合酸化物が元素Xおよびハロゲンを有することにより、結晶構造をより安定化させる場合がある。
また、元素Xとして、マグネシウムを用いることが特に好ましい。また、ハロゲンとして、フッ素を用いることが特に好ましい。元素Xおよびハロゲンを有する領域は、マグネシウムおよびフッ素が添加されたコバルト酸リチウム、マグネシウム、フッ素およびチタンが添加されたコバルト酸リチウム、マグネシウムおよびフッ素が添加されたニッケル−コバルト酸リチウム、マグネシウムおよびフッ素が添加されたコバルト−アルミニウム酸リチウム、ニッケル−コバルト−アルミニウム酸リチウム、マグネシウムおよびフッ素が添加されたニッケル−コバルト−アルミニウム酸リチウム、マグネシウムおよびフッ素が添加されたニッケル−マンガン−コバルト酸リチウム等を有してもよい。なお本明細書等において添加物のかわりに混合物、原料の一部、不純物などといってもよい。
また、元素Xおよびハロゲンを有する領域は例えば、酸素と元素Xの結合を有する領域であってもよい。酸素と元素Xの結合について、例えばXPS分析により解析を行うことができる。また、元素Xおよびハロゲンを有する領域は、酸化マグネシウムを有してもよい。
元素Xおよびハロゲンを有する領域は、互いに異なる元素、異なる結晶構造、異なる結合、等を有していてもよい。
粒子190において、充電により複合酸化物からキャリアイオンとなる金属が抜けても、複合酸化物の層状構造が崩れないよう、元素Xおよびハロゲンを有する領域、すなわち粒子の外周部である領域194または、複合酸化物を有する領域191と複合酸化物を有する領域193の間に配置される領域192が、補強している。
以下に、元素Xおよびハロゲンを有する領域として、LiMOで表される複合酸化物に元素Xおよびハロゲンが添加された領域を用いる場合を考える。
元素Xの一つであるマグネシウムは2価であり、層状岩塩型の結晶構造における遷移金属サイトよりもリチウムサイトに存在する方が安定であるため、リチウムサイトに入りやすい。マグネシウムが、元素Xおよびハロゲンを有する領域のリチウムサイトに適切な濃度で存在することで、層状岩塩型の結晶構造を保持しやすくできる。マグネシウムは、適切な濃度であれば充放電に伴うリチウムの挿入および離脱に悪影響を及ぼさず好ましい。しかしながら、過剰であるとリチウムの挿入および離脱に悪影響が出る恐れがある。
元素Xの一つであるアルミニウムは3価であり酸素との結合力が強い。そのため添加物としてアルミニウムを有すると、リチウムサイトに入ったときに結晶構造の変化が抑制できる。そのため充放電を繰り返しても結晶構造が崩れにくい粒子190とすることができる。
チタン酸化物は超親水性を有することが知られている。そのため、元素Xおよびハロゲンを有する領域にチタン酸化物を有することで、極性の高い溶媒に対して濡れ性がよくなる可能性がある。二次電池としたときに粒子190と、極性の高い電解液との界面の接触が良好となり、内部抵抗の上昇を抑制できる可能性がある。またチタン酸化物はリチウムの拡散が容易であり、充放電時に酸素を放出しにくい。これらの理由から、チタンは元素Xとして特に好適である。
二次電池の充電電圧の上昇に伴い、正極の電圧は一般的に上昇する。本発明の一態様の正極活物質は、高い電圧においても安定な結晶構造を有する。充電状態において正極活物質の結晶構造が安定であることにより、充放電の繰り返しに伴う充放電容量の低下を抑制することができる。
また、二次電池のショートは二次電池の充電動作や放電動作における不具合を引き起こすのみでなく、発熱および発火を招く恐れがある。安全な二次電池を実現するためには、高い充電電圧においてもショート電流が抑制されることが好ましい。本発明の一態様の正極活物質100は、高い充電電圧においてもショート電流が抑制される。そのため高い充放電容量と安全性と、を両立した二次電池とすることができる。
本発明の一態様の正極活物質100を用いた二次電池は好ましくは、高い充放電容量、優れた充放電サイクル特性、および安全性を同時に満たすことができる。
<粒界等>
本発明の一態様の粒子190(領域191及び領域192及び領域193)は、領域191及び領域192及び領域193のそれぞれまたはそのうちの一つが多結晶であってもよい。本発明の一態様の粒子190(領域191及び領域192及び領域193)が有する元素X又はハロゲンは、内部領域にランダムかつ希薄に存在していてもよい。なおこの場合の元素Xはマグネシウムまたはチタンであることが好ましい。
また、図3に示す結晶粒界197およびその近傍の元素Xおよびハロゲン濃度が高い場合、本発明の一態様の粒子190の結晶粒界に沿ってクラックが生じた場合でも、クラックにより生じた表面の近傍で元素Xおよびハロゲン濃度が高くなる。そのためクラックが生じた後の正極活物質においてもフッ酸に対する耐食性を高めることができる。
なお本明細書等において、結晶粒界の近傍とは、粒界から10nm程度までの領域をいうこととする。
また粒子190は、粒界の他に欠陥、クラック、凹凸、ひび等を有していてもよい。また領域192、領域193および領域194を欠いた部分があってもよい。図3A及び図3Bに図1及び図2に示した粒子190の変形例を示す。たとえば図3Aおよび図3Bの領域196aに示すように、領域193がなく領域192が表面に現れる部分、または領域194と領域192が接する部分を有していてもよい。
また図3Aおよび図3Bの領域196bに示すように、領域192がなく領域191と領域193が接する部分を有していてもよい。
また図3Aおよび図3Bの領域196cに示すように、領域194、領域193および領域192がなく、領域191が表面に現れる部分を有していてもよい。
また図3Aおよび図3Bの領域196dに示すように、欠陥、クラック、凹凸、ひび、粒界(領域195と領域193の粒界)等に他と異なる組成の領域195を有していてもよい。領域195は、領域191乃至領域194と異なる元素を有する領域、または異なる組成を有する領域、または異なる結晶構造を有する領域である。
領域195を有することで、過剰な不純物元素が領域195に偏在し、領域191乃至領域194に含まれる不純物元素が好ましい範囲に保たれる場合がある。そのため、領域195を有することでレート特性または充放電特性が良好な二次電池とすることができる場合がある。
上述の各領域は、各種分析またはそれの組み合わせにより異なる領域であることを判断することができる。分析としてはたとえば、TEM、STEM、HAADF−STEM、ABF−STEM等の電子顕微鏡像、SIMS、ToF−SIMS、X線回折(XRD)、電子線回折、中性子線回折などの回折像、電子線マイクロアナライザ(EPMA)、エネルギー分散型X線分析(EDX)等が挙げられる。たとえば粒子190の断面TEM像およびSTEM像では、構成元素の違いが像の明るさの違いとなって観察される場合がある。
また上述の各領域の境界は明瞭でない場合がある。隣り合う領域間で元素の濃度が濃度勾配を有していてもよい。また元素の濃度が連続的に変化していてもよい。また元素の濃度が段階的に変化していてもよい。または元素の濃度がグラデーションになっていてもよい。その場合の各領域の境界はたとえば、どちらかの領域に特有の元素の濃度が50%になる部分とすることができる。
<粒子の形状>
なお粒子190の形状は、図1乃至図3で示した形状に限らない。たとえば図4A1は粒子190の斜視図、図4A2は図4A1の断面図である。このように立方体(サイコロ型)であってもよい。
また、図4B1は粒子190の斜視図、図4B2は、図4B1の断面図である。このように直方体の粒子190であってもよい。
また図4C1は粒子190の斜視図、図4C2は図4C1の断面図である。このように六角柱状の粒子190であってもよい。
また図4D1は粒子190の斜視図、図4D2は図4D1の断面図である。このように8面体状の粒子190であってもよい。
また図4E1は粒子190の斜視図、図4E2は図4E1の断面図である。このように粒子190の外側の形状と、領域191および領域192の形状は異なっていてもよい。
<作製方法>
次に図5Aを用いて領域191乃至領域193を有する粒子190の作製方法の例について説明する。
まずステップS11として、リチウム源と、遷移金属源(M191源)と、を用意する。
次にステップS12として、リチウム源と、遷移金属源と、を混合して合成する。合成方法としてはたとえば、固相法でリチウム源と領域191が有する遷移金属源とを混合した後、加熱する方法がある。本実施の形態では、遷移金属源としてコバルトを用いる。
このようにして、領域191に用いる複合酸化物を作製する(ステップS13)。なお、あらかじめ合成されたコバルト酸リチウムを用いてもよい。例えば、日本化学工業株式会社製のコバルト酸リチウム粒子(商品名:セルシードC−10N)を用いる。これは平均粒子径(D50)が約12μmである。
次にステップS21として、X源(X192源)と、ハロゲン源と、を用意する。ハロゲン源としてはフッ化リチウム(LiF)を用意する。LiFはLiCoOと共通のカチオンを有するため好ましい。またLiFは融点が848℃と比較的低く、後述するアニール工程で溶融しやすいため好ましい。また、LiFに加えて、MgFを用いてもよい。また、本発明の一態様に用いることができるフッ化物は、LiFやMgFに限られない。
次にステップS31として、複合酸化物と、X源と、ハロゲン源と、を混合して合成する。合成方法としてはたとえば、固相法でこれらを混合した後、加熱する方法がある。加熱温度は、LiCoOの分解温度(1130℃)以下である必要がある。また、LiCoOの分解温度は1130℃であるが、その近傍の温度では、微量ではあるがLiCoOの分解が懸念される。そのため、アニール温度としては、1130℃以下であることが好ましく、1000℃以下であることがより好ましい。具体的には735℃以上1000℃以下にまで低温化できる。ステップS13の粒子の平均粒子径(D50)が12μm程度の場合、加熱時間は例えば3時間以上が好ましく、10時間以上がより好ましい。一方、ステップS13の粒子の平均粒子径(D50)が5μm程度の場合、加熱時間は例えば1時間以上10時間以下が好ましく、2時間程度がより好ましい。加熱後の降温時間は、例えば10時間以上50時間以下とすることが好ましい。
このようにして、領域191および領域192に用いる複合酸化物を作製する(ステップS32)。本実施の形態では、領域192に不純物としてフッ素及びマグネシウムを含む。領域192におけるマグネシウムの存在は、ステップS32での粒子の一部をEDXで測定すると、マグネシウムに関しては粒子の表面層にマグネシウムのピークを確認できることから推定される。また、ステップS32での領域192におけるマグネシウムの濃度は例えば、ICP−MS等を用いて粒子全体の元素分析を行った値とみなすことができる。また、ステップS32での粒子についてXPS分析をしたとき、コバルトの濃度を1としたときの、マグネシウムの濃度の相対値は0.4以上1.5以下が好ましく、0.45以上1.00未満がより好ましい。またフッ素濃度の相対値は0.05以上1.5以下が好ましく、0.3以上1.00以下がより好ましい。
次にステップS41として、リチウム源と、遷移金属源(M193源)と、を用意する。本実施の形態では、遷移金属源としてニッケル及びマンガンを用いる。
次にステップS71として、領域191および領域192に用いる複合酸化物と、リチウム源と、領域193が有する遷移金属源と、を合成する。合成方法としてはたとえば、固相法でこれらを混合した後、加熱する方法がある。
このようにして、粒子190を作製する(ステップS72)。
なお領域191に用いる複合酸化物は、領域193に用いる複合酸化物よりも融点の高い材料であることが好ましい。または領域191に用いる複合酸化物は、領域193が有する複合酸化物よりも熱的安定性の高い材料であることが好ましい。この融点または熱的安定性の違いにより、たとえばステップS71の合成における加熱を、領域191に用いる複合酸化物が安定でありつつ、領域193に含まれる複合酸化物が十分に相互拡散する温度および時間に設定することができる。
また領域192に用いる元素Xの陽イオンのイオン半径は、領域191に用いる金属の陽イオンのイオン半径よりも大きいことが好ましい。このようなイオン半径の違いにより、元素Xが領域192に偏在しやすくなる。また領域192が、領域191と領域193の元素の相互拡散を抑制する機能を発揮しやすくなる。
領域191乃至領域194を有する粒子190は、たとえば図5Bに示すように作製することができる。
ステップS11乃至ステップS41までは図5Aと同様に作製することができる。
次に、ステップS51として、複合酸化物と、リチウム源と、遷移金属源と、を混合して合成する。合成方法としてはたとえば、固相法でこれらを混合した後、加熱する方法がある。
このようにして、領域191乃至領域193に用いる複合酸化物を作製する(ステップS52)。
次に、ステップS61として、X源(X194源)と、ハロゲン源と、を用意する。
次に、ステップS71として、複合酸化物と、X源と、ハロゲン源と、を混合して合成する。合成方法としてはたとえば、固相法でこれらを混合した後、加熱する方法がある。
このようにして、粒子190を作製する(ステップS72)。
また領域194に用いる元素Xの陽イオンのイオン半径は、領域193に用いる金属の陽イオンのイオン半径よりも大きいことが好ましい。このようなイオン半径の違いにより、元素Xが領域194に偏在しやすくなる。
本実施の形態は、他の実施の形態と組み合わせて用いることができる。
(実施の形態2)
本実施の形態では、図1Aに示した領域191(コア)に用いる材料の一例を示す。領域191として、コバルト酸リチウム(LiCoO)などの層状岩塩型の結晶構造を有する材料は、放電容量が高く、二次電池の正極活物質として優れる。
層状岩塩型の結晶構造を有する材料として例えば、LiMOで表される複合酸化物が挙げられる。なお本明細書等においてLiMOで表すリチウム複合酸化物は、層状岩塩型の結晶構造を有すればよく、その組成が厳密にLi:M:O=1:1:2に限定されるものではない。図6を参照しながら、正極活物質が有する遷移金属Mとしてコバルトを用いる場合について述べる。
遷移金属化合物におけるヤーン・テラー効果は、遷移金属のd軌道の電子の数により、その効果の強さが異なることが知られている。
ニッケルを有する化合物においては、ヤーン・テラー効果により歪みが生じやすい場合がある。よって、LiNiOにおいて高電圧における充放電を行った場合、歪みに起因する結晶構造の崩れが生じる懸念がある。LiCoOにおいてはヤーン・テラー効果の影響が小さいことが示唆され、高電圧で充電されたときの耐性がより優れる場合があり好ましい。
図6に示す結晶構造を有する正極活物質は、後述する作製方法にて作製することが可能なコバルト酸リチウム、即ちハロゲンおよびマグネシウムが添加されないコバルト酸リチウム(LiCoO)である。当該コバルト酸リチウムは、充電深度によって結晶構造が変化する。
図6に示すように、充電深度0(放電状態)であるコバルト酸リチウムは、空間群R−3mの結晶構造を有する領域を有し、リチウムが8面体(Octahedral)サイトを占有し、ユニットセル中にCoO層が3層存在する。そのためこの結晶構造を、O3型結晶構造と呼ぶ場合がある。なお、CoO層とはコバルトに酸素が6配位した8面体構造が、稜共有の状態で平面に連続した構造をいうこととする。
また充電深度1のときは、空間群P−3m1の結晶構造を有し、ユニットセル中にCoO層が1層存在する。そのため、この結晶構造を、O1型結晶構造と呼ぶ場合がある。
また充電深度が0.8程度のときのコバルト酸リチウムは、空間群R−3mの結晶構造を有する。この構造は、P−3m1(O1)のようなCoOの構造と、R−3m(O3)のようなLiCoOの構造と、が交互に積層された構造ともいえる。そのためこの結晶構造を、H1−3型結晶構造と呼ぶ場合がある。なお、実際にはH1−3型結晶構造は、ユニットセルあたりのコバルト原子の数が他の構造の2倍となっている。しかし図6をはじめ本明細書では、他の結晶構造と比較しやすくするためH1−3型結晶構造のc軸をユニットセルの1/2にした図で示すこととする。
H1−3型結晶構造は一例として、非特許文献2に記載があるように、ユニットセルにおけるコバルトと酸素の座標を、Co(0、0、0.42150±0.00016)、O(0、0、0.27671±0.00045)、O(0、0、0.11535±0.00045)と表すことができる。OおよびOはそれぞれ酸素原子である。このようにH1−3型結晶構造は、1つのコバルトおよび2つの酸素を用いたユニットセルにより表される。
また、図1Bに示した領域193、及び領域194に用いる材料の一例を以下に示す。図1Bに示した領域191または領域192の少なくとも一に用いる材料は、リチウムと、遷移金属Mとしてコバルトと、酸素と、マグネシウムを有することが好ましい。また、領域192および領域194の不純物はフッ素、塩素等のハロゲンを有することが好ましい。
コバルト酸リチウム(LiCoO)にマグネシウム及びフッ素を添加した場合、充電深度0(放電状態)の結晶構造は、R−3m(O3)であるが、十分に充電された充電深度の場合、H1−3型結晶構造とは異なる構造の結晶を有する。本構造は、空間群R−3mに帰属され、コバルト、マグネシウム等のイオンが酸素6配位位置を占める。また、本構造のCoO層の対称性はO3型と同じである。よって、本構造を本明細書等ではO3’型の結晶構造と呼称する。また、O3型結晶構造及びO3’型結晶構造のいずれの場合も、CoO層の間、つまりリチウムサイトに、希薄にマグネシウムが存在することが好ましい。また、酸素サイトに、ランダムかつ希薄に、フッ素が存在することが好ましい。
O3’型の結晶構造は好ましくは、1つのコバルトおよび1つの酸素を用いたユニットセルにより表される。これは、O3’型の結晶構造の場合とH1−3型結晶構造の場合では、コバルトと酸素との対称性が異なり、O3’型の結晶構造の方が、H1−3型結晶構造に比べてO3の構造からの変化が小さいことを示す。正極活物質が有する結晶構造をいずれのユニットセルを用いて表すのがより好ましいか、の選択は例えば、XRDのリートベルト解析において、GOF(goodness of fitness)の値がより小さくなるように選択すればよい。
