WO2021161846A1 - 脂肪族芳香族ポリエステルの製造方法 - Google Patents

脂肪族芳香族ポリエステルの製造方法 Download PDF

Info

Publication number
WO2021161846A1
WO2021161846A1 PCT/JP2021/003687 JP2021003687W WO2021161846A1 WO 2021161846 A1 WO2021161846 A1 WO 2021161846A1 JP 2021003687 W JP2021003687 W JP 2021003687W WO 2021161846 A1 WO2021161846 A1 WO 2021161846A1
Authority
WO
WIPO (PCT)
Prior art keywords
aliphatic
aromatic polyester
polyester
reaction
dicarboxylic acid
Prior art date
Application number
PCT/JP2021/003687
Other languages
English (en)
French (fr)
Inventor
豊 矢次
俊資 田中
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to JP2022500333A priority Critical patent/JPWO2021161846A1/ja
Priority to CN202180009010.XA priority patent/CN114929779A/zh
Priority to EP21754600.1A priority patent/EP4105258A4/en
Publication of WO2021161846A1 publication Critical patent/WO2021161846A1/ja
Priority to US17/868,319 priority patent/US20220356301A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Definitions

  • the present invention relates to a method for producing an aliphatic aromatic polyester containing an aliphatic diol component, an aliphatic dicarboxylic acid component and an aromatic dicarboxylic acid component as main raw materials.
  • plastic is used in a wide range of applications as a molded product such as a bag or a container because it is excellent in strength, water resistance, moldability, transparency, cost and the like.
  • plastics widely used for bags and containers include polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyethylene terephthalate, and the like.
  • the molded product made of the above plastic does not biodegrade or hydrolyze in the natural environment, or the decomposition rate is extremely slow, so that it remains in the soil or is dumped when it is buried after use. If it is done, it may spoil the landscape. Further, even when the incinerator is incinerated, there are problems such as generation of harmful gas and damage to the incinerator.
  • Biodegradable resins are attracting attention as environmentally friendly plastics that solve these problems.
  • a film formed by molding a biodegradable resin is decomposed in the soil by burying it in the soil after use, so that it is possible to prevent global warming and prevent pollution of the soil and air. Therefore, in recent years, biodegradable resin films are often used for garbage bags, shopping bags, and the like.
  • Aliphatic aromatic polyesters such as PBST are produced through an esterification step and a polycondensation step like other polyesters.
  • Patent Document 1 includes at least an aliphatic dicarboxylic acid unit, an aromatic dicarboxylic acid unit, an aliphatic and / or alicyclic diol unit, and a structural unit having a specific amount of a trifunctional or higher functional ester-forming group. Aliphatic aromatic polyesters are disclosed.
  • succinic acid as a raw material aliphatic dicarboxylic acid
  • terephthalic acid as an aromatic dicarboxylic acid
  • 1,4-butanediol as an aliphatic diol
  • malic acid as a trifunctional or higher functional oxycarboxylic acid.
  • Polybutylene succinate terephthalate (PBST) is produced through an esterification step and a polycondensation step using a titanium compound such as titanium tetrabutyrate and an alkaline earth metal such as magnesium acetate as a catalyst.
  • the aliphatic diol component of the raw material and the aliphatic dicarboxylic acid component and the aromatic dicarboxylic acid component are continuously reacted in the presence of a catalyst.
  • This is a method of granulating (pelletizing) a high-temperature molten polymer continuously obtained from the reaction system while cooling it through a polycondensation reaction step of supplying it to the system and subjecting it to an esterification and / or transesterification reaction. ..
  • the present invention improves the conventional crystallization deficiency in producing an aliphatic aromatic polyester such as PBST by a polycondensation reaction through an esterification and / or transesterification reaction in order to solve the above-mentioned problems of the prior art. It is an object of the present invention to provide a method for producing an aliphatic aromatic polyester having a high degree of crystallization.
  • the present inventors In producing an aliphatic aromatic polyester such as PBST by a polycondensation reaction through an esterification and / or transesterification reaction, the present inventors have insufficient crystallization by allowing a specific nucleating agent to exist in the reaction system. It was found that the above-mentioned problems can be solved by improving the above-mentioned problems, and the present invention has been completed.
  • the gist of the present invention lies in the following [1] to [9].
  • Aliphatic aromatic polyester by subjecting an aliphatic diol component, an aliphatic dicarboxylic acid component, and an aromatic dicarboxylic acid component as raw materials to a polycondensation reaction through an esterification and / or transesterification reaction in the presence of a catalyst.
  • a method for producing an aliphatic aromatic polyester which comprises the presence of a nuclear agent satisfying the condition of the following formula (1) in the reaction system at the time of production. 0 ° C ⁇ Tm 1- Tm 2 ⁇ 100 ° C ... (1) (In the above formula (1), Tm 1 : melting point of nucleating agent (° C.), Tm 2 : melting point of aliphatic aromatic polyester (° C.))
  • an aliphatic aromatic polyester such as PBST
  • crystallization is insufficient due to the presence of a specific nucleating agent in the reaction system. It is possible to produce an aliphatic aromatic polyester which is industrially advantageous and does not have problems such as blocking and fusion between films as in the case of resin pellets. Further, it is expected that a high quality molded product will be provided by using this aliphatic aromatic polyester.
  • mass% “mass ppm” and “parts by mass” and “weight%”, “weight ppm” and “parts by weight” are synonymous with each other.
  • an aliphatic diol component, an aliphatic dicarboxylic acid component and an aromatic dicarboxylic acid component are esterified and / or transesterified in the presence of a catalyst as raw materials to undergo polycondensation.
  • a nuclear agent satisfying the condition of the following formula (1) is present in the reaction system. 0 ° C ⁇ Tm 1- Tm 2 ⁇ 100 ° C ... (1) (In the above formula (1), Tm 1 : melting point of nucleating agent (° C.), Tm 2 : melting point of aliphatic aromatic polyester (° C.))
  • aliphatic dicarboxylic acid component is a general term for aliphatic dicarboxylic acids that are raw materials for polyesters, such as aliphatic dicarboxylic acids and aliphatic dicarboxylic acid derivatives such as aliphatic dicarboxylic acid alkyl esters.
  • aromatic dicarboxylic acid component is a general term for aromatic dicarboxylic acids that are raw materials for polyesters, such as aromatic dicarboxylic acids and aromatic dicarboxylic acid derivatives such as aromatic dicarboxylic acid alkyl esters.
  • aromatic dicarboxylic acid is a broadly defined “aromatic dicarboxylic acid” including the “complex aromatic dicarboxylic acid”.
  • the aliphatic aromatic polyester produced by the method for producing an aliphatic aromatic polyester of the present invention may be referred to as "the aliphatic aromatic polyester of the present invention”.
  • the aliphatic aromatic polyester may be simply referred to as "polyester”.
  • an esterification and / or transesterification reaction step in which at least an aliphatic diol component, an aliphatic dicarboxylic acid component and an aromatic dicarboxylic acid component are reacted in the presence of a catalyst as main raw materials, and subsequent polycondensation. It has a reaction step.
  • the main raw material is an aliphatic diol component, an aliphatic dicarboxylic acid component, and an aromatic dicarboxylic acid component
  • the diol component used as a raw material is mainly composed of an aliphatic diol component, and the raw material. It means that the dicarboxylic acid component used as the main component is an aliphatic dicarboxylic acid component and an aromatic dicarboxylic acid component.
  • the total amount of the aliphatic diol components is preferably 50 mol% or more, more preferably 60 mol% or more, and further, with respect to the total of the raw material diol components. It is preferably 70 mol% or more, particularly preferably 90 to 100 mol%.
  • the total of the aliphatic dicarboxylic acid component and the aromatic dicarboxylic acid component is preferably 50 mol% or more with respect to the total of the raw material carboxylic acid components, more preferably. It is preferably 60 mol% or more, more preferably 70 mol% or more, and particularly preferably 90 to 100 mol%.
  • each reaction step in producing polyester can be carried out by either a batch method or a continuous method. From the viewpoint of quality stabilization and energy efficiency, the so-called continuous method of continuously supplying raw materials and continuously obtaining polyester is preferable.
  • the nucleating agent used in the method for producing an aliphatic aromatic polyester of the present invention is the difference between the melting point of the produced aliphatic aromatic polyester (Tm 2 (° C.)) and the melting point of the nucleating agent (Tm 1 (° C.)). It is characterized in that Tm 1 ⁇ Tm 2 ) is in the range of 0 to 100 ° C.
  • the method for measuring the melting point Tm 1 of the nucleating agent is not particularly limited, and is measured by, for example, a visual method (JIS K6220) or a thermal analysis method using DCS or DTA. If it is a commercially available product, the catalog value can be adopted.
  • the method for measuring the melting point (Tm 2 ) of the aliphatic aromatic polyester is also not particularly limited, and for example, it is measured by the method described in the section of Examples described later.
  • the suitable melting point of the aliphatic aromatic polyester of the present invention will be described later.
  • the difference (Tm 1 ⁇ Tm 2 ) between the melting point (Tm 2 (° C.)) of the aliphatic aromatic polyester and the melting point (Tm 1 (° C.)) of the nucleating agent is 100 ° C. or less, but is preferable. It is 50 ° C. or lower, more preferably 40 ° C. or lower, still more preferably 20 ° C. or lower, and most preferably 15 ° C. or lower.
  • Tm 1 to Tm 2 is 0 ° C. or higher, preferably 1 ° C. or higher, more preferably 3 because the nucleating agent needs to solidify faster than the aliphatic aromatic polyester in order to act as crystal nuclei. It is above °C.
  • the type of nuclear agent is not particularly limited as long as it satisfies the above conditions.
  • a hydrocarbon-based nucleating agent such as polyethylene wax or polypropylene wax, an aliphatic amide-based nucleating agent, a phosphoric acid ester metal salt-based nucleating agent, or the like can be used.
  • a hydrocarbon-based nucleating agent is preferable, polyethylene wax and polypropylene wax are more preferable, and polyethylene wax is further preferable.
  • Polyethylene wax and polypropylene wax having various melting points depending on the molecular weight, presence / absence of branching, copolymerization component composition, etc. are commercially available, and those satisfying the above melting point conditions should be selected and used from the commercially available products. Can be done.
  • nucleating agent only one type may be used as long as it satisfies the above melting point conditions, or two or more types may be mixed and used.
  • the method for allowing a nucleating agent to be present in the reaction system is not particularly limited.
  • the nucleating agent may be present in the esterification and / or transesterification reaction system or in the polycondensation reaction system.
  • Method of adding the nucleating agent directly to the reaction tank of the conversion and / or transesterification reaction Method of adding to the polycondensation reaction tank; Transporting the high-temperature molten polyester incidentally attached to the polycondensation reaction tank to the next step
  • the amount of the nucleating agent present in the reaction system is preferably 100 to 10,000 wt ppm with respect to the produced aliphatic aromatic polyester.
  • the amount of the nucleating agent is more preferably 200 to 5000 ppm by weight, still more preferably 500 to 3000 ppm by weight.
  • the amount of the nucleating agent is not more than the above upper limit, the amount of the nucleating agent distilled from the reaction system can be suppressed, and it is possible to prevent the load of the entire process from being increased because it cannot be recovered by the distillation or the distillation system in the subsequent stage.
  • the amount of the nucleating agent is at least the above lower limit, the crystallization of the obtained aliphatic aromatic polyester can be sufficiently promoted.
  • ⁇ Glycol component> As the diol component used in the present invention, as described above, as long as at least an aliphatic diol component is used and the total molar ratio thereof is the largest among the raw material diol components, those usually used as a raw material for polyester are not particularly limited. Can be used.
  • Examples of the aliphatic diol component include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, and 1,7.
  • alkylene diol such as neopentyl glycol
  • oxy such as diethylene glycol, polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol
  • cycloalkylene diols such as alkylene diols, 1,2-cyclohexanediols, 1,4-cyclohexanediols, 1,2-cyclohexanedimethanol, and 1,4-cyclohexanedimethanol.
  • alkylene diols having 6 or less carbon atoms such as ethylene glycol, 1,3-propanediol and 1,4-butanediol, or carbons such as 1,4-cyclohexanedimethanol Cycloalkylene diol of number 6 or less is preferable, and 1,4-butanediol is particularly preferable. Two or more of these may be used in combination.
  • the amount of 1,4-butanediol used is the total aliphatic diol from the viewpoint of the melting point (heat resistance), biodegradability, and mechanical properties of the obtained polyester. It is preferably 50 mol% or more, more preferably 70 mol% or more, and particularly preferably 90 to 100 mol% with respect to the components.
  • ⁇ Dicarboxylic acid component As the carboxylic acid component used in the present invention, as described above, at least an aliphatic dicarboxylic acid component and an aromatic dicarboxylic acid component are used, and if the total molar ratio thereof is the largest among the raw material dicarboxylic acid components, it is usually a polyester. Those used as raw materials can be used without particular limitation.
  • the aliphatic dicarboxylic acid component includes, for example, oxalic acid, malonic acid, succinic acid, succinic anhydride, glutaric acid, adipic acid, pimeric acid, suberic acid, azelaic acid, sebacic acid, and undecadicarboxylic acid.
  • examples thereof include aliphatic dicarboxylic acids such as acids, dodecadicarboxylic acids and dimer acids, and hydrides of aromatic dicarboxylic acids such as hexahydrophthalic acid, hexahydroisophthalic acid and hexahydroterephthalic acid.
  • an aliphatic dicarboxylic acid such as succinic acid, succinic anhydride, adipic acid, and sebacic acid or a derivative such as an alkyl ester thereof is preferable.
  • succinic acid is preferable because the effect of improving crystallization by the present invention is remarkable. Two or more of these may be used in combination.
  • succinic acid succinic anhydride, adipic acid and the like derived from biomass (plant raw material).
  • the amount of succinic acid used is 50 mol with respect to the total aliphatic dicarboxylic acid component from the viewpoint of the melting point (heat resistance), biodegradability, and mechanical properties of the obtained polyester. % Or more, more preferably 70 mol% or more, and particularly preferably 90 to 100 mol%.
  • aromatic dicarboxylic acid component examples include derivatives such as terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid, frangialcarboxylic acid, and alkyl esters thereof.
  • terephthalic acid is used. Acids, isophthalic acids, and frangylcarboxylic acids are preferable, and terephthalic acid and frangylcarboxylic acids are particularly preferable. These may be used alone or as a mixture of two or more.
  • the amount of terephthalic acid used is 50 mol% or more with respect to the total aromatic dicarboxylic acid component from the viewpoint of the melting point (heat resistance) and mechanical properties of the obtained polyester. It is preferably 70 mol% or more, and particularly preferably 90 to 100 mol%.
  • Group dicarboxylic acid component: Aromatic dicarboxylic acid component 50: 50 to 60:40 is preferable from the viewpoint of heat resistance, biodegradability, mechanical properties, and moldability of the obtained polyester.
  • the aliphatic aromatic polyester to be produced is provided as long as it is obtained by combining the above-mentioned aliphatic diol component, aliphatic dicarboxylic acid component and aromatic dicarboxylic acid component.
  • aliphatic diol component aliphatic dicarboxylic acid component
  • aromatic dicarboxylic acid component aromatic dicarboxylic acid component.
  • polybutylene succinate terephthalate (PBST) and polybutylene succinate furanoate (PBSF) are preferable.
  • the aliphatic aromatic polyester of the present invention may be copolymerized with other constituent components other than the aliphatic diol component, the aliphatic dicarboxylic acid component, and the aromatic dicarboxylic acid component.
  • the copolymerization component that can be used in this case include lactic acid, glycolic acid, hydroxybutylic acid, hydroxycaproic acid, 2-hydroxy-3,3-dimethylbutylic acid, 2-hydroxy-3-methylbutylic acid, and 2-hydroxyiso.
  • Oxycarboxylic acids such as caproic acid, malic acid, maleic acid, citric acid, fumaric acid, esters and lactones of these oxycarboxylic acids, oxycarboxylic acid polymers, etc., or trifunctionals such as glycerin, trimellitic propane, pentaerythritol, etc. Examples thereof include the above polyvalent alcohols, trifunctional or higher functional polyvalent carboxylic acids such as propanetricarboxylic acid, pyromellitic acid, benzophenonetetracarboxylic acid trimellitic acid, and anhydrides thereof, or anhydrides thereof.
  • a highly viscous polyester can be easily obtained by adding a small amount of a trifunctional or higher functional oxycarboxylic acid, a trifunctional or higher alcohol, or a trifunctional or higher carboxylic acid.
  • oxycarboxylic acids such as malic acid, citric acid and fumaric acid or polyhydric alcohols such as glycerin, trimethylolpropane and pentaerythritol are preferable, and trimethylolpropane is particularly preferably used.
  • the amount used is preferably 0.001 to 5 mol%, more preferably 0.05 to 0.5 mol%, based on the total dicarboxylic acid component. ..
  • the amount of the trifunctional or higher functional compound used is not more than the above upper limit, it is easy to suppress the formation of a gel (unmelted product) in the obtained polyester.
  • the amount of the trifunctional or higher functional compound used is not more than the above lower limit, the advantage of using the polyfunctional compound (usually, the viscosity of the obtained polyester can be increased) can be easily obtained.
  • ⁇ Basic inorganic compound> In the method for producing an aliphatic aromatic polyester of the present invention, it is preferable that the basic inorganic compound is present in the esterification and / or transesterification reaction step. By allowing the basic inorganic compound to be present in the esterification and / or transesterification reaction step, the amount of tetrahydrofuran in the obtained aliphatic aromatic polyester can be reduced, and the terminal acid value can be reduced. ..
  • Examples of the basic inorganic compound to be present include hydroxides of alkali metals such as sodium hydroxide, potassium hydroxide and lithium hydroxide, and sodium hydroxide is preferable. These may be used alone or as a mixture of two or more.
  • the amount of the basic inorganic compound used is preferably 1 to 100 ppm by weight, more preferably 1 to 50 ppm by weight, based on the aliphatic aromatic polyester obtained as the metal atomic weight.
  • the amount of the basic inorganic compound is at least the above lower limit, the above effect of the basic inorganic compound can be sufficiently obtained.
