本発明の実施の形態について、図面を適宜用いながら説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更しうることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態において、同じ物を指し示す符号は異なる図面において共通とする。
また、以下に説明する実施の形態及び実施例それぞれにおいて、特に断りがない限り、本明細書に記載されている他の実施形態及び実施例と適宜組み合わせて実施することが可能である。
本明細書において「電子機器」とは、蓄電装置を有する装置全般を指し、蓄電装置を有する電気光学装置、蓄電装置を有する情報端末装置などは全て電子機器である。
本明細書において、「蓄電装置」とは、蓄電機能を有する素子及び装置全般を指すものである。例えば、リチウムイオン二次電池などの蓄電装置(「二次電池」ともいう)、リチウムイオンキャパシタ、及び電気二重層キャパシタなどを含む。
二次電池は、正極及び負極を有する。正極を構成する材料として、正極活物質がある。正極活物質は、例えば、充放電の容量に寄与する反応を行う物質である。なお、正極活物質は、その一部に、充放電の容量に寄与しない物質を含んでいてもよい。
本明細書において、本発明の一態様の正極活物質は、正極材料、二次電池用正極材、複合酸化物、等と表現される場合がある。また、本明細書において、本発明の一態様の正極活物質は、化合物を有することが好ましい。また、本明細書において、本発明の一態様の正極活物質は、組成物を有することが好ましい。また、本明細書において、本発明の一態様の正極活物質は、複合体を有することが好ましい。
本明細書において、「偏析」とは、複数の元素(例えばA,B,C)からなる固体において、ある元素(例えばB)が空間的に不均一に分布する現象をいう。
本明細書において、活物質等の粒子の「表層部」とは、例えば、表面から内部に向かって50nm以内、より好ましくは35nm以内、さらに好ましくは20nm以内、最も好ましくは10nm以内の領域である。また、ひび又はクラックにより生じた面は、表面と見なすことができる。また、本明細書において、表層部より深い領域を「内部」と呼ぶことがある。また、本明細書において、「粒界」とは、例えば粒子同士が固着している部分、粒子内部(中央部を含む)で結晶方位が変わる部分、欠陥を多く含む部分、結晶構造が乱れている部分等をいう。また、粒界は、面欠陥の一つとも言える。また、「粒界の近傍」とは、粒界から10nm以内の領域をいうこととする。また、本明細書において、「粒子」とは、球形(断面形状が円)のみを指すことに限定されず、個々の粒子の断面形状が楕円形、長方形、台形、錐形、角が丸まった四角形、非対称の形状などが挙げられ、さらに個々の粒子は不定形であってもよい。
本明細書において、結晶面及び方向の表記には、ミラー指数を用いる。結晶面を示す個別面は( )で表す。結晶面、方向、及び空間群の表記は、結晶学上、数字に上付きのバーを付すが、本明細書では出願表記の制約上、数字の上にバーを付す代わりに、数字の前に-(マイナス符号)を付して表現する場合がある。
本明細書において、「リチウムと遷移金属を含む複合酸化物が有する層状岩塩型の結晶構造」とは、陽イオンと陰イオンが交互に配列する岩塩型のイオン配列を有し、遷移金属とリチウムが規則配列して二次元平面を形成するため、リチウムの二次元的拡散が可能である結晶構造をいう。なお、陽イオンまたは陰イオンの欠損等の欠陥を有していてもよい。また、層状岩塩型結晶構造は、厳密に言えば、岩塩型結晶の格子が歪んだ構造となっている場合がある。
本明細書において、「岩塩型の結晶構造」とは、陽イオンと陰イオンが交互に配列している構造をいう。なお、陽イオンまたは陰イオンの欠損があってもよい。
コバルト酸リチウム(LiCoO2)などの層状岩塩型の結晶構造を有する材料は、放電容量が高く、二次電池の正極活物質として好ましい。層状岩塩型の結晶構造を有する材料は、例えばLiMO2(Mは、例えば遷移金属を表わす。)で表される複合酸化物が挙げられる。
遷移金属化合物におけるヤーン・テラー効果は、遷移金属のd軌道の電子の数により、その効果の強さが異なることが知られている。
ニッケルを有する化合物においては、ヤーン・テラー効果により歪みが生じやすい場合がある。よって、LiNiO2において高電圧における充放電を行った場合、歪みに起因する結晶構造の崩れが生じる懸念がある。LiCoO2においてはヤーン・テラー効果の影響が小さいことが示唆され、高電圧における充放電の耐性がより優れる場合があり好ましい。
(実施の形態1)
本実施の形態では、図1を用いて、本発明の一態様の正極活物質の作製方法について説明する。
<ステップS101>
図1のステップS101として、ジルコニウム源(Zr源)と、溶媒と、を用意する。
を用意する。
ジルコニウム源は、例えばジルコニウムを含むアルコキシド(ジルコニウムアルコキシド)を用いることができる。ジルコニウムアルコキシドは、例えばジルコニウム(IV)テトライソプロポキシドを用いることができる。
溶媒は、ジルコニウム源を溶解することが可能なものを用いることができる。例えばアルコールを用いることができる。アルコールは、例えばイソプロパノール(「2-プロパノール」、「イソプロピルアルコール」とも呼ばれる。)を用いることができる。
<ステップS102>
次に、溶媒とジルコニウム源を混合して、第1の混合溶液を得る。混合する際は、溶媒に対してジルコニウム源を溶解させて第1の混合溶液を得るのが好ましい。以下では、アルコールにジルコニウムアルコキシドを溶解させて、第1の混合溶液を得る場合を例に挙げて説明する。
<ステップS201>
次に、リチウム、遷移金属M、マグネシウム、フッ素、及びニッケルを有する複合酸化物を用意する。なお、ステップS201は、ステップS101乃至S102とは独立したものであるため、工程の順番は問わない。
<ステップS61>
次に、第1の混合溶液と、リチウム、遷移金属M、マグネシウム、フッ素、及びニッケルを有する複合酸化物と、を混合して、第2の混合溶液を得る。
<ステップS63>
次に、ドライ雰囲気で攪拌して、第3の混合溶液を得る。ドライ雰囲気で攪拌するために用いる容器は、特に限定されない。例えば、容器は、蓋を備えた坩堝や、密閉可能な皿を用いることができる。また、蓋、坩堝、及び皿の材料は、例えばセラミック製のものを用いることができる。また、蓋付きの坩堝を用いる場合は、蓋と坩堝の双方が同じ材料であると好ましい。このような工程を経ることにより、第2の混合溶液中にリチウム、遷移金属M、マグネシウム、フッ素、及びニッケルを有する複合酸化物でなる粒子が均一に分散された第3の混合溶液を得ることができる。
なお、本明細書において「遷移金属M」は、リチウムとともに空間群R-3mに属する層状岩塩型の複合酸化物を形成しうる金属を用いることが好ましい。具体的には、コバルト、マンガン、ニッケルのうち少なくとも一を用いることが好ましい。つまり、遷移金属Mとして、コバルトのみ、マンガンのみ、ニッケルのみ、コバルトとマンガンの2種、コバルトとニッケルの2種、マンガンとニッケルの2種、またはコバルトとマンガンとニッケルの3種を用いることが好ましい。
なお、本明細書において「ドライ雰囲気」とは、水が少ない雰囲気(例えば、露点-50℃以下の雰囲気、より好ましくは露点-100℃以下の雰囲気)をいう。、なお、水が少ない雰囲気であれば、ガスの成分は必ずしも限定されず、例えば乾燥空気、窒素雰囲気、または不活性雰囲気(例えばアルゴン雰囲気)を用いることができる。
撹拌は、例えばマグネチックスターラーまたは撹拌機を用いて行うことができる。撹拌機は、攪拌翼(ブレード)を有しているが、攪拌翼の種類は限定されない。例えば、パドル型、アンカー型、またはプロペラ型の攪拌翼を用いることができる。また、遊星式攪拌機を用いることもできる。
また、撹拌時間は、第2の混合溶液中にリチウム、遷移金属M、マグネシウム、フッ素、及びニッケルを有する複合酸化物でなる粒子を均一に分散させることができる時間であればよい。例えば10分以上5時間以下(好ましくは30分以上3時間以下)とすることができる。
また、撹拌する際の温度は、特に下限・上限がないが、量産性を考慮して好ましくは室温で行うとよい。本明細書において「室温」とは、1℃以上30℃以下の温度範囲を指すものとする。
<ステップS65>
次に、第3の混合溶液を乾燥して、第3の混合溶液中の溶媒を蒸発させることにより、第1の混合物を得る。
乾燥の条件は、例えば60℃以上100℃以下の温度範囲とすればよいが、好ましくは、70℃以上95℃以下とすればよく、さらに好ましくは75℃以上85℃以下とすればよい。また、乾燥処理の時間は、15分以上18時間以下とすればよいが、好ましくは30分以上10時間以下とすればよく、さらに好ましくは1時間以上5時間以下とする。
<ステップS67>
次に、第1の混合物を加熱(「焼成」と呼ぶこともできる。)して、ジルコニウムアルコキシドの有する金属(すなわち、ジルコニウム)を含む酸化物が表面に被覆された複合酸化物(正極活物質100)を得る。ジルコニウムアルコキシドの有する金属(すなわち、ジルコニウム)を含む酸化物は、例えば、粒径が1μm以下(好ましくは500nm以下、さらに好ましくは300nm以下、最も好ましくは100nm以下)の大きさを有する粒子であるように観察される。
加熱の条件は、例えば600℃以上900℃以下の温度範囲で、1時間以上50時間以下とする。また、加熱する際の雰囲気は特に限定されないが、酸素を含む雰囲気が好ましい。例えば、酸素雰囲気や、大気中で行うことが好ましい。
なお、本明細書において「被覆」とは、あるモノ(例えば、複合酸化物)の表面全体を覆っていなくてもよい。したがって、あるモノ(例えば、複合酸化物)の表面の一部を覆っている態様も、「被覆」の範疇に含まれるものとする。また、本実施の形態で説明したジルコニウムアルコキシドの有する金属(すなわち、ジルコニウム)を含む酸化物の場合は、複合酸化物の表面全体に対し、好ましくは30%以上(さらに好ましくは50%以上、最も好ましくは80%以上)を覆っているのがよい。
本発明の一態様は、以上の工程を経ることにより、正極活物質として用いることが可能な複合酸化物を得ることができる。より具体的には、リチウムイオン二次電池の正極活物質として用いることが可能な複合酸化物を得ることができる。
また、本発明の一態様は、上述した乾燥の条件下で第3の混合溶液中の溶媒を蒸発させる工程を有することにより、例えば室温で第3の混合溶液中の溶媒を蒸発させる工程に比較して、ジルコニウムを含む酸化物が表面に被覆された複合酸化物を短時間で作製することができる。
(実施の形態2)
本実施の形態では、図2を用いて、実施の形態1とは一部の工程が異なる、複合酸化物の作製方法について説明する。作製方法に関する実施の形態1との主な違いは、実施の形態1ではリチウム、遷移金属M、マグネシウム、フッ素、及びニッケルを有する複合酸化物と、ジルコニウム源(Zr源)と、溶媒と、を用意して複合酸化物を作製するのに対し、実施の形態2ではリチウム、遷移金属M、マグネシウム、フッ素、及びニッケルを有する複合酸化物と、ジルコニウム源(Zr源)と、アルミニウム源(Al源)と、溶媒と、を用意して複合酸化物を作製する点である。なお、この点以外に関する作製条件は、実施の形態1及び実施の形態2で説明したものを適宜用いることができるので、重複する部分については記載を省略する。
<ステップS101-2>
図2のステップS101-2として、ジルコニウム源(Zr源)と、アルミニウム源(Al源)と、溶媒と、を用意する。
ジルコニウム源(Zr源)、及び溶媒については、実施の形態1で説明したものを用いることができる。
アルミニウム源は、例えばアルミニウムを含むアルコキシド(アルミニウムアルコキシド)を用いることができる。アルミニウムアルコキシドは、例えばアルミニウム(III)イソプロポキシドを用いることができる。
<ステップS102-2>
次に、溶媒とジルコニウム源及びアルミニウム源を混合して、第1の混合溶液を得る。混合する際は、溶媒に対してジルコニウム源及びアルミニウム源を溶解させて第1の混合溶液を得るのが好ましい。以下では、アルコールに、ジルコニウムアルコキシド及びアルミニウムアルコキシドを溶解させて、第1の混合溶液を得る場合を例に挙げて説明する。
<ステップS201>
次に、リチウム、遷移金属M、マグネシウム、フッ素、及びニッケルを有する複合酸化物を用意する。なお、ステップS201は、ステップS101-2乃至S102-2とは独立したものであるため、工程の順番は問わない。
<ステップS61-2>
次に、第1の混合溶液と、リチウム、遷移金属M、マグネシウム、フッ素、及びニッケルを有する複合酸化物と、を混合して、第2の混合溶液を得る。
<ステップS63-2>
次に、ドライ雰囲気で攪拌して、第3の混合溶液を得る。このような工程を経ることにより、第2の混合溶液中にリチウム、遷移金属M、マグネシウム、フッ素、ニッケル、及びアルミニウムを有する複合酸化物でなる粒子を、より均一に分散させることができる。
<ステップS65-2>
次に、第3の混合溶液を乾燥して、第3の混合溶液中の溶媒を蒸発させることにより、第1の混合物を得る。なお、第3の混合溶液は、わずかに水成分を含んでいる可能性もあるが、本ステップにより、このわずかな水成分も蒸発させることができる。
<ステップS67-2>
次に、第1の混合物を加熱(「焼成」と呼ぶこともできる。)して、ジルコニウムアルコキシドの有する金属(すなわち、ジルコニウム)を含む酸化物が表面に被覆され、かつ、アルミニウムアルコキシドの有する金属(すなわち、アルミニウム)を表層部に含む複合酸化物(正極活物質100-2)を得る。
本発明の一態様は、以上の工程を経ることにより、正極活物質として用いることが可能な複合酸化物を得ることができる。より具体的には、リチウムイオン二次電池の正極活物質として用いることが可能な複合酸化物を得ることができる。
また、本発明の一態様は、上述した乾燥の条件下で第2の混合溶液中の溶媒を蒸発させる工程を有することにより、例えば室温で第2の混合溶液中の溶媒を蒸発させる工程に比較して、ジルコニウムを含む酸化物が表面に被覆され、かつ、アルミニウムを表層部に含む複合酸化物を短時間で作製することができる。
(実施の形態3)
本実施の形態では、図3を用いて、実施の形態1及び実施の形態2等に記載の、リチウム、遷移金属M、マグネシウム、フッ素、及びニッケルを有する複合酸化物の作製方法の一例について説明する。ただし、遷移金属M、マグネシウム、フッ素、及びニッケルを有する複合酸化物の作製方法は、本実施の形態で説明する作製方法に限定されるものではない。
<ステップS11>
図3のステップS11として、リチウム源と、遷移金属M源と、を用意する。
リチウム源は、例えば炭酸リチウム、フッ化リチウム、水酸化リチウム、酸化リチウム等を用いることができる。
遷移金属M源は、上述したように、リチウムとともに空間群R-3mに属する層状岩塩型の複合酸化物を形成しうる金属を用いることが好ましい。具体的には、コバルト、マンガン、ニッケルのうち少なくとも一を用いることが好ましい。
<ステップS12>
次にステップS12として、リチウム源と遷移金属M源を混合する。混合は、乾式または湿式で行うことができる。混合する際は、例えばボールミル、ビーズミルを用いて粉砕しながら行うことが好ましい。ボールミルを用いる場合は、例えば粉砕メディアとしてジルコニアボールを用いることが好ましい。
<ステップS13>
