WO2021159595A1 - 一种固态电解质与金属锂负极界面的调控方法 - Google Patents

一种固态电解质与金属锂负极界面的调控方法 Download PDF

Info

Publication number
WO2021159595A1
WO2021159595A1 PCT/CN2020/081909 CN2020081909W WO2021159595A1 WO 2021159595 A1 WO2021159595 A1 WO 2021159595A1 CN 2020081909 W CN2020081909 W CN 2020081909W WO 2021159595 A1 WO2021159595 A1 WO 2021159595A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
metal
lithium
negative electrode
solid
Prior art date
Application number
PCT/CN2020/081909
Other languages
English (en)
French (fr)
Inventor
刘争
付兴杰
江妙丽
沈文钟
陈鹏飞
彭章泉
汪达
邱振平
张业龙
曾庆光
Original Assignee
五邑大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 五邑大学 filed Critical 五邑大学
Publication of WO2021159595A1 publication Critical patent/WO2021159595A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0407Methods of deposition of the material by coating on an electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of batteries, in particular to a method for adjusting and controlling the interface between a solid electrolyte and a metal lithium negative electrode.
  • the prior art generally uses magnetron sputtering to solve the problem of the wettability of the negative electrode, which is mainly by sputtering a layer of about 10nm thick coating on the surface of the solid electrolyte.
  • Magnetron sputtering to solve the problem of the wettability of the negative electrode, which is mainly by sputtering a layer of about 10nm thick coating on the surface of the solid electrolyte.
  • Metals and metal oxidation but this method is difficult to be widely used, and because the method is relatively cumbersome to implement, the sputtering environment needs to be anhydrous and oxygen-free, therefore, the sputtering device needs to be further controlled, and the sputtering device itself is bulky. Very large, so it is more complicated to implement, and it is difficult to control the thickness of the sputtering layer accurately. Most of the sputtering layer only increases the lithium wettability.
  • the present invention provides a method for adjusting the interface between a solid electrolyte and a metal lithium negative electrode, which can ensure the thickness of the lithium negative electrode while fully infiltrating the lithium negative electrode.
  • the technical solution of the present invention is: a method for adjusting and controlling the interface between a solid electrolyte and a metal lithium negative electrode, including the following steps:
  • step S4 Put the solid electrolyte on the heating table and heat it to the same temperature as the mixed molten liquid in step S2);
  • step S5 Coat the excess mixed molten metal in step S2) uniformly on the solid electrolyte, and use corresponding tools to make the mixed molten liquid and the solid electrolyte surface free of voids; make the mixed molten liquid fully adhere to the solid electrolyte
  • the surface of the electrolyte makes the lithium carbonate on the surface of the solid electrolyte fall off in situ to increase the wettability of the solid electrolyte with metal lithium;
  • step S8 The product obtained in step S5) is naturally cooled to room temperature.
  • step S5) it further includes: adding an appropriate amount of aluminum foil to the excess mixed molten metal coated in step S6), so that the aluminum foil is melted in the mixed molten metal to form a new mixed molten metal and covered in the solid On the surface of the electrolyte, the aluminum reacts with the solid electrolyte in situ to realize the regulation of the in-situ generation of SEI at the solid electrolyte
  • an appropriate amount of aluminum foil is added to the mixed molten metal liquid coated with the solid electrolyte to be 1 ⁇ -50 ⁇ of the mass of the mixed molten liquid.
  • the melting temperature of the metallic lithium is 180-300°C.
  • the amount of "flux” added is 1 ⁇ -50 ⁇ of the mass of molten metal lithium.
  • the flux is one or a mixture of Na, Al, Mg, K, and Ca.
  • the solid electrolyte is a Garnet solid electrolyte, which mainly includes LLZO, LLZTO, LLZNO, LLZWO, and the like.
  • a small amount of Na, Al, Mg, K, Ca and metallic lithium are melted together, and coated on the surface of the solid electrolyte, and the amount of Na, Al, Mg, K, and Ca added is controlled by adjusting the amount of Na, Al, Mg, K and Ca.
  • the present invention realizes in-situ SEI regulation of the solid electrolyte surface layer by adding metal aluminum foil, accurately controls the amount of lithium metal, and avoids the waste of lithium metal.
  • Figure 1 is a schematic flow diagram of the inventive method
  • the present invention provides a method for adjusting and controlling the interface between a solid electrolyte and a lithium metal negative electrode, which is specifically as follows:
