WO2021153745A1 - ステータの製造方法 - Google Patents

ステータの製造方法 Download PDF

Info

Publication number
WO2021153745A1
WO2021153745A1 PCT/JP2021/003283 JP2021003283W WO2021153745A1 WO 2021153745 A1 WO2021153745 A1 WO 2021153745A1 JP 2021003283 W JP2021003283 W JP 2021003283W WO 2021153745 A1 WO2021153745 A1 WO 2021153745A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
green laser
lead wire
peeled
insulating coating
Prior art date
Application number
PCT/JP2021/003283
Other languages
English (en)
French (fr)
Inventor
弘行 大野
圭 江野畑
英晴 牛田
飛 湯
哲也 杉本
将也 中村
将成 西田
Original Assignee
アイシン・エィ・ダブリュ株式会社
トヨタ自動車株式会社
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社, トヨタ自動車株式会社, 株式会社デンソー filed Critical アイシン・エィ・ダブリュ株式会社
Priority to JP2021574694A priority Critical patent/JP7360480B2/ja
Priority to EP21747129.1A priority patent/EP4099548A4/en
Priority to CN202180006704.8A priority patent/CN114731100A/zh
Priority to US17/777,733 priority patent/US20230010824A1/en
Publication of WO2021153745A1 publication Critical patent/WO2021153745A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/0056Manufacturing winding connections
    • H02K15/0068Connecting winding sections; Forming leads; Connecting leads to terminals
    • H02K15/0081Connecting winding sections; Forming leads; Connecting leads to terminals for form-wound windings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • B23K26/322Bonding taking account of the properties of the material involved involving coated metal parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/60Preliminary treatment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/08Forming windings by laying conductors into or around core parts
    • H02K15/085Forming windings by laying conductors into or around core parts by laying conductors into slotted stators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/34Coated articles, e.g. plated or painted; Surface treated articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/38Conductors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a method for manufacturing a stator.
  • Japanese Patent Application Laid-Open No. 2013-109948 discloses a method of welding the ends of two flat wires with a YAG laser. Specifically, at the end of each flat wire, the insulating coating on only one surface is peeled off. Then, the insulating film is peeled off by irradiating the YAG laser from the end face side of the flat wire in a state where the insulating film peeling surfaces formed (exposed) by the insulating film are peeled off are arranged so as to face each other. The faces are welded together.
  • the flat wire is formed by a YAG laser with the insulating film provided on the surface opposite to the insulating film peeling surface (hereinafter referred to as the opposite surface). Since the ends of the (coils) are welded to each other, the heat generated by the welding may damage (carbonize) the insulating film covering the opposite surface.
  • the opposite surface since it becomes difficult to arrange (resin molding, coating) an insulating member (resin, varnish, etc.) on the damaged (carbonized) insulating film, the insulating performance of the coil after welding may deteriorate. be.
  • the present invention has been made to solve the above-mentioned problems, and one object of the present invention is to perform welding while maintaining the insulation performance of the coils after welding when the coils are welded to each other. It is an object of the present invention to provide a method for manufacturing a stator, which can prevent the work from becoming complicated.
  • the method for manufacturing a stator in one aspect of the present invention is a method for manufacturing a stator including a plurality of coils composed of copper wires coated with an insulating coating, and is a method for manufacturing a plurality of coils.
  • the insulating coating on the first surface is peeled off without peeling off the insulating coating on the second surface of the lead wire portion on the side opposite to the first surface which is the welding surface of the lead wire portions provided on the tip side of each.
  • a step of welding the first surfaces with a green laser in a state where the insulating coating is not peeled off is provided.
  • the green laser has a broad meaning including not only a laser having a wavelength of 532 nm but also a laser having a wavelength close to 532 nm.
  • the method for manufacturing a stator according to one aspect of the present invention includes a step of welding the first surfaces with a green laser in a state where the insulating coating on the second surfaces is not peeled off.
  • the absorption rate for the green laser is higher than the absorption rate for the infrared laser. Therefore, by welding the first surfaces to each other with a green laser having a relatively high absorption rate in metal, the heat generated in the molten portion of the lead wire portion due to the laser irradiation is absorbed by the metal portion in the vicinity of the molten portion. At the same time, it becomes relatively difficult to move from the molten portion to another portion of the lead wire portion.
  • the insulating film on the second surface is damaged (carbonized) by the heat of the green laser. Can be prevented.
  • the insulating member insulating resin, varnish, etc.
  • the step of peeling the insulating film on the second surface in advance in order to arrange (resin molding, coating) the insulating member can be omitted.
  • FIG. 7A is a diagram showing a state before peeling of the insulating coating.
  • FIG. 7B is a diagram showing a state after peeling of the insulating coating.
  • It is a side view of the state which the green laser is irradiated in the welding process by 1st Embodiment. It is a figure which shows the graph of the relationship between the laser wavelength and the reflectance of copper. It is sectional drawing of the state in which the green laser is irradiated in the welding process by 1st Embodiment. It is a partially enlarged view of FIG. 4 which shows the molten part formed in the welding process by 1st Embodiment. It is a figure which shows the temperature measurement result on each surface of the lead wire part after welding by 1st Embodiment. (FIG. 12A is the result of the third surface.
  • FIG. 12A is the result of the third surface.
  • FIG. 12B is the result of the second surface.
  • FIG. 12C is the result of the fourth surface.
  • It is a top view of the vicinity of the welded part according to 2nd Embodiment. It is sectional drawing along the line 400-400 of FIG. It is a flow figure which shows the manufacturing method of the stator by 2nd Embodiment. It is a figure which shows the state of the insulating film in the peeling process by 2nd Embodiment.
  • FIG. 16A is a diagram showing a state before the insulating coating is peeled off
  • FIG. 16B is a diagram showing a state after the insulating coating is peeled off.
  • It is sectional drawing of the state in which the green laser is irradiated in the welding process by 2nd Embodiment.
  • the "axis direction” and the “central axis direction” mean the directions (see FIG. 1) along the rotation axis (reference numeral O) (Z direction) of the stator core 10 (rotor core 1).
  • the “circumferential direction” means the circumferential direction (A direction, A1 direction, A2 direction) of the stator core 10.
  • the “diameter inside” means a direction (B1 direction) toward the center of the stator core 10.
  • the “diameter outside” means a direction (B2 direction) toward the outside of the stator core 10.
  • the stator 100 includes an annular stator core 10.
  • the stator 100 constitutes a part of an inner rotor type rotary electric machine, and the stator core 10 is arranged so as to face the rotor core 1 in the radial direction.
  • the stator core 10 is provided with a plurality of slots 11.
  • a segment conductor 20 is arranged in each of the plurality of slots 11.
  • the stator core 10 includes a back yoke 12 that connects the radial outer side of the slot 11 in an annular shape, and a plurality of teeth 13 that are provided between adjacent slots 11 and extend radially inward from the back yoke 12. Further, in the slot 11, an insulating member (not shown) for insulating the segment conductor 20 and the stator core 10 is arranged.
  • a plurality of segment conductors 20 are arranged on the stator 100.
  • the segment conductor 20 is formed (configured) by, for example, a flat conductor wire 20a (see FIG. 1). Further, the segment conductor 20 is composed of a copper wire coated with an insulating coating 30a. Specifically, the segment conductor 20 is composed of a conductor body made of copper and an insulating coating 30a (see FIG. 4) provided on the surface of copper. The portion of the segment conductor 20 other than the peeled portion 40, which will be described later, is covered with the insulating coating 30a.
  • the "flat conducting wire” means a conducting wire having a substantially rectangular cross-sectional shape as a whole.
  • the segment conductor 20 is an example of a "coil” in the claims.
  • each of the plurality of segment conductors 20 are arranged so as to straddle the plurality of slots 11, respectively.
  • each of the plurality of segment conductors 20 includes a pair of slot accommodating portions 21 accommodating in slots 11 different from each other.
  • a plurality of slots 11 are provided between the slots 11 in which the pair of slot accommodating portions 21 are accommodated.
  • each of the plurality of segment conductors 20 includes a coil end portion 22a that connects the pair of slot accommodating portions 21 to each other.
  • the coil end portion 22a is configured to protrude from the end surface 10b on the side opposite to the end surface 10a on the Z1 direction side (Z2 direction side) in the axial direction of the stator core 10.
  • FIG. 2 schematically shows that three slots 11 are arranged between the slots 11 in which the pair of slot accommodating portions 21 are accommodated, but the configuration is not limited to this. Further, the slot 11 which is not necessary for the explanation is not shown.
  • stator 100 is provided with a coil end portion 22b formed by welding lead wire portions 23, which will be described later, of segment conductors 20 that are different from each other.
  • the coil end portion 22b is configured to protrude from the end surface 10a on the Z1 direction side in the axial direction of the stator core 10.
  • the lead wire portion 23, which will be described later, is schematically shown so as to extend along the end face 10a, but the actual configuration is not limited to this.
  • the stator 100 is provided with an insulating member 90 that covers a plurality of coil end portions 22b. All coil end portions 22b provided on the stator 100 are covered with one insulating member 90. Further, the insulating member 90 is molded of, for example, resin. The insulating member 90 makes it possible to insulate a plurality of peeled portions 40 (see FIG. 4), which will be described later, from each other.
  • a lead wire portion 23 is provided on the tip portion 20b side of the segment conductor 20.
  • the lead wire portion 23 is provided on the first lead wire portion 24 provided on one tip portion 20c (tip portion 20b) side of the segment conductor 20 and on the other tip portion 20d (tip portion 20b) side of the segment conductor 20. Includes the second lead wire portion 25.
  • the lead wire portions 23 (24, 25) are provided so as to extend along the circumferential direction.
  • the tip portion 20b, the tip portion 20c, and the tip portion 20d are examples of the "first tip portion” and the "second tip portion” in the claims.
  • each of the first lead wire portion 24 and the second lead wire portion 25 is an example of the "lead wire portion" in the claims.
  • the first surfaces 41 (see FIG. 4) of the lead wire portions 23 of the segment conductors 20 that are different from each other face each other in the radial direction. That is, the first surface 41 of the first lead wire portion 24 of the one segment conductor 20 and the first surface 41 of the second lead wire portion 25 of the other segment conductor 20 provided separately from the one segment conductor 20. However, they face each other in the radial direction.
  • the first surfaces 41 facing each other are welded to each other.
  • the welded portion 26 is formed by the first surfaces 41 that are welded to each other.
  • the lead wire portion 23 (24, 25) is provided with a peeled portion 40 formed by peeling the insulating coating (41a, 42a, 43a, 44a) (see FIG. 7A).
  • the first surface 41 is included in the peeled portion 40.
  • the first surface 41 means the surface of copper covered with the insulating coating 41a until the peeling step of the insulating coating 41a described later.
  • the lead wire portion 23 includes a second surface 30 provided on the opposite side in the radial direction from the first surface 41.
  • the second surface 30 is covered with an insulating coating 30a.
  • the second surface 30 means the surface of copper covered with the insulating coating 30a.
  • the lead wire portion 23 includes a third surface 42 provided between the first surface 41 and the second surface 30.
  • the third surface 42 is included in the peeled portion 40.
  • the third surface 42 means the surface of copper covered with the insulating coating 42a until the peeling step of the insulating coating 42a described later.
  • the lead wire portion 23 includes the fourth surface 43 provided on the side opposite to the third surface 42 (Z2 direction side).
  • the fourth surface 43 is included in the peeled portion 40.
  • the fourth surface 43 means the surface of copper covered with the insulating coating 43a until the peeling step of the insulating coating 43a described later.
  • the lead wire portion 23 includes an end face 44 provided at the tip portion 20b (20c, 20d).
  • the end face 44 is included in the peeled portion 40.
  • the end face 44 means the surface of copper covered with the insulating coating 44a until the peeling step of the insulating coating 44a described later.