次にステップS13として、上記で混合した材料を加熱する。加熱温度は800℃以上1100℃未満で行うことが好ましく、900℃以上1000℃以下で行うことがより好ましく、950℃程度がさらに好ましい。または800℃以上1000℃以下が好ましい。または900℃以上1100℃以下が好ましい。例えば600℃程度といったように温度が低すぎると、リチウム源及び遷移金属M源の分解及び溶融が不十分となるおそれがある。一方、例えば1200℃程度といったように温度が高すぎると、遷移金属Mとして用いる、酸化還元反応を担う金属が過剰に還元される、リチウムが蒸散するなどの原因で欠陥が生じるおそれがある。例えば遷移金属Mとしてコバルトを用いた場合、コバルトが2価となる欠陥が生じうる。
加熱時間は、例えば1時間以上100時間以下とすればよいが、2時間以上20時間以下とすることが好ましい。または、1時間以上20時間以下が好ましい。または2時間以上100時間以下が好ましい。加熱時間は短い方が量産性が良く好ましい。加熱は、ドライ雰囲気で行うことが好ましい。例えば、1000℃で10時間加熱することとし、昇温は200℃/h、ドライ雰囲気における酸素の流量は10L/minとすることが好ましい。その後、加熱した材料を室温(25℃)まで冷却することができる。例えば、規定温度から室温までの降温時間を10時間以上50時間以下とすることが好ましい。
ただし、ステップS13における室温までの冷却は必須ではない。その後のステップS41乃至ステップS43の工程を行うのに問題がなければ、冷却は室温より高い温度までとしてもよい。
ステップS13で焼成した材料を回収し、リチウム及び遷移金属Mを有する複合酸化物(LiMO2)を得る。具体的には、コバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウム、コバルトの一部がマンガンで置換されたコバルト酸リチウム、コバルトの一部がニッケルで置換されたコバルト酸リチウム、またはニッケル-マンガン-コバルト酸リチウムなどを得る。
なお、リチウム及び遷移金属Mを有する複合酸化物は、購入可能なもの(市販品)を用いることもできる。例えば、日本化学工業製のコバルト酸リチウム粒子(商品名:セルシードC-10N)を用いることができる。セルシードC-10Nは、メディアン径(D50)が約12μmであり、グロー放電質量分析法(GD-MS)による不純物分析において、マグネシウム濃度及びフッ素濃度が50ppm wt以下、カルシウム濃度、アルミニウム濃度、及びシリコン濃度が100ppm wt以下、ニッケル濃度が150ppm wt以下、硫黄濃度が500ppm wt以下、ヒ素濃度が1100ppm wt以下、その他のリチウム、コバルト、及び酸素以外の元素濃度が150ppm wt以下である、コバルト酸リチウムである。
また、リチウム及び遷移金属Mを有する複合酸化物として、日本化学工業株式会社製のコバルト酸リチウム粒子(商品名:セルシードC-5H)を用いることもできる。セルシードC-5Hは、メディアン径(D50)が約6.5μmであり、GD-MSによる不純物分析において、リチウム、コバルト、及び酸素以外の元素濃度がセルシードC-10Nと同程度かそれ以下である、コバルト酸リチウムである。
リチウム及び遷移金属Mを有する複合酸化物として市販品を用いた場合は、S11乃至ステップS13を省略することができるため、より簡便な工程で正極活物質を形成できる。
<ステップS21>
次にステップS21として、マグネシウム源と、フッ素源を用意する。なお、ステップ21はステップS11乃至S13とは独立したものであるため、工程の順番は問わない。
マグネシウム源は、例えばフッ化マグネシウム、酸化マグネシウム、水酸化マグネシウム、炭酸マグネシウムを用いることができる。
フッ素源は、例えばフッ化リチウム(LiF)、フッ化マグネシウム(MgF2)、フッ化アルミニウム(AlF3)、フッ化チタン(TiF4)、フッ化コバルト(CoF2、CoF3)、フッ化ニッケル(NiF2)、フッ化ジルコニウム(ZrF4)、フッ化バナジウム(VF5)、フッ化マンガン、フッ化鉄、フッ化クロム、フッ化ニオブ、フッ化亜鉛(ZnF2)、フッ化カルシウム(CaF2)フッ化ナトリウム(NaF)、フッ化カリウム(KF)、フッ化バリウム(BaF2)、フッ化セリウム(CeF2)、フッ化ランタン(LaF3)六フッ化アルミニウムナトリウム(Na3AlF6)等を用いることができる。また、フッ素源は固体に限られず、気体又は液体でもよい。例えば、フッ素源として、フッ素(F2)、フッ化炭素、フッ化硫黄、フッ化酸素(OF2、O2F2、O3F2、O4F2、O5F2、O6F2、O2F)等を用い、後述する加熱工程において雰囲気中に混合してもよい。また複数のフッ素源を混合して用いてもよい。なかでも、フッ化リチウムは固体のフッ素源のなかでは融点が848℃と比較的低く、後述する加熱工程(アニール工程)で溶融しやすいため、好ましい。
本実施の形態では、フッ素源としてフッ化リチウムLiFを用意し、フッ素源及びマグネシウム源としてフッ化マグネシウムMgF2を用意することとする。フッ化リチウムLiFとフッ化マグネシウムMgF2は、LiF:MgF2=65:35(モル比)程度で混合すると、融点を下げる効果が最も高くなる。一方、フッ化リチウムが多くなると、リチウムが過剰になりすぎサイクル特性が悪化する懸念がある。そのため、フッ化リチウムLiFとフッ化マグネシウムMgF2のモル比は、LiF:MgF2=x:1(0≦x≦1.9)であることが好ましく、LiF:MgF2=x:1(0.1≦x≦0.5)がより好ましく、LiF:MgF2=x:1(x=0.33近傍)がさらに好ましい。なお、本明細書において「近傍」とは、その値の0.9倍より大きく1.1倍より小さい値とする。
<ステップS22>
次に、ステップS22において、上記の混合物902の材料を混合及び粉砕する。混合は乾式または湿式で行うことができるが、湿式はより小さく粉砕することができるため、好ましい。混合には例えばボールミル、ビーズミル等を用いることができる。ボールミルを用いる場合は、例えば粉砕メディアとしてジルコニアボールを用いることが好ましい。この混合及び粉砕工程を十分に行い、混合物902を微粉化することが好ましい。
なお、ステップS22における混合及び粉砕工程を湿式で行う場合は、溶媒を用意する。溶媒は、例えばアセトン等のケトン、エタノール及びイソプロパノール等のアルコール、ジエチルエーテル等のエーテル、ジオキサン、アセトニトリル、N-メチル-2-ピロリドン(NMP)等を用いることができるが、非プロトン性溶媒を用いた場合は、リチウムとの反応が起こりにくいため、好ましい。本実施の形態では、アセトンを用いることとする。
ステップS22において混合及び粉砕した材料を回収し、混合物902を得る。混合物902は、例えばD50(メディアン径)が10nm以上20μm以下であることが好ましく、100nm以上5μm以下であることがより好ましい。または200nm以上1μm以下が好ましい。このように微粉化された混合物902は、後の工程でリチウム、遷移金属M及び酸素を有する複合酸化物と混合した際に、複合酸化物の粒子の表面に混合物902を均一に付着(被覆)させやすい。複合酸化物の粒子の表面に混合物902が均一に付着していると、加熱後に複合酸化物粒子の表層部にハロゲン及びマグネシウムを均一に分布させやすいため好ましい。
<ステップS41>
次にステップS41において、リチウム及び遷移金属Mを有する複合酸化物(LiMO2)と、混合物902と、を混合して、混合物903を得る。リチウム、遷移金属、及び酸素を有する複合酸化物中の遷移金属の原子数Mと、混合物902が有するマグネシウムの原子数Mgとの比は、M:Mg=100:y(0.1≦y≦6)であることが好ましく、M:Mg=100:y(0.3≦y≦3)であることがより好ましい。
ステップS41の混合は、複合酸化物の粒子を破壊しないためにステップS12の混合よりも穏やかな条件とすることが好ましい。例えば、ステップS12の混合よりも回転数が少ない、または時間が短い条件とすることが好ましい。また湿式よりも乾式のほうが粒子を破壊しにくい条件であるため、好ましい。混合には例えばボールミル、ビーズミル等を用いることができる。ボールミルを用いる場合は、例えば粉砕メディアとしてジルコニアボールを用いることが好ましい。
<ステップS42>
次にステップS42において、混合物903を焼成(加熱)して、リチウム、遷移金属M、マグネシウム、及びフッ素を有する複合酸化物を得る。ステップS42における焼成(加熱)の条件は、例えばステップS13で説明した焼成(加熱)の条件を用いることができる。
なお、リチウム、遷移金属M、マグネシウム、及びフッ素を有する複合酸化物は、購入可能なもの(市販品)を用いることもできる。例えば、日本化学工業株式会社製のコバルト酸リチウム粒子(商品名:セルシードC-20F)を用いることもできる。セルシードC-20Fは、メディアン径が約20μmであり、表面からXPSで分析可能な領域にマグネシウム、フッ素、カルシウム、ナトリウム、シリコン、硫黄、リンを含むコバルト酸リチウム粒子である。
リチウム及び遷移金属Mを有する複合酸化物として市販品を用いた場合は、S11乃至ステップS13、S21乃至S22、S41乃至S42を省略することができるため、より簡便な工程で正極活物質を形成できる。
<ステップS31>
次に、ニッケル源(Ni源)を用意する。
ニッケル源は、例えばニッケルの酸化物またはニッケルの水酸化物を用いることができる。ニッケルの酸化物は、例えば酸化ニッケルを用いることができる。また、ニッケルの水酸化物は、例えば水酸化ニッケルを用いることができる。
なお、ステップS31において、ニッケル源(Ni源)に加えてアルミニウム源も用意してもよい。
アルミニウム源は、例えばアルミニウムの酸化物またはアルミニウムの水酸化物を用いることができる。アルミニウムの酸化物は、例えば酸化アルミニウムを用いることができる。また、アルミニウムの水酸化物は、例えば水酸化アルミニウムを用いることができる。
<ステップS51>
次に、リチウム、遷移金属M、マグネシウム、及びフッ素を有する複合酸化物と、ステップS31で用意したニッケル源(Ni源)を混合して、混合物を得る。この混合物は、リチウム、遷移金属M、マグネシウム、フッ素、及びニッケルを有する複合酸化物(実施の形態1、2等で説明した図1の「リチウム、遷移金属M、マグネシウム、フッ素、及びニッケルを有する複合酸化物201」に対応)として用いることができる。
本発明の一態様は、以上の工程を経ることにより、実施の形態1及び実施の形態2等に記載の、リチウム、遷移金属M、マグネシウム、フッ素、及びニッケルを有する複合酸化物を得ることができる。
(実施の形態4)
本実施の形態では、本発明の一態様の正極活物質を含むリチウムイオン二次電池について説明する。二次電池は、外装体、集電体、活物質(正極活物質、或いは負極活物質)、導電助剤、及びバインダを少なくとも有している。また、リチウム塩などを溶解させた電解液を有している。電解液を用いる二次電池の場合、正極と、負極と、正極と負極の間にセパレータとを設ける。
[正極]
正極は、正極活物質層及び正極集電体を有する。正極活物質層は実施の形態1、2等で示した正極活物質を有することが好ましく、さらにバインダ、導電助剤等を有していてもよい。
図4(A)は、正極の断面の模式図の一例を示している。
集電体550は金属箔であり、金属箔上にスラリーを塗布して乾燥させることによって正極を形成する。乾燥後、さらにプレスを加える場合もある。正極は、集電体550上に活物質層を形成したものである。
スラリーとは、集電体550上に活物質層を形成するために用いる材料液であり、少なくとも活物質とバインダと溶媒を少なくとも含有し、好ましくはさらに導電助剤を混合させたものを指している。スラリーは電極用スラリーまたは活物質スラリーと呼ばれることもあり、正極活物質層を形成する場合には正極用スラリーを用い、負極活物質層を形成する場合には負極用スラリーと呼ばれることもある。
導電助剤は、導電付与剤、導電材とも呼ばれ、炭素材料が用いられる。複数の活物質の間に導電助剤を付着させることで複数の活物質同士が電気的に接続され、導電性が高まる。なお、「付着」とは、活物質と導電助剤が物理的に密着していることのみを指しているのではなく、共有結合が生じる場合、ファンデルワールス力により結合する場合、活物質の表面の一部を導電助剤が覆う場合、活物質の表面凹凸に導電助剤がはまりこむ場合、互いに接していなくとも電気的に接続される場合などを含む概念とする。
導電助剤として用いられる炭素材料として代表的なものに、カーボンブラック(ファーネスブラック、アセチレンブラック、黒鉛など)がある。
図4(A)では、導電助剤としてアセチレンブラック553を図示している。また、図4(A)では、実施の形態1、2等で示した正極活物質100よりも粒径の小さい第2の活物質562を混合している例を示している。大きさの異なる粒子を混合することで高密度の正極活物質層とすることができ、二次電池の放電容量を大きくすることができる。なお、実施の形態1、2等で示した正極活物質100は、図4(A)の活物質561に相当する。
二次電池の正極として、金属箔などの集電体550と、活物質と、を固着させるために、バインダ(樹脂)を混合している。バインダは結着剤とも呼ばれる。バインダは高分子材料であり、バインダを多く含ませると正極における活物質の割合が低下して、二次電池の放電容量が小さくなる。そこでバインダの量は最小限に混合させている。図4(A)において、活物質561、第2の活物質562、アセチレンブラック553で埋まっていない領域は、空隙またはバインダを指している。
なお、図4(A)では活物質561を球形として図示した例を示しているが、特に限定されず、色々な形状であってもよい。活物質561の断面形状は楕円形、長方形、台形、錐形、角が丸まった四角形、非対称の形状であってもよい。
図4(B)では、活物質561が様々な形状として図示している例を示している。図4(B)は、図4(A)と異なる例を示している。
また、図4(B)の正極では、導電助剤として用いられる炭素材料として、グラフェン554を用いている。
グラフェンは電気的、機械的または化学的に驚異的な特性を有することから、グラフェンを利用した電界効果トランジスタや太陽電池等様々な分野の応用が期待される炭素材料である。
図4(B)は集電体550上に活物質561、グラフェン554、アセチレンブラック553を有する正極活物質層を形成している。
なお、グラフェン554、アセチレンブラック553を混合し、電極スラリーを得る工程において、混合するカーボンブラックの重量はグラフェンの1.5倍以上20倍以下、好ましくは2倍以上9.5倍以下の重量とすることが好ましい。
また、グラフェン554とアセチレンブラック553の混合を上記範囲とすると、スラリー調製時に、アセチレンブラック553の分散安定性に優れ、凝集部が生じにくい。また、グラフェン554とアセチレンブラック553の混合を上記範囲とすると、アセチレンブラック553のみを導電助剤に用いる正極よりも高い電極密度とすることができる。電極密度を高くすることで、重量単位当たりの容量を大きくすることができる。具体的には、重量測定による正極活物質層の密度は、3.5g/ccより高くすることができる。また、実施の形態1、2等で示した正極活物質100を正極に用い、且つ、グラフェン554とアセチレンブラック553の混合を上記範囲とすると、二次電池がより高容量となることについて相乗効果が期待でき好ましい。
また、グラフェンのみを導電助剤に用いる正極に比べると電極密度は低いが、第1の炭素材料(グラフェン)と第2の炭素材料(アセチレンブラック)の混合を上記範囲とすることで、急速充電に対応することができる。また、実施の形態1、2等で示した正極活物質100を正極に用い、且つ、グラフェン554とアセチレンブラック553の混合を上記範囲とすると、二次電池がより安定性を増し、さらなる急速充電に対応できることについて相乗効果が期待でき好ましい。
