WO2021159293A1 - 显示面板、显示装置及显示面板的制作方法 - Google Patents

显示面板、显示装置及显示面板的制作方法 Download PDF

Info

Publication number
WO2021159293A1
WO2021159293A1 PCT/CN2020/074815 CN2020074815W WO2021159293A1 WO 2021159293 A1 WO2021159293 A1 WO 2021159293A1 CN 2020074815 W CN2020074815 W CN 2020074815W WO 2021159293 A1 WO2021159293 A1 WO 2021159293A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
inorganic insulating
display panel
boundary
insulating layer
Prior art date
Application number
PCT/CN2020/074815
Other languages
English (en)
French (fr)
Inventor
肖云升
董向丹
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202080000111.6A priority Critical patent/CN113678257A/zh
Priority to US17/421,227 priority patent/US20220344418A1/en
Priority to PCT/CN2020/074815 priority patent/WO2021159293A1/zh
Publication of WO2021159293A1 publication Critical patent/WO2021159293A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/851Division of substrate

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a display panel, a display device, and a manufacturing method of the display panel.
  • Organic light-emitting display devices are listed as a promising next-generation display technology due to their advantages of lightness, thinness, flexibility, low power consumption, wide color gamut, and high contrast. How to reduce the short-circuit defects of the display panel of the organic light-emitting display device and improve the production yield has always been an important research and development content of those skilled in the art.
  • a display panel including a display area and a non-display area surrounding the display area;
  • a buffer layer, a semiconductor layer, a first inorganic insulating layer, a first metal layer, a second inorganic insulating layer, a second metal layer, a third inorganic insulating layer, a third metal layer, and a first organic layer are sequentially arranged in the direction of the substrate ,
  • Anode layer, pixel defining layer, organic functional layer and cathode layer among them:
  • the first metal layer includes a gate and a first electrode plate
  • the second metal layer includes a second electrode plate
  • the third metal layer includes a source electrode and a drain electrode connected to the semiconductor layer through a via hole
  • the semiconductor layer, the gate electrode, the source electrode and the drain electrode constitute a thin film transistor device located in the display area
  • the first electrode plate and the second electrode plate constitute a thin film transistor device located in the display area.
  • a capacitive device in the region; the anode layer is connected to the drain through a via hole, and the anode layer, the organic functional layer, and the cathode layer constitute an organic light-emitting device located in the display region;
  • the non-display area includes a circuit board binding area, the circuit board binding area has a binding part exposed on the surface of the display panel, and in the circuit board binding area, the first inorganic insulating layer, the The boundary of at least one of the second inorganic insulating layer and the third inorganic insulating layer coincides with the boundary of the substrate, and the boundary of the first organic layer and the boundary of the pixel defining layer are both aligned with the boundary of the substrate. There is a gap between the borders.
  • the binding portion includes a third contact pad on the third metal layer.
  • the binding portion further includes a first contact pad on the first metal layer and/or a second contact pad on the second metal layer.
  • the display panel further includes: a fourth inorganic insulating layer and a fourth metal layer located between the first organic layer and the anode layer and arranged in a direction away from the substrate. And the second organic layer; the boundary of the fourth inorganic insulating layer coincides with the boundary of the substrate; there is a distance between the boundary of the second organic layer and the boundary of the substrate.
  • the binding portion includes a fourth contact pad on the fourth metal layer.
  • the binding portion further includes a first contact pad located on the first metal layer, a second contact pad located on the second metal layer, and a third contact pad located on the third metal layer. At least one of the contact pads.
  • the display panel further includes: an encapsulation structure layer, a fifth metal layer, and a fifth inorganic layer, which are located on the side of the cathode layer away from the substrate and arranged in a direction away from the substrate. Insulation layer and touch electrode layer, where:
  • the touch electrode layer includes a plurality of touch electrode units arranged in an array, and a first connection line connecting adjacent touch electrode units along a first direction, and the fifth metal layer includes A second connecting line connecting the adjacent touch electrode units through vias;
  • the binding portion includes a fifth contact pad, and the fifth contact pad is located on the fifth metal layer or on the touch electrode layer;
  • the boundary of the fifth inorganic insulating layer coincides with the boundary of the substrate.
  • the first metal layer and the second metal layer have the same material.
  • the third metal layer and the fourth metal layer have the same material.
  • a display panel including a display area and a non-display area surrounding the display area;
  • the first metal layer includes a gate and a first electrode plate
  • the second metal layer includes a second electrode plate
  • the third metal layer includes a source electrode and a drain electrode connected to the semiconductor layer through a via hole
  • the semiconductor layer, the gate electrode, the source electrode and the drain electrode constitute a thin film transistor device located in the display area
  • the first electrode plate and the second electrode plate constitute a thin film transistor device located in the display area.
  • a capacitive device in the region; the anode layer is connected to the drain through a via hole, and the anode layer, the organic functional layer, and the cathode layer constitute an organic light-emitting device located in the display region;
  • the non-display area includes a circuit board binding area, the circuit board binding area has a binding part exposed on the surface of the display panel, and in the circuit board binding area, the boundary of the first organic layer and The boundaries of the pixel defining layer are spaced from the boundaries of the substrate, and at least one of the first organic layer and the pixel defining layer covers the first inorganic insulating layer, the second The boundary between the inorganic insulating layer and the third inorganic insulating layer.
  • the binding portion includes a third contact pad on the third metal layer.
  • the binding portion further includes a first contact pad on the first metal layer and/or a second contact pad on the second metal layer.
  • the display panel further includes: a fourth inorganic insulating layer and a fourth metal layer located between the first organic layer and the anode layer and arranged in a direction away from the substrate. And a second organic layer; in the circuit board binding area, there is a distance between the boundary of the second organic layer and the boundary of the substrate, and at least one of the second organic layer and the pixel defining layer A boundary covering the fourth inorganic insulating layer.
  • the binding portion includes a fourth contact pad on the fourth metal layer.
  • the binding portion further includes a first contact pad located on the first metal layer, a second contact pad located on the second metal layer, and a third contact pad located on the third metal layer. At least one of the contact pads.
  • the display panel further includes: an encapsulation structure layer, a fifth metal layer, and a fifth inorganic layer, which are located on the side of the cathode layer away from the substrate and arranged in a direction away from the substrate. Insulation layer and touch electrode layer, where:
  • the touch electrode layer includes a plurality of touch electrode units arranged in an array, and a first connection line connecting adjacent touch electrode units along a first direction, and the fifth metal layer includes A second connecting line connecting the adjacent touch electrode units through vias;
  • the binding portion includes a fifth contact pad, and the fifth contact pad is located on the fifth metal layer or on the touch electrode layer;
  • the boundary of the fifth inorganic insulating layer coincides with the boundary of the substrate.
  • the distance between the boundary of the metal structure and the substrate is 100-150 ⁇ m; the distance between the boundary of the organic layer covering the metal structure and the boundary of the substrate is 80-95 ⁇ m .
  • the metal structure and the metal layer furthest from the substrate in the binding portion are made of the same material; or, the material of the metal structure includes the binding portion furthest from the substrate. At least one of the materials used for the distant metal layer.
  • the inorganic insulating layer is the first inorganic insulating layer, the second inorganic insulating layer, and the third inorganic insulating layer , At least one of the fourth inorganic insulating layers.
  • a display device including: the display panel according to any one of the foregoing technical solutions, and a circuit board bound to the circuit board binding area of the display panel.
  • a manufacturing method of a display panel including:
  • each of the display panel units includes a display area and a non-display area surrounding the display area, the non-display area includes a circuit board binding area, and the adjacent There is a cutting area between the display panel units;
  • making the entire board includes:
  • a buffer layer, a semiconductor layer, a first inorganic insulating layer, a first metal layer, a second inorganic insulating layer, a second metal layer, and a third inorganic insulating layer are sequentially formed on one side of the substrate in a direction away from the substrate.
  • the third metal layer, the first organic layer, the anode layer, the pixel defining layer, the organic functional layer and the cathode layer wherein:
  • the boundary of at least one of the first inorganic insulating layer, the second inorganic insulating layer, and the third inorganic insulating layer coincides with the boundary of the substrate, and the boundary of the first organic layer and the pixel define There is a distance between the boundary of the layer and the boundary of the substrate.
  • a manufacturing method of a display panel including:
  • each of the display panel units includes a display area and a non-display area surrounding the display area, the non-display area includes a circuit board binding area, and the adjacent There is a cutting area between the display panel units;
  • making the entire board includes:
  • a buffer layer, a semiconductor layer, a first inorganic insulating layer, a first metal layer, a second inorganic insulating layer, a second metal layer, and a third inorganic insulating layer are sequentially formed on one side of the substrate in a direction away from the substrate.
  • the third metal layer, the first organic layer, the anode layer, the pixel defining layer, the organic functional layer and the cathode layer wherein:
  • Both the boundary of the first organic layer and the boundary of the pixel defining layer are spaced apart from the boundary of the substrate, and at least one of the first organic layer and the pixel defining layer covers the first organic layer and the pixel defining layer.
  • Figure 1 is a front view of a related art display panel and circuit board after binding
  • FIG. 2 is a schematic diagram of the whole board cutting and the binding of the display panel and the circuit board in an embodiment of the present disclosure
  • FIG. 3 is a front view of a display panel and a circuit board after binding of an embodiment of the present disclosure
  • Figure 4a is a cross-sectional view of an embodiment of the present disclosure at A-A in Figure 3;
  • FIG. 4b is a schematic cross-sectional view of a display panel and a circuit board after binding of an embodiment of the present disclosure
  • FIG. 5 is a cross-sectional view of another embodiment of the present disclosure at A-A of FIG. 3;
  • Fig. 6a is a cross-sectional view at A-A of Fig. 3 of another embodiment of the present disclosure
  • FIG. 6b is a top view of the touch structure of the embodiment shown in FIG. 6a;
  • Fig. 7a is a cross-sectional view of another embodiment of the present disclosure at A-A of Fig. 3;
  • Figure 7b is an electron micrograph of the residual metal at the cross-section of the inorganic insulating layer
  • FIG. 7c is a schematic cross-sectional view of a display panel and a circuit board after being bound according to another embodiment of the present disclosure.
  • Fig. 8 is a cross-sectional view of another embodiment of the present disclosure at A-A of Fig. 3;
  • Fig. 9 is a cross-sectional view of another embodiment of the present disclosure at A-A of Fig. 3;
  • Fig. 10 is a front view of a display device according to an embodiment of the present disclosure.
  • a specific component when it is described that a specific component is located between the first component and the second component, there may or may not be an intermediate component between the specific component and the first component or the second component.