  • the amount of the basic inorganic compound is not more than the above upper limit, it is possible to suppress a decrease in polymerization activity and a problem of foreign matter generation due to a reaction with a dicarboxylic acid component.
  • the basic inorganic compound may be present in the esterification and / or transesterification reaction step, and even if it is added to the esterification and / or transesterification reaction step, it is added in the step prior to the esterification and / or transesterification reaction step. You may.
  • the basic inorganic compound may be supplied to the esterification and / or transesterification reaction tank together with the aliphatic diol component, the aliphatic dicarboxylic acid component, the aromatic dicarboxylic acid component, etc. of the raw material, and may be supplied separately from these raw materials. It may be supplied directly to the reaction vessel.
  • the method for producing an aliphatic aromatic polyester of the present invention will be described below by taking a continuous production method as an example.
  • a method for producing an aliphatic aromatic polyester by a transesterification reaction step using an aliphatic diol, an aliphatic dicarboxylic acid and an aromatic dicarboxylic acid and a subsequent transesterification reaction step will be exemplified. It may be a transesterification reaction step, or it may be a step of performing both an esterification reaction and a transesterification reaction.
  • an aliphatic dicarboxylic acid and an aromatic dicarboxylic acid and an aliphatic diol are continuously pelleted in polyester through an esterification reaction step and a melt polycondensation reaction step using a plurality of continuous reaction tanks.
  • the method is not limited to the continuous method, and a conventionally known method for producing an aliphatic aromatic polyester can be adopted.
  • At least the esterification reaction step of reacting the dicarboxylic acid component and the diol component and the subsequent polycondensation reaction step can be carried out in a plurality of continuous reaction tanks or in a single reaction tank. In order to reduce the fluctuation of the physical properties of the obtained polyester, it is preferable to carry out the reaction in a plurality of continuous reaction tanks.
  • the supply of the nucleating agent and the supply of the basic inorganic compound are omitted, but in the present invention, as described above, the nuclei specific to the esterification and / or transesterification reaction step and the polycondensation reaction step.
  • the agent is supplied and preferably the basic inorganic compound is supplied to the esterification and / or transesterification reaction step.
  • the reaction temperature in the esterification reaction step is not particularly limited as long as the esterification reaction can be carried out, but is preferably 200 ° C. or higher, more preferably 210 ° C. in terms of increasing the reaction rate. That is all.
  • the reaction temperature is preferably 270 ° C. or lower, more preferably 260 ° C. or lower, and particularly preferably 250 ° C. or lower. If the reaction temperature is too low, the esterification reaction rate is slow, the reaction time is required for a long time, and unfavorable reactions such as dehydration decomposition of aliphatic diols increase.
  • the esterification reaction temperature is preferably a constant temperature.
  • the esterification rate is stable when the temperature is constant.
  • the constant temperature is a set temperature of ⁇ 5 ° C, preferably ⁇ 2 ° C.
  • the reaction atmosphere is preferably an inert gas atmosphere such as nitrogen or argon.
  • the reaction pressure is preferably 50 kPa to 200 kPa, more preferably 60 kPa or more, further preferably 70 kPa or more, still more preferably 130 kPa or less, still more preferably 110 kPa or less. If the reaction pressure is less than the above lower limit, scattered matter increases in the reaction vessel, the haze of the reaction product increases, which tends to cause an increase in foreign matter, and the amount of aliphatic diol distilled out of the reaction system increases, resulting in a polycondensation reaction rate. It is easy to cause a decline. When the reaction pressure exceeds the above upper limit, the dehydration decomposition of the aliphatic diol increases, which tends to cause a decrease in the polycondensation reaction rate.
  • the reaction time is preferably 1 hour or more, and the upper limit is preferably 10 hours or less, more preferably 4 hours or less.
  • the reaction molar ratio of the aliphatic diol to the total of the aliphatic dicarboxylic acid and the aromatic dicarboxylic acid undergoing the esterification reaction is the aliphatic dicarboxylic acid and the aromatic dicarboxylic acid present in the gas phase and the reaction liquid phase of the esterification reaction tank.
  • the aliphatic dicarboxylic acid which represents the molar ratio of the aliphatic diol and the esterified aliphatic diol to the esterified aliphatic dicarboxylic acid and the aromatic dicarboxylic acid, and which is decomposed in the reaction system and does not contribute to the esterification reaction.
  • the lower limit of the reaction molar ratio is usually 1.10 or more, preferably 1.12 or more, more preferably 1.15 or more, and particularly preferably 1.20 or more.
  • the upper limit of the reaction molar ratio is usually 3.00 or less, preferably 2.50 or less, more preferably 2.30 or less, and particularly preferably 2.00 or less.
  • reaction molar ratio is less than the above lower limit, the esterification reaction tends to be insufficient, the polycondensation reaction, which is a reaction in the subsequent step, does not proceed easily, and it is difficult to obtain a polyester having a high degree of polymerization.
  • the reaction molar ratio exceeds the above upper limit, the amount of decomposition of the aliphatic diol, the aliphatic dicarboxylic acid, and the aromatic dicarboxylic acid tends to increase. In order to keep this reaction molar ratio in a preferable range, it is a preferable method to appropriately supplement the esterification reaction system with an aliphatic diol.
  • a polycondensation reaction is carried out in a polycondensation reaction step following the esterification reaction step.
  • the polycondensation reaction can be carried out under reduced pressure using a plurality of continuous reaction tanks.
  • the reaction pressure of the final polycondensation reaction tank in the polycondensation reaction step is usually 0.01 kPa or more, preferably 0.03 kPa or more, and the upper limit is usually 1.4 kPa or less, preferably 0.4 kPa or less. If the pressure during the polycondensation reaction is too high, the polycondensation time becomes long, which causes a decrease in molecular weight and coloring due to thermal decomposition of the polyester, which tends to make it difficult to produce a polyester exhibiting practically sufficient properties.
  • the method of manufacturing using an ultra-high vacuum polycondensation facility having a reaction pressure of less than 0.01 kPa is a preferable embodiment from the viewpoint of improving the polycondensation reaction rate, but it requires an extremely high capital investment. , Economically disadvantageous.
  • the lower limit of the reaction temperature is usually 215 ° C., preferably 220 ° C.
  • the upper limit is usually in the range of 270 ° C., preferably 260 ° C. If the reaction temperature is less than the above lower limit, the polycondensation reaction rate is slow, it takes a long time to produce a polyester having a high degree of polymerization, and a high-power stirrer is also required, which is economically disadvantageous. .. If the reaction temperature exceeds the above upper limit, thermal decomposition of the polyester during production is likely to occur, and production of a polyester having a high degree of polymerization tends to be difficult.
  • the lower limit of the reaction time is usually 1 hour, and the upper limit is usually 15 hours, preferably 10 hours, more preferably 8 hours. If the reaction time is too short, the reaction is insufficient and it is difficult to obtain a polyester having a high degree of polymerization, and the mechanical properties of the molded product tend to be inferior. If the reaction time is too long, the molecular weight of the polyester will be significantly reduced due to thermal decomposition, and the mechanical properties of the molded product will tend to be inferior. May be done.
  • Polyester with desired intrinsic viscosity can be obtained by controlling the polycondensation reaction temperature, time and reaction pressure.
  • reaction catalyst for the esterification reaction and the polycondensation reaction.
  • adding the catalyst to the gas phase portion of the reaction vessel may increase the haze of the polyester obtained, and the catalyst may become a foreign substance. Therefore, it is preferable to add the catalyst to the reaction solution.
  • the polycondensation reaction catalyst may be added at any stage between the esterification reaction step and the polycondensation reaction step.
  • the polycondensation reaction catalyst may be added in a plurality of times between the esterification reaction step and the polycondensation reaction step.
  • a compound containing at least one of the metal elements of Groups 1 to 14 of the periodic table is generally used.
  • metal elements include scandium, yttrium, samarium, titanium, zirconium, vanadium, chromium, molybdenum, tungsten, tin, antimony, cerium, germanium, zinc, cobalt, manganese, iron, aluminum, magnesium, and calcium.
  • strontium, sodium and potassium scandium, yttrium, titanium, zirconium, vanadium, molybdenum, tungsten, zinc, iron and germanium are preferable, and titanium, zirconium, tungsten, iron and germanium are particularly preferable.
  • metal elements of Groups 3 to 6 of the periodic table showing Lewis acidity are preferable. Specifically, it is scandium, titanium, zirconium, vanadium, molybdenum, and tungsten, and titanium and zirconium are particularly preferable from the viewpoint of availability, and titanium is preferable from the viewpoint of reaction activity.
  • the periodic table refers to a long-period periodic table (Nomenclature of Inorganic Chemistry IUPAC Recommissions 2005).
  • a titanium compound is preferably used as a catalyst in the esterification reaction step.
  • titanium compound tetraalkyl titanate and its hydrolyzate are preferable. Specifically, tetra-n-propyl titanate, tetraisopropyl titanate, tetra-n-butyl titanate, tetra-t-butyl titanate, tetraphenyl titanate, tetracyclohexyl titanate, tetrabenzyl titanate and mixed titanates thereof, and their mixture. Hydrolyzate can be mentioned.
  • tetra-n-propyl titanate tetraisopropyl titanate
  • tetra-n-butyl titanate titanium (oxy) acetylacetonate
  • titaniumtetraacetylacetonate titaniumbis (ammonium lactate) dihydroxydo
  • polyhydroxytitanium steer titaniumbis (ammonium lactate) dihydroxydo, polyhydroxytitanium steer.
  • titanium lactate, butyl titanate dimer are preferred, tetra-n-butyl titanate, titanium (oxy) acetylacetonate, titanium tetraacetylacetonate, polyhydroxytitanium stearate, titanium lactate, butyl titanate dimer are more preferred, especially Tetra-n-butyl titanate, polyhydroxytitanium stearate, titanium (oxy) acetylacetonate, and titaniumtetraacetylacetonate are preferable.
  • titanium compounds include alcohols such as methanol, ethanol, isopropanol and butanol, diols such as ethylene glycol, butanediol and pentanediol, ethers such as diethyl ether and tetrahydrofuran, nitriles such as acetonitrile, heptane, toluene and the like. It is supplied to the esterification reaction step as a catalytic solution prepared so that the titanium compound concentration is usually 0.05 to 5% by weight, using a solvent for dissolving the catalyst such as the hydrocarbon compound, water and a mixture thereof. NS.
  • alcohols such as methanol, ethanol, isopropanol and butanol
  • diols such as ethylene glycol, butanediol and pentanediol
  • ethers such as diethyl ether and tetrahydrofuran
  • nitriles such as acetonit
  • ⁇ Phosphorus compound> In the production of the aliphatic aromatic polyester, particularly when adipic acid is used as the aliphatic dicarboxylic acid component, the obtained aliphatic aromatic polyester is colored red to pink. Molded articles made by molding colored aliphatic aromatic polyesters may have a problem of being reddish and inferior in quality. In addition, there may be a problem that 1,4-butanediol used as a raw material diol component is highly decomposable, tetrahydrofuran is easily produced as a by-product, and inefficiency (deterioration of 1,4-butanediol basic unit, etc.) occurs. ..
  • the gas distilled from the esterification and / or transesterification reaction tank and the polycondensation reaction tank is mainly composed of an aliphatic diol component which is a by-product and water.
  • 1,4-butanediol is contained as an aliphatic diol component.
  • its degradation product, tetrahydrofuran is also included.
  • These gas components are usually separated and collected by a rectification tower, a wet condenser, etc., and the high boiling component whose main component is the raw material diol component may be reused as a part of the raw material, but tetrahydrofuran. Does not contribute to the ester reaction, so if the amount of by-product of tetrahydrofuran is large, it leads to deterioration of the basic unit of 1,4-butanediol, which is not preferable.
  • an aliphatic diol component As a device for solving this problem, suppressing by-production of tetrahydrofuran, and producing a high-quality aliphatic aromatic polyester having a good color tone, an aliphatic diol component, an aliphatic dicarboxylic acid component, and an aromatic dicarboxylic acid component are used.
  • the terminal acid value obtained in the esterification and / or transesterification reaction step is 30 to 1000 eq.
  • the phosphorus compound to be contacted with the ester oligomer of / ton include orthophosphorus acid, polyphosphorus acid, and trimethylphosphate, triethyl phosphate, tri-n-butyl phosphate, trioctyl phosphate, triphenyl phosphate, and tricresyl phosphate.
  • Five-valent such as tris (triethylene glycol) phosphate, ethyldiethylphosphonoacetate, methylacid phosphate, ethylacid phosphate, isopropylacid phosphate, butylacid phosphate, monobutyl phosphate, dibutyl phosphate, dioctyl phosphate, triethylene glycol acid phosphate, etc.
  • trivalent phosphorus compounds such as phosphorus compounds, phosphorous acid, hypophosphorous acid, diethylphosphite, trisdodecylphosphite, trisnonyldecylphosphite, and triphenylphosphite.
  • an acidic phosphoric acid ester compound is preferable.
  • the acidic phosphoric acid ester compound a compound having a phosphoric acid ester structure having at least one hydroxyl group represented by the following general formulas (I) and / or (II) is preferably used.
  • R, R'and R represent an alkyl group having 1 or more and 6 or less carbon atoms, a cyclohexyl group, an aryl group or a 2-hydroxyethyl group, respectively, and in the formula (I), R and R'are the same. May be different.
  • an acidic phosphoric acid ester compound examples include methyl acid phosphate, ethyl acid phosphate, isopropyl acid phosphate, butyl acid phosphate, octyl acid phosphate and the like, and ethyl acid phosphate and butyl acid phosphate are preferable.
  • One of these acidic phosphoric acid ester compounds may be used alone, or two or more thereof may be used in combination.
  • the acidic phosphoric acid ester compound includes a monoester compound represented by the general formula (II) and a diester compound represented by the general formula (I). It is preferable to use a monoester or a mixture of a monoester and a diester because a catalyst exhibiting high catalytic activity can be obtained.
  • the mixed weight ratio of the monoester to the diester is preferably 80 or less: 20 or more, more preferably 70 or less: 30 or more, and particularly preferably 60 or less: 40 or more. 20 or more: 80 or less is preferable, more preferably 30 or more: 70 or less, and particularly preferably 40 or more: 60 or less.
  • examples of the alkaline earth metal compound include various compounds such as beryllium, magnesium, calcium, strontium, and barium. From the viewpoint of ease of handling and availability, and catalytic effect, magnesium and calcium compounds are preferable, and among them, magnesium compounds having excellent catalytic effect are preferable.
  • Specific examples of the magnesium compound include magnesium acetate, magnesium hydroxide, magnesium carbonate, magnesium oxide, magnesium alcoholide, magnesium hydrogen phosphate and the like. Of these, magnesium acetate is preferred.
  • phosphorus compounds and alkaline earth metal compounds 0.01 to 7.6% by weight of phosphorus compounds and alkaline soil are used, using the solvent exemplified as the solvent for catalyst dissolution used for preparing the catalyst solution of the titanium compound described above. It is preferable to add the metal compound to the ester oligomer supplied in the polycondensation reaction step as a catalytic solution prepared so as to have a concentration of 0.02 to 9.7% by weight.
  • the amount and ratio of the titanium compound used in the esterification reaction step and the phosphorus compound and alkaline earth metal compound used in the polycondensation reaction step there are no particular restrictions on the amount and ratio of the titanium compound used in the esterification reaction step and the phosphorus compound and alkaline earth metal compound used in the polycondensation reaction step.
  • the titanium compound is preferably used so that the amount added in terms of Ti to the produced polyester is 5 to 100 ppm by weight.
  • the phosphorus compound is preferably used so that the P-equivalent molar ratio (P / Ti molar ratio) to the Ti-equivalent molar amount of the titanium compound is 0.5 to 2.5.
  • the alkaline earth metal compound is preferably used so that the molar ratio of alkaline earth metal added to the amount of titanium compound added in terms of Ti (alkaline earth metal / Ti molar ratio) is 0.5 to 3.0. ..
  • the terminal acid value in the final polyester may be high, so that the terminal acid value may be high.
  • the thermal stability and hydrolysis resistance of polyester may decrease due to the increase in residual catalyst concentration.
  • the amount is too small, the reaction activity is lowered, and as a result, thermal decomposition of the polyester is induced during polyester production, and it becomes difficult to obtain a polyester having practically useful physical properties.
  • reaction tank As the esterification reaction tank used in the present invention, known ones can be used, and any of the types such as a vertical stirring complete mixing tank, a vertical thermal convection mixing tank, and a column continuous reaction tank may be used.
  • the reaction tank may be a single tank or a plurality of tanks of the same type or different types in series.
  • a reaction tank having a stirrer is preferable, and the stirrer is a normal type consisting of a power unit, a receiver, a shaft, and a stirrer, as well as a turbine stator type high-speed rotary stirrer, a disc mill type stirrer, a rotor mill type stirrer, and the like.
  • a type that rotates at high speed can also be used.
  • stirring there is no limitation on the form of stirring, and in addition to the usual stirring method in which the reaction solution in the reaction tank is directly stirred from the upper part, the lower part, the horizontal part, etc. of the reaction tank, a part of the reaction liquid is piped to the outside of the reaction tank, etc. It is also possible to take it out and stir it with a line mixer or the like to circulate the reaction solution.
  • stirring blades can be selected, and specific examples thereof include propeller blades, screw blades, turbine blades, fan turbine blades, disc turbine blades, Faudler blades, full zone blades, and Maxblend blades.
  • the type of the polycondensation reaction tank used in the present invention is not particularly limited, and examples thereof include a vertical stirring polymerization tank, a horizontal stirring polymerization tank, and a thin film evaporation type polymerization tank.
  • the polycondensation reaction tank may be one unit, or may be a plurality of tanks in which a plurality of tanks of the same type or different types are connected in series. In the latter stage of polycondensation in which the viscosity of the reaction solution increases, it is preferable to select a horizontal stirring polymer having a thin film evaporation function having excellent interfacial renewal property, plug flow property and self-cleaning property.