  • step S4) Put the solid electrolyte on the heating table and preheat it to the same temperature as the mixed molten liquid in step S2);
  • step S5 The excess mixed molten metal in step S2) is uniformly coated on the solid electrolyte, and the corresponding tool is used to flatten the mixed molten metal on the surface of the solid electrolyte to ensure that there are no voids on the surface of the solid electrolyte;
  • the mixed molten liquid fully adheres to the surface of the solid electrolyte, so that the lithium carbonate on the surface of the solid electrolyte falls off in situ, so as to increase the wettability of the solid electrolyte and the metal lithium;
  • step S6 Add an appropriate amount of aluminum foil to the excess mixed molten metal applied in step S5) to melt to form a new molten metal liquid, and coat the new molten metal liquid on the surface of the solid electrolyte to make the metal aluminum and the solid electrolyte in-situ Reaction to achieve in-situ control of the SEI on the surface of the solid electrolyte; wherein the added aluminum foil is 3 ⁇ of the mass of the mixed melt.
  • step S6 The product obtained in step S6) is naturally cooled to room temperature.
  • step S4) Put the solid electrolyte on the heating table and preheat it to the same temperature as the mixed molten liquid in step S2);
  • step S5 The excess mixed molten metal in step S2) is uniformly coated on the solid electrolyte, and the corresponding tool is used to flatten the mixed molten metal on the surface of the solid electrolyte to ensure that there are no voids on the surface of the solid electrolyte;
  • the mixed molten liquid fully adheres to the surface of the solid electrolyte, so that the lithium carbonate on the surface of the solid electrolyte falls off in situ, so as to increase the wettability of the solid electrolyte and the metal lithium;
  • step S6 Add an appropriate amount of aluminum foil to the excess mixed molten metal applied in step S5) to melt to form a new molten metal liquid, and coat the new molten metal liquid on the surface of the solid electrolyte to make the metal aluminum and the solid electrolyte in-situ Reaction to achieve in-situ adjustment of the SEI on the surface of the solid electrolyte; wherein the added aluminum foil is 10 ⁇ of the mass of the mixed melt.
  • step S6 The product obtained in step S6) is naturally cooled to room temperature.
  • step S4) Put the solid electrolyte on the heating table and preheat it to the same temperature as the mixed molten liquid in step S2);
  • step S5 The excess mixed molten metal in step S2) is uniformly coated on the solid electrolyte, and the corresponding tool is used to flatten the mixed molten metal on the surface of the solid electrolyte to ensure that there are no voids on the surface of the solid electrolyte;
  • the mixed molten liquid fully adheres to the surface of the solid electrolyte, so that the lithium carbonate on the surface of the solid electrolyte falls off in situ, so as to increase the wettability of the solid electrolyte and the metal lithium;
  • step S6 Add an appropriate amount of aluminum foil to the excess mixed molten metal applied in step S5) to melt to form a new molten metal liquid, and coat the new molten metal liquid on the surface of the solid electrolyte to make the metal aluminum and the solid electrolyte in-situ Reaction to achieve in-situ control of the SEI on the surface of the solid electrolyte; wherein the added aluminum foil is 5 ⁇ of the mass of the mixed melt.
  • step S6 The product obtained in step S6) is naturally cooled to room temperature.
  • step S4) Put the solid electrolyte on the heating table and preheat it to the same temperature as the mixed molten liquid in step S2);
  • step S5 The excess mixed molten metal in step S2) is uniformly coated on the solid electrolyte, and the corresponding tool is used to flatten the mixed molten metal on the surface of the solid electrolyte to ensure that there are no voids on the surface of the solid electrolyte;
  • the mixed molten liquid fully adheres to the surface of the solid electrolyte, so that the lithium carbonate on the surface of the solid electrolyte falls off in situ, so as to increase the wettability of the solid electrolyte and the metal lithium;
  • step S6 Add an appropriate amount of aluminum foil to the excess mixed molten metal applied in step S5) to melt to form a new molten metal liquid, and coat the new molten metal liquid on the surface of the solid electrolyte to make the metal aluminum and the solid electrolyte in-situ Reaction to achieve in-situ adjustment of the SEI on the surface of the solid electrolyte; wherein the added aluminum foil is 10 ⁇ of the mass of the mixed melt.
  • step S6 The product obtained in step S6) is naturally cooled to room temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