  • the lead wire portion 23 includes an end portion 40a of the peeled portion 40 provided on the opposite side in the circumferential direction from its own tip portion 20b. That is, the end portion 40a of the peeling portion 40 of the first lead wire portion 24 is provided on the opposite side (A1 direction side) of the tip portion 20c of the first lead wire portion 24. Further, the end portion 40a of the peeling portion 40 of the second lead wire portion 25 is provided on the opposite side (A2 direction side) of the tip portion 20d of the second lead wire portion 25.
  • the end portion 40a is an example of the "circumferential end portion" of the claims.
  • the end portion 40a of the first lead wire portion 24 is provided on the side opposite to its own tip portion 20c (A1 direction side) with respect to the tip portion 20d of the second lead wire portion 25 which is a welding partner.
  • the tip portion 20c and the tip portion 20d are examples of the “first tip portion” and the “second tip portion” in the claims, respectively.
  • the end portion 40a of the second lead wire portion 25 is provided on the side opposite to its own tip portion 20d (A2 direction side) with respect to the tip portion 20c of the first lead wire portion 24 which is a welding partner.
  • the tip portion 20c and the tip portion 20d are examples of the “second tip portion” and the “first tip portion” in the claims, respectively.
  • the end portion 40a of the first lead wire portion 24 and the tip portion 20d of the second lead wire portion 25 are separated by a distance D1 in the circumferential direction. Further, the end portion 40a of the second lead wire portion 25 and the tip portion 20c of the first lead wire portion 24 are separated by a distance D2 in the circumferential direction.
  • the distance D1 and the distance D2 are approximately equal in magnitude from each other.
  • Each of the distance D1 and the distance D2 is an example of the "first distance" in the claims.
  • the peeled portion 40 is on the opposite side in the radial direction from the melting portion 60 described later (in the first lead wire portion 24, the B1 direction side,
  • the second lead wire portion 25 is provided with an end portion 40b (on the B2 direction side).
  • the end portion 40b of the peeled portion 40 is the end portion (on the second surface 30 side) of the third surface 42 in the radial direction.
  • the end portion 40b is an example of the "radial end portion" in the claims.
  • step S1 the step of forming the segment conductor 20 is performed.
  • the segment conductor 20 is formed so as to have a substantially U shape (see FIG. 2).
  • step S2 a step of peeling off the insulating coating 41a (see FIG. 7A) of the first surface 41 is performed. Specifically, the insulating coating 41a covering the first surface 41 is peeled off by a cutting jig or the like (not shown). Further, in this step, in addition to the insulating coating 41a of the first surface 41, the insulating coating 42a covering the third surface 42 (see FIG. 7A), the insulating coating 43a covering the fourth surface 43 (see FIG. 7A), and the lead. The insulating coating 44a covering the end surface 44 of the tip portion 20b of the wire portion 23 is peeled off.
  • each of the first surface 41, the third surface 42, the fourth surface 43, and the end surface 44 is exposed (see FIG. 7B), and the peeled portion 40 is formed.
  • the insulating coating 30a covering the second surface 30 is not peeled off in this step.
  • the insulating coating 30a is integrally formed with the insulating coating 41a, the insulating coating 42a, the insulating coating 43a, and the insulating coating 44a.
  • the insulating coatings (41a, 42a, 43a, 44a) are directly provided on each of the first surface 41, the third surface 42, the fourth surface 43, and the end surface 44.
  • the insulating coatings (41a, 42a, 43a, 44a) are peeled off, a part of copper is removed, so that the first surface 41, the third surface 42, and the fourth surface 43, And each of the end faces 44 may be formed.
  • the end portion 40a of the first lead wire portion 24 is first with respect to the tip portion 20d of the second lead wire portion 25.
  • the end portion 40a of the second lead wire portion 25 has the tip portion of the second lead wire portion 25 with respect to the tip portion 20c of the first lead wire portion 24.
  • the molten portion 60 in each of the first lead wire portion 24 and the second lead wire portion 25, the molten portion 60 (see FIG. 11) and the end portion 40b (see FIG. 11), which will be described later, are formed.
  • the radial distance (D3, D5) from (see) is smaller than the circumferential distance (D4, D6) between the molten portion 60 and the end portion 40a (see FIG. 11). This is a step of forming the portion 40.
  • steps S1 and S2 may be interchanged.
  • step S3 the segment conductor 20 is arranged in the slot 11. Specifically, the first surfaces 41 of the lead wire portions 23 of the segment conductors 20 that are different from each other (the first surface 41 of the first lead wire portion 24 and the first surface 41 of the second lead wire portion 25) are radially oriented. A plurality of segment conductors 20 are arranged in the slot 11 so as to face each other (see FIGS. 3 to 5).
  • step S4 the lead wire portions 23 are welded to each other (the first surface 41 of the first lead wire portion 24 and the first surface 41 of the second lead wire portion 25).
  • this welding step involves the first surface 41 of the lead wire portion 23 (first lead wire portion 24) provided on the tip portion 20b (20c) side of the one segment conductor 20 and the above-mentioned one segment.
  • the first surface 41 of the lead wire portion 23 (second lead wire portion 25) provided separately from the conductor 20 and provided on the tip portion 20b (20d) side of the other segment conductor 20 is welded by the green laser 50. This is the process of welding.
  • welding by the green laser 50 is individually performed at each of the plurality of welding points of the plurality of segment conductors 20. Specifically, when the welding by the green laser 50 at one welding location is completed, the welding at the other welding location is performed by moving the laser oscillator 51, which will be described later, to a location corresponding to the other welding location. By rotating the stator core 10, the laser oscillator 51 may be relatively moved to a location corresponding to the other welding location to perform welding at the other welding location.
  • the insulating coatings 41a (see FIG. 7A) of the first surfaces 41 are peeled off from the first surfaces 41, and the insulating coatings 30a of the second surfaces 30 are separated from each other. Is welded by the green laser 50 without being peeled off. Specifically, the insulating coating 41a of the first surface 41 (see FIG. 7A), the insulating coating 42a of the third surface 42 (see FIG. 7A), the insulating coating 43a of the fourth surface 43 (see FIG. 7A), and the end face.
  • the first surfaces 41 are welded to each other by the green laser 50 in a state where each of the insulating coatings 44a (see FIG. 7A) covering the 44 is peeled off.
  • the wavelength of the green laser 50 is 490 nm or more and 550 nm or less.
  • the green laser 50 is composed of the second harmonic of the YAG laser.
  • the wavelength of the green laser 50 is 532 nm.
  • the laser medium of the green laser 50 is Nd: YAG (a solid laser using neodymium-doped yttrium aluminum garnet crystals).
  • the green laser 50 (YAG laser) is generated by, for example, exciting a columnar (rod type) YAG crystal.
  • the green laser 50 is irradiated from the laser oscillator 51.
  • this welding step it extends from the first surface 41 of the lead wire portion 23 (first lead wire portion 24) extending from one side in the circumferential direction (A1 direction side) and from the other side (A2 direction side) in the circumferential direction.
  • Welding is performed by irradiating the first surface 41 of the lead wire portion 23 (second lead wire portion 25) with the green laser 50 from one side (Z1 direction side) in the central axis direction. That is, the green laser 50 is irradiated along a direction that intersects (orthogonally) the direction in which the lead wire portion 23 extends. In this case, the green laser 50 irradiates the third surface 42 (irradiated surface) provided on the Z1 direction side in the lead wire portion 23.
  • the reflectance of copper (Cu) with respect to a green laser (wavelength 532 nm) is about 40%.
  • the reflectance of copper (Cu) with respect to an infrared laser (wavelength 1.06 ⁇ m) (comparative example) is about 90%.
  • the green laser 50 is located above the welded portion 26 so as to straddle the third surface 42 of the first lead wire portion 24 and the third surface 42 of the second lead wire portion 25. It is irradiated from the Z1 direction side). As a result, a keyhole (a deep hole formed in the irradiated portion of the laser) (not shown) is formed at the interface between the first surfaces 41. Then, the metal (copper) melted by the heat of the green laser 50 flows into the formed keyhole and solidifies, so that the first surfaces 41 are welded to each other.
  • the method of irradiating the green laser 50 is a method of irradiating a plurality of locations along the first surface 41 (along the direction in which the lead wire portion 23 extends) with a short pulse laser.
  • the end portion 40a of the first lead wire portion 24 becomes the tip portion 20d of the second lead wire portion 25.
  • the first surfaces 41 are welded to each other by the green laser 50 in a state where the tip portion 20d is separated from the tip portion 20d by a distance D1.
  • the end portion 40a of the second lead wire portion 25 has the tip portion 20d of the second lead wire portion 25 with respect to the tip portion 20c of the first lead wire portion 24.
  • the first surfaces 41 are welded to each other by the green laser 50 in a state where the tip portion 20c is separated from the tip portion 20c by a distance D2.
  • each of the distance D1 and the distance D2 has a size capable of preventing the insulating coating 30a in the vicinity of the end portion 40a from being damaged (carbonized) by the heat of the green laser 50.
  • Each of the distance D1 and the distance D2 is sufficiently large with respect to the spot diameter R (for example, about 300 ⁇ m, see FIG. 8) of the green laser 50.
  • first surfaces 41 are pressed against each other in the radial direction by a jig (not shown) while the first surfaces 41 are welded to each other (the green laser 50 is irradiated).
  • the copper portion on the third surface 42 of each of the peeled portions 40 of the first lead wire portion 24 and the second lead wire portion 25 is melted by the heat of the green laser 50.
  • the melted portion 60 is formed.
  • the melting portion 60 extends over a wider range than the range actually irradiated with the green laser 50.
  • the melting portion 60 has an elliptical shape as shown in FIG. 11, for example.
  • the distance D3 in the radial direction between the molten portion 60 and the end portion 40b is between the molten portion 60 and the end portion 40a.
  • the distance D5 in the radial direction between the molten portion 60 and the end portion 40b is larger than the distance D6 in the circumferential direction between the molten portion 60 and the end portion 40a.
  • Each of the distance D3 and the distance D5 means the minimum distance among the radial distances between the melting portion 60 and the end portion 40b. Further, each of the distance D4 and the distance D6 means the minimum distance among the radial distances between the melting portion 60 and the end portion 40a.
  • the distance D3 and the distance D5 are substantially equal to each other. Further, the distance D4 and the distance D6 are substantially equal to each other.
  • Each of the distance D3 and the distance D5 is an example of the "second distance” in the claims. Further, each of the distance D4 and the distance D6 is an example of the "third distance" of the claims.
  • the first surface of the lead wire portion 23 (24) provided on the one tip portion 20c side of one segment conductor 20 arranged so as to straddle the plurality of slots 11 see FIG. 2.
  • step S5 the insulating member 90 is formed on the end surface 10a side of the stator core 10.
  • the resin insulating member 90 is formed by immersing the plurality of coil end portions 22b in the resin fluid.
  • varnish may be applied to a plurality of coil end portions 22b.
  • the temperature of the third surface 42 (see FIG. 12A) and the temperature of the insulating coating 30a provided on the second surface 30 (see FIG. 12B) when welding is performed using the green laser 50. ), The temperature of the fourth surface 43 (see FIG. 12C) will be described.
  • the temperature of the third surface 42 momentarily rose to 99 ° C.
  • the temperature of the insulating coating 30a momentarily rose to 64 ° C.
  • the temperature of the fourth surface 43 momentarily rose to 82 ° C. That is, it was confirmed that each of the third surface 42, the insulating coating 30a, and the fourth surface 43 did not rise up to 100 ° C.
  • the temperature at which the insulating coating 30a is damaged (carbonized) is about 180 ° C.
  • first lead wire portion 124 and second lead wire portion 125 are welded to each other at the welded portion 26 of the coil end portion 122b. ..
  • Each of the first lead wire portion 124 and the second lead wire portion 125 is an example of the "lead wire portion" in the claims.
  • the fourth surface 43 is covered with the insulating coating 43a.
  • the insulating coating 43a is integrally formed with the insulating coating 30a that covers the second surface 30.
  • the first surface 41, the third surface 42, and the end surface 44 are included in the peeled portion 140.
  • step S12 a step of peeling off the insulating coating 41a (see FIG. 16A) of the first surface 41 is performed.