  • the pelleting method is a strand cut method in which polyester melted at high temperature is extruded from the nozzle hole of the die head using a gear pump or an extruder, and the strands cooled with water or cooled and solidified are cut with a cutter; the nozzle hole.
  • the underwater hot-cut method in which the material is extruded into water and immediately cut in a molten state, is widely used.
  • the underwater hot-cut method is preferable because it is good.
  • the lower limit of the cooling water temperature in the underwater cutting method is preferably 10 ° C. or higher, more preferably 20 ° C. or higher, and the upper limit is preferably 70 ° C. or lower, more preferably 60 ° C. or lower, still more preferably 50 ° C. or lower.
  • the shape of the pellets is spherical, ellipsoidal, cylindrical, elliptical, oblong, prismatic, cocooned, etc., and these are flattened.
  • the underwater hot-cut method often has an ellipsoidal shape, a columnar shape, an ellipsoidal shape, a spherical shape, a cocoon ball shape, or a flat shape thereof, and an ellipsoidal shape or a columnar shape is preferable.
  • the raw material is usually mixed with an aliphatic diol component such as 1,4-butanediol in a raw material mixing tank, and is an esterification reaction tank in the form of a slurry or a liquid from the raw material supply line. Is supplied to.
  • an aliphatic diol component such as 1,4-butanediol
  • a catalyst is added during the esterification reaction, a solution of an aliphatic diol component such as 1,4-butanediol is prepared in the catalyst preparation tank, and then the catalyst solution is supplied from the catalyst supply line.
  • the gas distilled from the esterification reaction tank is separated into a high boiling component and a low boiling component in the rectification column via the distillation line.
  • the main component of the high boiling component is an aliphatic diol component such as 1,4-butanediol
  • the main component of the low boiling component is water and a decomposition product of the aliphatic diol component such as 1,4-butanediol. be.
  • the high boiling components separated in the rectification column are extracted from the extraction line, partly circulated from the recirculation line to the esterification reaction tank, and partly returned from the circulation line to the rectification column via a pump. ..
  • the surplus is extracted from the extraction line to the outside.
  • the light boiling component separated by the rectification tower is extracted from the gas extraction line, condensed by a condenser, and temporarily stored in the tank via the condensate line.
  • a part of the light boiling component collected in the tank is returned to the rectification tower via the extraction line, the pump and the circulation line, and the rest is extracted to the outside of the system through the extraction line.
  • the condenser is connected to the exhaust system via a vent line.
  • the esterification reaction product produced in the esterification reaction tank is provided to the polycondensation reaction tank (first polycondensation reaction tank) via a extraction pump and an extraction line of the esterification reaction product.
  • the aliphatic aromatic polyester of the present invention obtained by the method for producing an aliphatic aromatic polyester of the present invention contains a specific nucleating agent in a suitable amount with respect to the above-mentioned polyester as a result of the presence of a specific nucleating agent in the manufacturing process. Manufactured as.
  • the intrinsic viscosity (IV) of the aliphatic aromatic polyester of the present invention preferably has a lower limit of 1.0 dL / g or more, and particularly preferably 1.2 dL / g or more.
  • the upper limit of the intrinsic viscosity of the aliphatic aromatic polyester of the present invention is preferably 2.5 dL / g, more preferably 2.2 dL / g, and particularly preferably 2.0 dL / g. If the intrinsic viscosity is less than the lower limit, it is difficult to obtain sufficient mechanical strength when the molded product is made. If the intrinsic viscosity exceeds the upper limit, the melt viscosity is high at the time of molding and it is difficult to mold.
  • the intrinsic viscosity of the aliphatic aromatic polyester of the present invention is measured by the method described in the section of Examples below.
  • the terminal acid value of the aliphatic aromatic polyester of the present invention is 30 eq. It is preferably less than / ton, more preferably 20 eq. / Ton or less, more preferably 15 eq. It is less than / ton. If the terminal acid value of the aliphatic aromatic polyester exceeds the above upper limit, the viscosity is significantly reduced due to hydrolysis, and the quality may be significantly impaired.
  • the terminal acid value of the aliphatic aromatic polyester of the present invention is measured by the method described in the section of Examples below.
  • the melting point (Tm 2 ) of the polyester of the present invention is not particularly limited, but the melting point of the aliphatic aromatic polyester satisfying the above-mentioned suitable intrinsic viscosity and terminal acid value is usually about 100 to 150 ° C. Therefore, the nucleating agent used in the present invention preferably has a melting point (Tm 1 ) of about 100 to 165 ° C.
  • Tm 1 melting point of the aliphatic aromatic polyester of the present invention is measured by the method described in the section of Examples below.
  • the temperature-decreasing crystal peak time of the aliphatic aromatic polyester of the present invention by DSC is preferably 60 seconds or less, more preferably 50 seconds or less.
  • the lower limit of the temperature-decreasing crystal peak time is not particularly limited, but is usually about 30 seconds.
  • the temperature-decreasing crystal peak time of the aliphatic aromatic polyester of the present invention is measured by the method described in the section of Examples below.
  • biodegradable resins for example, polycaprolactone, polyamide, polyvinyl alcohol, cellulose ester, etc.
  • a heat stabilizer for the purpose of adjusting the physical properties and processability of the molded product, a heat stabilizer, a plasticizer, a lubricant, an anti-blocking agent, a nucleating agent other than the nucleating agent satisfying the above formula (1), an inorganic filler, a coloring agent, a pigment, etc.
  • Additives such as an ultraviolet absorber and a light stabilizer, a modifier, a cross-linking agent and the like may be contained.
  • the method for producing the polyester composition from the aliphatic aromatic polyester of the present invention is not particularly limited, but is a method of melting and mixing the raw material chips of the blended polyester in the same extruder; after melting each in a separate extruder.
  • a method of mixing; a method of mixing by kneading using a normal kneader such as a single-screw extruder, a twin-screw extruder, a Banbury mixer, a roll mixer, a brabender plastograph, or a kneader blender; and the like can be mentioned. It is also possible to directly supply each raw material chip to a molding machine to prepare a composition and at the same time obtain a molded product thereof.
  • terminal acid value terminal carboxy group amount
  • a is the amount of 0.1 mol / L sodium hydroxide benzyl alcohol solution required for titration ( ⁇ L)
  • b is the amount of 0.1 mol / L sodium hydroxide benzyl required for titration in the blank.
  • w is the amount of ester oligomer or polyester sample (g)
  • f is the titer of 0.1 mol / L sodium hydroxide solution in benzyl alcohol.
  • the titer (f) of a 0.1 mol / L sodium hydroxide solution in benzyl alcohol was determined by the following method.
  • Titer (f) titer of 0.1 mol / L hydrochloric acid aqueous solution ⁇ sampling amount of 0.1 N hydrochloric acid aqueous solution ( ⁇ L) / 0.1 mol / L sodium hydroxide benzyl alcohol solution titration ( ⁇ L) ... (4)
  • the area of the endothermic peak corresponding to the melting of the sample resin in the second temperature raising process is the melting enthalpy ( ⁇ Hm and ⁇ Hm0, respectively). Is defined as.
  • the value obtained by dividing ⁇ Hm by ⁇ Hm0 was defined as the melting enthalpy ratio and used for evaluation. This value of ( ⁇ Hm / ⁇ Hm0) is an index indicating the degree of promotion of crystallization, and the larger this value is, the more the crystallization is promoted.
  • the sample pan was set in DSC6220 (manufactured by SII Nanotechnology) in the molten state, and isothermal measurement was performed at 10 ° C.
  • the time at which the heat generation due to crystallization reached the maximum value was recorded, and the same measurement was performed at 20 ° C., 30 ° C., and 40 ° C., and the time until the heat generation maximum value was set as the temperature-decreasing crystallization peak time. The smaller this value is, the more crystallization is promoted.
  • Example 1 33.6 parts by weight of succinic acid, 38.6 parts by weight of terephthalic acid, 69.7 parts by weight of 1,4-butanediol in a reaction vessel equipped with a stirrer, a nitrogen inlet, a heating device, a thermometer and a decompression port. Parts, 0.138 parts by weight of trimethylolpropane, 0.10 parts by weight of polyethylene wax (Honeywell's "ACumist B6", melting point: 124 ° C.), 0.0017 parts by weight of sodium hydroxide (NaOH), and tetra-n. -Butyl titanate was added so as to be 30 wt ppm as a titanium atom per polyester obtained.
  • the above-mentioned catalyst solution is added in an amount of 70 wt ppm as a titanium atom per obtained polyester, and the temperature is raised to 250 ° C. over 45 minutes, and at the same time, 0.07 ⁇ over 1 hour and 20 minutes.
  • the pressure was reduced to 10 3 Pa or less, polycondensation was continued while maintaining the heating and reduced pressure state, and the polymerization was terminated when the viscosity reached a predetermined value to obtain a polyester copolymer.
  • the distillate from the esterification reaction and the polycondensation reaction was recovered, the tetrahydrofuran concentration was measured by the absolute calibration method of a gas chromatograph, and the by-product amount of tetrahydrofuran (THF by-product amount) was calculated. It was 0.0047 parts by weight per part.
  • Example 1 A polyester copolymer was obtained in the same manner as in Example 1 except that polyethylene wax and sodium hydroxide were not added.
  • Example 2 A polyester copolymer was obtained in the same manner as in Example 1 except that the amount of polyethylene wax added was changed to 10 times the amount in Example 1.
  • Example 3 A polyester copolymer was obtained in the same manner as in Example 1 except that polypropylene wax (“PP7502” manufactured by Clariant Chemicals, Inc., melting point: 160 ° C.) was added instead of polyethylene wax.
  • polypropylene wax (“PP7502” manufactured by Clariant Chemicals, Inc., melting point: 160 ° C.) was added instead of polyethylene wax.
  • Example 4 A polyester copolymer was obtained in the same manner as in Example 1 except that the amount of sodium hydroxide added was changed to 10 times the amount in Example 1.
  • the melting point (Tm 2 ) and the temperature-decreasing crystallization peak time of the polyester copolymers produced in Examples 1 to 3 and Comparative Example 1 were measured, and the results are shown in Table 1 together with the production conditions. Further, the polymerization time in Examples 1 and 4 and Comparative Example 1, the intrinsic viscosity (IV) of the produced polyester copolymer, the polymerization rate obtained by dividing this intrinsic viscosity by the polymerization time, and the produced polyester weight. The terminal acid value of the coalescence and the amount of THF by-product at the time of production were measured, and the results are shown in Table 2 together with the production conditions.
  • polyethylene wax is described as “PE-Wax”
  • polypropylene wax is described as “PP-Wax”.
  • the difference in the melting point of the nucleating agent (Tm 1) the melting point of the polyester copolymer (Tm 2) of (Tm 1 -Tm 2) is described as " ⁇ Tm”.
  • the amount of the nucleating agent added is the amount added to the polyester copolymer
  • the amount of the basic inorganic compound added is the amount added as a metal atom to the polyester copolymer.
  • Example 5 In a reaction vessel equipped with a stirrer, a nitrogen inlet, a heating device, a thermometer and a decompression port, 24.2 parts by weight of succinic acid, 48.0 parts by weight of 2,5-furandicarboxylic acid, and 1,4-butane were used as raw materials. 92.4 parts by weight of diol, 0.138 parts by weight of trimethylol propane, and 1.00 parts by weight of polyethylene wax (“ACumist B6” manufactured by Honeywell, melting point: 124 ° C.) can be further charged to obtain tetra-n-butyl titanate. It was added so as to be 30 wt ppm as a titanium atom per polyester.
  • ACumist B6 polyethylene wax
  • Nitrogen gas was introduced into the container while stirring the contents of the container, and the inside of the system was made into a nitrogen atmosphere by decompression substitution. Next, the temperature was raised from 170 ° C. to 190 ° C. over 1 hour while stirring the inside of the system, and the reaction was carried out at this temperature for 1 to 2 hours. Then, an amount of 70 wt ppm as a titanium atom per polyester obtained by tetra-n-butyl titanate was further added, and the temperature was raised to 240 ° C. over 1.5 hours, and at the same time, 0.07 over 1.5 hours. The pressure was reduced to ⁇ 10 3 Pa or less, polycondensation was continued while maintaining the heating and reduced pressure state, and the polymerization was terminated when the viscosity reached a predetermined value to obtain a polyester copolymer.
  • Example 5 In Example 5, all the same production was carried out except that polyethylene wax was not added, to obtain a polyester copolymer. The distillate from the esterification reaction and the polycondensation reaction was recovered, the tetrahydrofuran concentration was measured with a gas chromatograph, and the by-product amount of tetrahydrofuran (THF by-product amount) was calculated to be 19.2 per 100 parts by weight of the polyester copolymer. It was a weight part.
  • Example 6 In a reaction vessel equipped with a stirrer, nitrogen inlet, heating device, thermometer and decompression port, 24.2 parts by weight of succinic acid, 48.0 parts by weight of 2,5-furandicarboxylic acid, and 1,4-butane were used as raw materials. 92.4 parts by weight of diol, 0.138 parts by weight of trimethylolpropane, and tetra-n-butyl titanate were added so as to be 30% by weight ppm as a titanium atom per polyester obtained. Nitrogen gas was introduced into the container while stirring the contents of the container, and the inside of the system was made into a nitrogen atmosphere by decompression substitution. Next, the temperature was raised from 170 ° C. to 190 ° C.
  • Example 7 In Example 6, the polyethylene wax (“Luwax AH3” manufactured by BASF) was changed to the polyethylene wax (“ACumist A6” manufactured by Honeywell, melting point: 132 ° C.), but all the same steps were carried out to obtain a polyester copolymer. Obtained.
  • Example 8 In Example 6, the polyethylene wax (“Luwax AH3” manufactured by BASF) was changed to a fatty acid amide (“Slipax H” manufactured by Mitsubishi Chemical Co., Ltd., compound name: ethylenebis-12-hydroxystearic acid amide, melting point: 145 ° C.). Everything except the above was carried out in the same manner to obtain a polyester copolymer.
  • Example 9 In Example 6, the polyethylene wax (“Luwax AH3” manufactured by BASF) was changed to a phosphoric acid ester metal salt (“Eco-promote” manufactured by Nissan Chemical Industries, Ltd., compound name: zinc phenylphosphonate, melting point: 164 ° C.). Was carried out in the same manner to obtain a polyester copolymer.
  • a phosphoric acid ester metal salt (“Eco-promote” manufactured by Nissan Chemical Industries, Ltd., compound name: zinc phenylphosphonate, melting point: 164 ° C.).
  • Example 6 the polyethylene wax (“Luwax AH3” manufactured by BASF) was changed to talc (“Nanoace D-600” manufactured by Nippon Talc, melting point: 900 ° C. or higher (decomposition)), but all the same operations were carried out in the same manner. , Polyester copolymer was obtained.
  • Example 6 the polyethylene wax (“Luwax AH3” manufactured by BASF) was changed to talc (“MS-KY” manufactured by Nippon Talc, melting point 900 ° C. or higher (decomposition)), and all the same steps were carried out. A copolymer was obtained.
  • Example 10 The polyester copolymer obtained in Example 5 was subjected to a twin-screw extruder (manufactured by Parker Corporation, HK-25D (41D)) equipped with an underwater cutter (EUP10 manufactured by ECON, cooling water temperature: 14 to 28 ° C.). , Cylinder temperature: 220 ° C.), melt-kneaded and then cut to produce pellets (major axis approx. 5 mm, minor axis approx. 3 mm) having a spheroidal shape made of an aliphatic aromatic polyester composition. bottom. Immediately after cutting, the pellets were cooled with cooling water at 15 to 30 ° C. for about several seconds, then centrifuged and recovered.
  • EUP10 manufactured by ECON, cooling water temperature: 14 to 28 ° C.
  • Cylinder temperature 220 ° C.
  • Example 11 In Example 5, a polyester copolymer was obtained in the same manner except that the amount of polyethylene wax added was changed to 0.1 times (1000 wt ppm). Then, pellets of the obtained polyester copolymer were prepared in the same manner as in Example 10. Immediately after cutting, the pellets were cooled with cooling water at 15 to 30 ° C. for about several seconds, then centrifuged and recovered.
  • Example 12 In Example 5, all were carried out in the same manner except that tetraethylammonium hydroxide (manufactured by Tokyo Chemical Industry Co., Ltd., Et 4 NOW) was added so as to be 300 ppm by weight per polyester obtained at the same time as the raw material was charged. A polymer was obtained. The distillate from the esterification reaction and the polycondensation reaction was recovered, the tetrahydrofuran concentration was measured with a gas chromatograph, and the by-product amount of tetrahydrofuran (THF by-product amount) was calculated to be 16.3 per 100 parts by weight of the polyester copolymer. It was a weight part.
  • THF by-product amount the by-product amount
  • Example 13 In Example 5, all were carried out in the same manner except that sodium hydroxide (NaOH manufactured by Tokyo Kasei Kogyo Co., Ltd.) was added so as to be 30 wt ppm per polyester obtained at the same time as the raw material was charged. A polymer was produced. The distillate from the esterification reaction and the polycondensation reaction was recovered, the tetrahydrofuran concentration was measured with a gas chromatograph, and the by-product amount of tetrahydrofuran (THF by-product amount) was calculated to be 17.0 per 100 parts by weight of the polyester copolymer. It was a weight part.
  • sodium hydroxide NaOH manufactured by Tokyo Kasei Kogyo Co., Ltd.
  • the melting point (Tm 2 ) and the fusion enthalpy ratio ( ⁇ Hm / ⁇ Hm0) of the polyester copolymers produced in Examples 5 to 11 and Comparative Examples 2 to 4 were measured, and the results are shown in Tables 3A, 3B, 4 together with the production conditions. It was shown to. For Examples 10 to 11, the pellet shape and pelletizing property were evaluated, and the results are also shown in Table 4.
  • Table 3A, 3B, Table 4 In Table 5, the difference between the melting point of the polyethylene wax described as "PE-Wax” nucleating agent (Tm 1) the melting point of the polyester copolymer (Tm 2) (Tm 1 -Tm 2 ) Is described as " ⁇ Tm".
  • the addition amounts of the nucleating agent and the basic organic compound in Tables 3A and 3B, Tables 4 and 5 are the addition amounts to the polyester copolymer, and the addition amounts of the basic inorganic compounds are as metal atoms to the polyester copolymer. The amount added.
  • the polyester copolymers of Examples 5 to 9 containing the nucleating agent satisfying the formula (1) according to the present invention have more ⁇ Hm / m / than the polyester copolymer of Comparative Example 2 containing no nucleating agent. It can be seen that the value of ⁇ Hm0 is large and crystallization is promoted. In Comparative Examples 3 and 4 using a nucleating agent that does not satisfy the formula (1), it can be seen that the values of ⁇ Hm / ⁇ Hm0 are not sufficiently large and the crystallization promoting effect is low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