  • the specific component When it is described that a specific component is connected to another component, the specific component may be directly connected to the other component without an intervening component, or may not be directly connected to the other component but with an intervening component.
  • the display panel 01 includes a display area 01a and a non-display area 01b surrounding the display area 01a.
  • the non-display area 01b includes a circuit board binding area 011, and the circuit board binding area 011 is provided with a plurality of first binding parts 012.
  • the plurality of first binding parts 012 are used to bind to the plurality of second binding parts 050 provided on the circuit board 05 in a one-to-one correspondence.
  • the manufacturing process of the above-mentioned display panel 01 is as follows: first, make a whole board containing multiple display panel units; then, perform laser cutting on the whole board to separate each display panel unit, and each independent display panel unit is a display panel. After the display panel is finished, the circuit board needs to be bound in the circuit board binding area.
  • the inventor of the present application discovered that the display panel 01 of the above-mentioned related technology often has a short circuit after being bound to the circuit board 05, resulting in a decrease in product yield.
  • embodiments of the present disclosure provide a display panel, a display device, and a manufacturing method of the display panel.
  • FIG. 4a is a cross-sectional view of an embodiment of the present disclosure in the display area and the non-display area.
  • an embodiment of the present disclosure provides a display panel 1, including a display area 10 and a non-display area 20 surrounding the display area 10.
  • the structure of the display panel 1 includes a substrate 41 and a substrate 41.
  • the buffer layer 42, the semiconductor layer 43, the first inorganic insulating layer 44, the first metal layer 45, the second inorganic insulating layer 46, the second metal layer 47, and the third inorganic The insulating layer 48, the third metal layer 49, the first organic layer 50, the anode layer 51, the pixel defining layer 52, the organic functional layer 53, and the cathode layer 54; among them:
  • the first metal layer 45 includes a gate electrode 45a and a first electrode plate 45b
  • the second metal layer 47 includes a second electrode plate 47a
  • the third metal layer 49 includes a source electrode 49a and a drain electrode 49b connected to the semiconductor layer 43 through a via hole.
  • the semiconductor layer 43, the gate 45a, the source 49a and the drain 49b constitute a thin film transistor device located in the display area 10
  • the first plate 45b and the second plate 47a constitute a capacitive device located in the display area 10
  • the anode layer 51 is connected to the drain 49b through a via hole
  • the anode layer 51, the organic functional layer 53, and the cathode layer 54 constitute an organic light emitting device located in the display area 10
  • the semiconductor layer 43, the gate 45a, the source 49a and the drain 49b constitute a thin film transistor device located in the display area 10
  • the first plate 45b and the second plate 47a constitute a capacitive device located in the display area 10
  • the anode layer 51 is connected
  • the non-display area 20 includes a circuit board binding area 201, which includes a binding portion 6a exposed on the surface of the display panel 1.
  • the first inorganic insulating layer 44 and the second inorganic The boundary of at least one of the insulating layer 46 and the third inorganic insulating layer 48 coincides with the boundary of the substrate 41, and the boundary of the first organic layer 50 and the boundary of the pixel defining layer 52 have a distance from the boundary of the substrate 41.
  • the display area 10 of the display panel 1 is used to display images, and the non-display area 20 is used to arrange related circuits to support the display of the display area 10.
  • the circuit board binding area 201 is mainly used to bind the circuit board 5, and the circuit board 5 is, for example, a flexible printed circuit board.
  • the display panel 1 is rectangular as a whole, and the circuit board binding area 201 is located on one side of the non-display area 20.
  • the circuit board binding area 201 includes a plurality of binding portions 6a, and the plurality of binding portions 6a are used to bind the plurality of binding portions 6b provided on the circuit board 5 in a one-to-one correspondence, so that the circuit board 5 and the display panel Signal transmission can be carried out between 1.
  • FIG. 4b it is a schematic cross-sectional view of the display panel 1 and the circuit board 5 after the above structure is bound, wherein the binding portion 6b of the circuit board 5 and the binding portion 6a of the display panel 1 are bound by a conductive adhesive film 30 Certainly.
  • the binding portion 6a is exposed on the surface of the display panel 1.
  • the binding portion 6a may include one or more layers of contact pads.
  • the contact pads of adjacent layers are connected through via holes.
  • the binding portion 6a includes: a first contact pad 45c located on the first metal layer 45, a second contact pad 47b located on the second metal layer 47, and a third contact pad 47b located on the second metal layer 47; The third contact pad 49c of the metal layer 49.
  • the shape of the display panel 1 is not limited to the rectangle shown in the figure. For example, it may also be a circle, an ellipse, a regular polygon, or an irregular shape, which is related to the product type of the display device.
  • the display panel 1 may be a flat display panel, a curved display panel, or a flexible display panel. In an embodiment of the present disclosure, the display panel 1 is a flexible organic light emitting display panel.
  • the specific material type of the substrate 41 is not limited, for example, it may be a glass substrate or a resin substrate.
  • the substrate 41 may be a rigid substrate or a flexible substrate.
  • the flexible substrate can be made of polyimide (PI) material.
  • the specific material of each inorganic insulating layer is not limited. For example, silicon nitride can be used.
  • the pattern of the inorganic insulating layer is generally formed by a dry etching process.
  • the specific material of each organic layer is not limited. For example, resin can be used.
  • the pattern of the organic layer is generally formed by a wet etching process.
  • the first metal layer 45 and the second metal layer 47 may use the same or different materials.
  • the inventor of the present disclosure discovered that the display panel of the related art is prone to short-circuit failure after being bound to the circuit board mainly due to the following two reasons:
  • the cutting particles flying out of the organic layer will be carbonized due to laser burning, and thus have conductivity.
  • the conductive cutting particles fall on the binding area of the circuit board, which will easily cause related circuit short-circuits.
  • the angle between the section of the inorganic insulating layer (ie, the etched section) and the base surface is about It is 60 degrees -70 degrees, and the section is steeper than the base surface.
  • the first organic layer 50 includes a portion located in the display area 10 and a portion located in the non-display area 20, wherein the portion of the first organic layer 50 located in the display area 10 is mainly used as a flat layer.
  • the boundary of the first organic layer 50 and the boundary of the pixel defining layer 52 have a distance from the boundary of the substrate 41, that is, the cutting in FIG.
  • the area 802 is not covered by the organic layer. In this way, the organic layer will not be cut when laser cutting the entire board, thereby effectively avoiding the short circuit problem caused by the carbonization of the organic layer chip particles.
  • the boundary of at least one of the first inorganic insulating layer 44, the second inorganic insulating layer 46, and the third inorganic insulating layer 48 coincides with the boundary of the substrate 41, thereby minimizing the drying of the inorganic insulating layer in the circuit board binding area 201.
  • Method etching so it can improve the short-circuit problem caused by the residual metal in the cross section of the inorganic insulating layer.
  • the respective boundaries of the first inorganic insulating layer 44, the second inorganic insulating layer 46, and the third inorganic insulating layer 48 coincide with the boundary of the substrate 41, which can more effectively improve the Short circuit problem.
  • FIG. 5 is a cross-sectional view of another embodiment of the present disclosure in the display area and the non-display area.
  • the display panel 1 of this embodiment further includes: a fourth inorganic insulating layer 55, a fourth inorganic insulating layer 55 and a fourth inorganic insulating layer 55 and a second insulating layer located between the first organic layer 50 and the anode layer 51 and arranged in a direction away from the substrate 41.
  • Four metal layers 56 and a second organic layer 57 wherein the boundary of the fourth inorganic insulating layer 55 coincides with the boundary of the substrate 41; there is a distance between the boundary of the second organic layer 57 and the boundary of the substrate 41.
  • the portion of the fourth metal layer 56 located in the display area 10 can be used as a data line, and the portion of the third metal layer 49 located in the display area 10 is connected through a via hole (not shown in the figure), so that the signal can be in the fourth metal layer. 56 and the third metal layer 49.
  • the fourth metal layer 56 and the third metal layer 49 may use the same material.
  • the binding portion 6a in addition to the first contact pad 45c, the second contact pad 47b, and the third contact pad 49c, the binding portion 6a further includes a fourth contact pad 56b located on the fourth metal layer 56.
  • the specific structure of the binding portion 6a is not limited to this, and may include at least one of the first contact pad 45c, the second contact pad 47b, the third contact pad 49c, and the fourth contact pad 56b.
  • the second organic layer 57 includes a portion located in the display area 10 and a portion located in the non-display area 20, wherein the portion of the second organic layer 57 located in the display area 10 is mainly used as a flat layer. Similar to the beneficial effects of the foregoing embodiment, since there is a distance between the boundary of the second organic layer 57 and the boundary of the substrate 41, the short circuit problem caused by cutting the organic layer can be effectively avoided. Since the boundary of the fourth inorganic insulating layer 55 coincides with the boundary of the substrate 41, the short circuit problem caused by the residual metal on the cross section of the inorganic insulating layer can be effectively improved.
  • Figure 6a is a cross-sectional view of another embodiment of the present disclosure in the display area and non-display area
  • Figure 6b is the touch structure in the display area of this embodiment Top view.
  • the display panel 1 of this embodiment is a touch display panel.
  • FIG. 4a it can also be based on the embodiment shown in FIG.
  • the display panel 1 of this embodiment further includes: a cathode layer 54 on a side away from the substrate 41 and along the side away from the substrate 41
  • the packaging structure layer 58, the fifth metal layer 59, the fifth inorganic insulating layer 60, and the touch electrode layer 61 are arranged in the direction of, wherein: the touch electrode layer 61 includes a plurality of touch electrode units 610 arranged in an array, A first connection line 611 that connects adjacent touch electrode units 610 in the first direction, and the fifth metal layer 59 includes a second connection line 59a that connects adjacent touch electrode units 610 in the second direction (for example, along Two adjacent touch electrode units 610 in the second direction are respectively connected to the same second connecting line 59a through via holes); the binding portion 6a further includes a fifth contact pad 59b, and the fifth contact pad 59b is located on the fifth metal layer 59 or located on the touch electrode layer 61; the boundary of the fifth inorganic insulating layer 60 coincides with the boundary of the substrate 41.
  • the structural design of the display panel with touch function can also improve the short circuit problem in the bonding area of the circuit board.
  • FIG. 7a is a cross-sectional view of another embodiment of the present disclosure in the display area and the non-display area.
  • the display panel 1 of this embodiment includes a display area 10 and a non-display area 20 surrounding the display area 10.
  • the structure of the display panel 1 includes a substrate 41 and a buffer layer located on one side of the substrate 41 and arranged in a direction away from the substrate 41. 42.
  • the first metal layer 45 includes a gate electrode 45a and a first electrode plate 45b
  • the second metal layer 47 includes a second electrode plate 47a
  • the third metal layer 49 includes a source electrode 49a and a drain electrode 49b connected to the semiconductor layer 43 through a via hole.
  • the semiconductor layer 43, the gate 45a, the source 49a and the drain 49b constitute a thin film transistor device located in the display area 10
  • the first plate 45b and the second plate 47a constitute a capacitive device located in the display area 10
  • the anode layer 51 is connected to the drain 49b through a via hole