これらのことは、車載用の二次電池として有効である。
二次電池の数を増やして車両の重量が増加すると、移動させるエネルギーが増加するため、航続距離も短くなる。高密度の二次電池を用いることで同じ重量の二次電池を搭載する車両の総重量をほとんど変えることなく航続距離を維持できる。
また、車両の二次電池が高容量になると充電する電力が必要とされるため、短時間で充電を終了させることが望ましい。また、車両のブレーキをかけた時に一時的に発電させて、それを充電する、いわゆる回生充電において高レート充電条件での充電が行われるため、良好なレート特性が車両用二次電池に求められている。
実施の形態1、2等で示した正極活物質100を正極に用い、且つ、アセチレンブラックとグラフェンの混合比を最適範囲とすることで、電極の高密度化とイオン電導に必要な適切な隙間を作り出すことの両立が可能となり、高エネルギー密度かつ良好な出力特性をもつ車載用の二次電池を得ることができる。
また、携帯情報端末においても本構成は有効であり、実施の形態1、2等で示した正極活物質100を正極に用い、且つ、アセチレンブラックとグラフェンの混合比を最適範囲とすることで二次電池を小型化し、高容量とすることもできる。また、アセチレンブラックとグラフェンの混合比を最適範囲とすることで携帯情報端末の急速充電も可能である。
なお、図4(B)において、活物質561、グラフェン554、アセチレンブラック553で埋まっていない領域は、空隙またはバインダを指している。空隙は電解液の浸み込みに必要であるが、多すぎると電極密度が低下し、少なすぎると電解液が浸み込まず、二次電池とした後も空隙として残ってしまうとエネルギー密度が低下してしまう。
実施の形態1、2等で得られる正極活物質100を正極に用い、且つ、アセチレンブラックとグラフェンの混合比を最適範囲とすることで電極の高密度化とイオン電導に必要な適切な隙間を作り出すことの両立が可能となり、高エネルギー密度かつ良好な出力特性をもつ二次電池を得ることができる。
図4(C)では、グラフェンに代えてカーボンナノチューブ555を用いる正極の例を図示している。図4(C)は、図4(B)と異なる例を示している。カーボンナノチューブ555を用いるとアセチレンブラック553などのカーボンブラックの凝集を防ぎ、分散性を高めることができる。
なお、図4(C)において、活物質561、カーボンナノチューブ555、アセチレンブラック553で埋まっていない領域は、空隙またはバインダを指している。
また、他の正極の例として、図4(D)を図示している。図4(C)では、グラフェン554に加えてカーボンナノチューブ555を用いる例を示している。グラフェン554及びカーボンナノチューブ555の両方を用いると、アセチレンブラック553などのカーボンブラックの凝集を防ぎ、分散性をより高めることができる。
なお、図4(D)において、活物質561、カーボンナノチューブ555、グラフェン554、アセチレンブラック553で埋まっていない領域は、空隙またはバインダを指している。
図4(A)乃至図4(D)のいずれか一の正極を用い、正極上にセパレータを重ね、セパレータ上に負極を重ねた積層体を収容する容器(外装体、金属缶など)などに入れ、容器に電解液を充填させることで二次電池を作製することができる。
また、上記構成は、電解液を用いる二次電池の例を示したが特に限定されない。例えば、実施の形態1、2等で示した正極活物質100を用いて半固体電池または全固体電池を作製することもできる。
本明細書において「半固体電池」とは、電解質層、正極、負極の少なくとも一に、半固体材料を有する電池をいう。ここでいう半固体とは、固体材料の比が50%であることは意味しない。半固体とは、体積変化が小さいといった固体の性質を有しつつも、柔軟性を有する等の液体に近い性質も一部持ち合わせることを意味する。これらの性質を満たせば、単一の材料でも、複数の材料であってもよい。例えば液体の材料を、多孔質の固体材料に浸潤させた物であってもよい。
また本明細書において、「ポリマー電解質二次電池」とは、正極と負極の間の電解質層にポリマーを有する二次電池をいう。ポリマー電解質二次電池は、ドライ(または真性)ポリマー電解質電池、及びポリマーゲル電解質電池を含む。またポリマー電解質二次電池を半固体電池と呼んでもよい。
実施の形態1、2等で示した正極活物質100を用いて半固体電池を作製した場合、半固体電池は、放電容量の大きい二次電池となる。また、充放電電圧の高い半固体電池とすることができる。または、安全性または信頼性の高い半固体電池を実現することができる。
また、実施の形態1、2等で説明した正極活物質と、他の正極活物質を混合して用いてもよい。
他の正極活物質としては、例えばオリビン型の結晶構造、層状岩塩型の結晶構造、またはスピネル型の結晶構造を有する複合酸化物等がある。例えば、LiFePO4、LiFeO2、LiNiO2、LiMn2O4、V2O5、Cr2O5、MnO2等の化合物があげられる。
また、他の正極活物質としてLiMn2O4等のマンガンを含むスピネル型の結晶構造を有するリチウム含有材料に、ニッケル酸リチウム(LiNiO2やLiNi1-xMxO2(0<x<1)(M=Co、Al等))を混合すると好ましい。該構成とすることによって、二次電池の特性を向上させることができる。
また、他の正極活物質として、組成式LiaMnbMcOdで表すことができるリチウムマンガン複合酸化物を用いることができる。ここで、元素Mは、リチウム、マンガン以外から選ばれた金属元素、またはシリコン、リンを用いることが好ましく、ニッケルであることがさらに好ましい。また、リチウムマンガン複合酸化物の粒子全体を測定する場合、放電時に0<a/(b+c)<2、かつc>0、かつ0.26≦(b+c)/d<0.5を満たすことが好ましい。なお、リチウムマンガン複合酸化物の粒子全体の金属、シリコン、リン等の組成は、例えばICP-MS(誘導結合プラズマ質量分析計)を用いて測定することができる。またリチウムマンガン複合酸化物の粒子全体の酸素の組成は、例えばEDX(エネルギー分散型X線分析法)を用いて測定することが可能である。また、ICPMS分析と併用して、融解ガス分析、XAFS(X線吸収微細構造)分析の価数評価を用いることで求めることができる。なお、リチウムマンガン複合酸化物とは、少なくともリチウムとマンガンとを含む酸化物をいい、クロム、コバルト、アルミニウム、ニッケル、鉄、マグネシウム、モリブデン、亜鉛、インジウム、ガリウム、銅、チタン、ニオブ、シリコン、及びリンなどからなる群から選ばれる少なくとも一種の元素を含んでいてもよい。
<バインダ>
バインダとしては、例えば、スチレン-ブタジエンゴム(SBR)、スチレン-イソプレン-スチレンゴム、アクリロニトリル-ブタジエンゴム、ブタジエンゴム、エチレン-プロピレン-ジエン共重合体などのゴム材料を用いることが好ましい。またバインダとして、フッ素ゴムを用いることができる。
また、バインダとしては、例えば水溶性の高分子を用いることが好ましい。水溶性の高分子としては、例えば多糖類などを用いることができる。多糖類としては、カルボキシメチルセルロース(CMC)、メチルセルロース、エチルセルロース、ヒドロキシプロピルセルロース、ジアセチルセルロース、再生セルロースなどのセルロース誘導体、または澱粉などを用いることができる。また、これらの水溶性の高分子を、前述のゴム材料と併用して用いると、さらに好ましい。
または、バインダとしては、ポリスチレン、ポリアクリル酸メチル、ポリメタクリル酸メチル(ポリメチルメタクリレート、PMMA)、ポリアクリル酸ナトリウム、ポリビニルアルコール(PVA)、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド、ポリイミド、ポリ塩化ビニル、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリエチレンテレフタレート、ナイロン、ポリフッ化ビニリデン(PVDF)、ポリアクリロニトリル(PAN)、エチレンプロピレンジエンポリマー、ポリ酢酸ビニル、ニトロセルロース等の材料を用いることが好ましい。
バインダは上記のうち複数を組み合わせて使用してもよい。
例えば粘度調整効果の特に優れた材料と、他の材料とを組み合わせて使用してもよい。例えばゴム材料等は接着力や弾性力に優れる反面、溶媒に混合した場合に粘度調整が難しい場合がある。このような場合には例えば、粘度調整効果の特に優れた材料と混合することが好ましい。粘度調整効果の特に優れた材料としては、例えば水溶性高分子を用いるとよい。また、粘度調整効果に特に優れた水溶性高分子としては、前述の多糖類、例えばカルボキシメチルセルロース(CMC)、メチルセルロース、エチルセルロース、ヒドロキシプロピルセルロース及びジアセチルセルロース、再生セルロースなどのセルロース誘導体、または澱粉を用いることができる。
なお、カルボキシメチルセルロースなどのセルロース誘導体は、例えばカルボキシメチルセルロースのナトリウム塩またはアンモニウム塩などの塩とすることにより溶解度が上がり、粘度調整剤としての効果を発揮しやすくなる。溶解度が高くなることにより電極のスラリーを作製する際に活物質または他の構成要素との分散性を高めることもできる。本明細書においては、電極のバインダとして使用するセルロース及びセルロース誘導体としては、それらの塩も含むものとする。
水溶性高分子は水に溶解することにより粘度を安定化させ、また活物質や、バインダとして組み合わせる他の材料、例えばスチレンブタジエンゴムなどを、水溶液中に安定して分散させることができる。また、官能基を有するために活物質表面に安定に吸着しやすいことが期待される。また、例えばカルボキシメチルセルロースなどのセルロース誘導体は、水酸基またはカルボキシル基などの官能基を有する材料が多く、官能基を有するために高分子同士が相互作用し、活物質表面を広く覆って存在することが期待される。
活物質表面を覆う、または表面に接するバインダが膜を形成する場合には、不動態膜としての役割を果たして電解液の分解を抑える効果も期待される。ここで、「不動態膜」とは、電気の伝導性のない膜、または電気伝導性の極めて低い膜であり、例えば活物質の表面に不動態膜が形成された場合には、電池反応電位において、電解液の分解を抑制することができる。また、不動態膜は、電気の伝導性を抑えるとともに、リチウムイオンは伝導できるとさらに望ましい。
<正極集電体>
集電体としては、ステンレス、金、白金、アルミニウム、チタン等の金属、及びこれらの合金など、導電性が高い材料をもちいることができる。また正極集電体に用いる材料は、正極の電位で溶出しないことが好ましい。また、シリコン、チタン、ネオジム、スカンジウム、モリブデンなどの耐熱性を向上させる元素が添加されたアルミニウム合金を用いることができる。また、シリコンと反応してシリサイドを形成する金属元素で形成してもよい。シリコンと反応してシリサイドを形成する金属元素としては、ジルコニウム、チタン、ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、コバルト、ニッケル等がある。集電体は、箔状、板状、シート状、網状、パンチングメタル状、エキスパンドメタル状等の形状を適宜用いることができる。集電体は、厚みが5μm以上30μm以下のものを用いるとよい。
[負極]
負極は、負極活物質層及び負極集電体を有する。また、負極活物質層は負極活物質を有し、さらに導電助剤及びバインダを有していてもよい。
<負極活物質>
負極活物質としては、例えば合金系材料または炭素系材料等を用いることができる。
また、負極活物質は、リチウムとの合金化・脱合金化反応により充放電反応を行うことが可能な元素を用いることができる。例えば、シリコン、スズ、ガリウム、アルミニウム、ゲルマニウム、鉛、アンチモン、ビスマス、銀、亜鉛、カドミウム、インジウム等のうち少なくとも一つを含む材料を用いることができる。このような元素は炭素と比べて容量が大きく、特にシリコンは理論容量が4200mAh/gと高い。このため、負極活物質にシリコンを用いることが好ましい。また、これらの元素を有する化合物を用いてもよい。例えば、SiO、Mg2Si、Mg2Ge、SnO、SnO2、Mg2Sn、SnS2、V2Sn3、FeSn2、CoSn2、Ni3Sn2、Cu6Sn5、Ag3Sn、Ag3Sb、Ni2MnSb、CeSb3、LaSn3、La3Co2Sn7、CoSb3、InSb、SbSn等がある。ここで、リチウムとの合金化・脱合金化反応により充放電反応を行うことが可能な元素、及び該元素を有する化合物等を合金系材料と呼ぶ場合がある。
本明細書において、「SiO」は例えば一酸化シリコンを指す。あるいはSiOは、SiOxと表すこともできる。ここでxは1または1近傍の値を有することが好ましい。例えばxは、0.2以上1.5以下が好ましく、0.3以上1.2以下が好ましい。
炭素系材料は、黒鉛、易黒鉛化性炭素(ソフトカーボン)、難黒鉛化性炭素(ハードカーボン)、カーボンナノチューブ、グラフェン、カーボンブラック等を用いればよい。
黒鉛は、人造黒鉛または天然黒鉛等が挙げられる。人造黒鉛としては例えば、メソカーボンマイクロビーズ(MCMB)、コークス系人造黒鉛、ピッチ系人造黒鉛等が挙げられる。ここで人造黒鉛として、球状の形状を有する球状黒鉛を用いることができる。例えば、MCMBは球状の形状を有する場合があり、好ましい。また、MCMBはその表面積を小さくすることが比較的容易であり、好ましい場合がある。天然黒鉛としては、例えば、鱗片状黒鉛、球状化天然黒鉛等が挙げられる。
黒鉛は、リチウムイオンが黒鉛に挿入されたとき(リチウム-黒鉛層間化合物の生成時)にリチウム金属と同程度に低い電位を示す(0.05V以上0.3V以下 vs.Li/Li+)。これにより、黒鉛を用いたリチウムイオン二次電池は高い作動電圧を示すことができる。さらに、黒鉛は、単位体積当たりの容量が比較的高い、体積膨張が比較的小さい、安価である、リチウム金属に比べて安全性が高い等の利点を有するため、好ましい。
また、負極活物質として、二酸化チタン(TiO2)、リチウムチタン酸化物(Li4Ti5O12)、リチウム-黒鉛層間化合物(LixC6)、五酸化ニオブ(Nb2O5)、酸化タングステン(WO2)、酸化モリブデン(MoO2)等の酸化物を用いることができる。
また、負極活物質として、リチウムと遷移金属の複窒化物である、Li3N型構造をもつLi3-xMxN(M=Co、Ni、Cu)を用いることができる。例えば、Li2.6Co0.4N3は大きな放電容量(900mAh/g、1890mAh/cm3)を示し好ましい。
リチウムと遷移金属の複窒化物を用いると、負極活物質中にリチウムイオンを含むため、正極活物質としてリチウムイオンを含まないV2O5、Cr3O8等の材料と組み合わせることができ好ましい。なお、正極活物質にリチウムイオンを含む材料を用いる場合でも、あらかじめ正極活物質に含まれるリチウムイオンを脱離させることで、負極活物質としてリチウムと遷移金属の複窒化物を用いることができる。
また、コンバージョン反応が生じる材料を負極活物質として用いることもできる。例えば、酸化コバルト(CoO)、酸化ニッケル(NiO)、酸化鉄(FeO)等の、リチウムとの合金を作らない遷移金属酸化物を負極活物質に用いてもよい。コンバージョン反応が生じる材料としては、さらに、Fe2O3、CuO、Cu2O、RuO2、Cr2O3等の酸化物、CoS0.89、NiS、CuS等の硫化物、Zn3N2、Cu3N、Ge3N4等の窒化物、NiP2、FeP2、CoP3等のリン化物、FeF3、BiF3等のフッ化物でも起こる。