なお、O3’型の結晶構造は、リチウムなどの軽元素は酸素4配位位置を占める場合がありうる。
また、正極活物質の有する結晶構造を示した図7ではリチウムが全てのリチウムサイトに同じ確率で存在するように示したが、O3’型の結晶構造はこれに限らない。一部のリチウムサイトに偏って存在していてもよい。例えば空間群P2/mに属するLi0.5CoOと同様に、整列した一部のリチウムサイトに存在していてもよい。リチウムの分布は、たとえば中性子回折により分析することができる。また、図7の結晶構造は、a軸の格子定数2.871Å、c軸の格子定数13.781Åとしている。
またO3’型の結晶構造は、層間にランダムにLiを有するもののCdCl型の結晶構造に類似する結晶構造であるということもできる。このCdCl型に類似した結晶構造は、ニッケル酸リチウムを充電深度0.94まで充電したとき(Li0.06NiO)の結晶構造と近いが、純粋なコバルト酸リチウム、またはコバルトを多く含む層状岩塩型の正極活物質では通常この結晶構造を取らないことが知られている。
O3’型の結晶構造を有する正極活物質では、高電圧で充電し多くのリチウムが離脱したときの、結晶構造の変化が、図6に示す結晶構造よりも抑制されている。例えば、図7中に点線で示すように、これらの結晶構造ではCoO層のずれがほとんどない。
より詳細に説明すれば、図7に示す結晶構造を有する正極活物質は、充電電圧が高い場合にも結晶構造の安定性が高い。例えば、図7の結晶構造を有する正極活物質においてはH1−3型結晶構造となる充電電圧、例えばリチウム金属の電位を基準として4.6V程度の電圧においてもR−3m(O3)の結晶構造を保持できる充電電圧の領域が存在し、さらに充電電圧を高めた領域、例えばリチウム金属の電位を基準として4.65V以上4.7V以下の電圧においてもO3’型の結晶構造を取り得る領域が存在する。さらに充電電圧を高めるとようやく、H1−3型結晶が観測される場合がある。また、充電電圧がより低い場合(たとえば充電電圧がリチウム金属の電位を基準として4.5V以上4.6V未満でも、O3’型結晶構造を取り得る場合が有る。
このように、図7に示す結晶構造を有する正極活物質は、高電圧で充放電を繰り返しても結晶構造が崩れにくいため、コアに適しているといえる。
ここでは、コアに用いる材料の一例として、コバルト酸リチウム(LiCoO)の例を示したが一例であって特に限定されない。
なおO3’型の結晶構造は、ユニットセルにおけるコバルトと酸素の座標を、Co(0,0,0.5)、O(0,0,x)、0.20≦x≦0.25の範囲内で示すことができる。
CoO層間、つまりリチウムサイトにランダムかつ希薄に存在する添加物、たとえばマグネシウムは、高電圧で充電したときにCoO層のずれを抑制する効果がある。そのためCoO層間にマグネシウムが存在すると、O3’型の結晶構造になりやすい。そのためマグネシウムは図7に示す結晶構造を有する正極活物質の粒子全体に分布していることが好ましい。またマグネシウムを粒子全体に分布させるために、図7に示す結晶構造を有する正極活物質の作製工程において、加熱処理を行うことが好ましい。
しかしながら、加熱処理の温度が高すぎると、カチオンミキシングが生じて添加物、たとえばマグネシウムがコバルトサイトに入る可能性が高まる。コバルトサイトに存在するマグネシウムは、高電圧充電時においてR−3mの構造を保つ効果がない。さらに、加熱処理の温度が高すぎると、コバルトが還元されて2価になってしまう、リチウムが蒸散するなどの悪影響も懸念される。
そこで、マグネシウムを粒子全体に分布させるための加熱処理よりも前に、コバルト酸リチウムに融剤として機能する材料を加えておくことが好ましい。これにより融点降下が起こる。融点降下させることで、カチオンミキシングが生じにくい温度で、マグネシウムを粒子全体に分布させることが容易となる。さらに融剤として機能する材料がフッ素を有すれば、電解液が分解して生じたフッ酸に対する耐食性が向上することが期待できる。
なお、マグネシウム濃度を所望の値以上に高くすると、結晶構造の安定化への効果が小さくなってしまう場合がある。マグネシウムが、リチウムサイトに加えて、コバルトサイトにも入るようになるためと考えられる。図7に示す結晶構造を有する正極活物質が有するマグネシウムの原子数は、遷移金属Mの原子数の0.001倍以上0.1倍以下が好ましく、0.01より大きく0.04未満がより好ましく、0.02程度がさらに好ましい。または0.001倍以上0.04未満が好ましい。または0.01以上0.1以下が好ましい。ここで示すマグネシウムの濃度は例えば、ICP−MS等を用いて正極活物質の粒子全体の元素分析を行った値であってもよいし、正極活物質の作製の過程における原料の配合の値に基づいてもよい。
コバルト酸リチウムにコバルト以外の金属(以下、金属Z)として、例えばニッケル、アルミニウム、マンガン、チタン、バナジウムおよびクロムから選ばれる一以上の金属を添加してもよく、特にニッケルおよびアルミニウムの一以上を添加することが好ましい。マンガン、チタン、バナジウムおよびクロムは安定に4価を取りやすい場合があり、構造安定性への寄与が高い場合がある。金属Zを添加することにより図7に示す結晶構造を有する正極活物質は、例えば、高電圧での充電状態において結晶構造がより安定になる場合がある。ここで、図7に示す結晶構造を有する正極活物質において、金属Zは、コバルト酸リチウムの結晶性を大きく変えることのない濃度で添加されることが好ましい。例えば、前述のヤーン・テラー効果等を発現しない程度の量であることが好ましい。
図7中の凡例に示すように、ニッケル、マンガンをはじめとする遷移金属およびアルミニウムはコバルトサイトに存在することが好ましいが、一部がリチウムサイトに存在していてもよい。またマグネシウムはリチウムサイトに存在することが好ましい。酸素は、一部がフッ素と置換されていてもよい。
図7に示す結晶構造を有する正極活物質のマグネシウム濃度が高くなるのに伴って正極活物質の充放電容量が減少することがある。その要因として例えば、リチウムサイトにマグネシウムが入ることにより、充放電に寄与するリチウム量が減少する可能性がある。また、過剰なマグネシウムが、充放電に寄与しないマグネシウム化合物を生成する場合もある。図7に示す結晶構造を有する正極活物質がマグネシウムに加えて、金属Zとしてニッケルを有することにより、重量あたりおよび体積あたりの充放電容量を高めることができる場合がある。また図7に示す結晶構造を有する正極活物質がマグネシウムに加えて、金属Zとしてアルミニウムを有することにより、重量あたりおよび体積あたりの充放電容量を高めることができる場合がある。また図7に示す結晶構造を有する正極活物質がマグネシウムに加えてニッケルおよびアルミニウムを有することにより、重量あたりおよび体積あたりの充放電容量を高めることができる場合がある。
以下に、図7に示す結晶構造を有する正極活物質が有するマグネシウム、金属Z、等の元素の好ましい濃度を、原子数を用いて表す。
図7に示す結晶構造を有する正極活物質が有するニッケルの原子数は、コバルトの原子数の0%を超えて7.5%以下が好ましく、0.05%以上4%以下がより好ましく、0.1%以上2%以下がさらに好ましい。または0%を超えて4%以下が好ましい。または0%を超えて2%以下が好ましい。または0.05%以上7.5%以下が好ましい。または0.05%以上2%以下が好ましい。または0.1%以上7.5%以下が好ましい。または0.1%以上4%以下が好ましい。ここで示すニッケルの濃度は例えば、ICP−MS等を用いて正極活物質の粒子全体の元素分析を行った値であってもよいし、正極活物質の作製の過程における原料の配合の値に基づいてもよい。
上記の濃度で含まれるニッケルは図7に示す結晶構造を有する正極活物質の全体に均一に固溶しやすいため、特に内部100bの結晶構造の安定化に寄与する。また内部100bに2価のニッケルが存在すると、その近くではリチウムサイトにランダムかつ希薄に存在する2価の添加元素、たとえばマグネシウムがより安定に存在できる可能性がある。そのため高電圧での充放電を経てもマグネシウムの溶出が抑制されうる。そのため充放電サイクル特性が向上しうる。このように内部100bにおけるニッケルの効果と、表層部100aにおけるマグネシウム、アルミニウム、チタン、フッ素等の効果と、を両方併せ持つと、高電圧充電時の結晶構造の安定化に極めて効果的である。
図7に示す結晶構造を有する正極活物質が有するアルミニウムの原子数は、コバルトの原子数の0.05%以上4%以下が好ましく、0.1%以上2%以下がより好ましく、0.3%以上1.5%以下がさらに好ましい。または0.05%以上2%以下が好ましい。または0.1%以上4%以下が好ましい。ここで示すアルミニウムの濃度は例えば、GD−MS、ICP−MS等を用いて正極活物質の粒子全体の元素分析を行った値であってもよいし、正極活物質の作製の過程における原料の配合の値に基づいてもよい。
図7に示す結晶構造を有する正極活物質が元素Xに加えてマグネシウムを有する場合、高電圧の充電状態における安定性が極めて高い。元素Xがリンである場合、リンの原子数は、コバルトの原子数の1%以上20%以下が好ましく、2%以上10%以下がより好ましく、3%以上8%以下がさらに好ましい。または1%以上10%以下が好ましい。または1%以上8%以下が好ましい。または2%以上20%以下が好ましい。または2%以上8%以下が好ましい。または3%以上20%以下が好ましい。または3%以上10%以下が好ましい。加えてマグネシウムの原子数は、コバルトの原子数の0.1%以上10%以下が好ましく、0.5%以上5%以下がより好ましく、0.7%以上4%以下がさらに好ましい。または0.1%以上5%以下が好ましい。または0.1%以上4%以下が好ましい。または0.5%以上10%以下が好ましい。または0.5%以上4%以下が好ましい。または0.7%以上10%以下が好ましい。または0.7%以上5%以下が好ましい。ここで示すリンおよびマグネシウムの濃度は例えば、ICP−MS等を用いて正極活物質の粒子全体の元素分析を行った値であってもよいし、正極活物質の作製の過程における原料の配合の値に基づいてもよい。
以上のような構成を有する正極活物質は、高電圧の充放電の繰り返しにおいて、CoO層のずれを小さくすることができる。さらに、体積の変化を小さくすることができる。よって、図7に示す結晶構造を少なくともコアの一部に有する正極活物質を用いた二次電池は、優れたサイクル特性を実現することができる。また、図7に示す結晶構造をコアに有する正極活物質は、高電圧の充電状態において安定な結晶構造を取り得る。よって、図7に示す結晶構造をコアに有する正極活物質を用いた二次電池は、高電圧の充電状態を保持した場合において、ショートが生じづらい場合がある。そのような場合には二次電池の安全性がより向上するため、好ましい。
図7に示す結晶構造をコアに有する正極活物質は、十分に放電された状態と、高電圧で充電された状態における、結晶構造の変化および同数の遷移金属原子あたりで比較した場合の体積の差が小さい。
また結晶構造の空間群はXRD、電子線回折、中性子線回折等によって同定されるものである。そのため本明細書等において、ある空間群に属する、またはある空間群であるとは、ある空間群に同定されると言い換えることができる。
本実施の形態は、他の実施の形態と自由に組み合わせることができる。
(実施の形態3)
本実施の形態では、実施の形態1で説明した粒子190を用いた二次電池を作製する例を示す。実施の形態1で説明した粒子190は、正極の作製に用いる。二次電池は、外装体、集電体、活物質(正極活物質、或いは負極活物質)、導電助剤、及びバインダーを少なくとも有している。また、リチウム塩などを溶解させた電解液を有している。電解液を用いる二次電池の場合、正極と、負極と、正極と負極の間にセパレータとを設ける。
[正極]
まず、正極について説明する。正極は、正極活物質層および集電体を有する。図8Aは正極の断面の模式図の一例を示している。
集電体500は金属箔であり、金属箔上にスラリーを塗布して乾燥させることによって正極を形成する。乾燥後、さらにプレスを加える場合もある。正極は、集電体500上に活物質層を形成したものである。
スラリーとは、集電体500上に活物質層を形成するために用いる材料液であり、少なくとも活物質とバインダーと溶媒を含有し、好ましくはさらに導電助剤を混合させたものを指している。スラリーは電極用スラリーや活物質スラリーと呼ばれることもあり、正極活物質層を形成する場合には正極用スラリーを用い、負極活物質層を形成する場合には負極用スラリーと呼ばれることもある。
導電助剤は、導電付与剤、導電材とも呼ばれ、炭素材料が用いられる。複数の活物質の間に導電助剤を付着させることで複数の活物質同士が電気的に接続され、導電性が高まる。なお、「付着」とは、活物質と導電助剤が物理的に密着していることのみを指しているのではなく、共有結合が生じる場合、ファンデルワールス力により結合する場合、活物質の表面の一部を導電助剤が覆う場合、活物質の表面凹凸に導電助剤がはまりこむ場合、互いに接していなくとも電気的に接続される場合などを含む概念とする。
導電助剤として用いられる炭素材料として代表的なものにカーボンブラック(ファーネスブラック、アセチレンブラック、黒鉛など)がある。
図8Aでは、導電助剤としてアセチレンブラック503を図示している。また、図8Aでは、実施の形態1で説明した粒子190よりも粒径の小さい第2の活物質502を混合している例を示している。大きさの異なる粒子を混合することで高密度の正極を得ることができる。なお、実施の形態1で説明した粒子190は、図8Aの活物質501に相当する。
二次電池の正極として、金属箔などの集電体500と、活物質と、を固着させるために、バインダー(樹脂)を混合している。バインダーは結着材とも呼ばれる。バインダーは高分子材料であり、バインダーを多く含ませると正極における活物質の割合が低下して、二次電池の放電容量が小さくなる。そこでバインダーの量は最小限に混合させている。図8Aにおいて、活物質501、第2の活物質502、アセチレンブラック503で埋まっていない領域は、空隙またはバインダーを指している。
また、図8Aでは活物質501のコア領域とシェル領域の境界を活物質501の内部に点線で示している。なお、図8Aでは活物質501を球形として図示した例を示しているが、特に限定されず、色々な形状であってもよい。活物質501の断面形状は楕円形、長方形、台形、錐形、角が丸まった四角形、非対称の形状であってもよい。
図8Bでは、活物質501が様々な形状として図示されている。図8Bは、図8Aと異なる例を示している。
また、図8Bの正極では、導電助剤として用いられる炭素材料として、グラフェン504を用いている。
グラフェンは電気的、機械的または化学的に驚異的な特性を有することから、グラフェンを利用した電界効果トランジスタや太陽電池等様々な分野の応用が期待される炭素材料である。
図8Bは集電体500上に活物質501、グラフェン504、アセチレンブラック503を有する正極活物質層を形成している。
なお、グラフェン504、アセチレンブラック503を混合し、電極スラリーを得る工程において、混合するカーボンブラックの重量はグラフェンの1.5倍以上20倍以下、好ましくは2倍以上9.5倍以下の重量とすることが好ましい。
また、グラフェン504とアセチレンブラック503の混合を上記範囲とすると、スラリー調製時に、アセチレンブラック503の分散安定性に優れ、凝集部が生じにくい。また、グラフェン504とアセチレンブラック503の混合を上記範囲とすると、アセチレンブラック503のみを導電助剤に用いる正極よりも高い電極密度とすることができる。電極密度を高くすることで、重量単位当たりの容量を大きくすることができる。具体的には、重量測定による正極活物質層の密度は、3.5g/ccより高くすることができる。また、実施の形態1で説明した粒子190を正極に用い、且つ、グラフェン504とアセチレンブラック503の混合を上記範囲とすると、二次電池がより高容量となることについて相乗効果が期待でき好ましい。
また、グラフェンのみを導電助剤に用いる正極に比べると電極密度は低いが、第1の炭素材料(グラフェン)と第2の炭素材料(アセチレンブラック)の混合を上記範囲とすることで、急速充電に対応することができる。また、実施の形態1で説明した粒子190を正極に用い、且つ、グラフェン504とアセチレンブラック503の混合を上記範囲とすると、二次電池がより安定性を増し、さらなる急速充電に対応できることについて相乗効果が期待でき好ましい。
これらのことは、車載用の二次電池として有効である。
二次電池の数を増やして車両の重量が増加すると、移動させるエネルギーが増加するため、航続距離も短くなる。高密度の二次電池を用いることで同じ重量の二次電池を搭載する車両の総重量をほとんど変えることなく航続距離を維持できる。
また、車両の二次電池が高容量になると充電する電力が必要とされるため、短時間で充電を終了させることが望ましい。また、車両のブレーキをかけた時に一時的に発電させて、それを充電する、いわゆる回生充電において高レート充電条件での充電が行われるため、良好なレート特性が車両用二次電池に求められている。
実施の形態1で説明した粒子190を正極に用い、且つ、アセチレンブラックとグラフェンの混合比を最適範囲とすることで、電極の高密度化とイオン電導に必要な適切な隙間を作り出すことの両立が可能となり、高エネルギー密度かつ良好な出力特性をもつ車載用の二次電池を得ることができる。
また、携帯情報端末においても本構成は有効であり、実施の形態1で説明した粒子190を正極に用い、且つ、アセチレンブラックとグラフェンの混合比を最適範囲とすることで二次電池を小型化し、高容量とすることもできる。また、アセチレンブラックとグラフェンの混合比を最適範囲とすることで携帯情報端末の急速充電も可能である。
また、図8B中、活物質501のコア領域とシェル領域の境界を活物質501の内部に点線で示している。なお、図8Bにおいて、活物質501、グラフェン504、アセチレンブラック503で埋まっていない領域は、空隙またはバインダーを指している。空隙は電解液の浸み込みに必要であるが、多すぎると電極密度が低下し、少なすぎると電解液が浸み込まず、二次電池とした後も空隙として残ってしまうため効率が低下してしまう。