  • the anode layer 51, the organic functional layer 53, and the cathode layer 54 constitute an organic light emitting device located in the display area 10
  • the semiconductor layer 43, the gate 45a, the source 49a and the drain 49b constitute a thin film transistor device located in the display area 10
  • the first plate 45b and the second plate 47a constitute a capacitive device located in the display area 10
  • the anode layer 51 is connected
  • the non-display area 20 includes a circuit board binding area 201 having a binding portion 6a exposed on the surface of the display panel 1.
  • the boundary of the first organic layer 50 and the pixel boundary There is a distance between the boundary of the layer 52 and the boundary of the substrate 41, and at least one of the first organic layer 50 and the pixel defining layer 52 covers the first inorganic insulating layer 44, the second inorganic insulating layer 46, and the third inorganic insulating layer.
  • the boundary of layer 48 is a circuit board binding area 201 having a binding portion 6a exposed on the surface of the display panel 1.
  • the boundary of at least one of the first inorganic insulating layer 44, the second inorganic insulating layer 46, and the third inorganic insulating layer 48 further has a metal structure 62a; the first organic layer At least one of 50 and the pixel defining layer 52 covers the metal structure 62a. In some embodiments, as shown in FIG. 7a, the boundary of at least one of the first inorganic insulating layer 44, the second inorganic insulating layer 46, and the third inorganic insulating layer 48 further has a metal structure 62a; the first organic layer At least one of 50 and the pixel defining layer 52 covers the metal structure 62a. In some embodiments, as shown in FIG.
  • the first organic layer 50 and the pixel defining layer 52 covers the metal structure 62a, and at the same time fills the gap between the section of the metal structure 62a and the inorganic insulating layer; wherein, the aforementioned inorganic insulating layer may be a first inorganic insulating layer or a second inorganic insulating layer. At least one of the insulating layer and the third inorganic insulating layer.
  • FIG. 7c it is a schematic cross-sectional view of the display panel 1 and the circuit board 5 after the above structure is bound, wherein the binding portion 6b of the circuit board 5 and the binding portion 6a of the display panel 1 are bound by a conductive adhesive film 30 Certainly.
  • the boundary of the first organic layer 50 and the boundary of the pixel defining layer 52 are spaced apart from the boundary of the substrate 41, that is, the cutting area 802 in FIG. 2 is not covered by the organic layer. Covering, in this way, when laser cutting the whole board, the organic layer will not be cut, thus effectively avoiding the short circuit problem caused by carbonization of the chips particles in the organic layer.
  • an organic layer is used to cover the boundary of the inorganic insulating layer. In this way, even if metal remains at the cross section of the inorganic insulating layer when the metal layer is made (such as the aforementioned metal structure 62a), the residual metal can be covered by the organic layer. It is insulated and isolated from other conductive structures. Therefore, this solution can also improve the short-circuit problem caused by residual metal on the cross-section of the inorganic insulating layer.
  • FIG. 8 is a cross-sectional view of another embodiment of the present disclosure in the display area and the non-display area.
  • the display panel 1 of this embodiment further includes: a fourth inorganic insulating layer 55, a fourth inorganic insulating layer 55 and a fourth inorganic insulating layer 55 and a second inorganic insulating layer 55, which are located between the first organic layer 50 and the anode layer 51 and are sequentially arranged in a direction away from the substrate 41.
  • the short circuit problem caused by cutting the organic layer can be effectively avoided. Since the organic layer covers the boundary of the inorganic insulating layer, even if metal (such as the aforementioned metal structure 62b) remains at the boundary of the fourth inorganic insulating layer 55 when the metal layer is made, the residual metal is caused by the second organic layer 57 Or the pixel defining layer 52 is covered, so it can be insulated and isolated from other conductive structures. Therefore, this solution can also improve the short-circuit problem caused by the residual metal in the cross section of the inorganic insulating layer.
  • metal such as the aforementioned metal structure 62b
  • the distance c2 between the metal structure 62a, 62b and the boundary of the substrate 41 may be 100-150 microns; the boundary of the organic layer covering the metal structure 62a, 62b and The spacing c1 of the boundary of the substrate 41 can be designed to be 80-95 microns to ensure a sufficient coating effect on the metal structure.
  • Fig. 9 is a cross-sectional view of another embodiment of the present disclosure in the display area and the non-display area.
  • the touch structure located in the display area can be referred to as shown in FIG. 6b.
  • the display panel 1 of this embodiment is a touch display panel.
  • FIG. 7a it can also be based on the embodiment shown in FIG.
  • the display panel 1 of this embodiment further includes: the cathode layer 54 is located on the side away from the substrate 41 and along the side away from the substrate 41
  • the packaging structure layer 58, the fifth metal layer 59, the fifth inorganic insulating layer 60, and the touch electrode layer 61 are sequentially arranged in the direction of A first connection line 611 that connects adjacent touch electrode units 610 in the first direction
  • the fifth metal layer 59 includes a second connection line 59a that connects adjacent touch electrode units 610 in the second direction (for example, along Two adjacent touch electrode units 610 in the second direction are respectively connected to the same second connecting line 59a through via holes)
  • the binding portion 6a further includes a fifth contact pad 59b, and the fifth contact pad 59b is located on the fifth metal layer 59 or located on the touch electrode layer 61; the boundary of the fifth inorganic insulating layer 60 coincides with the boundary of the substrate 41.
  • At least one of the first organic layer 50 and the pixel defining layer 52 is used to cover the boundaries of the first inorganic insulating layer 44, the first inorganic insulating layer 46, and the third inorganic insulating layer 48, so that even if the metal layer is made in the first An inorganic insulating layer 44, a first inorganic insulating layer 46, and a third inorganic insulating layer 48 have residual metal (such as the metal structure 62a) at the cross section.
  • the residual metal is covered by the organic layer, so it can be insulated and isolated from other conductive structures Therefore, this solution can also improve the short-circuit problem caused by the residual metal in the section of the inorganic insulating layer. Since the boundary of the fifth inorganic insulating layer 60 coincides with the boundary of the substrate 41, the dry etching of the fifth inorganic insulating layer 60 in the circuit board bonding area 201 can be reduced as much as possible, so as to improve the problem of residues on the cross-section of the inorganic insulating layer. Short circuit problem caused by metal.
  • an embodiment of the present disclosure also provides a display device 100, including the display panel 1 of any of the foregoing embodiments, and a circuit bound to the circuit board binding area 201 of the display panel 1. Board 5.
  • the circuit board binding area 201 is provided with a plurality of binding parts 211
  • the circuit board 5 is provided with a plurality of binding parts 6b
  • the binding parts 6b and the binding parts 6a are bound in a one-to-one correspondence, so that the circuit board 5
  • the signal can be transmitted to and from the display panel 1.
  • the binding portion 6b of the circuit board 5 and the binding portion 6a of the display panel 1 are bonded and connected by a conductive adhesive film 30.
  • the conductive adhesive film 30 is, for example, an anisotropic conductive film (ACF).
  • ACF anisotropic conductive film
  • the conductive adhesive film 30 covers the binding portion 6a and extends beyond the edge of the binding portion 6a, that is, the orthographic projection of the binding portion 6a on the substrate 41 falls into the conductive adhesive film 30 on the lining. In the orthographic projection on the bottom 41.
  • the display device may be a flat screen display device, a curved screen display device or a flexible screen display device.
  • the specific product type of the display device is not limited, for example, it can be a mobile phone, a tablet computer, a monitor, a television, a picture screen, an advertising screen, a smart wearable, a car navigation, and so on.
  • an embodiment of the present disclosure also provides a manufacturing method of a display panel.
  • the method includes the following steps:
  • Step 1 Make a whole board containing multiple display panel units.
  • Each display panel unit includes a display area and a non-display area surrounding the display area.
  • the non-display area includes the circuit board binding area, between adjacent display panel units With cutting area;
  • Step 2 Cut the entire board along the cutting area to separate each display panel unit, and each independent display panel unit is a display panel, such as the display panel 1 shown in FIG. 3.
  • the above step one includes the following sub-steps:
  • a buffer layer, a semiconductor layer, a first inorganic insulating layer, a first metal layer, a second inorganic insulating layer, a second metal layer, a third inorganic insulating layer, and a third metal layer are sequentially formed on one side of the substrate in a direction away from the substrate ,
  • the first organic layer, the anode layer, the pixel defining layer, the organic functional layer and the cathode layer where:
  • the boundary of at least one of the first inorganic insulating layer, the second inorganic insulating layer, and the third inorganic insulating layer coincides with the boundary of the substrate, and the boundary of the first organic layer and the boundary of the pixel defining layer are spaced from the boundary of the substrate. .
  • the organic layer will not be cut when laser cutting the whole board, thus effectively avoiding the short circuit caused by the carbonization of the chips particles in the organic layer. problem. Since the boundary of the at least one inorganic insulating layer coincides with the boundary of the substrate, the dry etching of the inorganic insulating layer in the bonding area of the circuit board can be minimized, thereby improving the short circuit problem caused by the residual metal.
  • step one includes the following sub-steps:
  • a buffer layer, a semiconductor layer, a first inorganic insulating layer, a first metal layer, a second inorganic insulating layer, a second metal layer, a third inorganic insulating layer, and a third metal layer are sequentially formed on one side of the substrate in a direction away from the substrate ,
  • the first organic layer, the anode layer, the pixel defining layer, the organic functional layer and the cathode layer where:
  • Both the boundary of the first organic layer and the boundary of the pixel defining layer are spaced from the boundary of the substrate, and at least one of the first organic layer and the pixel defining layer covers the first inorganic insulating layer, the second inorganic insulating layer, and the second inorganic insulating layer. 3. The boundary of the inorganic insulating layer.
  • the organic layer will not be cut when laser cutting the whole board, thus effectively avoiding the short circuit caused by the carbonization of the chips particles in the organic layer. problem.
  • an organic layer is used to cover the boundary of the inorganic insulating layer. In this way, even if metal remains at the cross section of the inorganic insulating layer when the metal layer is made, the residual metal can be insulated and isolated from other conductive structures because it is covered by the organic layer. Improve the short circuit problem caused by residual metal.
  • the display area and the non-display area of the display panel can be manufactured in the same layer.
  • the pattern of the inorganic insulating layer in the display area and the non-display area is formed at the same time through a mask patterning process; the pattern of the organic layer in the display area and the non-display area is formed at the same time through a mask patterning process;
  • the metal layer patterns located in the display area and the non-display area are formed; more similar process schemes will not be listed here.
  • the display panel is a flexible organic light emitting display panel
  • the substrate adopts a flexible organic substrate.
  • a rigid carrier board such as a glass carrier board
  • the rigid carrier board needs to be peeled off to obtain the entire board to be cut.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示面板(1)、显示装置及显示面板(1)的制作方法。显示面板(1)包括显示区域(10)和围绕显示区域(10)的非显示区域(20);显示面板(1)的结构包括基板(41),以及位于基板(41)的一侧且沿远离基板(41)的方向依次设置的缓冲层(42)、半导体层(43)、第一无机绝缘层(44)、第一金属层(45)、第二无机绝缘层(46)、第二金属层(47)、第三无机绝缘层(48)、第三金属层(49)、第一有机层(50)、阳极层(51)、像素界定层(52)、有机功能层(53)和阴极层(54);非显示区域(20)包括电路板绑定区(201),在电路板绑定区(201),第一无机绝缘层(44)、第二无机绝缘层(46)和第三无机绝缘层(48)中的至少一个的边界与基板(41)的边界重合,第一有机层(50)的边界和像素界定层(52)的边界均与基板(41)的边界之间具有间距。