本发明提供一种固态电解质与金属锂负极界面的调控方法,包括以下步骤:S1)、在惰性气体氛围熔融金属锂;S2)、在熔融的金属锂中添加适量的助焊剂,S3)、将固态电解质基底进行打磨抛光处理;S4)、将固态电解质置于加热台上加热;S5)、将混合熔融液均匀涂覆在固态电解质上;S6)、使铝箔熔融于与固态电解质良好接触的混合熔融金属液中S7)、根据电池循环所需的锂金属的量,调控其厚度S8)、将产品自然冷却到室温。本发明通过将微量的助焊剂与金属锂熔融在一起,并涂覆在固态电解质表面上,从而达到对固态电解质浸润的效果,使锂负极更加纯净,让电池的效率更高;通过添加金属铝箔实现对固态电解质表层进行原位SEI的调控。

Description

一种固态电解质与金属锂负极界面的调控方法 技术领域
本发明涉及电池技术领域,尤其是一种固态电解质与金属锂负极界面的调控方法。
背景技术
常规锂离子电池中因使用液态电解液,从而导致电池出现易燃易爆等安全问题,并且现有的液态锂离子电池的容量已经接近理论上限,因此,全固态锂电池成为替代液态电解质电池的的最好选择之一,但是,由于固态电解质其界面动力学问题(界面电阻过大)严重,而且在界面优化时,需要加入远远超过所需用量的锂金属,而造成锂金属资源的浪费,同时会减小固态电解质的能量密度,减弱固态电池的竞争优势,因此寻找一种高效可行的优化方法势在必行。
现有技术主要采用以下方式解决上述技术问题:
1、现有技术一般通过磁控溅射的方式以解决负极的浸润性问题,其主要是通过在固态电解质表面溅镀一层厚10nm左右的镀层,此镀层多见为氧化铝,还有各种金属及金属氧化,但是,这种方法很难广泛运用,并且由于该方法实施比较繁琐,溅射环境需要无水无氧,因此,对溅射装置需要进一步控制环境,而溅射装置本身体积特别大,所以实现起来比较复杂,并且对溅镀层厚度的控制难以精确,大部分溅镀层只是增加锂浸润性的作用,如果过厚,就会成为锂离子阻塞层,如果过薄无法增加浸润性,在纳米尺度进行控制,难度较大,稳定性不高。其次,就是在是固态电解质浸润的过程中,锂过量会造成锂金属的浪费,降低固态电池的能量密度。而且在浸润过程中,需要加入大量的杂元素如碳等,但是,由于大量杂元素的加入,使固态电解质界面的优化不够稳定。
2、由于固态电解质表现为相对惰性,因而原位反应生成SEI的方法受到材料本身特性的限制,多为利用Gel(凝胶)SEI进行调控,但是人工SEI对界面的优化,十分有限。
发明内容
针对现有技术的不足,本发明提供一种固态电解质与金属锂负极界面的调控方法,该方法能够保证在充分浸润锂负极的同时,保证锂负极的厚度。
本发明的技术方案为:一种固态电解质与金属锂负极界面的调控方法,包括以下步骤:
S1)、在惰性气体氛围条件下熔融金属锂;
S2)、在熔融的金属锂中添加适量的“助焊剂”,使其充分熔融在金属锂溶液中,得到混 合熔融液;
S3)、将固态电解质基底进行打磨抛光处理,以清除固态电解质表面在烧结过程中产生的副产物(碳酸锂,氢氧化锂及固态电解质的贫锂相);
S4)、将固态电解质置于加热台上并将其加热至与步骤S2)中混合熔融液相同的温度;
S5)、将步骤S2)中的过量混合熔融金属液均匀涂覆在固态电解质上,并采用相应的工具将混合熔融液与固态电解质表面无空隙;使得该所述的混合熔融液充分附着在固态电解质表面,使得固态电解质表面的碳酸锂原位脱落,以增加固态电解质与金属锂浸润性的作用;
S6)、在金属溶液中加入适量金属铝箔,充分熔融反应,进行原位调控SEI
S7)、根据需要,调控金属锂负极的厚度
S8)、将步骤S5)中得到产品自然冷却到室温。
优选的,在步骤S5)完成之后还包括:在步骤S6)中涂覆的过量混合熔融金属液中加入适量铝箔,使铝箔熔融于混合熔融金属液中形成新的混合熔融金属液并覆盖在固态电解质表面上,使铝与固态电解质原位反应,以实现对固态电解质|金属锂负极界面原位生成SEI的调控。
优选的,上述方法中,在固态电解质涂覆的混合熔融金属液中添加适量铝箔为混合熔融液质量的1‰-50‰。
优选的,步骤S1)中,所述金属锂的熔融温度为180-300℃。
优选的,步骤S2)中,添加的“助焊剂”的量为熔融金属锂质量的1‰-50‰。
优选的,步骤S2)中,所述的助焊剂为Na、Al、Mg、K、Ca中的一种或几种的混合。
优选的,所述的固态电解质为Garnet型固态电解质,主要包含LLZO、LLZTO、LLZNO、LLZWO等。
本发明的有益效果为:
1、本发明通过将微量的Na、Al、Mg、K、Ca与金属锂熔融在一起,并涂覆在固态电解质表面上,通过对加入的Na、Al、Mg、K、Ca量的调控,以宏观的调控,达到微观调控的目的,从而达到对固态电解质浸润的效果,使锂负极更加纯净,让电池的效率更高;
2、本发明通过添加金属铝箔实现对固态电解质表层进行原位SEI的调控,准确控制锂金属的用量,避免锂金属的浪费。