実施の形態1で説明した粒子190を正極に用い、且つ、アセチレンブラックとグラフェンの混合比を最適範囲とすることで電極の高密度化とイオン電導に必要な適切な隙間を作り出すことの両立が可能となり、高エネルギー密度かつ良好な出力特性をもつ二次電池を得ることができる。
図8Cでは、グラフェンに代えてカーボンナノチューブ505を用いる正極の例を図示している。図8Cは、図8Bと異なる例を示している。カーボンナノチューブ505を用いるとアセチレンブラック503などのカーボンブラックの凝集を防ぎ、分散性を高めることができる。
なお、図8Cにおいて、活物質501、カーボンナノチューブ505、アセチレンブラック503で埋まっていない領域は、空隙またはバインダーを指している。
また、他の正極の例として、図8Dを図示している。図8Cでは、グラフェン504に加えてカーボンナノチューブ505を用いる例を示している。グラフェン504及びカーボンナノチューブ505の両方を用いると、アセチレンブラック503などのカーボンブラックの凝集を防ぎ、分散性をより高めることができる。
なお、図8Dにおいて、活物質501、カーボンナノチューブ505、グラフェン504、アセチレンブラック503で埋まっていない領域は、空隙またはバインダーを指している。
図8A、図8B、図8C及び図8Dのいずれか一の正極を用い、正極上にセパレータを重ね、セパレータ上に負極を重ねた積層体を収容する容器(外装体、金属缶など)などに入れ、容器に電解液を充填させることで二次電池を作製することができる。
また、上記構成は、電解液を用いる二次電池の例を示したが特に限定されない。
例えば、実施の形態1で説明した粒子190を用いて半固体電池や全固体電池を作製することもできる。
本明細書等において半固体電池とは、電解質層、正極、負極の少なくとも一に、半固体材料を有する電池をいう。ここでいう半固体とは、固体材料の比が50%であることは意味しない。半固体とは、体積変化が小さいといった固体の性質を有しつつも、柔軟性を有する等の液体に近い性質も一部持ち合わせることを意味する。これらの性質を満たせば、単一の材料でも、複数の材料であってもよい。たとえば液体の材料を、多孔質の固体材料に浸潤させた物であってもよい。
また本明細書等において、ポリマー電解質二次電池とは、正極と負極の間の電解質層にポリマーを有する二次電池をいう。ポリマー電解質二次電池は、ドライ(または真性)ポリマー電解質電池、およびポリマーゲル電解質電池を含む。またポリマー電解質二次電池を半固体電池と呼んでもよい。
実施の形態1で説明した粒子190を用いて半固体電池を作製した場合、半固体電池は、充放電容量の大きい二次電池となる。また、充放電電圧の高い半固体電池とすることができる。または、安全性または信頼性の高い半固体電池を実現することができる。
[負極]
負極は、負極活物質層および負極集電体を有する。また、負極活物質層は、導電助剤および結着剤を有していてもよい。
<負極活物質>
負極活物質としては、例えば合金系材料や炭素系材料等を用いることができる。
負極活物質として、リチウムとの合金化・脱合金化反応により充放電反応を行うことが可能な元素を用いることができる。例えば、シリコン、スズ、ガリウム、アルミニウム、ゲルマニウム、鉛、アンチモン、ビスマス、銀、亜鉛、カドミウム、インジウム等のうち少なくとも一つを含む材料を用いることができる。このような元素は炭素と比べて容量が大きく、特にシリコンは理論容量が4200mAh/gと高い。このため、負極活物質にシリコンを用いることが好ましい。また、これらの元素を有する化合物を用いてもよい。例えば、SiO、MgSi、MgGe、SnO、SnO、MgSn、SnS、VSn、FeSn、CoSn、NiSn、CuSn、AgSn、AgSb、NiMnSb、CeSb、LaSn、LaCoSn、CoSb、InSb、SbSn等がある。ここで、リチウムとの合金化・脱合金化反応により充放電反応を行うことが可能な元素、および該元素を有する化合物等を合金系材料と呼ぶ場合がある。
本明細書等において、SiOは例えば一酸化シリコンを指す。あるいはSiOは、SiOと表すこともできる。ここでxは1または1近傍の値を有することが好ましい。例えばxは、0.2以上1.5以下が好ましく、0.3以上1.2以下がより好ましい。
炭素系材料としては、黒鉛、易黒鉛化性炭素(ソフトカーボン)、難黒鉛化性炭素(ハードカーボン)、カーボンナノチューブ、グラフェン、カーボンブラック等を用いればよい。
黒鉛としては、人造黒鉛や、天然黒鉛等が挙げられる。人造黒鉛としては例えば、メソカーボンマイクロビーズ(MCMB)、コークス系人造黒鉛、ピッチ系人造黒鉛等が挙げられる。ここで人造黒鉛として、球状の形状を有する球状黒鉛を用いることができる。例えば、MCMBは球状の形状を有する場合があり、好ましい。また、MCMBはその表面積を小さくすることが比較的容易であり、好ましい場合がある。天然黒鉛としては例えば、鱗片状黒鉛、球状化天然黒鉛等が挙げられる。
黒鉛はリチウムイオンが黒鉛に挿入されたとき(リチウム−黒鉛層間化合物の生成時)にリチウム金属と同程度に低い電位を示す(0.05V以上0.3V以下 vs.Li/Li)。これにより、リチウムイオン二次電池は高い作動電圧を示すことができる。さらに、黒鉛は、単位体積当たりの容量が比較的高い、体積膨張が比較的小さい、安価である、リチウム金属に比べて安全性が高い等の利点を有するため、好ましい。
また、負極活物質として、二酸化チタン(TiO)、リチウムチタン酸化物(LiTi12)、リチウム−黒鉛層間化合物(Li)、五酸化ニオブ(Nb)、酸化タングステン(WO)、酸化モリブデン(MoO)等の酸化物を用いることができる。
また、負極活物質として、リチウムと遷移金属の複窒化物である、LiN型構造をもつLi3−xN(M=Co、Ni、Cu)を用いることができる。例えば、Li2.6Co0.4は大きな充放電容量(900mAh/g、1890mAh/cm)を示し好ましい。
リチウムと遷移金属の複窒化物を用いると、負極活物質中にリチウムイオンを含むため、正極活物質としてリチウムイオンを含まないV、Cr等の材料と組み合わせることができ好ましい。なお、正極活物質にリチウムイオンを含む材料を用いる場合でも、あらかじめ正極活物質に含まれるリチウムイオンを脱離させることで、負極活物質としてリチウムと遷移金属の複窒化物を用いることができる。
また、コンバージョン反応が生じる材料を負極活物質として用いることもできる。例えば、酸化コバルト(CoO)、酸化ニッケル(NiO)、酸化鉄(FeO)等の、リチウムとの合金を作らない遷移金属酸化物を負極活物質に用いてもよい。コンバージョン反応が生じる材料としては、さらに、Fe、CuO、CuO、RuO、Cr等の酸化物、CoS0.89、NiS、CuS等の硫化物、Zn、CuN、Ge等の窒化物、NiP、FeP、CoP等のリン化物、FeF、BiF等のフッ化物でも起こる。
負極活物質層が有することのできる導電助剤およびバインダーとしては、正極活物質層が有することのできる導電助剤およびバインダーと同様の材料を用いることができる。
<負極集電体>
負極集電体には、正極集電体と同様の材料を用いることができる。なお負極集電体は、リチウム等のキャリアイオンと合金化しない材料を用いることが好ましい。
[セパレータ]
正極と負極の間にセパレータを配置する。セパレータとしては、例えば、紙をはじめとするセルロースを有する繊維、不織布、ガラス繊維、セラミックス、或いはナイロン(ポリアミド)、ビニロン(ポリビニルアルコール系繊維)、ポリエステル、アクリル、ポリオレフィン、ポリウレタンを用いた合成繊維等で形成されたものを用いることができる。セパレータは袋状に加工し、正極または負極のいずれか一方を包むように配置することが好ましい。
セパレータは多層構造であってもよい。例えばポリプロピレン、ポリエチレン等の有機材料フィルムに、セラミック系材料、フッ素系材料、ポリアミド系材料、またはこれらを混合したもの等をコートすることができる。セラミック系材料としては、例えば酸化アルミニウム粒子、酸化シリコン粒子等を用いることができる。フッ素系材料としては、例えばPVDF、ポリテトラフルオロエチレン等を用いることができる。ポリアミド系材料としては、例えばナイロン、アラミド(メタ系アラミド、パラ系アラミド)等を用いることができる。
セラミック系材料をコートすると耐酸化性が向上するため、高電圧充放電の際のセパレータの劣化を抑制し、二次電池の信頼性を向上させることができる。またフッ素系材料をコートするとセパレータと電極が密着しやすくなり、出力特性を向上させることができる。ポリアミド系材料、特にアラミドをコートすると、耐熱性が向上するため、二次電池の安全性を向上させることができる。
例えばポリプロピレンのフィルムの両面に酸化アルミニウムとアラミドの混合材料をコートしてもよい。また、ポリプロピレンのフィルムの、正極と接する面に酸化アルミニウムとアラミドの混合材料をコートし、負極と接する面にフッ素系材料をコートしてもよい。
多層構造のセパレータを用いると、セパレータ全体の厚さが薄くても二次電池の安全性を保つことができるため、二次電池の体積あたりの容量を大きくすることができる。
[電解液]
電解液は、溶媒と電解質を有する。電解液の溶媒としては、非プロトン性有機溶媒が好ましく、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート、クロロエチレンカーボネート、ビニレンカーボネート、γ−ブチロラクトン、γ−バレロラクトン、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ギ酸メチル、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、酪酸メチル、1,3−ジオキサン、1,4−ジオキサン、ジメトキシエタン(DME)、ジメチルスルホキシド、ジエチルエーテル、メチルジグライム、アセトニトリル、ベンゾニトリル、テトラヒドロフラン、スルホラン、スルトン等の1種、又はこれらのうちの2種以上を任意の組み合わせおよび比率で用いることができる。
また、電解液の溶媒として、難燃性および難揮発性であるイオン液体(常温溶融塩)を一つ又は複数用いることで、二次電池の内部短絡や、過充電等によって内部温度が上昇しても、二次電池の破裂や発火などを防ぐことができる。イオン液体は、カチオンとアニオンからなり、有機カチオンとアニオンとを含む。電解液に用いる有機カチオンとして、四級アンモニウムカチオン、三級スルホニウムカチオン、および四級ホスホニウムカチオン等の脂肪族オニウムカチオンや、イミダゾリウムカチオンおよびピリジニウムカチオン等の芳香族カチオンが挙げられる。また、電解液に用いるアニオンとして、1価のアミド系アニオン、1価のメチド系アニオン、フルオロスルホン酸アニオン、パーフルオロアルキルスルホン酸アニオン、テトラフルオロボレートアニオン、パーフルオロアルキルボレートアニオン、ヘキサフルオロホスフェートアニオン、またはパーフルオロアルキルホスフェートアニオン等が挙げられる。
また、上記の溶媒に溶解させる電解質としては、例えばLiPF、LiClO、LiAsF、LiBF、LiAlCl、LiSCN、LiBr、LiI、LiSO、Li10Cl10、Li12Cl12、LiCFSO、LiCSO、LiC(CFSO、LiC(CSO、LiN(CFSO、LiN(CSO)(CFSO)、LiN(CSO等のリチウム塩を一種、又はこれらのうちの二種以上を任意の組み合わせおよび比率で用いることができる。
二次電池に用いる電解液は、粒状のごみや電解液の構成元素以外の元素(以下、単に「不純物」ともいう。)の含有量が少ない高純度化された電解液を用いることが好ましい。具体的には、電解液に対する不純物の重量比を1%以下、好ましくは0.1%以下、より好ましくは0.01%以下とすることが好ましい。
また、電解液にビニレンカーボネート、プロパンスルトン(PS)、tert−ブチルベンゼン(TBB)、フルオロエチレンカーボネート(FEC)、リチウムビス(オキサレート)ボレート(LiBOB)、またスクシノニトリル、アジポニトリル等のジニトリル化合物などの添加剤を添加してもよい。添加剤の濃度は、例えば溶媒全体に対して0.1wt%以上5wt%以下とすればよい。
また、ポリマーを電解液で膨潤させたポリマーゲル電解質を用いてもよい。
ポリマーゲル電解質を用いることで、漏液性等に対する安全性が高まる。また、二次電池の薄型化および軽量化が可能である。
ゲル化されるポリマーとして、シリコーンゲル、アクリルゲル、アクリロニトリルゲル、ポリエチレンオキサイド系ゲル、ポリプロピレンオキサイド系ゲル、フッ素系ポリマーのゲル等を用いることができる。例えばポリエチレンオキシド(PEO)などのポリアルキレンオキシド構造を有するポリマーや、PVDF、およびポリアクリロニトリル等、およびそれらを含む共重合体等を用いることができる。例えばPVDFとヘキサフルオロプロピレン(HFP)の共重合体であるPVDF−HFPを用いることができる。また、形成されるポリマーは、多孔質形状を有してもよい。
また、電解液の代わりに、硫化物系や酸化物系等の無機物材料を有する固体電解質や、PEO(ポリエチレンオキシド)系等の高分子材料を有する固体電解質を用いることができる。固体電解質を用いる場合には、セパレータやスペーサの設置が不要となる。また、電池全体を固体化できるため、漏液のおそれがなくなり安全性が飛躍的に向上する。
よって、実施の形態1で説明した粒子190は全固体電池にも応用が可能である。全固体電池に該正極用スラリーまたは電極を応用することによって、安全性が高く、特性が良好な全固体電池を得ることができる。
本実施の形態は他の実施の形態と自由に組み合わせることができる。
(実施の形態4)
本実施の形態では、実施の形態1で説明した粒子190を用いて全固体電池を作製する例を示す。
図9Aに示すように、本発明の一態様の二次電池400は、正極410、固体電解質層420および負極430を有する。
正極410は正極集電体413および正極活物質層414を有する。正極活物質層414は正極活物質411および固体電解質421を有する。正極活物質411には、実施の形態1で説明した粒子190を用いており、コア領域とシェル領域の境界を点線で示している。また正極活物質層414は、導電助剤およびバインダーを有していてもよい。
固体電解質層420は固体電解質421を有する。固体電解質層420は、正極410と負極430の間に位置し、正極活物質411および負極活物質431のいずれも有さない領域である。
負極430は負極集電体433および負極活物質層434を有する。負極活物質層434は負極活物質431および固体電解質421を有する。また負極活物質層434は、導電助剤およびバインダーを有していてもよい。なお、負極430に金属リチウムを用いる場合は、図9Bのように、固体電解質421を有さない負極430とすることができる。負極430に金属リチウムを用いると、二次電池400のエネルギー密度を向上させることができ好ましい。
固体電解質層420が有する固体電解質421としては、例えば硫化物系固体電解質、酸化物系固体電解質、ハロゲン化物系固体電解質等を用いることができる。
硫化物系固体電解質には、チオシリコン系(Li10GeP12、Li3.25Ge0.250.75等)、硫化物ガラス(70LiS・30P、30LiS・26B・44LiI、63LiS・38SiS・1LiPO、57LiS・38SiS・5LiSiO、50LiS・50GeS等)、硫化物結晶化ガラス(Li11、Li3.250.95等)が含まれる。硫化物系固体電解質は、高い伝導度を有する材料がある、低い温度で合成可能、また比較的やわらかいため充放電を経ても導電経路が保たれやすい等の利点がある。
酸化物系固体電解質には、ペロブスカイト型結晶構造を有する材料(La2/3−xLi3xTiO等)、NASICON型結晶構造を有する材料(Li1−YAlTi2−Y(PO等)、ガーネット型結晶構造を有する材料(LiLaZr12等)、LISICON型結晶構造を有する材料(Li14ZnGe16等)、LLZO(LiLaZr12)、酸化物ガラス(LiPO−LiSiO、50LiSiO・50LiBO等)、酸化物結晶化ガラス(Li1.07Al0.69Ti1.46(PO、Li1.5Al0.5Ge1.5(PO等)が含まれる。酸化物系固体電解質は、大気中で安定であるといった利点がある。
ハロゲン化物系固体電解質には、LiAlCl、LiInBr、LiF、LiCl、LiBr、LiI等が含まれる。また、これらハロゲン化物系固体電解質を、ポーラス酸化アルミニウムやポーラスシリカの細孔に充填したコンポジット材料も固体電解質として用いることができる。
また、異なる固体電解質を混合して用いてもよい。
中でも、NASICON型結晶構造を有するLi1+xAlTi2−x(PO(0〔x〕1)(以下、LATP)は、アルミニウムとチタンという、本発明の一態様の二次電池400に用いる正極活物質が有してもよい元素を含むため、サイクル特性の向上について相乗効果が期待でき好ましい。また、工程の削減による生産性の向上も期待できる。なお本明細書等において、NASICON型結晶構造とは、M(XO(M:遷移金属、X:S、P、As、Mo、W等)で表される化合物であり、MO八面体とXO四面体が頂点を共有して3次元的に配列した構造を有するものをいう。
〔外装体と二次電池の形状〕
本発明の一態様の二次電池400の外装体には、様々な材料および形状のものを用いることができるが、正極、固体電解質層および負極を加圧する機能を有することが好ましい。
例えば図10は、全固体電池の材料を評価するセルの一例である。
図10Aは評価セルの断面模式図であり、評価セルは、下部部材761と、上部部材762と、それらを固定する固定ねじや蝶ナット764を有し、押さえ込みねじ763を回転させることで電極用プレート753を押して評価材料を固定している。ステンレス材料で構成された下部部材761と、上部部材762との間には絶縁体766が設けられている。また上部部材762と、押さえ込みねじ763の間には密閉するためのOリング765が設けられている。
評価材料は、電極用プレート751に載せられ、周りを絶縁管752で囲み、上方から電極用プレート753で押されている状態となっている。この評価材料周辺を拡大した斜視図が図10Bである。
評価材料としては、正極750a、固体電解質層750b、負極750cの積層の例を示しており、断面図を図10Cに示す。なお、図10A、図10B、図10Cにおいて同じ箇所には同じ符号を用いる。