  • the insulating coating 41a on the first surface 41, the insulating coating 42a on the third surface 42 (see FIG. 16A), and the insulating coating 44a covering the end surface 44 of the tip portion 20b are peeled off.
  • each of the first surface 41, the third surface 42, and the end surface 44 is exposed (see FIG. 16B), and the peeled portion 140 is formed.
  • each of the insulating coating 30a covering the second surface 30 and the insulating coating 43a covering the fourth surface 43 is not peeled off in this step.
  • step S14 the lead wire portions 123 to each other (the first surface 41 of the first lead wire portion 124 and the first surface 41 of the second lead wire portion 125) are welded to each other.
  • the first surfaces 41 are of the insulating coating 41a of the first surface 41 (see FIG. 16A) and the insulating coating 42a of the third surface 42 (see FIG. 16A). Each is peeled off, and the insulating coating 30a on the second surface 30 and the insulating coating 43a on the fourth surface 43 are not peeled off, and are welded by the green laser 50. Specifically, the first surfaces 41 are welded to each other by the green laser 50 in a state where the insulating coating 41a, the insulating coating 42a, and the insulating coating 44a are each peeled off.
  • the method of manufacturing the stator (100, 300) is a lead wire portion provided on the tip end portion (20b, 20c, 20d) side of each of the plurality of coils (20).
  • a step of arranging a plurality of coils (20) in the slots (11) of the stator core (10) so as to face each other is provided.
  • the insulating coating (41a) of the first surface (41) is peeled off, and the first surface (41) of the lead wire portions (23, 123) is formed.
  • the absorption rate for the green laser (50) is higher than the absorption rate for the infrared laser.
  • the lead wire portions (23, 123) are melted due to the irradiation of the green laser (50).
  • the heat generated in the portion (60) is absorbed by the metal portion in the vicinity of the molten portion (60), and it becomes relatively difficult to move from the molten portion (60) to other portions of the lead wire portions (23, 123).
  • the second surface (30) It is possible to prevent the insulating coating (30a) from being damaged (carbonized) by the heat of the green laser (50). As a result, the insulating member (90) can be easily arranged (resin molded and coated) on the surface of the insulating coating (30a) on the second surface (30).
  • the insulating film (30a) on the second surface (30) is not damaged (carbonized), the insulating film (30a) on the second surface (30) is arranged (resin molded and coated) so that the insulating member (90) is arranged (resin molded and applied). ) Can be omitted in advance. As a result, when the coils (20) are welded to each other, it is possible to prevent the work during welding from becoming complicated while maintaining the insulation performance of the coils (20) after welding.
  • the step of welding the first surfaces (41) to each other with the green laser (50) is a lead provided on the coil (20) formed of the flat conductor wire 20a.
  • the insulating coating (41a) on the first surface (41) has been peeled off, and the insulating coating (30a) on the second surface (30) has not been peeled off.
  • This is a step of welding the first surfaces (41) to each other with a green laser (50).
  • the welding area between the first surfaces (41) can be easily increased as compared with the case where the lead wire portions (23, 123) are round wires, so that the green laser (50) can be used. It is possible to increase the joint strength by welding using.
  • the step of peeling the insulating coating (41a) of the first surface (41) is not only the first surface (41) but also the first surface (41).
  • the insulating coatings (42a) of the first surface (41) and the third surface (42) are peeled off, and the first surface (41) is peeled off.
  • a green laser (50) in a state where the insulating coatings (30a) of the two surfaces (30) are not peeled off.
  • the insulating film (42a) of the third surface (42) is the green laser (50). It is possible to prevent the arrangement (resin molding, coating) of the insulating member (90) (made of an insulating resin, varnish, etc.) from becoming difficult due to the damage (carbonization) caused by the heat of).
  • the steps of peeling the insulating coatings (41a, 42a) of the first surface (41) and the third surface (42) are the first surface (41) and the first surface (41).
  • the insulating coatings (41a) of the first surface (41), the third surface (42), and the fourth surface (43) are respectively.
  • the insulating film (43a) on the fourth surface (43) is the green laser (50).
  • the step of welding the first surfaces (41) to each other with the green laser (50) involves the insulating coatings (41a) of the first surface (41) and the third surface (42), respectively. , 42a) are peeled off, and each of the insulating coating (30a) on the second surface (30) and the insulating coating (43a) on the fourth surface (43) opposite to the third surface (42).
  • This is a step of welding the first surfaces (41) to each other with a green laser (50) in a state where the first surfaces (41) are not peeled off.
  • the insulating property of the fourth surface (43) can be made higher than that in the case where the insulating film (43a) of the fourth surface (43) is peeled off.
  • the step of welding the first surfaces (41) to each other with the green laser (50) is a lead wire portion (23, 123) extending from one side in the circumferential direction.
  • the first surface (41) of the above and the first surface (41) of the lead wire portions (23, 123) extending from the other side in the circumferential direction are irradiated with the green laser (50) from one side in the central axis direction.
  • This is the process of welding.
  • the lead wire portion (23, 123) extends in the circumferential direction, one of the lead wire portions (23, 123) in the central axis direction is compared with the case where the lead wire portion (23, 123) extends in the central axis direction.
  • the length of the lead wire portion (23, 123) irradiated with the green laser (50) irradiated from the side can be easily increased. As a result, the welding area between the first surfaces (41) can be easily increased.
  • the step of welding the first surfaces (41) to each other with the green laser (50) is performed on one side of the lead wire portions (23, 123) and the other side.
  • the portion (40a) is located on the side opposite to the first tip portion (20b, 20c, 20d) with respect to the second tip portion (20b, 20d, 20c) of the lead wire portion (23, 123) of the welding partner. 2
  • This is a step of forming the peeled portions (40, 140) so as to be separated from the tip portions (20b, 20d, 20c) by the first distance (D1, D2).
  • the circumferential end (40a) and the second tip (20b, 20d, 20c) are separated by the first distance (D1, D2) in the circumferential direction.
  • the step of welding the first surfaces (41) to each other with the green laser (50) is performed on one side of the lead wire portions (23, 123) and the other side.
  • the molten portion (42) formed on the third surface (42) of the peeled portions (40, 140) as the irradiated surface to be irradiated with the green laser (50).
  • a second radial distance (D3, The first surfaces (41) are connected to each other by a green laser so that D5) is smaller than the third distance (D4, D6) in the circumferential direction between the molten portion (60) and the circumferential end portion (40a). This is the process of welding according to 50).
  • the molten portion (23, 123) is formed in each of the lead wire portion (23, 123) on one side and the lead wire portion (23, 123) on the other side.
  • the radial second distance (D3, D5) between the 60) and the radial end (40b) is the circumferential third distance between the melt (60) and the circumferential end (40a).
  • the width of the third surface (42) in the radial direction can be reduced as compared with the case where the second distance (D3, D5) is larger than the third distance (D4, D6).
  • the distance between the lead wire portions (23, 123) adjacent to each other in the radial direction can be increased, so that the amount of heat transfer between the lead wire portions (23, 123) adjacent to each other in the radial direction can be increased.
  • the step of welding the first surfaces (41) to each other with the green laser (50) is a lead wire portion provided on the coil (20) formed of copper. This is a step of welding the first surfaces (41) of (23, 123) to each other with a green laser (50).
  • the absorption rate for the green laser is significantly higher than the absorption rate for the infrared laser. Therefore, since the coil (20) is made of copper, welding the first surfaces (41) to each other using the green laser (50) causes the second surface (30) to be welded by the heat of the green laser (50). ) Is particularly effective in preventing damage (carbonization) of the insulating coating (30a).
  • the step of welding the first surfaces (41) to each other by the green laser (50) is arranged so as to straddle the plurality of slots (11).
  • the first surface (41) of the lead wire portions (23, 123) provided on the one end portion (20b, 20c) side of the coil (20) and the one coil (20) are separately provided and are plurality of.
  • the coils (20) arranged so as to straddle the plurality of slots (11) are joined by welding using the green laser (50) by welding with the green laser (50). can do.
  • the first step is to use the green laser (50) having a wavelength of 490 nm or more and 550 nm or less. This is a step of welding the surfaces (41) to each other.
  • the absorption rate of the green laser (50) in copper can be increased as compared with the case where the wavelength of the green laser (50) is, for example, about 1 ⁇ m.
  • welding between the first surfaces (41) can be efficiently performed.
  • the step of welding the first surfaces (41) to each other with the green laser (50) is a green laser (50) composed of the second harmonic of the YAG laser.
  • the YAG laser has a higher absorption rate in metal than the CO 2 laser. Therefore, by using the green laser (50) composed of the second harmonic of the YAG laser, welding can be performed even if the energy of the green laser (50) is relatively small.
  • the first surfaces 41 face each other in the radial direction, but the present invention is not limited to this.
  • the first surfaces 41 may face each other in a direction other than the radial direction.
  • the segment conductor 20 (coil) is composed of the flat conductor wire 20a
  • the present invention is not limited to this.
  • the coil may be composed of a round wire or the like.
  • welding is performed by the green laser 50 with the insulating coating 42a on the third surface 42 and the insulating coating 44a on the end surface 44 peeled off. Not limited to this.
  • welding may be performed by the green laser 50 without peeling at least a part of the insulating coating 42a and the insulating coating 44a.
  • the first surface 41 of the lead wire portions 23 (123) extending in the circumferential direction are welded to each other, but the present invention is not limited to this.
  • the first surfaces 41 of the lead wire portions 23 (123) extending in a direction other than the circumferential direction may be welded to each other.
  • the insulating film is peeled off with a cutting jig or the like, but the present invention is not limited to this.
  • the insulating coating may be peeled off by a laser.
  • the coil is the segment conductor 20
  • the present invention is not limited to this.
  • the coil may be configured as a centrally wound coil that is wound (molded) a plurality of times on the teeth 13.
  • the wavelength of the green laser 50 is 532 nm, but the present invention is not limited to this.
  • the wavelength is 490 nm or more and 550 nm or less, a green laser having a wavelength other than 532 nm may be used.
  • a YAG laser is used as the green laser 50
  • the present invention is not limited to this.
  • a CO 2 laser or a semiconductor laser may be used as the green laser.
  • the irradiation method of the green laser 50 is a method of irradiating a plurality of locations along the first surface 41 with a short pulse laser.
  • the method of irradiating the green laser may be a method of scanning the green laser for a predetermined length along the first surface 41.
  • Lamp excitation is an excitation method in which a lamp is used as an excitation light source to excite a laser medium.
  • the lamp-pumped YAG laser has a relatively high output energy.
  • the segment conductor 20 can be efficiently welded by using the lamp-pumped YAG laser. It is also possible to irradiate a pulse using a lamp-pumped YAG laser.
  • a disk laser having a wavelength of 515 nm composed of a second harmonic of a fundamental wave having a wavelength of 1030 nm is used.
  • the disc laser is generated by exciting a YAG crystal having a thin disk shape.
  • the disk laser has a relatively high output energy, and the irradiation range of the laser is smaller than that of the lamp excitation method.
  • the segment conductor 20 can be welded efficiently and more accurately.
  • Stator core 11 Slot 20 Segment conductor (coil) 20a Flat conductors 20b, 20c, 20d Tip (first tip) (second tip) 23, 123 Lead wire part 24, 124 First lead wire part (lead wire part) 25, 125 2nd lead wire part (lead wire part) 30 Second surface 30a Insulation film (Insulation film on the second surface) 40, 140 Peeled part 40a End part (circumferential end part) 40b end (diameter end) 41 First surface 41a Insulation film (Insulation film on the first surface) 42 Third surface 42a Insulation coating (Insulation coating on the third surface) 43 Fourth surface 43a Insulation film (Insulation film on the fourth surface) 50 Green laser 60 Melting part 100, 300 Stator D1, D2 Distance (1st distance) D3, D5 distance (second distance) D4, D6 distance (third distance)