PBST等の脂肪族芳香族ポリエステルをエステル化及び/又はエステル交換反応を経て重縮合反応により製造するにあたり、従来の結晶化不足を改善し、高結晶化度の脂肪族芳香族ポリエステルを製造する方法を提供する。原料として脂肪族ジオール成分と脂肪族ジカルボン酸成分及び芳香族ジカルボン酸成分とを触媒の存在下にエステル化及び/又はエステル交換反応を経て重縮合反応を行うことにより脂肪族芳香族ポリエステル製造する際に、下記式(1)の条件を満たす核剤を反応系内に存在させる脂肪族芳香族ポリエステルの製造方法。 0℃<Tm-Tm≦100℃ ・・・(1) Tm:核剤の融点(℃)、Tm:脂肪族芳香族ポリエステルの融点(℃)

Description

脂肪族芳香族ポリエステルの製造方法
 本発明は、脂肪族ジオール成分と脂肪族ジカルボン酸成分及び芳香族ジカルボン酸成分とを主原料とする脂肪族芳香族ポリエステルの製造方法に関する。
 各種食品、薬品、雑貨用等の液状物や粉粒物、固形物の包装用資材、農業用資材、建築資材などの用途に、紙、プラスチック、アルミ箔等の様々な材料が用いられている。中でも、プラスチックは、強度、耐水性、成形性、透明性、コスト等において優れていることから、袋や容器などの成形品として、幅広い用途で使用されている。
 現在、袋や容器などの用途に広く使用されているプラスチックとしては、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリエチレンテレフタレート等がある。しかしながら、上記プラスチックからなる成形品は、自然環境下においては生分解や加水分解をしないか、又は分解速度が極めて遅いために、使用後、埋設処理された場合に土中に残存したり、投棄された場合に景観を損ねたりすることがある。また、焼却処理された場合でも、有害なガスを発生したり、焼却炉を傷めたりするなどの問題がある。
 これらの問題を解決する環境にやさしいプラスチックとして、生分解性樹脂が注目されてきている。生分解性樹脂を成形してなるフィルムは、使用後は土中に埋設することにより、土中で分解されるため、温暖化防止、土壌及び大気の汚染防止を図ることができる。そのため、近年は、ゴミ袋、買い物袋等に生分解性樹脂製のフィルムが多く使用されつつある。
 しかし、これら生分解性樹脂製のフィルムは、一般的に機械的物性に劣るものが多いため、良好な生分解性を維持した上で機械的物性を改善するための研究が数多くなされてきた。
 生分解性と機械的特性及び成形性を兼備するポリエステルとして、ジオール成分として1,4-ブタンジオール等の脂肪族ジオールを用い、ジカルボン酸成分として、コハク酸等の脂肪族ジカルボン酸とテレフタル酸等の芳香族ジカルボン酸を併用して得られるポリブチレンサクシネートテレフタレート(PBST)等の脂肪族芳香族ポリエステルが提案されている。
 PBST等の脂肪族芳香族ポリエステルは、他のポリエステルと同様に、エステル化工程及び重縮合工程を経て製造される。
 特許文献1には、少なくとも脂肪族ジカルボン酸単位と、芳香族ジカルボン酸単位と、脂肪族及び/又は脂環式ジオール単位と、特定量の3官能以上のエステル形成性基を有する構成単位を含む脂肪族芳香族ポリエステルが開示されている。この特許文献1では、具体的には、原料の脂肪族ジカルボン酸としてコハク酸、芳香族ジカルボン酸としてテレフタル酸、脂肪族ジオールとして1,4-ブタンジオール、3官能以上のオキシカルボン酸としてリンゴ酸を用い、チタンテトラブチレートなどのチタン化合物や酢酸マグネシウムなどのアルカリ土類金属を触媒として用いてエステル化工程と重縮合工程を経て、ポリブチレンサクシネートテレフタレート(PBST)を製造している。
特開2008-31457号公報
 一般的に、PBST等の脂肪族芳香族ポリエステルを工業的に製造する方法は、原料の脂肪族ジオール成分と脂肪族ジカルボン酸成分及び芳香族ジカルボン酸成分とを触媒の存在下に連続的に反応系に供給し、エステル化及び/又はエステル交換反応させる重縮合反応工程を経て、その反応系から連続的に得られる高温の溶融状態のポリマーを冷却しながら造粒(ペレット化)する方法である。
 特許文献1に記載の方法でPBST等の脂肪族芳香族ポリエステルを製造した場合、得られる脂肪族芳香族ポリエステルの結晶化が不十分であり、得られた脂肪族芳香族ポリエステル樹脂ペレット同士がブロッキングするという課題があることが判明した。さらには、その結果、結晶化時間を十分に確保するために、高温の溶融状態のポリマーを冷却するための冷却プロセスが長大となり、工業的にPBST等の脂肪族芳香族ポリエステルを製造するプロセスとしては経済的にも非効率なプロセスとなる恐れがあった。また、特許文献1に記載の方法で得られる、結晶化速度の遅いPBST等の脂肪族芳香族ポリエステルを使って、フィルムやインフレーション成形してなる袋などの成形品を得る際に、フィルム同士の融着によりカッティングができなかったり、インフレーション成形により得られる袋の口開きが不十分であったりするという問題が懸念される。
 本発明は、上記従来技術の問題を解決すべく、PBST等の脂肪族芳香族ポリエステルをエステル化及び/又はエステル交換反応を経て重縮合反応により製造するにあたり、従来の結晶化不足を改善し、高結晶化度の脂肪族芳香族ポリエステルを製造する方法を提供することを課題とする。
 本発明者らは、PBST等の脂肪族芳香族ポリエステルをエステル化及び/又はエステル交換反応を経て重縮合反応により製造するにあたり、反応系内に特定の核剤を存在させることにより、結晶化不足を改善し、上記課題を解決することができることを見出し、本発明を完成させるに至った。
 本発明の要旨は下記[1]~[9]に存する。
[1] 原料として脂肪族ジオール成分と脂肪族ジカルボン酸成分及び芳香族ジカルボン酸成分とを触媒の存在下にエステル化及び/又はエステル交換反応を経て重縮合反応を行うことにより脂肪族芳香族ポリエステル製造する際に、下記式(1)の条件を満たす核剤を反応系内に存在させることを特徴とする脂肪族芳香族ポリエステルの製造方法。
  0℃<Tm-Tm≦100℃ ・・・(1)
(上記式(1)中、Tm:核剤の融点(℃)、Tm:脂肪族芳香族ポリエステルの融点(℃))
[2] 前記核剤を、生成する脂肪族芳香族ポリエステルに対して100~10000重量ppmとなる量で存在させる[1]に記載の脂肪族芳香族ポリエステルの製造方法。
[3] 前記脂肪族ジカルボン酸成分と前記芳香族ジカルボン酸成分のモル比率が40:60~60:40である[1]又は[2]に記載の脂肪族芳香族ポリエステルの製造方法。
[4] 前記エステル化及び/又はエステル交換反応を塩基性無機化合物の存在下で行う[1]~[3]のいずれかに記載の脂肪族芳香族ポリエステルの製造方法。
[5] 前記塩基性無機化合物を、生成する脂肪族芳香族ポリエステルに対して金属原子として1~100重量ppmとなる量で存在させる[4]に記載の脂肪族芳香族ポリエステルの製造方法。
[6] 前記脂肪族ジカルボン酸成分がコハク酸成分である[1]~[5]のいずれかに記載の脂肪族芳香族ポリエステルの製造方法。
[7] 前記芳香族ジカルボン酸成分がテレフタル酸成分及び/又はフランジカルボン酸成分である[1]~[6]のいずれかに記載の脂肪族芳香族ポリエステルの製造方法。
[8] 前記脂肪族ジカルボン酸成分がバイオマス由来のものである[1]~[7]のいずれかに記載の脂肪族芳香族ポリエステルの製造方法。
[9] 前記脂肪族ジオール成分がバイオマス由来のものである[1]~[8]のいずれかに記載の脂肪族芳香族ポリエステルの製造方法。
 本発明によれば、PBST等の脂肪族芳香族ポリエステルをエステル化及び/又はエステル交換反応を経て重縮合反応により製造するにあたり、反応系内に特定の核剤を存在させることにより、結晶化不足を改善し、樹脂ペレット同様のブロッキングやフィルム同士の融着等の問題のない、工業的にも有利に脂肪族芳香族ポリエステルを製造することができる。また、この脂肪族芳香族ポリエステルを用いて、高品質の成形品を提供することが期待される。
 以下に、本発明の実施の形態を詳細に説明する。以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はその要旨を超えない限り、これらの内容に限定はされない。
 本明細書において、“質量%”、“質量ppm”及び“質量部”と、“重量%”、“重量ppm”及び“重量部”とは、それぞれ同義である。
 本発明の脂肪族芳香族ポリエステルの製造方法は、原料として脂肪族ジオール成分と脂肪族ジカルボン酸成分及び芳香族ジカルボン酸成分とを触媒の存在下にエステル化及び/又はエステル交換反応を経て重縮合反応を行うことにより脂肪族芳香族ポリエステルを製造する際に、下記式(1)の条件を満たす核剤を反応系内に存在させることを特徴とする。
  0℃<Tm-Tm≦100℃ ・・・(1)
(上記式(1)中、Tm:核剤の融点(℃)、Tm:脂肪族芳香族ポリエステルの融点(℃))
 ここで、「脂肪族ジカルボン酸成分」とは、脂肪族ジカルボン酸及び脂肪族ジカルボン酸アルキルエステル等の脂肪族ジカルボン酸誘導体といったポリエステル原料となる脂肪族ジカルボン酸類の総称である。「芳香族ジカルボン酸成分」とは、芳香族ジカルボン酸及び芳香族ジカルボン酸アルキルエステル等の芳香族ジカルボン酸誘導体といったポリエステル原料となる芳香族ジカルボン酸類の総称である。
 また、本発明において、「芳香族ジカルボン酸」とは、「複素芳香族ジカルボン酸」を包含する広義の「芳香族ジカルボン酸」である。
 以下において、本発明の脂肪族芳香族ポリエステルの製造方法で製造される脂肪族芳香族ポリエステルを「本発明の脂肪族芳香族ポリエステル」と称す場合がある。また、脂肪族芳香族ポリエステルを単に「ポリエステル」と称す場合がある。
 本発明の製造方法では、少なくとも脂肪族ジオール成分と脂肪族ジカルボン酸成分及び芳香族ジカルボン酸成分とを主原料として触媒の存在下に反応させるエステル化及び/又はエステル交換反応工程及びその後の重縮合反応工程を有する。「脂肪族ジオール成分と脂肪族ジカルボン酸成分及び芳香族ジカルボン酸成分とを主原料とする」とは、原料として使用するジオール成分が脂肪族ジオール成分を主成分とするものであること、及び原料として使用するジカルボン酸成分が脂肪族ジカルボン酸成分及び芳香族ジカルボン酸成分を主成分とするものであることを意味する。
 ここで、「脂肪族ジオール成分を主成分とする」とは、「脂肪族ジオール成分の合計モル比率が、原料ジオール成分中で最も多いこと」を意味する。中でも得られるポリエステルの物性、生分解性の観点から、脂肪族ジオール成分の合計が、原料ジオール成分の合計に対して、50モル%以上であることが好ましく、より好ましくは60モル%以上、更に好ましくは70モル%以上、特に好ましくは90~100モル%である。
 また、「脂肪族ジカルボン酸及び芳香族ジカルボン酸を主成分とする」とは、「脂肪族ジカルボン酸成分と芳香族ジカルボン酸成分の合計モル比率が、原料カルボン酸成分中で最も多いこと」を意味する。中でも得られるポリエステルの物性、生分解性の観点から、脂肪族ジカルボン酸成分及び芳香族ジカルボン酸成分の合計が、原料カルボン酸成分の合計に対して、50モル%以上であることが好ましく、より好ましくは60モル%以上、更に好ましくは70モル%以上、特に好ましくは90~100モル%である。
 本発明において、ポリエステルを製造する際の各反応工程は、回分法でも連続法でも行うことができる。品質の安定化、エネルギー効率の観点からは、原料を連続的に供給し、連続的にポリエステルを得るいわゆる連続法が好ましい。
<核剤>
 本発明の脂肪族芳香族ポリエステルの製造方法において用いる核剤は、製造される脂肪族芳香族ポリエステルの融点(Tm2(℃))と核剤の融点(Tm1(℃))との差(Tm1-Tm2)が0~100℃の範囲にあることを特徴とする。このような融点の条件を満たす核剤を用いることにより、重縮合反応により得られた溶融状態の脂肪族芳香族ポリエステル中の冷却時の結晶化発熱ピーク時間(後述の降温結晶ピーク時間)を短くすることができるため、冷却の際に脂肪族芳香族ポリエステルの結晶化が促進される。それにより冷却工程を短くできることから、経済的にも効率良く、脂肪族芳香族ポリエステルのペレットを連続的に製造することができる。
 核剤の融点Tmの測定方法には特に限定はなく、例えば、目視法(JIS K6220)やDCSやDTAによる熱分析法等により測定される。市販品であればカタログ値を採用することができる。
 脂肪族芳香族ポリエステルの融点(Tm)の測定方法にも特に制限はなく、例えば、後掲の実施例の項に記載の方法により測定される。本発明の脂肪族芳香族ポリエステルの好適な融点については後述する。
 本発明において、脂肪族芳香族ポリエステルの融点(Tm(℃))と核剤の融点(Tm(℃))との差(Tm-Tm)は100℃以下であるが、好ましくは50℃以下であり、より好ましくは40℃以下であり、更に好ましくは20℃以下であり、最も好ましくは15℃以下である。Tm-Tmの値が小さくなるほど、結晶化発熱ピーク時間を短くすることができる。ただし、核剤が結晶核として作用するために、脂肪族芳香族ポリエステルより早く固化する必要があることから、Tm-Tmは0℃以上であり、好ましくは1℃以上、より好ましくは3℃以上である。
 核剤の種類としては、上記条件を満たす核剤であれば、特に限定されない。核剤としては、例えば、ポリエチレンワックス、ポリプロピレンワックス等の炭化水素系核剤、脂肪族アミド系核剤、リン酸エステル金属塩系核剤などを用いることができる。得られる脂肪族芳香族ポリエステルの色調や重合性への影響の観点からは炭化水素系核剤が好ましく、より好ましくはポリエチレンワックス、ポリプロピレンワックスであり、更に好ましくはポリエチレンワックスである。
 ポリエチレンワックス、ポリプロピレンワックスは、分子量、分岐の有無、共重合成分組成等により様々な融点のものが市販されており、市販品の中から、上記融点の条件を満たすものを選択して使用することができる。
 核剤は、上記融点の条件を満たすものであれば、1種のみを用いてもよく、2種以上を混合して用いてもよい。
 本発明の脂肪族芳香族ポリエステルの製造方法において、反応系内に核剤を存在させる方法としては、特に限定されない。核剤はエステル化及び/又はエステル交換反応系内に存在させてもよく、重縮合反応系内に存在させてもよい。例えば、後述する原料の脂肪族ジオール成分と脂肪族ジカルボン酸成分及び芳香族ジカルボン酸成分などと共に核剤をエステル化及び/又はエステル交換反応の反応槽に供給する方法;これらの原料とは別にエステル化及び/又はエステル交換反応の反応槽に核剤を直接添加する方法;重縮合反応槽に添加する方法;重縮合反応槽に付帯的に取り付けられた高温の溶融状態のポリエステルを次工程へ輸送する押出機内で添加する方法;などがある。これらの方法のうちの2種以上を組み合わせて用いてもよい。
 本発明の脂肪族芳香族ポリエステルの製造方法において、反応系に存在させる核剤の量は、生成する脂肪族芳香族ポリエステルに対して100~10000重量ppmとなる量であることが好ましい。この核剤量は、より好ましくは200~5000重量ppmであり、更に好ましくは500~3000重量ppmである。核剤の量が上記上限以下であれば、反応系から留出する核剤量を抑え、後段の蒸留や留出系で回収できずにプロセス全体の負荷を高めることを防止することができる。核剤の量が上記下限以上であれば、得られる脂肪族芳香族ポリエステルの結晶化を十分に進行させることができる。
<ジオール成分>
 本発明に用いるジオール成分としては、前記の通り少なくとも脂肪族ジオール成分が用いられ、且つその合計モル比率が原料ジオール成分中で最も多く用いられれば、通常ポリエステルの原料に用いられるものを特に制限無く使用することができる。
 脂肪族ジオール成分としては、例えば、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、ネオペンチルグリコールなどのアルキレンジオール、ジエチレングリコール、ポリエチレングリコール、ポリプロピレングリール、ポリテトラメチレンエーテルグリコールなどのオキシアルキレンジオール、1,2-シクロヘキサンジオール、1,4-シクロヘキサンジオール、1,2-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノールなどのシクロアルキレンジオールが挙げられる。これらの中でも、得られるポリエステルの物性の面から、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオールなどの炭素数6以下のアルキレンジオール、または1,4-シクロヘキサンジメタノールなどの炭素数6以下のシクロアルキレンジオールが好ましく、中でも1,4-ブタンジオールが好ましい。これらは2種以上が併用されていてもよい。
 脂肪族ジオール成分として1,4-ブタンジオールを用いた場合、1,4-ブタンジオールの使用量は、得られるポリエステルの融点(耐熱性)、生分解性、力学特性の観点から全脂肪族ジオール成分に対して50モル%以上であることが好ましく、70モル%以上がより好ましく、特に好ましくは90~100モル%である。