負極活物質層が有することのできる導電助剤及びバインダとしては、正極活物質層が有することのできる導電助剤及びバインダと同様の材料を用いることができる。
<負極集電体>
負極集電体には、正極集電体と同様の材料に加え、銅なども用いることができる。なお負極集電体は、リチウム等のキャリアイオンと合金化しない材料を用いることが好ましい。
[セパレータ]
正極と負極の間にセパレータを配置する。セパレータとしては、例えば、紙をはじめとするセルロースを有する繊維、不織布、ガラス繊維、セラミックス、或いはナイロン(ポリアミド)、ビニロン(ポリビニルアルコール系繊維)、ポリエステル、アクリル、ポリオレフィン、ポリウレタンを用いた合成繊維等で形成されたものを用いることができる。セパレータは袋状に加工し、正極または負極のいずれか一方を包むように配置することが好ましい。
セパレータは多層構造であってもよい。例えばポリプロピレン、ポリエチレン等の有機材料フィルムに、セラミック系材料、フッ素系材料、ポリアミド系材料、またはこれらを混合したもの等をコートすることができる。セラミック系材料としては、例えば酸化アルミニウム粒子、酸化シリコン粒子等を用いることができる。フッ素系材料としては、例えばPVDF、ポリテトラフルオロエチレン等を用いることができる。ポリアミド系材料としては、例えばナイロン、アラミド(メタ系アラミド、パラ系アラミド)等を用いることができる。
セラミック系材料をコートすると耐酸化性が向上するため、高電圧充放電の際のセパレータの劣化を抑制し、二次電池の信頼性を向上させることができる。またフッ素系材料をコートするとセパレータと電極が密着しやすくなり、出力特性を向上させることができる。ポリアミド系材料、特にアラミドをコートすると、耐熱性が向上するため、二次電池の安全性を向上させることができる。
例えば、ポリプロピレンのフィルムの両面に酸化アルミニウムとアラミドの混合材料をコートしてもよい。また、ポリプロピレンのフィルムの、正極と接する面に酸化アルミニウムとアラミドの混合材料をコートし、負極と接する面にフッ素系材料をコートしてもよい。
多層構造のセパレータを用いると、セパレータ全体の厚さが薄くても二次電池の安全性を保つことができるため、二次電池の体積あたりの容量を大きくすることができる。
[電解液]
電解液は、溶媒と電解質を有する。電解液の溶媒としては、非プロトン性有機溶媒が好ましく、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート、クロロエチレンカーボネート、ビニレンカーボネート、γ-ブチロラクトン、γ-バレロラクトン、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ギ酸メチル、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、酪酸メチル、1,3-ジオキサン、1,4-ジオキサン、ジメトキシエタン(DME)、ジメチルスルホキシド、ジエチルエーテル、メチルジグライム、アセトニトリル、ベンゾニトリル、テトラヒドロフラン、スルホラン、スルトン等の1種、又はこれらのうちの2種以上を任意の組み合わせ及び比率で用いることができる。
また、電解液の溶媒として、難燃性及び難揮発性であるイオン液体(常温溶融塩)を一つまたは複数用いることで、蓄電装置の内部短絡または過充電等によって内部温度が上昇しても、蓄電装置の破裂または発火などを防ぐことができる。イオン液体は、カチオンとアニオンからなり、有機カチオンとアニオンとを含む。電解液に用いる有機カチオンとして、四級アンモニウムカチオン、三級スルホニウムカチオン、及び四級ホスホニウムカチオン等の脂肪族オニウムカチオンまたはイミダゾリウムカチオン及びピリジニウムカチオン等の芳香族カチオンが挙げられる。また、電解液に用いるアニオンとして、1価のアミド系アニオン、1価のメチド系アニオン、フルオロスルホン酸アニオン、パーフルオロアルキルスルホン酸アニオン、テトラフルオロボレートアニオン、パーフルオロアルキルボレートアニオン、ヘキサフルオロホスフェートアニオン、またはパーフルオロアルキルホスフェートアニオン等が挙げられる。
また、上記の溶媒に溶解させる電解質としては、例えばLiPF6、LiClO4、LiAsF6、LiBF4、LiAlCl4、LiSCN、LiBr、LiI、Li2SO4、Li2B10Cl10、Li2B12Cl12、LiCF3SO3、LiC4F9SO3、LiC(CF3SO2)3、LiC(C2F5SO2)3、LiN(CF3SO2)2、LiN(C4F9SO2)(CF3SO2)、LiN(C2F5SO2)2、リチウムビス(オキサレート)ボレート(Li(C2O4)2、LiBOB)等のリチウム塩を一種、又はこれらのうちの二種以上を任意の組み合わせ及び比率で用いることができる。
蓄電装置に用いる電解液は、粒状のごみ、または電解液の構成元素以外の元素(以下、単に「不純物」ともいう。)の含有量が少ない高純度化された電解液を用いることが好ましい。具体的には、電解液に対する不純物の重量比を1%以下、好ましくは0.1%以下、より好ましくは0.01%以下とすることが好ましい。
また、電解液にビニレンカーボネート、プロパンスルトン(PS)、tert-ブチルベンゼン(TBB)、フルオロエチレンカーボネート(FEC)、リチウムビス(オキサレート)ボレート(LiBOB)、またスクシノニトリル、アジポニトリル等のジニトリル化合物などの添加剤を添加してもよい。添加剤の濃度は、例えば溶媒に対して0.1wt%以上5wt%以下とすればよい。
また、ポリマーを電解液で膨潤させたポリマーゲル電解質を用いてもよい。
ポリマーゲル電解質を用いることで、漏液性等に対する安全性が高まる。また、二次電池の薄型化及び軽量化が可能である。
ゲル化されるポリマーとして、シリコーンゲル、アクリルゲル、アクリロニトリルゲル、ポリエチレンオキサイド系ゲル、ポリプロピレンオキサイド系ゲル、フッ素系ポリマーのゲル等を用いることができる。例えば、ポリエチレンオキシド(PEO)などのポリアルキレンオキシド構造を有するポリマー、PVDF、若しくはポリアクリロニトリル等、またはそれらを含む共重合体等を用いることができる。例えばPVDFとヘキサフルオロプロピレン(HFP)の共重合体であるPVDF-HFPを用いることができる。また、形成されるポリマーは、多孔質形状を有してもよい。
また、電解液の代わりに、硫化物系または酸化物系等の無機物材料を有する固体電解質、又はPEO(ポリエチレンオキシド)系等の高分子材料を有する固体電解質を用いることができる。固体電解質を用いる場合には、セパレータ及びスペーサの設置が不要となる。また、電池全体を固体化できるため、漏液のおそれがなくなり安全性が飛躍的に向上する。
実施の形態1、2等で得られる正極活物質100は、全固体電池にも応用が可能である。全固体電池に該正極スラリーまたは電極を応用することによって、安全性が高く、特性が良好な全固体電池を得ることができる。
[外装体]
二次電池が有する外装体としては、例えばアルミニウムなどの金属材料または樹脂材料を用いることができる。また、フィルム状の外装体を用いることもできる。フィルムとしては、例えばポリエチレン、ポリプロピレン、ポリカーボネート、アイオノマー、ポリアミド等の材料からなる膜上に、アルミニウム、ステンレス、銅、ニッケル等の可撓性に優れた金属薄膜を設け、さらに該金属薄膜上に外装体の外面としてポリアミド系樹脂、ポリエステル系樹脂等の絶縁性合成樹脂膜を設けた三層構造のフィルムを用いることができる。
本実施の形態は、他の実施の形態を組み合わせて用いることができる。
(実施の形態5)
本実施の形態では、先の実施の形態で説明した作製方法によって作製された正極または負極を有する二次電池の複数種類の形状の例について説明する。
[コイン型二次電池]
コイン型の二次電池の一例について説明する。図5(A)はコイン型(単層偏平型)の二次電池の分解斜視図であり、図5(B)は、外観図であり、図5(C)は、その断面図である。コイン型の二次電池は主に小型の電子機器に用いられる。
なお、図5(A)では、わかりやすくするために部材の重なり(上下関係、及び位置関係)がわかるように模式図としている。従って図5(A)と図5(B)は完全に一致する対応図とはしていない。
図5(A)では、正極304、セパレータ310、負極307、スペーサ322、ワッシャー312を重ねている。これらを負極缶302と正極缶301で封止している。なお、図5(A)において、封止のためのガスケットは図示していない。スペーサ322、ワッシャー312は、正極缶301と負極缶302を圧着する際に、内部を保護または缶内の位置を固定するために用いられている。スペーサ322、ワッシャー312はステンレスまたは絶縁材料を用いる。
正極集電体305上に正極活物質層306が形成された積層構造を正極304としている。
正極と負極の短絡を防ぐため、セパレータ310と、リング状絶縁体313を正極304の側面及び上面を覆うようにそれぞれ配置する。セパレータ310は、正極304よりも広い平面面積を有している。
図5(B)は、完成したコイン型の二次電池の斜視図である。
コイン型の二次電池300は、正極端子を兼ねた正極缶301と負極端子を兼ねた負極缶302とが、ポリプロピレン等で形成されたガスケット303で絶縁シールされている。正極304は、正極集電体305と、これと接するように設けられた正極活物質層306により形成される。また、負極307は、負極集電体308と、これに接するように設けられた負極活物質層309により形成される。また、負極307は、積層構造に限定されず、リチウム金属箔またはリチウムとアルミニウムの合金箔を用いてもよい。
なお、コイン型の二次電池300に用いる正極304及び負極307は、それぞれ活物質層は片面のみに形成すればよい。
正極缶301、負極缶302には、電解液に対して耐食性のあるニッケル、アルミニウム、チタン等の金属、若しくはこれらの合金又はこれらと他の金属との合金(例えばステンレス鋼等)を用いることができる。また、電解液などによる腐食を防ぐため、ニッケルまたはアルミニウム等を被覆することが好ましい。正極缶301は正極304と、負極缶302は負極307とそれぞれ電気的に接続する。
これら負極307、正極304及びセパレータ310を電解液に浸し、図5(C)に示すように、正極缶301を下にして正極304、セパレータ310、負極307、負極缶302をこの順で積層し、正極缶301と負極缶302とをガスケット303を介して圧着してコイン形の二次電池300を製造する。
二次電池とすることで、高容量、且つ、放電容量が高く、且つ、サイクル特性に優れたコイン型の二次電池300とすることができる。
[円筒型二次電池]
円筒型の二次電池の例について図6(A)を参照して説明する。円筒型の二次電池616は、図6(A)に示すように、上面に正極キャップ(電池蓋)601を有し、側面及び底面に電池缶(外装缶)602を有している。これら正極キャップ601と電池缶(外装缶)602とは、ガスケット(絶縁パッキン)610によって絶縁されている。
図6(B)は、円筒型の二次電池の断面を模式的に示した図である。図6(B)に示す円筒型の二次電池は、上面に正極キャップ(電池蓋)601を有し、側面及び底面に電池缶(外装缶)602を有している。これら正極キャップと電池缶(外装缶)602とは、ガスケット(絶縁パッキン)610によって絶縁されている。
中空円柱状の電池缶602の内側には、帯状の正極604と負極606とがセパレータ605を間に挟んで捲回された電池素子が設けられている。図示しないが、電池素子は中心軸を中心に捲回されている。電池缶602は、一端が閉じられ、他端が開いている。電池缶602には、電解液に対して耐腐食性のあるニッケル、アルミニウム、チタン等の金属、又はこれらの合金やこれらと他の金属との合金(例えば、ステンレス鋼等)を用いることができる。また、電解液による腐食を防ぐため、ニッケルやアルミニウム等を電池缶602に被覆することが好ましい。電池缶602の内側において、正極、負極及びセパレータが捲回された電池素子は、対向する一対の絶縁板608、609により挟まれている。また、電池素子が設けられた電池缶602の内部は、非水電解液(図示せず)が注入されている。非水電解液は、コイン型の二次電池と同様のものを用いることができる。
円筒型の蓄電池に用いる正極及び負極は捲回するため、集電体の両面に活物質を形成することが好ましい。
実施の形態1、2等で得られる正極活物質100を正極604に用いることで、高容量、且つ、放電容量が高く、且つ、サイクル特性に優れた円筒型の二次電池616とすることができる。
正極604には正極端子(正極集電リード)603が接続され、負極606には負極端子(負極集電リード)607が接続される。正極端子603及び負極端子607は、ともにアルミニウムなどの金属材料を用いることができる。正極端子603は安全弁機構613に、負極端子607は電池缶602の底にそれぞれ抵抗溶接される。安全弁機構613は、PTC素子(Positive Temperature Coefficient)611を介して正極キャップ601と電気的に接続されている。安全弁機構613は電池の内圧の上昇が所定の閾値を超えた場合に、正極キャップ601と正極604との電気的な接続を切断するものである。また、PTC素子611は温度が上昇した場合に抵抗が増大する熱感抵抗素子であり、抵抗の増大により電流量を制限して異常発熱を防止するものである。PTC素子には、チタン酸バリウム(BaTiO3)系半導体セラミックス等を用いることができる。
図6(C)は蓄電システム615の一例を示す。蓄電システム615は複数の二次電池616を有する。それぞれの二次電池の正極は、絶縁体625で分離された導電体624に接触し、電気的に接続されている。導電体624は配線623を介して、制御回路620に電気的に接続されている。また、それぞれの二次電池の負極は、配線626を介して制御回路620に電気的に接続されている。制御回路620として、充放電などを行う充放電制御回路、または過充電もしくは/及び過放電を防止する保護回路を適用することができる。
図6(D)は、蓄電システム615の一例を示す。蓄電システム615は複数の二次電池616を有し、複数の二次電池616は、導電板628及び導電板614の間に挟まれている。複数の二次電池616は、配線627により導電板628及び導電板614と電気的に接続される。複数の二次電池616は、並列接続されていてもよいし、直列接続されていてもよいし、並列に接続された後さらに直列に接続されていてもよい。複数の二次電池616を有する蓄電システム615を構成することで、大きな電力を取り出すことができる。
複数の二次電池616が、並列に接続された後、さらに直列に接続されてもよい。
また、複数の二次電池616の間に温度制御装置を有していてもよい。二次電池616が過熱されたときは、温度制御装置により冷却し、二次電池616が冷えすぎているときは温度制御装置により加熱することができる。そのため蓄電システム615の性能が外気温に影響されにくくなる。
また、図6(D)において、蓄電システム615は制御回路620に配線621及び配線622を介して電気的に接続されている。配線621は導電板628を介して複数の二次電池600の正極に、配線622は導電板614を介して複数の二次電池600の負極に、それぞれ電気的に接続される。
[二次電池の他の構造例]
二次電池の構造例について図7及び図8を用いて説明する。