Description

显示面板、显示装置及显示面板的制作方法 技术领域
本公开涉及显示技术领域,尤其涉及一种显示面板、显示装置及显示面板的制作方法。
背景技术
有机发光显示装置由于其轻薄、易弯曲、功耗低、色域广、对比度高等优点,被列为极具发展前景的下一代显示技术。如何减少有机发光显示装置的显示面板的短路不良,提高制作良品率,一直是本领域技术人员的一项重要研发内容。
发明内容
根据本公开实施例的一方面,提供一种显示面板,包括显示区域和围绕所述显示区域的非显示区域;所述显示面板的结构包括基板,以及位于所述基板的一侧且沿远离所述基板的方向依次设置的缓冲层、半导体层、第一无机绝缘层、第一金属层、第二无机绝缘层、第二金属层、第三无机绝缘层、第三金属层、第一有机层、阳极层、像素界定层、有机功能层和阴极层;其中:
所述第一金属层包括栅极和第一极板,所述第二金属层包括第二极板,所述第三金属层包括通过过孔与所述半导体层连接的源极和漏极,其中:所述半导体层、所述栅极、所述源极和所述漏极构成位于所述显示区域的薄膜晶体管器件;所述第一极板和所述第二极板构成位于所述显示区域的电容器件;所述阳极层通过过孔与所述漏极连接,所述阳极层、所述有机功能层和所述阴极层构成位于所述显示区域的有机发光器件;
所述非显示区域包括电路板绑定区,所述电路板绑定区具有暴露于所述显示面板表面的绑定部,在所述电路板绑定区,所述第一无机绝缘层、所述第二无机绝缘层和所述第三无机绝缘层中的至少一个的边界与所述基板的边界重合,所述第一有机层的边界和所述像素界定层的边界均与所述基板的边界之间具有间距。
在一些实施例中,所述绑定部包括位于所述第三金属层的第三接触垫。
在一些实施例中,所述绑定部还包括位于所述第一金属层的第一接触垫和/或位于所述第二金属层的第二接触垫。
在一些实施例中,所述的显示面板,还包括:位于所述第一有机层和所述阳极层之间且沿远离所述基板的方向依次设置的第四无机绝缘层、第四金属层和第二有机层;所述第四无机绝缘层的边界与所述基板的边界重合;所述第二有机层的边界与所述基板的边界之间具有间距。
在一些实施例中,所述绑定部包括位于所述第四金属层的第四接触垫。
在一些实施例中,所述绑定部还包括位于所述第一金属层的第一接触垫、位于所述第二金属层的第二接触垫、以及位于所述第三金属层的第三接触垫中的至少一个。
在一些实施例中,所述的显示面板,还包括:位于所述阴极层远离所述基板的一侧并沿远离所述基板的方向依次设置的封装结构层、第五金属层、第五无机绝缘层和触控电极层,其中:
所述触控电极层包括阵列排布的多个触控电极单元,以及沿第一方向将相邻的所述触控电极单元连接的第一连接线,所述第五金属层包括沿第二方向通过过孔将相邻的所述触控电极单元连接的第二连接线;
所述绑定部包括第五接触垫,所述第五接触垫位于所述第五金属层或者位于所述触控电极层;
所述第五无机绝缘层的边界与所述基板的边界重合。
在一些实施例中,所述第一金属层和所述第二金属层材料相同。
在一些实施例中,所述第三金属层和所述第四金属层材料相同。
根据本公开实施例的另一方面,提供一种显示面板,包括显示区域和围绕所述显示区域的非显示区域;所述显示面板的结构包括基板,以及位于所述基板的一侧且沿远离所述基板的方向依次设置的缓冲层、半导体层、第一无机绝缘层、第一金属层、第二无机绝缘层、第二金属层、第三无机绝缘层、第三金属层、第一有机层、阳极层、像素界定层、有机功能层和阴极层;其中:
所述第一金属层包括栅极和第一极板,所述第二金属层包括第二极板,所述第三金属层包括通过过孔与所述半导体层连接的源极和漏极,其中:所述半导体层、所述栅极、所述源极和所述漏极构成位于所述显示区域的薄膜晶体管器件;所述第一极板和所述第二极板构成位于所述显示区域的电容器件;所述阳极层通过过孔与所述漏极连接,所述阳极层、所述有机功能层和所述阴极层构成位于所述显示区域的有机发光器件;
所述非显示区域包括电路板绑定区,所述电路板绑定区具有暴露于所述显示面板 表面的绑定部,在所述电路板绑定区,所述第一有机层的边界和所述像素界定层的边界均与所述基板的边界之间具有间距,且所述第一有机层和所述像素界定层中的至少一个包覆所述第一无机绝缘层、所述第二无机绝缘层和所述第三无机绝缘层的边界。
在一些实施例中,所述绑定部包括位于所述第三金属层的第三接触垫。
在一些实施例中,所述绑定部还包括位于所述第一金属层的第一接触垫和/或位于所述第二金属层的第二接触垫。
在一些实施例中,所述的显示面板,还包括:位于所述第一有机层和所述阳极层之间且沿远离所述基板的方向依次设置的第四无机绝缘层、第四金属层和第二有机层;在所述电路板绑定区,所述第二有机层的边界与所述基板的边界之间具有间距,且所述第二有机层和所述像素界定层中的至少一个包覆所述第四无机绝缘层的边界。
在一些实施例中,所述绑定部包括位于所述第四金属层的第四接触垫。
在一些实施例中,所述绑定部还包括位于所述第一金属层的第一接触垫、位于所述第二金属层的第二接触垫、以及位于所述第三金属层的第三接触垫中的至少一个。
在一些实施例中,所述的显示面板,还包括:位于所述阴极层远离所述基板的一侧并沿远离所述基板的方向依次设置的封装结构层、第五金属层、第五无机绝缘层和触控电极层,其中:
所述触控电极层包括阵列排布的多个触控电极单元,以及沿第一方向将相邻的所述触控电极单元连接的第一连接线,所述第五金属层包括沿第二方向通过过孔将相邻的所述触控电极单元连接的第二连接线;
所述绑定部包括第五接触垫,所述第五接触垫位于所述第五金属层或者位于所述触控电极层;
所述第五无机绝缘层的边界与所述基板的边界重合。
在一些实施例中,在所述第一无机绝缘层、所述第二无机绝缘层和所述第三无机绝缘层中的至少一层的边界处具有金属结构;所述第一有机层和所述像素界定层中的至少一个包覆所述金属结构。
在一些实施例中,在所述第四无机绝缘层的边界处具有金属结构;所述第二有机层和所述像素界定层中的至少一个包覆所述金属结构。
在一些实施例中,所述金属结构与所述基板的边界之间的间距为100-150微米;包覆所述金属结构的有机层的边界与所述基板的边界的间距为80-95微米。
在一些实施例中,所述金属结构与所述绑定部中离所述基板最远的金属层采用相 同材料;或者,所述金属结构的材料包含所述绑定部中离所述基板最远的金属层所采用材料中的至少一种。
在一些实施例中,所述金属结构与无机绝缘层的边界之间存在间隙;所述无机绝缘层为所述第一无机绝缘层、所述第二无机绝缘层、所述第三无机绝缘层、所述第四无机绝缘层中的至少一个。
根据本公开实施例的又一方面,提供一种显示装置,包括:根据前述任一技术方案所述的显示面板,以及绑定于所述显示面板的所述电路板绑定区的电路板。
根据本公开实施例的再一方面,提供一种显示面板的制作方法,包括:
制作包含有多个显示面板单元的整板,每个所述显示面板单元包括显示区域和围绕所述显示区域的非显示区域,所述非显示区域包括电路板绑定区,相邻的所述显示面板单元之间设有切割区;
沿所述切割区对所述整板进行切割,分离出各个所述显示面板单元,每个独立的所述显示面板单元为一个显示面板;
其中,制作所述整板,包括:
在所述基板的一侧沿远离所述基板的方向依次形成缓冲层、半导体层、第一无机绝缘层、第一金属层、第二无机绝缘层、第二金属层、第三无机绝缘层、第三金属层、第一有机层、阳极层、像素界定层、有机功能层和阴极层,其中:
所述第一无机绝缘层、所述第二无机绝缘层和所述第三无机绝缘层中的至少一个的边界与所述基板的边界重合,所述第一有机层的边界和所述像素界定层的边界均与所述基板的边界之间具有间距。
根据本公开实施例的再一方面,提供一种显示面板的制作方法,包括:
制作包含有多个显示面板单元的整板,每个所述显示面板单元包括显示区域和围绕所述显示区域的非显示区域,所述非显示区域包括电路板绑定区,相邻的所述显示面板单元之间设有切割区;
沿所述切割区对所述整板进行切割,分离出各个所述显示面板单元,每个独立的所述显示面板单元为一个显示面板;
其中,制作所述整板,包括:
在所述基板的一侧沿远离所述基板的方向依次形成缓冲层、半导体层、第一无机绝缘层、第一金属层、第二无机绝缘层、第二金属层、第三无机绝缘层、第三金属层、第一有机层、阳极层、像素界定层、有机功能层和阴极层,其中:
所述第一有机层的边界和所述像素界定层的边界均与所述基板的边界之间具有间距,且所述第一有机层和所述像素界定层中的至少一个包覆所述第一无机绝缘层、所述第二无机绝缘层和所述第三无机绝缘层的边界。
附图说明
构成说明书的一部分的附图描述了本公开的实施例,并且连同说明书一起用于解释本公开的原理。
参照附图,根据下面的详细描述,可以更加清楚地理解本公开,其中:
图1是一种相关技术的显示面板与电路板绑定后的主视图;
图2是本公开一个实施例中整板切割以及显示面板与电路板绑定示意图;
图3是本公开一个实施例的显示面板与电路板绑定后的主视图;
图4a是本公开一个实施例在图3的A-A处截面图;
图4b是本公开一个实施例的显示面板与电路板绑定后的截面示意图;
图5是本公开另一个实施例在图3的A-A处截面图;
图6a是本公开又一个实施例在图3的A-A处截面图;
图6b是图6a所示实施例的触控结构俯视图;
图7a是本公开再一个实施例在图3的A-A处截面图;
图7b是无机绝缘层断面处残留金属的电镜图;
图7c是本公开再一个实施例的显示面板与电路板绑定后的截面示意图;
图8是本公开再一个实施例在图3的A-A处截面图;
图9是本公开再一个实施例在图3的A-A处截面图;
图10是本公开一个实施例的显示装置的主视图。
应当明白,附图中所示出的各个部分的尺寸并不必然是按照实际的比例关系绘制的。此外,相同或类似的参考标号表示相同或类似的构件。
具体实施方式
现在将参照附图来详细描述本公开的各种示例性实施例。对示例性实施例的描述仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。本公开可以以许多不同的形式实现,不限于这里所述的实施例。提供这些实施例是为了使本公开透彻且完整,并且向本领域技术人员充分表达本公开的范围。应注意到:除非另外具体说明, 否则在这些实施例中阐述的部件和步骤的相对布置、材料的组分、数字表达式和数值应被解释为仅仅是示例性的,而不是作为限制。