附图说明
图1为发明方法的流程示意图;
具体实施方式
下面结合附图对本发明的具体实施方式作进一步说明:
如图1所示,本发明提供一种固态电解质与金属锂负极界面的调控方法,具体如下:
实施例1
S1)、在惰性气体氛围条件下熔融金属锂,其中,熔融温度为200℃;
S2)、在熔融的金属锂中添加3‰的金属钠,使金属钠充分熔融在金属锂溶液中,得到混合熔融液;
S3)、将固态电解质基底进行打磨抛光处理,以清除固态电解质表面在烧结过程中产生的副产物,如碳酸锂、氢氧化锂等;
S4)、将固态电解质置于加热台上并将其预热至与步骤S2)中混合熔融液相同的温度;
S5)、将步骤S2)中的过量混合熔融金属液均匀涂覆在固态电解质上,并采用相应的工具将混合熔融金属液摊平在固态电解质表面,保证固态电解质表面无空隙;使得该所述的混合熔融液充分附着在固态电解质表面,使得固态电解质表面的碳酸锂原位脱落,以增加固态电解质与金属锂浸润性的作用;
S6)、在步骤S5)中涂覆的过量混合熔融金属液中添加适量铝箔熔融形成新的熔融金属液,并将新的熔融金属液涂覆在固态电解质表面,使金属铝与固态电解质原位反应,以实现对固态电解质表面SEI的原位调控;其中,添加的铝箔为混合熔融液质量的3‰。
S7)、将步骤S6)中得到产品自然冷却到室温。
实施例2
S1)、在惰性气体氛围条件下熔融金属锂,其中,熔融温度为180℃;
S2)、在熔融的金属锂中添加40‰的金属镁,使金属钠充分熔融在金属锂溶液中,得到混合熔融液;
S3)、将固态电解质基底进行打磨抛光处理,以清除固态电解质表面在烧结过程中产生的副产物,如碳酸锂、氢氧化锂等;
S4)、将固态电解质置于加热台上并将其预热至与步骤S2)中混合熔融液相同的温度;
S5)、将步骤S2)中的过量混合熔融金属液均匀涂覆在固态电解质上,并采用相应的工具将混合熔融金属液摊平在固态电解质表面,保证固态电解质表面无空隙;使得该所述的混合熔融液充分附着在固态电解质表面,使得固态电解质表面的碳酸锂原位脱落,以增加固态电解质与金属锂浸润性的作用;
S6)、在步骤S5)中涂覆的过量混合熔融金属液中添加适量铝箔熔融形成新的熔融金属 液,并将新的熔融金属液涂覆在固态电解质表面,使金属铝与固态电解质原位反应,以实现对固态电解质表面SEI的原位调控;其中,添加的铝箔为混合熔融液质量的10‰。
S7)、将步骤S6)中得到产品自然冷却到室温。
实施例3
S1)、在惰性气体氛围条件下熔融金属锂,其中,熔融温度为280℃;
S2)、在熔融的金属锂中添加20‰的金属钾,使金属钠充分熔融在金属锂溶液中,得到混合熔融液;
S3)、将固态电解质基底进行打磨抛光处理,以清除固态电解质表面在烧结过程中产生的副产物,如碳酸锂、氢氧化锂等;
S4)、将固态电解质置于加热台上并将其预热至与步骤S2)中混合熔融液相同的温度;
S5)、将步骤S2)中的过量混合熔融金属液均匀涂覆在固态电解质上,并采用相应的工具将混合熔融金属液摊平在固态电解质表面,保证固态电解质表面无空隙;使得该所述的混合熔融液充分附着在固态电解质表面,使得固态电解质表面的碳酸锂原位脱落,以增加固态电解质与金属锂浸润性的作用;
S6)、在步骤S5)中涂覆的过量混合熔融金属液中添加适量铝箔熔融形成新的熔融金属液,并将新的熔融金属液涂覆在固态电解质表面,使金属铝与固态电解质原位反应,以实现对固态电解质表面SEI的原位调控;其中,添加的铝箔为混合熔融液质量的5‰。
S7)、将步骤S6)中得到产品自然冷却到室温。
实施例4
S1)、在惰性气体氛围条件下熔融金属锂,其中,熔融温度为180℃;
S2)、在熔融的金属锂中添加40‰的Ca,使金属钠充分熔融在金属锂溶液中,得到混合熔融液;
S3)、将固态电解质基底进行打磨抛光处理,以清除固态电解质表面在烧结过程中产生的副产物,如碳酸锂、氢氧化锂等;
S4)、将固态电解质置于加热台上并将其预热至与步骤S2)中混合熔融液相同的温度;
S5)、将步骤S2)中的过量混合熔融金属液均匀涂覆在固态电解质上,并采用相应的工具将混合熔融金属液摊平在固态电解质表面,保证固态电解质表面无空隙;使得该所述的混合熔融液充分附着在固态电解质表面,使得固态电解质表面的碳酸锂原位脱落,以增加固态电解质与金属锂浸润性的作用;
S6)、在步骤S5)中涂覆的过量混合熔融金属液中添加适量铝箔熔融形成新的熔融金属液,并将新的熔融金属液涂覆在固态电解质表面,使金属铝与固态电解质原位反应,以实现对固态电解质表面SEI的原位调控;其中,添加的铝箔为混合熔融液质量的10‰。
S7)、将步骤S6)中得到产品自然冷却到室温。
上述实施例和说明书中描述的只是说明本发明的原理和最佳实施例,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。