図7(A)に示す二次電池913は、筐体930の内部に端子951と端子952が設けられた捲回体950を有する。捲回体950は、筐体930の内部で電解液中に浸される。端子952は、筐体930に接し、端子951は、絶縁材などを用いることにより筐体930に接していない。なお、図7(A)では、便宜のため、筐体930を分離して図示しているが、実際は、捲回体950が筐体930に覆われ、端子951及び端子952が筐体930の外に延在している。筐体930としては、金属材料(例えばアルミニウムなど)又は樹脂材料を用いることができる。
なお、図7(B)に示すように、図7(A)に示す筐体930を複数の材料によって形成してもよい。例えば、図7(B)に示す二次電池913は、筐体930aと筐体930bが貼り合わされており、筐体930a及び筐体930bで囲まれた領域に捲回体950が設けられている。
筐体930aとしては、有機樹脂など、絶縁材料を用いることができる。特に、アンテナが形成される面に有機樹脂などの材料を用いることにより、二次電池913による電界の遮蔽を抑制できる。なお、筐体930aによる電界の遮蔽が小さければ、筐体930aの内部にアンテナを設けてもよい。筐体930bとしては、例えば金属材料を用いることができる。
さらに、捲回体950の構造について図7(C)に示す。捲回体950は、負極931と、正極932と、セパレータ933と、を有する。捲回体950は、セパレータ933を挟んで負極931と、正極932が重なり合って積層され、該積層シートを捲回させた捲回体である。なお、負極931と、正極932と、セパレータ933と、の積層を、さらに複数重ねてもよい。
また、図8に示すような捲回体950aを有する二次電池913としてもよい。図8(A)に示す捲回体950aは、負極931と、正極932と、セパレータ933と、を有する。負極931は負極活物質層931aを有する。正極932は正極活物質層932aを有する。
実施の形態1、2等で得られる正極活物質100を正極932に用いることで、高容量、且つ、放電容量が高く、且つ、サイクル特性に優れた二次電池913とすることができる。
セパレータ933は、負極活物質層931a及び正極活物質層932aよりも広い幅を有し、負極活物質層931a及び正極活物質層932aと重畳するように捲回されている。また正極活物質層932aよりも負極活物質層931aの幅が広いことが安全性の点で好ましい。またこのような形状の捲回体950aは安全性及び生産性がよく好ましい。
図8(B)に示すように、負極931は、超音波接合、溶接、または圧着により端子951と電気的に接続される。端子951は端子911aと電気的に接続される。また正極932は、超音波接合、溶接、または圧着により端子952と電気的に接続される。端子952は端子911bと電気的に接続される。
図8(C)に示すように、筐体930により捲回体950a及び電解液が覆われ、二次電池913となる。筐体930には安全弁、過電流保護素子等を設けることが好ましい。安全弁は、電池破裂を防止するため、筐体930の内部が所定の内圧で開放する弁である。
図8(B)に示すように二次電池913は複数の捲回体950aを有していてもよい。複数の捲回体950aを用いることで、より放電容量の大きい二次電池913とすることができる。図8(A)及び(B)に示す二次電池913の他の要素は、図7(A)乃至(C)に示す二次電池913の記載を参酌することができる。
<ラミネート型二次電池>
次に、ラミネート型の二次電池の例について、外観図の一例を図9(A)及び図9(B)に示す。図9(A)及び図9(B)は、正極503、負極506、セパレータ507、外装体509、正極リード電極510、及び負極リード電極511を有する。
図10(A)は正極503及び負極506の外観図を示す。正極503は正極集電体501を有し、正極活物質層502は正極集電体501の表面に形成されている。また、正極503は正極集電体501が一部露出する領域(以下、タブ領域という)を有する。負極506は負極集電体504を有し、負極活物質層505は負極集電体504の表面に形成されている。また、負極506は負極集電体504が一部露出する領域、すなわちタブ領域を有する。なお、正極及び負極が有するタブ領域の面積または形状は、図10(A)に示す例に限られない。
<ラミネート型二次電池の作製方法>
図9(A)に外観図を示すラミネート型二次電池の作製方法の一例について、図10(B)及び図10(C)を用いて説明する。
まず、負極506、セパレータ507及び正極503を積層する。図10(B)に積層された負極506、セパレータ507及び正極503を示す。ここでは負極を5組、正極を4組使用する例を示す。負極とセパレータと正極からなる積層体とも呼べる。次に、正極503のタブ領域同士の接合と、最表面の正極のタブ領域への正極リード電極510の接合を行う。接合には、例えば超音波溶接等を用いればよい。同様に、負極506のタブ領域同士の接合と、最表面の負極のタブ領域への負極リード電極511の接合を行う。
次に、外装体509上に、負極506、セパレータ507及び正極503を配置する。
次に、図10(C)に示すように、外装体509を破線で示した部分で折り曲げる。その後、外装体509の外周部を接合する。接合には例えば熱圧着等を用いればよい。この時、後に電解液508を入れることができるように、外装体509の一部(または一辺)に接合されない領域(以下、導入口という)を設ける。
次に、外装体509に設けられた導入口から、電解液508(図示しない。)を外装体509の内側へ導入する。電解液508の導入は、減圧雰囲気下、或いは不活性雰囲気下で行うことが好ましい。そして最後に、導入口を接合する。このようにして、ラミネート型の二次電池500を作製することができる。
実施の形態1、2等で得られる正極活物質100を正極503に用いることで、高容量、且つ、放電容量が高く、且つ、サイクル特性に優れた二次電池500とすることができる。
[電池パックの例]
アンテナを用いて無線充電が可能な本発明の一態様の二次電池パックの例について、図11を用いて説明する。
図11(A)は、二次電池パック531の外観を示す図であり、厚さの薄い直方体形状(厚さのある平板形状とも呼べる)である。図11(B)は二次電池パック531の構成を説明する図である。二次電池パック531は、回路基板540と、二次電池513と、を有する。二次電池513には、ラベル529が貼られている。回路基板540は、シール515により固定されている。また、二次電池パック531は、アンテナ517を有する。
二次電池513の内部は、捲回体を有する構造にしてもよいし、積層体を有する構造にしてもよい。
二次電池パック531において、例えば図11(B)に示すように、回路基板540上に制御回路590を有する。また、回路基板540は、端子514と電気的に接続されている。また回路基板540は、アンテナ517、二次電池513の正極リード及び負極リードの一方551、正極リード及び負極リードの他方552と電気的に接続される。
または、図11(C)に示すように、回路基板540上に設けられる回路システム590aと、端子514を介して回路基板540に電気的に接続される回路システム590bと、を有してもよい。
なお、アンテナ517はコイル状に限定されず、例えば線状、板状であってもよい。また、平面アンテナ、開口面アンテナ、進行波アンテナ、EHアンテナ、磁界アンテナ、誘電体アンテナ等のアンテナを用いてもよい。又は、アンテナ517は、平板状の導体でもよい。この平板状の導体は、電界結合用の導体の一つとして機能することができる。つまり、コンデンサの有する2つの導体のうちの一つの導体として、アンテナ517を機能させてもよい。これにより、電磁界、磁界だけでなく、電界で電力のやり取りを行うこともできる。
二次電池パック531は、アンテナ517と、二次電池513との間に層519を有する。層519は、例えば二次電池513による電磁界を遮蔽することができる機能を有する。層519としては、例えば磁性体を用いることができる。
本実施の形態は他の実施の形態と自由に組み合わせることができる。
(実施の形態6)
本実施の形態では、実施の形態1、2等で得られる正極活物質100を用いて全固体電池を作製する例を示す。
図12(A)に示すように、本発明の一態様の二次電池400は、正極410、固体電解質層420、及び負極430を有する。
正極410は、正極集電体413及び正極活物質層414を有する。正極活物質層414は、正極活物質411及び固体電解質421を有する。正極活物質411としては、実施の形態1、2等で得られる正極活物質100を用いている。また、正極活物質層414は、導電助剤及びバインダを有していてもよい。
固体電解質層420は固体電解質421を有する。固体電解質層420は、正極410と負極430の間に位置し、正極活物質411及び負極活物質431のいずれも有さない領域である。
負極430は負極集電体433及び負極活物質層434を有する。負極活物質層434は負極活物質431及び固体電解質421を有する。また負極活物質層434は、導電助剤及びバインダを有していてもよい。なお、負極430に金属リチウムを用いる場合は、図12(B)のように、固体電解質421を有さない負極430とすることができる。負極430に金属リチウムを用いると、二次電池400のエネルギー密度を向上させることができるため、好ましい。
固体電解質層420が有する固体電解質421としては、例えば硫化物系固体電解質、酸化物系固体電解質、ハロゲン化物系固体電解質等を用いることができる。
硫化物系固体電解質には、チオシリコン系(Li10GeP2S12、Li3.25Ge0.25P0.75S4等)、硫化物ガラス(70Li2S・30P2S5、30Li2S・26B2S3・44LiI、63Li2S・38SiS2・1Li3PO4、57Li2S・38SiS2・5Li4SiO4、50Li2S・50GeS2等)、硫化物結晶化ガラス(Li7P3S11、Li3.25P0.95S4等)が含まれる。硫化物系固体電解質は、高い伝導度を有する材料がある、低い温度で合成可能、また比較的やわらかいため充放電を経ても導電経路が保たれやすい等の利点がある。
酸化物系固体電解質には、ペロブスカイト型結晶構造を有する材料(La2/3-xLi3xTiO3等)、NASICON型結晶構造を有する材料(Li1-YAlYTi2-Y(PO4)3等)、ガーネット型結晶構造を有する材料(Li7La3Zr2O12等)、LISICON型結晶構造を有する材料(Li14ZnGe4O16等)、LLZO(Li7La3Zr2O12)、酸化物ガラス(Li3PO4-Li4SiO4、50Li4SiO4・50Li3BO3等)、酸化物結晶化ガラス(Li1.07Al0.69Ti1.46(PO4)3、Li1.5Al0.5Ge1.5(PO4)3等)が含まれる。酸化物系固体電解質は、大気中で安定であるといった利点がある。
ハロゲン化物系固体電解質には、LiAlCl4、Li3InBr6、LiF、LiCl、LiBr、LiI等が含まれる。また、これらハロゲン化物系固体電解質を、ポーラス酸化アルミニウムまたはポーラスシリカの細孔に充填したコンポジット材料も固体電解質として用いることができる。
また、異なる固体電解質を混合して用いてもよい。中でも、NASICON型結晶構造を有するLi1+xAlxTi2-x(PO4)3(0〔x〔1)(以下、LATP)は、アルミニウムとチタンという、本発明の一態様の二次電池400に用いる正極活物質が有してもよい元素を含むため、サイクル特性の向上について相乗効果が期待でき好ましい。また、工程の削減による生産性の向上も期待できる。なお本明細書において、「NASICON型結晶構造」とは、M2(XO4)3(M:遷移金属、X:S、P、As、Mo、W等)で表される化合物であり、MO6八面体とXO4四面体が頂点を共有して3次元的に配列した構造を有するものをいう。
〔外装体と二次電池の形状〕
本発明の一態様の二次電池400の外装体には、様々な材料及び形状のものを用いることができるが、正極、固体電解質層及び負極を加圧する機能を有することが好ましい。
例えば図13は、全固体電池の材料を評価するセルの一例である。
図13(A)は評価セルの断面模式図である。評価セルは、下部部材761と、上部部材762と、それらを固定する固定ねじ、または蝶ナット764を有し、押さえ込みねじ763を回転させることで電極用プレート753を押して評価材料を固定している。ステンレス材料で構成された下部部材761と、上部部材762との間には絶縁体766が設けられている。また上部部材762と、押さえ込みねじ763の間には密閉するためのOリング765が設けられている。
評価材料は、電極用プレート751に載せられ、周りを絶縁管752で囲み、上方から電極用プレート753で押されている状態となっている。この評価材料周辺を拡大した斜視図が図13(B)である。
評価材料としては、正極750a、固体電解質層750b、負極750cの積層の例を示しており、断面図を図13(C)に示す。なお、図13(A)乃至(C)において同じ箇所には同じ符号を用いる。
正極750aと電気的に接続される電極用プレート751及び下部部材761は、正極端子に相当するということができる。負極750cと電気的に接続される電極用プレート753及び上部部材762は、負極端子に相当するということができる。電極用プレート751及び電極用プレート753を介して評価材料に押圧をかけながら電気抵抗などを測定することができる。
また、本発明の一態様の二次電池の外装体には、気密性に優れたパッケージを使用することが好ましい。例えばセラミックパッケージ、または樹脂パッケージを用いることができる。また、外装体を封止する際には、外気を遮断し、密閉した雰囲気下、例えばグローブボックス内で行うことが好ましい。
図14(A)に、図13と異なる外装体及び形状を有する本発明の一態様の二次電池の斜視図を示す。図14(A)の二次電池は、外部電極771、772を有し、複数のパッケージ部材を有する外装体で封止されている。
図14(A)中の一点破線で切断した断面の一例を図14(B)に示す。正極750a、固体電解質層750b及び負極750cを有する積層体は、平板に電極層773aが設けられたパッケージ部材770aと、枠状のパッケージ部材770bと、平板に電極層773bが設けられたパッケージ部材770cと、で囲まれて封止された構造となっている。パッケージ部材770a、770b、770cには、絶縁材料、例えば樹脂材料またはセラミックを用いることができる。
外部電極771は、電極層773aを介して電気的に正極750aと電気的に接続され、正極端子として機能する。また、外部電極772は、電極層773bを介して電気的に負極750cと電気的に接続され、負極端子として機能する。
実施の形態1、2等で得られる正極活物質100を用いることで、高エネルギー密度かつ良好な出力特性をもつ全固体二次電池を実現することができる。
本実施の形態は、他の実施の形態と適宜組み合わせて用いることができる。
(実施の形態7)
本実施の形態では、円筒型の二次電池である図6(D)とは異なる例である。図15(C)を用いて電気自動車(EV)に適用する例を示す。
電気自動車には、メインの駆動用の二次電池として第1のバッテリ1301a、1301bと、モータ1304を始動させるインバータ1312に電力を供給する第2のバッテリ1311が設置されている。第2のバッテリ1311はクランキングバッテリー(スターターバッテリーとも呼ばれる)とも呼ばれる。第2のバッテリ1311は高出力できればよく、大容量はそれほど必要とされず、第2のバッテリ1311の容量は第1のバッテリ1301a、1301bと比較して小さい。