本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的部分。“包括”或者“包含”等类似的词语意指在该词前的要素涵盖在该词后列举的要素,并不排除也涵盖其他要素的可能。“上”、“下”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
在本公开中,当描述到特定部件位于第一部件和第二部件之间时,在该特定部件与第一部件或第二部件之间可以存在居间部件,也可以不存在居间部件。当描述到特定部件连接其它部件时,该特定部件可以与所述其它部件直接连接而不具有居间部件,也可以不与所述其它部件直接连接而具有居间部件。
本公开使用的所有术语(包括技术术语或者科学术语)与本公开所属领域的普通技术人员理解的含义相同,除非另外特别定义。还应当理解,在诸如通用字典中定义的术语应当被解释为具有与它们在相关技术的上下文中的含义相一致的含义,而不应用理想化或极度形式化的意义来解释,除非这里明确地这样定义。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
如图1所示,为一种相关技术的显示面板与电路板绑定后的主视图。该显示面板01包括显示区域01a和围绕显示区域01a的非显示区域01b。其中,非显示区域01b包括电路板绑定区011,电路板绑定区011设有多个第一绑定部012。其中,多个第一绑定部012用于与电路板05上设置的多个第二绑定部050一一对应绑定。
上述显示面板01的制作过程为:首先,制作包含有多个显示面板单元的整板;然后,对整板进行激光切割,分离出各个显示面板单元,每个独立的显示面板单元即为一个显示面板。显示面板制作完成后,还需要在电路板绑定区绑定上电路板。
本申请的发明人在实现本申请实施例的过程中发现,上述相关技术的显示面板01在与电路板05绑定后经常存在短路不良,从而导致产品良品率下降。
为解决上述技术问题,本公开实施例提供一种显示面板、显示装置及显示面板的制作方法。
本公开实施例的显示面板通过对整板进行切割而得到。如图2、图3和图4a所示,其中,图2是本公开一个实施例中整板切割以及显示面板与电路板绑定示意图,图3是本公开一个实施例的显示面板与电路板绑定后的主视图,图4a是本公开一个实施例在显示区域和非显示区域的截面图。
如图3和图4a所示,本公开一实施例提供了一种显示面板1,包括显示区域10和围绕显示区域10的非显示区域20;显示面板1的结构包括基板41,以及位于基板41的一侧且沿远离基板41的方向依次设置的缓冲层42、半导体层43、第一无机绝缘层44、第一金属层45、第二无机绝缘层46、第二金属层47、第三无机绝缘层48、第三金属层49、第一有机层50、阳极层51、像素界定层52、有机功能层53和阴极层54;其中:
第一金属层45包括栅极45a和第一极板45b,第二金属层47包括第二极板47a,第三金属层49包括通过过孔与半导体层43连接的源极49a和漏极49b,其中:半导体层43、栅极45a、源极49a和漏极49b构成位于显示区域10的薄膜晶体管器件;第一极板45b和第二极板47a构成位于显示区域10的电容器件;阳极层51通过过孔与漏极49b连接,阳极层51、有机功能层53和阴极层54构成位于显示区域10的有机发光器件;
非显示区域20包括电路板绑定区201,电路板绑定区201包括暴露于显示面板1的表面的绑定部6a,在电路板绑定区201,第一无机绝缘层44、第二无机绝缘层46和第三无机绝缘层48中的至少一个的边界与基板41的边界重合,第一有机层50的边界和像素界定层52的边界均与基板41的边界之间具有间距。
显示面板1的显示区域10用于显示图像,非显示区域20用于布置相关电路,以支持显示区域10的显示。电路板绑定区201主要用于绑定电路板5,电路板5例如为柔性印刷电路板。
在本公开图3所示的实施例中,显示面板1整体呈矩形,电路板绑定区201位于非显示区域20的一个边侧。电路板绑定区201包括多个绑定部6a,该多个绑定部6a用于与电路板5上设置的多个绑定部6b一一对应绑定,从而使电路板5与显示面板1之间可以进行信号的传输。如图4b所示,为采用上述结构的显示面板1与电路板5绑定后的截面示意图,其中,电路板5的绑定部6b与显示面板1的绑定部6a通过导电胶膜30绑定。
如图4a所示,为实现与电路板的绑定,绑定部6a暴露于显示面板1的表面。绑 定部6a可以包括一层或多层接触垫。当绑定部6a包括多层接触垫时,相邻层的接触垫之间通过过孔实现连接。如图4a所示,在本公开的一些实施例中,绑定部6a包括:位于第一金属层45的第一接触垫45c、位于第二金属层47的第二接触垫47b和位于第三金属层49的第三接触垫49c。
可以理解的,显示面板1的形状不局限于图中所示的矩形,例如还可以为圆形,椭圆形、正多边形或者形状不规则的异形等,这与显示装置的产品类型有关。显示面板1可以为平面显示面板、曲面显示面板或者柔性显示面板。在本公开的一个实施例中,显示面板1为柔性有机发光显示面板。
在本公开实施例中,基板41的具体材料类型不限,例如可以为玻璃基板或树脂基板。基板41可以为刚性基板或柔性基板。柔性基板可以采用聚酰亚胺(Polyimide,PI)材料。各无机绝缘层的具体材料不限,例如可以采用氮化硅,无机绝缘层的图案一般通过干法刻蚀工艺形成。各有机层的具体材料不限,例如可以采用树脂,有机层的图案一般通过湿法刻蚀工艺形成。第一金属层45和第二金属层47可以采用相同或者不相同的材料。
本公开的发明人在实现本公开实施例的过程中发现,相关技术的显示面板在与电路板绑定后易发生短路不良的原因主要有以下两种:
其一,在对整板进行激光切割时,有机层飞出的切屑粒子会因激光烧灼而碳化,从而具有导电性,导电的切屑粒子落于电路板绑定区,便容易引起相关线路短路。
其二,由于干法刻蚀的各向异性刻蚀特点,通过干法刻蚀工艺形成无机绝缘层的图案后,无机绝缘层的断面(即刻蚀断面)与制作基面之间的夹角约为60度-70度,断面相对制作基面较陡峭。后续在通过掩模工艺制作金属层的图案时,断面与制作基面夹角处的金属不易去除,残留于该处的金属结构与后续制作的其它导电结构接触后,便引起相关线路短路。
第一有机层50包括位于显示区域10的部分和位于非显示区域20的部分,其中,第一有机层50位于显示区域10的部分主要用作平坦层。如图4a所示,采用本公开上述实施例的技术方案,第一有机层50的边界和像素界定层52的边界均与基板41的边界之间具有间距,也就是说,图2中的切割区802没有被有机层覆盖,这样,在对整板进行激光切割时,便不会切割到有机层,从而有效避免了因有机层切屑粒子碳化而导致的短路问题。第一无机绝缘层44、第二无机绝缘层46和第三无机绝缘层48中的至少一个的边界与基板41的边界重合,从而尽量减少了在电路板绑定区201对无 机绝缘层的干法刻蚀,因此能够改善因在无机绝缘层断面残留金属引发的短路问题。在本公开的一些实施例中,第一无机绝缘层44、第二无机绝缘层46和第三无机绝缘层48各自的边界均与基板41的边界重合,能够更有效的改善因残留金属引发的短路问题。
请结合图3和图5所示,其中,图5是本公开另一个实施例在显示区域和非显示区域的截面图。在图4a所示实施例的基础上,该实施例显示面板1还包括:位于第一有机层50和阳极层51之间且沿远离基板41的方向依次设置的第四无机绝缘层55、第四金属层56和第二有机层57;其中,第四无机绝缘层55的边界与基板41的边界重合;第二有机层57的边界与基板41的边界之间具有间距。
第四金属层56位于显示区域10的部分可以用作数据线,与第三金属层49位于显示区域10的部分通过过孔连接(图中未示出),从而使信号可以在第四金属层56和第三金属层49之间传输。第四金属层56和第三金属层49可以采用相同的材料。
在该实施例中,绑定部6a除第一接触垫45c、第二接触垫47b和第三接触垫49c外,还包括位于第四金属层56的第四接触垫56b。如前述所,绑定部6a的具体结构不限于此,可以包括第一接触垫45c、第二接触垫47b、第三接触垫49c,以及第四接触垫56b中的至少一个。
与第一有机层50类似,第二有机层57包括位于显示区域10的部分和位于非显示区域20的部分,其中,第二有机层57位于显示区域10的部分主要用作平坦层。与前述实施例的有益效果类似,由于第二有机层57的边界与基板41的边界之间具有间距,因此可以有效避免因切割有机层而导致的短路问题。由于第四无机绝缘层55的边界与基板41的边界重合,因此,能够有效改善因在无机绝缘层断面残留金属引发的短路问题。
请结合图3、图6a和图6b所示,其中,图6a是本公开另一个实施例在显示区域和非显示区域的截面图,图6b是该实施例的位于显示区域的触控结构的俯视图。该实施例显示面板1为触控显示面板。在图4a所示实施例的基础上(也可以是在图5所示实施例的基础上),该实施例显示面板1还包括:位于阴极层54远离基板41的一侧并沿远离基板41的方向依次设置的封装结构层58、第五金属层59、第五无机绝缘层60和触控电极层61,其中:触控电极层61包括阵列排布的多个触控电极单元610, 以及沿第一方向将相邻的触控电极单元610连接的第一连接线611,第五金属层59包括沿第二方向将相邻的触控电极单元610连接的第二连接线59a(例如沿第二方向相邻的两个触控电极单元610分别通过过孔与同一个第二连接线59a连接);绑定部6a还包括第五接触垫59b,第五接触垫59b位于第五金属层59或者位于触控电极层61;第五无机绝缘层60的边界与基板41的边界重合。
与前述实施例的有益效果类似,该具有触控功能的显示面板的结构设计,同样能够改善在电路板绑定区的短路不良问题。
请结合图3和图7a所示,其中,图7a是本公开另一个实施例在显示区域和非显示区域的截面图。该实施例显示面板1,包括显示区域10和围绕显示区域10的非显示区域20;显示面板1的结构包括基板41,以及位于基板41的一侧且沿远离基板41的方向依次设置的缓冲层42、半导体层43、第一无机绝缘层44、第一金属层45、第二无机绝缘层46、第二金属层47、第三无机绝缘层48、第三金属层49、第一有机层50、阳极层51、像素界定层52、有机功能层53和阴极层54;其中:
第一金属层45包括栅极45a和第一极板45b,第二金属层47包括第二极板47a,第三金属层49包括通过过孔与半导体层43连接的源极49a和漏极49b,其中:半导体层43、栅极45a、源极49a和漏极49b构成位于显示区域10的薄膜晶体管器件;第一极板45b和第二极板47a构成位于显示区域10的电容器件;阳极层51通过过孔与漏极49b连接,阳极层51、有机功能层53和阴极层54构成位于显示区域10的有机发光器件;
