WO2021177470A1 - 純銅板 - Google Patents

純銅板 Download PDF

Info

Publication number
WO2021177470A1
WO2021177470A1 PCT/JP2021/008963 JP2021008963W WO2021177470A1 WO 2021177470 A1 WO2021177470 A1 WO 2021177470A1 JP 2021008963 W JP2021008963 W JP 2021008963W WO 2021177470 A1 WO2021177470 A1 WO 2021177470A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
mass ppm
pure copper
copper plate
crystal grains
Prior art date
Application number
PCT/JP2021/008963
Other languages
English (en)
French (fr)
Inventor
裕隆 松永
優樹 伊藤
広行 森
典久 飯田
基裕 日高
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to JP2021540098A priority Critical patent/JP7020595B2/ja
Priority to EP21765508.3A priority patent/EP4116451A4/en
Priority to US17/909,720 priority patent/US20240124954A1/en
Priority to KR1020227029842A priority patent/KR20220146483A/ko
Priority to CN202180018743.XA priority patent/CN115244197B/zh
Publication of WO2021177470A1 publication Critical patent/WO2021177470A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils

Definitions

  • the present invention relates to a pure copper plate suitable for electric / electronic parts such as a heat sink and a thick copper circuit, and more particularly to a pure copper plate in which coarsening of crystal grains at the time of heating is suppressed.
  • the present application claims priority based on Japanese Patent Application No. 2020-038771 filed in Japan on March 6, 2020, the contents of which are incorporated herein by reference.
  • an insulating circuit board in which a copper material is bonded to a ceramic substrate to form the above-mentioned heat sink or thick copper circuit is used.
  • the joining temperature is often set to 800 ° C. or higher, and there is a risk that the crystal grains of the copper material constituting the heat sink or the thick copper circuit may become coarse at the time of joining.
  • crystal grains tend to become coarse.
  • Patent Document 1 proposes a pure copper plate in which the growth of crystal grains is suppressed.
  • Patent Document 1 it is described that by containing 0.0006 to 0.0015 wt% of S, it is possible to adjust the crystal grains to a certain size even if the heat treatment is performed at a recrystallization temperature or higher.
  • the pure copper plate when firmly joining the ceramic substrate and the copper plate, high-temperature heat treatment is performed in a state where the ceramic substrate and the copper plate are pressurized at a relatively high pressure (for example, 0.1 MPa or more) in the stacking direction. ..
  • a relatively high pressure for example, 0.1 MPa or more
  • the pure copper plate the crystal grains tend to grow non-uniformly, and the coarsening and non-uniform growth of the crystal grains may cause poor bonding, poor appearance, and defects in the inspection process.
  • the pure copper plate is required to have a small change in crystal grain size and a uniform size even after pressure heat treatment for joining with different materials. There is.
  • Patent Document 1 the coarsening of crystal grains is suppressed by defining the content of S, but simply defining the content of S is sufficient for grain coarsening after pressure heat treatment. In some cases, it was not possible to obtain the effect of suppressing crystallization. In addition, after the pressure heat treatment, the crystal grains may be locally coarsened and the crystal structure may become non-uniform. Further, when the S content is increased in order to suppress the coarsening of the crystal grains, there is a problem that the hot workability is greatly lowered and the production yield of the pure copper plate is greatly lowered. there were.
  • the present invention has been made in view of the above-mentioned circumstances, and is a pure copper plate which is excellent in hot workability and can suppress coarsening and non-uniformity of crystal grains even after pressure heat treatment.
  • the purpose is to provide.
  • Some of the impurity elements contained in the pure copper plate in a small amount have a crystal grain growth suppressing effect of suppressing the coarsening of the crystal grains by being present at the crystal grain boundaries. Therefore, by utilizing an element having a crystal grain growth suppressing effect (hereinafter, referred to as a crystal grain growth suppressing element), it is possible to suppress coarsening and non-uniformity of crystal grains even after pressure heat treatment. I got the knowledge of. In addition, it was found that it is effective to regulate the content of a specific element in order to fully exert the action and effect of this crystal grain growth inhibitory element. Furthermore, it was found that it is effective to make the grain size of the crystal grains relatively large and to keep the strain energy accumulated in the material low in order to suppress the driving force of crystal growth during the pressure heat treatment. rice field.
  • the pure copper plate of the present invention has a Cu content of 99.96 mass% or more and a P content of 0.01 mass ppm or more and 3.00 mass ppm or less.
  • the total content of Pb, Se and Te is 10.0 mass ppm or less
  • the total content of Ag and Fe is 3.0 mass ppm or more
  • the balance has a composition of unavoidable impurities, and the crystals on the rolled surface.
  • the average crystal grain size of the grains is 10 ⁇ m or more
  • the aspect ratio of the crystal grains on the rolled surface is 2.0 or less.
  • the measurement area of 1000 ⁇ m 2 or more is measured by the EBSD method in steps of 0.5 ⁇ m.
  • the large tilt angle grain boundaries are defined as the measurement points where the orientation difference between adjacent measurements exceeds 15 °.
  • the small tilt angle grain boundary and the subgrain boundary are defined between the measurement points where the orientation difference is 2 ° or more and 15 ° or less, the length ratio of the small tilt angle grain boundary and the subgrain boundary to the total grain boundary is Partition. It is characterized by having a fraction of 80% or less.
  • the Cu content is 99.96 mass% or more
  • the P content is 0.01 mass ppm or more and 3.00 mass ppm or less
  • the total content of Pb, Se and Te is 10. Since the composition is 0 mass ppm or less, the total content of Ag and Fe is 3.0 mass ppm or more, and the balance is an unavoidable impurity, Ag and Fe are solid-solved in the copper matrix. It is possible to suppress the coarsening of crystal grains.
  • elements such as Pb, Se, and Te are contained in a small amount because they have a low solid solution limit in Cu and correspond to crystal grain growth inhibitory elements that suppress coarsening of crystal grains by segregation at grain boundaries. However, these elements also have an effect of greatly reducing hot workability. Therefore, hot workability can be ensured by limiting the total content of these Pb, Se and Te to 10.0 mass ppm or less.
  • the average crystal grain size of the crystal grains on the rolled surface is 10 ⁇ m or more and the aspect ratio of the crystal grains on the rolled surface is 2.0 or less, the particle sizes are compared before the pressure heat treatment. Since the size is large and the residual strain is small, the driving force for recrystallization during the pressure heat treatment is small, and grain growth can be suppressed. Since the length ratio of the small tilt angle grain boundary and the subgrain boundary to the total grain boundary is 80% or less in the Partition fraction, the dislocation density is relatively low and the accumulated strain energy is small. The driving force for recrystallization during pressure heat treatment is small, and grain growth can be suppressed.
  • the S content is in the range of 2.0 mass ppm or more and 20.0 mass ppm or less.
  • the S content is in the range of 2.0 mass ppm or more and 20.0 mass ppm or less.
  • the total content of Mg, Sr, Ba, Ti, Zr, Hf and Y is preferably 10.0 mass ppm or less.
  • Elements such as Mg, Sr, Ba, Ti, Zr, Hf, and Y which may be contained as unavoidable impurities, form compounds with Pb, Se, Te, etc., which are crystal grain growth inhibitory elements, and thus suppress grain growth. May interfere with the action of elements. Therefore, by limiting the total content of Mg, Sr, Ba, Ti, Zr, Hf, and Y to 10.0 mass ppm or less, the crystal grain growth inhibitory effect of the crystal grain growth inhibitory element can be sufficiently exerted. Even after the pressure heat treatment, it is possible to surely suppress the coarsening and non-uniformity of the crystal grains.
  • the pure copper plate of the present invention 50 mm ⁇ 50 mm after performing pressure heat treatment under the conditions of a pressure pressure of 0.6 MPa, a heating temperature of 850 ° C., and a holding time at the heating temperature of 90 minutes.
  • the ratio d max / d ave of the maximum crystal grain size d max and the average crystal grain size d ave in the range is preferably 20.0 or less. In this case, even when the pressure heat treatment is performed under the above conditions, it is possible to reliably suppress the non-uniformity of the crystal grains, and it is possible to further suppress the occurrence of poor appearance.
  • the Vickers hardness is preferably 150 HV or less.
  • the Vickers hardness is 150 HV or less, it is sufficiently soft, and the characteristics as a pure copper plate are secured, so that it is particularly suitable as a material for electric / electronic parts for high current applications.
  • the present invention it is possible to provide a pure copper plate having excellent hot workability and capable of suppressing coarsening and non-uniformity of crystal grains even after pressure heat treatment.
  • the pure copper plate of the present embodiment is used as a material for electric / electronic parts such as a heat sink and a thick copper circuit, and is used by being joined to, for example, a ceramic substrate when molding the above-mentioned electric / electronic parts. It is a thing.
  • the pure copper plate of the present embodiment has a Cu content of 99.96 mass% or more, a P content of 0.01 mass ppm or more and 3.00 mass ppm or less, and a total content of Pb, Se and Te of 10. It is said that the composition is 0 mass ppm or less, the total content of Ag and Fe is 3.0 mass ppm or more, and the balance is an unavoidable impurity.
  • “mass%” and “massppm” may be described as “%” and "ppm", respectively.
  • the S content is preferably in the range of 2.0 mass ppm or more and 20.0 mass ppm or less. Further, in the pure copper plate of the present embodiment, the total content of one or more (A element group) selected from Mg, Sr, Ba, Ti, Zr, Hf, and Y is 10.0 mass ppm or less. It is preferable to have.
  • the average crystal grain size of the crystal grains on the rolled surface is 10 ⁇ m or more, and the aspect ratio of the crystal grains on the rolled surface is 2 or less.
  • the average crystal grain size of the crystal grains on the rolled surface conforms to, for example, the cutting method of JIS H 0501, and the number of crystal grains that can be completely cut by drawing five vertical and horizontal line segments on the rolled surface. Can be counted and calculated as the average value of the cutting lengths.
  • the measurement area of 1000 ⁇ m 2 or more is measured by the EBSD method in steps of 0.5 ⁇ m, and the CI value analyzed by the data analysis software OIM is 0.1 or less.
  • the large tilt angle grains are defined as the measurement points where the orientation difference between adjacent measurements exceeds 15 °, and the small tilt angle grains are between the measurement points where the orientation difference is 2 ° or more and 15 ° or less.
  • the length ratio of the small tilt angle grain boundary and the subgrain boundary to the total grain boundary is 80% or less in the measurement fraction.
  • the pure copper plate of the present embodiment 50 mm ⁇ after performing the pressure heat treatment under the conditions that the pressurizing pressure is 0.6 MPa, the heating temperature is 850 ° C., and the holding time at the heating temperature is 90 minutes.
  • the ratio d max / d ave of the maximum crystal grain size d max and the average crystal grain size d ave in the range of 50 mm is preferably 20.0 or less.