 脂肪族ジオール成分のうち、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオールはバイオマス(植物原料)由来のものを使用することが好ましい。
<ジカルボン酸成分>
 本発明に用いるカルボン酸成分としては、前記の通り少なくとも脂肪族ジカルボン酸成分と芳香族ジカルボン酸成分が用いられ、且つその合計モル比率が原料ジカルボン酸成分中で最も多く用いられれば、通常ポリエステルの原料に用いられるものを特に制限無く使用することができる。
 ジカルボン酸成分のうち、脂肪族ジカルボン酸成分としては、例えば、シュウ酸、マロン酸、コハク酸、無水コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカジカルボン酸、ドデカジカルボン酸、ダイマー酸などの脂肪族ジカルボン酸、ヘキサヒドロフタル酸、ヘキサヒドロイソフタル酸、ヘキサヒドロテレフタル酸などの芳香族ジカルボン酸の水素化物が挙げられる。これらの中で、得られるポリエステルの物性の面から、コハク酸、無水コハク酸、アジピン酸、セバシン酸などの脂肪族ジカルボン酸或いはそのアルキルエステル等の誘導体が好ましい。特に本発明による結晶化の改善効果が顕著であることから、コハク酸が好ましい。これらは2種以上が併用されていてもよい。
 これらの脂肪族ジカルボン酸成分のうち、コハク酸、無水コハク酸、アジピン酸などはバイオマス(植物原料)由来のものを使用することが好ましい。
 脂肪族ジカルボン酸成分としてコハク酸を用いた場合、コハク酸の使用量は得られるポリエステルの融点(耐熱性)、生分解性、力学特性の観点から、全脂肪族ジカルボン酸成分に対して50モル%以上であることが好ましく、70モル%以上がより好ましく、特に好ましくは90~100モル%である。
 芳香族ジカルボン酸成分としては、例えば、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、ジフェニルジカルボン酸、フランジカルボン酸、或いはそのアルキルエステル等の誘導体等が挙げられ、得られるポリエステルの物性の面から、テレフタル酸、イソフタル酸、フランジカルボン酸が好ましく、特にテレフタル酸、フランジカルボン酸が好ましい。これらは、単独でも2種以上の混合物として使用してもよい。
 芳香族ジカルボン酸成分としてテレフタル酸を用いた場合、テレフタル酸の使用量は得られるポリエステルの融点(耐熱性)、力学特性の観点から、全芳香族ジカルボン酸成分に対して50モル%以上であることが好ましく、70モル%以上がより好ましく、特に好ましくは90~100モル%である。
 また、本発明に用いる脂肪族ジカルボン酸成分と芳香族ジカルボン酸成分とのモル比率は、脂肪族ジカルボン酸成分:芳香族ジカルボン酸成分=40:60~60:40であることが好ましく、特に脂肪族ジカルボン酸成分:芳香族ジカルボン酸成分=50:50~60:40とすることが、得られるポリエステルの耐熱性、生分解性、機械的特性、成形性の観点から好ましい。
 本発明の脂肪族芳香族ポリエステルの製造方法において、製造する脂肪族芳香族ポリエステルは、上述の脂肪族ジオール成分、脂肪族ジカルボン酸成分及び芳香族ジカルボン酸成分を組み合わせて得られるものであれば、特に限定されないが、好ましくは、ポリブチレンサクシネートテレフタレート(PBST)、ポリブチレンサクシネートフラノエート(PBSF)である。
<その他の共重合成分>
 本発明の脂肪族芳香族ポリエステルには、脂肪族ジオール成分、脂肪族ジカルボン酸成分、芳香族ジカルボン酸成分以外のその他の構成成分を共重合させても構わない。この場合に使用することのできる共重合成分としては、乳酸、グリコール酸、ヒドロキシ酪酸、ヒドロキシカプロン酸、2-ヒドロキシ-3,3-ジメチル酪酸、2-ヒドロキシ-3-メチル酪酸、2-ヒドロキシイソカプロン酸、リンゴ酸、マレイン酸、クエン酸、フマル酸等のオキシカルボン酸、及びこれらオキシカルボン酸のエステルやラクトン、オキシカルボン酸重合体等、あるいはグリセリン、トリメチロールプロパン、ペンタエリスリトール等の3官能以上の多価アルコール、あるいは、プロパントリカルボン酸、ピロメリット酸、トリメリット酸ベンゾフェノンテトラカルボン酸及びこれらの無水物などの3官能以上の多価カルボン酸またはその無水物等が挙げられる。
 これらのうち、3官能以上のオキシカルボン酸、3官能以上のアルコール、3官能以上のカルボン酸などは少量加えることにより高粘度のポリエステルを得やすい。中でも、リンゴ酸、クエン酸、フマル酸などのオキシカルボン酸もしくはグリセリン、トリメチロールプロパン、ペンタエリスリトールなどの多価アルコールが好ましく、特にはトリメチロールプロパンが好ましく用いられる。
 3官能以上の多官能化合物を用いる場合、その使用量は全ジカルボン酸成分に対して、0.001~5モル%であることが好ましく、より好ましくは0.05~0.5モル%である。3官能以上の多官能化合物の使用量が上記上限以下であれば、得られるポリエステル中にゲル(未溶融物)が生成することを抑制し易い。3官能以上の多官能化合物の使用量が上記下限以上であれば、多官能化合物を使用したことによる利点(通常、得られるポリエステルの粘度を上昇させることが可能となる)が得られ易い。
<塩基性無機化合物>
 本発明の脂肪族芳香族ポリエステルの製造方法において、塩基性無機化合物をエステル化及び/又はエステル交換反応工程に存在させることが好ましい。塩基性無機化合物をエステル化及び/又はエステル交換反応工程に存在させることにより、得られる脂肪族芳香族ポリエステル中のテトラヒドロフランの量を低減することができ、また、末端酸価を低減することができる。
 存在させる塩基性無機化合物としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどのアルカリ金属の水酸化物などが挙げられ、好ましくは水酸化ナトリウムである。これらは、単独でも2種以上の混合物として使用してもよい。
 用いる塩基性無機化合物の量は、好ましくは金属原子量として得られる脂肪族芳香族ポリエステルに対して1~100重量ppm、より好ましくは1~50重量ppmである。塩基性無機化合物の量が上記下限以上であれば、塩基性無機化合物による上記効果を十分に得ることができる。塩基性無機化合物の量が上記上限以下であれば、重合活性の低下や、ジカルボン酸成分との反応による異物生成の問題を抑制することができる。
 塩基性無機化合物はエステル化及び/又はエステル交換反応工程に存在すればよく、エステル化及び/又はエステル交換反応工程に添加してもエステル化及び/又はエステル交換反応工程よりも前の工程で添加してもよい。例えば、塩基性無機化合物は、原料の脂肪族ジオール成分や脂肪族ジカルボン酸成分、芳香族ジカルボン酸成分などと共にエステル化及び/又はエステル交換反応槽に供給してもよく、これらの原料とは別に直接反応槽に供給してもよい。
<脂肪族芳香族ポリエステルの製造方法>
 以下に連続製造法を例にして、本発明の脂肪族芳香族ポリエステルの製造方法を説明する。
 以下においては、脂肪族ジオールと脂肪族ジカルボン酸及び芳香族ジカルボン酸を用いるエステル化反応工程及びその後の重縮合反応工程により脂肪族芳香族ポリエステルを製造する方法を例示するが、エステル化反応工程はエステル交換反応工程であってもよく、エステル化反応とエステル交換反応との両方を行う工程であってもよい。
 連続製造法では、例えば脂肪族ジカルボン酸及び芳香族ジカルボン酸と脂肪族ジオールとを、連続する複数の反応槽を用いて、エステル化反応工程、溶融重縮合反応工程を経て連続的にポリエステルのペレットを得る。本発明の効果を妨げない限り、連続法に限定されるものではなく、従来公知の脂肪族芳香族ポリエステルの製造方法を採用することができる。
 少なくともジカルボン酸成分とジオール成分とを反応させるエステル化反応工程とそれに続く重縮合反応工程は、連続する複数の反応槽で行うことも単一の反応槽で行うこともできる。得られるポリエステルの物性の変動を小さくするために、連続する複数の反応槽で行うことが好ましい。
 以下において、核剤の供給、塩基性無機化合物の供給については記載を省略しているが、本発明では、前述の通り、エステル化及び/又はエステル交換反応工程、重縮合反応工程に特定の核剤を供給すると共に、好ましくはエステル化及び/又はエステル交換反応工程に塩基性無機化合物を供給する。
<エステル化反応工程>
 エステル化反応工程での反応温度は、エステル化反応を行うことのできる温度であれば特に制限は無いが、反応速度を高めることができるという点で、好ましくは200℃以上、より好ましくは210℃以上である。一方、ポリエステルの着色などを防止するために、この反応温度は270℃以下であることが好ましく、より好ましくは260℃以下、特に好ましくは250℃以下である。反応温度が低すぎると、エステル化反応速度が遅く反応時間を長時間必要とし、脂肪族ジオールの脱水分解など好ましくない反応が多くなる。反応温度が高すぎると、脂肪族ジオール、脂肪族ジカルボン酸、芳香族ジカルボン酸の分解量が多くなり、また反応槽内に飛散物が増加し異物発生の原因となりやすく、反応物に濁り(ヘーズ)を生じやすくなる。
 エステル化反応温度は一定温度であることが好ましい。一定温度であることによりエステル化率が安定する。一定温度とは設定温度±5℃、好ましくは±2℃である。
 反応雰囲気は、窒素、アルゴン等の不活性ガス雰囲気下であることが好ましい。
 反応圧力は、50kPa~200kPaであることが好ましく、より好ましくは60kPa以上、更に好ましくは70kPa以上で、より好ましくは130kPa以下、更に好ましくは110kPa以下である。反応圧力が上記下限未満では反応槽内に飛散物が増加し反応物のヘーズが高くなり異物増加の原因となりやすく、また脂肪族ジオールの反応系外への留出が多くなり重縮合反応速度の低下を招きやすい。反応圧力が上記上限超過では脂肪族ジオールの脱水分解が多くなり、重縮合反応速度の低下を招きやすい。
 反応時間は、好ましくは1時間以上であり、上限は好ましくは10時間以下、より好ましくは4時間以下である。
 エステル化反応を行う脂肪族ジカルボン酸及び芳香族ジカルボン酸の合計に対する脂肪族ジオールの反応モル比は、エステル化反応槽の気相及び反応液相に存在する、脂肪族ジカルボン酸及び芳香族ジカルボン酸及びエステル化された脂肪族ジカルボン酸及び芳香族ジカルボン酸に対する、脂肪族ジオール及びエステル化された脂肪族ジオールとのモル比を表し、反応系で分解されエステル化反応に寄与しない脂肪族ジカルボン酸、芳香族ジカルボン酸、脂肪族ジオール及びそれらの分解物は含まれない。分解されてエステル化反応に寄与しないものとは、例えば、脂肪族ジオールである1,4-ブタンジオールが分解してテトラヒドロフランになったものが挙げられ、テトラヒドロフランは、このモル比には含めない。本発明において、上記反応モル比の下限は、通常1.10以上であり、好ましくは1.12以上、更に好ましくは1.15以上、特に好ましくは1.20以上である。上記反応モル比の上限は、通常3.00以下、好ましくは2.50以下、更に好ましくは2.30以下、特に好ましくは2.00以下である。反応モル比が上記下限未満ではエステル化反応が不十分になりやすく後工程の反応である重縮合反応が進みにくく高重合度のポリエステルを得にくい。反応モル比が上記上限超過では脂肪族ジオール、脂肪族ジカルボン酸、芳香族ジカルボン酸の分解量が多くなる傾向がある。この反応モル比を好ましい範囲に保つためにエステル化反応系に脂肪族ジオールを適宜補給するのは好ましい方法である。
<重縮合反応工程>
 本発明の脂肪族芳香族ポリエステルの製造方法では、エステル化反応工程に続き重縮合反応工程で重縮合反応を行う。
 重縮合反応は、連続する複数の反応槽を用い、減圧下で行うことができる。
 重縮合反応工程における最終重縮合反応槽の反応圧力は、下限が通常0.01kPa以上、好ましくは0.03kPa以上であり、上限は通常1.4kPa以下、好ましくは0.4kPa以下として行う。重縮合反応時の圧力が高すぎると、重縮合時間が長くなり、それに伴いポリエステルの熱分解による分子量低下や着色が引き起こされ、実用上充分な特性を示すポリエステルの製造が難しくなる傾向がある。反応圧力を0.01kPa未満とするような超高真空重縮合設備を用いて製造する手法は重縮合反応速度を向上させる観点からは好ましい態様であるが、極めて高額な設備投資が必要となるため、経済的には不利である。
 反応温度は、下限が通常215℃、好ましくは220℃であり、上限が通常270℃、好ましくは260℃の範囲である。反応温度が上記下限未満であると、重縮合反応速度が遅く、高重合度のポリエステルの製造に長時間を要するばかりでなく、高動力の撹拌機も必要となるため、経済的に不利である。反応温度が上記上限超過であると製造時のポリエステルの熱分解が引き起こされやすく、高重合度のポリエステルの製造が難しくなる傾向がある。
 反応時間は、下限が通常1時間であり、上限が通常15時間、好ましくは10時間、より好ましくは8時間である。反応時間が短すぎると反応が不充分で高重合度のポリエステルを得にくく、その成形品の機械物性が劣る傾向となる。反応時間が長すぎると、ポリエステルの熱分解による分子量低下が顕著となり、その成形品の機械物性が劣る傾向となるばかりでなく、ポリエステルの耐久性に悪影響を与えるカルボキシル基末端量が熱分解により増加する場合がある。
 重縮合反応温度と時間及び反応圧力をコントロールすることにより所望の固有粘度のポリエステルを得ることができる。
<反応触媒>
 エステル化反応及び重縮合反応には反応触媒を使用することにより、反応を促進させることができる。触媒を使用する場合、触媒を反応槽の気相部に添加すると得られるポリエステルのヘーズが高くなることがあり、また触媒が異物化することがある。よって触媒は反応液中に添加することが好ましい。
 重縮合反応においては無触媒では反応が進みにくいため、触媒を用いることが好ましい。重縮合反応触媒は、エステル化反応工程から重縮合反応工程の間のいずれの段階で添加してもよい。重縮合反応触媒は、エステル化反応工程から重縮合反応工程の間に複数回に分けて添加してもよい。
 重縮合反応触媒としては、一般には、周期表第1~14族の金属元素のうち少なくとも1種を含む化合物が用いられる。金属元素としては、具体的には、スカンジウム、イットリウム、サマリウム、チタン、ジルコニウム、バナジウム、クロム、モリブデン、タングステン、錫、アンチモン、セリウム、ゲルマニウム、亜鉛、コバルト、マンガン、鉄、アルミニウム、マグネシウム、カルシウム、ストロンチウム、ナトリウム及びカリウム等が挙げられる。その中では、スカンジウム、イットリウム、チタン、ジルコニウム、バナジウム、モリブデン、タングステン、亜鉛、鉄、ゲルマニウムが好ましく、特に、チタン、ジルコニウム、タングステン、鉄、ゲルマニウムが好ましい。更に、ポリエステルの熱安定性に影響を与えるポリエステル末端濃度を低減させる為には、上記金属の中では、ルイス酸性を示す周期表第3~6族の金属元素が好ましい。具体的には、スカンジウム、チタン、ジルコニウム、バナジウム、モリブデン、タングステンであり、特に、入手のし易さからチタン、ジルコニウムが好ましく、更には反応活性の点からチタンが好ましい。
 ここで、周期表とは、長周期型周期表(Nomenclature of Inorganic Chemistry IUPAC Recommendations 2005)をさす。
 本発明においては、エステル化反応工程では、触媒としてチタン化合物が好ましく用いられる。
 チタン化合物としては、テトラアルキルチタネート及びその加水分解物が好ましい。具体的には、テトラ-n-プロピルチタネート、テトライソプロピルチタネート、テトラ-n-ブチルチタネート、テトラ-t-ブチルチタネート、テトラフェニルチタネート、テトラシクロヘキシルチタネート、テトラベンジルチタネート及びこれらの混合チタネート、ならびにこれらの加水分解物が挙げられる。
 また、チタン(オキシ)アセチルアセトネート、チタンテトラアセチルアセトネート、チタン(ジイソプロキシド)アセチルアセトネート、チタンビス(アンモニウムラクテイト)ジヒドロキシド、チタンビス(エチルアセトアセテート)ジイソプロポキシド、チタン(トリエタノールアミネート)イソプロポキシド、ポリヒドロキシチタンステアレート、チタンラクテート、チタントリエタノールアミネート、及びブチルチタネートダイマー等も用いることができる。
 これらの中では、テトラ-n-プロピルチタネート、テトライソプロピルチタネート、テトラ-n-ブチルチタネート、チタン(オキシ)アセチルアセトネート、チタンテトラアセチルアセトネート、チタンビス(アンモニウムラクテイト)ジヒドロキシド、ポリヒドロキシチタンステアレート、チタンラクテート、ブチルチタネートダイマーが好ましく、テトラ-n-ブチルチタネート、チタン(オキシ)アセチルアセトネート、チタンテトラアセチルアセトネート、ポリヒドロキシチタンステアレート、チタンラクテート、ブチルチタネートダイマーがより好ましく、特に、テトラ-n-ブチルチタネート、ポリヒドロキシチタンステアレート、チタン(オキシ)アセチルアセトネート、チタンテトラアセチルアセトネートが好ましい。