非显示区域20包括电路板绑定区201,电路板绑定区201具有暴露于显示面板1的表面的绑定部6a,在电路板绑定区201,第一有机层50的边界和像素界定层52的边界均与基板41的边界之间具有间距,且第一有机层50和像素界定层52中的至少一个包覆第一无机绝缘层44、第二无机绝缘层46和第三无机绝缘层48的边界。
在一些实施例中,如图7a所示,第一无机绝缘层44、第二无机绝缘层46和第三无机绝缘层48中的至少一层的边界处还具有金属结构62a;第一有机层50和像素界定层52中的至少一个包覆该金属结构62a。在一些实施例中,如图7b所示,金属结构62a与无机绝缘层的断面之间通常会具有一定间隙;在形成第一有机层50和像素界定层52后,第一有机层50和像素界定层52中的至少一个包覆了该金属结构62a,同时对金属结构62a与无机绝缘层的断面之间的间隙进行填充;其中,前述无机绝缘 层可以是第一无机绝缘层、第二无机绝缘层、第三无机绝缘层中的至少一个。
如图7c所示,为采用上述结构的显示面板1与电路板5绑定后的截面示意图,其中,电路板5的绑定部6b与显示面板1的绑定部6a通过导电胶膜30绑定。
采用本公开该实施例的技术方案,第一有机层50的边界和像素界定层52的边界均与基板41的边界之间具有间距,也就是说,图2中的切割区802没有被有机层覆盖,这样,在对整板进行激光切割时,便不会切割到有机层,从而有效避免了因有机层切屑粒子碳化而导致的短路问题。同时,使用有机层包覆无机绝缘层的边界,这样,即使制作金属层时在无机绝缘层断面处残留有金属(如前述的金属结构62a),该残留金属由于被有机层包覆,所以能够与其它导电结构绝缘隔离,因此,该方案也能够改善因在无机绝缘层断面残留金属引发的短路问题。
显示面板的其它结构设计可以与前述实施例类似,设计上的相同之处这里不在重复赘述。
请结合图3和图8所示,其中,图8是本公开另一个实施例在显示区域和非显示区域的截面图。在图7a所示实施例的基础上,该实施例显示面板1还包括:位于第一有机层50和阳极层51之间且沿远离基板41的方向依次设置的第四无机绝缘层55、第四金属层56和第二有机层57;其中,第二有机层57的边界与基板41的边界之间具有间距,且第二有机层57和像素界定层52中的至少一个还包覆第四无机绝缘层55的边界。
在一些实施例中,如图8所示,在第四无机绝缘层55的边界处具有金属结构62b;第二有机层57和像素界定层52中的至少一个包覆了该金属结构62b。在一实施例中,金属结构62b与第四无机绝缘层的断面之间通常会具有一定间隙;第二有机层57和像素界定层52中的至少一个包覆了该金属结构62b,同时对金属结构62b与第四无机绝缘层的断面之间的间隙进行填充。
与图7a所示实施例的有益效果类似,由于第二有机层57的边界与基板41的边界之间具有间距,因此可以有效避免因切割有机层而导致的短路问题。由于有机层包覆无机绝缘层的边界,因此,即使制作金属层时在第四无机绝缘层55的边界处残留有金属(如前述的金属结构62b),该残留金属由于被第二有机层57或像素界定层52包覆,所以能够与其它导电结构绝缘隔离。因此,该方案也能够改善因在无机绝缘层断面残留金属引发的短路问题。
在本公开图7a和图8所示的实施例中,金属结构62a、62b与基板41的边界之间的间距c2可以为100-150微米;包覆金属结构62a、62b的有机层的边界与基板41的边界的间距c1可以设计为80-95微米,以保证对金属结构充分的包覆效果。
显示面板的其它结构设计可以与前述实施例类似,设计上的相同之处这里不在重复赘述。
如图3、图6b和图9所示,其中,图9是本公开另一个实施例在显示区域和非显示区域的截面图。该实施例中,位于显示区域的触控结构可参照图6b所示。该实施例显示面板1为触控显示面板。在图7a所示实施例的基础上(也可以是在图8所示实施例的基础上),该实施例显示面板1还包括:位于阴极层54远离基板41的一侧并沿远离基板41的方向依次设置的封装结构层58、第五金属层59、第五无机绝缘层60和触控电极层61,其中:触控电极层61包括阵列排布的多个触控电极单元610,以及沿第一方向将相邻的触控电极单元610连接的第一连接线611,第五金属层59包括沿第二方向将相邻的触控电极单元610连接的第二连接线59a(例如沿第二方向相邻的两个触控电极单元610分别通过过孔与同一个第二连接线59a连接);绑定部6a还包括第五接触垫59b,第五接触垫59b位于第五金属层59或者位于触控电极层61;第五无机绝缘层60的边界与基板41的边界重合。
与前述实施例的有益效果类似,由于第一有机层50和像素界定层52的边界均与基板41的边界之间间隔一定距离,因此可以有效避免因有机层切屑粒子碳化而导致的短路问题。使用第一有机层50和像素界定层52中的至少一层包覆第一无机绝缘层44、第一无机绝缘层46和第三无机绝缘层48的边界,这样,即使制作金属层时在第一无机绝缘层44、第一无机绝缘层46和第三无机绝缘层48的断面处残留有金属(如金属结构62a),该残留金属由于被有机层包覆,所以能够与其它导电结构绝缘隔离,因此,该方案也能够改善因在无机绝缘层断面残留金属引发的短路问题。由于第五无机绝缘层60的边界与基板41的边界重合,这样,可以尽量减少在电路板绑定区201对第五无机绝缘层60的干法刻蚀,从而改善因在无机绝缘层断面残留金属引发的短路问题。
显示面板的其它结构设计可以与前述实施例类似,设计上的相同之处这里不在重复赘述。
如图10和图3所示,本公开一实施例还提供了一种显示装置100,包括前述任一实施例的显示面板1,以及绑定于显示面板1的电路板绑定区201的电路板5。
具体的,电路板绑定区201设有多个绑定部211,电路板5设有多个绑定部6b,绑定部6b与绑定部6a一一对应绑定,从而使电路板5与显示面板1之间可以进行信号的传输。
如图4b和图7c所示,在一些实施例中,电路板5的绑定部6b与显示面板1的绑定部6a通过导电胶膜30绑定连接。导电胶膜30例如为异方性导电胶膜(Anisotropic Conductive Film,ACF)。为保证绑定连接的可靠性,导电胶膜30覆盖了绑定部6a并且超出了绑定部6a的边缘,即绑定部6a在衬底41上的正投影落入导电胶膜30在衬底41上的正投影内。
通过对本公开上述实施例显示面板的分析可知,在将电路板5与显示面板1绑定后,可显著减少甚至避免相关技术的短路问题,因此,显示装置的制作良品率提高,生产成本降低。
在本公开实施例中,显示装置可以为平面屏显示装置,曲面屏显示装置或者柔性屏显示装置。显示装置的具体产品类型不限,例如可以为手机、平板电脑、显示器、电视机、画屏、广告屏、智能穿戴、车载导航等等。
可参照图2和图3所示,本公开实施例还提供了一种显示面板的制作方法,该方法包括以下步骤:
步骤一:制作包含有多个显示面板单元的整板,每个显示面板单元包括显示区域和围绕显示区域的非显示区域,非显示区域包括电路板绑定区,相邻的显示面板单元之间设有切割区;
步骤二:沿切割区对整板进行切割,分离出各个显示面板单元,每个独立的显示面板单元为一个显示面板,例如图3所示的显示面板1。
在一个实施例中,上述步骤一,包括了以下子步骤:
在基板的一侧沿远离基板的方向依次形成缓冲层、半导体层、第一无机绝缘层、第一金属层、第二无机绝缘层、第二金属层、第三无机绝缘层、第三金属层、第一有机层、阳极层、像素界定层、有机功能层和阴极层,其中:
第一无机绝缘层、第二无机绝缘层和第三无机绝缘层中的至少一个的边界与基板的边界重合,第一有机层的边界和像素界定层的边界均与基板的边界之间具有间距。
同前所述,由于整板的切割区没有被有机层覆盖,这样,在对整板进行激光切割时,便不会切割到有机层,从而有效避免了因有机层切屑粒子碳化而导致的短路问题。由于至少一个无机绝缘层的边界与基板的边界重合,这样可以尽量减少在电路板绑定区对无机绝缘层的干法刻蚀,从而改善残留金属引发的短路问题。
在另一个实施例中,上述步骤一,包括了以下子步骤:
在基板的一侧沿远离基板的方向依次形成缓冲层、半导体层、第一无机绝缘层、第一金属层、第二无机绝缘层、第二金属层、第三无机绝缘层、第三金属层、第一有机层、阳极层、像素界定层、有机功能层和阴极层,其中:
第一有机层的边界和像素界定层的边界均与基板的边界之间具有间距,且第一有机层和像素界定层中的至少一个包覆第一无机绝缘层、第二无机绝缘层和第三无机绝缘层的边界。
同前所述,由于整板的切割区没有被有机层覆盖,这样,在对整板进行激光切割时,便不会切割到有机层,从而有效避免了因有机层切屑粒子碳化而导致的短路问题。同时,使用有机层包覆无机绝缘层的边界,这样,即使制作金属层时在无机绝缘层断面处残留有金属,该残留金属由于被有机层包覆,所以能够与其它导电结构绝缘隔离,从而改善残留金属引发的短路问题。
为减少掩模板使用数量,简化工艺,降低制作成本,在本公开实施例中,显示面板的显示区域和非显示区域的相关结构层可以同层制作。例如,通过一次掩模构图工艺同时形成位于显示区域和非显示区域的无机绝缘层图案;通过一次掩模构图工艺同时形成位于显示区域和非显示区域的有机层图案;通过一次掩模构图工艺同时形成位于显示区域和非显示区域的金属层图案;更多的类似工艺方案这里不再一一列举。
在本公开的一个实施例中,显示面板为柔性有机发光显示面板,基板采用了柔性有机基板。此类整板在制作时,需要先将柔性有机基板形成于一刚性承载板(如玻璃承载板)上,然后再在柔性有机基板上制作显示面板的各层结构。当整板制作完成后,还需要将刚性承载板剥离,从而得到待切割的整板。
至此,已经详细描述了本公开的各实施例。为了避免遮蔽本公开的构思,没有描述本领域所公知的一些细节。本领域技术人员根据上面的描述,完全可以明白如何实施这里公开的技术方案。
虽然已经通过示例对本公开的一些特定实施例进行了详细说明,但是本领域的技 术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本公开的范围。本领域的技术人员应该理解,可在不脱离本公开的范围和精神的情况下,对以上实施例进行修改或者对部分技术特征进行等同替换。本公开的范围由所附权利要求来限定。

