WO2022196823A1 - 回転電機用ステータ製造方法 - Google Patents

回転電機用ステータ製造方法 Download PDF

Info

Publication number
WO2022196823A1
WO2022196823A1 PCT/JP2022/012873 JP2022012873W WO2022196823A1 WO 2022196823 A1 WO2022196823 A1 WO 2022196823A1 JP 2022012873 W JP2022012873 W JP 2022012873W WO 2022196823 A1 WO2022196823 A1 WO 2022196823A1
Authority
WO
WIPO (PCT)
Prior art keywords
irradiation
section
welding
laser
laser beam
Prior art date
Application number
PCT/JP2022/012873
Other languages
English (en)
French (fr)
Inventor
克哉 近藤
弘行 大野
Original Assignee
株式会社アイシン
トヨタ自動車株式会社
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アイシン, トヨタ自動車株式会社, 株式会社デンソー filed Critical 株式会社アイシン
Publication of WO2022196823A1 publication Critical patent/WO2022196823A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/04Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of windings, prior to mounting into machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/08Forming windings by laying conductors into or around core parts
    • H02K15/085Forming windings by laying conductors into or around core parts by laying conductors into slotted stators

Definitions

  • the present disclosure relates to a method for manufacturing a stator for a rotating electric machine.
  • Patent Document 1 Although the prior art as described in Patent Document 1 can make the molten pool reach the contact surfaces between the ends of the coil pieces by gradually increasing the diameter of the loop-shaped scanning locus. , a relatively large amount of heat input is required to secure the bonding area.
  • the present disclosure aims to achieve both securing of a bonding area and reduction in the number of spatters generated.
  • an assembling step of assembling coil pieces of a stator coil to a stator core After the assembling step, a joining step of joining the ends of the coil pieces or the ends of the coil pieces and the ends of the bus bar by laser welding,
  • the bonding step includes a setting step of bringing two ends to be joined into contact with each other; and an irradiation step of irradiating the two ends with a laser beam
  • the irradiation section of the laser beam in the irradiation step includes a continuous irradiation section in which the irradiation position of the laser beam changes continuously,
  • the continuous irradiation section includes a first section in which the irradiation position of the laser beam changes at a first speed in order along the moving direction of the irradiation position of the laser beam from the irradiation start position to the irradiation end position; A second section in which the irradiation position of the beam changes at a second speed lower than the first speed, and
  • FIG. 1 is a cross-sectional view schematically showing a cross-sectional structure of a motor according to one embodiment
  • FIG. FIG. 4 is a plan view of the stator core in a single item state
  • FIG. 4 is a diagram schematically showing a pair of coil pieces to be attached to the stator core
  • FIG. 3 is a perspective view of the periphery of the coil end of the stator; It is a perspective view which extracts and shows a part of coil piece of the same phase.
  • FIG. 4 is a schematic front view of one coil piece
  • FIG. 4 is a diagram showing tip portions of coil pieces joined to each other and the vicinity thereof
  • FIG. 8 is a cross-sectional view along line AA in FIG. 7 passing through the location to be welded;
  • FIG. 4 is a diagram showing the relationship between the laser wavelength and the laser absorptivity for solids of various materials;
  • FIG. 10 is an explanatory diagram of a change mode of absorptance during welding;
  • FIG. 10 is an image diagram of a keyhole and the like when a green laser is used;
  • FIG. 4 is an image diagram of a keyhole and the like when an infrared laser is used;
  • FIG. 4 is an explanatory diagram of a welding method using a green laser according to the present embodiment;
  • FIG. 4 is a diagram showing the relationship between welding speed and welding depth in the case of a green laser;
  • FIG. 4 is a diagram showing the relationship between the welding speed and the number of spatters generated in the case of a green laser;
  • FIG. 4 is a diagram showing the relationship between laser output and welding depth in the case of a green laser;
  • FIG. 4 is a diagram showing the relationship between the laser output and the number of spatters generated in the case of a green laser;
  • FIG. 5 is an illustration of a welding speed profile with relatively low welding speeds;
  • FIG. 5 is an illustration of a welding speed profile with relatively high welding speeds;
  • FIG. 4 is an explanatory diagram of the state of welding at each time when welding is performed with a welding speed profile of a relatively low welding speed;
  • FIG. 5 is an explanatory diagram of the state of welding at each time when welding is performed with a welding speed profile with a relatively high welding speed;
  • FIG. 4 is an explanatory diagram of a welding speed profile according to the present embodiment;
  • FIG. 4 is a schematic diagram showing an example of a mode in which the laser output for one pass changes according to the irradiation position
  • FIG. 5 is a schematic diagram showing another example of a mode in which the laser output for one pass changes according to the irradiation position
  • FIG. 5 is a diagram showing a preferable welding speed profile when two passes of green laser irradiation are performed on one welding target location
  • 4 is a flow chart schematically showing the flow of a method for manufacturing a stator of a motor
  • FIG. 4 is a perspective view illustrating joints between busbars and coil pieces
  • FIG. 1 is a cross-sectional view schematically showing the cross-sectional structure of a motor 1 (an example of a rotating electric machine) according to one embodiment.
  • the rotating shaft 12 of the motor 1 is illustrated in FIG.
  • the axial direction refers to the direction in which the rotation shaft (rotation center) 12 of the motor 1 extends
  • the radial direction refers to the radial direction around the rotation shaft 12 . Therefore, the radially outer side refers to the side away from the rotating shaft 12 , and the radially inner side refers to the side toward the rotating shaft 12 .
  • the circumferential direction corresponds to the direction of rotation about the rotating shaft 12 .
  • the motor 1 may be a vehicle drive motor used in, for example, a hybrid vehicle or an electric vehicle. However, the motor 1 may be used for any other purpose.
  • the motor 1 is of the inner rotor type, and the stator 21 is provided so as to surround the radially outer side of the rotor 30 .
  • the radially outer side of the stator 21 is fixed to the motor housing 10 .
  • the rotor 30 is arranged radially inside the stator 21 .
  • the rotor 30 has a rotor core 32 and a rotor shaft 34 .
  • the rotor core 32 is fixed radially outwardly of the rotor shaft 34 and rotates together with the rotor shaft 34 .
  • the rotor shaft 34 is rotatably supported by the motor housing 10 via bearings 14a and 14b. It should be noted that the rotor shaft 34 defines the rotating shaft 12 of the motor 1 .
  • the rotor core 32 is formed, for example, from laminated steel plates of an annular magnetic material.
  • a permanent magnet 321 is inserted inside the rotor core 32 .
  • the number, arrangement, etc. of the permanent magnets 321 are arbitrary.
  • the rotor core 32 may be formed of a powder compact in which magnetic powder is compressed and hardened.
  • End plates 35A and 35B are attached to both sides of the rotor core 32 in the axial direction.
  • the end plates 35A and 35B may have the function of supporting the rotor core 32 as well as the function of adjusting the imbalance of the rotor 30 (the function of eliminating the imbalance by cutting or the like).
  • the rotor shaft 34 has a hollow portion 34A, as shown in FIG.
  • the hollow portion 34A extends over the entire length of the rotor shaft 34 in the axial direction.
  • the hollow portion 34A may function as an oil passage.
  • oil is supplied to the hollow portion 34A from one end in the axial direction as indicated by an arrow R1 in FIG. can be cooled from the radially inner side.
  • the oil flowing along the radially inner surface of the rotor shaft 34 is jetted radially outward through oil holes 341 and 342 formed in both end portions of the rotor shaft 34 (arrows R5 and R6) to 220A, 220B may be provided for cooling.
  • FIG. 1 shows the motor 1 with a specific structure
  • the structure of the motor 1 is arbitrary as long as it has a stator coil 24 (described later) that is joined by welding.
  • the rotor shaft 34 may have no hollow portion 34A, or may have a hollow portion with an inner diameter significantly smaller than that of the hollow portion 34A.
  • a specific cooling method is disclosed in FIG. 1, the cooling method for the motor 1 is arbitrary. Therefore, for example, an oil introduction pipe inserted into the hollow portion 34A may be provided, or oil may be dripped from the oil passage in the motor housing 10 from the radially outer side toward the coil ends 220A and 220B. .
  • FIG. 1 shows the inner rotor type motor 1 in which the rotor 30 is arranged inside the stator 21, it may be applied to other types of motors.
  • it may be applied to an outer rotor type motor in which the rotor 30 is concentrically arranged outside the stator 21, a dual rotor type motor in which the rotor 30 is arranged both outside and inside the stator 21, or the like.
  • stator 21 Next, the configuration of the stator 21 will be described in detail with reference to FIG. 2 onwards.
  • FIG. 2 is a plan view of the stator core 22 in a single item state.
  • FIG. 3 is a diagram schematically showing a pair of coil pieces 52 assembled to stator core 22. As shown in FIG. FIG. 3 shows the relationship between the pair of coil pieces 52 and the slots 220 when the radially inner side of the stator core 22 is expanded. Also, in FIG. 3, the stator core 22 is indicated by a dotted line, and illustration of a part of the slots 220 is omitted.
  • FIG. 4 is a perspective view around coil ends 220A of the stator 21.