Claims (7)

  1. 一种固态电解质与金属锂负极界面的调控方法,包括以下步骤:
    S1)、在惰性气体氛围条件下熔融金属锂;
    S2)、在熔融的金属锂中添加适量的“助焊剂”,使其充分熔融在金属锂溶液中,得到混合熔融液;
    S3)、将固态电解质基底进行打磨抛光处理,以清除固态电解质表面在烧结过程中产生的副产物(碳酸锂,氢氧化锂及固态电解质的贫锂相);
    S4)、将固态电解质置于加热台上并将其加热至与步骤S2)中混合熔融液相同的温度;
    S5)、将步骤S2)中的过量混合熔融金属液均匀涂覆在固态电解质上,并采用相应的工具将混合熔融液与固态电解质表面无空隙;使得该所述的混合熔融液充分附着在固态电解质表面,使得固态电解质表面的碳酸锂原位脱落,以增加固态电解质与金属锂浸润性的作用;
    S6)、在金属溶液中加入适量金属铝箔,充分熔融反应,进行原位调控SEI
    S7)、根据需要,调控金属锂负极的厚度
    S8)、将步骤S5)中得到产品自然冷却到室温。
  2. 根据权利要求1所述的一种固态电解质与金属锂负极界面的调控方法,其特征在于:在步骤S5)完成之后还包括:在步骤S6)中涂覆的过量混合熔融金属液中加入适量铝箔,使铝箔熔融于混合熔融金属液中形成新的混合熔融金属液并覆盖在固态电解质表面上,使铝与固态电解质原位反应,以实现对固态电解质|金属锂负极界面原位生成SEI的调控。
  3. 根据权利要求2所述的一种固态电解质与金属锂负极界面的调控方法,其特征在于:在固态电解质涂覆的混合熔融金属液中添加适量铝箔为混合熔融液质量的1‰-50‰。
  4. 根据权利要求1所述的一种固态电解质与金属锂负极界面的调控方法,其特征在于:步骤S1)中,所述金属锂的熔融温度为180-300℃。
  5. 根据权利要求1所述的一种固态电解质与金属锂负极界面的调控方法,其特征在于:步骤S2)中,添加的“助焊剂”的量为熔融金属锂质量的1‰-50‰。
  6. 根据权利要求5所述的一种固态电解质与金属锂负极界面的调控方法,其特征在于:步骤S2)中,所述的助焊剂为Na、Al、Mg、K、Ca中的一种或几种的混合。
  7. 根据权利要求1所述的一种固态电解质与金属锂负极界面的调控方法,其特征在于:固态电解质为Garnet型固态电解质,该Garnet型固态电解质包括LLZO、LLZTO、LLZNO、LLZWO成分。
PCT/CN2020/081909 2020-02-11 2020-03-28 一种固态电解质与金属锂负极界面的调控方法 WO2021159595A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010086639.1 2020-02-11
CN202010086639.1A CN111224066B (zh) 2020-02-11 2020-02-11 一种固态电解质与金属锂负极界面的调控方法

Publications (1)

Publication Number Publication Date
WO2021159595A1 true WO2021159595A1 (zh) 2021-08-19

Family

ID=70831788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/081909 WO2021159595A1 (zh) 2020-02-11 2020-03-28 一种固态电解质与金属锂负极界面的调控方法

Country Status (2)

Country Link
CN (1) CN111224066B (zh)
WO (1) WO2021159595A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114171799A (zh) * 2021-11-19 2022-03-11 哈尔滨工业大学 一种提高锂在固态电解质表面润湿性的方法及全固态电池
CN115044814A (zh) * 2022-05-20 2022-09-13 同济大学 一种具有磁性的金属基复合材料及其制备方法与应用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113903889A (zh) * 2020-07-06 2022-01-07 厦门大学 一种锂金属负极及其制备方法和应用
CN112072167A (zh) * 2020-09-10 2020-12-11 五邑大学 一种金属锂和碳纳米管复合用于无机固态锂金属电池的方法