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

このステータの製造方法は、リード線部のうちの溶接面となる第1面の絶縁被膜を剥離する工程と、第1面の絶縁被膜が剥離されているとともに第1面とは反対側の第2面の絶縁被膜が剥離されていない状態で、第1面同士をグリーンレーザにより溶接する工程と、を備える。

Description

ステータの製造方法
 本発明は、ステータの製造方法に関する。
 従来、導体セグメントの端末部同士を溶接するステータの製造方法が知られている。このようなステータの製造方法は、たとえば、特開2013-109948号公報に開示されている。
 上記特開2013-109948号公報には、2本の平角線の端部同士をYAGレーザにより溶接する方法が開示されている。具体的には、各々の平角線の端部では、一面のみの絶縁被膜が剥離されている。そして、絶縁被膜が剥離されることにより形成(露出)された絶縁被膜剥離面同士が互いに対向するように配置された状態で、平角線の端面側からYAGレーザを照射することにより、絶縁被膜剥離面同士が溶接されている。
特開2013-109948号公報
 しかしながら、上記特開2013-109948号公報に記載の角線の溶接方法では、絶縁被膜剥離面とは反対側の面(以下、反対面)に絶縁被膜が設けられた状態でYAGレーザにより平角線(コイル)の端部同士の溶接が行われているため、溶接により発生した熱によって、反対面を覆う絶縁被膜が損傷(炭化)する場合がある。ここで、損傷(炭化)した絶縁被膜上には、絶縁部材(樹脂、ワニス等)を配置(樹脂成形、塗布)するのが困難になるため、溶接後におけるコイルの絶縁性能が悪化する場合がある。
 なお、絶縁被膜が損傷(炭化)することに起因して上記絶縁部材の配置(塗布)が困難になることを防止するために、反対面に設けられている絶縁被膜を予め除去した状態で溶接を行うことが考えられているが、この場合、反対面に設けられている絶縁被膜を除去する工程が増える分、平角線の溶接における作業が煩雑化することが考えられる。すなわち、上記特開2013-109948号公報に記載されているような従来の平角線の溶接方法を用いた場合、溶接後のコイルの絶縁性能を維持しながら、溶接の際の作業が煩雑化するのを防止するのが困難になるという問題点がある。
 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、コイル同士を溶接する場合に、溶接後のコイルの絶縁性能を維持しながら、溶接の際の作業が煩雑化するのを防止することが可能なステータの製造方法を提供することである。
 上記目的を達成するために、この発明の一の局面におけるステータの製造方法は、絶縁被膜により被覆される銅線により構成される複数のコイルを備えるステータの製造方法であって、複数のコイルの各々の先端部側に設けられるリード線部のうちの溶接面となる第1面とは反対側のリード線部の第2面の絶縁被膜を剥離せずに、第1面の絶縁被膜を剥離する工程と、互いに異なるコイルのリード線部の第1面同士が対向するように、複数のコイルをステータコアのスロットに配置する工程と、第1面の絶縁被膜が剥離されているとともに第2面の絶縁被膜が剥離されていない状態で、第1面同士をグリーンレーザにより溶接する工程と、を備える。なお、グリーンレーザとは、波長が532nmのレーザのみならず、532nmに近い波長のレーザをも含む広い意味である。
 この発明の一の局面によるステータの製造方法は、上記のように、第2面の絶縁被膜が剥離されていない状態で第1面同士をグリーンレーザにより溶接する工程を備える。ここで、金属製の部材の多くにおいて、赤外レーザに対する吸収率よりもグリーンレーザに対する吸収率の方が高い。したがって、金属における吸収率が比較的高いグリーンレーザにより第1面同士を溶接することによって、レーザが照射されることによってリード線部の溶融部に発生した熱が、溶融部近傍の金属部分に吸収されるとともに溶融部からリード線部の他の部分に比較的移動しにくくなる。これにより、第2面の絶縁被膜が剥離されていない状態で、第1面同士をグリーンレーザにより溶接する場合にも、第2面の絶縁被膜がグリーンレーザの熱によって損傷(炭化)するのを防止することができる。その結果、第2面の絶縁被膜の表面上に絶縁部材(絶縁性樹脂、ワニス等)を容易に配置(樹脂成形、塗布)することができる。また、第2面の絶縁被膜が損傷(炭化)しないことによって、上記絶縁部材を配置(樹脂成形、塗布)するために第2面の絶縁被膜を予め剥離する工程を省略することができる。これらの結果、コイル同士を溶接する場合に、溶接後のコイルの絶縁性能を維持しながら、溶接の際の作業が煩雑化するのを防止することができる。
 本発明によれば、上記のように、コイル同士を溶接する場合に、溶接後のコイルの絶縁性能を維持しながら、溶接の際の作業が煩雑化するのを防止することができる。
第1および第2実施形態によるステータの平面図である。 第1実施形態による互いに溶接されるセグメント導体の構成を示す概略的な図である。 図2の溶接部近傍の部分拡大図である。 第1実施形態による溶接部近傍の平面図である。 図4の200-200線に沿った断面図である。 第1実施形態によるステータの製造方法を示すフロー図である。 第1実施形態による剥離工程における絶縁被膜の状態を示す図である。(図7Aは、絶縁被膜の剥離前の状態を示す図である。図7Bは、絶縁被膜の剥離後の状態を示す図である。) 第1実施形態による溶接工程においてグリーンレーザが照射されている状態の側面図である。 レーザ波長と銅の反射率との関係のグラフを示す図である。 第1実施形態による溶接工程においてグリーンレーザが照射されている状態の断面図である。 第1実施形態による溶接工程において形成された溶融部を示す図4の部分拡大図である。 第1実施形態による溶接後のリード線部の各面における温度測定結果を示す図である。(図12Aは、第3面の結果である。図12Bは、第2面の結果である。図12Cは、第4面の結果である。) 第2実施形態による溶接部近傍の平面図である。 図13の400-400線に沿った断面図である。 第2実施形態によるステータの製造方法を示すフロー図である。 第2実施形態による剥離工程における絶縁被膜の状態を示す図である。(図16Aは、絶縁被膜の剥離前の状態を示す図である。また、図16Bは、絶縁被膜の剥離後の状態を示す図である。) 第2実施形態による溶接工程においてグリーンレーザが照射されている状態の断面図である。
 以下、本発明の実施形態を図面に基づいて説明する。
 [第1実施形態の構成]
 (ステータの構造)
 図1~図5を参照して、第1実施形態によるステータ100の構造について説明する。
 本願明細書では、「軸線方向」および「中心軸線方向」とは、ステータコア10(ロータコア1)の回転軸線(符号O)(Z方向)に沿った方向(図1参照)を意味する。また、「周方向」とは、ステータコア10の周方向(A方向、A1方向、A2方向)を意味する。また、「径方向内側」とは、ステータコア10の中心に向かう方向(B1方向)を意味する。また、「径方向外側」とは、ステータコア10の外に向かう方向(B2方向)を意味する。
 図1に示すように、ステータ100は、円環状のステータコア10を備えている。たとえば、ステータ100は、インナーロータ型の回転電機の一部を構成し、ステータコア10は、ロータコア1と径方向に対向するように配置されている。
 (ステータコアの構成)
 ステータコア10には、複数のスロット11が設けられている。複数のスロット11には、それぞれ、セグメント導体20が配置されている。
 ステータコア10は、スロット11の径方向外側を円環状に接続するバックヨーク12と、隣り合うスロット11の間に設けられ、バックヨーク12から径方向内側に向かって延びる複数のティース13とを含む。また、スロット11には、セグメント導体20とステータコア10とを絶縁するための絶縁部材(図示せず)が配置されている。
 図2に示すように、ステータ100には、複数のセグメント導体20が配置されている。セグメント導体20は、たとえば、平角導線20a(図1参照)により形成(構成)されている。また、セグメント導体20は、絶縁被膜30aにより被覆される銅線により構成されている。具体的には、セグメント導体20は、銅により形成されている導体本体と、銅の表面上に設けられている絶縁被膜30a(図4参照)とにより構成されている。セグメント導体20のうち、後述する剥離部分40以外の部分は、絶縁被膜30aにより覆われている。なお、本願明細書では、「平角導線」とは、一体として断面形状が略矩形形状を有する導線を意味する。なお、セグメント導体20は、請求の範囲の「コイル」の一例である。
 詳細には、複数のセグメント導体20は、それぞれ、複数のスロット11を跨ぐように配置されている。具体的には、複数のセグメント導体20は、それぞれ、互いに異なるスロット11に収容される一対のスロット収容部21を含む。一対のスロット収容部21が収容されているスロット11の間には、複数のスロット11が設けられている。また、複数のセグメント導体20は、それぞれ、一対のスロット収容部21同士を接続するコイルエンド部22aを含む。また、コイルエンド部22aは、ステータコア10の軸線方向におけるZ1方向側の端面10aとは反対側(Z2方向側)の端面10bから突出するように構成されている。なお、図2では、一対のスロット収容部21が収容されているスロット11の間に3つのスロット11が配置されているように概略的に図示しているが、この構成に限られない。また、説明に不要なスロット11は図示を省略している。
 また、ステータ100には、互いに異なるセグメント導体20の後述するリード線部23同士が溶接されることにより形成されているコイルエンド部22bが設けられている。コイルエンド部22bは、ステータコア10の軸線方向におけるZ1方向側の端面10aから突出するように構成されている。なお、図2では、後述するリード線部23が端面10aに沿って延びるように概略的に図示されているが、実際にはこの構成に限られない。
 また、ステータ100には、複数のコイルエンド部22bを覆う絶縁部材90が設けられている。ステータ100に設けられる全てのコイルエンド部22bは、1つの絶縁部材90により覆われている。また、絶縁部材90は、たとえば樹脂により成形されている。絶縁部材90により、後述する複数の剥離部分40(図4参照)同士を、互いに絶縁することが可能である。
 また、セグメント導体20の先端部20b側には、リード線部23が設けられている。リード線部23は、セグメント導体20の一方の先端部20c(先端部20b)側に設けられる第1リード線部24と、セグメント導体20の他方の先端部20d(先端部20b)側に設けられる第2リード線部25とを含む。また、リード線部23(24、25)は、周方向に沿って延びるように設けられている。なお、先端部20b、先端部20c、および、先端部20dの各々は、請求の範囲の「第1先端部」および「第2先端部」の一例である。また、第1リード線部24および第2リード線部25の各々は、請求の範囲の「リード線部」の一例である。
 図3に示すように、互いに異なるセグメント導体20のリード線部23の第1面41(図4参照)同士が径方向に対向している。すなわち、一のセグメント導体20の第1リード線部24の第1面41と、一のセグメント導体20とは別個に設けられる他のセグメント導体20の第2リード線部25の第1面41とが、径方向に対向している。
 また、図4に示すように、互いに対向する第1面41同士は、溶接されている。互いに溶接されている第1面41同士により、溶接部26が形成されている。
 また、リード線部23(24、25)には、絶縁被膜(41a、42a、43a、44a)(図7A参照)が剥離されることにより形成された剥離部分40が設けられている。第1面41は、剥離部分40に含まれている。なお、第1面41とは、後述する絶縁被膜41aの剥離工程まで絶縁被膜41aにより被覆されていた銅の表面を意味する。