  • FIG. FIG. 5 is a perspective view showing a part of the in-phase coil pieces.
  • the stator 21 includes a stator core 22 and stator coils 24 .
  • the stator core 22 is made of, for example, an annular laminated steel plate of a magnetic material, but in a modified example, the stator core 22 may be formed of a powder compact in which magnetic powder is compressed and hardened. It should be noted that the stator core 22 may be formed by split cores that are split in the circumferential direction, or may be in a form that is not split in the circumferential direction. A plurality of slots 220 around which the stator coils 24 are wound are formed radially inside the stator core 22 . Specifically, as shown in FIG. 2, the stator core 22 includes an annular back yoke 22A and a plurality of teeth 22B extending radially inward from the back yoke 22A. A slot 220 is formed therebetween. Although the number of slots 220 is arbitrary, in this embodiment, it is 48 as an example.
  • the stator coil 24 includes a U-phase coil, a V-phase coil, and a W-phase coil (hereinafter referred to as "phase coils" when U, V, and W are not distinguished).
  • phase coils when U, V, and W are not distinguished.
  • the proximal end of each phase coil is connected to an input terminal (not shown), and the distal end of each phase coil is connected to the distal end of another phase coil to form the neutral point of the motor 1 . That is, the stator coil 24 is star-connected.
  • the connection mode of the stator coil 24 may be appropriately changed according to the required motor characteristics, etc.
  • the stator coil 24 may be delta-connected instead of star-connected.
  • FIG. 6 is a schematic front view of one coil piece 52.
  • the coil pieces 52 are in the form of segment coils obtained by dividing a phase coil into units that are easy to assemble (for example, units that are inserted into two slots 220).
  • the coil piece 52 is formed by coating a linear conductor (rectangular wire) 60 having a rectangular cross section with an insulating coating 62 .
  • the linear conductor 60 is made of copper, for example.
  • the linear conductor 60 may be made of other conductor material such as iron.
  • the coil piece 52 may be formed in a substantially U-shape having a pair of rectilinear portions 50 and a connecting portion 54 connecting the pair of rectilinear portions 50 before being assembled to the stator core 22 .
  • the pair of rectilinear portions 50 are respectively inserted into the slots 220 (see FIG. 3).
  • the connecting portion 54 extends in the circumferential direction so as to straddle the plurality of teeth 22B (and thus the plurality of slots 220 ) on the other axial end side of the stator core 22 .
  • the number of slots 220 spanned by the connecting portion 54 is arbitrary, it is three in FIG.
  • the rectilinear portion 50 is bent in the circumferential direction in the middle, as indicated by the two-dot chain line in FIG. As a result, the rectilinear portion 50 becomes a leg portion 56 extending in the axial direction within the slot 220 and a transition portion 58 extending in the circumferential direction on one axial end side of the stator core 22 .
  • the pair of rectilinear portions 50 are bent in directions away from each other, but the present invention is not limited to this.
  • the pair of rectilinear portions 50 may be bent in a direction toward each other.
  • the stator coil 24 may also have a neutral point coil piece or the like for connecting the ends of the three-phase coils to form a neutral point.
  • a plurality of leg portions 56 of the coil piece 52 shown in FIG. 6 are inserted into one slot 220 in a row in the radial direction. Accordingly, a plurality of transition portions 58 extending in the circumferential direction are arranged radially on one axial end side of the stator core 22 . As shown in FIGS. 3 and 5, the transition portion 58 of one coil piece 52 protruding from one slot 220 and extending in the circumferential direction first side (for example, clockwise direction) protrudes from the other slot 220 and extends circumferentially. It is joined to the transfer portion 58 of the other coil piece 52 extending in the second direction (for example, counterclockwise direction).
  • the radially outermost coil pieces 52 are also referred to as the first turn, the second turn, and the third turn in order.
  • the coil piece 52 of the first turn and the coil piece 52 of the second turn are joined together at their distal end portions 40 by a joining step described later, and the coil piece 52 of the third turn and the coil piece 52 of the fourth turn are joined together.
  • the tip portions 40 are joined to each other by a joining step described later, and the tip portions 40 of the fifth turn coil piece 52 and the sixth turn coil piece 52 are joined to each other by a joining step described later.
  • the coil piece 52 is covered with the insulating coating 62 as described above, but the insulating coating 62 is removed only from the tip portion 40 . This is to ensure electrical connection with other coil pieces 52 at the distal end portion 40 . 5 and 6, of the distal ends 40 of the coil pieces 52, the axial outer end surfaces 42, that is, one end surface in the width direction of the coil pieces 52 (axial outer end surfaces 42) are It has an arcuate surface that is convex outward in the axial direction.
  • FIG. 7 is a diagram showing the distal ends 40 of the coil pieces 52 joined together and the vicinity thereof. 7 schematically shows a circumferential range D1 of the welding target location 90. As shown in FIG. FIG. 8 is a cross-sectional view along line AA in FIG.
  • the tip portions 40 of the coil pieces 52 are joined together, the tip portions 40 of the one coil piece 52 and the other coil piece 52 are aligned in the view shown in FIG. facing each other in a C-shaped manner.
  • the two tip portions 40 to be joined to each other may be overlapped and joined in the thickness direction so that the central axes of the arcuate surfaces (axial outer end surfaces 42) of the two end portions 40 are aligned.
  • the welding target location 90 extends linearly along the contact surface 401 as indicated by ranges D1 and D2. That is, when viewed from the irradiation side of the laser beam 110 (see arrow W in FIGS. 7 and 8), the welding target location 90 has a width of the range D2 and extends linearly over the range D1.
  • welding is used as a joining method for joining the tip portions 40 of the coil pieces 52 .
  • the welding method laser welding using a laser beam source as a heat source is adopted instead of arc welding represented by TIG welding.
  • TIG welding By using laser welding instead of TIG welding, the axial length of coil ends 220A and 220B can be reduced. That is, in the case of TIG welding, it is necessary to bend the ends of the coil pieces to be in contact with each other in the axial direction so as to extend in the axial direction. As shown in FIG. 7, welding can be performed in a state in which the distal end portions 40 of the coil pieces 52 to be brought into contact with each other extend in the circumferential direction. As a result, the axial length of the coil ends 220A and 220B can be reduced compared to the case where the distal end portions 40 of the contacting coil pieces 52 are bent axially outward and extended in the axial direction.
  • a welding laser beam 110 is applied to a welding target portion 90 of two tip portions 40 that are in contact with each other.
  • the irradiation direction (propagation direction) of the laser beam 110 is substantially parallel to the axial direction and is the direction toward the axial outer end faces 42 of the two tip portions 40 that are in contact with each other from the axial outer side.
  • heating can be performed locally, only the tip portion 40 and its vicinity can be heated, and damage (carbonization) of the insulating coating 62 can be effectively reduced.
  • the plurality of coil pieces 52 can be electrically connected while maintaining appropriate insulation performance.
  • the circumferential range D1 of the welding target portion 90 is the total circumferential range D0 of the axially outer end surface 42 at the abutting portion between the tip portions 40 of the two coil pieces 52. It is a portion excluding both ends. This is because it is difficult to secure a sufficient welding depth (see dimension L1 in FIG. 7) at both ends due to the convex arc surface of the axially outer end surface 42 .
  • the range D1 in the circumferential direction of the welding target portion 90 may be adapted so as to ensure the required bonding area between the coil pieces 52, the required welding strength, and the like.
  • a radial range D2 of the welding target portion 90 is centered on the contact surface 401 between the tip portions 40 of the two coil pieces 52, as shown in FIG.
  • a radial range D2 of the welding target location 90 may correspond to the diameter of the laser beam 110 (beam diameter). That is, the laser beam 110 is irradiated in such a manner that the irradiation position changes linearly along the circumferential direction without substantially changing in the radial direction. In other words, the laser beam 110 is moved such that the irradiation position changes linearly parallel to the contact surface 401 . As a result, the laser beam 110 can be irradiated to the linear welding target portion 90 more efficiently than when the irradiation position is changed in a loop (spiral) or zigzag (meandering) shape, for example.
  • FIG. 9 is a diagram showing the relationship between the laser wavelength and the laser absorptivity (hereinafter also simply referred to as "absorptivity”) for solids of various materials.
  • absorptivity hereinafter also simply referred to as "absorptivity”
  • FIG. 9 the horizontal axis represents the wavelength ⁇ and the vertical axis represents the absorptance. is shown.
  • a green laser is used instead of an infrared laser.
  • the green laser is a concept that includes not only a laser with a wavelength of 532 nm, that is, an SHG (Second Harmonic Generation) laser, but also a laser with a wavelength close to 532 nm.
  • a laser with a wavelength of 0.6 ⁇ m or less, which does not belong to the green laser category may be used.
  • a wavelength related to a green laser can be obtained by converting a fundamental wavelength produced by, for example, a YAG laser or YVO4 laser through an oxide single crystal (for example, LBO: lithium triborate).
  • the characteristic that the green laser has a higher absorption rate than the infrared laser is remarkable in the case of copper. I can confirm. Therefore, even when the material of the linear conductor 60 of the coil piece 52 is other than copper, welding by the green laser may be realized.