Claims (24)

  1. 一种显示面板,包括显示区域和围绕所述显示区域的非显示区域;所述显示面板的结构包括基板,以及位于所述基板的一侧且沿远离所述基板的方向依次设置的缓冲层、半导体层、第一无机绝缘层、第一金属层、第二无机绝缘层、第二金属层、第三无机绝缘层、第三金属层、第一有机层、阳极层、像素界定层、有机功能层和阴极层;其中:
    所述第一金属层包括栅极和第一极板,所述第二金属层包括第二极板,所述第三金属层包括通过过孔与所述半导体层连接的源极和漏极,其中:所述半导体层、所述栅极、所述源极和所述漏极构成位于所述显示区域的薄膜晶体管器件;所述第一极板和所述第二极板构成位于所述显示区域的电容器件;所述阳极层通过过孔与所述漏极连接,所述阳极层、所述有机功能层和所述阴极层构成位于所述显示区域的有机发光器件;
    所述非显示区域包括电路板绑定区,所述电路板绑定区具有暴露于所述显示面板表面的绑定部,在所述电路板绑定区,所述第一无机绝缘层、所述第二无机绝缘层和所述第三无机绝缘层中的至少一个的边界与所述基板的边界重合,所述第一有机层的边界和所述像素界定层的边界均与所述基板的边界之间具有间距。
  2. 根据权利要求1所述的显示面板,其中:所述绑定部包括位于所述第三金属层的第三接触垫。
  3. 根据权利要求2所述的显示面板,其中:所述绑定部还包括位于所述第一金属层的第一接触垫和/或位于所述第二金属层的第二接触垫。
  4. 根据权利要求1所述的显示面板,还包括:位于所述第一有机层和所述阳极层之间且沿远离所述基板的方向依次设置的第四无机绝缘层、第四金属层和第二有机层;
    所述第四无机绝缘层的边界与所述基板的边界重合;
    所述第二有机层的边界与所述基板的边界之间具有间距。
  5. 根据权利要求4所述的显示面板,其中:所述绑定部包括位于所述第四金属层 的第四接触垫。
  6. 根据权利要求5所述的显示面板,其中:所述绑定部还包括位于所述第一金属层的第一接触垫、位于所述第二金属层的第二接触垫、以及位于所述第三金属层的第三接触垫中的至少一个。
  7. 根据权利要求1所述的显示面板,还包括:位于所述阴极层远离所述基板的一侧并沿远离所述基板的方向依次设置的封装结构层、第五金属层、第五无机绝缘层和触控电极层,其中:
    所述触控电极层包括阵列排布的多个触控电极单元,以及沿第一方向将相邻的所述触控电极单元连接的第一连接线,所述第五金属层包括沿第二方向通过过孔将相邻的所述触控电极单元连接的第二连接线;
    所述绑定部包括第五接触垫,所述第五接触垫位于所述第五金属层或者位于所述触控电极层;
    所述第五无机绝缘层的边界与所述基板的边界重合。
  8. 根据权利要求1-7任一项所述的显示面板,其中:所述第一金属层和所述第二金属层材料相同。
  9. 根据权利要求4-6任一项所述的显示面板,其中:所述第三金属层和所述第四金属层材料相同。
  10. 一种显示面板,包括显示区域和围绕所述显示区域的非显示区域;所述显示面板的结构包括基板,以及位于所述基板的一侧且沿远离所述基板的方向依次设置的缓冲层、半导体层、第一无机绝缘层、第一金属层、第二无机绝缘层、第二金属层、第三无机绝缘层、第三金属层、第一有机层、阳极层、像素界定层、有机功能层和阴极层;其中:
    所述第一金属层包括栅极和第一极板,所述第二金属层包括第二极板,所述第三金属层包括通过过孔与所述半导体层连接的源极和漏极,其中:所述半导体层、所述栅极、所述源极和所述漏极构成位于所述显示区域的薄膜晶体管器件;所述第一极板 和所述第二极板构成位于所述显示区域的电容器件;所述阳极层通过过孔与所述漏极连接,所述阳极层、所述有机功能层和所述阴极层构成位于所述显示区域的有机发光器件;
    所述非显示区域包括电路板绑定区,所述电路板绑定区具有暴露于所述显示面板表面的绑定部,在所述电路板绑定区,所述第一有机层的边界和所述像素界定层的边界均与所述基板的边界之间具有间距,且所述第一有机层和所述像素界定层中的至少一个包覆所述第一无机绝缘层、所述第二无机绝缘层和所述第三无机绝缘层的边界。
  11. 根据权利要求10所述的显示面板,其中:所述绑定部包括位于所述第三金属层的第三接触垫。
  12. 根据权利要求11所述的显示面板,其中:所述绑定部还包括位于所述第一金属层的第一接触垫和/或位于所述第二金属层的第二接触垫。
  13. 根据权利要求10所述的显示面板,还包括:位于所述第一有机层和所述阳极层之间且沿远离所述基板的方向依次设置的第四无机绝缘层、第四金属层和第二有机层;
    在所述电路板绑定区,所述第二有机层的边界与所述基板的边界之间具有间距,且所述第二有机层和所述像素界定层中的至少一个包覆所述第四无机绝缘层的边界。
  14. 根据权利要求13所述的显示面板,其中:所述绑定部包括位于所述第四金属层的第四接触垫。
  15. 根据权利要求14所述的显示面板,其中:所述绑定部还包括位于所述第一金属层的第一接触垫、位于所述第二金属层的第二接触垫、以及位于所述第三金属层的第三接触垫中的至少一个。
  16. 根据权利要求10所述的显示面板,还包括:位于所述阴极层远离所述基板的一侧并沿远离所述基板的方向依次设置的封装结构层、第五金属层、第五无机绝缘层和触控电极层,其中:
    所述触控电极层包括阵列排布的多个触控电极单元,以及沿第一方向将相邻的所述触控电极单元连接的第一连接线,所述第五金属层包括沿第二方向通过过孔将相邻的所述触控电极单元连接的第二连接线;
    所述绑定部包括第五接触垫,所述第五接触垫位于所述第五金属层或者位于所述触控电极层;
    所述第五无机绝缘层的边界与所述基板的边界重合。
  17. 根据权利要求10所述的显示面板,其中:在所述第一无机绝缘层、所述第二无机绝缘层和所述第三无机绝缘层中的至少一层的边界处具有金属结构;
    所述第一有机层和所述像素界定层中的至少一个包覆所述金属结构。
  18. 根据权利要求13述的显示面板,其中:在所述第四无机绝缘层的边界处具有金属结构;
    所述第二有机层和所述像素界定层中的至少一个包覆所述金属结构。
  19. 根据权利要求17或18所述的显示面板,其中:
    所述金属结构与所述基板的边界之间的间距为100-150微米;
    包覆所述金属结构的有机层的边界与所述基板的边界的间距为80-95微米。
  20. 根据权利要求17或18所述的显示面板,其中:所述金属结构与所述绑定部中离所述基板最远的金属层采用相同材料;或者,
    所述金属结构的材料包含所述绑定部中离所述基板最远的金属层所采用材料中的至少一种。
  21. 根据权利要求17或18所述的显示面板,其中:
    所述金属结构与无机绝缘层的边界之间存在间隙;所述无机绝缘层为所述第一无机绝缘层、所述第二无机绝缘层、所述第三无机绝缘层、所述第四无机绝缘层中的至少一个。
  22. 一种显示装置,包括:根据权利要求1-21任一项所述的显示面板,以及绑定 于所述显示面板的所述电路板绑定区的电路板。
  23. 一种显示面板的制作方法,包括:
    制作包含有多个显示面板单元的整板,每个所述显示面板单元包括显示区域和围绕所述显示区域的非显示区域,所述非显示区域包括电路板绑定区,相邻的所述显示面板单元之间设有切割区;
    沿所述切割区对所述整板进行切割,分离出各个所述显示面板单元,每个独立的所述显示面板单元为一个显示面板;
    其中,制作所述整板,包括:
    在所述基板的一侧沿远离所述基板的方向依次形成缓冲层、半导体层、第一无机绝缘层、第一金属层、第二无机绝缘层、第二金属层、第三无机绝缘层、第三金属层、第一有机层、阳极层、像素界定层、有机功能层和阴极层,其中:
    所述第一无机绝缘层、所述第二无机绝缘层和所述第三无机绝缘层中的至少一个的边界与所述基板的边界重合,所述第一有机层的边界和所述像素界定层的边界均与所述基板的边界之间具有间距。
  24. 一种显示面板的制作方法,包括:
    制作包含有多个显示面板单元的整板,每个所述显示面板单元包括显示区域和围绕所述显示区域的非显示区域,所述非显示区域包括电路板绑定区,相邻的所述显示面板单元之间设有切割区;
    沿所述切割区对所述整板进行切割,分离出各个所述显示面板单元,每个独立的所述显示面板单元为一个显示面板;
    其中,制作所述整板,包括:
    在所述基板的一侧沿远离所述基板的方向依次形成缓冲层、半导体层、第一无机绝缘层、第一金属层、第二无机绝缘层、第二金属层、第三无机绝缘层、第三金属层、第一有机层、阳极层、像素界定层、有机功能层和阴极层,其中:
    所述第一有机层的边界和所述像素界定层的边界均与所述基板的边界之间具有间距,且所述第一有机层和所述像素界定层中的至少一个包覆所述第一无机绝缘层、所述第二无机绝缘层和所述第三无机绝缘层的边界。
PCT/CN2020/074815 2020-02-12 2020-02-12 显示面板、显示装置及显示面板的制作方法 WO2021159293A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080000111.6A CN113678257A (zh) 2020-02-12 2020-02-12 显示面板、显示装置及显示面板的制作方法
US17/421,227 US20220344418A1 (en) 2020-02-12 2020-02-12 Display Panel, Display Device and Manufacturing Method of Display Panel
PCT/CN2020/074815 WO2021159293A1 (zh) 2020-02-12 2020-02-12 显示面板、显示装置及显示面板的制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/074815 WO2021159293A1 (zh) 2020-02-12 2020-02-12 显示面板、显示装置及显示面板的制作方法