第1のバッテリ1301aの内部構造は、図7(A)または図8(C)に示した巻回型であってもよいし、図9(A)または図9(B)に示した積層型であってもよい。また、第1のバッテリ1301aは、実施の形態6の全固体電池を用いてもよい。第1のバッテリ1301aに実施の形態6の全固体電池を用いることで高容量とすることができ、安全性が向上し、小型化、軽量化することができる。
本実施の形態では、第1のバッテリ1301a、1301bを2つ並列に接続させている例を示しているが3つ以上並列に接続させてもよい。また、第1のバッテリ1301aで十分な電力を貯蔵できるのであれば、第1のバッテリ1301bはなくてもよい。複数の二次電池を有する電池パックを構成することで、大きな電力を取り出すことができる。複数の二次電池は、並列接続されていてもよいし、直列接続されていてもよいし、並列に接続された後、さらに直列に接続されていてもよい。複数の二次電池を組電池とも呼ぶ。
また、車載用の二次電池において、複数の二次電池からの電力を遮断するため、工具を使わずに高電圧を遮断できるサービスプラグまたはサーキットブレーカを有しており、第1のバッテリ1301aに設けられる。
また、第1のバッテリ1301a、1301bの電力は、主にモータ1304を回転させることに使用されるが、DCDC回路1306を介して42V系の車載部品(電動パワステ1307、ヒーター1308、デフォッガ1309など)に電力を供給する。後輪にリアモータ1317を有している場合にも、第1のバッテリ1301aがリアモータ1317を回転させることに使用される。
また、第2のバッテリ1311は、DCDC回路1310を介して14V系の車載部品(オーディオ1313、パワーウィンドウ1314、ランプ類1315など)に電力を供給する。
次に、第1のバッテリ1301aについて、図15(A)を用いて説明する。
図15(A)では9個の角型二次電池1300を一つの電池パック1415としている例を示している。また、9個の角型二次電池1300を直列接続し、一方の電極を絶縁体からなる固定部1413で固定し、もう一方の電極を絶縁体からなる固定部1414で固定している。本実施の形態では固定部1413、1414で固定する例を示しているが電池収容ボックス(筐体とも呼ぶ)に収納させる構成としてもよい。車両は外部(路面など)から振動または揺れが加えられることを想定されているため、固定部1413、1414や。電池収容ボックスなどで複数の二次電池を固定することが好ましい。また、一方の電極は配線1421によって制御回路部1320に電気的に接続されている。またもう一方の電極は配線1422によって制御回路部1320に電気的に接続されている。
また、制御回路部1320は、酸化物半導体を用いたトランジスタを含むメモリ回路を用いてもよい。酸化物半導体を用いたトランジスタを含むメモリ回路を有する充電制御回路、又は電池制御システムを、BTOS(Battery operating system、又はBattery oxide semiconductor)と呼称する場合がある。
酸化物半導体として機能する金属酸化物を用いることが好ましい。例えば、酸化物530として、In-M-Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、又はマグネシウム等から選ばれた一種、又は複数種)等の金属酸化物を用いるとよい。特に、酸化物530として適用できるIn-M-Zn酸化物は、CAAC-OS(C-Axls Aligned Crystal Oxide Semiconductor)、CAC-OS(Cloud-Aligned Composite Oxide Semiconductor)であることが好ましい。また、酸化物530として、In-Ga酸化物、In-Zn酸化物を用いてもよい。CAAC-OSは、複数の結晶領域を有し、当該複数の結晶領域はc軸が特定の方向に配向している酸化物半導体である。なお、特定の方向とは、CAAC-OS膜の厚さ方向、CAAC-OS膜の被形成面の法線方向、またはCAAC-OS膜の表面の法線方向である。また、結晶領域とは、原子配列に周期性を有する領域である。なお、原子配列を格子配列とみなすと、結晶領域とは、格子配列の揃った領域でもある。
なお、「CAC-OS」は、第1の領域と、第2の領域と、に材料が分離することでモザイク状となり、当該第1の領域が、膜中に分布した構成(以下、クラウド状ともいう。)である。つまり、CAC-OSは、当該第1の領域と、当該第2の領域とが、混合している構成を有する複合金属酸化物である。ただし、第1の領域と第2の領域は、明確な境界が観察できない場合がある。
例えば、In-Ga-Zn酸化物におけるCAC-OSでは、エネルギー分散型X線分光法(EDX:Energy Dispersive X-ray spectroscopy)を用いて取得したEDXマッピングにより、Inを主成分とする領域(第1の領域)と、Gaを主成分とする領域(第2の領域)とが、偏在し、混合している構造を有することが確認できる。
CAC-OSをトランジスタに用いる場合、第1の領域に起因する導電性と、第2の領域に起因する絶縁性とが、相補的に作用することにより、スイッチングさせる機能(On/Offさせる機能)をCAC-OSに付与することができる。つまり、CAC-OSとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。導電性の機能と絶縁性の機能とを分離させることで、双方の機能を最大限に高めることができる。よって、CAC-OSをトランジスタに用いることで、高いオン電流(Ion)、高い電界効果移動度(μ)、及び良好なスイッチング動作を実現することができる。
酸化物半導体は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a-like OS、CAC-OS、nc-OS、CAAC-OSのうち、二種以上を有していてもよい。
また、高温環境下で使用可能であるため、制御回路部1320は酸化物半導体を用いるトランジスタを用いることが好ましい。プロセスを簡略なものとするため、制御回路部1320は単極性のトランジスタを用いて形成してもよい。半導体層に酸化物半導体を用いるトランジスタは、動作周囲温度が単結晶Siよりも広く-40℃以上150℃以下であり、二次電池が加熱しても特性変化が単結晶に比べて小さい。酸化物半導体を用いるトランジスタのオフ電流は、150℃であっても温度によらず測定下限以下であるが、単結晶Siトランジスタのオフ電流特性は、温度依存性が大きい。例えば、150℃では、単結晶Siトランジスタはオフ電流が上昇し、電流オン/オフ比が十分に大きくならない。制御回路部1320は、安全性を向上することができる。また、実施の形態1、2等で得られる正極活物質100を正極に用いた二次電池と組み合わせることで安全性についての相乗効果が得られる。実施の形態1、2等で得られる正極活物質100を正極に用いた二次電池及び制御回路部1320は、二次電池による火災等の事故撲滅に大きく寄与することができる。
酸化物半導体を用いたトランジスタを含むメモリ回路を用いた制御回路部1320は、マイクロショート等の10項目の不安定性の原因に対し、二次電池の自動制御装置として機能させることもできる。10項目の不安定性の原因を解消する機能としては、過充電の防止、過電流の防止、充電時過熱制御、組電池でのセルバランス、過放電の防止、残量計、温度に応じた充電電圧及び電流量自動制御、劣化度に応じた充電電流量制御、マイクロショート異常挙動検知、マイクロショートに関する異常予測などが挙げられ、そのうちの少なくとも一つの機能を制御回路部1320が有する。また、二次電池の自動制御装置の超小型化が可能である。
また、「マイクロショート」とは、二次電池の内部の微小な短絡のことを指しており、二次電池の正極と負極が短絡して充放電不可能の状態になるというほどではなく、微小な短絡部でわずかに短絡電流が流れてしまう現象を指している。比較的短時間、且つ、わずかな箇所であっても大きな電圧変化が生じるため、その異常な電圧値がその後の推定に影響を与える恐れがある。
マイクロショートの原因の一つは、充放電が複数回行われることによって、正極活物質の不均一な分布により、正極の一部と負極の一部で局所的な電流の集中が生じ、セパレータの一部が機能しなくなる箇所が発生、または副反応による副反応物の発生によりミクロな短絡が生じていると言われている。
また、マイクロショートの検知だけでなく、制御回路部1320は、二次電池の端子電圧を検知し、二次電池の充放電状態を管理するとも言える。例えば、過充電を防ぐために充電回路の出力トランジスタと遮断用スイッチの両方をほぼ同時にオフ状態とすることができる。
次に、図15(A)に示す電池パック1415のブロック図の一例を図15(B)に示す。
制御回路部1320は、少なくとも過充電を防止するスイッチと、過放電を防止するスイッチを含むスイッチ部1324と、スイッチ部1324を制御する制御回路1322と、第1のバッテリ1301aの電圧測定部と、を有する。制御回路部1320は、使用する二次電池の上限電圧と下限電圧が設定されており、外部からの電流上限、または外部への出力電流の上限などを制限している。二次電池の下限電圧以上上限電圧以下の範囲内は、使用が推奨されている電圧範囲内であり、その範囲外となるとスイッチ部1324が作動し、保護回路として機能する。また、制御回路部1320は、スイッチ部1324を制御して過放電または/及び過充電を防止するため、保護回路とも呼べる。例えば、過充電となりそうな電圧を制御回路1322で検知した場合にスイッチ部1324のスイッチをオフ状態とすることで電流を遮断する。さらに充放電経路中にPTC素子を設けて温度の上昇に応じて電流を遮断する機能を設けてもよい。また、制御回路部1320は、外部端子1325(+IN)と、外部端子1326(-IN)とを有している。
スイッチ部1324は、nチャネル型のトランジスタまたはpチャネル型のトランジスタを組み合わせて構成することができる。スイッチ部1324は、単結晶シリコンを用いるSiトランジスタを有するスイッチに限定されず、例えば、Ge(ゲルマニウム)、SiGe(シリコンゲルマニウム)、GaAs(ガリウムヒ素)、GaAlAs(ガリウムアルミニウムヒ素)、InP(リン化インジウム)、SiC(シリコンカーバイド)、ZnSe(セレン化亜鉛)、GaN(窒化ガリウム)、GaOx(酸化ガリウム;xは0より大きい実数)などを有するパワートランジスタでスイッチ部1324を形成してもよい。また、OSトランジスタを用いた記憶素子は、Siトランジスタを用いた回路上などに積層することで自由に配置可能であるため、集積化を容易に行うことができる。またOSトランジスタは、Siトランジスタと同様の製造装置を用いて作製することが可能であるため、低コストで作製可能である。即ち、スイッチ部1324上にOSトランジスタを用いた制御回路部1320を積層し、集積化することで1チップとすることもできる。制御回路部1320の占有体積を小さくすることができるため、小型化が可能となる。
第1のバッテリ1301a、1301bは、主に42V系(高電圧系)の車載機器に電力を供給し、第2のバッテリ1311は14V系(低電圧系)の車載機器に電力を供給する。第2のバッテリ1311は鉛蓄電池がコスト上有利のため採用されることが多い。鉛蓄電池はリチウムイオン二次電池と比べて自己放電が大きく、サルフェーションとよばれる現象により劣化しやすい欠点がある。第2のバッテリ1311をリチウムイオン二次電池とすることでメンテナンスフリーとするメリットがあるが、長期間の使用、例えば3年以上となると、製造時には判別できない異常発生が生じる恐れがある。特にインバータを起動する第2のバッテリ1311が動作不能となると、第1のバッテリ1301a、1301bに残容量があってもモータを起動させることができなくなることを防ぐため、第2のバッテリ1311が鉛蓄電池の場合は、第1のバッテリから第2のバッテリに電力を供給し、常に満充電状態を維持するように充電されている。
本実施の形態では、第1のバッテリ1301aと第2のバッテリ1311の両方にリチウムイオン二次電池を用いる一例を示す。第2のバッテリ1311は、鉛蓄電池、全固体電池、または電気二重層キャパシタを用いてもよい。例えば、実施の形態6の全固体電池を用いてもよい。第2のバッテリ1311に実施の形態6の全固体電池を用いることで高容量とすることができ、小型化、軽量化することができる。
また、タイヤ1316の回転による回生エネルギーは、ギア1305を介してモータ1304に送られ、モータコントローラ1303、またはバッテリーコントローラ1302から制御回路部1321を介して第2のバッテリ1311に充電される。またはバッテリーコントローラ1302から制御回路部1320を介して第1のバッテリ1301aに充電される。またはバッテリーコントローラ1302から制御回路部1320を介して第1のバッテリ1301bに充電される。回生エネルギーを効率よく充電するためには、第1のバッテリ1301a、1301bが急速充電可能であることが望ましい。
バッテリーコントローラ1302は第1のバッテリ1301a、1301bの充電電圧及び充電電流などを設定することができる。バッテリーコントローラ1302は、用いる二次電池の充電特性に合わせて充電条件を設定し、急速充電することができる。
また、図示していないが、外部の充電器と接続させる場合、充電器のコンセントまたは充電器の接続ケーブルは、バッテリーコントローラ1302に電気的に接続される。外部の充電器から供給された電力はバッテリーコントローラ1302を介して第1のバッテリ1301a、1301bに充電する。また、充電器によっては、制御回路が設けられており、バッテリーコントローラ1302の機能を用いない場合もあるが、過充電を防ぐため制御回路部1320を介して第1のバッテリ1301a、1301bを充電することが好ましい。また、接続ケーブルまたは充電器の接続ケーブルに制御回路を備えている場合もある。制御回路部1320は、ECU(Electronic Control Unit)と呼ばれることもある。ECUは、電動車両に設けられたCAN(Controller Area Network)に接続される。CANは、車内LANとして用いられるシリアル通信規格の一つである。また、ECUは、マイクロコンピュータを含む。また、ECUは、CPUまたはGPUを用いる。
充電スタンドなどに設置されている外部の充電器は、100Vコンセント、200Vコンセント、または3相200V且つ50kWなどがある。また、非接触給電方式等により外部の充電設備から電力供給を受けて、充電することもできる。
急速充電を行う場合、短時間での充電を行うためには、高電圧での充電に耐えうる二次電池が望まれている。
また、導電助剤としてグラフェンを用い、電極層を厚くして担持量を高くしても容量低下を抑え、高容量を維持することが相乗効果として大幅に電気特性が向上された二次電池を実現できる。特に車両に用いる二次電池に有効であり、車両全重量に対する二次電池の重量の割合を増加させることなく、航続距離が長い、具体的には一充電走行距離が500km以上の車両を提供することができる。
特に上述した本実施の形態の二次電池は、実施の形態1、2等で説明した正極活物質100を用いることで二次電池の動作電圧を高くすることができ、充電電圧の増加に伴い、使用できる容量を増加させることができる。また、実施の形態1、2等で説明した正極活物質100を正極に用いることでサイクル特性に優れた車両用の二次電池を提供することができる。
次に、本発明の一態様である二次電池を車両、代表的には輸送用車両に実装する例について説明する。