  • the maximum crystal grain size d max is determined by, for example, selecting an arbitrary area of 50 mm ⁇ 50 mm, the major axis of the crystal grain having the coarsest crystal grain in the range, and the grain boundary when a line is drawn perpendicular to it. It can be obtained as the average value of the minor diameters to be cut.
  • the Vickers hardness is preferably 150 HV or less.
  • the purity of Cu is defined as 99.96 mass% or more.
  • the purity of Cu is preferably 99.965 mass% or more, and more preferably 99.97 mass% or more.
  • the upper limit of the purity of Cu is not particularly limited, but if it exceeds 99.999 mass%, a special refining process is required and the manufacturing cost increases significantly. Therefore, it may be 99.999 mass% or less. preferable.
  • P 0.01 mass ppm or more and 3.00 mass ppm or less
  • P is widely used as an element that detoxifies oxygen in copper.
  • P when P is contained in a certain amount or more, not only oxygen but also the action of the crystal grain growth inhibitory element existing at the grain boundary is inhibited. Therefore, when heated to a high temperature, the crystal grain growth inhibitory element does not sufficiently act, and there is a possibility that coarsening and non-uniformity of crystal grains may occur. In addition, the hot workability is also lowered. Therefore, in the present invention, the content of P is limited to 0.01 mass ppm or more and 3.00 mass ppm or less.
  • the upper limit of the P content is preferably 2.50 mass ppm or less, and more preferably 2.00 mass ppm or less.
  • the lower limit of the P content is preferably 0.02 mass ppm or more, and more preferably 0.03 mass ppm or more.
  • Pb, Se and Te are elements that have a low solid solution limit in Cu, have an effect of suppressing coarsening of crystal grains by segregating at grain boundaries, and greatly reduce hot workability. Therefore, in the present embodiment, the total content of Pb, Se and Te is limited to 10.0 mass ppm or less in order to ensure hot workability. In order to further improve the hot workability, the total content of Pb, Se and Te is preferably 9.0 mass ppm or less, and more preferably 8.0 mass ppm or less.
  • Total content of Ag and Fe 3.0 massppm or more
  • Ag and Fe are elements having an action of suppressing coarsening of crystal grains by solid solution in the copper matrix. Therefore, by setting the total content of Ag and Fe to 3.0 mass ppm or more in the present embodiment, the effect of suppressing grain grain coarsening by Ag and Fe can be sufficiently exerted, and crystals can be obtained even after pressure heat treatment. It is possible to reliably suppress the coarsening of grains.
  • the lower limit of the total content of Ag and Fe is preferably 5.0 mass ppm or more, more preferably 7.0 mass ppm or more, and even more preferably 10.0 mass ppm or more.
  • the upper limit of the total content of Ag and Fe is not particularly limited, but addition of more than necessary causes an increase in manufacturing cost and a decrease in conductivity, so it is preferably less than 100.0 mass ppm and less than 50.0 mass ppm. More preferably, it is more preferably less than 20.0 mass ppm.
  • S is an element that has an effect of suppressing coarsening of crystal grains by suppressing grain boundary movement and lowers hot workability. Therefore, when the content of S is 2.0 mass ppm or more in the present embodiment, the effect of suppressing the coarsening of crystal grains by S can be sufficiently exerted, and the coarsening of crystal grains can be sufficiently achieved even after the pressure heat treatment. Can be reliably suppressed. On the other hand, when the S content is limited to 20.0 mass ppm or less, hot workability can be ensured.
  • the lower limit of the S content is preferably 2.5 mass ppm or more, and more preferably 3.0 mass ppm or more.
  • the upper limit of the S content is preferably 17.5 mass ppm or less, and more preferably 15.0 mass ppm or less.
  • Total content of Mg, Sr, Ba, Ti, Zr, Hf, Y (element A group): 10.0 massppm or less) Mg, Sr, Ba, Ti, Zr, Hf, and Y (element A group) contained as unavoidable impurities segregate at the grain boundaries and suppress grain coarsening suppressing elements (S, Pb). , Se, Te, etc.) and compounds may be formed and the action of the grain grain coarsening inhibitoring element may be inhibited. Therefore, in order to surely suppress the coarsening of crystal grains after heat treatment, the total content of Mg, Sr, Ba, Ti, Zr, Hf, and Y (element A group) should be 10.0 mass ppm or less. Is preferable.
  • the total content of Mg, Sr, Ba, Ti, Zr, Hf, and Y (element A group) is preferably 7.5 mass ppm or less, and more preferably 5.0 mass ppm or less.
  • Al, Cr, Sn, Be, Cd, Mg, and Ni have the effect of suppressing grain growth by solid solution in the copper matrix, segregation at grain boundaries, and formation of oxides. have. Therefore, in order to surely suppress the coarsening of crystal grains after heat treatment, Al, Cr, Sn, Be, Cd, Mg, Ni (M element group) should be contained in excess of 2.0 mass ppm in total. Is preferable. When Al, Cr, Sn, Be, Cd, Mg, Ni (M element group) is intentionally contained, the total content of Al, Cr, Sn, Be, Cd, Mg, Ni (M element group) is contained.
  • the lower limit of the amount is more preferably 2.1 mass ppm or more, further preferably 2.3 mass ppm or more, further preferably 2.5 mass ppm or more, and most preferably 3.0 mass ppm or more.
  • Al, Cr, Sn, Be, Cd, Mg, Ni M element group
  • the upper limit of the total content of the M element group is preferably less than 100.0 mass ppm, more preferably less than 50.0 mass ppm, further preferably less than 20.0 mass ppm, and less than 10.0 mass ppm. Is even more preferable.
  • unavoidable impurities include B, Bi, Ca, Sc, rare earth elements, V, Nb, Ta, Mo, W, Mn, Re, Ru, Os, Co, Rh, Ir, Pd, and so on.
  • Examples thereof include Pt, Au, Zn, Hg, Ga, In, Ge, As, Sb, Tl, N, C, Si, Li, H, O and the like. It is preferable to reduce these unavoidable impurities because they may lower the conductivity.
  • the average crystal grain size of the crystal grains on the rolled surface is 10 ⁇ m or more.
  • the average crystal grain size of the crystal grains on the rolled surface is preferably 15 ⁇ m or more, and more preferably 20 ⁇ m or more.
  • Small tilt grain boundaries and subgrain boundaries 80% or less
  • the above-mentioned small grain boundaries and subgrain boundaries are regions where the density of dislocations introduced during processing is locally high, they are local in materials with a high ratio of small grain boundaries and subgrain boundaries.
  • Non-uniform structure is likely to be formed by recrystallization, and due to its high strain energy, crystal grains are also likely to become coarse. Therefore, in order to have a uniform structure and suppress the coarsening of crystal grains, the length ratio of the small tilt angle grain boundaries and the subgrain boundaries to the total grain boundaries should be 80% or less in the fraction fraction.
  • the length ratio of the small tilt angle grain boundaries and the subgrain boundaries to the total grain boundaries is preferably 75% or less, and more preferably 70% or less.
  • the ratios of the small tilt angle grain boundaries and the subgrain boundaries in the tissue excluding the region where the CI value is 0.1 or less are obtained.
  • the CI value represents the clarity of the crystallinity of the analysis point, and in a structure having a CI value of 0.1 or less, the processed structure is remarkably developed and a clear crystal pattern cannot be obtained.
  • the size By limiting the size to 500 ⁇ m or less, it is possible to surely suppress the coarsening of crystal grains even when pressure heat treatment is performed under the above conditions, and it is particularly used as a material for thick copper circuits and heat sinks bonded to a ceramic substrate.
  • the upper limit of the average crystal grain size of the crystal grains on the rolled surface after the above-mentioned pressure heat treatment is more preferably 450 ⁇ m or less, and most preferably 400 ⁇ m or less.
  • the lower limit of the average crystal grain size of the crystal grains on the rolled surface after the above-mentioned pressure heat treatment is not particularly limited, but is substantially 50 ⁇ m or more.
  • the pressure pressure is 0.6 MPa
  • the heating temperature is 850 ° C.
  • the holding time at the heating temperature is 90 minutes in the range of 50 mm ⁇ 50 mm on the rolled surface after the pressure heat treatment.
  • the ratio d max / d ave of the maximum crystal grain size d max and the average crystal grain size d ave in the range of 50 mm ⁇ 50 mm after the above-mentioned pressure heat treatment is more preferably 15.0 or less.
  • the pure copper plate of the present embodiment by setting the Vickers hardness to 150 HV or less, the characteristics as a pure copper plate are ensured, and it is particularly suitable as a material for electric / electronic parts for high current applications. Further, it is sufficiently soft, and even when it is joined to another member such as a ceramic substrate and a cold heat cycle is applied, it is possible to release the thermal strain generated by the deformation of the pure copper plate.
  • the Vickers hardness of the pure copper plate is more preferably 140 HV or less, further preferably 130 HV or less, and most preferably 120 HV or less.
  • the lower limit of the Vickers hardness of the pure copper plate is not particularly limited, but if the hardness is too low, it is easily deformed at the time of manufacturing and handling becomes difficult. Therefore, it is preferably 30 HV or more, more preferably 45 HV or more. Most preferably, it is 55 HV or more.
  • the copper raw material is melted to produce a molten copper.
  • the copper raw material for example, it is preferable to use 4 NCu having a purity of 99.99 mass% or more and 5 NCu having a purity of 99.999 mass% or more.
  • S is added, S alone, Cu—S mother alloy, or the like can be used.
  • Cu—S mother alloy it is preferable to use 4 NCu having a purity of 99.99 mass% or more and 5 NCu having a purity of 99.999 mass% or more.
  • the dissolution step since the hydrogen concentration reduction, their atmosphere dissolution vapor pressure of H 2 O is by low inert gas atmosphere (e.g.
  • Heat treatment step S02 The resulting ingot is cut and the surface is ground to remove scale. After that, heat treatment is performed for homogenization and solutionification.
  • the heat treatment conditions are not particularly limited, but preferably, the heat treatment temperature is in the range of 500 ° C. or higher and 900 ° C. or lower, and the holding time at the heat treatment temperature is 0.1 hour or longer and 100 hours in order to suppress the formation of precipitates. It is preferable to carry out in a non-oxidizing or reducing atmosphere within the following range.
  • the cooling method is not particularly limited, but it is preferable to select a method such as water quenching in which the cooling rate is 200 ° C./min or more. Further, in order to make the structure uniform, hot working may be performed after the heat treatment.
  • the processing method is not particularly limited, but when the final form is a plate or a strip, rolling is adopted. Alternatively, forging, pressing, or groove rolling may be adopted.
  • the temperature during hot working is not particularly limited, but is preferably in the range of 500 ° C. or higher and 900 ° C. or lower.
  • the total processing rate of hot working is preferably 50% or more, more preferably 60% or more, and even more preferably 70% or more.
  • the copper material after the heat treatment step S02 is subjected to intermediate rolling to be processed into a predetermined shape.
  • the temperature condition in the intermediate rolling step S03 is not particularly limited, but it is preferably performed in the range of ⁇ 200 ° C. or higher and 200 ° C. or lower. Further, the processing ratio in the intermediate rolling step S03 is appropriately selected so as to approximate the final shape, but it is preferably 30% or more in order to improve the productivity.
  • the copper material after the intermediate rolling step S03 is heat-treated for the purpose of recrystallization.