Publications (1)

Publication Number Publication Date
WO2021159293A1 true WO2021159293A1 (zh) 2021-08-19

Family

ID=77291989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074815 WO2021159293A1 (zh) 2020-02-12 2020-02-12 显示面板、显示装置及显示面板的制作方法

Country Status (3)

Country Link
US (1) US20220344418A1 (zh)
CN (1) CN113678257A (zh)
WO (1) WO2021159293A1 (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070035239A1 (en) * 2005-08-11 2007-02-15 Samsung Sdi Co., Ltd. Flat panel display and method of manufacturing the same
US20110198572A1 (en) * 2010-02-12 2011-08-18 Samsung Mobile Display Co., Ltd. Organic light emitting diode display and method for manufacturing the same
CN104900675A (zh) * 2014-03-07 2015-09-09 三星显示有限公司 显示装置及其制造方法
CN107799538A (zh) * 2017-10-26 2018-03-13 上海天马微电子有限公司 一种显示面板和显示装置
CN108389868A (zh) * 2018-02-26 2018-08-10 武汉华星光电技术有限公司 阵列基板及显示面板
CN108807227A (zh) * 2018-05-24 2018-11-13 武汉华星光电半导体显示技术有限公司 用于切割显示面板的切割装置和切割方法、显示面板
CN109659324A (zh) * 2018-12-18 2019-04-19 武汉华星光电半导体显示技术有限公司 一种显示面板及其制作方法
CN109659444A (zh) * 2018-11-29 2019-04-19 昆山国显光电有限公司 显示面板及显示装置
CN109713019A (zh) * 2019-01-17 2019-05-03 深圳市华星光电技术有限公司 Oled显示面板及其制作方法
CN109768067A (zh) * 2017-11-09 2019-05-17 三星显示有限公司 显示设备和用于制造该显示设备的方法
CN110196656A (zh) * 2019-05-16 2019-09-03 云谷(固安)科技有限公司 显示面板和显示装置
CN110649135A (zh) * 2018-06-27 2020-01-03 三星显示有限公司 发光显示设备及其制造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070035239A1 (en) * 2005-08-11 2007-02-15 Samsung Sdi Co., Ltd. Flat panel display and method of manufacturing the same
US20110198572A1 (en) * 2010-02-12 2011-08-18 Samsung Mobile Display Co., Ltd. Organic light emitting diode display and method for manufacturing the same
CN104900675A (zh) * 2014-03-07 2015-09-09 三星显示有限公司 显示装置及其制造方法
CN107799538A (zh) * 2017-10-26 2018-03-13 上海天马微电子有限公司 一种显示面板和显示装置
CN109768067A (zh) * 2017-11-09 2019-05-17 三星显示有限公司 显示设备和用于制造该显示设备的方法
CN108389868A (zh) * 2018-02-26 2018-08-10 武汉华星光电技术有限公司 阵列基板及显示面板
CN108807227A (zh) * 2018-05-24 2018-11-13 武汉华星光电半导体显示技术有限公司 用于切割显示面板的切割装置和切割方法、显示面板
CN110649135A (zh) * 2018-06-27 2020-01-03 三星显示有限公司 发光显示设备及其制造方法
CN109659444A (zh) * 2018-11-29 2019-04-19 昆山国显光电有限公司 显示面板及显示装置
CN109659324A (zh) * 2018-12-18 2019-04-19 武汉华星光电半导体显示技术有限公司 一种显示面板及其制作方法
CN109713019A (zh) * 2019-01-17 2019-05-03 深圳市华星光电技术有限公司 Oled显示面板及其制作方法
CN110196656A (zh) * 2019-05-16 2019-09-03 云谷(固安)科技有限公司 显示面板和显示装置

Also Published As

Publication number Publication date
CN113678257A (zh) 2021-11-19
US20220344418A1 (en) 2022-10-27

Similar Documents

Publication Publication Date Title
WO2020192556A1 (zh) 柔性显示基板、显示面板、显示装置及制作方法
CN109375405B (zh) 显示面板及其制作方法、显示装置
US11853519B2 (en) Touch substrate and manufacturing method therefor, touch display substrate, and touch display device
WO2021218395A1 (zh) 显示面板及显示装置
JP6989494B2 (ja) 表示装置およびビアホールの電気接続構造
WO2021102810A1 (zh) 显示基板、显示面板及拼接屏
WO2021169988A1 (zh) Oled显示基板及其制作方法、显示装置
TWI547840B (zh) 觸控螢幕及其製造方法
TWI738533B (zh) 顯示面板及其製作方法
WO2021254317A1 (zh) 显示基板及其制作方法、显示装置
US11133488B2 (en) Display substrate, display apparatus, and method of fabricating display substrate having enclosure ring in buffer area
JP7343614B2 (ja) 表示基板及びその製造方法、表示装置
WO2019010953A1 (zh) 一种阵列基板、其制备方法、显示面板及显示装置
TW202016616A (zh) 顯示面板及其製造方法
TWI682373B (zh) 顯示裝置及其製造方法
US20230354671A1 (en) Display panel
CN113054131A (zh) 显示面板、显示装置及显示面板的制作方法
WO2021159293A1 (zh) 显示面板、显示装置及显示面板的制作方法
WO2022017499A1 (zh) 一种显示面板和显示装置
WO2021217600A1 (zh) 镜面显示面板及其制作方法、显示装置
WO2023142014A1 (zh) 触控显示面板、触控显示装置、触控显示母板
CN112531001B (zh) 显示面板及制作方法、显示装置
WO2024044893A1 (zh) 显示面板及显示装置
WO2023141962A1 (zh) 显示基板及其制作方法、显示装置
WO2023142111A1 (zh) 显示面板和显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20918859

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20918859

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20918859

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/03/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20918859

Country of ref document: EP

Kind code of ref document: A1