図6(D)、図8(C)、図15(A)のいずれか一に示した二次電池を車両に搭載すると、ハイブリッド車(HV)、電気自動車(EV)、又はプラグインハイブリッド車(PHV)等の次世代クリーンエネルギー自動車を実現できる。また、農業機械、電動アシスト自転車を含む原動機付自転車、自動二輪車、電動車椅子、電動カート、船舶、潜水艦、航空機、ロケット、人工衛星、宇宙探査機、惑星探査機、または宇宙船に二次電池を搭載することもできる。本発明の一態様の二次電池は高容量の二次電池とすることができる。そのため本発明の一態様の二次電池は、小型化、軽量化に適しており、輸送用車両に好適に用いることができる。
図16(A)乃至(D)において、本発明の一態様を用いた輸送用車両を例示する。図16(A)に示す自動車2001は、走行のための動力源として電気モータを用いる電気自動車である。または、走行のための動力源として電気モータとエンジンを適宜選択して用いることが可能なハイブリッド自動車である。二次電池を車両に搭載する場合、実施の形態4で示した二次電池の一例を一箇所または複数個所に設置する。図16(A)に示す自動車2001は、電池パック2200を有し、電池パックは、複数の二次電池を接続させた二次電池モジュールを有する。さらに二次電池モジュールに電気的に接続する充電制御装置を有すると好ましい。
また、自動車2001は、自動車2001が有する二次電池にプラグイン方式または非接触給電方式等により外部の充電設備から電力供給を受けて、充電することができる。充電に際しては、充電方法またはコネクタの規格等はCHAdeMO(登録商標)またはコンボ等の所定の方式で適宜行えばよい。二次電池は、商用施設に設けられた充電ステーションでもよく、また家庭の電源であってもよい。例えば、プラグイン技術によって、外部からの電力供給により自動車2001に搭載された蓄電装置を充電することができる。充電は、ACDCコンバータ等の変換装置を介して、交流電力を直流電力に変換して行うことができる。
また、図示しないが、受電装置を車両に搭載し、地上の送電装置から電力を非接触で供給して充電することもできる。この非接触給電方式の場合には、道路または外壁に送電装置を組み込むことで、停車中に限らず走行中に充電を行うこともできる。また、この非接触給電の方式を利用して、2台の車両どうしで電力の送受電を行ってもよい。さらに、車両の外装部に太陽電池を設け、停車時または走行時に二次電池の充電を行ってもよい。このような非接触での電力の供給には、電磁誘導方式または磁界共鳴方式を用いることができる。
図16(B)は、輸送用車両の一例として電気により制御するモータを有した大型の輸送車2002を示している。輸送車2002の二次電池モジュールは、例えば公称電圧3.0V以上5.0V以下の二次電池を4個セルユニットとし、48セルを直列に接続した170Vの最大電圧とする。電池パック2201の二次電池モジュールを構成する二次電池の数などが違う以外は、図16(A)と同様な機能を備えているので説明は省略する。
図16(C)は、一例として電気により制御するモータを有した大型の輸送車両2003を示している。輸送車両2003の二次電池モジュールは、例えば公称電圧3.0V以上5.0V以下の二次電池を百個以上直列に接続した600Vの最大電圧とする。従って、特性バラツキの小さい二次電池が求められる。実施の形態1、2等で説明した正極活物質100を正極に用いた二次電池を用いることで、安定した電池特性を有する二次電池を製造することができ、歩留まりの観点から低コストで大量生産が可能である。また、電池パック2202の二次電池モジュールを構成する二次電池の数などが違う以外は、図16(A)と同様な機能を備えているので説明は省略する。
図16(D)は、一例として燃料を燃焼するエンジンを有した航空機2004を示している。図16(D)に示す航空機2004は、離着陸用の車輪を有しているため、輸送車両の一部とも言え、複数の二次電池を接続させて二次電池モジュールを構成し、二次電池モジュールと充電制御装置とを含む電池パック2203を有している。
航空機2004の二次電池モジュールは、例えば4Vの二次電池を8個直列に接続した32Vの最大電圧とする。電池パック2203の二次電池モジュールを構成する二次電池の数などが違う以外は、図16(A)と同様な機能を備えているので説明は省略する。
本実施の形態は、他の実施の形態と適宜組み合わせて用いることができる。
(実施の形態8)
本実施の形態では、本発明の一態様である二次電池を建築物に実装する例について図17(A)及び図17(B)を用いて説明する。
図17(A)に示す住宅は、本発明の一態様である二次電池を有する蓄電装置2612と、ソーラーパネル2610を有する。蓄電装置2612は、ソーラーパネル2610と配線2611等を介して電気的に接続されている。また蓄電装置2612と地上設置型の充電装置2604が電気的に接続されていてもよい。ソーラーパネル2610で得た電力は、蓄電装置2612に充電することができる。また蓄電装置2612に蓄えられた電力は、充電装置2604を介して車両2603が有する二次電池に充電することができる。蓄電装置2612は、床下空間部に設置されることが好ましい。床下空間部に設置することにより、床上の空間を有効的に利用することができる。あるいは、蓄電装置2612は床上に設置されてもよい。
蓄電装置2612に蓄えられた電力は、住宅内の他の電子機器にも電力を供給することができる。よって、停電などにより商用電源から電力の供給が受けられない時でも、本発明の一態様に係る蓄電装置2612を無停電電源として用いることで、電子機器の利用が可能となる。
図17(B)に、本発明の一態様に係る蓄電装置700の一例を示す。図17(B)に示すように、建物799の床下空間部796には、本発明の一態様に係る蓄電装置791が設置されている。また、蓄電装置791に実施の形態7に説明した制御回路を設けてもよく、実施の形態1、2等で得られる正極活物質100を正極に用いた二次電池を蓄電装置791に用いることで安全性についての相乗効果が得られる。実施の形態7に説明した制御回路及び実施の形態1、2等で説明した正極活物質100を正極に用いた二次電池は、二次電池を有する蓄電装置791による火災等の事故撲滅に大きく寄与することができる。
蓄電装置791には、制御装置790が設置されており、制御装置790は、配線によって、分電盤703と、蓄電コントローラ705(制御装置ともいう)と、表示器706と、ルータ709と、に電気的に接続されている。
商業用電源701から、引込線取付部710を介して、電力が分電盤703に送られる。また、分電盤703には、蓄電装置791と、商業用電源701と、から電力が送られ、分電盤703は、送られた電力を、コンセント(図示せず)を介して、一般負荷707及び蓄電系負荷708に供給する。
一般負荷707は、例えばテレビまたはパーソナルコンピュータなどの電気機器であり、蓄電系負荷708は、例えば、電子レンジ、冷蔵庫、空調機などの電気機器である。
蓄電コントローラ705は、計測部711と、予測部712と、計画部713と、を有する。計測部711は、一日(例えば、0時から24時)の間に、一般負荷707、蓄電系負荷708で消費された電力量を計測する機能を有する。また、計測部711は、蓄電装置791の電力量と、商業用電源701から供給された電力量と、を計測する機能を有していてもよい。また、予測部712は、一日の間に一般負荷707及び蓄電系負荷708で消費された電力量に基づいて、次の一日の間に一般負荷707及び蓄電系負荷708で消費される需要電力量を予測する機能を有する。また、計画部713は、予測部712が予測した需要電力量に基づいて、蓄電装置791の充放電の計画を立てる機能を有する。
計測部711によって計測された一般負荷707及び蓄電系負荷708で消費された電力量は、表示器706によって確認することができる。また、ルータ709を介して、テレビまたはパーソナルコンピュータなどの電気機器において、確認することもできる。さらに、ルータ709を介して、スマートフォンまたはタブレットなどの携帯電子端末によっても確認することができる。また、表示器706、電気機器、携帯電子端末によって、予測部712が予測した時間帯ごと(または一時間ごと)の需要電力量なども確認することができる。
本実施の形態は、他の実施の形態と適宜組み合わせて用いることができる。
(実施の形態9)
本実施の形態では、二輪車、自転車に本発明の一態様である蓄電装置を搭載する例を示す。
図18(A)は、本発明の一態様の蓄電装置を用いた電動自転車の一例である。図18(A)に示す電動自転車8700に、本発明の一態様の蓄電装置を適用することができる。本発明の一態様の蓄電装置は例えば、複数の蓄電池と、保護回路と、を有する。
電動自転車8700は、蓄電装置8702を備える。蓄電装置8702は、運転者をアシストするモータに電気を供給することができる。また、蓄電装置8702は、持ち運びができ、図18(B)に自転車から取り外した状態を示している。また、蓄電装置8702は、本発明の一態様の蓄電装置が有する蓄電池8701が複数内蔵されており、そのバッテリ残量などを表示部8703で表示できるようにしている。また蓄電装置8702は、実施の形態7に一例を示した二次電池の充電制御または異常検知が可能な制御回路8704を有する。制御回路8704は、蓄電池8701の正極及び負極と電気的に接続されている。また、制御回路8704に図14(A)及び図14(B)で示した小型の固体二次電池を設けてもよい。図14(A)及び図14(B)で示した小型の固体二次電池を制御回路8704に設けることで制御回路8704の有するメモリ回路のデータを長時間保持することに電力を供給することもできる。また、実施の形態1、2等で得られる正極活物質100を正極に用いた二次電池と組み合わせることで安全性についての相乗効果が得られる。実施の形態1、2等で得られる正極活物質100を正極に用いた二次電池及び制御回路8704は、二次電池による火災等の事故撲滅に大きく寄与することができる。
図18(C)は、本発明の一態様の蓄電装置を用いた二輪車の一例である。図18(C)に示すスクータ8600は、蓄電装置8602、サイドミラー8601、方向指示灯8603を備える。蓄電装置8602は、方向指示灯8603に電気を供給することができる。また、実施の形態1、2等で得られる正極活物質100を正極に用いた二次電池を複数収納された蓄電装置8602は高容量とすることができ、小型化に寄与することができる。
また、図18(C)に示すスクータ8600は、座席下収納8604に、蓄電装置8602を収納することができる。蓄電装置8602は、座席下収納8604が小型であっても、座席下収納8604に収納することができる。
(実施の形態10)
本実施の形態では、本発明の一態様である二次電池を電子機器に実装する例について説明する。二次電池を実装する電子機器として、例えば、テレビジョン装置(テレビ、又はテレビジョン受信機ともいう)、コンピュータ用などのモニタ、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機(携帯電話、携帯電話装置ともいう)、携帯型ゲーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲーム機などが挙げられる。携帯情報端末としてはノート型パーソナルコンピュータ、タブレット型端末、電子書籍端末、携帯電話機などがある。
図19(A)は、携帯電話機の一例を示している。携帯電話機2100は、筐体2101に組み込まれた表示部2102の他、操作ボタン2103、外部接続ポート2104、スピーカ2105、マイク2106などを備えている。なお、携帯電話機2100は、二次電池2107を有している。実施の形態1、2等で説明した正極活物質100を正極に用いた二次電池2107を備えることで高容量とすることができ、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
携帯電話機2100は、移動電話、電子メール、文章閲覧及び作成、音楽再生、インターネット通信、コンピュータゲームなどの種々のアプリケーションを実行することができる。
操作ボタン2103は、時刻設定のほか、電源のオン、オフ動作、無線通信のオン、オフ動作、マナーモードの実行及び解除、省電力モードの実行及び解除など、様々な機能を持たせることができる。例えば、携帯電話機2100に組み込まれたオペレーティングシステムにより、操作ボタン2103の機能を自由に設定することもできる。
また、携帯電話機2100は、通信規格された近距離無線通信を実行することが可能である。例えば無線通信可能なヘッドセットと相互通信することによって、ハンズフリーで通話することもできる。
また、携帯電話機2100は、外部接続ポート2104を備え、他の情報端末とコネクタを介して直接データのやりとりを行うことができる。また外部接続ポート2104を介して充電を行うこともできる。なお、充電動作は外部接続ポート2104を介さずに無線給電により行ってもよい。
また、携帯電話機2100は、センサを有することが好ましい。センサとしては、例えば、指紋センサ、脈拍センサ、体温センサ等の人体センサ、タッチセンサ、加圧センサ、または加速度センサ等が搭載されることが好ましい。
図19(B)は複数のローター2302を有する無人航空機2300である。無人航空機2300はドローンと呼ばれることもある。無人航空機2300は、本発明の一態様である二次電池2301と、カメラ2303と、アンテナ(図示しない)を有する。無人航空機2300はアンテナを介して遠隔操作することができる。実施の形態1、2等で得られる正極活物質100を正極に用いた二次電池は高エネルギー密度であり、安全性が高いため、長期間に渡って長時間の安全な使用ができ、無人航空機2300に搭載する二次電池として好適である。
図19(C)は、ロボットの一例を示している。図19(C)に示すロボット6400は、二次電池6409、照度センサ6401、マイクロフォン6402、上部カメラ6403、スピーカ6404、表示部6405、下部カメラ6406及び障害物センサ6407、移動機構6408、演算装置等を備える。
マイクロフォン6402は、使用者の話し声及び環境音等を検知する機能を有する。また、スピーカ6404は、音声を発する機能を有する。ロボット6400は、マイクロフォン6402及びスピーカ6404を用いて、使用者とコミュニケーションをとることが可能である。
表示部6405は、種々の情報の表示を行う機能を有する。ロボット6400は、使用者の望みの情報を表示部6405に表示することが可能である。表示部6405は、タッチパネルを搭載していてもよい。また、表示部6405は取り外しのできる情報端末であっても良く、ロボット6400の定位置に設置することで、充電及びデータの受け渡しを可能とする。
上部カメラ6403及び下部カメラ6406は、ロボット6400の周囲を撮像する機能を有する。また、障害物センサ6407は、移動機構6408を用いてロボット6400が前進する際の進行方向における障害物の有無を察知することができる。ロボット6400は、上部カメラ6403、下部カメラ6406及び障害物センサ6407を用いて、周囲の環境を認識し、安全に移動することが可能である。
ロボット6400は、その内部領域に本発明の一態様に係る二次電池6409と、半導体装置または電子部品を備える。実施の形態1、2等で得られる正極活物質100を正極に用いた二次電池は高エネルギー密度であり、安全性が高いため、長期間に渡って長時間の安全な使用ができ、ロボット6400に搭載する二次電池6409として好適である。