正極750aと電気的に接続される電極用プレート751および下部部材761は、正極端子に相当するということができる。負極750cと電気的に接続される電極用プレート753および上部部材762は、負極端子に相当するということができる。電極用プレート751および電極用プレート753を介して評価材料に押圧をかけながら電気抵抗などを測定することができる。
また、本発明の一態様の二次電池の外装体には、気密性に優れたパッケージを使用することが好ましい。例えばセラミックパッケージや樹脂パッケージを用いることができる。また、外装体を封止する際には、外気を遮断し、密閉した雰囲気下、例えばグローブボックス内で行うことが好ましい。
図11Aに、図10と異なる外装体および形状を有する本発明の一態様の二次電池の斜視図を示す。図11Aの二次電池は、外部電極771、772を有し、複数のパッケージ部材を有する外装体で封止されている。
図11A中の一点破線で切断した断面の一例を図11Bに示す。正極750a、固体電解質層750bおよび負極750cを有する積層体は、平板に電極層773aが設けられたパッケージ部材770aと、枠状のパッケージ部材770bと、平板に電極層773bが設けられたパッケージ部材770cと、で囲まれて封止された構造となっている。パッケージ部材770a、770b、770cには、絶縁材料、例えば樹脂材料やセラミックを用いることができる。
外部電極771は、電極層773aを介して電気的に正極750aと電気的に接続され、正極端子として機能する。また、外部電極772は、電極層773bを介して電気的に負極750cと電気的に接続され、負極端子として機能する。
実施の形態1に示される粒子190を用いることで、高エネルギー密度かつ良好な出力特性をもつ全固体二次電池を実現することができる。
本実施の形態は、他の実施の形態と適宜組み合わせて用いることができる。
(実施の形態5)
本実施の形態では、先の実施の形態で説明した正極を有する二次電池の形状の例について説明する。本実施の形態で説明する二次電池に用いる材料は、先の実施の形態の記載を参酌することができる。
<コイン型二次電池>
まずコイン型の二次電池の一例について説明する。図12Aはコイン型(単層偏平型)の二次電池の外観図であり、図12Bは、その断面図である。
コイン型の二次電池300は、正極端子を兼ねた正極缶301と負極端子を兼ねた負極缶302とが、ポリプロピレン等で形成されたガスケット303で絶縁シールされている。正極304は、正極集電体305と、これと接するように設けられた正極活物質層306により形成される。また、負極307は、負極集電体308と、これに接するように設けられた負極活物質層309により形成される。
なお、コイン型の二次電池300に用いる正極304および負極307は、それぞれ活物質層は片面のみに形成すればよい。
正極缶301、負極缶302には、電解液に対して耐食性のあるニッケル、アルミニウム、チタン等の金属、又はこれらの合金やこれらと他の金属との合金(例えばステンレス鋼等)を用いることができる。また、電解液による腐食を防ぐため、ニッケルやアルミニウム等を被覆することが好ましい。正極缶301は正極304と、負極缶302は負極307とそれぞれ電気的に接続する。
これら負極307、正極304およびセパレータ310を電解質に含浸させ、図12Bに示すように、正極缶301を下にして正極304、セパレータ310、負極307、負極缶302をこの順で積層し、正極缶301と負極缶302とをガスケット303を介して圧着してコイン形の二次電池300を製造する。
実施の形態1で説明した粒子190を正極304に用いることで、充放電容量が高く、且つ、サイクル特性に優れたコイン型の二次電池300とすることができる。
ここで図12Cを用いて二次電池の充電時の電流の流れを説明する。リチウムを用いた二次電池を一つの閉回路とみなした時、リチウムイオンの動きと電流の流れは同じ向きになる。なお、リチウムを用いた二次電池では、充電と放電でアノード(陽極)とカソード(陰極)が入れ替わり、酸化反応と還元反応とが入れ替わることになるため、反応電位が高い電極を正極と呼び、反応電位が低い電極を負極と呼ぶ。したがって、本明細書においては、充電中であっても、放電中であっても、逆パルス電流を流す場合であっても、充電電流を流す場合であっても、正極は「正極」または「+極(プラス極)」と呼び、負極は「負極」または「−極(マイナス極)」と呼ぶこととする。酸化反応や還元反応に関連したアノード(陽極)やカソード(陰極)という用語を用いると、充電時と放電時とでは、逆になってしまい、混乱を招く可能性がある。したがって、アノード(陽極)やカソード(陰極)という用語は、本明細書においては用いないこととする。仮にアノード(陽極)やカソード(陰極)という用語を用いる場合には、充電時か放電時かを明記し、正極(プラス極)と負極(マイナス極)のどちらに対応するものかも併記することとする。
図12Cに示す2つの端子には充電器が接続され、二次電池300が充電される。二次電池300の充電が進めば、電極間の電位差は大きくなる。
<積層型二次電池>
また本発明の一態様の二次電池は、図13Aおよび図13Bに示すように複数の電極を積層した二次電池700であってもよい。また電極および外装体はL字状に限られず、矩形であってもよい。
図13Aに示すラミネート型の二次電池700は、L字状の正極集電体701および正極活物質層702を有する正極703と、L字状の負極集電体704および負極活物質層705を有する負極706と、電解質層707と、外装体709と、を有する。外装体709内に設けられた正極703と負極706との間に電解質層707が設置されている。
図13Aに示すラミネート型の二次電池700において、正極集電体701および負極集電体704は、外部との電気的接触を得る端子の役割も兼ねている。そのため、正極集電体701および負極集電体704の一部は、外装体709から外側に露出するように配置してもよい。また、正極集電体701および負極集電体704を、外装体709から外側に露出させず、リード電極を用いてそのリード電極と正極集電体701、或いは負極集電体704と超音波接合させてリード電極を外側に露出するようにしてもよい。
ラミネート型の二次電池において、外装体709には、例えばポリエチレン、ポリプロピレン、ポリカーボネート、アイオノマー、ポリアミド等の材料からなる膜上に、アルミニウム、ステンレス、銅、ニッケル等の可撓性に優れた金属薄膜を設け、さらに該金属薄膜上に外装体の外面としてポリアミド系樹脂、ポリエステル系樹脂等の絶縁性合成樹脂膜を設けた三層構造のラミネートフィルムを用いることができる。
また、ラミネート型の二次電池の断面構造の一例を図13Bに示す。図13Aでは図を明瞭にするため1組の電極と1枚の電解質層を抜粋して示しているが、実際は、図13Bに示すように複数の電極と複数の電解質層を有する構成であることが好ましい。
図13Bでは、一例として電極数を16としている。図13Bでは負極集電体704が8層と、正極集電体701が8層の合計16層の構造を示している。なお、図13Bは、図13Aの鎖線で切断した正極の取り出し部の断面を示しており、8層の負極集電体704を超音波接合させている。勿論、電極層数は16に限定されず、多くてもよいし、少なくてもよい。実施の形態1で説明した粒子190を正極活物質層702に用いることで、充放電容量が高くサイクル特性に優れた二次電池を得ることができる。電極層数が多い場合には、より多くの容量を有する二次電池とすることができる。また、電極層数が少ない場合には、薄型化できる。
図14Aに二次電池700が有するL字状の正極集電体701および正極活物質層702を有する正極を示す。また、正極は正極集電体701が一部露出する領域(以下、タブ領域という)を有する。また、図14Bに二次電池700が有するL字状の負極集電体704および負極活物質層705を有する負極を示す。負極は負極集電体704が一部露出する領域、すなわちタブ領域を有する。
図14Cに正極703を4層、負極706を4層、それぞれ積層させた斜視図を示す。なお、図14Cにおいて、簡略のため、正極703と負極706の間に設ける電解質層707は点線で図示している。
<捲回型二次電池>
また本発明の一態様の二次電池は、図15A乃至図15Cに示すような外装体960の中に捲回体951を有する二次電池950であってもよい。図15Aに示す捲回体951は、負極107と、正極106と、電解質層103と、を有する。負極107は負極活物質層104および負極集電体105を有する。正極106は正極活物質層102および正極集電体101を有する。電解質層103は、負極活物質層104および正極活物質層102よりも広い幅を有し、負極活物質層104および正極活物質層102と重畳するように捲回されている。リチウムイオン導電性ポリマーとリチウム塩を有する電解質層103は柔軟性があるため、このように捲回することが可能である。なお正極活物質層102よりも負極活物質層104の幅が広いことが安全性の点で好ましい。またこのような形状の捲回体951は安全性および生産性がよく好ましい。
図15Bに示すように、負極107は端子961と電気的に接続される。端子961は端子963と電気的に接続される。また正極106は端子962と電気的に接続される。端子962は端子964と電気的に接続される。
図15Bに示すように二次電池950は複数の捲回体951を有していてもよい。複数の捲回体951を用いることで、より充放電容量の大きい二次電池950とすることができる。
正極106に実施の形態1で説明した粒子190を用いることで、充放電容量が高くサイクル特性に優れた二次電池950とすることができる。
本実施の形態は、他の実施の形態と組み合わせて用いることができる。
(実施の形態6)
本実施の形態は、図14Cに示した二次電池を用いて電気自動車(EV)に適用する例を示す。図16Cは電気自動車のブロック図を示す。
電気自動車には、メインの駆動用の二次電池として図16Cに示す第1のバッテリ1301a、1301bと、モータ1304を始動させるインバータ1312に電力を供給する第2のバッテリ1311が設置されている。第2のバッテリ1311はクランキングバッテリ(スターターバッテリとも呼ばれる)とも呼ばれる。第2のバッテリ1311は高出力できればよく、大容量はそれほど必要とされず、第2のバッテリ1311の容量は第1のバッテリ1301a、1301bと比較して小さい。
第1のバッテリ1301aの内部構造は、図15Aに示した巻回型であってもよいし、図13A、図13B、図14A、図14B、または図14Cに示した積層型であってもよい。また、第1のバッテリ1301aは、実施の形態4の全固体電池を用いてもよい。第1のバッテリ1301aに実施の形態4の全固体電池を用いることで高容量とすることができ、安全性が向上し、小型化、軽量化することができる。
本実施の形態では、第1のバッテリ1301a、1301bを2つ並列に接続させている例を示しているが3つ以上並列に接続させてもよい。また、第1のバッテリ1301aで十分な電力を貯蔵できるのであれば、第1のバッテリ1301bはなくてもよい。複数の二次電池を有する電池パックを構成することで、大きな電力を取り出すことができる。複数の二次電池は、並列接続されていてもよいし、直列接続されていてもよいし、並列に接続された後、さらに直列に接続されていてもよい。複数の二次電池を組電池とも呼ぶ。
また、車載用の二次電池において、複数の二次電池からの電力を遮断するため、工具を使わずに高電圧を遮断できるサービスプラグまたはサーキットブレーカを有しており、第1のバッテリ1301aに設けられる。
また、第1のバッテリ1301a、1301bの電力は、主にモータ1304を回転させることに使用されるが、DCDC回路1306を介して42V系の車載部品(電動パワステ1307、ヒーター1308、デフォッガ1309など)に電力を供給する。後輪にリアモータ1317を有している場合にも、第1のバッテリ1301aがリアモータ1317を回転させることに使用される。
また、第2のバッテリ1311は、DCDC回路1310を介して14V系の車載部品(オーディオ1313、パワーウィンドウ1314、ランプ類1315など)に電力を供給する。
また、第1のバッテリ1301aについて、図16Aを用いて説明する。
図16Aでは9個の角型二次電池1300を一つの電池パック1415としている例を示している。また、9個の角型二次電池1300を直列接続し、一方の電極を絶縁体からなる固定部1413で固定し、もう一方の電極を絶縁体からなる固定部1414で固定している。本実施の形態では固定部1413、1414で固定する例を示しているが電池収容ボックス(筐体とも呼ぶ)に収納させる構成としてもよい。車両は外部(路面など)から振動または揺れが加えられることを想定されているため、固定部1413、1414や、電池収容ボックスなどで複数の二次電池を固定することが好ましい。また、一方の電極は配線1421によって制御回路部1320に電気的に接続されている。またもう一方の電極は配線1422によって制御回路部1320に電気的に接続されている。
また、制御回路部1320は、酸化物半導体を用いたトランジスタを含むメモリ回路を用いてもよい。酸化物半導体を用いたトランジスタを含むメモリ回路を有する充電制御回路、又は電池制御システムを、BTOS(Battery operating system、又はBattery oxide semiconductor)と呼称する場合がある。
酸化物半導体として機能する金属酸化物を用いることが好ましい。例えば、酸化物として、In−M−Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、又はマグネシウム等から選ばれた一種、又は複数種)等の金属酸化物を用いるとよい。特に、酸化物として適用できるIn−M−Zn酸化物は、CAAC−OS(C−Axis Aligned Crystal Oxide Semiconductor)、CAC−OS(Cloud−Aligned Composite Oxide Semiconductor)であることが好ましい。また、酸化物として、In−Ga酸化物、In−Zn酸化物を用いてもよい。CAAC−OSは、複数の結晶領域を有し、当該複数の結晶領域はc軸が特定の方向に配向している酸化物半導体である。なお、特定の方向とは、CAAC−OS膜の厚さ方向、CAAC−OS膜の被形成面の法線方向、またはCAAC−OS膜の表面の法線方向である。また、結晶領域とは、原子配列に周期性を有する領域である。なお、原子配列を格子配列とみなすと、結晶領域とは、格子配列の揃った領域でもある。さらに、CAAC−OSは、a−b面方向において複数の結晶領域が連結する領域を有し、当該領域は歪みを有する場合がある。なお、歪みとは、複数の結晶領域が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。つまり、CAAC−OSは、c軸配向し、a−b面方向には明らかな配向をしていない酸化物半導体である。また、CAC−OSとは、例えば、金属酸化物を構成する元素が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで偏在した材料の一構成である。なお、以下では、金属酸化物において、一つまたは複数の金属元素が偏在し、該金属元素を有する領域が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで混合した状態をモザイク状、またはパッチ状ともいう。
さらに、CAC−OSとは、第1の領域と、第2の領域と、に材料が分離することでモザイク状となり、当該第1の領域が、膜中に分布した構成(以下、クラウド状ともいう。)である。つまり、CAC−OSは、当該第1の領域と、当該第2の領域とが、混合している構成を有する複合金属酸化物である。
ここで、In−Ga−Zn酸化物におけるCAC−OSを構成する金属元素に対するIn、Ga、およびZnの原子数比のそれぞれを、[In]、[Ga]、および[Zn]と表記する。例えば、In−Ga−Zn酸化物におけるCAC−OSにおいて、第1の領域は、[In]が、CAC−OS膜の組成における[In]よりも大きい領域である。また、第2の領域は、[Ga]が、CAC−OS膜の組成における[Ga]よりも大きい領域である。または、例えば、第1の領域は、[In]が、第2の領域における[In]よりも大きく、且つ、[Ga]が、第2の領域における[Ga]よりも小さい領域である。また、第2の領域は、[Ga]が、第1の領域における[Ga]よりも大きく、且つ、[In]が、第1の領域における[In]よりも小さい領域である。
具体的には、上記第1の領域は、インジウム酸化物、インジウム亜鉛酸化物などが主成分である領域である。また、上記第2の領域は、ガリウム酸化物、ガリウム亜鉛酸化物などが主成分である領域である。つまり、上記第1の領域を、Inを主成分とする領域と言い換えることができる。また、上記第2の領域を、Gaを主成分とする領域と言い換えることができる。
なお、上記第1の領域と、上記第2の領域とは、明確な境界が観察できない場合がある。
例えば、In−Ga−Zn酸化物におけるCAC−OSでは、エネルギー分散型X線分光法(EDX:Energy Dispersive X−ray spectroscopy)を用いて取得したEDXマッピングにより、Inを主成分とする領域(第1の領域)と、Gaを主成分とする領域(第2の領域)とが、偏在し、混合している構造を有することが確認できる。
CAC−OSをトランジスタに用いる場合、第1の領域に起因する導電性と、第2の領域に起因する絶縁性とが、相補的に作用することにより、スイッチングさせる機能(On/Offさせる機能)をCAC−OSに付与することができる。つまり、CAC−OSとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。導電性の機能と絶縁性の機能とを分離させることで、双方の機能を最大限に高めることができる。よって、CAC−OSをトランジスタに用いることで、高いオン電流(Ion)、高い電界効果移動度(μ)、および良好なスイッチング動作を実現することができる。
酸化物半導体は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a−like OS、CAC−OS、nc−OS、CAAC−OSのうち、二種以上を有していてもよい。