CN114267883A (zh) * 2020-09-16 2022-04-01 比亚迪股份有限公司 固态锂电池电芯及其制备方法、电池
CN112490445B (zh) * 2020-11-05 2022-07-19 北京科技大学 改善固态电池界面的改性锂复合负极材料制备与应用方法
CN113328135A (zh) * 2021-05-31 2021-08-31 河北科技大学 一种低界面电阻的固态锂离子电池及其制备方法
CN113793920B (zh) * 2021-08-09 2023-07-25 华中科技大学 一种金属锂表面原位锂铝合金层的筑构方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016214399A1 (de) * 2016-08-04 2018-02-08 Bayerische Motoren Werke Aktiengesellschaft Elektrochemische Zelle und Verfahren zur Herstellung der elektrochemischen Zelle
CN108110217A (zh) * 2017-12-19 2018-06-01 成都亦道科技合伙企业(有限合伙) 一种固态锂电池复合负极及其制备方法
CN109921106A (zh) * 2019-02-18 2019-06-21 五邑大学 一种用于减小固态电解质|金属锂负极界面电阻的方法
CN109920980A (zh) * 2019-02-18 2019-06-21 五邑大学 一种表面包覆修饰的锂电池金属锂负极的制备方法
CN110767894A (zh) * 2018-07-25 2020-02-07 中能中科(天津)新能源科技有限公司 固态电解质-锂复合体、其制备方法和包含其的全固态锂二次电池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6462343B2 (ja) * 2014-12-04 2019-01-30 国立大学法人信州大学 Li含有複合酸化物の製造方法
WO2017190135A1 (en) * 2016-04-29 2017-11-02 University Of Maryland, College Park Metal alloy layers on substrates, methods of making same, and uses thereof
KR101803240B1 (ko) * 2017-06-28 2017-11-29 국방과학연구소 고체전해질을 사용한 용융 리튬-황 전지 및 이의 제작 방법
CN110380009B (zh) * 2019-07-03 2022-04-05 上海交通大学 一种全固态锂电池锂负极热熔加注装置及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016214399A1 (de) * 2016-08-04 2018-02-08 Bayerische Motoren Werke Aktiengesellschaft Elektrochemische Zelle und Verfahren zur Herstellung der elektrochemischen Zelle
CN108110217A (zh) * 2017-12-19 2018-06-01 成都亦道科技合伙企业(有限合伙) 一种固态锂电池复合负极及其制备方法
CN110767894A (zh) * 2018-07-25 2020-02-07 中能中科(天津)新能源科技有限公司 固态电解质-锂复合体、其制备方法和包含其的全固态锂二次电池
CN109921106A (zh) * 2019-02-18 2019-06-21 五邑大学 一种用于减小固态电解质|金属锂负极界面电阻的方法
CN109920980A (zh) * 2019-02-18 2019-06-21 五邑大学 一种表面包覆修饰的锂电池金属锂负极的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114171799A (zh) * 2021-11-19 2022-03-11 哈尔滨工业大学 一种提高锂在固态电解质表面润湿性的方法及全固态电池
CN115044814A (zh) * 2022-05-20 2022-09-13 同济大学 一种具有磁性的金属基复合材料及其制备方法与应用