  • the particle size of the recrystallized grains is 10 ⁇ m or more. If the recrystallized grains are fine, the growth of the crystal grains and the non-uniformity of the structure may be promoted when the recrystallized grains are subsequently subjected to the pressure heat treatment.
  • the heat treatment conditions of the recrystallization heat treatment step S04 are not particularly limited, but it is preferable to keep the heat treatment temperature in the range of 200 ° C. or higher and 900 ° C. or lower in the range of 1 second or more and 10 hours or less.
  • a short-time heat treatment may be held at 850 ° C. for 5 seconds, and a long-time heat treatment of 1 hour or more may be held at 400 ° C. for 8 hours.
  • the intermediate rolling step S03 and the recrystallization heat treatment step S04 may be repeated twice or more.
  • the copper material after the recrystallization heat treatment step S04 may be tempered. If it is not necessary to increase the material strength, the tempering process may not be performed.
  • the processing rate of the tempering process is not particularly limited, but the length ratio of the small tilt angle grain boundary and the subgrain boundary to the total grain boundary is 80% or less, and the aspect ratio of the crystal grains on the rolled surface is 2.0. Therefore, in order to further reduce the Vickers hardness to 150 HV or less, the processing ratio is preferably carried out within the range of 0% or more and 50% or less, and more preferably 0% or more and 40% or less. Further, if necessary, further heat treatment may be performed after the tempering process in order to remove the residual strain.
  • the final thickness is not particularly limited, but is preferably in the range of 0.5 mm or more and 5 mm or less, for example.
  • the pure copper plate according to this embodiment is produced.
  • the Cu content is 99.96 mass% or more
  • the P content is 0.01 mass ppm or more and 3.00 mass ppm or less
  • Pb Since the total content of Se and Te is 10.0 mass ppm or less, the total content of Ag and Fe is 3.0 mass ppm or more, and the balance is an unavoidable impurity, Ag and Fe are made of copper.
  • elements such as Pb, Se, and Te are contained in a small amount because they have a low solid solution limit in Cu and correspond to crystal grain growth inhibitory elements that suppress coarsening of crystal grains by segregation at grain boundaries.
  • the grain size of the crystal grains on the rolled surface is 10 ⁇ m or more and the aspect ratio of the crystal grains on the rolled surface is 2 or less, the grain size is relatively large before the pressure heat treatment. Moreover, since the residual strain is small, the driving force for recrystallization during the pressure heat treatment is small, and grain growth can be suppressed. Since the length ratio of the small grain boundaries and the subgrain boundaries to the total grain boundaries is 80% or less in the fraction fraction, the dislocation density is relatively low and the accumulated strain energy is small, so that pressure is applied. The driving force for recrystallization during heat treatment is small, and grain growth can be suppressed.
  • S which is a kind of crystal grain growth inhibitory element, segregates at the grain boundaries, and after pressure heat treatment. It is possible to surely suppress the coarsening and non-uniformity of the crystal grains in. In addition, hot workability can be ensured.
  • the elements and crystal grain growth of these element A groups it is possible to suppress the formation of a compound by reacting with the inhibitory elements S, Pb, Se, Te and the like, and it is possible to fully exert the action of the crystal grain growth inhibitory element. Therefore, it is possible to reliably suppress the coarsening and non-uniformity of the crystal grains after the pressure heat treatment.
  • the maximum crystal grain size d max after the pressure heat treatment is performed under the conditions that the pressure pressure is 0.6 MPa, the heating temperature is 850 ° C., and the holding time at the heating temperature is 90 minutes.
  • the ratio d max / d ave of the average crystal grain size d ave is 20.0 or less, it is possible to surely suppress the non-uniformity of the crystal grains even after the pressure heat treatment, and the appearance is poor. Can be further suppressed.
  • the Vickers hardness is 150 HV or less, it is sufficiently soft and the characteristics as a pure copper plate are secured, so that it is particularly suitable as a material for electric / electronic parts for high current applications.
  • Al, Cr, Sn, Be, Cd, Mg, Ni (M element group) when contained in an amount of more than 2.0 mass ppm, it is added to the parent phase of the element of the M element copper group. Solid solution, segregation to grain boundaries, and formation of oxides make it possible to more reliably suppress grain growth after pressure heat treatment.
  • the present invention is not limited to this, and can be appropriately changed without departing from the technical idea of the present invention.
  • an example of a method for manufacturing a pure copper plate has been described, but the method for manufacturing a pure copper plate is not limited to the one described in the embodiment, and an existing manufacturing method is appropriately selected. It may be manufactured.
  • a Cu-1 mass% mother alloy of various elements prepared by using a copper raw material having a purity of 99.999 mass% or more and the copper raw material and various elements having a purity of 99 mass% or more was prepared.
  • the above-mentioned copper raw material was charged into a high-purity graphite crucible and melted at high frequency in an atmosphere furnace having an Ar gas atmosphere.
  • Cu-1 mass% mother alloys of the above-mentioned various elements were added to the obtained molten copper to prepare a predetermined component composition.
  • the obtained molten copper was poured into a mold to produce an ingot.
  • the size of the ingot was about 60 mm in thickness ⁇ about 120 mm in width ⁇ about 150 to 200 mm in length.
  • the obtained ingot was heated in an Ar gas atmosphere for 1 hour under the temperature conditions shown in Tables 1 and 2 and hot-rolled to a thickness of 30 mm.
  • the copper material after hot rolling was cut and surface grinding was performed to remove the oxide film on the surface.
  • the thickness of the copper material to be subjected to the intermediate rolling is adjusted so that the final thickness is as shown in Tables 1 and 2 in consideration of the rolling ratios of the subsequent hot rolling, intermediate rolling and temper rolling. bottom.
  • the copper material whose thickness was adjusted as described above was subjected to intermediate rolling under the conditions shown in Tables 1 and 2 and water-cooled. Next, the copper material after the intermediate rolling was subjected to a recrystallization heat treatment under the conditions shown in Tables 1 and 2. Then, the copper material after the recrystallization heat treatment was subjected to intermediate rolling under the conditions shown in Tables 1 and 2, and a strip material for character evaluation having a thickness of 60 mm and a width shown in Tables 1 and 2 was produced.
  • composition analysis A measurement sample was taken from the obtained ingot, S was measured by an infrared absorption method, and other elements were measured using a glow discharge mass spectrometer (GD-MS). The measurement was performed at two locations, the center of the sample and the end in the width direction, and the one with the higher content was taken as the content of the sample. The measurement results are shown in Tables 1 and 2.
  • the length of the ear crack is the length of the ear crack from the widthwise end portion of the rolled material to the widthwise central portion.
  • the Vickers hardness was measured with a test load of 0.98 N in accordance with the micro Vickers hardness test method specified in JIS Z 2244. The measurement position was the rolled surface of the characteristic evaluation test piece. The evaluation results are shown in Tables 3 and 4.
  • test piece having a width of 10 mm and a length of 60 mm was sampled from the strip material for character evaluation, and the electrical resistance was determined by the 4-terminal method. In addition, the dimensions of the test piece were measured using a micrometer, and the volume of the test piece was calculated. Then, the conductivity was calculated from the measured electric resistance value and volume. The evaluation results are shown in Tables 3 and 4. The test piece was collected so that its longitudinal direction was parallel to the rolling direction of the strip material for character evaluation.
  • Crystal particle size before pressure heat treatment A 20 mm ⁇ 20 mm sample was cut out from the obtained characteristic evaluation strip, and a SEM-EBSD (Electron Backscatter Diffractaction Patterns) measuring device (Quanta FEG 450 manufactured by FEI, EDAX / TSL (currently AMETEK) OIM Data C. The average crystal grain size was measured by. The rolled surface was mechanically polished using water-resistant abrasive paper and diamond abrasive grains, and then finish-polished using a colloidal silica solution.
  • SEM-EBSD Electro Backscatter Diffractaction Patterns
  • each measurement point (pixel) within the measurement range on the sample surface is irradiated with an electron beam, and the orientation difference between adjacent measurement points is determined by orientation analysis by backscattered electron beam diffraction.
  • the area between the measurement points at 15 ° or more was defined as a large-angle grain boundary, and the area below 15 ° was defined as a small-angle grain boundary.
  • the rolled surface is first mechanically polished with water-resistant abrasive paper and diamond abrasive grains, and then a colloidal silica solution is applied. Finish polishing was performed using. After that, etching is performed, and in accordance with the cutting method of JIS H 0501, five line segments of predetermined length and width are drawn, the number of crystal grains to be completely cut is counted, and the average value of the cutting length is calculated. The average crystal grain size was used. The evaluation results are shown in Tables 3 and 4.
  • Comparative Example 1 the P content was 148 mass ppm, which was larger than the range of the present invention, and the processability was deteriorated. Further, after the pressure heat treatment, the average crystal grain size was coarsened to 500 ⁇ m or more, and the variation in grain size became large. In Comparative Example 2, the total content of Ag and Fe was 0.1 mass ppm, which was smaller than the range of the present invention, the crystal grains became coarse after the pressure heat treatment, and the variation in particle size became large. In Comparative Example 3, the ratio of the small tilt angle grain boundary and the subgrain boundary was 86%, which was larger than the range of the present invention, and the aspect ratio was 2.4, which was larger than the range of the present invention. Has become coarser, and the variation in particle size has also increased.
  • Comparative Example 4 the total content of Pb, Se and Te was 260 mass ppm, which was larger than the range of the present invention, and large cracks occurred during hot rolling, so the evaluation was stopped.
  • Comparative Example 5 the average crystal grain size of the crystal grains on the rolled surface was 8 ⁇ m, which was smaller than the range of the present invention, and the crystal grains became coarse after the pressure heat treatment, and the variation in grain size became large.
  • Example 1-30 of the present invention the average crystal grain size after the pressure heat treatment was small, and the variation in particle size was small. From the above, according to the example of the present invention, it is possible to provide a pure copper plate having excellent hot workability and capable of suppressing coarsening and non-uniformity of crystal grains even after pressure heat treatment. It was confirmed that.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Conductive Materials (AREA)