  • FIG. 10 is an explanatory diagram of a change in absorption rate during welding.
  • the abscissa represents the laser power density and the ordinate represents the laser absorptance of copper, showing a characteristic 100G for a green laser and a characteristic 100R for an infrared laser.
  • the points P1 and P2 where the melting of copper starts are shown for the green laser and the infrared laser, and the point P3 where the keyhole is formed is shown.
  • the green laser can initiate melting of copper with a lower laser power density than the infrared laser.
  • the green laser has a higher absorptance at the point P3 where the keyhole is formed and an absorptance at the start of irradiation (that is, laser power density) than the infrared laser.
  • the difference from the absorption rate at 0) is small. Specifically, in the case of an infrared laser, the change in absorptance during welding is about 80%, whereas in the case of a green laser, the change in absorptance during welding is about 40%, which is about half be.
  • the change (head) in the absorption rate during welding is relatively large at about 80%, so the keyhole becomes unstable and the welding depth and width vary, and the molten pool is disturbed (for example, , spatter, etc.) are likely to occur.
  • the change in absorption rate (drop) during welding is relatively small at about 40%, so the keyhole is less likely to become unstable, and the welding depth and welding width do not vary and the molten pool Disturbance (for example, spatter, etc.) hardly occurs.
  • the spatter is metal particles or the like that are scattered by irradiation with a laser or the like.
  • FIG. 11B is an image diagram of a keyhole and the like when an infrared laser is used, 1100 indicates a weld bead, 1102 indicates a molten pool, and 1104 indicates a keyhole. Also, an arrow R1116 schematically indicates a mode of gas release. An arrow R110 schematically shows how the irradiation position of the infrared laser is moved due to the small beam diameter.
  • FIG. 11A is an image diagram of a keyhole, etc., when a green laser is used, and the meanings of the symbols are as described above with reference to FIG. 11B.
  • FIG. 11A it can be easily understood as an image that the keyhole is stabilized and gas escape is improved due to the expansion of the beam diameter.
  • the absorption rate is relatively high as described above, and the beam diameter can be made relatively large. (See D2 in the radial direction of the welding target location 90 shown in . . . )) can be relatively short (small).
  • FIG. 12 is an explanatory diagram of a welding method using a green laser according to this embodiment.
  • the horizontal axis represents time and the vertical axis represents laser output, schematically showing the time-series waveform of laser output during welding.
  • welding is achieved by green laser pulse irradiation with a laser output of 3.8 kW.
  • pulse oscillation of the laser oscillator is realized so that the laser output is 3.8 kW for 10 msec, and after an interval of 100 msec, pulse oscillation of the laser oscillator is again realized so that the laser output is 3.8 kW for 10 msec.
  • one pulse irradiation pulse irradiation of 10 msec
  • one pulse irradiation that can be performed by one pulse oscillation in this manner is also referred to as "one pass”.
  • FIG. 12 shows a pulse waveform 130R related to pulse irradiation in the case of an infrared laser.
  • the output of the laser oscillator is low (for example, a maximum of 400 W during continuous irradiation), and the high output required to ensure deep penetration (for example, a high output of 3.0 kW or more). difficult to obtain. That is, since the green laser is generated through a wavelength conversion crystal, such as an oxide single crystal, as described above, the output power drops as it passes through the wavelength conversion crystal. For this reason, if it is attempted to continuously irradiate the laser beam of the green laser, it is not possible to obtain the high output necessary for ensuring deep penetration.
  • the high output for example, a high laser output of 3.0 kW or more
  • the high output for example, a high laser output of 3.0 kW or more
  • pulse irradiation enables a high output of, for example, 3.0 kW or more.
  • pulse irradiation is realized by accumulating continuous energy for increasing peak power and pulsing.
  • the circumferential range D1 of one welding target location 90 is relatively wide, a plurality of pulse oscillations may be realized for the one welding target location.
  • two or more passes of irradiation with a relatively high laser output may be performed on the one welding target location.
  • a relatively high laser output for example, a laser output of 3.0 kW or more
  • the interval is a specific value of 100 msec in FIG. 12, the interval is arbitrary and may be minimized within a range in which the required high output is ensured. Also, in FIG. 12, the laser output is a specific value of 3.8 kW, but the laser output may be appropriately changed as long as it is 3.0 kW or more within a range in which the required welding depth is ensured.
  • FIG. 12 also shows a pulse waveform 130R when the infrared laser is continuously irradiated for a relatively long time of 130 msec with a laser output of 2.3 kW.
  • an infrared laser unlike a green laser, continuous irradiation is possible with a relatively high laser output (2.3 kW).
  • a relatively long movement trajectory of the irradiation position (continuous irradiation time) including meandering is required in order to obtain the required melt width. , about 312 J, which is significantly higher than the heat input for the green laser shown in FIG. 12, which is about 80 J (for two passes).
  • the material (copper in this example) of the linear conductor 60 of the coil piece 52 is reduced as compared with the case of using an infrared laser. Welding with a laser beam having a high absorption rate becomes possible. As a result, the movement locus (time) of the irradiation position required to obtain the required fusion width (see the radial range D2 of the welding target location 90 shown in FIG. 8) can be made relatively short (small). That is, due to the increased keyhole per pulse due to the larger beam diameter, fewer pulses are required to obtain the required melt width. As a result, it is possible to secure the required bonding area between the coil pieces 52 with a relatively small amount of heat input.
  • the present embodiment it is possible to perform two or more passes of green laser irradiation on one welding target location.
  • the circumferential range D1 of the welding target location 90 is relatively large. Even if it is wide, it becomes easy to ensure deep penetration over the entire welding target location 90, and high-quality welding can be achieved.
  • FIGS. 13A to 13D show the relationship in the case of the green laser, basically the same tendency is obtained in the case of the infrared laser as well. Therefore, the welding speed profile according to this embodiment described below can also be applied to an infrared laser or the like.
  • FIG. 13A is a diagram showing the relationship between the welding speed and the welding depth, with the horizontal axis representing the welding speed (unit [mm/s]) and the vertical axis representing the welding depth (unit [mm]).
  • plotted points of test data and approximate straight lines corresponding thereto are indicated by dotted lines (the same applies to FIG. 13C described later).
  • a constant laser power is used here.
  • the welding speed is the moving distance of the irradiation position of the laser beam 110 per unit time, for example, it is a value obtained by dividing the moving distance of the irradiation position of the laser beam 110 over a certain time by the same time .
  • FIG. 13B is a diagram showing the relationship between the welding speed and the number of spatters, with the welding speed (unit [mm/s]) on the horizontal axis and the number of spatters (unit [pieces]) on the vertical axis.
  • plotted points of the test data and approximate curves thereof are indicated by dotted lines (the same applies to FIG. 13D described later).
  • FIG. 13C is a diagram showing the relationship between laser output (unit [W]) and welding depth
  • FIG. 13D is a diagram showing the relationship between laser output and the number of spatters generated. From FIG. 13C, it can be seen that when the welding speed is the same, the welding depth (penetration depth) increases as the laser power decreases. Also, from FIG. 13D, it can be seen that when the welding speed is the same, the number of spatters generated increases as the laser output increases.
  • FIG. 14A is an explanatory diagram when welding by a green laser is realized by one pass while maintaining a relatively low welding speed.
  • FIG. 4 is a diagram showing;
  • FIG. 14B is an explanatory diagram when welding by a green laser is performed in one pass while maintaining a relatively high welding speed, and is a diagram showing a welding speed profile.
  • 14A and 14B show the welding speed profile for one pass, with position on the horizontal axis and welding speed on the vertical axis.
  • the arrow on the line indicating the welding speed profile indicates the direction in which time progresses (the direction from the irradiation start position to the irradiation end position in one pass), and the same applies to the following similar figures (FIG. 15, etc.).
  • the welding speed is higher than in the case of one pass maintaining a relatively low welding speed.
  • the amount of movement of the irradiation position per unit for example, per 10 msec
  • the amount of movement of the irradiation position may be appropriately adjusted along with the continuous irradiation time.
  • FIG. 15A is a diagram schematically showing an early welding state 150A, an intermediate welding state 150B, and a late welding state 150C when welding is performed with the welding speed profile shown in FIG. 14A.
  • FIG. 15B is a diagram schematically showing a state 150D in the early stage of welding, a state 150E in the middle stage of welding, and a state 150F in the latter stage of welding when welding is performed with the welding speed profile shown in FIG. 14B.
  • arrows V schematically indicate the moving direction of the irradiation position of the laser beam 110 (that is, the welding direction).
  • the weld depth is insufficient and the number of spatters generated is insufficient at the initial stage of welding, as schematically shown in state 150A. Few. In the middle stage of welding, the required welding depth is secured and the keyhole is surrounded by the molten pool, as schematically shown in state 150B. At this time, the number of spatters generated is small. Then, in the latter stage of welding, as schematically shown in state 150C, the welding depth further increases, and the molten pool surrounding the keyhole (the portion that rises on the surface) becomes larger. The portion of the molten pool around the keyhole that rises above the surface is likely to be greatly disturbed, and therefore the number of spatters generated increases.
  • FIG. 16 is an explanatory diagram of the welding speed profile according to this embodiment.