 また、リード線部23は、第1面41とは径方向において反対側に設けられる第2面30を含む。第2面30は、絶縁被膜30aにより覆われている。なお、第2面30とは、絶縁被膜30aにより被覆されている銅の表面を意味する。
 また、リード線部23は、第1面41と第2面30との間に設けられる第3面42を含む。第3面42は、剥離部分40に含まれている。なお、第3面42とは、後述する絶縁被膜42aの剥離工程まで絶縁被膜42aにより被覆されていた銅の表面を意味する。
 また、図5に示すように、リード線部23は、第3面42とは反対側(Z2方向側)に設けられる第4面43を含む。第4面43は、剥離部分40に含まれている。なお、第4面43とは、後述する絶縁被膜43aの剥離工程まで絶縁被膜43aにより被覆されていた銅の表面を意味する。
 また、図4に示すように、リード線部23は、先端部20b(20c、20d)に設けられる端面44を含む。端面44は、剥離部分40に含まれている。なお、端面44とは、後述する絶縁被膜44aの剥離工程まで絶縁被膜44aにより被覆されていた銅の表面を意味する。
 また、リード線部23は、剥離部分40のうちの、自身の先端部20bとは周方向において反対側に設けられる端部40aを含む。すなわち、第1リード線部24の剥離部分40の端部40aは、第1リード線部24の先端部20cとは反対側(A1方向側)に設けられている。また、第2リード線部25の剥離部分40の端部40aは、第2リード線部25の先端部20dとは反対側(A2方向側)に設けられている。端部40aは、請求の範囲の「周方向端部」の一例である。
 また、第1リード線部24の端部40aは、溶接相手である第2リード線部25の先端部20dに対して、自身の先端部20cとは反対側(A1方向側)に設けられている。この場合、先端部20cおよび先端部20dは、それぞれ、請求の範囲の「第1先端部」および「第2先端部」の一例である。
 また、第2リード線部25の端部40aは、溶接相手である第1リード線部24の先端部20cに対して、自身の先端部20dとは反対側(A2方向側)に設けられている。この場合、先端部20cおよび先端部20dは、それぞれ、請求の範囲の「第2先端部」および「第1先端部」の一例である。
 また、第1リード線部24の端部40aと、第2リード線部25の先端部20dとは、周方向において、距離D1離間している。また、第2リード線部25の端部40aと、第1リード線部24の先端部20cとは、周方向において、距離D2離間している。距離D1および距離D2は、互いに略等しい大きさである。なお、距離D1および距離D2の各々は、請求の範囲の「第1距離」の一例である。
 また、第1リード線部24および第2リード線部25の各々において、剥離部分40には、後述する溶融部60とは径方向において反対側(第1リード線部24においてはB1方向側、第2リード線部25においてはB2方向側)に端部40bが設けられている。なお、第1実施形態では、剥離部分40の端部40bは、径方向における第3面42の(第2面30側の)端部である。なお、端部40bは、請求の範囲の「径方向端部」の一例である。
 (ステータの製造方法)
 次に、図6~図11を参照して、ステータ100の製造方法について説明する。
 図6に示すように、まず、ステップS1において、セグメント導体20の形成工程が行われる。具体的には、セグメント導体20が、略U字状(図2参照)になるように成形される。
 次に、ステップS2において、第1面41の絶縁被膜41a(図7A参照)を剥離する工程が行われる。具体的には、第1面41を覆う絶縁被膜41aは、図示しない切削治具等により剥離される。また、この工程では、第1面41の絶縁被膜41aに加え、第3面42を覆う絶縁被膜42a(図7A参照)、第4面43を覆う絶縁被膜43a(図7A参照)、および、リード線部23の先端部20bの端面44を覆う絶縁被膜44aが剥離される。その結果、第1面41、第3面42、第4面43、および、端面44の各々が露出(図7B参照)されるとともに、剥離部分40が形成される。また、第2面30を覆う絶縁被膜30aは、この工程において剥離されない。なお、絶縁被膜30aは、絶縁被膜41a、絶縁被膜42a、絶縁被膜43a、および、絶縁被膜44aと一体的に形成されている。なお、第1実施形態では、第1面41、第3面42、第4面43、および、端面44の各々に直接的に絶縁被膜(41a、42a、43a、44a)が設けられているように説明しているが、絶縁被膜(41a、42a、43a、44a)を剥離する際に、銅の一部が除去されることにより、第1面41、第3面42、第4面43、および、端面44の各々が形成されてもよい。
 なお、図4に示すように、第1面41の絶縁被膜41aを剥離する工程は、第1リード線部24の端部40aが、第2リード線部25の先端部20dに対して第1リード線部24の先端部20cとは反対側(A1方向側)において、先端部20dと距離D1離間するように、剥離部分40を形成する工程である。また、第1面41の絶縁被膜41aを剥離する工程は、第2リード線部25の端部40aが、第1リード線部24の先端部20cに対して第2リード線部25の先端部20dとは反対側(A2方向側)において、先端部20cと距離D2離間するように、剥離部分40を形成する工程である。
 また、第1面41の絶縁被膜41aを剥離する工程は、第1リード線部24および第2リード線部25の各々において、後述する溶融部60(図11参照)と端部40b(図11参照)との間の径方向における距離(D3、D5)が、溶融部60と端部40a(図11参照)との間の周方向における距離(D4、D6)よりも小さくなるように、剥離部分40を形成する工程である。
 なお、上記ステップS1およびステップS2の順番は入れ替わっていてもよい。
 次に、図6に示すように、ステップS3では、セグメント導体20がスロット11に配置される。具体的には、互いに異なるセグメント導体20のリード線部23の第1面41同士(第1リード線部24の第1面41および第2リード線部25の第1面41)が径方向に対向する(図3~図5参照)ように、複数のセグメント導体20がスロット11に配置される。
 次に、ステップS4において、リード線部23同士(第1リード線部24の第1面41および第2リード線部25の第1面41)が溶接される。
 第1実施形態では、この溶接工程は、一のセグメント導体20の先端部20b(20c)側に設けられるリード線部23(第1リード線部24)の第1面41と、上記一のセグメント導体20とは別個に設けられ、他のセグメント導体20の先端部20b(20d)側に設けられるリード線部23(第2リード線部25)の第1面41とを、グリーンレーザ50により溶接する工程である。
 具体的には、複数のセグメント導体20同士の複数の溶接箇所の各々において、グリーンレーザ50による溶接が個別に行われている。詳細には、一の溶接箇所におけるグリーンレーザ50による溶接が完了した場合、後述するレーザ発振器51を他の溶接箇所に対応する場所に移動させることによって、他の溶接箇所における溶接が行われる。なお、ステータコア10を回転させることにより、レーザ発振器51を他の溶接箇所に対応する場所に相対的に移動させることによって、他の溶接箇所における溶接を行ってもよい。
 ここで、第1実施形態では、図8に示すように、第1面41同士は、第1面41の絶縁被膜41a(図7A参照)が剥離されているとともに第2面30の絶縁被膜30aが剥離されていない状態で、グリーンレーザ50により溶接される。具体的には、第1面41の絶縁被膜41a(図7A参照)、第3面42の絶縁被膜42a(図7A参照)、第4面43の絶縁被膜43a(図7A参照)、および、端面44を覆う絶縁被膜44a(図7A参照)の各々が剥離された状態で、グリーンレーザ50により第1面41同士の溶接が行われる。グリーンレーザ50の波長は、490nm以上550nm以下である。具体的には、グリーンレーザ50は、YAGレーザの第2高調波により構成されている。詳細には、グリーンレーザ50の波長は、532nmである。グリーンレーザ50のレーザ媒質はNd:YAG(ネオジムがドープされたイットリウム・アルミニウム・ガーネットの結晶を用いた固体レーザ)である。グリーンレーザ50(YAGレーザ)は、たとえば円柱状(ロッド型)のYAGの結晶が励起されることにより生成される。グリーンレーザ50は、レーザ発振器51から照射される。
 また、この溶接工程では、周方向の一方側(A1方向側)から延びるリード線部23(第1リード線部24)の第1面41と、周方向の他方側(A2方向側)から延びるリード線部23(第2リード線部25)の第1面41とを、中心軸線方向の一方側(Z1方向側)からグリーンレーザ50を照射することにより溶接が行われる。すなわち、リード線部23が延びる方向と交差(直交)する方向に沿ってグリーンレーザ50が照射されている。なお、この場合、グリーンレーザ50は、リード線部23においてZ1方向側に設けられている第3面42(被照射面)に照射されている。
 ここで、図9に示すように、銅(Cu)のグリーンレーザ(波長532nm)に対する反射率は約40%である。一方、銅(Cu)の赤外レーザ(波長1.06μm)(比較例)に対する反射率は約90%である。
 また、図10に示すように、グリーンレーザ50は、第1リード線部24の第3面42、および、第2リード線部25の第3面42に跨るように、溶接部26の上方(Z1方向側)から照射される。これにより、第1面41同士の界面において、図示しないキーホール(レーザの照射部分に形成される深い穴)が形成される。そして、形成されたキーホールに、グリーンレーザ50の熱により溶解された金属(銅)が流れ込むとともに凝固することにより、第1面41同士が溶接される。
 なお、グリーンレーザ50の照射方法は、短パルスレーザを第1面41に沿って(リード線部23が延びている方向に沿って)複数の箇所に照射する方法である。
 また第1実施形態では、図4に示すように、上記溶接工程は、第1リード線部24において、第1リード線部24の端部40aが、第2リード線部25の先端部20dに対して第1リード線部24の先端部20cとは反対側(A1方向側)において、先端部20dと距離D1離間した状態で、第1面41同士をグリーンレーザ50により溶接する工程である。また、上記溶接工程は、第2リード線部25において、第2リード線部25の端部40aが、第1リード線部24の先端部20cに対して第2リード線部25の先端部20dとは反対側(A2方向側)において、先端部20cと距離D2離間した状態で、第1面41同士をグリーンレーザ50により溶接する工程である。
 具体的には、距離D1および距離D2の各々は、端部40aの近傍の絶縁被膜30aが、グリーンレーザ50の熱により破損(炭化)するのを防止することが可能な大きさである。なお、距離D1および距離D2の各々は、グリーンレーザ50のスポット径R(たとえば約300μm、図8参照)に対して十分大きい。
 また、第1面41同士は、第1面41同士の溶接が行われている(グリーンレーザ50が照射されている)間は、図示しない治具によって互いに径方向に押し付けられている。
 また、図11に示すように、第1リード線部24および第2リード線部25の各々の剥離部分40のうちの第3面42において、銅部分がグリーンレーザ50の熱により溶融することによって溶融部60が形成される。溶融部60は、実際にグリーンレーザ50が照射される範囲よりも広い範囲に広がっている。なお、溶融部60は、たとえば図11に示すように楕円形状を有する。
 ここで、第1実施形態では、上記溶接工程は、第1リード線部24において、溶融部60と端部40bとの間の径方向における距離D3が、溶融部60と端部40aとの間の周方向における距離D4よりも小さくなるように、第1面41同士をグリーンレーザ50により溶接する工程である。また、上記溶接工程は、第2リード線部25において、溶融部60と端部40bとの間の径方向における距離D5が、溶融部60と端部40aとの間の周方向における距離D6よりも小さくなるように、第1面41同士をグリーンレーザ50により溶接する工程である。なお、距離D3および距離D5の各々は、溶融部60と端部40bとの間の径方向における距離のうちの最小の距離を意味する。また、距離D4および距離D6の各々は、溶融部60と端部40aとの間の径方向における距離のうちの最小の距離を意味する。なお、距離D3および距離D5は、互いに略等しい。また、距離D4および距離D6は、互いに略等しい。なお、距離D3および距離D5の各々は、請求の範囲の「第2距離」の一例である。また、距離D4および距離D6の各々は、請求の範囲の「第3距離」の一例である。