 これらのチタン化合物は、メタノール、エタノール、イソプロパノール、ブタノールなどのアルコール類、エチレングリコール、ブタンジオール、ペンタンジオールなどのジオール類、ジエチルエーテル、テトラヒドロフラン等のエーテル類、アセトニトリル等のニトリル類、ヘプタン、トルエン等の炭化水素化合物、水ならびにそれらの混合物等の触媒溶解用の溶媒を用いて、チタン化合物濃度が通常0.05~5重量%となるように調製された触媒溶液としてエステル化反応工程に供給される。
<リン化合物>
 脂肪族芳香族ポリエステルの製造において、特に脂肪族ジカルボン酸成分としてアジピン酸を用いた場合には、得られる脂肪族芳香族ポリエステルが赤色~ピンク色に着色する。着色した脂肪族芳香族ポリエステルを成形してなる成形品は赤みを帯び、品質に劣るものとなる問題が起こることがある。また、原料ジオール成分として用いた1,4-ブタンジオールの分解性が高く、テトラヒドロフランが副生し易く、非効率(1,4-ブタンジオール原単位悪化など)であるという問題が起こることがある。
 エステル化及び/又はエステル交換反応槽及び重縮合反応槽から留出するガスは、副生物である脂肪族ジオール成分、水が主成分であり、例えば脂肪族ジオール成分として1,4-ブタンジオールが使用される場合にはその分解物であるテトラヒドロフランも含まれる。これらのガス成分は、通常、精留塔や湿式コンデンサ等により分離・捕集され、原料ジオール成分が主成分である高沸成分については、一部原料として再使用されることがあるが、テトラヒドロフランはエステル反応に寄与しないため、テトラヒドロフランの副生量が多いと、1,4-ブタンジオールの原単位悪化に繋がり、好ましくない。
 この問題を解決し、テトラヒドロフランの副生を抑制し、色調も良好な高品質の脂肪族芳香族ポリエステルを製造するための工夫として、脂肪族ジオール成分と脂肪族ジカルボン酸成分及び芳香族ジカルボン酸成分とを反応させるエステル化及び/又はエステル交換反応工程を経て得られるエステルオリゴマーの末端酸価を30~1000eq./tonに制御し、この末端酸価が制御されたエステルオリゴマーに対してリン化合物を接触させた後重縮合反応を行う方法が有効である。
 この場合、エステル化及び/又はエステル交換反応工程で得られた末端酸価30~1000eq./tonのエステルオリゴマーに接触させるリン化合物としては、例えば、正リン酸、ポリリン酸、及び、トリメチルホスフェート、トリエチルホスフェート、トリ-n-ブチルホスフェート、トリオクチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリス(トリエチレングリコール)ホスフェート、エチルジエチルホスホノアセテート、メチルアシッドホスフェート、エチルアシッドホスフェート、イソプロピルアシッドホスフェート、ブチルアシッドホスフェート、モノブチルホスフェート、ジブチルホスフェート、ジオクチルホスフェート、トリエチレングリコールアシッドホスフェート等の5価のリン化合物、亜リン酸、次亜リン酸、ジエチルホスファイト、トリスドデシルホスファイト、トリスノニルデシルホスファイト、トリフェニルホスファイト等の3価のリン化合物等が挙げられる。その中で酸性リン酸エステル化合物が好ましい。酸性リン酸エステル化合物としては、下記一般式(I)及び/又は(II)で表される少なくとも1個の水酸基を有するリン酸のエステル構造を有するものが好ましく用いられる。
Figure JPOXMLDOC01-appb-C000001
 式中、R、R’、R”は各々炭素数1以上6以下のアルキル基、シクロヘキシル基、アリール基又は2-ヒドロキシエチル基を表し、式(I)において、RとR’は同一であっても異なっていてもよい。
 このような酸性リン酸エステル化合物の具体例としては、メチルアシッドホスフェート、エチルアシッドホスフェート、イソプロピルアシッドホスフェート、ブチルアシッドホスフェート、オクチルアシッドホスフェートなどが挙げられ、エチルアシッドホスフェート、ブチルアシッドホスフェートが好ましい。これらの酸性リン酸エステル化合物は、1種を単独で用いてもよく、2種以上を併用してもよい。
 酸性リン酸エステル化合物には上記一般式(II)で表されるモノエステル体と上記一般式(I)で表されるジエステル体がある。高い触媒活性を示す触媒が得られる理由から、モノエステル体、又は、モノエステル体とジエステル体の混合物を用いるのが好ましい。モノエステル体とジエステル体の混合重量比(モノエステル体:ジエステル体)は、80以下:20以上が好ましく、更に好ましくは、70以下:30以上、特に好ましくは、60以下:40以上であり、20以上:80以下が好ましく、更に好ましくは、30以上:70以下、特に好ましくは、40以上:60以下である。
 このようにリン化合物を用いる方法において、リン化合物と共にアルカリ土類金属化合物をエステルオリゴマーに接触させることが好ましい。この場合、アルカリ土類金属化合物としては、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウムの各種化合物が挙げられる。取り扱いや入手の容易さ、触媒効果の点から、マグネシウム、カルシウムの化合物が好ましく、中でも、触媒効果に優れるマグネシウム化合物が好ましい。マグネシウム化合物の具体例としては、酢酸マグネシウム、水酸化マグネシウム、炭酸マグネシウム、酸化マグネシウム、マグネシウムアルコキサイド、燐酸水素マグネシウム等が挙げられる。これらの中では酢酸マグネシウムが好ましい。
 これらリン化合物及びアルカリ土類金属化合物は、前述のチタン化合物の触媒溶液の調製に用いる触媒溶解用の溶媒として例示した溶媒を用いて、リン化合物が0.01~7.6重量%、アルカリ土類金属化合物が0.02~9.7重量%の濃度となるように調製された触媒溶液として、重縮合反応工程に供給されるエステルオリゴマーに対して添加することが好ましい。
 エステル化反応工程で用いるチタン化合物と、重縮合反応工程で用いるリン化合物及びアルカリ土類金属化合物の使用量、使用割合については特に制限はない。例えば、チタン化合物は、生成ポリエステルに対するTi換算添加量で5~100重量ppmとなるように用いることが好ましい。リン化合物は、チタン化合物のTi換算添加モル量に対するP換算添加モル比(P/Tiモル比)で0.5~2.5となるように用いることが好ましい。アルカリ土類金属化合物は、チタン化合物のTi換算添加モル量に対するアルカリ土類金属換算添加モル比(アルカリ土類金属/Tiモル比)で0.5~3.0となるように用いることが好ましい。いずれの触媒化合物も、多すぎると、経済的に不利であるばかりでなく、理由は未だ詳らかではないが、最終的に得られるポリエステル中の末端酸価が高くなる場合があるため、末端酸価ならびに残留触媒濃度の増大によりポリエステルの熱安定性や耐加水分解性が低下する場合がある。逆に少なすぎると反応活性が低くなり、それに伴いポリエステル製造中にポリエステルの熱分解が誘発され、実用上有用な物性を示すポリエステルが得られにくくなる。
<反応槽>
 本発明に用いるエステル化反応槽としては、公知のものが使用でき、縦型攪拌完全混合槽、縦型熱対流式混合槽、塔型連続反応槽等の型式のいずれであってもよい。反応槽は、また、単数槽としても、同種または異種の槽を直列させた複数槽としてもよい。中でも攪拌装置を有する反応槽が好ましく、攪拌装置としては、動力部及び受、軸、攪拌翼からなる通常のタイプの他、タービンステーター型高速回転式攪拌機、ディスクミル型攪拌機、ローターミル型攪拌機等の高速回転するタイプも用いることができる。
 攪拌の形態にも制限はなく、反応槽中の反応液を反応槽の上部、下部、横部等から直接攪拌する通常の攪拌方法の他、反応液の一部を反応槽の外部に配管等で持ち出してラインミキサ-等で攪拌し、反応液を循環させる方法もとることができる。攪拌翼の種類も公知のものが選択でき、具体的にはプロペラ翼、スクリュー翼、タービン翼、ファンタービン翼、デイスクタービン翼、ファウドラー翼、フルゾーン翼、マックスブレンド翼等が挙げられる。
 本発明に用いる重縮合反応槽の型式に特に制限はなく、例えば、縦型攪拌重合槽、横型攪拌重合槽、薄膜蒸発式重合槽などを挙げることができる。重縮合反応槽は、1基とすることができ、あるいは、同種または異種の複数基の槽を直列させた複数槽とすることもできる。反応液の粘度が上昇する重縮合の後期は、界面更新性とプラグフロー性、セルフクリーニング性に優れた薄膜蒸発機能を有した横型攪拌重合機を選定することが好ましい。
<ペレット化>
 上記の重縮合反応を経て得られる高温で溶融状態のポリエステルは冷却をしながらペレット化され、ポリエステルペレットとすることができる。
 ペレット化の方法は、高温で溶融状態のポリエステルをギヤポンプまたは押出機を用いてダイスヘッドのノズル孔より押出し、水などで冷却しつつまたは冷却固化したストランドをカッターで切断するストランドカット法;ノズル孔より水中に押出し溶融状態で直ちに切断する水中ホットカット法;などが広く用いられる。
 本発明の脂肪族芳香族ポリエステルにおいては、得られるペレット中に切り屑が少ないこと、得られるペレットの安息角が低いこと、ペレットの移送安定性、成形時の成形機へのフィードの安定性が良好なことから、水中ホットカット方式が好ましい。水中カット方式における冷却水温は、下限は10℃以上が好ましく、より好ましくは20℃以上であり、上限は70℃以下が好ましく、より好ましくは60℃以下、さらに好ましくは50℃以下である。
 ペレットの形状は球状、楕円体状、円柱状、楕円柱状、長円柱状、角柱状、繭玉状など、およびこれらが扁平になったものなどがある。水中ホットカット方式では楕円体状、円柱状、楕円柱状、球状、繭玉状およびそれらの扁平状となることが多く、楕円体状、円柱状が好ましい。
<ポリエステルの製造プロセス>
 本発明の脂肪族芳香族ポリエステルの製造において、原料は通常、原料混合槽で1,4-ブタンジオール等の脂肪族ジオール成分と混合され、原料供給ラインからスラリーまたは液体の形態でエステル化反応槽に供給される。エステル化反応時に触媒を添加する場合は、触媒調製槽で1,4-ブタンジオール等の脂肪族ジオール成分の溶液とした後、触媒供給ラインから触媒溶液を供給する。
 エステル化反応槽から留出するガスは、留出ラインを経て精留塔で高沸成分と低沸成分とに分離される。通常、高沸成分の主成分は1,4-ブタンジオール等の脂肪族ジオール成分であり、低沸成分の主成分は、水及び1,4-ブタンジオール等の脂肪族ジオール成分の分解物である。
 精留塔で分離された高沸成分は抜出ラインから抜き出され、ポンプを経て、一部は再循環ラインからエステル化反応槽に循環され、一部は循環ラインから精留塔に戻される。余剰分は抜出ラインから外部に抜き出される。一方、精留塔で分離された軽沸成分はガス抜出ラインから抜き出され、コンデンサで凝縮され、凝縮液ラインを経てタンクに一時溜められる。タンクに集められた軽沸成分の一部は、抜出ライン、ポンプ及び循環ラインを経て精留塔に戻され、残部は、抜出ラインを経て系外へ抜き出される。コンデンサはベントラインを経て排気装置に接続されている。エステル化反応槽内で生成したエステル化反応物は、抜出ポンプ及びエステル化反応物の抜出ラインを経て重縮合反応槽(第1重縮合反応槽)に供される。
<ポリエステルの物性>
 本発明の脂肪族芳香族ポリエステルの製造方法により得られる本発明の脂肪族芳香族ポリエステルは、製造工程において、特定の核剤を存在させる結果、当該核剤を前述のポリエステルに対する好適量で含むものとして製造される。
 本発明の脂肪族芳香族ポリエステルの固有粘度(IV)は、下限が1.0dL/g以上であることが好ましく、特に好ましくは1.2dL/g以上である。本発明の脂肪族芳香族ポリエステルの固有粘度の上限は2.5dL/gが好ましく、より好ましくは2.2dL/gであり、特に好ましくは2.0dL/gである。固有粘度が下限未満であると、成形品にしたときに十分な機械強度が得にくい。固有粘度が上限超過であると、成形時に溶融粘度が高く成形しにくい。本発明の脂肪族芳香族ポリエステルの固有粘度は、後掲の実施例の項に記載の方法で測定される。
 本発明の脂肪族芳香族ポリエステルの末端酸価は30eq./ton以下であることが好ましく、より好ましくは20eq./ton以下、更に好ましくは15eq./ton以下である。脂肪族芳香族ポリエステルの末端酸価が上記上限を超えると、加水分解による粘度低下が顕著となり、品質を著しく損なう場合がある。本発明の脂肪族芳香族ポリエステルの末端酸価は、後掲の実施例の項に記載の方法で測定される。
 本発明のポリエステルの融点(Tm)には特に制限はないが、上記の好適な固有粘度及び末端酸価を満たす脂肪族芳香族ポリエステルの融点は、通常100~150℃程度である。従って、本発明で用いる核剤は、融点(Tm)が100~165℃程度であることが好ましい。本発明の脂肪族芳香族ポリエステルの融点は、後掲の実施例の項に記載の方法で測定される。
 本発明の脂肪族芳香族ポリエステルのDSCによる降温結晶ピーク時間は、60秒以下が好ましく、より好ましくは50秒以下である。降温結晶ピーク時間が上記上限以下であれば、結晶化が十分に促進されており、結晶化不足による問題を抑制することができる。降温結晶ピーク時間の下限には特に制限はないが、通常30秒程度である。本発明の脂肪族芳香族ポリエステルの降温結晶ピーク時間は、後掲の実施例の項に記載の方法で測定される。
<ポリエステル組成物>
 本発明により得られる本発明の脂肪族芳香族ポリエステルに、脂肪族ポリエステルや、脂肪族オキシカルボン酸系ポリエステル等を配合してもよい。更に必要に応じて用いられるカルボジイミド化合物、充填材、可塑剤、その他、本発明の効果を阻害しない範囲で他の生分解性樹脂(例えば、ポリカプロラクトン、ポリアミド、ポリビニルアルコール、セルロースエステル等)や、澱粉、セルロース、紙、木粉、キチン・キトサン質、椰子殻粉末、クルミ殻粉末等の動物/植物物質微粉末、あるいはこれらの混合物を配合することができる。更に、成形品の物性や加工性を調整する目的で、熱安定剤、可塑剤、滑剤、ブロッキング防止剤、前記式(1)を満たす核剤以外の核剤、無機フィラー、着色剤、顔料、紫外線吸収剤、光安定剤等の添加剤、改質剤、架橋剤等を含有させてもよい。
 本発明の脂肪族芳香族ポリエステルからポリエステル組成物を製造する方法は、特に限定されないが、ブレンドしたポリエステルの原料チップを同一の押出機で溶融混合する方法;各々別々の押出機で溶融させた後に混合する方法;一軸押出機、二軸押出機、バンバリーミキサー、ロールミキサー、ブラベンダープラストグラフ、ニーダーブレンダー等の通常の混練機を用いて混練することによって混合する方法;等が挙げられる。また、各々の原料チップを直接成形機に供給して組成物を調製すると同時に、その成形品を得ることも可能である。
 以下、実施例により本発明を更に詳細に説明する。本発明は、その要旨を超えない限り、以下の実施例に何ら限定されるものではない。
 以下の諸例で採用した物性及び評価項目の測定方法は次の通りである。
<固有粘度(IV)(dL/g)>
 ウベローデ型粘度計を使用し、次の要領で求めた。
 フェノール/テトラクロロエタン(質量比1/1)の混合溶媒を使用し、30℃において、濃度0.5g/dLのポリマー溶液及び溶媒のみの落下秒数を測定し、以下の式(2)より求めた。
  IV=((1+4KηSP0.5-1)/(2KC) …(2)
 ηSP=η/η-1であり、ηは試料溶液落下秒数、ηは溶媒の落下秒数、Cは試料溶液濃度(g/dL)、Kはハギンズの定数である。Kは0.33を採用した。
<エステルオリゴマーの末端酸価(eq./ton)>
 ペースト状のエステルオリゴマー0.3gを100mLビーカーに採取し、ベンジルアルコール40mLを加えて乾燥窒素ガスを吹き込みながら180℃のホットプレート上で加熱した。途中で溶解を確認しながら20分経過後、水冷により60℃まで降温させた。ベンジルアルコール10mLにてビーカー壁についた油滴を洗い流し、この溶液にフェノールレッド指示薬を1~2滴加え、乾燥窒素ガスを吹き込みながら撹拌下に、0.1mol/Lの水酸化カリウムのメタノール溶液で滴定し、黄色から赤色に変じた時点で終了とした。また、ブランクとして、ベンジルアルコールのみで同様の操作を実施し、以下の式(3)によって末端酸価(末端カルボキシ基量)を算出した。
<ポリエステルの末端酸価(eq./ton)>
 ペレット状ポリエステルを、真空乾燥機にて60℃で8時間分間乾燥させ、デシケーター内で室温まで冷却した試料から、0.5gを精秤して試験管に採取し、ベンジルアルコール25mLを加えて、乾燥窒素ガスを吹き込みながら195℃にて3分間で溶解させた。次いで、氷浴で40秒冷却撹拌した後エタノール2mLを徐々に加えた。この溶液にフェノールレッド指示薬を1~2滴加え、乾燥窒素ガスを吹き込みながら撹拌下に、0.1mol/Lの水酸化ナトリウムのベンジルアルコール溶液で滴定し、黄色から赤色に変じた時点で終了とした。また、ブランクとして、ポリエステル試料を加えずに同様の操作を実施し、以下の式(3)によって末端酸価(末端カルボキシ基量)を算出した。