  • the horizontal axis represents the position and the vertical axis represents the welding speed, showing the welding speed profile for one pass.
  • the welding speed profile according to this embodiment is such that, in the order from the irradiation start position to the irradiation end position (see the arrow), the first section 15D having a relatively high first speed V1 and the relatively It includes a second segment 15B with a low second speed V2 and a third segment 15F with a relatively high third speed V3.
  • the first section 15D is a section from the irradiation start position, and is realized, for example, in the initial period of continuous irradiation time (for example, 10 msec) for one pass.
  • the first section 15D has the function of generating and stabilizing a molten pool with a relatively high first velocity V1.
  • the number of spatters generated is small because the first speed V1 is relatively high (see state 150D in FIG. 15B).
  • the second section 15B is a section that continues from the first section 15D, and is realized, for example, in an intermediate period of continuous irradiation time (for example, 10 msec) related to one pass.
  • the second section 15B has the function of ensuring the welding depth with the relatively low second speed V2.
  • a state similar to the state 150B shown in FIG. 15A is achieved, and because the second speed V2 is relatively low, the required welding depth can be ensured.
  • the second leg 15B is terminated before reaching the state 150C shown in FIG. 15A.
  • the third section 15F is a section that continues from the second section 15B, and is realized, for example, in the final period of the continuous irradiation time (for example, 10 msec) related to one pass.
  • the third section 15F has a function of reducing the number of spatters generated by the relatively high third speed V3.
  • a state similar to state 150F shown in FIG. 15B is achieved.
  • the required welding depth secured in the second section 15B is still likely to be maintained. That is, the keyhole formed in the second section 15B is easily maintained.
  • the third section 15F as described above, the molten pool tends to flow backward with respect to the keyhole (see state 150F shown in FIG. 15B), and the number of spatters generated is small.
  • the first section 15D from the irradiation start position generates and stabilizes the molten pool
  • the second section 15B secures the necessary welding depth
  • the third section 15D The section 15F can reduce spatter that may occur if the second section 15B is continued while maintaining the required welding depth. In this way, according to the present embodiment, it is possible to secure the bonding area by securing the required welding depth, and to reduce the number of spatters generated by the third section 15F.
  • the first speed V1 is constant throughout the first section 15D, but may change. This also applies to the second speed V2 and/or the third speed V3. For example, when transitioning from the first section 15D to the second section 15B, the first speed V1 may be gradually reduced toward the second speed V2.
  • FIG. 17A is a schematic diagram showing an example of a mode in which the laser output (and welding heat input) for one pass varies depending on the irradiation position.
  • a change characteristic 150L of welding heat input according to position is schematically shown.
  • the amount of heat input in one pass as a whole is represented by an area Q14.
  • one pass starts from position P10, which is the irradiation start position. That is, one pulse oscillation is started from the position P10.
  • the laser output rises to a predetermined value (3.8 kW as an example in this example) at position P10 (see arrow R140).
  • the irradiation position is linearly changed from position P10 to position P12.
  • the laser output is maintained at a predetermined value (3.8 kW as an example in this example) (see arrow R141).
  • the laser output is lowered from a predetermined value (3.8 kW as an example in this example) to 0 (see arrow R142). That is, one pulse oscillation ends.
  • a predetermined value 3.8 kW as an example in this example
  • the irradiation position may be changed until it moves to position P13, which is slightly further away from position P12. During this time, a small welding heat input occurs due to the residual laser power (see Q14 in FIG. 17A).
  • the change in irradiation position may be terminated when the irradiation position reaches the position P12 or a position immediately preceding it (not shown).
  • the laser output rises to a predetermined value (3.8 kW as an example in this example) at the position P10, but until the actual laser output reaches the predetermined value, welding heat input does not increase abruptly up to its maximum value. Therefore, the welding heat input gradually increases from the position P10 to the position P11, as shown by the change characteristic 150L in FIG. 17A. At position P12, the laser output is instantaneously lowered to 0, but the welding heat input is maintained at the maximum value until just before this point.
  • a predetermined value 3.8 kW as an example in this example
  • the welding speed profile according to this embodiment may be applied to the section from position P10 to position P13, the section from position P11 to position P12, and the like.
  • the first section 15D (see FIG. 16) relating to the welding speed profile according to this embodiment may be included within the section from position P10 to position P11 or within the section from position P11 to position P12.
  • the second section 15B (see FIG. 16) may be included in the section from position P11 to position P12.
  • the third section 15F (see FIG. 16) may be included in the section from position P11 to position P12 or in the section from position P11 to position P13.
  • FIG. 17B is a schematic diagram showing another example of a mode in which the welding heat input in one pass changes according to the irradiation position.
  • a change characteristic 150L of welding heat input according to the irradiation position is schematically shown.
  • one pass starts from position P10, which is the irradiation start position. That is, one pulse oscillation is started from the position P10.
  • the laser output rises to a predetermined value (3.8 kW as an example in this example) at position P10 (see arrow R140).
  • the irradiation position is linearly changed from position P10 to position P12. While the irradiation position is from position P10 to position P14, the laser output is maintained at a predetermined value (3.8 kW as an example in this example) (see arrow R141).
  • the laser output is stepped down from a predetermined value (3.8 kW as an example in this example) to 0 (see arrow R143). Specifically, when the irradiation position reaches the position P14, the laser output is lowered by one step, and when the irradiation position reaches the position P12, the laser output is further lowered by one step, When a certain position P15 is reached, the laser power is ramped down to zero. Note that even when the irradiation position reaches the position P15, the irradiation position may be changed until it moves to a position P16 that is slightly further away from the position P15.
  • the change of the irradiation position may be terminated when the irradiation position reaches the position P15.
  • the welding speed profile according to this embodiment may be applied to the section from position P10 to position P15, the section from position P11 to position P12, and the like.
  • the first section 15D (see FIG. 16) relating to the welding speed profile according to this embodiment may be included within the section from position P10 to position P11 or within the section from position P10 to position P14.
  • the second section 15B (see FIG. 16) may be included in the section from the position P11 to the position P14 or in the section from the position P11 to the position P12.
  • the third section 15F is within the section from position P11 to position P14, within the section from position P11 to position P12, within the section from position P14 to position P12, or within the section from position P14 to position P16. may be included in the interval up to .
  • FIG. 18 is a diagram showing a preferable welding speed profile when two passes of green laser irradiation are performed on one welding target location 90 .
  • the horizontal axis represents the position and the vertical axis represents the welding speed, and the welding speed profiles for the two passes are respectively shown.
  • the welding speed profile of the second pass is indicated by a dotted line.
  • the first pass is realized by one pulse oscillation for the first irradiation section D11 according to the welding speed profile according to the present embodiment
  • the second pass is the welding speed profile according to the present embodiment
  • the second irradiation section D12 is realized by the following one pulse oscillation. Welding by the first pass and welding by the second pass cooperate to cover the entire circumferential range D1 (see FIG. 7) of the welding target location 90 .
  • the first irradiation section D11 of the first pass and the second irradiation section D12 of the second pass are preferably such that the first section 15D of one overlaps the second section 15B or the third section 15F of the other. In some aspects, they overlap each other. That is, the first section 15D of the first pass overlaps the second section 15B or the third section 15F of the second pass, and the first section 15D of the second pass overlaps the second section 15B or the third section of the first pass. Overlaps with 15F. As a result, in both the first section 15D of the first pass and the second pass, the necessary welding depth (and thus the bonding area) can be secured by the second section 15B or the third section 15F of the other pass. becomes possible.
  • the first section 15D of the first pass overlaps the third section 15F of the second pass
  • the first section 15D of the second pass overlaps the third section 15F of the first pass
  • the second section 15B of the first pass completely overlaps the second section 15B of the second pass.
  • the second section 15B of the first pass may partially overlap or be offset from the second section 15B of the second pass.
  • the example shown in FIG. 18 relates to the case where the welding directions (directions of change in the irradiation position) are opposite in the first pass and the second pass.
  • the welding speed profile according to this embodiment can also be applied when welding is realized by .
  • the first section 15D of the second pass may be set so as to overlap the third section 15F (or the second irradiation section D12) of the first pass.
  • the necessary welding depth (and the bonding area associated therewith) is obtained by the third section 15F (or the second irradiation section D12) of the first pass. can be secured.
  • the first section 15D of the first pass may be set outside the circumferential range D1 of the welding target location 90 . In this way, even when welding is achieved by two passes with the same welding direction (direction of change in irradiation position), the welding speed profile according to the present embodiment allows the circumferential range D1 of the welding target location 90 , it is possible to secure the required welding depth (and the required joint area accordingly) and reduce the number of spatters generated.
  • FIG. 19 is a flowchart schematically showing the flow of the manufacturing method of the stator 21 of the motor 1.
  • this manufacturing method includes an assembling step (step S150) of assembling the coil pieces 52 to the stator core 22.
  • this manufacturing method includes a joining step (step S152) of joining tip portions 40 of coil pieces 52 to each other by laser welding after the assembling step. The method of joining the tip portions 40 of the coil pieces 52 to each other by laser welding is as described above.