 また、上記溶接工程は、複数のスロット11を跨ぐ(図2参照)ように配置されている一のセグメント導体20の一方の先端部20c側に設けられるリード線部23(24)の第1面41と、一のセグメント導体20とは別個に設けられ、複数のスロット11を跨ぐ(図2参照)ように配置されている他のセグメント導体20の他方の先端部20d側に設けられるリード線部23(25)の第1面41とを、グリーンレーザ50により溶接する工程である。なお、互いに溶接されるリード線部23に接続されているスロット収容部21が互いに異なるスロット11に収容された状態で、グリーンレーザ50による溶接が行われる。
 そして、図6に示すように、ステップS5では、ステータコア10の端面10a側に絶縁部材90を成形する。たとえば、複数のコイルエンド部22bが樹脂の流動体中に浸漬されることにより樹脂製の絶縁部材90が成形される。なお、樹脂製の絶縁部材90を成形する代わりに、複数のコイルエンド部22bにワニスを塗布してもよい。
 (実験結果)
 グリーンレーザ50を用いて溶接を行った場合と、比較例として赤外レーザ(ファイバレーザ)を用いて溶接を行った場合との、スパッタ(金属表面にレーザ等を照射することにより金属表面から飛び出す原子)の飛散量についての比較結果について説明する。赤外レーザ(ファイバレーザ)を用いた場合に比べて、グリーンレーザ50を用いた場合の方が、スパッタの飛散量は1/10以下に低減されることが確認された。これは、赤外レーザ(ファイバレーザ)よりもグリーンレーザ50を用いた場合の方が、キーホールが安定的に形成されることが要因であると考えられる。
 また、グリーンレーザ50を用いて溶接を行った場合と、比較例として赤外レーザ(ファイバレーザ)を用いて溶接を行った場合との、同じ溶接面積(4.2mm)を得るために必要な熱量についての比較結果について説明する。赤外レーザ(ファイバレーザ)を用いた場合に比べて、グリーンレーザ50を用いた場合の方が、必要な熱量が1/4程度に低減されることが確認された。これは、赤外レーザ(ファイバレーザ)よりもグリーンレーザ50の方が、銅(Cu)に対する反射率が低い(吸収率が高い)ことが要因であると考えられる。
 また、第1面41に絶縁被膜41aが残った状態で、赤外レーザ(ファイバレーザ)による溶接を行った場合には、溶接後の第1面41にブローホール(溶接金属内において発生したガス、または、侵入したガスによって生じた空洞)が形成されていた。一方、第1面41に絶縁被膜41aが残った状態で、グリーンレーザ50による溶接を行った場合には、溶接後の第1面41にはブローホールが形成されていなかった。
 また、図12に示すように、グリーンレーザ50を用いて溶接を行った場合の、第3面42の温度(図12A参照)、第2面30に設けられる絶縁被膜30aの温度(図12B参照)、第4面43の温度(図12C参照)について説明する。
 図12A~図12Cに示すように、グリーンレーザ50による溶接が開始された瞬間に温度が急峻に上昇している。第3面42の温度(図12A参照)は、瞬間的に温度が99℃まで上昇した。絶縁被膜30aの温度(図12B参照)は、瞬間的に温度が64℃まで上昇した。第4面43の温度(図12C参照)は、瞬間的に温度が82℃まで上昇した。すなわち、第3面42、絶縁被膜30a、および、第4面43の各々は、100℃までは上昇しないことが確認された。なお、絶縁被膜30aの損傷(炭化)する温度は、180℃程度である。
 [第2実施形態]
 次に、図13~図17を参照して、第2実施形態によるステータ300の製造方法について説明する。第2実施形態のステータ300の製造方法では、第4面43の絶縁被膜43aを剥離した状態で溶接を行っていた上記第1実施形態とは異なり、第4面43の絶縁被膜43aの剥離を行わずに溶接を行う。なお、上記第1実施形態と同様の構成は、第1実施形態と同じ符号を付して図示するとともに説明を省略する。
 (コイルの構成)
 図13に示すように、ステータ300(図1参照)のリード線部123同士(第1リード線部124および第2リード線部125)が、コイルエンド部122bの溶接部26において溶接されている。なお、第1リード線部124および第2リード線部125の各々は、請求の範囲の「リード線部」の一例である。
 図14に示すように、第4面43は、絶縁被膜43aにより覆われている。絶縁被膜43aは、第2面30を覆う絶縁被膜30aと一体的に形成されている。なお、第2実施形態では、第1面41、第3面42、および、端面44は、剥離部分140に含まれている。
 (ステータの製造方法)
 次に、図15~図17を参照して、ステータ300の製造方法について説明する。
 図15に示すように、ステップS12において、第1面41の絶縁被膜41a(図16A参照)を剥離する工程が行われる。この工程では、第1面41の絶縁被膜41a、第3面42の絶縁被膜42a(図16A参照)、および、先端部20bの端面44を覆う絶縁被膜44aが剥離される。その結果、第1面41、第3面42、および、端面44の各々が露出(図16B参照)されるとともに、剥離部分140が形成される。また、第2面30を覆う絶縁被膜30a、および、第4面43を覆う絶縁被膜43aの各々は、この工程において剥離されない。
 次に、ステップS14において、リード線部123同士(第1リード線部124の第1面41および第2リード線部125の第1面41)が溶接される。
 第2実施形態では、図17に示すように、第1面41同士は、第1面41の絶縁被膜41a(図16A参照)、および、第3面42の絶縁被膜42a(図16A参照)の各々が剥離されているとともに、第2面30の絶縁被膜30a、および、第4面43の絶縁被膜43aの各々が剥離されていない状態で、グリーンレーザ50により溶接される。具体的には、絶縁被膜41a、絶縁被膜42a、および、絶縁被膜44aの各々が剥離された状態で、グリーンレーザ50により第1面41同士の溶接が行われる。
 なお、第2実施形態のその他の構成は、上記第1実施形態と同様である。
 [第1および第2実施形態の効果]
 第1および第2実施形態では、以下のような効果を得ることができる。
 第1および第2実施形態では、上記のように、ステータ(100、300)の製造方法は、複数のコイル(20)の各々の先端部(20b、20c、20d)側に設けられるリード線部(23)のうちの溶接面となる第1面(41)の絶縁被膜(41a)を剥離する工程と、互いに異なるコイル(20)のリード線部(23、123)の第1面(41)同士が対向するように、複数のコイル(20)をステータコア(10)のスロット(11)に配置する工程と、を備える。また、ステータ(100、300)の製造方法は、第1面(41)の絶縁被膜(41a)が剥離されているとともに、リード線部(23、123)のうちの第1面(41)とは反対側の第2面(30)の絶縁被膜(30a)が剥離されていない状態で、第1面(41)同士をグリーンレーザ(50)により溶接する工程を備える。ここで、金属製の部材の多くにおいて、赤外レーザに対する吸収率よりもグリーンレーザ(50)に対する吸収率の方が高い。したがって、金属における吸収率が比較的高いグリーンレーザ(50)により第1面(41)同士を溶接することによって、グリーンレーザ(50)の照射に起因してリード線部(23、123)の溶融部(60)に発生した熱が、溶融部(60)近傍の金属部分に吸収されるとともに溶融部(60)からリード線部(23、123)の他の部分に比較的移動しにくくなる。これにより、第2面(30)の絶縁被膜(30a)が剥離されていない状態で、第1面(41)同士をグリーンレーザ(50)により溶接する場合にも、第2面(30)の絶縁被膜(30a)がグリーンレーザ(50)の熱によって損傷(炭化)するのを防止することができる。その結果、第2面(30)の絶縁被膜(30a)の表面上に絶縁部材(90)を容易に配置(樹脂成形、塗布)することができる。また、第2面(30)の絶縁被膜(30a)が損傷(炭化)しないことによって、絶縁部材(90)を配置(樹脂成形、塗布)するために第2面(30)の絶縁被膜(30a)を予め剥離する工程を省略することができる。これらの結果、コイル(20)同士を溶接する場合に、溶接後のコイル(20)の絶縁性能を維持しながら、溶接の際の作業が煩雑化するのを防止することができる。
 また、第1および第2実施形態では、上記のように、第1面(41)同士をグリーンレーザ(50)により溶接する工程は、平角導線20aにより構成されるコイル(20)に設けられるリード線部(23、123)のうちの、第1面(41)の絶縁被膜(41a)が剥離されているとともに、第2面(30)の絶縁被膜(30a)が剥離されていない状態で、第1面(41)同士をグリーンレーザ(50)により溶接する工程である。このように構成すれば、リード線部(23、123)が丸線である場合に比べて、第1面(41)同士の溶接面積を容易に大きくすることができるので、グリーンレーザ(50)を用いた溶接による接合強度をより高くすることができる。
 また、第1および第2実施形態では、上記のように、第1面(41)の絶縁被膜(41a)を剥離する工程は、第1面(41)に加え、第1面(41)と第2面(30)との間に設けられる、グリーンレーザ(50)が照射される被照射面としての第3面(42)の絶縁被膜(42a)を剥離する工程である。また、第1面(41)同士をグリーンレーザ(50)により溶接する工程は、第1面(41)および第3面(42)の各々の絶縁被膜(42a)が剥離されているとともに、第2面(30)の絶縁被膜(30a)が剥離されていない状態で、第1面(41)同士をグリーンレーザ(50)により溶接する工程である。このように構成すれば、第3面(42)の絶縁被膜(42a)を介して、第2面(30)の絶縁被膜(30a)にグリーンレーザ(50)の熱が移動するのを防止することができる。その結果、第2面(30)の絶縁被膜(30a)が損傷(炭化)するのをより確実に防止することができる。また、第3面(42)の絶縁被膜(42a)が剥離されていない状態でグリーンレーザ(50)を照射する場合と異なり、第3面(42)の絶縁被膜(42a)がグリーンレーザ(50)の熱により損傷(炭化)することに起因して、(絶縁性樹脂またはワニスなどからなる)絶縁部材(90)の配置(樹脂成形、塗布)が困難になるのを防止することができる。
 また、第1実施形態では、上記のように、第1面(41)および第3面(42)の各々の絶縁被膜(41a、42a)を剥離する工程は、第1面(41)および第3面(42)に加え、第3面(42)とは反対側の第4面(43)の絶縁被膜(43a)を剥離する工程である。また、第1面(41)同士をグリーンレーザ(50)により溶接する工程は、第1面(41)、第3面(42)、および、第4面(43)の各々の絶縁被膜(41a、42a、43a)が剥離されているとともに、第2面(30)の絶縁被膜(30a)が剥離されていない状態で、第1面(41)同士をグリーンレーザ(50)により溶接する工程である。このように構成すれば、第4面(43)の絶縁被膜(43a)を介して、第2面(30)の絶縁被膜(30a)にグリーンレーザ(50)の熱が移動するのを防止することができる。その結果、第2面(30)の絶縁被膜(30a)が損傷(炭化)するのをより一層確実に防止することができる。また、第4面(43)の絶縁被膜(43a)が剥離されていない状態でグリーンレーザ(50)を照射する場合と異なり、第4面(43)の絶縁被膜(43a)がグリーンレーザ(50)の熱により損傷(炭化)することに起因して、絶縁部材(90)の配置(塗布)が困難になるのを防止することができる。