Also Published As

Publication number Publication date
CN111224066B (zh) 2022-07-19
CN111224066A (zh) 2020-06-02

Similar Documents

Publication Publication Date Title
WO2021159595A1 (zh) 一种固态电解质与金属锂负极界面的调控方法
WO2019109398A1 (zh) 一种超薄金属锂复合体及其制备方法和用途
JP6329745B2 (ja) リチウムイオン二次電池およびリチウムイオン二次電池用正極活物質の製造方法
WO2017190588A1 (zh) 一种采用激光熔覆复合扩散焊和脱合金制备锂离子电池硅负极的方法
JP6380263B2 (ja) 硫化物固体電解質の製造方法
CN111162265B (zh) 一种用于固态电池的金属锂复合负极的制备方法
CN112928381B (zh) 锂离子电池的补锂电极片、补锂隔膜及其制备方法
AU2011238903A9 (en) Sold state electrolytes having high lithium ion conduction
JP6660766B2 (ja) 全固体電池の製造方法
CN111755662B (zh) 一种多元复合合金负极材料及其制备方法
CN112928247B (zh) 超薄金属锂材、金属锂复合材料及其制备方法
CN113380993A (zh) 三维导电骨架、锂金属复合负极和表面保护层的制备方法
CN108493483A (zh) 一种固态电解质膜电芯层结构界面处理方法、锂电芯结构
CN113540409B (zh) 一种可调控的无锂负极及其制备方法
CN114725325A (zh) 一种全固态锂离子电池硅基负极极片的补锂方法
Qi et al. A review on engineering design for enhancing interfacial contact in solid-state lithium–sulfur batteries
CN103840135A (zh) 一种钛酸锂材料膜电极的制备方法
CN113258035A (zh) 一种具有固液相转化机制的无枝晶合金负极及其制备方法
CN111682176A (zh) 一种三维复合负极材料及其制备方法
CN114421029B (zh) 一种金属锂表面原位合金-sei层的筑构方法与应用
CN113644235A (zh) 一种在三维锂碳复合材料上构建LiF保护层的方法及其应用
JP2019067572A (ja) 全固体電池用活物質層の製造方法および全固体電池の製造方法
CN112164778B (zh) 一种锂负极及其制备方法
CN111653730B (zh) 一种涂有人工sei膜负极极片的电芯双重热处理并快速化成的方法
CN107099775A (zh) 铜铟镓硒靶材金属化层的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919208

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20919208

Country of ref document: EP

Kind code of ref document: A1