また、高温環境下で使用可能であるため、制御回路部1320は酸化物半導体を用いるトランジスタを用いることが好ましい。プロセスを簡略なものとするため、制御回路部1320は単極性のトランジスタを用いて形成してもよい。半導体層に酸化物半導体を用いるトランジスタは、動作周囲温度が単結晶Siよりも広く−40℃以上150℃以下であり、二次電池が加熱しても特性変化が単結晶Siに比べて小さい。酸化物半導体を用いるトランジスタのオフ電流は、150℃であっても温度によらず測定下限以下であるが、単結晶Siトランジスタのオフ電流特性は、温度依存性が大きい。例えば、150℃では、単結晶Siトランジスタはオフ電流が上昇し、電流オン/オフ比が十分に大きくならない。制御回路部1320は、安全性を向上することができる。また、実施の形態1で説明した粒子190を正極に用いた二次電池と組み合わせることで安全性についての相乗効果が得られる。実施の形態1で説明した粒子190を正極に用いた二次電池及び制御回路部1320は、二次電池による火災等の事故撲滅に大きく寄与することができる。
酸化物半導体を用いたトランジスタを含むメモリ回路を用いた制御回路部1320は、マイクロショート等の10項目の不安定性の原因に対し、二次電池の自動制御装置として機能させることもできる。10項目の不安定性の原因を解消する機能としては、過充電の防止、過電流の防止、充電時過熱制御、組電池でのセルバランス、過放電の防止、残量計、温度に応じた充電電圧及び電流量自動制御、劣化度に応じた充電電流量制御、マイクロショート異常挙動検知、マイクロショートに関する異常予測などが挙げられ、そのうちの少なくとも一以上の機能を制御回路部1320が有する。また、二次電池の自動制御装置の超小型化が可能である。
また、マイクロショートとは、二次電池の内部の微小な短絡のことを指しており、二次電池の正極と負極が短絡して充放電不可能の状態になるというほどではなく、微小な短絡部でわずかに短絡電流が流れてしまう現象を指している。比較的短時間、且つ、わずかな箇所であっても大きな電圧変化が生じるため、その異常な電圧値がその後の推定に影響を与える恐れがある。
マイクロショートの原因の一つは、充放電が複数回行われることによって、正極活物質の不均一な分布により、正極の一部と負極の一部で局所的な電流の集中が生じ、セパレータの一部が機能しなくなる箇所が発生、または副反応による副反応物の発生によりミクロな短絡が生じていると言われている。
また、マイクロショートの検知だけでなく、制御回路部1320は、二次電池の端子電圧を検知し、二次電池の充放電状態を管理するとも言える。例えば、過充電を防ぐために充電回路の出力トランジスタと遮断用スイッチの両方をほぼ同時にオフ状態とすることができる。
また、図16Aに示す電池パック1415のブロック図の一例を図16Bに示す。
制御回路部1320は、少なくとも過充電を防止するスイッチと、過放電を防止するスイッチを含むスイッチ部1324と、スイッチ部1324を制御する制御回路1322と、第1のバッテリ1301aの電圧測定部と、を有する。制御回路部1320は、使用する二次電池の上限電圧と下限電圧と設定されており、外部からの電流上限や、外部への出力電流の上限などを制限している。二次電池の下限電圧以上上限電圧以下の範囲内は、使用が推奨されている電圧範囲内であり、その範囲外となるとスイッチ部1324が作動し、保護回路として機能する。また、制御回路部1320は、スイッチ部1324を制御して過放電や過充電を防止するため、保護回路とも呼べる。例えば、過充電となりそうな電圧を制御回路1322で検知した場合にスイッチ部1324のスイッチをオフ状態とすることで電流を遮断する。さらに充放電経路中にPTC素子を設けて温度の上昇に応じて電流を遮断する機能を設けてもよい。また、制御回路部1320は、外部端子1325(+IN)と、外部端子1326(−IN)とを有している。
スイッチ部1324は、nチャネル型のトランジスタやpチャネル型のトランジスタを組み合わせて構成することができる。スイッチ部1324は、単結晶Siを用いるSiトランジスタを有するスイッチに限定されず、例えば、Ge(ゲルマニウム)、SiGe(シリコンゲルマニウム)、GaAs(ガリウムヒ素)、GaAlAs(ガリウムアルミニウムヒ素)、InP(リン化インジウム)、SiC(シリコンカーバイド)、ZnSe(セレン化亜鉛)、GaN(窒化ガリウム)、GaOx(酸化ガリウム:xは0より大きい実数)などを有するパワートランジスタでスイッチ部1324を形成してもよい。また、OSトランジスタを用いた記憶素子は、Siトランジスタを用いた回路上などに積層することで自由に配置可能であるため、集積化を容易に行うことができる。またOSトランジスタは、Siトランジスタと同様の製造装置を用いて作製することが可能であるため、低コストで作製可能である。即ち、スイッチ部1324上にOSトランジスタを用いた制御回路部1320を積層し、集積化することで1チップとすることもできる。制御回路部1320の占有体積を小さくすることができるため、小型化が可能となる。
第1のバッテリ1301a、1301bは、主に42V系(高電圧系)の車載機器に電力を供給し、第2のバッテリ1311は14V系(低電圧系)の車載機器に電力を供給する。第2のバッテリ1311は鉛蓄電池がコスト上有利のため採用されることが多い。鉛蓄電池はリチウムイオン二次電池と比べて自己放電が大きく、サルフェーションとよばれる現象により劣化しやすい欠点がある。第2のバッテリ1311をリチウムイオン二次電池とすることでメンテナンスフリーとするメリットがあるが、長期間の使用、例えば3年以上となると、製造時には判別できない異常が生じる恐れがある。特にインバータを起動する第2のバッテリ1311が動作不能となると、第1のバッテリ1301a、1301bに残容量があってもモータを起動させることができなくなることを防ぐため、第2のバッテリ1311が鉛蓄電池の場合は、第1のバッテリから第2のバッテリに電力を供給し、常に満充電状態を維持するように充電されている。
本実施の形態では、第1のバッテリ1301a(または第1のバッテリ1301b)と第2のバッテリ1311の両方にリチウムイオン二次電池を用いる一例を示す。第2のバッテリ1311は鉛蓄電池や全固体電池や電気二重層キャパシタを用いてもよい。例えば、実施の形態4の全固体電池を用いてもよい。第2のバッテリ1311に実施の形態4の全固体電池を用いることで高容量とすることができ、小型化、軽量化することができる。
また、タイヤ1316の回転による回生エネルギーは、ギア1305を介してモータ1304に送られ、モータコントローラ1303やバッテリコントローラ1302から制御回路部1321を介して第2のバッテリ1311に充電される。またはバッテリコントローラ1302から制御回路部1320を介して第1のバッテリ1301aに充電される。またはバッテリコントローラ1302から制御回路部1320を介して第1のバッテリ1301bに充電される。回生エネルギーを効率よく充電するためには、第1のバッテリ1301a、1301bが急速充電可能であることが望ましい。
バッテリコントローラ1302は第1のバッテリ1301a、1301bの充電電圧及び充電電流などを設定することができる。バッテリコントローラ1302は、用いる二次電池の充電特性に合わせて充電条件を設定し、急速充電することができる。
また、図示していないが、外部の充電器と接続させる場合、充電器のコンセントまたは充電器の接続ケーブルは、バッテリコントローラ1302に電気的に接続される。外部の充電器から供給された電力はバッテリコントローラ1302を介して第1のバッテリ1301a、1301bに充電する。また、充電器によっては、制御回路が設けられており、バッテリコントローラ1302の機能を用いない場合もあるが、過充電を防ぐため制御回路部1320を介して第1のバッテリ1301a、1301bを充電することが好ましい。また、接続ケーブルまたは充電器の接続ケーブルに制御回路を備えている場合もある。制御回路部1320は、ECU(Electronic Control Unit)と呼ばれることもある。ECUは、電動車両に設けられたCAN(Controller Area Network)に接続される。CANは、車内LANとして用いられるシリアル通信規格の一つである。また、ECUは、マイクロコンピュータを含む。また、ECUは、CPUやGPUを用いる。
充電スタンドなどに設置されている外部の充電器は、100Vコンセントや、200Vコンセントや、3相200V且つ50kWなどがある。また、非接触給電方式等により外部の充電設備から電力供給を受けて、充電することもできる。
急速充電を行う場合、短時間での充電を行うためには、高電圧での充電に耐えうる二次電池が望まれている。
また、上述した本実施の形態の二次電池は、実施の形態1で説明した粒子190を用いることで高密度な正極を有している。さらに、導電助剤としてグラフェンを用い、電極層を厚くして担持量を高くしても容量低下を抑えることができる。さらに、高容量を維持することが相乗効果として得られ、大幅に電気特性が向上された二次電池を実現できる。特に車両に用いる二次電池に有効であり、車両全重量に対する二次電池の重量の割合を増加させることなく、航続距離が長い、具体的には一充電走行距離が500km以上の車両を提供することができる。
特に上述した本実施の形態の二次電池は、実施の形態1で説明した粒子190を用いることで二次電池の動作電圧を高くすることができ、充電電圧の増加に伴い、使用できる容量を増加させることができる。また、実施の形態1で説明した粒子190を正極に用いることでサイクル特性に優れた車両用の二次電池を提供することができる。
本実施の形態は他の実施の形態と自由に組みあわせることができる。
(実施の形態7)
本実施の形態では、本発明の一態様である二次電池を車両、建築物、移動体または電子機器等に実装する例について説明する。
二次電池を適用した電子機器として、例えば、テレビジョン装置(テレビ、又はテレビジョン受信機ともいう)、コンピュータ用などのモニタ、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機(携帯電話、携帯電話装置ともいう)、携帯型ゲーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲーム機などが挙げられる。
また、移動体、代表的には自動車に二次電池を適用することができる。自動車としては、ハイブリッド車(HV)、電気自動車(EV)、又はプラグインハイブリッド車(PHEVまたはPHVともいう)等の次世代クリーンエネルギー自動車を挙げることができ、自動車に搭載する電源の一つとして二次電池を適用することができる。移動体は自動車に限定されない。例えば、移動体としては、電車、モノレール、船、飛行体(ヘリコプター、無人航空機(ドローン)、飛行機、ロケット)、電動自転車、電動バイクなども挙げることができ、これらの移動体に本発明の一態様の二次電池を適用することができる。
また、住宅に設けられる地上設置型の充電装置や、商用施設に設けられた充電ステーションに本実施の形態の二次電池を適用してもよい。
本発明の一態様である二次電池を建築物に実装する例について図17Aおよび図17Bを用いて説明する。
図17Aに示す住宅は、本発明の一態様である二次電池を有する蓄電装置2612と、ソーラーパネル2610を有する。蓄電装置2612は、ソーラーパネル2610と配線2611等を介して電気的に接続されている。また蓄電装置2612と地上設置型の充電装置2604が電気的に接続されていてもよい。ソーラーパネル2610で得た電力は、蓄電装置2612に充電することができる。また蓄電装置2612に蓄えられた電力は、充電装置2604を介して車両2603が有する二次電池2602に充電することができる。蓄電装置2612は、床下空間部に設置されることが好ましい。床下空間部に設置することにより、床上の空間を有効的に利用することができる。あるいは、蓄電装置2612は床上に設置されてもよい。
蓄電装置2612に蓄えられた電力は、住宅内の他の電子機器にも電力を供給することができる。よって、停電などにより商用電源から電力の供給が受けられない時でも、本発明の一態様に係る蓄電装置2612を無停電電源として用いることで、電子機器の利用が可能となる。
図17Bに、本発明の一態様に係る蓄電装置800の一例を示す。図17Bに示すように、建物899の床下空間部896には、本発明の一態様に係る蓄電装置891が設置されている。また、蓄電装置891に実施の形態6で説明した制御回路を設けてもよく、実施の形態1で説明した粒子190を正極に用いた二次電池を蓄電装置891に用いることで安全性についての相乗効果が得られる。実施の形態6で説明した制御回路及び実施の形態1で説明した粒子190を正極に用いた二次電池は、二次電池を有する蓄電装置891による火災等の事故撲滅に大きく寄与することができる。
蓄電装置891には、制御装置890が設置されており、制御装置890は、配線によって、分電盤803と、蓄電コントローラ805(制御装置ともいう)と、表示器806と、ルータ809と、に電気的に接続されている。
商業用電源801から、引込線取付部810を介して、電力が分電盤803に送られる。また、分電盤803には、蓄電装置891と、商業用電源801と、から電力が送られ、分電盤803は、送られた電力を、コンセント(図示せず)を介して、一般負荷807及び蓄電系負荷808に供給する。
一般負荷807は、例えば、テレビやパーソナルコンピュータなどの電気機器であり、蓄電系負荷808は、例えば、電子レンジ、冷蔵庫、空調機などの電気機器である。
蓄電コントローラ805は、計測部811と、予測部812と、計画部813と、を有する。計測部811は、一日(例えば、0時から24時)の間に、一般負荷807、蓄電系負荷808で消費された電力量を計測する機能を有する。また、計測部811は、蓄電装置891の電力量と、商業用電源801から供給された電力量と、を計測する機能を有していてもよい。また、予測部812は、一日の間に一般負荷807及び蓄電系負荷808で消費された電力量に基づいて、次の一日の間に一般負荷807及び蓄電系負荷808で消費される需要電力量を予測する機能を有する。また、計画部813は、予測部812が予測した需要電力量に基づいて、蓄電装置891の充放電の計画を立てる機能を有する。
計測部811によって計測された一般負荷807及び蓄電系負荷808で消費された電力量は、表示器806によって確認することができる。また、ルータ809を介して、テレビやパーソナルコンピュータなどの電気機器において、確認することもできる。さらに、ルータ809を介して、スマートフォンやタブレットなどの携帯電子端末によっても確認することができる。また、表示器806、電気機器、携帯電子端末によって、予測部812が予測した時間帯ごと(または一時間ごと)の需要電力量なども確認することができる。
次に本発明の一態様の二次電池を電子機器に実装する例を図18Aおよび図18Bに示す。図18Aは、携帯電話機の一例を示している。携帯電話機2100は、筐体2101に組み込まれた表示部2102の他、操作ボタン2103、外部接続ポート2104、スピーカ2105、マイク2106などを備えている。なお、携帯電話機2100は、二次電池2107を有している。
携帯電話機2100は、移動電話、電子メール、文章閲覧及び作成、音楽再生、インターネット通信、コンピュータゲームなどの種々のアプリケーションを実行することができる。
操作ボタン2103は、時刻設定のほか、電源のオン、オフ動作、無線通信のオン、オフ動作、マナーモードの実行及び解除、省電力モードの実行及び解除など、様々な機能を持たせることができる。例えば、携帯電話機2100に組み込まれたオペレーティングシステムにより、操作ボタン2103の機能を自由に設定することもできる。
また、携帯電話機2100は、通信規格された近距離無線通信を実行することが可能である。例えば無線通信可能なヘッドセットと相互通信することによって、ハンズフリーで通話することもできる。
また、携帯電話機2100は外部接続ポート2104を備え、他の情報端末とコネクターを介して直接データのやりとりを行うことができる。また外部接続ポート2104を介して充電を行うこともできる。なお、充電動作は外部接続ポート2104を介さずに無線給電により行ってもよい。
携帯電話機2100はセンサを有することが好ましい。センサとして例えば、指紋センサ、脈拍センサ、体温センサ等の人体センサや、タッチセンサ、加圧センサ、加速度センサ、等が搭載されることが好ましい。
図18Bは複数のローター2302を有する無人航空機2300である。無人航空機2300はドローンと呼ばれることもある。無人航空機2300は、本発明の一態様である二次電池2301と、カメラ2303と、アンテナ(図示しない)を有する。無人航空機2300はアンテナを介して遠隔操作することができる。実施の形態1で説明した粒子190を正極に用いた二次電池は高エネルギー密度であり、安全性が高いため、長期間に渡って長時間の安全な使用ができ、無人航空機2300に搭載する二次電池として好適である。
次に本発明の一態様を用いた輸送用車両の例を図18C乃至図18Fに示す。図18Cに示す自動車2001は、走行のための動力源として電気モータを用いる電気自動車である。または、走行のための動力源として電気モータとエンジンを適宜選択して用いることが可能なハイブリッド自動車である。二次電池を車両に搭載する場合、実施の形態5で示した二次電池の一例を一箇所または複数個所に設置する。また、実施の形態1で説明した粒子190を正極に用いた二次電池を用いることで安全性についての相乗効果が得られる。実施の形態1で説明した粒子190を正極に用いた二次電池は、二次電池による火災等の事故撲滅に大きく寄与することができる。図18Cに示す自動車2001は、電池パック2200を有し、電池パックは、複数の二次電池を接続させた二次電池モジュールを有する。さらに二次電池モジュールに電気的に接続する充電制御装置を有すると好ましい。二次電池モジュールの重量とは、複数の二次電池を接続させた電池パックの重量を指し、電池パックに充電制御装置を内蔵させた場合にはその充電制御装置を含めるものとする。