<末端酸価の算出式>
  末端酸価(eq./ton)=(a-b)×0.1×f/w …(3)
 ここで、aは、滴定に要した0.1mol/Lの水酸化ナトリウムのベンジルアルコール溶液の量(μL)、bは、ブランクでの滴定に要した0.1mol/Lの水酸化ナトリウムのベンジルアルコール溶液の量(μL)、wはエステルオリゴマー又はポリエステルの試料の量(g)、fは、0.1mol/Lの水酸化ナトリウムのベンジルアルコール溶液の力価である。
 0.1mol/Lの水酸化ナトリウムのベンジルアルコール溶液の力価(f)は以下の方法で求めた。
 試験管にメタノール5cmを採取し、フェノールレッドのエタノール溶液の指示薬として1~2滴加え、0.lmol/Lの水酸化ナトリウムのベンジルアルコール溶液0.4cmで変色点まで滴定し、次いで力価既知の0.1mol/Lの塩酸水溶液を標準液として0.2cm採取して加え、再度、0.1mol/Lの水酸化ナトリウムのベンジルアルコール溶液で変色点まで滴定した(以上の操作は、乾燥窒素ガス吹き込み下で行った。)。以下の式(4)によって力価(f)を算出した。
  力価(f)=0.1mol/Lの塩酸水溶液の力価×0.1Nの塩酸水溶液の採取量(μL)/0.1mol/Lの水酸化ナトリウムのベンジルアルコール溶液の滴定量(μL) …(4)
<ポリエステルの融点(℃)>
 下記の実施例1~3及び比較例1については、DSC6220(エスアイアイ・ナノテクノロジー社製)を用いて、室温から250℃へ20℃/minの速度で昇温した時の、吸熱ピーク温度を測定し、ポリエステルの融点とした。
 下記の実施例5~13及び比較例2~5については、DSC7020(日立ハイテクサイエンス社製)を用いて、室温から250℃へ20℃/minの速度で昇温した時の、吸熱ピーク温度を測定し、ポリエステルの融点とした。
<ポリエステルの融解エンタルピー比>
 DSC7020(日立ハイテクサイエンス社製)を用いて、室温から200℃へ10℃/minの速度で昇温したのち、200℃から-50℃まで10℃/minの速度で冷却し、さらに-50℃から200℃まで10℃/minで昇温した。脂肪族芳香族ポリエステルから核剤を除いた樹脂について、上記方法でDSCを測定する際、2回目の昇温過程における試料樹脂の融解に対応する吸熱ピークの面積を融解エンタルピー(それぞれΔHm,ΔHm0)と定義する。この時、ΔHmをΔHm0で除した値(ΔHm/ΔHm0)を融解エンタルピー比と定義し、評価に用いた。この(ΔHm/ΔHm0)の値は、結晶化の促進度合いを示す指標であり、この値が大きいほど結晶化が促進されていることを示す。
<ポリエステルの降温結晶化ピーク時間(sec)>
 DSC測定用アルミ製オープンパンにポリエステルを10±1mgを入れ、窒素雰囲気下で200℃にて10分間加熱溶融した。溶融状態のまま、DSC6220(エスアイアイ・ナノテクノロジー社製)に当該サンプルパンをセットし、10℃での等温測定を行った。結晶化による発熱が極大値となる時間を記録し、同様の測定を20℃、30℃、40℃で実施し、発熱極大値までの時間が最も短い時間を、降温結晶化ピーク時間とした。この値が小さいほど、結晶化が促進されていることを示す。
[重縮合用触媒の調製]
 撹拌装置付き反応器に酢酸マグネシウム・4水和物を343.5重量部入れ、更に1434重量部の無水エタノール(純度99重量%以上)を加えた。更にエチルアシッドホスフェート(モノエステル体とジエステル体の混合重量比は45:55)を218.3重量部加え、23℃で撹拌を行った。酢酸マグネシウムが完全に溶解したことを確認後、テトラ-n-ブチルチタネートを410.0重量部添加した。更に10分間撹拌を継続し、均一混合溶液を得た。この混合溶液を、60℃以下の温度でコントロールし減圧下で濃縮を行った。添加したエタノールに対し、およそ半分量のエタノールが留去され、半透明の粘稠な液体が残った。ここへ1,4-ブタンジオール1108重量部を添加し、温度80℃以下の温度でコントロールし減圧下でさらに濃縮を行い、チタン原子含有量3.5重量%の触媒溶液を得た。
[実施例1]
 攪拌装置、窒素導入口、加熱装置、温度計及び減圧口を備えた反応容器に、原料としてコハク酸33.6重量部、テレフタル酸38.6重量部、1,4-ブタンジオール69.7重量部、トリメチロールプロパン0.138重量部、ポリエチレンワックス(Honeywell社製「ACumistB6」、融点:124℃)0.10重量部、水酸化ナトリウム(NaOH)0.0017重量部を仕込み、さらにテトラ-n-ブチルチタネートを得られるポリエステルあたりチタン原子として30重量ppmとなるように添加した。容器内容物を攪拌下、容器内に窒素ガスを導入し、減圧置換によって系内を窒素雰囲気下にした。次に、系内を攪拌しながら160℃から230℃へ1時間かけて昇温し、この温度で3時間反応させた。得られたエステルオリゴマーの末端酸価を測定したところ90eq./tonであった。
 このエステルオリゴマーに、前記の触媒溶液を、得られるポリエステルあたりチタン原子として70重量ppmとなる量を添加し、45分かけて250℃まで昇温すると同時に、1時間20分かけて0.07×10Pa以下になるように減圧し、加熱減圧状態を保持したまま重縮合を継続し、所定の粘度になったところで重合を終了し、ポリエステル共重合体を得た。
 このエステル化反応及び重縮合反応における留出液を回収し、ガスクロマトグラフの絶対検量法でテトラヒドロフラン濃度を測定し、テトラヒドロフランの副生量(THF副生量)を算出するとポリエステル共重合体100重量部あたり0.0047重量部であった。
[比較例1]
 ポリエチレンワックス及び水酸化ナトリウムを添加しなかったこと以外は実施例1と同様にして、ポリエステル共重合体を得た。
[実施例2]
 ポリエチレンワックスの添加量を実施例1における10倍量に変更したこと以外は実施例1と同様にして、ポリエステル共重合体を得た。
[実施例3]
 ポリエチレンワックスの代わりにポリプロピレンワックス(クラリアントケミカルズ社製「PP7502」、融点:160℃)を添加したこと以外は実施例1と同様にして、ポリエステル共重合体を得た。
[実施例4]
 水酸化ナトリウムの添加量を実施例1における10倍量に変更したこと以外は実施例1と同様にして、ポリエステル共重合体を得た。
 実施例1~3及び比較例1で製造されたポリエステル共重合体の融点(Tm)と降温結晶化ピーク時間を測定し、その結果を製造条件と共に表1に示した。
 また、実施例1,4及び比較例1における重合時間、製造されたポリエステル共重合体の固有粘度(IV)、この固有粘度を重合時間で除して求めた重合速度、及び製造されたポリエステル重合体の末端酸価、製造時のTHF副生量を測定し、その結果を製造条件と共に表2に示した。
 表1,2中、ポリエチレンワックスを「PE-Wax」と記載し、ポリプロピレンワックスを「PP-Wax」と記載する。核剤の融点(Tm)とポリエステル共重合体の融点(Tm)の差(Tm-Tm)を「ΔTm」と記載する。
 表1,2中、核剤の添加量は、ポリエステル共重合体に対する添加量であり、塩基性無機化合物の添加量はポリエステル共重合体に対する金属原子としての添加量である。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1より、本発明に係る式(1)を満たす核剤を反応系に存在させた実施例1~3のポリエステル共重合体は、これを存在させていない比較例1のポリエステル共重合体よりも降温結晶化ピーク時間が短く、結晶化が促進されていることが分かる。
 表2の実施例1,4及び比較例1の対比より、実施例1,4ではNaOHの添加で、酸による分解反応を抑制(中和)してTHF副生量と末端酸価を低減できることが分かる。
[実施例5]
 攪拌装置、窒素導入口、加熱装置、温度計及び減圧口を備えた反応容器に、原料としてコハク酸24.2重量部、2,5-フランジカルボン酸48.0重量部、1,4-ブタンジオール92.4重量部、トリメチロールプロパン0.138重量部、ポリエチレンワックス(Honeywell社製「ACumist B6」、融点:124℃)1.00重量部を仕込み、さらにテトラ-n-ブチルチタネートを得られるポリエステルあたりチタン原子として30重量ppmとなるように添加した。容器内容物を攪拌下、容器内に窒素ガスを導入し、減圧置換によって系内を窒素雰囲気下にした。次に、系内を攪拌しながら170℃から190℃へ1時間かけて昇温し、この温度で1~2時間反応させた。その後、テトラ-n-ブチルチタネートを得られるポリエステルあたりチタン原子として70重量ppmとなる量をさらに添加し、1.5時間かけて240℃まで昇温すると同時に、1.5時間かけて0.07×10Pa以下になるように減圧し、加熱減圧状態を保持したまま重縮合を継続し、所定の粘度になったところで重合を終了し、ポリエステル共重合体を得た。
[比較例2]
 実施例5において、ポリエチレンワックスを添加しなかったこと以外は全て同様に製造を行い、ポリエステル共重合体を得た。このエステル化反応及び重縮合反応における留出液を回収し、ガスクロマトグラフでテトラヒドロフラン濃度を測定し、テトラヒドロフランの副生量(THF副生量)を算出するとポリエステル共重合体100重量部あたり19.2重量部であった。
[実施例6]
 攪拌装置、窒素導入口、加熱装置、温度計及び減圧口を備えた反応容器に、原料としてコハク酸24.2重量部、2,5-フランジカルボン酸48.0重量部、1,4-ブタンジオール92.4重量部、トリメチロールプロパン0.138重量部、さらにテトラ-n-ブチルチタネートを得られるポリエステルあたりチタン原子として30重量ppmとなるように添加した。容器内容物を攪拌下、容器内に窒素ガスを導入し、減圧置換によって系内を窒素雰囲気下にした。次に、系内を攪拌しながら170℃から190℃へ1時間かけて昇温し、この温度で1~2時間反応させた。その後、テトラ-n-ブチルチタネートを得られるポリエステルあたりチタン原子として70重量ppmとなる量をさらに添加し、1.5時間かけて240℃まで昇温すると同時に、1.5時間かけて0.07×10Pa以下になるように減圧し、所定の粘度に到達するまで加熱減圧状態を保持したまま重縮合反応を行った。次いで、溶融状態の前記樹脂100質量部にポリエチレンワックス(BASF社製「Luwax AH3」、融点:113℃)1.00重量部を加えて混練した後、重合を終了し、ポリエステル共重合体を得た。
[実施例7]
 実施例6において、ポリエチレンワックス(BASF社製「Luwax AH3」)を、ポリエチレンワックス(Honeywell社製「ACumist A6」、融点:132℃)に変更した以外は全て同様に実施し、ポリエステル共重合体を得た。
[実施例8]
 実施例6において、ポリエチレンワックス(BASF社製「Luwax AH3」)を、脂肪酸アミド(三菱ケミカル社製「スリパックスH」、化合物名:エチレンビス-12-ヒドロキシステアリン酸アミド、融点:145℃)に変更した以外は全て同様に実施し、ポリエステル共重合体を得た。
[実施例9]
 実施例6において、ポリエチレンワックス(BASF社製「Luwax AH3」)を、リン酸エステル金属塩(日産化学工業製「エコプロモート」、化合物名:フェニルホスホン酸亜鉛、融点:164℃)に変更した以外は全て同様に実施し、ポリエステル共重合体を得た。
[比較例3]
 実施例6において、ポリエチレンワックス(BASF社製「Luwax AH3」)を、タルク(日本タルク社製「ナノエースD-600」、融点:900℃以上(分解))に変更した以外は全て同様に実施し、ポリエステル共重合体を得た。
[比較例4]
 実施例6において、ポリエチレンワックス(BASF社製「Luwax AH3」)を、タルク(日本タルク社製「MS-KY」、融点900℃以上(分解))に変更した以外は全て同様に実施し、ポリエステル共重合体を得た。
[実施例10]
 実施例5で得られたポリエステル共重合体を、アンダーウォーターカッター(ECON社製、EUP10、冷却水温度:14~28℃)を備えた二軸押出機(パーカーコーポレーション製、HK-25D(41D)、シリンダー温度:220℃)に供給し、溶融混練した後カットすることで、脂肪族芳香族ポリエステル組成物からなる回転楕円体状の形状を有するペレット(長径約5mm、短径約3mm)を作製した。カット直後のペレットは15~30℃の冷却水で数秒程度冷却したのち、遠心脱水し回収した。
[実施例11]
 実施例5において、ポリエチレンワックスの添加量を0.1倍(1000重量ppm)に変更したこと以外は同様にしてポリエステル共重合体を得た。そして、得られたポリエステル共重合体を実施例10と同様の方法によりペレットを作製した。カット直後のペレットは15~30℃の冷却水で数秒程度冷却したのち、遠心脱水し回収した。
 実施例10,11のいずれの場合にも、ペレット化後のペレットに顕著な融着はみられなかった。特に冷却水温を低くした場合には、融着が軽減される傾向が認められた。
[実施例12]
 実施例5において、原料仕込み時に同時にテトラエチルアンモニウムヒドロキシド(東京化成工業株式会社製,EtNOH)を得られるポリエステルあたり300重量ppmとなるように添加した以外は全て同様に実施して、ポリエステル共重合体を得た。
 このエステル化反応及び重縮合反応における留出液を回収し、ガスクロマトグラフでテトラヒドロフラン濃度を測定し、テトラヒドロフランの副生量(THF副生量)を算出するとポリエステル共重合体100重量部あたり16.3重量部であった。
[実施例13]
 実施例5において、原料仕込み時に同時に水酸化ナトリウム(東京化成工業株式会社製,NaOH)を得られるポリエステルあたりナトリウム原子として30重量ppmとなるように添加した以外は全て同様に実施して、ポリエステル共重合体を製造した。
 このエステル化反応及び重縮合反応における留出液を回収し、ガスクロマトグラフでテトラヒドロフラン濃度を測定し、テトラヒドロフランの副生量(THF副生量)を算出するとポリエステル共重合体100重量部あたり17.0重量部であった。
[比較例5]
 原料としてコハク酸22.3重量部、2,5-フランジカルボン酸ジメチル52.2重量部、1,4-ブタンジオール68.1重量部、トリメチロールプロパン0.138重量部を用いたこと以外は比較例2と同様に製造を行い、核剤を含まないポリエステル共重合体を得た。
 このエステル化反応及び重縮合反応における留出液を回収し、ガスクロマトグラフでテトラヒドロフラン濃度を測定し、テトラヒドロフランの副生量(THF副生量)を算出するとポリエステル共重合体100重量部あたり7.4重量部であった。
 実施例5~11及び比較例2~4で製造されたポリエステル共重合体の融点(Tm)と融解エンタルピー比(ΔHm/ΔHm0)を測定し、その結果を製造条件と共に表3A,3B,4に示した。
 実施例10~11については、ペレット形状、ペレタイズ性を評価し、その結果をあわせて表4に示した。
 また、実施例12,13及び比較例2、5における重合時間、製造されたポリエステル共重合体の固有粘度(IV)、この固有粘度を重合時間で除して求めた重合速度、及び製造されたポリエステル共重合体の末端酸価、製造時のTHF副生量、融点(Tm)と融解エンタルピー比(ΔHm/ΔHm0)を測定し、その結果を製造条件と共に表5に示した。
 表3A,3B,表4,表5中、ポリエチレンワックスを「PE-Wax」と記載し核剤の融点(Tm)とポリエステル共重合体の融点(Tm)の差(Tm-Tm)を「ΔTm」と記載する。
 表3A,3B,表4,表5の核剤および塩基性有機化合物の添加量は、ポリエステル共重合体に対する添加量であり、塩基性無機化合物の添加量はポリエステル共重合体に対する金属原子としての添加量である。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表3A,3Bより、本発明に係る式(1)を満たす核剤を含有する実施例5~9のポリエステル共重合体は、核剤を含まない比較例2のポリエステル共重合体よりもΔHm/ΔHm0の値が大きく、結晶化が促進されていることが分かる。
 式(1)を満たさない核剤を用いた比較例3,4では、ΔHm/ΔHm0の値が十分に大きくなっておらず、結晶化の促進効果が低いことが分かる。
 表4の実施例10,11より、式(1)を満たす核剤の添加量によりΔHm/ΔHm0の値には多少の差が生じるが、いずれの場合にも本発明の脂肪族芳香族ポリエステルをアンダーウォーターカッターでペレタイズすることによって、より融着しにくい楕円体状にペレット化することが可能であり、ほぼブロッキングは認められなかった。
 表5の実施例12,13と比較例2,5の対比より、原料としてフランジカルボン酸成分を用いた場合であっても、塩基性化合物を添加した場合には(実施例12,13)、酸による分解反応を抑制(中和)してTHF副生量を低減できることが分かる。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2020年2月12日付で出願された日本特許出願2020-021757に基づいており、その全体が引用により援用される。