 第2実施形態では、上記のように、第1面(41)同士をグリーンレーザ(50)により溶接する工程は、第1面(41)および第3面(42)の各々の絶縁被膜(41a、42a)が剥離されているとともに、第2面(30)の絶縁被膜(30a)、および、第3面(42)とは反対側の第4面(43)の絶縁被膜(43a)の各々が剥離されていない状態で、第1面(41)同士をグリーンレーザ(50)により溶接する工程である。このように構成すれば、第4面(43)の絶縁被膜(43a)が剥離されている場合に比べて、第4面(43)の絶縁性をより高くすることができる。
 また、第1および第2実施形態では、上記のように、第1面(41)同士をグリーンレーザ(50)により溶接する工程は、周方向の一方側から延びるリード線部(23、123)の第1面(41)と、周方向の他方側から延びるリード線部(23、123)の第1面(41)とを、中心軸線方向の一方側からグリーンレーザ(50)を照射することにより溶接する工程である。このように構成すれば、リード線部(23、123)が周方向に延びているので、リード線部(23、123)が中心軸線方向に延びている場合に比べて、中心軸線方向の一方側から照射されるグリーンレーザ(50)が照射されるリード線部(23、123)の部分の長さを容易に大きくすることができる。その結果、第1面(41)同士の溶接面積を容易に大きくすることができる。
 また、第1および第2実施形態では、上記のように、第1面(41)同士をグリーンレーザ(50)により溶接する工程は、一方側のリード線部(23、123)および他方側のリード線部(23、123)の各々において、絶縁被膜(41a、42a、43a、44a)が剥離されることにより形成された、第1面(41)を含む剥離部分(40、140)のうち、自身の先端部である第1先端部(20b、20c、20d)とは周方向において反対側に設けられる周方向端部(40a)が、溶接相手のリード線部(23、123)の先端部である第2先端部(20b、20d、20c)に対して第1先端部(20b、20c、20d)とは反対側において、第2先端部(20b、20d、20c)と第1距離(D1、D2)離間した状態で、第1面(41)同士をグリーンレーザ(50)により溶接する工程である。また、第1面(41)の絶縁被膜(41a)を剥離する工程は、一方側のリード線部(23、123)および他方側のリード線部(23、123)の各々において、周方向端部(40a)が、溶接相手のリード線部(23、123)の第2先端部(20b、20d、20c)に対して第1先端部(20b、20c、20d)とは反対側において、第2先端部(20b、20d、20c)と第1距離(D1、D2)離間するように、剥離部分(40、140)を形成する工程である。このように構成すれば、周方向端部(40a)と第2先端部(20b、20d、20c)との間が、周方向に第1距離(D1、D2)離間しているので、周方向端部(40a)と第2先端部(20b、20d、20c)とが周方向において同じ位置に設けられている場合に比べて、第2先端部(20b、20d、20c)から周方向端部(40a)に移動する熱の量を低減することができる。これにより、周方向端部(40a)よりも第1先端部(20b、20c、20d)とは反対側に設けられる絶縁被膜(30a)が損傷(炭化)するのを防止することができる。
 また、第1および第2実施形態では、上記のように、第1面(41)同士をグリーンレーザ(50)により溶接する工程は、一方側のリード線部(23、123)および他方側のリード線部(23、123)の各々において、剥離部分(40、140)のうちの、グリーンレーザ(50)が照射される被照射面としての第3面(42)に形成される溶融部(60)と、剥離部分(40、140)のうちの、溶融部(60)とは径方向において反対側に設けられる径方向端部(40b)との間の径方向における第2距離(D3、D5)が、溶融部(60)と周方向端部(40a)との間の周方向における第3距離(D4、D6)よりも小さくなるように、第1面(41)同士をグリーンレーザ(50)により溶接する工程である。また、第1面(41)の絶縁被膜(41a)を剥離する工程は、一方側のリード線部(23、123)および他方側のリード線部(23、123)の各々において、溶融部(60)と径方向端部(40b)との間の径方向における第2距離(D3、D5)が、溶融部(60)と周方向端部(40a)との間の周方向における第3距離(D4、D6)よりも小さくなるように、剥離部分(40、140)を形成する工程である。このように構成すれば、第2距離(D3、D5)が第3距離(D4、D6)よりも大きい場合に比べて、第3面(42)の径方向における幅を小さくすることができる。その結果、径方向に隣り合うリード線部(23、123)同士の間の距離を大きくすることができるので、径方向に隣り合うリード線部(23、123)同士の間における熱の移動量を低減させることができる。
 また、第1および第2実施形態では、上記のように、第1面(41)同士をグリーンレーザ(50)により溶接する工程は、銅により形成されたコイル(20)に設けられるリード線部(23、123)の第1面(41)同士を、グリーンレーザ(50)により溶接する工程である。ここで、銅においては、赤外レーザに対する吸収率よりもグリーンレーザに対する吸収率の方が大幅に高い。したがって、コイル(20)が銅により形成されていることによって、グリーンレーザ(50)を用いて第1面(41)同士を溶接することは、グリーンレーザ(50)の熱により第2面(30)の絶縁被膜(30a)が損傷(炭化)するのを防止するのに、特に効果的である。
 また、第1および第2実施形態では、上記のように、第1面(41)同士をグリーンレーザ(50)により溶接する工程は、複数のスロット(11)を跨ぐように配置されている一のコイル(20)の一方の先端部(20b、20c)側に設けられるリード線部(23、123)の第1面(41)と、一のコイル(20)とは別個に設けられ、複数のスロット(11)を跨ぐように配置されている他のコイル(20)の他方の先端部(20b、20d)側に設けられるリード線部(23、123)の第1面(41)とを、グリーンレーザ(50)により溶接する工程である。このように構成すれば、グリーンレーザ(50)により溶接することによって、複数のスロット(11)を跨ぐように配置されているコイル(20)同士を、グリーンレーザ(50)を用いた溶接により接合することができる。
 また、第1および第2実施形態では、上記のように、第1面(41)同士をグリーンレーザ(50)により溶接する工程は、波長が490nm以上550nm以下のグリーンレーザ(50)により第1面(41)同士を溶接する工程である。このように構成すれば、グリーンレーザ(50)の波長がたとえば1μm程度である場合に比べて、銅におけるグリーンレーザ(50)の吸収率を高めることができる。その結果、第1面(41)同士の溶接を効率的に行うことができる。
 また、第1および第2実施形態では、上記のように、第1面(41)同士をグリーンレーザ(50)により溶接する工程は、YAGレーザの第2高調波により構成されるグリーンレーザ(50)により第1面(41)同士を溶接する工程である。ここで、YAGレーザはCOレーザに比べて金属における吸収率が高い。したがって、YAGレーザの第2高調波により構成されるグリーンレーザ(50)を用いることにより、グリーンレーザ(50)のエネルギーを比較的小さくしても溶接を行うことができる。
 [変形例]
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく請求の範囲によって示され、さらに請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
 たとえば、上記第1および第2実施形態では、第1面41同士が径方向に対向する例を示したが、本発明はこれに限られない。第1面41同士が径方向以外の方向に対向していてもよい。
 また、上記第1および第2実施形態では、セグメント導体20(コイル)が平角導線20aにより構成されている例を示したが、本発明はこれに限られない。たとえば、コイルが丸線などにより構成されていてもよい。
 また、上記第1および第2実施形態では、第3面42の絶縁被膜42aおよび端面44の絶縁被膜44aを剥離した状態で、グリーンレーザ50による溶接が行われる例を示したが、本発明はこれに限られない。たとえば、絶縁被膜42aおよび絶縁被膜44aの少なくとも一部を剥離しない状態で、グリーンレーザ50による溶接を行ってもよい。
 また、上記第1および第2実施形態では、周方向に延びるリード線部23(123)同士の第1面41同士を溶接する例を示したが、本発明はこれに限られない。たとえば、周方向以外の方向に沿って延びるリード線部23(123)同士の第1面41同士を溶接してもよい。
 また、上記第1および第2実施形態では、絶縁被膜の剥離を切削治具等により行う例を示したが、本発明はこれに限られない。たとえば、レーザにより絶縁被膜を剥離してもよい。
 また、上記第1および第2実施形態では、コイルがセグメント導体20である例を示したが、本発明はこれに限られない。たとえば、コイルが、ティース13に複数回巻回(成形)された集中巻きのコイルとして構成されていてもよい。
 また、上記第1および第2実施形態では、グリーンレーザ50の波長が532nmである例を示したが、本発明はこれに限られない。たとえば、波長が490nm以上550nm以下であれば532nm以外の波長のグリーンレーザを用いてもよい。
 また、上記第1および第2実施形態では、グリーンレーザ50としてYAGレーザが用いられる例を示したが、本発明はこれに限られない。たとえば、グリーンレーザとしてCOレーザや半導体レーザが用いられてもよい。
 また、上記第1および第2実施形態では、グリーンレーザ50の照射方法が、短パルスレーザを第1面41に沿って複数の箇所に照射する方法である例を示したが、本発明はこれに限られない。グリーンレーザの照射方法が、グリーンレーザを第1面41に沿って所定の長さ分走査(スキャン)させる方法であってもよい。
 この場合の一例として、ランプ励起YAGレーザであって、波長が1064nmの基本波の第2高調波により構成される波長が532nmのグリーンレーザを用いることが考えられる。ランプ励起とは、励起光源にランプを使用してレーザ媒体を励起する励起方法である。ここで、ランプ励起YAGレーザは出力エネルギーが比較的高い。これにより、ランプ励起YAGレーザを用いることによって、セグメント導体20の溶接を効率的に行うことができる。なお、ランプ励起YAGレーザを用いてパルス照射することも可能である。
 また、レーザ走査(スキャン)の他の一例として、ディスクレーザであって、波長が1030nmの基本波の第2高調波により構成される波長が515nmのグリーンレーザを用いることが考えられる。ディスクレーザは、薄い円板形状を有するYAGの結晶が励起されることにより生成される。ここで、ディスクレーザは、出力エネルギーが比較的高く、かつ、ランプ励起方式に比べてレーザの照射範囲が小さい。これにより、ディスクレーザを用いることによって、セグメント導体20の溶接を効率的に、かつ、より正確に行うことができる。
 10 ステータコア
 11 スロット
 20 セグメント導体(コイル)
 20a 平角導線
 20b、20c、20d 先端部(第1先端部)(第2先端部)
 23、123 リード線部
 24、124 第1リード線部(リード線部)
 25、125 第2リード線部(リード線部)
 30 第2面
 30a 絶縁被膜(第2面の絶縁被膜)
 40、140 剥離部分
 40a 端部(周方向端部)
 40b 端部(径方向端部)
 41 第1面
 41a 絶縁被膜(第1面の絶縁被膜)
 42 第3面
 42a 絶縁被膜(第3面の絶縁被膜)
 43 第4面
 43a 絶縁被膜(第4面の絶縁被膜)
 50 グリーンレーザ
 60 溶融部
 100、300 ステータ
 D1、D2 距離(第1距離)
 D3、D5 距離(第2距離)
 D4、D6 距離(第3距離)