  • the joining step includes a setting step (step S1521) for setting the tip portions 40 of the coil pieces 52 forming each pair so that they are in contact with each other in the radial direction.
  • a jig or the like may be used to keep the tip portions 40 of the paired coil pieces 52 in contact with each other in the radial direction.
  • the joining process includes an irradiation process (step S1522) of irradiating the welding target location 90 with the laser beam 110 as described above.
  • the setting process and the irradiation process may be performed as a set for each of a predetermined number of one or more welding target points 90, or collectively for all the welding target points 90 related to one stator 21. may be performed. This manufacturing method may be terminated by completing the stator 21 by appropriately performing various necessary processes after the bonding process.
  • the welding target portion 90 extends linearly along the contact surface 401 as shown in the range D1 and the range D2 in FIGS. 7 and 8, but is not limited to this. .
  • the welding target location 90 may be set in a curved manner when viewed from the irradiation side of the laser beam 110 .
  • the irradiation section by the laser beam 110 may include a section in which the irradiation position changes linearly and a section in which the irradiation position changes in a curved line.
  • the welding speed profile according to the present embodiment described above may be applied to a section in which the irradiation position changes in a curved line.
  • the continuous irradiation time for ensuring the required laser output is relatively short. Although it consists of the 2nd section 15B and the 3rd section 15F, it is not restricted to this. If the continuous irradiation time that can secure the required laser output can be lengthened with the future development of technology, the welding speed profile according to the present embodiment will be the first section 15D, the second section 15B, and the third section After the first section 15D, the second section 15B and the third section 15F may alternately be included, such as 15F, the second section 15B, and the third section 15F.
  • the number of sets of the second section 15B and the third section 15F is any number of two or more.
  • the welding speed profile may end at the third section 15F or at the second section 15B. It should be noted that such a welding speed profile that alternately repeats the second section 15B and the third section 15F is also suitable for an infrared laser capable of relatively long continuous irradiation.
  • the above-described embodiment relates to bonding between the tip portions 40 of the coil pieces 52, it can also be applied to bonding between the tip portions 40 of the coil pieces 52 and the end portion (not shown) of the bus bar.
  • the tip portion 40 of the coil piece 52 joined to the end portion of the busbar may be the tip portion of the connecting portion forming the power line and the neutral point.
  • the end portions 80, 81 of the busbar held by the terminal block 70 and the tip portion 40A of the coil piece 52A are joined to each other.
  • the busbars held by the terminal block 70 are electrically connected to the three-phase external terminals 71 inside the terminal block 70 .
  • Laser welding with the welding speed profile according to this embodiment may also be applied to the joints between the end portions 80, 81 of the busbars and the tip portions 40A of the coil pieces 52A.
  • the locations to be welded may be set to the contact surfaces appearing on the end surfaces of the end portions 80 and 81 of the busbars and the end portion 40A of the coil piece 52A.
  • the L direction corresponds to the axial direction
  • the R direction corresponds to the radial direction
  • the R1 side corresponds to the radially inner side
  • the R2 side corresponds to the radially outer side.
  • the end portions 80, 81 of the busbar and the tip portion 40A of the coil piece 52A are in contact with each other so as to completely overlap when viewed in the radial or axial direction. ), or in a C-shaped or L-shaped manner.
  • the welding target portion 90 may be set linearly along the axial outer edge of the contact surface.
  • the welding target portion 90 is formed by allowing the welding to be performed, the present invention is not limited to this.
  • by radially abutting coil pieces having tip portions that are not processed as described above that is, a configuration in which the axially outer end surface 42 extends linearly and is connected to the tip surface when viewed in the radial direction). , may form the welding target location 90 .
  • the coil pieces are arranged such that the tip portions 40 (unprocessed tip portions 40) intersect with each other in an X shape when viewed in the radial direction, or in a C shape or L shape when viewed in the radial direction. In some aspects, they may be radially abutted.