図19(D)は、掃除ロボットの一例を示している。掃除ロボット6300は、筐体6301上面に配置された表示部6302、側面に配置された複数のカメラ6303、ブラシ6304、操作ボタン6305、二次電池6306、各種センサなどを有する。図示されていないが、掃除ロボット6300には、タイヤ、吸い込み口等が備えられている。掃除ロボット6300は自走し、ゴミ6310を検知し、下面に設けられた吸い込み口からゴミを吸引することができる。
掃除ロボット6300は、カメラ6303が撮影した画像を解析し、壁、家具または段差などの障害物の有無を判断することができる。また、画像解析により、配線などブラシ6304に絡まりそうな物体を検知した場合は、ブラシ6304の回転を止めることができる。掃除ロボット6300は、その内部領域に本発明の一態様に係る二次電池6306と、半導体装置または電子部品を備える。実施の形態1、2等で得られる正極活物質100を正極に用いた二次電池は高エネルギー密度であり、安全性が高いため、長期間に渡って長時間の安全な使用ができ、掃除ロボット6300に搭載する二次電池6306として好適である。
図20(A)は、ウェアラブルデバイスの例を示している。ウェアラブルデバイスは、電源として二次電池を用いる。また、使用者が生活または屋外で使用する場合において、防沫性能、耐水性能または防塵性能を高めるため、接続するコネクタ部分が露出している有線による充電だけでなく、無線充電も行えるウェアラブルデバイスが望まれている。
例えば、図20(A)に示すような眼鏡型デバイス4000に本発明の一態様である二次電池を搭載することができる。眼鏡型デバイス4000は、フレーム4000aと、表示部4000bを有する。湾曲を有するフレーム4000aのテンプル部に二次電池を搭載することで、軽量であり、且つ、重量バランスがよく継続使用時間の長い眼鏡型デバイス4000とすることができる。実施の形態1、2等で得られる正極活物質100を正極に用いた二次電池は高エネルギー密度であり、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
また、ヘッドセット型デバイス4001に本発明の一態様である二次電池を搭載することができる。ヘッドセット型デバイス4001は、少なくともマイク部4001aと、フレキシブルパイプ4001bと、イヤフォン部4001cを有する。フレキシブルパイプ4001b内またはイヤフォン部4001c内に二次電池を設けることができる。実施の形態1、2等で得られる正極活物質100を正極に用いた二次電池は高エネルギー密度であり、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
また、身体に直接取り付け可能なデバイス4002に本発明の一態様である二次電池を搭載することができる。デバイス4002の薄型の筐体4002aの中に、二次電池4002bを設けることができる。実施の形態1、2等で得られる正極活物質100を正極に用いた二次電池は高エネルギー密度であり、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
また、衣服に取り付け可能なデバイス4003に本発明の一態様である二次電池を搭載することができる。デバイス4003の薄型の筐体4003aの中に、二次電池4003bを設けることができる。実施の形態1、2等で得られる正極活物質100を正極に用いた二次電池は高エネルギー密度であり、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
また、ベルト型デバイス4006に本発明の一態様である二次電池を搭載することができる。ベルト型デバイス4006は、ベルト部4006a及びワイヤレス給電受電部4006bを有し、ベルト部4006aの内部領域に、二次電池を搭載することができる。実施の形態1、2等で得られる正極活物質100を正極に用いた二次電池は高エネルギー密度であり、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
また、腕時計型デバイス4005に本発明の一態様である二次電池を搭載することができる。腕時計型デバイス4005は表示部4005a及びベルト部4005bを有し、表示部4005aまたはベルト部4005bに、二次電池を設けることができる。実施の形態1、2等で得られる正極活物質100を正極に用いた二次電池は高エネルギー密度であり、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
表示部4005aには、時刻だけでなく、メールまたは電話の着信等、様々な情報を表示することができる。
また、腕時計型デバイス4005は、腕に直接巻きつけるタイプのウェアラブルデバイスであるため、使用者の脈拍、血圧等を測定するセンサを搭載してもよい。使用者の運動量及び健康に関するデータを蓄積し、健康を管理することができる。
図20(B)に腕から取り外した腕時計型デバイス4005の斜視図を示す。
また、側面図を図20(C)に示す。図20(C)には、内部領域に二次電池913を内蔵している様子を示している。二次電池913は実施の形態4に示した二次電池である。二次電池913は表示部4005aと重なる位置に設けられており、高密度、且つ、高容量とすることができ、小型、且つ、軽量である。
腕時計型デバイス4005においては、小型、且つ、軽量であることが求められるため、実施の形態1、2等で得られる正極活物質100を二次電池913の正極に用いることで、高エネルギー密度、且つ、小型の二次電池913とすることができる。
本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
本実施例では、実施の形態等で説明した作製方法に従って正極活物質を作製し、電池特性を取得した結果を示す。
<正極活物質の作製>
実施の形態1に示す作製工程に従って得られたサンプル1を用意した。以下に作製工程を詳述する。
<サンプル1>
まず、遷移金属Mとしてコバルトを有し、添加元素を特に有さない市販のコバルト酸リチウム(日本化学工業株式会社製、セルシードC-10N)を用意した。このコバルト酸リチウムは、図3における「Li、Mを有する複合酸化物」(M=Coの場合)に相当する。
次に、Mg源及びF源として、MgF2及びLiFをモル比が3:1となるように秤量して用意した。MgF2及びLiFを、アセトンを溶媒として回転速度400rpmで12時間ボールミルで混合した。その後、300μmのふるいを用いて混合した材料を回収し、第1の混合物を得た。
次に、第1の混合物がコバルト酸リチウムに対し1at%となるように秤量して用意した。第1の混合物とコバルト酸リチウムとを、乾式法に基づき回転速度150rpmで1時間ボールミルで混合した。その後、300μmのふるいを用いて混合した材料を回収し、第2の混合物を得た。その後、第1の加熱を行った。加熱条件は、850℃、60時間とし、10L/分の流量で炉内に酸素を導入した。
次に、Ni源として、水酸化ニッケルを第2の混合物に対して0.5at%となるように秤量して用意した。第2の混合物と水酸化ニッケルとを、乾式法に基づき回転速度150rpmで1時間ボールミルで混合した。その後、300μmのふるいを用いて混合した材料を回収し、第3の混合物を得た。この第3の混合物が、図3に示す「Li、M、Mg、F、Niを有する複合酸化物」(M=Coの場合)に相当する。
次に、図2のステップS101-2に示すように、溶媒、Zr源、及びAl源を用意した。溶媒として、2-プロパノールを用い、Zr源として、金属アルコキシドであるジルコニウム(IV)テトライソプロポキシドを用い、Al源として金属アルコキシドであるアルミニウム(III)イソプロポキシドを用いた。ジルコニウム(IV)テトライソプロポキシドを第3の混合物に対して0.25at%、アルミニウム(III)イソプロポキシドを第3の混合物に対して0.5at%となるように秤量した。
次に、ステップS102-2に示すように混合した。具体的には、溶媒である2-プロパノールに対して、ジルコニウム(IV)テトライソプロポキシド及びアルミニウム(III)イソプロポキシドを溶解させた。この結果、第1の混合溶液が得られた。
次に、ステップS61-2に示すように、第1の混合溶液に第3の混合物(Li、M、Mg、F、Niを有する複合酸化物)を加えて混合し、第2の混合溶液を得た。
次に、ステップS63-2に示すように攪拌した。攪拌の際、ドライ雰囲気(露点-50℃以下の雰囲気)下で行っていることに特徴を有する。加えて、ドライ雰囲気下に配置された容器に蓋をした状態で攪拌することも特徴として有する。容器と蓋は、共にセラミック製で同じ材料のものを用いた。このような特徴を有する条件の他、マグネチックスターラーの回転速度300rpmとして2時間攪拌を行った。この結果、第3の混合溶液を得た。
次に、ステップS65-2に示すように、ドライ雰囲気下で95℃15時間かけて第3の混合液中の溶媒を蒸発させて、第1の混合物を得た。この際、容器の蓋を外した。
次に、ステップS67-2に示すように、加熱を行った。加熱条件は、850℃、2時間とし、10L/分の流量で炉内に酸素を導入した。ステップS67-2に示す加熱は、ステップS65-2に示す乾燥より短時間でよい。
以上のステップを経て、サンプル1の正極活物質を得た。
<SEM観察像>
図21に、サンプル1の正極活物質の一粒子のSEM観察像を示す。図21に示されるとおり、正極活物質の一粒子の表面に粒状の塊が被覆(付着)されている状態が観察された。この粒状の塊は、粒径が100nm程度の大きさを有する粒子であるように観察される。また、正極活物質の一粒子の表面に被覆(付着)されている粒状の塊は、複数存在しているが、これら複数の粒状の塊は、概略均一の大きさを有しているように観察される。
<STEM観察像>
図23(A)に、サンプル1の正極活物質粒子のSTEM観察像を示す。図23(A)に示されるとおり、正極活物質粒子の表面に粒状の塊が少なくとも2つ被覆(付着)されている状態が観察された。また、図23(B)は、図23(A)に示される正極活物質粒子において粒状の塊が観察されている領域を含む部分(図23(A)において破線の枠で囲まれた部分)を拡大した像であり、図23(C)は、図23(B)の一部(図23(B)において破線の枠で囲まれた部分)を拡大した像である。
次に、サンプル1の正極活物質の表面に被覆(付着)している粒状の塊と、正極活物質の表層部とを含む領域に対し、STEM-EDXを用いて分析した結果を、図24、図25に示す。図24(A)は正極活物質の表面に被覆(付着)している粒状の塊と、正極活物質の表層部とを含む領域のSTEM像である。そして、図24(B)はジルコニウムのマッピング、図24(C)はアルミニウムのマッピング、図24(D)は酸素のマッピング、図25(A)はマグネシウムのマッピング、図25(B)はコバルトのマッピング、図25(C)はフッ素のマッピング、図25(D)はニッケルのマッピングである。なお、図24、図25のSTEM-EDX元素マッピング像では、検出下限以下の場合は黒で示し、カウント数が増えるほど白に近づくように示している。
図24(B)に示されるとおり、ジルコニウムは、正極活物質の表面に被覆(付着)している粒状の塊に含まれている様子が観察される。一方で、ジルコニウムは、正極活物質の表層部には含まれていないか、含まれていてもごく微量であるように観察される。また、図24(C)に示されるとおり、アルミニウムは、正極活物質の表面に被覆(付着)している粒状の塊の内部には含まれていないか、含まれていてもごく微量であるように観察される。また、アルミニウムは、正極活物質の表層部に含まれている様子が観察される。また、図24(D)に示されるとおり、酸素は、正極活物質の表面に被覆(付着)している粒状の塊に含まれている様子が観察される。また、酸素は、正極活物質の表層部にも含まれている様子が観察される。
また、図25(A)に示されるとおり、マグネシウムは、正極活物質の表面に被覆(付着)している粒状の塊に含まれている様子が観察される。一方で、マグネシウムは、正極活物質の表層部には含まれていないか、含まれていてもごく微量であるように観察される。また、図25(B)に示されるとおり、コバルトは、正極活物質の表面に被覆(付着)している粒状の塊に含まれている様子が観察される。また、コバルトは、正極活物質の表層部にも含まれている様子が観察される。また、図25(C)に示されるとおり、フッ素は、正極活物質の表面に被覆(付着)している粒状の塊の内部には含まれていないように観察される。また、フッ素は、正極活物質の表層部にも含まれていないか、含まれていてもごく微量であるように観察される。含まれている様子が観察される。また、図25(D)に示されるとおり、ニッケルは、正極活物質の表面に被覆(付着)している粒状の塊に含まれている様子が観察される。一方で、ニッケルは、正極活物質の表層部には含まれていないか、含まれていてもごくわずかであるように観察される。
以上の図24、図25の分析結果から、正極活物質の表面に被覆(付着)している粒状の塊は、金属アルコキシドとして原材料に含まれている金属である、ジルコニウムとアルミニウムを含む酸化物であることが確認された。また、正極活物質の表面に被覆(付着)している粒状の塊は、マグネシウム、コバルト、及びニッケルを含んでいることが確認された。また、正極活物質の表層部は、少なくともアルミニウムを含んでいることが確認された。
<サイクル試験>
サンプル1を用いてサイクル試験を行った。まず正極活物質としてサンプル1を用意し、導電助剤としてアセチレンブラックを用意し、バインダとしてPVdFとを用意し、溶媒としてNMPを用意した。そして、正極活物質:導電助剤:バインダ=95:3:2(重量比)で混合し、2000rpmで3分間混合して正極用スラリーを作製した。この正極用スラリーをアルミニウムからなる正極集電体上に塗布して乾燥させることにより、正極を作製した。
対極となる負極として、リチウム金属を用意した。
次に、上記方法で作製した正極と、負極と、これらの間に介在するセパレータと、セパレータに含浸された電解液と、を有するコイン型セルを作製した。なお、セパレータはポリプロピレンを用いた。電解液は、エチレンカーボネート(EC)とジエチルカーボネート(DEC)との混合有機溶媒(EC:DEC=3:7、体積比)に添加剤としてビニレンカーボネート(VC)2wt%添加し、1モル濃度のリチウムヘキサフルオロホスフェート(LiPF6)を溶解させたものを用いた。
次に、上記方法で作製したコイン型セルに対して、サイクル試験を行った。
サイクル試験の条件1として、測定温度25℃にて定電流/定電圧(CC/CV)条件で上限電圧(充電終止電圧)4.7Vまで0.5Cで充電し、電流値が0.05Cとなるまで定電圧充電を行った後、定電流(CC)条件で下限電圧(放電終止電圧)2.5Vまで0.5Cで放電し、その放電容量を測定した。
サイクル試験の条件2として、測定温度25℃にて定電流/定電圧(CC/CV)条件で上限電圧(充電終止電圧)4.65Vまで0.5Cで充電し、電流値が0.05Cとなるまで定電圧充電を行った後、定電流(CC)条件で下限電圧(放電終止電圧)2.5Vまで0.5Cで放電し、その放電容量を測定した。
また、上記充電と放電を50サイクル繰り返し、(50サイクル後の容量/1サイクル後の容量)×100で計算した放電容量維持率を取得した。放電容量維持率が高いほど、充放電を繰り返した後の電池の容量低下が抑制されるため、二次電池の性能として好ましいといえる。
図22に、本実施例の放電容量及び放電容量維持率の結果を示す。図22によれば、サンプル1の正極活物質を用いた二次電池は、放電容量と放電容量維持率が共に優れた電池特性を有していることが確認された。