Claims (9)

  1.  原料として脂肪族ジオール成分と脂肪族ジカルボン酸成分及び芳香族ジカルボン酸成分とを触媒の存在下にエステル化及び/又はエステル交換反応を経て重縮合反応を行うことにより脂肪族芳香族ポリエステル製造する際に、下記式(1)の条件を満たす核剤を反応系内に存在させることを特徴とする脂肪族芳香族ポリエステルの製造方法。
      0℃<Tm-Tm≦100℃ ・・・(1)
    (上記式(1)中、Tm:核剤の融点(℃)、Tm:脂肪族芳香族ポリエステルの融点(℃))
  2.  前記核剤を、生成する脂肪族芳香族ポリエステルに対して100~10000重量ppmとなる量で存在させる請求項1に記載の脂肪族芳香族ポリエステルの製造方法。
  3.  前記脂肪族ジカルボン酸成分と前記芳香族ジカルボン酸成分のモル比率が40:60~60:40である請求項1又は2に記載の脂肪族芳香族ポリエステルの製造方法。
  4.  前記エステル化及び/又はエステル交換反応を塩基性無機化合物の存在下で行う請求項1~3のいずれか1項に記載の脂肪族芳香族ポリエステルの製造方法。
  5.  前記塩基性無機化合物を、生成する脂肪族芳香族ポリエステルに対して金属原子として1~100重量ppmとなる量で存在させる請求項4に記載の脂肪族芳香族ポリエステルの製造方法。
  6.  前記脂肪族ジカルボン酸成分がコハク酸成分である請求項1~5のいずれかに記載の脂肪族芳香族ポリエステルの製造方法。
  7.  前記芳香族ジカルボン酸成分がテレフタル酸成分及び/又はフランジカルボン酸成分である請求項1~6のいずれかに記載の脂肪族芳香族ポリエステルの製造方法。
  8.  前記脂肪族ジカルボン酸成分がバイオマス由来のものである請求項1~7のいずれか1項に記載の脂肪族芳香族ポリエステルの製造方法。
  9.  前記脂肪族ジオール成分がバイオマス由来のものである請求項1~8のいずれか1項に記載の脂肪族芳香族ポリエステルの製造方法。
PCT/JP2021/003687 2020-02-12 2021-02-02 脂肪族芳香族ポリエステルの製造方法 WO2021161846A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022500333A JPWO2021161846A1 (ja) 2020-02-12 2021-02-02
CN202180009010.XA CN114929779A (zh) 2020-02-12 2021-02-02 脂肪族芳香族聚酯的制造方法
EP21754600.1A EP4105258A4 (en) 2020-02-12 2021-02-02 PROCESS FOR PRODUCTION OF ALIPHATIC-AROMATIC POLYESTER
US17/868,319 US20220356301A1 (en) 2020-02-12 2022-07-19 Method for producing aliphatic-aromatic polyester

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-021757 2020-02-12
JP2020021757 2020-02-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/868,319 Continuation US20220356301A1 (en) 2020-02-12 2022-07-19 Method for producing aliphatic-aromatic polyester

Publications (1)

Publication Number Publication Date
WO2021161846A1 true WO2021161846A1 (ja) 2021-08-19

Family

ID=77291810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003687 WO2021161846A1 (ja) 2020-02-12 2021-02-02 脂肪族芳香族ポリエステルの製造方法

Country Status (5)

Country Link
US (1) US20220356301A1 (ja)
EP (1) EP4105258A4 (ja)
JP (1) JPWO2021161846A1 (ja)
CN (1) CN114929779A (ja)
WO (1) WO2021161846A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190512A1 (ja) * 2022-03-31 2023-10-05 三菱ケミカル株式会社 ポリエステル樹脂ペレット及びポリエステル樹脂の製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008031457A (ja) * 2006-06-30 2008-02-14 Mitsubishi Chemicals Corp 脂肪族芳香族ポリエステル及び樹脂組成物
JP2008222737A (ja) * 2007-03-08 2008-09-25 Nippon Ester Co Ltd ポリエステル樹脂
JP2008266809A (ja) * 2007-04-17 2008-11-06 Nippon Ester Co Ltd 熱接着性ポリエステル長繊維
JP2009001669A (ja) * 2007-06-21 2009-01-08 Toray Ind Inc ポリエステルの製造方法
JP2009235150A (ja) * 2008-03-26 2009-10-15 Toray Ind Inc ポリエステル組成物、およびその製造方法
JP2011231178A (ja) * 2010-04-26 2011-11-17 Nippon Ester Co Ltd ポリエステルエラストマー樹脂組成物
JP2017075271A (ja) * 2015-10-16 2017-04-20 東レ株式会社 ポリエステルの製造方法
JP2020021757A (ja) 2018-07-30 2020-02-06 東洋インキScホールディングス株式会社 電磁波シールドシート付きプリント配線板

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103804855A (zh) * 2012-11-08 2014-05-21 上海杰事杰新材料(集团)股份有限公司 一种高强度共聚酯及其制备方法
JP6177672B2 (ja) * 2013-11-26 2017-08-09 株式会社Adeka マスターバッチの製造方法
JP2018203833A (ja) * 2017-05-31 2018-12-27 三菱ケミカル株式会社 樹脂組成物、フィルム、多層フィルム及び包装材

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008031457A (ja) * 2006-06-30 2008-02-14 Mitsubishi Chemicals Corp 脂肪族芳香族ポリエステル及び樹脂組成物
JP2008222737A (ja) * 2007-03-08 2008-09-25 Nippon Ester Co Ltd ポリエステル樹脂
JP2008266809A (ja) * 2007-04-17 2008-11-06 Nippon Ester Co Ltd 熱接着性ポリエステル長繊維
JP2009001669A (ja) * 2007-06-21 2009-01-08 Toray Ind Inc ポリエステルの製造方法
JP2009235150A (ja) * 2008-03-26 2009-10-15 Toray Ind Inc ポリエステル組成物、およびその製造方法
JP2011231178A (ja) * 2010-04-26 2011-11-17 Nippon Ester Co Ltd ポリエステルエラストマー樹脂組成物
JP2017075271A (ja) * 2015-10-16 2017-04-20 東レ株式会社 ポリエステルの製造方法
JP2020021757A (ja) 2018-07-30 2020-02-06 東洋インキScホールディングス株式会社 電磁波シールドシート付きプリント配線板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190512A1 (ja) * 2022-03-31 2023-10-05 三菱ケミカル株式会社 ポリエステル樹脂ペレット及びポリエステル樹脂の製造方法

Also Published As

Publication number Publication date
JPWO2021161846A1 (ja) 2021-08-19
EP4105258A4 (en) 2023-08-16
EP4105258A1 (en) 2022-12-21
US20220356301A1 (en) 2022-11-10
CN114929779A (zh) 2022-08-19

Similar Documents

Publication Publication Date Title
JP5834696B2 (ja) ポリエステルの製造方法
WO2009119511A1 (ja) 脂肪族ポリエステルの製造方法
JP2018145221A (ja) ポリエステルの製造方法
WO2009084443A1 (ja) 脂肪族ポリエステルの製造方法
JP2018150453A (ja) ポリブチレンサクシネートの製造方法
JP5598162B2 (ja) 共重合ポリエステル製成形体
JP2016504447A (ja) 生分解性の脂肪族−芳香族ポリエステル共重合体の連続製造方法
JP5200531B2 (ja) 脂肪族ポリエステルの製造方法
JP2016500392A (ja) 生分解性の脂肪族−芳香族ポリエステル共重合体の連続製造方法
JP2012144744A (ja) 脂肪族ポリエステルの製造方法
WO2021161846A1 (ja) 脂肪族芳香族ポリエステルの製造方法
JP2022136023A (ja) 脂肪族芳香族ポリエステル組成物及びその製造方法
JP2010195989A (ja) 脂肪族ポリエステルの製造方法
JP5176649B2 (ja) ポリエステルの製造方法
JP2009067897A (ja) 脂肪族ポリエステルの製造方法
JP2018145413A (ja) 脂肪族芳香族ポリエステルの製造方法
JP5045216B2 (ja) ポリエステル重縮合用触媒の製造方法、該触媒を用いたポリエステルの製造方法
JP5729217B2 (ja) 脂肪族ポリエステルの製造方法
JP4540321B2 (ja) グリコール酸共重合体及びその製造方法
JP2008019391A (ja) ポリエステル重縮合用触媒、その製造方法およびポリエステルの製造方法
WO2024071363A1 (ja) ポリエステルの製造方法
JP3458911B2 (ja) ラクタイド系共重合体の連続製造方法
JP4408614B2 (ja) グリコール酸系重合体の製造法
JP5678667B2 (ja) 脂肪族ポリエステルの製造方法
JP2018145220A (ja) 脂肪族ポリエステルの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21754600

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022500333

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021754600

Country of ref document: EP

Effective date: 20220912