Abstract

本発明の純銅板は、Cuの含有量が99.96mass%以上とされ、Pの含有量が0.01massppm以上3.00massppm以下とされ、Pb,Se及びTeの合計含有量が10.0massppm以下とされ、Ag及びFeの合計含有量が3.0massppm以上とされ、残部が不可避不純物とした組成を有し、圧延面における結晶粒の平均結晶粒径が10μm以上であるとともに、圧延面における結晶粒のアスペクト比が2.0以下とされており、前記小傾角粒界および前記サブグレインバウンダリーの全粒界に対する長さ比率がPartition fractionで80%以下とされている。

Description

純銅板
 本発明は、ヒートシンクや厚銅回路等の電気・電子部品に適した純銅板であって、特に、加熱時における結晶粒の粗大化が抑制された純銅板に関する。
 本願は、2020年3月6日に、日本に出願された特願2020-038771号に基づき優先権を主張し、その内容をここに援用する。
 従来、ヒートシンクや厚銅回路等の電気・電子部品には、導電性の高い銅又は銅合金が用いられている。
 最近は、電子機器や電気機器等の大電流化にともない、電流密度の低減およびジュール発熱による熱の拡散のために、これら電子機器や電気機器等に使用される電気・電子部品の大型化、厚肉化が図られている。
 ここで、半導体装置においては、例えば、セラミックス基板に銅材を接合し、上述のヒートシンクや厚銅回路を構成した絶縁回路基板等が用いられている。
 セラミックス基板と銅板を接合する際には、接合温度が800℃以上とされることが多く、接合時にヒートシンクや厚銅回路を構成する銅材の結晶粒が粗大化してしまうおそれがあった。特に、導電性及び放熱性に特に優れた純銅からなる銅材においては、結晶粒が粗大化しやすい傾向にある。
 接合後のヒートシンクや厚銅回路において結晶粒が不均一に粗大化した場合には、外観上問題となるおそれがあった。
 ここで、例えば特許文献1には、結晶粒の成長を抑制した純銅板が提案されている。この特許文献1においては、Sを0.0006~0.0015wt%含有することにより、再結晶温度以上で熱処理しても、一定の大きさの結晶粒に調整可能であると記載されている。
特開平06-002058号公報
 ところで、セラミックス基板と銅板とを強固に接合する際には、セラミックス基板と銅板とを積層方向に比較的高い圧力(例えば0.1MPa以上)で加圧した状態で高温の熱処理を行うことになる。このとき、純銅板においては、結晶粒が不均一に成長し易く、結晶粒の粗大化や不均一な成長によって、接合不良や外観不良、検査工程での不具合を起こすことがある。この問題点を解決するために、純銅板には、異種材料との接合をするための加圧熱処理後も、結晶粒径の変化が少なく、かつその大きさが均一であることが求められている。
 ここで、特許文献1においては、Sの含有量を規定することで結晶粒の粗大化を抑制しているが、Sの含有量を規定するだけでは、加圧熱処理後において十分な結晶粒粗大化抑制効果を得ることができないことがあった。また、加圧熱処理後に、局所的に結晶粒が粗大化し、結晶組織が不均一となることがあった。
 さらに、結晶粒の粗大化を抑制するために、Sの含有量を増加させた場合には、熱間加工性が大きく低下してしまい、純銅板の製造歩留まりが大きく低下してしまうといった問題があった。
 この発明は、前述した事情に鑑みてなされたものであって、熱間加工性に優れ、かつ、加圧熱処理後においても結晶粒の粗大化及び不均一化を抑制することができる純銅板を提供することを目的とする。
 この課題を解決するために、本発明者らが鋭意検討した結果、以下のような知見を得た。純銅板に微量に含有された不純物元素には、結晶粒界に存在することで結晶粒の粗大化を抑制する結晶粒成長抑制効果を有するものが存在する。そこで、この結晶粒成長抑制効果を有する元素(以下、結晶粒成長抑制元素、と称する)を活用することで、加圧熱処理後においても結晶粒の粗大化や不均一化を抑制可能であるとの知見を得た。また、この結晶粒成長抑制元素の作用効果を十分に奏功せしめるためには、特定の元素の含有量を規制することが効果的であるとの知見を得た。
 さらに、加圧熱処理時における結晶成長の駆動力を抑えるために、結晶粒の粒径を比較的大きくし、かつ、材料に蓄積されたひずみエネルギーを低く抑えることが有効であるとの知見を得た。
 本発明は、上述の知見に基づいてなされたものであって、本発明の純銅板は、Cuの含有量が99.96mass%以上とされ、Pの含有量が0.01massppm以上3.00massppm以下とされ、Pb,Se及びTeの合計含有量が10.0massppm以下とされ、Ag及びFeの合計含有量が3.0massppm以上とされ、残部が不可避不純物とした組成を有し、圧延面における結晶粒の平均結晶粒径が10μm以上であるとともに、圧延面における結晶粒のアスペクト比が2.0以下とされており、EBSD法により1000μm以上の測定面積を測定間隔0.5μmステップで測定して、データ解析ソフトOIMにより解析されたCI値が0.1以下である測定点を除いて解析したとき、隣接する測定間の方位差が15°を超える測定点間を大傾角粒界とし、前記方位差が2°以上15°以下となる測定点間を小傾角粒界およびサブグレインバウンダリーとしたとき、前記小傾角粒界および前記サブグレインバウンダリーの全粒界に対する長さ比率がPartition fractionで80%以下とされていることを特徴としている。
 この構成の純銅板によれば、Cuの含有量が99.96mass%以上とされ、Pの含有量が0.01massppm以上3.00massppm以下とされ、Pb,Se及びTeの合計含有量が10.0massppm以下とされ、Ag及びFeの合計含有量が3.0massppm以上とされ、残部が不可避不純物とした組成を有しているので、Ag及びFeが銅の母相中に固溶することによって、結晶粒の粗大化を抑制することが可能となる。また、Pb,Se及びTeといった元素は、Cu中の固溶限が低く、粒界に偏析することによって結晶粒の粗大化を抑制する結晶粒成長抑制元素に該当するため、微量に含まれていてもよいが、これらの元素は、熱間加工性を大きく低下させる効果も有する。このため、これらPb,Se及びTeの合計含有量を10.0massppm以下に制限することにより、熱間加工性を確保することができる。
 また、圧延面における結晶粒の平均結晶粒径が10μm以上であるとともに、圧延面における結晶粒のアスペクト比が2.0以下とされているので、加圧熱処理前の状態で、粒径が比較的大きく、かつ、残留ひずみが少ないため、加圧熱処理時における再結晶の駆動力が小さく、粒成長を抑制することが可能となる。
 そして、前記小傾角粒界および前記サブグレインバウンダリーの全粒界に対する長さ比率がPartition fractionで80%以下とされているので、転位密度が比較的低く、蓄積されたひずみエネルギーが少ないため、加圧熱処理時における再結晶の駆動力が小さく、粒成長を抑制することが可能となる。
 ここで、本発明の純銅板においては、Sの含有量が2.0massppm以上20.0massppm以下の範囲内とされていることが好ましい。
 この場合、結晶粒成長抑制元素に該当するSを2.0massppm以上含むことにより、加圧熱処理後においても結晶粒の粗大化や不均一化を確実に抑制することが可能となる。また、Sの含有量を20.0massppm以下に制限することにより、熱間加工性を十分に確保することができる。
 また、本発明の純銅板においては、Mg,Sr,Ba,Ti,Zr,Hf,Yの合計含有量が10.0massppm以下であることが好ましい。
 不可避不純物として含まれるおそれがあるMg,Sr,Ba,Ti,Zr,Hf,Yといった元素は、結晶粒成長抑制元素であるPb、Se及びTe等と化合物を生成することからこれら結晶粒成長抑制元素の作用を阻害するおそれがある。このため、Mg,Sr,Ba,Ti,Zr,Hf,Yの合計含有量を10.0massppm以下に制限することにより、結晶粒成長抑制元素による結晶粒成長抑制効果を十分に発揮させることができ、加圧熱処理後においても、結晶粒の粗大化や不均一化を確実に抑制することが可能となる。
 さらに、本発明の純銅板においては、加圧圧力を0.6MPa、加熱温度を850℃、加熱温度での保持時間を90分の条件での加圧熱処理を実施した後の、50mm×50mmの範囲における最大結晶粒径dmaxと平均結晶粒径daveの比率dmax/daveが20.0以下であることが好ましい。
 この場合、上記条件で加圧熱処理した場合でも、結晶粒が不均一になることを確実に抑制でき、外観不良の発生をさらに抑制することができる。
 さらに、本発明の純銅板においては、ビッカース硬度が150HV以下であることが好ましい。
 この場合、ビッカース硬度が150HV以下であり、十分に軟らかく、純銅板としての特性が確保されているので、大電流用途の電気・電子部品の素材として特に適している。
 本発明によれば、熱間加工性に優れ、かつ、加圧熱処理後においても結晶粒の粗大化及び不均一化を抑制することができる純銅板を提供することができる。
本実施形態である純銅板の製造方法のフロー図である。
 以下に、本発明の一実施形態である純銅板について説明する。
 本実施形態である純銅板は、ヒートシンクや厚銅回路等の電気・電子部品の素材として用いられるものであり、前述の電気・電子部品を成形する際に、例えばセラミックス基板に接合されて使用されるものである。
 本実施形態である純銅板は、Cuの含有量が99.96mass%以上とされ、Pの含有量が0.01massppm以上3.00massppm以下とされ、Pb,Se及びTeの合計含有量が10.0massppm以下とされ、Ag及びFeの合計含有量が3.0massppm以上とされ、残部が不可避不純物とした組成を有するものとされている。以下では、「mass%」、「massppm」を、それぞれ「%」、「ppm」と記載することがある。