  • REFERENCE SIGNS LIST 1 motor (rotary electric machine), 24 stator coil, 52 coil piece, 40 tip (end), 22 stator core, 80, 81 end of bus bar Part, 110 ... laser beam

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

コイル片をステータコアに組み付ける組付工程と、コイル片の端部同士又はコイル片の端部とバスバーの端部とをレーザ溶接により接合する接合工程とを含み、接合工程は、接合対象の2つの端部同士を当接させるセット工程と、2つの端部にレーザビームを照射する照射工程とを含み、照射工程によるレーザビームの照射区間は、レーザビームの照射位置が連続的に変化する連続照射区間を含み、連続照射区間は、レーザビームの照射位置の移動方向に沿った順序で、レーザビームの照射位置が第1速度で変化する第1区間と、レーザビームの照射位置が第1速度よりも低い第2速度で変化する第2区間と、レーザビームの照射位置が第2速度よりも高い第3速度で変化する第3区間とを含む、回転電機用ステータ製造方法が開示される。

Description

回転電機用ステータ製造方法
 本開示は、回転電機用ステータ製造方法に関する。
 回転電機のステータコイルを形成するための一のコイル片と他の一のコイル片の端部同士を当接させ、当接させた端部に係る溶接対象箇所に、ループ状に照射位置が移動する態様でレーザビームを照射するステータの製造方法が知られている(例えば、特許文献1参照)。
特開2018-20340号公報
 上記の特許文献1に記載されるような従来技術は、ループ状の走査軌跡の径を徐々に拡大することで溶融池をコイル片の端部同士の当接面へと到達させることができるものの、接合面積の確保に比較的大きい入熱量が必要となる。
 そこで、1つの側面では、本開示は、接合面積の確保とスパッタ発生数の低減を両立することを目的とする。
 本開示の一局面によれば、ステータコイルのコイル片をステータコアに組み付ける組付工程と、
 前記組付工程の後に、前記コイル片の端部同士又は前記コイル片の端部とバスバーの端部とをレーザ溶接により接合する接合工程とを含み、
 前記接合工程は、
 接合対象の2つの端部同士を当接させるセット工程と、
 前記2つの端部にレーザビームを照射する照射工程とを含み、
 前記照射工程による前記レーザビームの照射区間は、前記レーザビームの照射位置が連続的に変化する連続照射区間を含み、
 前記連続照射区間は、照射開始位置から照射終了位置までの前記レーザビームの照射位置の移動方向に沿った順序で、前記レーザビームの照射位置が第1速度で変化する第1区間と、前記レーザビームの照射位置が前記第1速度よりも低い第2速度で変化する第2区間と、前記レーザビームの照射位置が前記第2速度よりも高い第3速度で変化する第3区間とを含む、回転電機用ステータ製造方法が提供される。
 本開示によれば、接合面積の確保とスパッタ発生数の低減を両立することが可能となる。
一実施例によるモータの断面構造を概略的に示す断面図である。 ステータコアの単品状態の平面図である。 ステータコアに組み付けられる1対のコイル片を模式的に示す図である。 ステータのコイルエンド周辺の斜視図である。 同相のコイル片の一部を抜き出して示す斜視図である。 一のコイル片の概略正面図である。 互いに接合されたコイル片の先端部及びその近傍を示す図である。 溶接対象箇所を通る図7のラインA-Aに沿った断面図である。 レーザ波長と各種材料の個体に対するレーザ吸収率との関係を示す図である。 溶接中の吸収率の変化態様の説明図である。 グリーンレーザを用いた場合のキーホール等のイメージ図である。 赤外レーザを用いた場合のキーホール等のイメージ図である。 本実施例によるグリーンレーザによる溶接方法の説明図である。 グリーンレーザの場合における溶接速度と溶接深さとの関係を示す図である。 グリーンレーザの場合における溶接速度とスパッタ発生数との関係を示す図である。 グリーンレーザの場合におけるレーザ出力と溶接深さとの関係を示す図である。 グリーンレーザの場合におけるレーザ出力とスパッタ発生数との関係を示す図である。 比較的低い溶接速度による溶接速度プロフィールの説明図である。 比較的高い溶接速度による溶接速度プロフィールの説明図である。 比較的低い溶接速度による溶接速度プロフィールで溶接を行う場合の各時期における溶接の状態の説明図である。 比較的高い溶接速度による溶接速度プロフィールで溶接を行う場合の各時期における溶接の状態の説明図である。 本実施例による溶接速度プロフィールの説明図である。 一のパスに係るレーザ出力が照射位置に応じて変化する態様の一例を示す概略図である。 一のパスに係るレーザ出力が照射位置に応じて変化する態様の他の一例を示す概略図である。 一の溶接対象箇所に対して2パスのグリーンレーザの照射が実行される場合の、好ましい溶接速度プロフィールを示す図である。 モータのステータの製造方法の流れを概略的に示すフローチャートである。 バスバーとコイル片との間の接合部を説明する斜視図である。
 以下、添付図面を参照しながら各実施例について詳細に説明する。なお、図面の寸法比率はあくまでも一例であり、これに限定されるものではなく、また、図面内の形状等は、説明の都合上、部分的に誇張している場合がある。なお、本明細書において、「所定」とは、「予め規定された」という意味で用いられている。
 図1は、一実施例によるモータ1(回転電機の一例)の断面構造を概略的に示す断面図である。
 図1には、モータ1の回転軸12が図示されている。以下の説明において、軸方向とは、モータ1の回転軸(回転中心)12が延在する方向を指し、径方向とは、回転軸12を中心とした径方向を指す。従って、径方向外側とは、回転軸12から離れる側を指し、径方向内側とは、回転軸12に向かう側を指す。また、周方向とは、回転軸12まわりの回転方向に対応する。
 モータ1は、例えばハイブリッド車両や電気自動車で使用される車両駆動用のモータであってよい。ただし、モータ1は、他の任意の用途に使用されるものであってもよい。
 モータ1は、インナーロータ型であり、ステータ21がロータ30の径方向外側を囲繞するように設けられる。ステータ21は、径方向外側がモータハウジング10に固定される。
 ロータ30は、ステータ21の径方向内側に配置される。ロータ30は、ロータコア32と、ロータシャフト34とを備える。ロータコア32は、ロータシャフト34の径方向外側に固定され、ロータシャフト34と一体となって回転する。ロータシャフト34は、モータハウジング10にベアリング14a、14bを介して回転可能に支持される。なお、ロータシャフト34は、モータ1の回転軸12を画成する。
 ロータコア32は、例えば円環状の磁性体の積層鋼板から形成される。ロータコア32の内部には、永久磁石321が挿入される。永久磁石321の数や配列等は任意である。変形例では、ロータコア32は、磁性粉末が圧縮して固められた圧粉体により形成されてもよい。
 ロータコア32の軸方向の両側には、エンドプレート35A、35Bが取り付けられる。エンドプレート35A、35Bは、ロータコア32を支持する支持機能の他、ロータ30のアンバランスの調整機能(切削等されることでアンバランスを無くす機能)を有してよい。
 ロータシャフト34は、図1に示すように、中空部34Aを有する。中空部34Aは、ロータシャフト34の軸方向の全長にわたり延在する。中空部34Aは、油路として機能してもよい。例えば、中空部34Aには、図1にて矢印R1で示すように、軸方向の一端側から油が供給され、ロータシャフト34の径方向内側の表面を伝って油が流れることで、ロータコア32を径方向内側から冷却できる。また、ロータシャフト34の径方向内側の表面を伝う油は、ロータシャフト34の両端部に形成される油穴341、342を通って径方向外側へと噴出され(矢印R5、R6)、コイルエンド220A、220Bの冷却に供されてもよい。
 なお、図1では、特定の構造のモータ1が示されるが、モータ1の構造は、溶接により接合されるステータコイル24(後述)を有する限り、任意である。従って、例えば、ロータシャフト34は、中空部34Aを有さなくてもよいし、中空部34Aよりも有意に内径の小さい中空部を有してもよい。また、図1では、特定の冷却方法が開示されているが、モータ1の冷却方法は任意である。従って、例えば、中空部34A内に挿入される油導入管が設けられてもよいし、モータハウジング10内の油路から径方向外側からコイルエンド220A、220Bに向けて油が滴下されてもよい。
 また、図1では、ロータ30がステータ21の内側に配されたインナーロータ型のモータ1であるが、他の形態のモータに適用されてもよい。例えば、ステータ21の外側にロータ30が同心に配されたアウターロータ型のモータや、ステータ21の外側及び内側の双方にロータ30が配されたデュアルロータ型のモータ等に適用されてもよい。
 次に、図2以降を参照して、ステータ21に関する構成を詳説する。
 図2は、ステータコア22の単品状態の平面図である。図3は、ステータコア22に組み付けられる1対のコイル片52を模式的に示す図である。図3では、ステータコア22の径方向内側を展開した状態で、1対のコイル片52とスロット220との関係が示される。また、図3では、ステータコア22が点線で示され、スロット220の一部については図示が省略されている。図4は、ステータ21のコイルエンド220A周辺の斜視図である。図5は、同相のコイル片の一部を抜き出して示す斜視図である。
 ステータ21は、ステータコア22と、ステータコイル24とを含む。
 ステータコア22は、例えば円環状の磁性体の積層鋼板からなるが、変形例では、ステータコア22は、磁性粉末が圧縮して固められた圧粉体により形成されてもよい。なお、ステータコア22は、周方向で分割される分割コアにより形成されてもよいし、周方向で分割されない形態であってもよい。ステータコア22の径方向内側には、ステータコイル24が巻回される複数のスロット220が形成される。具体的には、ステータコア22は、図2に示すように、円環状のバックヨーク22Aと、バックヨーク22Aから径方向内側に向かって延びる複数のティース22Bとを含み、周方向で複数のティース22B間にスロット220が形成される。スロット220の数は任意であるが、本実施例では、一例として、48個である。
 ステータコイル24は、U相コイル、V相コイル、及びW相コイル(以下、U、V、Wを区別しない場合は「相コイル」と称する)を含む。各相コイルの基端は、入力端子(図示せず)に接続されており、各相コイルの末端は、他の相コイルの末端に接続されてモータ1の中性点を形成する。すなわち、ステータコイル24は、スター結線される。ただし、ステータコイル24の結線態様は、必要とするモータ特性等に応じて、適宜、変更してもよく、例えば、ステータコイル24は、スター結線に代えて、デルタ結線されてもよい。