また、自動車2001は、自動車2001が有する二次電池にプラグイン方式や非接触給電方式等により外部の充電設備から電力供給を受けて、充電することができる。充電に際しては、充電方法やコネクターの規格等はCHAdeMO(登録商標)やコンボ等の所定の方式で適宜行えばよい。二次電池は、商用施設に設けられた充電ステーションでもよく、また家庭の電源であってもよい。例えば、プラグイン技術によって、外部からの電力供給により自動車2001に搭載された蓄電装置を充電することができる。充電は、ACDCコンバータ等の変換装置を介して、交流電力を直流電力に変換して行うことができる。
また、図示しないが、受電装置を車両に搭載し、地上の送電装置から電力を非接触で供給して充電することもできる。この非接触給電方式の場合には、道路や外壁に送電装置を組み込むことで、停車中に限らず走行中に充電を行うこともできる。また、この非接触給電の方式を利用して、2台の車両どうしで電力の送受信を行ってもよい。さらに、車両の外装部に太陽電池を設け、停車時や走行時に二次電池の充電を行ってもよい。このような非接触での電力の供給には、電磁誘導方式や磁界共鳴方式を用いることができる。
図18Dは、輸送用車両の一例として電気により制御するモータを有した大型の輸送車2002を示している。輸送車2002の二次電池モジュールは、例えば3.5V以上4.7V以下の二次電池を4個セルユニットとし、48セルを直列に接続した170Vの最大電圧とする。電池パック2201の二次電池モジュールを構成する二次電池の数などが違う以外は、図18Aと同様な機能を備えているので説明は省略する。
図18Eは、一例として電気により制御するモータを有した大型の輸送車両2003を示している。輸送車両2003の二次電池モジュールは、例えば3.5V以上4.7V以下の二次電池を百個以上直列に接続した600Vの最大電圧とする。従って、特性バラツキの小さい二次電池が求められる。実施の形態1で説明した粒子190を正極に用いた二次電池を用いることで安全性の高い二次電池を製造することができ、また歩留まりの観点から低コストで大量生産が可能である。また、電池パック2202の二次電池モジュールを構成する二次電池の数などが違う以外は、図18Cと同様な機能を備えているので説明は省略する。
図18Fは、一例として燃料を燃焼するエンジンを有した航空機2004を示している。図18Fに示す航空機2004は、離着陸用の車輪を有しているため、輸送車両の一部とも言え、複数の二次電池を接続させて二次電池モジュールを構成し、二次電池モジュールと充電制御装置とを含む電池パック2203を有している。
航空機2004の二次電池モジュールは、例えば4Vの二次電池を8個直列に接続した32Vの最大電圧とする。電池パック2203の二次電池モジュールを構成する二次電池の数などが違う以外は、図18Cと同様な機能を備えているので説明は省略する。
本実施の形態では、二輪車、自転車に本発明の一態様である蓄電装置を搭載する例を示す。
次に、本発明の一態様の二次電池を適用した電動自転車の例を図19Aに示す。図19Aに示す電動自転車8700に、本発明の一態様の蓄電装置を適用することができる。本発明の一態様の蓄電装置は例えば、複数の蓄電池と、保護回路と、を有する。
電動自転車8700は、蓄電装置8702を備える。蓄電装置8702は、運転者をアシストするモータに電気を供給することができる。また、蓄電装置8702は、持ち運びができ、図19Bに自転車から取り外した状態を示している。また、蓄電装置8702は、本発明の一態様の蓄電装置が有する蓄電池8701が複数内蔵されており、そのバッテリ残量などを表示部8703で表示できるようにしている。また蓄電装置8702は、実施の形態6に一例を示した二次電池の充電制御または異常検知が可能な制御回路8704を有する。制御回路8704は、蓄電池8701の正極及び負極と電気的に接続されている。また、制御回路8704に図11A及び図11Bで示した小型の固体二次電池を設けてもよい。図11A及び図11Bで示した小型の固体二次電池を制御回路8704に設けることで制御回路8704の有するメモリ回路のデータを長時間保持することに電力を供給することもできる。また、実施の形態1で説明した粒子190を正極に用いた二次電池と組み合わせることで安全性についての相乗効果が得られる。実施の形態1で説明した粒子190を正極に用いた二次電池及び制御回路8704は、二次電池による火災等の事故撲滅に大きく寄与することができる。
次に、本発明の一態様の二次電池を適用した二輪車の例を図19Cに示す。図19Cに示すスクータ8600は、蓄電装置8602、サイドミラー8601、方向指示灯8603を備える。蓄電装置8602は、方向指示灯8603に電気を供給することができる。
また、図19Cに示すスクータ8600は、座席下収納8604に、蓄電装置8602を収納することができる。蓄電装置8602は、座席下収納8604が小型であっても、座席下収納8604に収納することができる。
図20Aは、ウェアラブルデバイスの例を示している。ウェアラブルデバイスは、電源として二次電池を用いる。また、使用者が生活または屋外で使用する場合において、防沫性能、耐水性能または防塵性能を高めるため、接続するコネクター部分が露出している有線による充電だけでなく、無線充電も行えるウェアラブルデバイスが望まれている。
例えば、図20Aに示すような眼鏡型デバイス4000に本発明の一態様である二次電池を搭載することができる。眼鏡型デバイス4000は、フレーム4000aと、表示部4000bを有する。湾曲を有するフレーム4000aのテンプル部に二次電池を搭載することで、軽量であり、且つ、重量バランスがよく継続使用時間の長い眼鏡型デバイス4000とすることができる。また、実施の形態1で説明した粒子190を正極に用いた二次電池を備えることで高容量とすることができ、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
また、ヘッドセット型デバイス4001に本発明の一態様である二次電池を搭載することができる。ヘッドセット型デバイス4001は、少なくともマイク部4001aと、フレキシブルパイプ4001bと、イヤフォン部4001cを有する。フレキシブルパイプ4001b内やイヤフォン部4001c内に二次電池を設けることができる。実施の形態1で説明した粒子190を正極に用いた二次電池を備えることで高容量とすることができ、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
また、身体に直接取り付け可能なデバイス4002に実施の形態1で説明した粒子190を正極に用いた二次電池を搭載することができる。デバイス4002の薄型の筐体4002aの中に、二次電池4002bを設けることができる。実施の形態1で説明した粒子190を正極に用いた二次電池を備えることで高容量とすることができ、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
また、衣服に取り付け可能なデバイス4003に本発明の一態様である二次電池を搭載することができる。デバイス4003の薄型の筐体4003aの中に、二次電池4003bを設けることができる。実施の形態1で説明した粒子190を正極に用いた二次電池を備えることで高容量とすることができ、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
また、ベルト型デバイス4006に本発明の一態様である二次電池を搭載することができる。ベルト型デバイス4006は、ベルト部4006aおよびワイヤレス給電受電部4006bを有し、ベルト部4006aの内部に、二次電池を搭載することができる。実施の形態1で説明した粒子190を正極に用いた二次電池を備えることで高容量とすることができ、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
また、腕時計型デバイス4005に実施の形態1で説明した粒子190を正極に用いた二次電池を搭載することができる。腕時計型デバイス4005は表示部4005aおよびベルト部4005bを有し、表示部4005aまたはベルト部4005bに、二次電池を設けることができる。実施の形態1で説明した粒子190を正極に用いた二次電池を備えることで高容量とすることができ、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
表示部4005aには、時刻だけでなく、メールや電話の着信等、様々な情報を表示することができる。
また、腕時計型デバイス4005は、腕に直接巻きつけるタイプのウェアラブルデバイスであるため、使用者の脈拍、血圧等を測定するセンサを搭載してもよい。使用者の運動量および健康に関するデータを蓄積し、健康を管理することができる。
図20Bに腕から取り外した腕時計型デバイス4005の斜視図を示す。
また、側面図を図20Cに示す。図20Cには、内部に二次電池700を内蔵している様子を示している。図13の二次電池700と外形形状が異なるが、内部構造は同一であるため、同じ符号を用いている。二次電池700は表示部4005aと重なる位置に設けられており、小型、且つ、軽量である。
また、図20Dに示すヘッドマウントディスプレイ8300は、筐体8301と、表示部8302と、バンド状の固定具8304と、一対のレンズ8305と、二次電池700を有する。なお、図13の二次電池700と外形形状が異なるが、内部構造は同一であるため、同じ符号を用いている。また、固定具8304に設置するため、矩形の二次電池700を2個設ける例としている。
また、図20Dに示すように、ヘッドマウントディスプレイ8300が回路部8306と、撮像装置8307と、を有することが好ましい。
ヘッドマウントディスプレイ8300が有する表示部8302には、画像データ(以下、画像データA1)が与えられる。画像データA1は、ヘッドマウントディスプレイ8300が有する回路部8306により生成される画像データ(以下、画像データB1)と、情報処理装置が生成するデータ(以下、データC1)と、を用いて構成される。あるいは、画像データB1は、ヘッドマウントディスプレイ8300の外部の回路により生成されてもよい。データC1は、コントローラに関する情報であり、使用者がコントローラを操作することにより随時、更新されるデータである。
画像データB1に、随時、更新されるデータC1を組み合わせて画像データA1を生成し、ヘッドマウントディスプレイ8300が有する表示部8302に表示することにより、ヘッドマウントディスプレイ8300を、VR(Virtual Reality)向け機器、AR(Augmented Reality)向け機器、またはMR(Mixed Reality)向け機器、等として用いることができる。
また、ヘッドマウントディスプレイ8300は、視線入力装置を有してもよい。情報処理装置は、画像データA1の生成の際に、画像データB1およびデータC1に加えて、視線入力装置により検知される信号を用いてもよい。
視線入力装置は、視線の検知を行うことができる。視線の検知は例えば、ヒトの瞳の虹彩、あるいは瞳孔を検出することにより行うことができる。また、眼球やまぶたの動きを捉えることにより、視線を検知することができる。また、使用者に触れるように電極を設け、眼球の動きに伴って該電極に流れる電流を検知することにより、視線を検知することができる。
画像データA1と、音声データと、を合わせて映像データを生成することができる。表示部8302は、該映像データを表示する機能を有する。
またヘッドマウントディスプレイ8300は、発光素子が放出する電磁波を受信する機能を有するセンサ素子を、有することが好ましい。ここでは、発光素子が放出する電磁波を受信する機能を有するセンサ素子を、有する構成として、撮像装置8307を用いることができる。
ヘッドマウントディスプレイ8300においては、小型、且つ、軽量であることが求められるため、実施の形態1で説明した粒子190を二次電池700の正極に用いることで、高エネルギー密度、且つ、小型の二次電池700とすることができる。
本実施の形態は、他の実施の形態と適宜組み合わせて用いることができる。
本実施では、粒子190における領域191および領域193の体積、面積および半径の比と、充電容量について計算した結果について説明する。
計算を簡明にするために、本発明の一態様の粒子190が、図21Aに示す粒子のように球状であるとした。また領域192は充電容量に直接関係しないため本実施例の計算では除外してある。
図21Bは粒子190の半径が5μmであり、コアである領域191にLiCoO、シェルである領域193にNCM811(LiNiCoMn、x:y:z=8:1:1)を用いた場合の、領域191の半径と重量あたりの充電容量のグラフである。充電電圧が4.2V、4.4V、4.6V、4.7Vである場合についてそれぞれ計算した。
図21Bに示すように、4.2V乃至4.6Vでは、コアである領域191の半径が小さいほど、放電容量が増加する傾向がみられた。この場合、領域191の半径が3.5μm以下(粒子190の半径の0.7以下)であることが好ましく、3.0μm以下(粒子190の半径の0.6以下)であることがより好ましいことが示された。
なお図示しないが、半径の比を2乗すれば、断面積の比を求めることができる。たとえば領域191の半径の比が0.02のとき、領域191の面積はS190の0.04%となる。領域191の半径の比が0.55のとき、領域191の面積はS190の約30%となる。領域191の半径の比が0.8のとき、領域191の面積はS190の約64%となる。領域191の半径の比が0.95のとき、領域191の面積はS190の約90%となる。領域191の半径の比が0.98のとき、領域191の面積はS190の約96%となる。
実施の形態でも述べたように、領域191または領域193等の断面積比は、粒子190を加工により断面を露出させた後の断面観察および各種線分析、面分析等により評価することができる。面積比を評価する場合には、粒子190の内部構造を十分に反映した断面を用いることが好ましい。例えば断面の最大幅が平均粒径(D50)の80%以上である断面を用いることが好ましい。
100:正極活物質、101:正極集電体、102:正極活物質層、103:電解質層、104:負極活物質層、105:負極集電体、106:正極、107:負極、190:粒子、191:領域、192:領域、193:領域、193a:領域、193b:領域、194:領域、195:領域、196a:領域、196b:領域、196c:領域、196d:領域、197:結晶粒界、300:二次電池、301:正極缶、302:負極缶、303:ガスケット、304:正極、305:正極集電体、306:正極活物質層、307:負極、308:負極集電体、309:負極活物質層、310:セパレータ、400:二次電池、410:正極、411:正極活物質、413:正極集電体、414:正極活物質層、420:固体電解質層、421:固体電解質、430:負極、431:負極活物質、433:負極集電体、434:負極活物質層、500:集電体、501:活物質、502:活物質、503:アセチレンブラック、504:グラフェン、505:カーボンナノチューブ、700:二次電池、701:正極集電体、702:正極活物質層、703:正極、704:負極集電体、705:負極活物質層、706:負極、707:電解質層、709:外装体、750a:正極、750b:固体電解質層、750c:負極、751:電極用プレート、752:絶縁管、753:電極用プレート、761:下部部材、762:上部部材、764:蝶ナット、765:Oリング、766:絶縁体、770a:パッケージ部材、770b:パッケージ部材、770c:パッケージ部材、771:外部電極、772:外部電極、773a:電極層、773b:電極層、800:蓄電装置、801:商業用電源、803:分電盤、805:蓄電コントローラ、806:表示器、807:一般負荷、808:蓄電系負荷、809:ルータ、810:引込線取付部、811:計測部、812:予測部、813:計画部、890:制御装置、891:蓄電装置、896:床下空間部、899:建物、950:二次電池、951:捲回体、960:外装体、961:端子、962:端子、963:端子、964:端子、1300:角型二次電池、1301a:バッテリ、1301b:バッテリ、1302:バッテリコントローラ、1303:モータコントローラ、1304:モータ、1305:ギア、1306:DCDC回路、1307:電動パワステ、1308:ヒーター、1309:デフォッガ、1310:DCDC回路、1311:バッテリ、1312:インバータ、1313:オーディオ、1314:パワーウィンドウ、1315:ランプ類、1316:タイヤ、1317:リアモータ、1320:制御回路部、1321:制御回路部、1322:制御回路、1324:スイッチ部、1325:外部端子、1326:外部端子、1413:固定部、1414:固定部、1415:電池パック、1421:配線、1422:配線、2001:自動車、2002:輸送車、2003:輸送車両、2004:航空機、2100:携帯電話機、2101:筐体、2102:表示部、2103:操作ボタン、2104:外部接続ポート、2105:スピーカ、2106:マイク、2107:二次電池、2200:電池パック、2201:電池パック、2202:電池パック、2203:電池パック、2300:無人航空機、2301:二次電池、2302:ローター、2303:カメラ、2602:二次電池、2603:車両、2604:充電装置、2610:ソーラーパネル、2611:配線、2612:蓄電装置、4000:眼鏡型デバイス、4000a:フレーム、4000b:表示部、4001:ヘッドセット型デバイス、4001a:マイク部、4001b:フレキシブルパイプ、4001c:イヤフォン部、4002:デバイス、4002a:筐体、4002b:二次電池、4003:デバイス、4003a:筐体、4003b:二次電池、4005:腕時計型デバイス、4005a:表示部、4005b:ベルト部、4006:ベルト型デバイス、4006a:ベルト部、4006b:ワイヤレス給電受電部、8300:ヘッドマウントディスプレイ、8301:筐体、8302:表示部、8304:固定具、8305:レンズ、8306:回路部、8307:撮像装置、8600:スクータ、8601:サイドミラー、8602:蓄電装置、8603:方向指示灯、8604:座席下収納、8700:電動自転車、8701:蓄電池、8702:蓄電装置、8703:表示部、8704:制御回路