 なお、本実施形態である純銅板においては、Sの含有量が2.0massppm以上20.0massppm以下の範囲内とされていることが好ましい。
 また、本実施形態である純銅板においては、Mg,Sr,Ba,Ti,Zr,Hf,Yから選択される1種又は2種以上(A元素群)の合計含有量が10.0massppm以下であることが好ましい。
 また、本実施形態である純銅板においては、圧延面における結晶粒の平均結晶粒径が10μm以上とされ、圧延面における結晶粒のアスペクト比が2以下とされている。圧延面における結晶粒の平均結晶粒径は、例えば、JIS H 0501の切断法に準拠し、圧延面に縦、横の所定長さの線分を5本ずつ引き、完全に切られる結晶粒数を数え、その切断長さの平均値として求めることができる。
 そして、本実施形態である純銅板においては、EBSD法により1000μm以上の測定面積を測定間隔0.5μmステップで測定して、データ解析ソフトOIMにより解析されたCI値が0.1以下である測定点を除いて解析したとき、隣接する測定間の方位差が15°を超える測定点間を大傾角粒界とし、前記方位差が2°以上15°以下となる測定点間を小傾角粒界およびサブグレインバウンダリーとしたとき、前記小傾角粒界および前記サブグレインバウンダリーの全粒界に対する長さ比率がPartition fractionで80%以下とされている。
 なお、本実施形態である純銅板においては、加圧圧力を0.6MPa、加熱温度を850℃、加熱温度での保持時間を90分の条件での加圧熱処理を実施した後の、50mm×50mmの範囲における最大結晶粒径dmaxと平均結晶粒径daveの比率dmax/daveが20.0以下であることが好ましい。最大結晶粒径dmaxは、例えば、任意の面積50mm×50mmの範囲を選択し、その範囲の中で最も結晶粒が粗大な結晶粒の長径と、それに垂直に線を引いた時に粒界によって切断される短径の平均値として求めることができる。
 また、本実施形態である純銅板においては、ビッカース硬度が150HV以下であることが好ましい。
 ここで、本実施形態の純銅板において、上述のように成分組成、小傾角粒界およびサブグレインバウンダリー、各種特性を規定した理由について以下に説明する。
(Cuの純度:99.96mass%以上)
 大電流用途の電気・電子部品においては、通電時の発熱を抑制するために、導電性及び放熱性に優れていることが要求されており、導電性及び放熱性に特に優れた純銅を用いることが好ましい。また、セラミックス基板等と接合した場合には、冷熱サイクル負荷時に生じる熱ひずみを緩和できるように、変形抵抗が小さいことが好ましい。
 そこで、本実施形態である純銅板においては、Cuの純度を99.96mass%以上に規定している。
 なお、Cuの純度は99.965mass%以上であることが好ましく、99.97mass%以上であることがさらに好ましい。また、Cuの純度の上限に特に制限はないが、99.999mass%を超える場合には、特別な精錬工程が必要となり、製造コストが大幅に増加するため、99.999mass%以下とすることが好ましい。
(P:0.01massppm以上3.00massppm以下)
 Pは、銅中の酸素を無害化する元素として広く用いられている。しかしながら、Pを一定以上含有する場合には、酸素だけではなく、結晶粒界に存在する結晶粒成長抑制元素の作用を阻害する。このため、高温に加熱した際に、結晶粒成長抑制元素が十分に作用せず、結晶粒の粗大化及び不均一化が発生するおそれがある。また、熱間加工性も低下することになる。
 そこで、本発明においては、Pの含有量を0.01massppm以上3.00massppm以下に制限している。
 なお、Pの含有量の上限は、2.50massppm以下とすることが好ましく、2.00massppm以下とすることがさらに好ましい。一方、Pの含有量の下限は、0.02massppm以上とすることが好ましく、0.03massppm以上とすることがさらに好ましい。
(Pb,Se及びTeの合計含有量:10.0massppm以下)
 Pb,Se及びTeは、Cu中の固溶限が低く、粒界に偏析することによって、結晶粒の粗大化を抑制する作用を有するとともに、熱間加工性を大きく低下させる元素である。このため、本実施形態においては、熱間加工性を確保するために、Pb,Se及びTeの合計含有量を10.0massppm以下に制限している。
 なお、熱間加工性をより向上させる場合には、Pb,Se及びTeの合計含有量を9.0massppm以下とすることが好ましく、8.0massppm以下とすることがさらに好ましい。
(Ag及びFeの合計含有量:3.0massppm以上)
 Ag及びFeは銅母相中への固溶によって結晶粒の粗大化を抑制する作用を有する元素である。
 このため、本実施形態においてAg及びFeの合計含有量を3.0massppm以上とすることにより、Ag及びFeによる結晶粒粗大化抑制効果を十分に奏功せしめることができ、加圧熱処理後においても結晶粒の粗大化を確実に抑制することが可能となる。
 なお、Ag及びFeの合計含有量の下限は、5.0massppm以上であることが好ましく、7.0massppm以上であることがさらに好ましく、10.0massppm以上であることがより好ましい。一方、Ag及びFeの合計含有量の上限に特に制限はないが、必要以上の添加は製造コストの増加や導電率の低下を招くため、100.0massppm未満とすることが好ましく、50.0massppm未満とすることがさらに好ましく、20.0massppm未満であることがより好ましい。
(Sの含有量:2.0massppm以上20.0massppm以下)
 Sは、結晶粒界移動を抑制することによって、結晶粒の粗大化を抑制する作用を有するとともに、熱間加工性を低下させる元素である。
 このため、本実施形態においてSの含有量を2.0massppm以上とした場合には、Sによる結晶粒粗大化抑制効果を十分に奏功せしめることができ、加圧熱処理後においても結晶粒の粗大化を確実に抑制することが可能となる。一方、Sの含有量を20.0massppm以下に制限した場合には、熱間加工性を確保することが可能となる。
 なお、Sの含有量の下限は、2.5massppm以上であることが好ましく、3.0massppm以上であることがさらに好ましい。また、Sの含有量の上限は、17.5massppm以下であることが好ましく、15.0massppm以下であることがさらに好ましい。
(Mg,Sr,Ba,Ti,Zr,Hf,Y(A元素群)の合計含有量:10.0massppm以下)
 不可避不純物として含まれるMg,Sr,Ba,Ti,Zr,Hf,Y(A元素群)は、結晶粒界に偏析して結晶粒の粗大化を抑制する結晶粒粗大化抑制元素(S,Pb, Se,Te等)と化合物を生成し、結晶粒粗大化抑制元素の作用を阻害するおそれがある。このため、熱処理後の結晶粒の粗大化を確実に抑制するためには、Mg,Sr,Ba,Ti,Zr,Hf,Y(A元素群)の合計含有量を10.0massppm以下とすることが好ましい。
 なお、Mg,Sr,Ba,Ti,Zr,Hf,Y(A元素群)の合計含有量は、7.5massppm以下であることが好ましく、5.0massppm以下であることがさらに好ましい。
(その他の元素)
 なお、Al,Cr,Sn,Be,Cd,Mg,Ni(M元素群)は銅母相中への固溶や粒界への偏析、さらには酸化物の形成により、粒成長を抑制する効果を持つ。
 このため、熱処理後の結晶粒の粗大化を確実に抑制するためには、Al,Cr,Sn,Be,Cd,Mg,Ni(M元素群)を合計で2.0massppmを超えて含有することが好ましい。なお、Al,Cr,Sn,Be,Cd,Mg,Ni(M元素群)を意図的に含有する場合にはAl,Cr,Sn,Be,Cd,Mg,Ni(M元素群)の合計含有量の下限を2.1massppm以上とすることがより好ましく、2.3massppm以上とすることがさらに好ましく、2.5massppm以上とすることより一層好ましく、3.0massppm以上とすることが最適である。
 一方、Al,Cr,Sn,Be,Cd,Mg,Ni(M元素群)を必要以上に含有すると導電率の低下が懸念されるため、Al,Cr,Sn,Be,Cd,Mg,Ni(M元素群)の合計含有量の上限を100.0massppm未満とすることが好ましく、50.0massppm未満とすることがより好ましく、20.0massppm未満とすることがさらに好ましく、10.0massppm未満とすることがより一層好ましい。
(その他の不可避不純物)
 上述した元素以外のその他の不可避的不純物としては、B,Bi,Ca,Sc,希土類元素,V,Nb,Ta,Mo,W,Mn,Re,Ru,Os,Co,Rh,Ir,Pd,Pt,Au,Zn,Hg,Ga,In,Ge,As,Sb,Tl,N,C,Si,Li,H,O等が挙げられる。これらの不可避不純物は、導電率を低下させるおそれがあることから、少なくすることが好ましい。
(圧延面における結晶粒の平均結晶粒径:10μm以上)
 本実施形態である純銅板において、圧延面における結晶粒の平均結晶粒径が微細であると、この純銅板を加熱した際に、再結晶が進行しやすく、結晶粒の成長、組織の不均一化が促進されてしまうおそれがある。
 このため、加圧熱処理時の結晶粒の粗大化をさらに抑制するためには、圧延面における結晶粒の平均結晶粒径を10μm以上とすることが好ましい。
 なお、圧延面における結晶粒の平均結晶粒径は、15μm以上であることが好ましく、20μm以上であることがさらに好ましい。
(小傾角粒界およびサブグレインバウンダリー:80%以下)
 上述の小傾角粒界およびサブグレインバウンダリーは、加工時に導入された転位の密度が局所的に高い領域であるため、小傾角粒界およびサブグレインバウンダリーの比率が高い材料では、局所的な再結晶により不均一な組織を形成しやすく、その高いひずみエネルギーから、結晶粒も粗大となりやすい。