Claims (13)

  1.  絶縁被膜により被覆される銅線により構成される複数のコイルを備えるステータの製造方法であって、
     前記複数のコイルの各々の先端部側に設けられるリード線部のうちの溶接面となる第1面とは反対側の前記リード線部の第2面の前記絶縁被膜を剥離せずに、前記第1面の前記絶縁被膜を剥離する工程と、
     互いに異なる前記コイルの前記リード線部の前記第1面同士が対向するように、前記複数のコイルをステータコアのスロットに配置する工程と、
     前記第1面の前記絶縁被膜が剥離されているとともに前記第2面の前記絶縁被膜が剥離されていない状態で、前記第1面同士をグリーンレーザにより溶接する工程と、を備える、ステータの製造方法。
  2.  前記第1面同士を前記グリーンレーザにより溶接する工程は、平角導線により構成される前記コイルに設けられる前記リード線部のうちの、前記第1面の前記絶縁被膜が剥離されているとともに、前記第2面の前記絶縁被膜が剥離されていない状態で、前記第1面同士を前記グリーンレーザにより溶接する工程である、請求項1に記載のステータの製造方法。
  3.  前記第1面の前記絶縁被膜を剥離する工程は、前記第1面に加え、前記第1面と前記第2面との間に設けられる、前記グリーンレーザが照射される被照射面としての第3面の前記絶縁被膜を剥離する工程であり、
     前記第1面同士を前記グリーンレーザにより溶接する工程は、前記第1面および前記第3面の各々の前記絶縁被膜が剥離されているとともに、前記第2面の前記絶縁被膜が剥離されていない状態で、前記第1面同士を前記グリーンレーザにより溶接する工程である、請求項1または2に記載のステータの製造方法。
  4.  前記第1面および前記第3面の各々の前記絶縁被膜を剥離する工程は、前記第1面および前記第3面に加え、前記第3面とは反対側の第4面の前記絶縁被膜を剥離する工程であり、
     前記第1面同士を前記グリーンレーザにより溶接する工程は、前記第1面、前記第3面、および、前記第4面の各々の前記絶縁被膜が剥離されているとともに、前記第2面の前記絶縁被膜が剥離されていない状態で、前記第1面同士を前記グリーンレーザにより溶接する工程である、請求項3に記載のステータの製造方法。
  5.  前記第1面同士を前記グリーンレーザにより溶接する工程は、前記第1面および前記第3面の各々の前記絶縁被膜が剥離されているとともに、前記第2面の前記絶縁被膜、および、前記第3面とは反対側の第4面の前記絶縁被膜の各々が剥離されていない状態で、前記第1面同士を前記グリーンレーザにより溶接する工程である、請求項3に記載のステータの製造方法。
  6.  前記第1面同士を前記グリーンレーザにより溶接する工程は、周方向の一方側から延びる前記リード線部の前記第1面と、前記周方向の他方側から延びる前記リード線部の前記第1面とを、前記ステータコアの中心軸線方向の一方側から前記グリーンレーザを照射することにより溶接する工程である、請求項1~5のいずれか1項に記載のステータの製造方法。
  7.  前記第1面同士を前記グリーンレーザにより溶接する工程は、前記一方側のリード線部および前記他方側のリード線部の各々において、前記絶縁被膜が剥離されることにより形成された、前記第1面を含む剥離部分のうち、自身の前記先端部である第1先端部とは前記周方向において反対側に設けられる周方向端部が、溶接相手の前記リード線部の前記先端部である第2先端部に対して前記第1先端部とは反対側において、前記第2先端部と第1距離離間した状態で、前記第1面同士を前記グリーンレーザにより溶接する工程であり、
     前記第1面の前記絶縁被膜を剥離する工程は、前記一方側のリード線部および前記他方側のリード線部の各々において、前記周方向端部が、溶接相手の前記リード線部の前記第2先端部に対して前記第1先端部とは反対側において、前記第2先端部と前記第1距離離間するように、前記剥離部分を形成する工程である、請求項6に記載のステータの製造方法。
  8.  前記第1面同士を前記グリーンレーザにより溶接する工程は、前記一方側のリード線部および前記他方側のリード線部の各々において、前記剥離部分のうちの、前記グリーンレーザが照射される被照射面としての第3面に形成される溶融部と、前記剥離部分のうちの、前記溶融部とは径方向において反対側に設けられる径方向端部との間の前記径方向における第2距離が、前記溶融部と前記周方向端部との間の前記周方向における第3距離よりも小さくなるように、前記第1面同士を前記グリーンレーザにより溶接する工程であり、
     前記第1面の前記絶縁被膜を剥離する工程は、前記一方側のリード線部および前記他方側のリード線部の各々において、前記溶融部と前記径方向端部との間の前記径方向における前記第2距離が、前記溶融部と前記周方向端部との間の前記周方向における前記第3距離よりも小さくなるように、前記剥離部分を形成する工程である、請求項7に記載のステータの製造方法。
  9.  前記第1面同士を前記グリーンレーザにより溶接する工程は、複数の前記スロットを跨ぐように配置されている一の前記コイルの一方の前記先端部側に設けられる前記リード線部の前記第1面と、前記一のコイルとは別個に設けられ、複数の前記スロットを跨ぐように配置されている他の前記コイルの他方の前記先端部側に設けられる前記リード線部の前記第1面とを、前記グリーンレーザにより溶接する工程である、請求項1~8のいずれか1項に記載のステータの製造方法。
  10.  前記第1面同士を前記グリーンレーザにより溶接する工程は、波長が490nm以上550nm以下の前記グリーンレーザにより前記第1面同士を溶接する工程である、請求項1~9のいずれか1項に記載のステータの製造方法。
  11.  前記第1面同士を前記グリーンレーザにより溶接する工程は、YAGレーザの第2高調波により構成される前記グリーンレーザにより前記第1面同士を溶接する工程である、請求項10に記載のステータの製造方法。
  12.  前記第1面同士を前記グリーンレーザにより溶接する工程は、ランプ励起YAGレーザであって、波長が1064nmの基本波の第2高調波により構成される波長が532nmの前記グリーンレーザにより前記第1面同士を溶接する工程である、請求項10または11に記載のステータの製造方法。
  13.  前記第1面同士を前記グリーンレーザにより溶接する工程は、ディスクレーザであって、波長が1030nmの基本波の第2高調波により構成される波長が515nmの前記グリーンレーザにより前記第1面同士を溶接する工程である、請求項10または11に記載のステータの製造方法。
     
     
PCT/JP2021/003283 2020-01-30 2021-01-29 ステータの製造方法 WO2021153745A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021574694A JP7360480B2 (ja) 2020-01-30 2021-01-29 ステータの製造方法
EP21747129.1A EP4099548A4 (en) 2020-01-30 2021-01-29 METHOD OF MAKING A STATOR
CN202180006704.8A CN114731100A (zh) 2020-01-30 2021-01-29 定子的制造方法
US17/777,733 US20230010824A1 (en) 2020-01-30 2021-01-29 Stator manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-013844 2020-01-30
JP2020013844 2020-01-30

Publications (1)

Publication Number Publication Date
WO2021153745A1 true WO2021153745A1 (ja) 2021-08-05

Family

ID=77079144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003283 WO2021153745A1 (ja) 2020-01-30 2021-01-29 ステータの製造方法

Country Status (5)

Country Link
US (1) US20230010824A1 (ja)
EP (1) EP4099548A4 (ja)
JP (1) JP7360480B2 (ja)
CN (1) CN114731100A (ja)
WO (1) WO2021153745A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008100618A (ja) * 2006-10-19 2008-05-01 Mitsubishi Electric Corp 電動式パワーステアリング装置
JP2009253068A (ja) * 2008-04-08 2009-10-29 Miyachi Technos Corp レーザ発振器及びレーザ加工装置
JP2012161138A (ja) * 2011-01-31 2012-08-23 Jfe Steel Corp 圧縮応力下での鉄損劣化の小さいモータコア
JP2013109948A (ja) 2011-11-21 2013-06-06 Toyota Motor Corp 角線の接合構造及び接合方法
JP2019140822A (ja) * 2018-02-13 2019-08-22 トヨタ自動車株式会社 曲げ加工装置
JP2019155428A (ja) * 2018-03-13 2019-09-19 日本電産株式会社 半田接合方法、モータの製造方法
JP2019221034A (ja) * 2018-06-18 2019-12-26 三菱電機株式会社 回転電機の固定子の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014226710A1 (de) * 2014-12-19 2016-06-23 Continental Automotive Gmbh Verfahren und Vorrichtung zum Verschweißen von Drahtsegmentpaaren
JP6390672B2 (ja) * 2016-08-02 2018-09-19 トヨタ自動車株式会社 平角線のレーザ溶接方法
US10576565B2 (en) * 2016-09-23 2020-03-03 Gm Global Technology Operations, Llc Laser welding of copper with reaction materials
JP6663942B2 (ja) * 2018-02-20 2020-03-13 本田技研工業株式会社 回転電機のステータ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008100618A (ja) * 2006-10-19 2008-05-01 Mitsubishi Electric Corp 電動式パワーステアリング装置
JP2009253068A (ja) * 2008-04-08 2009-10-29 Miyachi Technos Corp レーザ発振器及びレーザ加工装置
JP2012161138A (ja) * 2011-01-31 2012-08-23 Jfe Steel Corp 圧縮応力下での鉄損劣化の小さいモータコア
JP2013109948A (ja) 2011-11-21 2013-06-06 Toyota Motor Corp 角線の接合構造及び接合方法
JP2019140822A (ja) * 2018-02-13 2019-08-22 トヨタ自動車株式会社 曲げ加工装置
JP2019155428A (ja) * 2018-03-13 2019-09-19 日本電産株式会社 半田接合方法、モータの製造方法
JP2019221034A (ja) * 2018-06-18 2019-12-26 三菱電機株式会社 回転電機の固定子の製造方法

Also Published As

Publication number Publication date
EP4099548A4 (en) 2023-07-19
CN114731100A (zh) 2022-07-08
US20230010824A1 (en) 2023-01-12
JPWO2021153745A1 (ja) 2021-08-05
JP7360480B2 (ja) 2023-10-12
EP4099548A1 (en) 2022-12-07

Similar Documents

Publication Publication Date Title
JP5958109B2 (ja) 回転電機の導体接合方法
WO2016067981A1 (ja) 回転電機の固定子
JP2014007794A (ja) 回転電機の導体接合方法及び回転電機のコイル
WO2021153745A1 (ja) ステータの製造方法
US20210379698A1 (en) Method for welding copper-including members, and method for manufacturing electrical rotating machine
JP7335419B2 (ja) 回転電機用ステータ製造方法
JP7020121B2 (ja) 回転電機のステータコイルの形成方法
US10886823B2 (en) Stator for rotary electric machine, rotary electric machine, and method for manufacturing stator for rotary electric machine
WO2018179923A1 (ja) コア製造方法及びコア
WO2022196823A1 (ja) 回転電機用ステータ製造方法
WO2021220666A1 (ja) レーザ溶接方法及びそれを用いた回転電気機械の製造方法
JP7181171B2 (ja) 導線の接合方法
JP7460403B2 (ja) 回転電機用ステータ製造方法
JP7410757B2 (ja) 回転電機用ステータ製造方法
JP7478699B2 (ja) 回転電機用ステータ製造方法
JP2007103527A (ja) 電解コンデンサ及びその製造方法
JP7335420B2 (ja) 回転電機用ステータ製造方法
WO2024080097A1 (ja) 回転電機用ステータ製造方法及び回転電機用ステータ製造装置
JP2000167679A (ja) 被覆線の接合方法
US20230396135A1 (en) Method for manufacturing stator for rotating electrical machine
JP4766239B2 (ja) セラミック電子部品及びその製造方法
JPS6387144A (ja) 回転電気機械の固定子
JP2006100561A (ja) 電解コンデンサの製造方法
JP2008016687A (ja) 電解コンデンサの製造方法
JP2021145481A (ja) 回転電機用ステータ製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21747129

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021574694

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021747129

Country of ref document: EP

Effective date: 20220830