Claims (13)

  1.  正極活物質を有する二次電池であって、
     前記正極活物質は、
     第1の領域と、前記第1の領域よりも内側に設けられる第2の領域と、を有し、
     前記第1の領域と、前記第2の領域はそれぞれ、
     リチウムと、
     酸素と、
     第1の遷移金属、第2の遷移金属および第3の遷移金属の中から選ばれる一または複数を有し、
     前記第1の遷移金属はニッケルであり、
     前記第2の遷移金属はコバルトであり、
     前記第3の遷移金属はマンガンであり、
     前記ニッケルの濃度は、前記第1の領域の方が前記第2の領域よりも高い、二次電池。
  2.  請求項1において、前記マンガンの濃度は、前記第1の領域の方が前記第2の領域よりも高い、二次電池。
  3.  請求項1または請求項2において、
     前記正極活物質は不純物元素を有する不純物領域を有し、
     前記不純物領域は前記第1の領域と前記第2の領域の間に設けられる、二次電池。
  4.  請求項3において、
     前記不純物領域は、前記第1の領域と前記第2の領域が有する元素の相互拡散を抑制する機能を有する、二次電池。
  5.  正極活物質を有する二次電池であって、
     前記正極活物質は、多重構造を有し、
     第1の領域と、前記第1の領域よりも内側に設けられる第2の領域と、前記第2の領域よりも内側に設けられる第3の領域とを有し、
     前記第1の領域と、前記第2の領域と、前記第3の領域はそれぞれ、
     リチウムと、
     酸素と、
     第1の遷移金属、第2の遷移金属および第3の遷移金属の中から選ばれる一または複数を有し、
     前記第1の遷移金属はニッケルであり、
     前記第2の遷移金属はコバルトであり、
     前記第3の遷移金属はマンガンであり、
     前記ニッケルの濃度は、前記第2の領域の方が前記第3の領域よりも高い、二次電池。
  6.  請求項5において、
     前記ニッケルの濃度は、前記第2の領域の方が前記第1の領域よりも高い、二次電池。
  7.  請求項5または請求項6のいずれか一において、
     前記正極活物質は不純物元素を有する不純物領域を有し、
     前記不純物領域は前記第2の領域と前記第3の領域の間に設けられる、二次電池。
  8.  請求項7において、
     前記不純物領域は、前記第2の領域と前記第3の領域が有する元素の相互拡散を抑制する機能を有する、二次電池。
  9.  請求項3または請求項4または請求項7または請求項8のいずれか一において、
     前記不純物元素は、チタン、フッ素、マグネシウム、アルミニウム、ジルコニウム、カルシウム、ガリウム、ニオブ、リン、ホウ素、シリコンのうち少なくとも一以上である、二次電池。
  10.  請求項1乃至請求項9のいずれか一において、
     前記第1の領域は、充放電に伴う前記リチウムの拡散を促進し、前記正極活物質の安定化に寄与する、二次電池。
  11.  請求項1乃至請求項10のいずれか一において、
     前記二次電池は炭素材料を有し、
     前記炭素材料は繊維状炭素、グラフェン、粒子状炭素のうち少なくとも一以上である、二次電池。
  12.  請求項1乃至請求項11のいずれか一に記載の二次電池を有する電子機器。
  13.  請求項1乃至請求項11のいずれか一に記載の二次電池を有する車両。
PCT/IB2021/051926 2020-03-20 2021-03-09 二次電池、電子機器、及び車両 WO2021186290A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227029474A KR20220155986A (ko) 2020-03-20 2021-03-09 이차 전지, 전자 기기, 및 차량
US17/905,298 US20230129659A1 (en) 2020-03-20 2021-03-09 Secondary battery, electronic device, and vehicle
JP2022508605A JPWO2021186290A1 (ja) 2020-03-20 2021-03-09
CN202180022195.8A CN115280555A (zh) 2020-03-20 2021-03-09 二次电池、电子设备及车辆