 各相コイルは、複数のコイル片52を接合して構成される。図6は、一のコイル片52の概略正面図である。コイル片52は、相コイルを、組み付けやすい単位(例えば2つのスロット220に挿入される単位)で分割したセグメントコイルの形態である。コイル片52は、断面矩形状の線状導体(平角線)60を、絶縁被膜62で被覆してなる。本実施例では、線状導体60は、一例として、銅により形成される。ただし、変形例では、線状導体60は、鉄のような他の導体材料により形成されてもよい。
 コイル片52は、ステータコア22に組み付ける前の段階では、一対の直進部50と、当該一対の直進部50を連結する連結部54と、を有した略U字状に成形されてよい。コイル片52をステータコア22に組み付ける際、一対の直進部50は、それぞれ、スロット220に挿入される(図3参照)。これにより、連結部54は、図3に示すように、ステータコア22の軸方向他端側において、複数のティース22B(及びそれに伴い複数のスロット220)を跨ぐように周方向に延びる。連結部54が跨ぐスロット220の数は、任意であるが、図3では3つである。また、直進部50は、スロット220に挿入された後は、図6において、二点鎖線で示すように、その途中で周方向に屈曲される。これにより、直進部50は、スロット220内において軸方向に延びる脚部56と、ステータコア22の軸方向一端側において周方向に延びる渡り部58と、になる。
 なお、図6では、一対の直進部50は、互いに離れる方向に屈曲するが、これに限られない。例えば、一対の直進部50は、互いに近づく方向に屈曲されてもよい。また、ステータコイル24は、3相の相コイルの末端同士を連結して中性点を形成するための中性点用コイル片等も有することがある。
 一つのスロット220には、図6に示すコイル片52の脚部56が複数、径方向に並んで挿入される。従って、ステータコア22の軸方向一端側には、周方向に延びる渡り部58が複数、径方向に並ぶ。図3及び図5に示すように、一つのスロット220から飛び出て周方向第1側(例えば時計回りの向き)に延びる一のコイル片52の渡り部58は、他のスロット220から飛び出て周方向第2側(例えば反時計回りの向き)に延びる他の一のコイル片52の渡り部58に接合される。
 本実施例では、一例として、1つのスロット220に6つのコイル片52が組み付けられる。以下では、径方向で最も外側のコイル片52から順に、第1ターン、第2ターン、第3ターンとも称する。この場合、第1ターンのコイル片52と第2ターンのコイル片52とは、後述の接合工程により先端部40同士が接合され、第3ターンのコイル片52と第4ターンのコイル片52とは、後述の接合工程により先端部40同士が接合され、第5ターンのコイル片52と第6ターンのコイル片52とは、後述の接合工程により先端部40同士が接合される。
 ここで、コイル片52は、上述したとおり、絶縁被膜62で被覆されているが、先端部40だけは、当該絶縁被膜62が除去される。これは、先端部40にて他のコイル片52との電気的接続を確保するためである。また、図5及び図6に示すように、コイル片52の先端部40のうち、最終的に軸方向外側端面42、すなわち、コイル片52の幅方向一端面(軸方向外側端面42)を、軸方向外側に凸の円弧面としている。
 図7は、互いに接合されたコイル片52の先端部40及びその近傍を示す図である。なお、図7には、溶接対象箇所90の周方向の範囲D1が模式的に示される。図8は、溶接対象箇所90を通る図7のラインA-Aに沿った断面図である。
 コイル片52の先端部40を接合する際には、一のコイル片52と他の一のコイル片52は、それぞれの先端部40が、図7に示すビュー(当接面401に対して垂直な方向視)でC字状をなす態様で、突き合わせられる。この際、互いに接合される2つの先端部40を、それぞれの円弧面(軸方向外側端面42)の中心軸が一致するように、その厚み方向に重ねて接合されてよい。このように中心軸を合わせて重ねることで、屈曲角度αが比較的大きい場合や小さい場合でも、互いに接合される2つの先端部40の軸方向外側のラインが一致し、適切に、重ね合わせることができる。
 この場合、溶接対象箇所90は、範囲D1及び範囲D2に示すように、当接面401に沿って直線状に延在する。すなわち、溶接対象箇所90は、レーザビーム110の照射側から視て(図7及び図8の矢印W参照)、範囲D2の幅で、範囲D1にわたり直線状に延在する。
 ここで、本実施例では、コイル片52の先端部40を接合する際の接合方法としては、溶接が利用される。そして、本実施例では、溶接方法としては、TIG溶接に代表されるアーク溶接ではなく、レーザビーム源を熱源とするレーザ溶接が採用される。TIG溶接に代えて、レーザ溶接を用いることで、コイルエンド220A、220Bの軸方向の長さを低減できる。すなわち、TIG溶接の場合は、当接させるコイル片の先端部同士を軸方向外側に屈曲させて軸方向に延在させる必要があるのに対して、レーザ溶接の場合は、かかる屈曲の必要性がなく、図7に示すように、当接させるコイル片52の先端部40同士を周方向に延在させた状態で溶接を実現できる。これにより、当接させるコイル片52の先端部40同士を軸方向外側に屈曲させて軸方向に延在させる場合に比べて、コイルエンド220A、220Bの軸方向の長さを低減できる。
 レーザ溶接では、図5に模式的に示すように、当接された2つの先端部40における溶接対象箇所90に溶接用のレーザビーム110を当てる。なお、レーザビーム110の照射方向(伝搬方向)は、軸方向に略平行であり、当接された2つの先端部40の軸方向外側端面42に、軸方向外側から向かう方向である。レーザ溶接の場合は、局所的に加熱できるため、先端部40及びその近傍のみを加熱することができ、絶縁被膜62の損傷(炭化)等を効果的に低減できる。その結果、適切な絶縁性能を維持したまま、複数のコイル片52を電気的に接続できる。
 溶接対象箇所90の周方向の範囲D1は、図7に示すように、2つのコイル片52の先端部40同士の当接部分における軸方向外側端面42の周方向の全範囲D0のうちの、両端を除く部分である。両端は、軸方向外側端面42の凸の円弧面に起因して、十分な溶接深さ(図7の寸法L1参照)を確保し難いためである。溶接対象箇所90の周方向の範囲D1は、コイル片52間での必要な接合面積や必要な溶接強度等が確保されるように適合されてよい。
 溶接対象箇所90の径方向の範囲D2は、図8に示すように、2つのコイル片52の先端部40同士の当接面401を中心とする。溶接対象箇所90の径方向の範囲D2は、レーザビーム110の径(ビーム径)に対応してよい。すなわち、レーザビーム110は、照射位置が径方向に実質的に変化することなく周方向に沿って直線的に変化する態様で、照射される。更に換言すると、レーザビーム110は、照射位置が当接面401に対して平行な直線状に変化するように移動される。これにより、例えばループ状(螺旋状)やジグザク状(蛇行)等に照射位置を変化させる場合に比べて、効率的に、直線状の溶接対象箇所90にレーザビーム110を照射できる。
 図9は、レーザ波長と各種材料の個体に対するレーザ吸収率(以下、単に「吸収率」とも称する)との関係を示す図である。図9では、横軸に波長λを取り、縦軸に吸収率を取り、銅(Cu)、アルミ(Al)、銀(Ag)、ニッケル(Ni)、及び鉄(Fe)の各種材料の個体に係る特性が示される。
 ところで、レーザ溶接で一般的に用いられる赤外レーザ(波長が1064nmのレーザ)は、図9にてλ2=1.06μmの点線との交点の黒丸で示すように、コイル片52の線状導体60の材料である銅に対して吸収率が約10%と低い。すなわち、赤外レーザの場合、レーザビーム110の大部分は、コイル片52で反射してしまい、吸収されない。このため、接合対象のコイル片52間での必要な接合面積を得るためには比較的大きい入熱量が必要となり、熱影響が大きく、溶接が不安定となるおそれがある。
 この点を鑑み、本実施例では、赤外レーザに代えて、グリーンレーザを利用する。なお、グリーンレーザとは、波長が532nmのレーザ、すなわちSHG(Second Harmonic Generation:第2高調波)レーザのみならず、532nmに近い波長のレーザをも含む概念である。なお、変形例では、グリーンレーザの範疇に属さない0.6μm以下の波長のレーザが利用されてもよい。グリーンレーザに係る波長は、例えばYAGレーザやYVO4レーザで生み出された基本波長を酸化物単結晶(例えば、LBO:リチウムトリボレート)に通して変換することで得られる。
 グリーンレーザの場合、図9にてλ1=0.532μmの点線との交点の黒丸で示すように、コイル片52の線状導体60の材料である銅に対して吸収率が約50%と高い。従って、本実施例によれば、赤外レーザを利用する場合に比べて、少ない入熱量で、コイル片52間での必要な接合面積を確保することが可能となる。
 なお、赤外レーザに比べてグリーンレーザの方が吸収率が高くなるという特性は、図9に示すように、銅の場合において顕著であるが、銅のみならず、他の金属材料の多くにおいて確認できる。従って、コイル片52の線状導体60の材料が銅以外の場合でもグリーンレーザによる溶接が実現されてもよい。
 図10は、溶接中の吸収率の変化態様の説明図である。図10では、横軸にレーザパワー密度を取り、縦軸に銅のレーザ吸収率を取り、グリーンレーザの場合の特性100Gと、赤外レーザの場合の特性100Rとが示される。
 図10では、グリーンレーザの場合と赤外レーザの場合における銅の溶融が開始するポイントP1、P2が示されるとともに、キーホールが形成されるポイントP3が示される。図10にポイントP1、P2にて示すように、赤外レーザに比べてグリーンレーザの方が、小さいレーザパワー密度で銅の溶融を開始させることができることが分かる。また、上述した吸収率の相違に起因して、赤外レーザに比べてグリーンレーザの方が、キーホールが形成されるポイントP3での吸収率と照射開始時の吸収率(すなわちレーザパワー密度が0のときの吸収率)との差が小さいことが分かる。具体的には、赤外レーザの場合、溶接中の吸収率の変化が約80%であるのに対して、グリーンレーザの場合、溶接中の吸収率の変化が約40%となり、約半分である。
 このように、赤外レーザの場合、溶接中の吸収率の変化(落差)が約80%と比較的大きいため、キーホールが不安定となり溶接深さや溶接幅のバラツキや溶融池の乱れ(例えば、スパッタ等)が生じやすい。これに対して、グリーンレーザの場合、溶接中の吸収率の変化(落差)が約40%と比較的小さいため、キーホールが不安定となり難く、また、溶接深さや溶接幅のバラツキや溶融池の乱れ(例えばスパッタ等)が生じ難い。なお、スパッタとは、レーザ等を照射することにより飛散する金属粒等である。