 このため、均一な組織、かつ結晶粒の粗大化を抑制するためには、小傾角粒界およびサブグレインバウンダリーの全粒界に対する長さ比率はPartition fractionで80%以下とする。なお、小傾角粒界およびサブグレインバウンダリーの全粒界に対する長さ比率は75%以下であることが好ましく、70%以下であることがより好ましい。
 なお、本実施形態では、CI値が0.1以下の領域を除いた組織中での小傾角粒界およびサブグレインバウンダリーの比率を求めている。CI値は解析点の結晶性の明瞭性を表し、CI値が0.1以下の組織では著しく加工組織が発達して明瞭な結晶パターンが得られない。
(加圧熱処理後の圧延面における結晶粒の平均結晶粒径:500μm以下)
 圧力をかけて熱処理を行うと圧力の増大により結晶の粗大化が進行し、加圧の条件により銅の結晶粒が局所的に粗大化してしまう。
 そこで、本実施形態においては、加圧圧力を0.6MPa、加熱温度を850℃、加熱温度での保持時間を90分の条件での加圧熱処理後の圧延面における結晶粒の平均結晶粒径を500μm以下に制限することにより、上述の条件で加圧熱処理した場合であっても結晶粒が粗大化することを確実に抑制でき、セラミックス基板に接合される厚銅回路やヒートシンクの素材として特に適している。
 なお、上述の加圧熱処理後の圧延面における結晶粒の平均結晶粒径の上限は450μm以下であることがさらに好ましく、400μm以下であることが最も好ましい。
 一方、上述の加圧熱処理後の圧延面における結晶粒の平均結晶粒径の下限に特に制限はないが、実質的には50μm以上となる。
(加圧熱処理後の50mm×50mmの範囲における最大結晶粒径dmaxと平均結晶粒径daveの比率dmax/dave:20.0以下)
 本実施形態である純銅板において、加圧圧力を0.6MPa、加熱温度を850℃、加熱温度での保持時間を90分の条件での加圧熱処理後の圧延面における50mm×50mmの範囲における最大結晶粒径dmaxと平均結晶粒径daveの比率dmax/daveが20.0以下である場合には、加圧熱処理を実施した場合であっても、結晶粒が不均一化することを確実に抑制でき、セラミックス基板に接合される厚銅回路やヒートシンクの素材として特に適している。
 なお、上述の加圧熱処理後の50mm×50mmの範囲における最大結晶粒径dmaxと平均結晶粒径daveの比率dmax/daveは15.0以下であることがさらに好ましい。
(ビッカース硬度:150HV以下)
 本実施形態である純銅板においては、ビッカース硬度を150HV以下とすることにより、純銅板としての特性が確保され、大電流用途の電気・電子部品の素材として特に適している。また、十分に軟らかく、セラミックス基板等の他の部材に接合して冷熱サイクルが負荷された場合でも、純銅板が変形することで発生した熱ひずみを解放することが可能となる。
 なお、純銅板のビッカース硬度は140HV以下であることがより好ましく、130HV以下であることがさらに好ましく、120HV以下であることが最も好ましい。純銅板のビッカース硬度の下限は、特に制限はないが、硬度が低すぎる場合、製造時に変形しやすく、ハンドリングが難しくなるため、30HV以上であることが好ましく、45HV以上であることがより好ましく、55HV以上であることが最も好ましい。
 次に、このような構成とされた本実施形態である純銅板の製造方法について、図1に示すフロー図を参照して説明する。
(溶解・鋳造工程S01)
 まず、銅原料を溶解し、銅溶湯を製出する。なお、銅原料としては、例えば、純度が99.99mass%以上の4NCu、純度が99.999mass%以上の5NCuを用いることが好ましい。
 なお、Sを添加する場合には、S単体やCu-S母合金等を用いることができる。なお、Cu-S母合金を製造する際にも、純度が99.99mass%以上の4NCu、純度が99.999mass%以上の5NCuを用いることが好ましい。
 また、溶解工程では、水素濃度低減のため、HOの蒸気圧が低い不活性ガス雰囲気(例えばArガス)による雰囲気溶解を行い、溶解時の保持時間は最小限に留めることが好ましい。
 そして、成分調整された銅溶湯を鋳型に注入して鋳塊を製出する。なお、量産を考慮した場合には、連続鋳造法または半連続鋳造法を用いることが好ましい。
(熱処理工程S02)
 得られた鋳塊を切断し、スケールを除去するために表面を研削する。その後、均質化および溶体化のために熱処理を行う。ここで、熱処理条件は特に限定しないが、好ましくは、析出物の生成を抑えるために、熱処理温度を500℃以上900℃以下の範囲内、熱処理温度での保持時間を0.1時間以上100時間以下の範囲内で、非酸化性または還元性雰囲気中で行うのがよい。また、冷却方法は、特に限定しないが、水焼入など冷却速度が200℃/分以上となる方法を選択することが好ましい。
 また、組織の均一化のために、熱処理後に熱間加工を入れてもよい。加工方法は特に限定されないが、最終形態が板や条である場合、圧延を採用する。他には鍛造やプレス、溝圧延を採用してもよい。熱間加工時の温度も特に限定されないが、500℃以上900℃以下の範囲内とすることが好ましい。また、熱間加工の総加工率は50%以上とすることが好ましく、60%以上とすることがさらに好ましく、70%以上であることがより好ましい。
(中間圧延工程S03)
 次に、熱処理工程S02後の銅素材に対して、中間圧延を実施して所定の形状に加工する。なお、この中間圧延工程S03における温度条件は特に限定はないが、-200℃以上200℃以下の範囲で行うことが好ましい。また、この中間圧延工程S03における加工率は、最終形状に近似するように適宜選択されることになるが、生産性を向上させるためには30%以上とすることが好ましい。
(再結晶熱処理工程S04)
 次に、中間圧延工程S03後の銅素材に対して、再結晶を目的とした熱処理を行う。ここで、再結晶粒の粒径は10μm以上であることが望ましい。再結晶粒が微細であると、その後に加圧熱処理した際に、結晶粒の成長、組織の不均一化が促進されてしまうおそれがある。
 再結晶熱処理工程S04の熱処理条件は、特に限定しないが、200℃以上900℃以下の範囲の熱処理温度で、1秒以上10時間以下の範囲で保持することが好ましい。例えば短時間の熱処理では850℃で5秒保持、1時間以上の長時間の熱処理などでは400℃で8時間保持などの条件が挙げられる。
 また、再結晶組織の均一化のために、中間圧延工程S03と再結晶熱処理工程S04を2回以上繰り返して行っても良い。
(調質加工工程S05)
 次に、材料強度を調整するために、再結晶熱処理工程S04後の銅素材に対して調質加工を行ってもよい。なお、材料強度を高くする必要がない場合は、調質加工を行わなくてもよい。
 調質加工の加工率は特に限定しないが、小傾角粒界およびサブグレインバウンダリーの全粒界に対する長さ比率を80%以下とするため、また圧延面の結晶粒のアスペクト比を2.0以下とするため、さらにビッカース硬度を150HV以下とするためには加工率を0%超え50%以下の範囲内で実施することが好ましく、0%超え40%以下にとすることがより好ましい。
 また、必要に応じて、残留ひずみの除去のために、調質加工後にさらに熱処理を行ってもよい。最終の厚みは特に限定しないが、例えば0.5mm以上5mm以下の範囲内の厚みとすることが好適である。
 以上の各工程により、本実施形態である純銅板が製出されることになる。
 以上のような構成とされた本実施形態である純銅板によれば、Cuの含有量が99.96mass%以上とされ、Pの含有量が0.01massppm以上3.00massppm以下とされ、Pb,Se及びTeの合計含有量が10.0massppm以下とされ、Ag及びFeの合計含有量が3.0massppm以上とされ、残部が不可避不純物とした組成を有しているので、Ag及びFeが銅の母相中に固溶することによって、結晶粒の粗大化を抑制することが可能となる。また、Pb,Se及びTeといった元素は、Cu中の固溶限が低く、粒界に偏析することによって結晶粒の粗大化を抑制する結晶粒成長抑制元素に該当するため、微量に含まれていてもよいが、これらの元素は、熱間加工性を大きく低下させる効果も有する。このため、これらPb,Se及びTeの合計含有量を10.0massppm以下に制限することにより、熱間加工性を確保することができる。
 また、Pの含有量を3.00massppm以下に制限することにより、熱間加工性を確保することができる。
 また、圧延面における結晶粒の平均結晶粒径が10μm以上であるとともに、圧延面における結晶粒のアスペクト比が2以下とされているので、加圧熱処理前の状態で、粒径が比較的大きく、かつ、残留ひずみが少ないため、加圧熱処理時における再結晶の駆動力が小さく、粒成長を抑制することが可能となる。
 そして、小傾角粒界およびサブグレインバウンダリーの全粒界に対する長さ比率がPartition fractionで80%以下とされているので、転位密度が比較的低く、蓄積されたひずみエネルギーが少ないため、加圧熱処理時における再結晶の駆動力が小さく、粒成長を抑制することが可能となる。
 また、本実施形態において、Sの含有量を2.0massppm以上20.0massppm以下の範囲内とした場合には、結晶粒成長抑制元素の一種であるSが粒界に偏析し、加圧熱処理後における結晶粒の粗大化及び不均一化を確実に抑制することが可能となる。また、熱間加工性を確保することができる。
 さらに、本実施形態において、Mg,Sr,Ba,Ti,Zr,Hf,Y(A元素群)の合計含有量が10.0massppm以下である場合には、これらA元素群の元素と結晶粒成長抑制元素であるS,Pb, Se,Te等とが反応して化合物が生成されることを抑制でき、結晶粒成長抑制元素の作用を十分に奏功せしめることが可能となる。よって、加圧熱処理後における結晶粒の粗大化及び不均一化を確実に抑制することが可能となる。