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020050349 2020-03-20
JP2020-050349 2020-03-20

Publications (1)

Publication Number Publication Date
WO2021186290A1 true WO2021186290A1 (ja) 2021-09-23

Family

ID=77770694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2021/051926 WO2021186290A1 (ja) 2020-03-20 2021-03-09 二次電池、電子機器、及び車両

Country Status (5)

Country Link
US (1) US20230129659A1 (ja)
JP (1) JPWO2021186290A1 (ja)
KR (1) KR20220155986A (ja)
CN (1) CN115280555A (ja)
WO (1) WO2021186290A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160049648A1 (en) * 2013-04-29 2016-02-18 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Positive electrode active material and secondary battery comprising the same
KR20160044730A (ko) * 2014-10-16 2016-04-26 주식회사 엘지화학 베리어 층을 포함하는 이차 전지용 양극 활물질 및 이의 제조 방법
JP2017210395A (ja) * 2016-05-27 2017-11-30 住友金属鉱山株式会社 ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、ならびに非水系電解質二次電池
JP2020507894A (ja) * 2017-02-06 2020-03-12 エルジー・ケム・リミテッド 二次電池用正極活物質、その製造方法およびこれを含むリチウム二次電池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7163010B2 (ja) 2017-07-14 2022-10-31 株式会社半導体エネルギー研究所 正極活物質、正極、および二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160049648A1 (en) * 2013-04-29 2016-02-18 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Positive electrode active material and secondary battery comprising the same
KR20160044730A (ko) * 2014-10-16 2016-04-26 주식회사 엘지화학 베리어 층을 포함하는 이차 전지용 양극 활물질 및 이의 제조 방법
JP2017210395A (ja) * 2016-05-27 2017-11-30 住友金属鉱山株式会社 ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、ならびに非水系電解質二次電池
JP2020507894A (ja) * 2017-02-06 2020-03-12 エルジー・ケム・リミテッド 二次電池用正極活物質、その製造方法およびこれを含むリチウム二次電池

Also Published As

Publication number Publication date
JPWO2021186290A1 (ja) 2021-09-23
CN115280555A (zh) 2022-11-01
KR20220155986A (ko) 2022-11-24
US20230129659A1 (en) 2023-04-27

Similar Documents

Publication Publication Date Title
WO2021260487A1 (ja) 二次電池、二次電池の作製方法、電子機器、及び車両
JP2022045353A (ja) 二次電池の作製方法、および二次電池
WO2021181191A1 (ja) 二次電池、二次電池の作製方法、電子機器および車両
WO2021186288A1 (ja) 二次電池、電子機器、及び車両
JP2022045263A (ja) 正極活物質、二次電池、二次電池の作製方法、電子機器、及び車両
WO2021186290A1 (ja) 二次電池、電子機器、及び車両
WO2021191733A1 (ja) 二次電池、電子機器、車両及び二次電池の作製方法
WO2022034414A1 (ja) 二次電池、電子機器、車両、及び正極活物質の作製方法
WO2021245562A1 (ja) 正極活物質、正極活物質層、二次電池、電子機器、及び車両
WO2022023865A1 (ja) 二次電池及びその作製方法
WO2021181197A1 (ja) 二次電池およびその作製方法、及び車両
WO2022038449A1 (ja) 二次電池、電子機器および車両
WO2022123389A1 (ja) 正極、正極の作製方法、二次電池、電子機器、蓄電システムおよび車両
WO2022038451A1 (ja) 正極活物質の作製方法、および二次電池の作製方法
WO2021105813A1 (ja) 二次電池、正極活物質の作製方法、携帯情報端末、および車両
WO2022038454A1 (ja) 正極活物質の作製方法
WO2021240292A1 (ja) 二次電池および二次電池を有する車両
WO2021234501A1 (ja) 二次電池および二次電池を有する車両
WO2022243782A1 (ja) 正極活物質の作製方法、正極、リチウムイオン二次電池、移動体、蓄電システム、及び電子機器
WO2023047234A1 (ja) 複合酸化物の作製方法、及びリチウムイオン電池の作製方法
WO2022195402A1 (ja) 蓄電装置管理システム及び電子機器
WO2022189889A1 (ja) 複合酸化物の作製方法、正極、リチウムイオン二次電池、電子機器、蓄電システム、及び移動体
WO2022172118A1 (ja) 電極の作製方法
JP2022107169A (ja) 正極活物質の作製方法
JP2022035302A (ja) 二次電池およびその作製方法、および車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21771530

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022508605

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21771530

Country of ref document: EP

Kind code of ref document: A1