 さらに、本実施形態において、加圧圧力を0.6MPa、加熱温度を850℃、加熱温度での保持時間を90分の条件での加圧熱処理後を実施した後の最大結晶粒径dmaxと平均結晶粒径daveの比率dmax/daveが20.0以下とされている場合には、加圧熱処理後においても結晶粒が不均一になることを確実に抑制でき、外観不良の発生をさらに抑制することができる。
 また、本実施形態において、ビッカース硬度が150HV以下である場合には、十分に軟らかく、純銅板としての特性が確保されているので、大電流用途の電気・電子部品の素材として特に適している。
 さらに、本実施形態において、Al,Cr,Sn,Be,Cd,Mg,Ni(M元素群)を2.0massppmを超えて含有する場合には、M元素銅群の元素の母相中への固溶や粒界への偏析、さらには酸化物の形成により、さらに確実に、加圧熱処理後の粒成長を抑制することが可能となる。
 以上、本発明の実施形態である純銅板について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 例えば、上述の実施形態では、純銅板の製造方法の一例について説明したが、純銅板の製造方法は、実施形態に記載したものに限定されることはなく、既存の製造方法を適宜選択して製造してもよい。
 以下に、本発明の効果を確認すべく行った確認実験の結果について説明する。
 純度が99.999mass%以上の銅原料と、上記銅原料と純度99mass%以上の各種元素を用いて作成した各種元素のCu-1mass%母合金を準備した。
 上述の銅原料を高純度グラファイト坩堝内に装入して、Arガス雰囲気とされた雰囲気炉内において高周波溶解した。得られた銅溶湯に、上述の各種元素のCu-1mass%母合金を投入し、所定の成分組成に調製した。
 得られた銅溶湯を鋳型に注湯して、鋳塊を製出した。なお、鋳塊の大きさは、厚さ約60mm×幅約120mm×長さ約150~200mmとした。
 得られた鋳塊に対して、Arガス雰囲気中において、表1,2に記載の温度条件で1時間の加熱を行い、熱間圧延を実施し、厚さ30mmとした。
 熱間圧延後の銅素材を切断するとともに表面の酸化被膜を除去するために表面研削を実施した。このとき、その後の熱間圧延、中間圧延、調質圧延の圧延率を考慮して、最終厚さが表1,2に示すものとなるように、中間圧延に供する銅素材の厚さを調整した。
 上述のように厚さを調整した銅素材に対して、表1,2に記載された条件で中間圧延を行い、水冷を行った。
 次に、中間圧延後の銅素材に対して、表1,2に記載された条件により、再結晶熱処理を実施した。
 そして、再結晶熱処理後の銅素材に対して、表1,2に記載された条件で中間圧延を行い、表1,2に示す厚さで幅60mmの特性評価用条材を製造した。
 そして、以下の項目について評価を実施した。
(組成分析)
 得られた鋳塊から測定試料を採取し、Sは赤外線吸収法で、その他の元素はグロー放電質量分析装置(GD-MS)を用いて測定した。なお、測定は試料中央部と幅方向端部の二カ所で測定を行い、含有量の多い方をそのサンプルの含有量とした。測定結果を表1,2に示す。
(加工性評価)
 加工性の評価として、前述の熱間圧延、冷間圧延時における耳割れの有無を観察した。目視で耳割れが全くあるいはほとんど認められなかったものを「A」、長さ1mm未満の小さな耳割れが発生したものを「B」、長さ1mm以上の大きな耳割れが発生したものを「C」とした。
 なお、耳割れの長さとは、圧延材の幅方向端部から幅方向中央部に向かう耳割れの長さのことである。
(ビッカース硬さ)
 JIS Z 2244に規定されているマイクロビッカース硬さ試験方法に準拠し、試験荷重0.98Nでビッカース硬さを測定した。なお、測定位置は、特性評価用試験片の圧延面とした。評価結果を表3,4に示す。
(導電率)
 特性評価用条材から幅10mm×長さ60mmの試験片を採取し、4端子法によって電気抵抗を求めた。また、マイクロメータを用いて試験片の寸法測定を行い、試験片の体積を算出した。そして、測定した電気抵抗値と体積とから、導電率を算出した。評価結果を表3,4に示す。
 なお、試験片は、その長手方向が特性評価用条材の圧延方向に対して平行になるように採取した。
(加圧熱処理前の結晶粒径)
 得られた特性評価用条材から20mm×20mmのサンプルを切り出し、SEM-EBSD(Electron Backscatter Diffraction Patterns)測定装置(FEI社製Quanta FEG 450,EDAX/TSL社製(現 AMETEK社) OIM Data Collection)によって、平均結晶粒径を測定した。
 圧延面を耐水研磨紙、ダイヤモンド砥粒を用いて機械研磨を行った後、コロイダルシリカ溶液を用いて仕上げ研磨を行った。その後、走査型電子顕微鏡を用いて、試料表面の測定範囲内の個々の測定点(ピクセル)に電子線を照射し、後方散乱電子線回折による方位解析により、隣接する測定点間の方位差が15°以上となる測定点間を大角粒界とし、15°未満を小角粒界とした。大角粒界を用いて、結晶粒界マップを作成し、JIS H 0501の切断法に準拠し、結晶粒界マップに対して、縦、横の所定長さの線分を5本ずつ引き、完全に切られる結晶粒数を数え、その切断長さの平均値を加圧熱処理前の結晶粒径として記載した。評価結果を表3,4に示す。
(結晶粒のアスペクト比)
 圧延面における結晶粒のアスペクト比は、上述の特性評価用条材の圧延面を、上記と同様にSEM-EBSD測定装置を用いて、結晶粒界マップを作製した。そのマップに対して、板幅方向に5本、圧延方向に5本の線分を引き、完全に切られる結晶粒数を数えた。その圧延方向から得られた結晶粒径を長径、板幅方向から得られた結晶粒径を短径とすることで、長径と短径の長さの比であるアスペクト比の平均値を算出した。なお、ここでのアスペクト比の値は長径を短径で割った値、つまり長径/短径で表す。評価結果を表3,4に示す。
(小傾角粒界およびサブグレインバウンダリー)
 EBSD測定装置と、解析ソフト(EDAX/TSL社製(現 AMETEK社)OIM Data Analysis ver.7.3.1)によって、電子線の加速電圧15kV、測定間隔5μmステップで1mm以上の測定面積で、CI値が0.1以下である測定点を除いて、各結晶粒の方位差の解析を行い、隣接する測定点間の方位差が2°以上15°以下となる測定点間を小傾角粒界およびサブグレインバウンダリーとして、その長さをLLB、15°を超える測定点間を大傾角粒界として、その長さをLHBとすることで、全粒界における小傾角粒界およびサブグレインバウンダリー長さ比率LLB/(LLB+LHB)を求めた。評価結果を表3,4に示す。
(加圧熱処理後の平均結晶粒径)
 上述の特性評価用条材から50mm×50mmのサンプルを切り出し、2枚のセラミックス基板(材質:Si、50mm×50mm×厚さ1mm)に上述のサンプル(純銅板)を挟みこみ、加圧圧力0.6MPaの荷重をかけた状態で熱処理を行った。熱処理は850℃の炉にセラミックス基板ごと投入し、材温が850℃になったことを熱電対にて確認してから90分保持し、加熱が終わった後に常温になるまで炉冷を行った。常温まで温度が低下した後に、純銅板の圧延面について平均結晶粒径を測定するために、まず、圧延面を耐水研磨紙、ダイヤモンド砥粒を用いて機械研磨を行った後、コロイダルシリカ溶液を用いて仕上げ研磨を行った。その後、エッチングを行い、JIS H 0501の切断法に準拠し、縦、横の所定長さの線分を5本ずつ引き、完全に切られる結晶粒数を数え、その切断長さの平均値を平均結晶粒径とした。評価結果を表3,4に示す。
(加圧熱処理後の粒径のばらつき)
 上述のように、加圧熱処理を施した試験片から採取したサンプルについて、50mm×50mmの範囲内において双晶を除き、最も結晶粒が粗大な結晶粒の長径とそれに垂直に線を引いた時に粒界によって切断される短径の平均値を最大結晶粒径dmaxとし、この最大結晶粒径と上述の平均結晶粒径daveとの比dmax/daveが15.0以下を「〇」と評価し、dmax/daveが15.0を超え20.0以下の場合を「△」と評価し、dmax/daveが20.0を超えた場合を「×」と評価した。評価結果を表3,4に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 比較例1は、Pの含有量が148massppmと本発明の範囲よりも多く、加工性が劣化した。また、加圧熱処理後に平均結晶粒径が500μm以上に粗大化し、粒径のばらつきも大きくなった。
 比較例2は、Ag及びFeの合計含有量が0.1massppmと本発明の範囲よりも少なく、加圧熱処理後に結晶粒が粗大化し、粒径のばらつきも大きくなった。
 比較例3は、小傾角粒界およびサブグレインバウンダリーの比率が86%と本発明の範囲よりも大きく、アスペクト比も2.4と本発明の範囲よりも大きいため、加圧熱処理後に結晶粒が粗大化し、粒径のばらつきも大きくなった。
 比較例4は、Pb,Se及びTeの合計含有量が260massppmと本発明の範囲よりも多く、熱間圧延時に大きな割れが発生したため、評価を中止した。
 比較例5は圧延面における結晶粒の平均結晶粒径が8μmと本発明の範囲よりも小さく、加圧熱処理後に結晶粒が粗大化し、粒径のばらつきも大きくなった。
 これに対して、本発明例1-30においては、加圧熱処理後の平均結晶粒径が小さく、かつ、粒径のばらつきの小さくなった。
 以上のことから、本発明例によれば、熱間加工性に優れ、かつ、加圧熱処理後においても、結晶粒の粗大化及び不均一化を抑制することができる純銅板を提供可能であることが確認された。

Claims (5)

  1.  Cuの含有量が99.96mass%以上とされ、Pの含有量が0.01massppm以上3.00massppm以下とされ、Pb,Se及びTeの合計含有量が10.0massppm以下とされ、Ag及びFeの合計含有量が3.0massppm以上とされ、残部が不可避不純物とした組成を有し、
     圧延面における結晶粒の平均結晶粒径が10μm以上であるとともに、圧延面における結晶粒のアスペクト比が2.0以下とされており、
     EBSD法により1000μm以上の測定面積を測定間隔0.5μmステップで測定して、データ解析ソフトOIMにより解析されたCI値が0.1以下である測定点を除いて解析したとき、隣接する測定間の方位差が15°を超える測定点間を大傾角粒界とし、前記方位差が2°以上15°以下となる測定点間を小傾角粒界およびサブグレインバウンダリーとしたとき、前記小傾角粒界および前記サブグレインバウンダリーの全粒界に対する長さ比率がPartition fractionで80%以下とされていることを特徴とする純銅板。
  2.  Sの含有量が2.0massppm以上20.0massppm以下の範囲内とされていることを特徴とする請求項1に記載の純銅板。
  3.  Mg,Sr,Ba,Ti,Zr,Hf,Yの合計含有量が10.0massppm以下であることを特徴とする請求項1又は請求項2に記載の純銅板。
  4.  加圧圧力を0.6MPa、加熱温度を850℃、加熱温度での保持時間を90分の条件での加圧熱処理を実施した後の、50mm×50mmの範囲における最大結晶粒径dmaxと平均結晶粒径daveの比率dmax/daveが20.0以下であることを特徴とする請求項1から請求項3のいずれか一項に記載の純銅板。
  5.  ビッカース硬度が150HV以下であることを特徴とする請求項1から請求項4のいずれか一項に記載の純銅板。
PCT/JP2021/008963 2020-03-06 2021-03-08 純銅板 WO2021177470A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021540098A JP7020595B2 (ja) 2020-03-06 2021-03-08 純銅板
EP21765508.3A EP4116451A4 (en) 2020-03-06 2021-03-08 PURE COPPER PLATE
US17/909,720 US20240124954A1 (en) 2020-03-06 2021-03-08 Pure copper plate
KR1020227029842A KR20220146483A (ko) 2020-03-06 2021-03-08 순구리판
CN202180018743.XA CN115244197B (zh) 2020-03-06 2021-03-08 纯铜板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020038771 2020-03-06
JP2020-038771 2020-03-06

Publications (1)

Publication Number Publication Date
WO2021177470A1 true WO2021177470A1 (ja) 2021-09-10

Family

ID=77614083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008963 WO2021177470A1 (ja) 2020-03-06 2021-03-08 純銅板

Country Status (7)

Country Link
US (1) US20240124954A1 (ja)
EP (1) EP4116451A4 (ja)
JP (1) JP7020595B2 (ja)
KR (1) KR20220146483A (ja)
CN (1) CN115244197B (ja)
TW (1) TW202202635A (ja)
WO (1) WO2021177470A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024024898A1 (ja) * 2022-07-29 2024-02-01 三菱マテリアル株式会社 純銅材、絶縁基板、電子デバイス
WO2024024909A1 (ja) * 2022-07-29 2024-02-01 三菱マテリアル株式会社 純銅材、絶縁基板、電子デバイス
WO2024024899A1 (ja) * 2022-07-29 2024-02-01 三菱マテリアル株式会社 純銅材、絶縁基板、電子デバイス
JP7444324B2 (ja) 2022-07-29 2024-03-06 三菱マテリアル株式会社 純銅材、絶縁基板、電子デバイス
JP7444323B2 (ja) 2022-07-29 2024-03-06 三菱マテリアル株式会社 純銅材、絶縁基板、電子デバイス
JP7473066B2 (ja) 2022-07-29 2024-04-23 三菱マテリアル株式会社 純銅材、絶縁基板、電子デバイス

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102572477B1 (ko) * 2023-04-06 2023-08-29 엘에스전선 주식회사 유연성이 우수한 무산소동 또는 무산소동 합금 로드

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62282797A (ja) * 1986-05-29 1987-12-08 Dowa Mining Co Ltd セラミツクス−銅直接接合用銅材
JPH062058A (ja) 1992-06-23 1994-01-11 Furukawa Electric Co Ltd:The 結晶粒成長抑制無酸素銅
JP2000212660A (ja) * 1999-01-18 2000-08-02 Nippon Mining & Metals Co Ltd フレキシブルプリント回路基板用圧延銅箔およびその製造方法
JP2014111805A (ja) * 2012-12-05 2014-06-19 Mitsubishi Materials Corp 電子・電気機器用銅合金、電子・電気機器用銅合金塑性加工材、電子・電気機器用部品及び端子
JP2016125093A (ja) * 2014-12-26 2016-07-11 三菱マテリアル株式会社 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用部品、端子及びバスバー
JP2017043790A (ja) * 2015-08-24 2017-03-02 三菱マテリアル株式会社 高純度銅スパッタリングターゲット材
JP2020038771A (ja) 2018-09-03 2020-03-12 トヨタ自動車株式会社 固体電池用正極活物質層

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4869415B2 (ja) * 2010-02-09 2012-02-08 三菱伸銅株式会社 純銅板の製造方法及び純銅板
JP5752736B2 (ja) * 2013-04-08 2015-07-22 三菱マテリアル株式会社 スパッタリング用ターゲット

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62282797A (ja) * 1986-05-29 1987-12-08 Dowa Mining Co Ltd セラミツクス−銅直接接合用銅材
JPH062058A (ja) 1992-06-23 1994-01-11 Furukawa Electric Co Ltd:The 結晶粒成長抑制無酸素銅
JP2000212660A (ja) * 1999-01-18 2000-08-02 Nippon Mining & Metals Co Ltd フレキシブルプリント回路基板用圧延銅箔およびその製造方法
JP2014111805A (ja) * 2012-12-05 2014-06-19 Mitsubishi Materials Corp 電子・電気機器用銅合金、電子・電気機器用銅合金塑性加工材、電子・電気機器用部品及び端子
JP2016125093A (ja) * 2014-12-26 2016-07-11 三菱マテリアル株式会社 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用部品、端子及びバスバー
JP2017043790A (ja) * 2015-08-24 2017-03-02 三菱マテリアル株式会社 高純度銅スパッタリングターゲット材
JP2020038771A (ja) 2018-09-03 2020-03-12 トヨタ自動車株式会社 固体電池用正極活物質層

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4116451A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024024898A1 (ja) * 2022-07-29 2024-02-01 三菱マテリアル株式会社 純銅材、絶縁基板、電子デバイス
WO2024024909A1 (ja) * 2022-07-29 2024-02-01 三菱マテリアル株式会社 純銅材、絶縁基板、電子デバイス
WO2024024899A1 (ja) * 2022-07-29 2024-02-01 三菱マテリアル株式会社 純銅材、絶縁基板、電子デバイス
JP7444324B2 (ja) 2022-07-29 2024-03-06 三菱マテリアル株式会社 純銅材、絶縁基板、電子デバイス
JP7444323B2 (ja) 2022-07-29 2024-03-06 三菱マテリアル株式会社 純銅材、絶縁基板、電子デバイス
JP7473066B2 (ja) 2022-07-29 2024-04-23 三菱マテリアル株式会社 純銅材、絶縁基板、電子デバイス

Also Published As

Publication number Publication date
JPWO2021177470A1 (ja) 2021-09-10
CN115244197B (zh) 2023-10-17
EP4116451A4 (en) 2024-03-27
EP4116451A1 (en) 2023-01-11
KR20220146483A (ko) 2022-11-01
TW202202635A (zh) 2022-01-16
JP7020595B2 (ja) 2022-02-16
CN115244197A (zh) 2022-10-25
US20240124954A1 (en) 2024-04-18

Similar Documents

Publication Publication Date Title
WO2021177470A1 (ja) 純銅板
JP7380550B2 (ja) 純銅板
WO2021177469A1 (ja) 純銅板
JP6973680B2 (ja) 純銅板
JP6984799B1 (ja) 純銅板、銅/セラミックス接合体、絶縁回路基板
WO2021177461A1 (ja) 純銅板、銅/セラミックス接合体、絶縁回路基板
WO2021107096A1 (ja) 銅合金、銅合金塑性加工材、電子・電気機器用部品、端子、バスバー、放熱基板
JP6981587B2 (ja) 銅合金、銅合金塑性加工材、電子・電気機器用部品、端子、バスバー、放熱基板
WO2022004791A1 (ja) 銅合金、銅合金塑性加工材、電子・電気機器用部品、端子、バスバー、リードフレーム、放熱基板
JP2022072355A (ja) 銅合金、銅合金塑性加工材、電子・電気機器用部品、端子、バスバー、リードフレーム、放熱基板
JP7078091B2 (ja) 銅合金、銅合金塑性加工材、電子・電気機器用部品、端子、バスバー、リードフレーム、放熱基板
WO2022004794A1 (ja) 銅合金、銅合金塑性加工材、電子・電気機器用部品、端子、放熱基板
WO2023127851A1 (ja) 銅合金異形条材、電子・電気機器用部品、端子、バスバー、リードフレーム、放熱基板
WO2022004779A1 (ja) 銅合金、銅合金塑性加工材、電子・電気機器用部品、端子、バスバー、リードフレーム、放熱基板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021540098

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21765508

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 17909720

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2021765508

Country of ref document: EP

Effective date: 20221006

NENP Non-entry into the national phase

Ref country code: DE