 なお、赤外レーザの場合、上述のように吸収率が低いため、ビーム径を比較的小さくする(例えばφ0.075mm)ことで、吸収率の低さを補うことが一般的である。この点も、キーホールが不安定となる要因となる。なお、図11Bは、赤外レーザを用いた場合のキーホール等のイメージ図であり、1100は、溶接ビードを示し、1102は、溶融池を示し、1104は、キーホールを示す。また、矢印R1116は、ガス抜けの態様を模式的に示す。また、矢印R110は、ビーム径が小さいことに起因して赤外レーザの照射位置が移動される様子を模式的に示す。このように、赤外レーザの場合、上述のように吸収率が低くビーム径を比較的大きくすることが難しいことに起因して、必要な溶融幅を得るために蛇行を含んだ比較的長い照射位置の移動軌跡(連続的な照射時間)が必要となる傾向がある。
 他方、グリーンレーザの場合、上述のように吸収率が比較的高いため、ビーム径を比較的大きくする(例えばφ0.1mm以上)ことが可能であり、キーホールを大きくして安定化することができる。これにより、ガス抜けが良好となり、スパッタ等の発生を効果的に低減できる。なお、図11Aは、グリーンレーザを用いた場合のキーホール等のイメージ図であり、符号の意義は図11Bを参照して上述したとおりである。グリーンレーザの場合、図11Aから、ビーム径の拡大に起因してキーホールが安定化しガス抜けが良好となる様子がイメージとして容易に理解できる。また、グリーンレーザの場合、赤外レーザの場合とは対照的に、上述のように吸収率が比較的高くビーム径を比較的大きくすることが可能であることから、必要な溶融幅(図8に示す溶接対象箇所90の径方向の範囲D2参照)を得るために必要な照射位置の移動軌跡(照射時間)を比較的短く(小さく)できる。
 図12は、本実施例によるグリーンレーザによる溶接方法の説明図である。図12では、横軸に時間を取り、縦軸にレーザ出力を取り、溶接の際のレーザ出力の時系列波形を模式的に示す。
 本実施例では、図12に示すように、レーザ出力3.8kWでグリーンレーザのパルス照射により溶接を実現する。図12では、10msecだけレーザ出力3.8kWとなるようにレーザ発振器のパルス発振が実現され、インターバル100msec後に、再び、10msecだけレーザ出力3.8kWとなるようにレーザ発振器のパルス発振が実現される。以下では、このようにして一回のパルス発振により可能なパルス照射(10msecのパルス照射)の1回分を、「1パス」とも称する。なお、図12では、1パス目(N=1)から3パス目(N=3)の照射がパルス波形130Gで示され、Nは、Nパス目かを表す(以下、図18においても同様)。また、図12には、比較用として、赤外レーザの場合のパルス照射に係るパルス波形130Rが併せて示される。
 ここで、グリーンレーザの場合、レーザ発振器の出力が低く(例えば連続的な照射時は最大で400W)、深い溶け込みを確保するために必要な高出力(例えばレーザ出力3.0kW以上の高出力)を得ることが難しい。すなわち、グリーンレーザは、上述のように酸化物単結晶のような波長変換結晶を通して生成されるので、波長変換結晶を通る際に出力が低下する。このため、グリーンレーザのレーザビームを連続的に照射しようとすると、深い溶け込みを確保するために必要な高出力を得ることができない。
 この点、本実施例では、上述のように、深い溶け込みを確保するために必要な高出力(例えばレーザ出力3.0kW以上の高出力)を、グリーンレーザのパルス照射により確保する。これは、連続的な照射の場合は例えば最大で400Wしか出力できない場合でも、パルス照射であれば、例えば3.0kW以上の高出力が可能となるためである。このようにして、パルス照射は、ピークパワーを上げるための連続エネルギを蓄積してパルス発振することで実現される。一の溶接対象箇所90の周方向の範囲D1が比較的広い場合、当該一の溶接対象箇所に対して、複数回のパルス発振が実現されてよい。すなわち、当該一の溶接対象箇所に対して、比較的高いレーザ出力(例えばレーザ出力3.0kW以上)による2パス以上の照射が実行されてよい。これにより、上述の溶接対象箇所90の周方向の範囲D1が比較的広い場合でも、溶接対象箇所90の全体にわたり深い溶け込みを確保しやすくなり、高い品質の溶接を実現できる。
 なお、図12では、インターバルが特定の値100msecであるが、インターバルは、任意であり、必要な高出力が確保される範囲内で最小化されてよい。また、図12では、レーザ出力は特定の値3.8kWであるが、レーザ出力は、3.0kW以上であれば、必要な溶接深さが確保される範囲内で適宜変更されてよい。
 図12では、赤外レーザの場合として、レーザ出力2.3kWで、比較的長い時間である130msec間、連続的に照射される際のパルス波形130Rが併せて示される。赤外レーザの場合は、グリーンレーザとは異なり、比較的高いレーザ出力(2.3kW)で連続的な照射が可能である。ただし、上述したように、赤外レーザの場合、必要な溶融幅を得るために蛇行を含んだ比較的長い照射位置の移動軌跡(連続的な照射時間)が必要となり、この場合、入熱量は、約312Jであり、図12に示すグリーンレーザの場合の入熱量である約80J(2パスの場合)に対して、有意に大きくなる。
 このようにして、本実施例によれば、グリーンレーザを利用することで、赤外レーザを利用する場合に比べて、コイル片52の線状導体60の材料(本例では銅)に対して高い吸収率を有するレーザビームによる溶接が可能となる。これにより、必要な溶融幅(図8に示す溶接対象箇所90の径方向の範囲D2参照)を得るために必要な照射位置の移動軌跡(時間)を比較的短く(小さく)できる。すなわち、比較的大きいビーム径による1回のパルス発振あたりの、増加されたキーホールに起因して、必要な溶融幅を得るために必要なパルス発振回数を比較的少なくできる。この結果、比較的少ない入熱量で、コイル片52間での必要な接合面積を確保することが可能となる。
 また、本実施例によれば、一の溶接対象箇所に対して2パス以上のグリーンレーザの照射を実行することが可能であり、この場合、溶接対象箇所90の周方向の範囲D1が比較的広い場合でも、溶接対象箇所90の全体にわたり深い溶け込みを確保しやすくなり、高い品質の溶接を実現できる。
 次に、図13Aから図13Dを参照して、溶接速度と各種パラメータとの関係について説明する。なお、図13Aから図13Dは、グリーンレーザの場合の関係を示すが、赤外レーザの場合も基本的に同様の傾向となる。従って、以下で説明する本実施例による溶接速度プロフィールは、赤外レーザ等にも適用可能である。
 図13Aは、横軸に溶接速度(単位[mm/s])を取り、縦軸に溶接深さ(単位[mm])を取り、溶接速度と溶接深さとの関係を示す図である。図13Aには、試験データのプロット点と、それに対する近似直線が点線で示されている(後出の図13Cも同様)。ここでは、一定のレーザ出力が用いられている。
 図13Aからは、レーザ出力が同じであるとき、溶接深さ(溶け込み深さ)は、溶接速度が低いほど大きくなることが分かる。なお、溶接速度とは、単位時間あたりのレーザビーム110の照射位置の移動距離であり、例えば、ある時間にわたるレーザビーム110の照射位置の移動距離を同時間で割り算することで得られる値である。
 図13Bは、横軸に溶接速度(単位[mm/s])を取り、縦軸にスパッタ発生数(単位[個])を取り、溶接速度とスパッタ発生数との関係を示す図である。図13Bには、試験データのプロット点と、それに対する近似曲線が点線で示されている(後出の図13Dも同様)。
 図13Bからは、レーザ出力が同じであるとき、スパッタ発生数は、溶接速度が低いほど多くなることが分かる。換言すると、溶接速度を高めることで、スパッタの発生を低減できることが分かる。
 図13Cは、レーザ出力(単位[W])と溶接深さとの関係を示す図であり、図13Dは、レーザ出力とスパッタ発生数との関係を示す図である。図13Cからは、溶接速度が同じであるとき、溶接深さ(溶け込み深さ)は、レーザ出力が低いほど大きくなることが分かる。また、図13Dからは、溶接速度が同じであるとき、スパッタ発生数は、レーザ出力が高いほど多くなることが分かる。
 次に、図14Aから図15Bを参照して、比較的低い溶接速度を維持して一パスを実現した場合と、比較的高い溶接速度を維持して一パスを実現した場合のそれぞれの課題について説明する。
 図14Aは、グリーンレーザによる溶接を、比較的低い溶接速度を維持した一パスにより実現する場合の説明図であり、照射位置と溶接速度との関係(以下、「溶接速度プロフィール」とも称する)を示す図である。図14Bは、グリーンレーザによる溶接を、比較的高い溶接速度を維持した一パスにより実現する場合の説明図であり、溶接速度プロフィールを示す図である。図14A及び図14Bでは、横軸に位置を取り、縦軸に溶接速度を取り、一パスに係る溶接速度プロフィールが示されている。なお、溶接速度プロフィールを示す線上の矢印は、時間の進む方向(一パスにおける照射開始位置から照射終了位置に向かう方向)を表し、以下の同様の図(図15等)でも同様である。
 なお、図14A及び図14Bに示す例では、比較的高い溶接速度を維持した一パスの場合は、比較的低い溶接速度を維持した一パスの場合よりも、溶接速度が高い分だけ、一パスあたり(例えば10msecあたり)の照射位置の移動量が大きいが、照射位置の移動量は、連続的な照射時間とともに適宜調整されてよい。
 図15Aは、図14Aに示す溶接速度プロフィールで溶接を行う場合の溶接初期の状態150Aと、溶接中期の状態150Bと、溶接後期の状態150Cを模式的に示す図である。図15Bは、図14Bに示す溶接速度プロフィールで溶接を行う場合の溶接初期の状態150Dと、溶接中期の状態150Eと、溶接後期の状態150Fを模式的に示す図である。図15A及び図15Bには、レーザビーム110の照射位置の移動方向(すなわち溶接方向)が矢印Vで模式的に示されている。
 図15Aに示すように、比較的低い溶接速度による溶接速度プロフィールで溶接を行う場合、溶接初期では、状態150Aにて模式的に示すように、溶接深さは不十分であり、スパッタ発生数も少ない。溶接中期になると、状態150Bにて模式的に示すように、必要な溶接深さが確保され、キーホールが溶融池に囲まれる。この際、スパッタ発生数は少ない。そして、溶接後期になると、状態150Cにて模式的に示すように、溶接深さが更に増加し、キーホールを囲む溶融池(表面上で盛り上がる部分)が大きくなる。このようなキーホールまわりの溶融池であって、表面上で盛り上がる部分は、大きく乱れやすく、それ故に、スパッタ発生数が多くなる。
 このように、比較的低い溶接速度で溶接を行う場合は、図13Aからも分かるように溶接深さの点で有利である反面、スパッタ発生数が多くなる点で不利となる。
 他方、図15Bに示すように、比較的高い溶接速度による溶接速度プロフィールで溶接を行う場合、溶接初期では、状態150Dにて模式的に示すように、溶接深さは不十分である。溶接中期になると、状態150Eにて模式的に示すように、溶接深さが増加するものの、依然として溶接深さが不十分である。この際、キーホールは、照射位置の有意な前方への移動に伴い前方へと移動する。そして、溶接後期になると、状態150Fにて模式的に示すように、照射位置の更なる有意な前方への移動に伴い、キーホールに対して溶融池(表面上で盛り上がる部分)が後方に流れる。
 このように、比較的高い溶接速度で溶接を行う場合は、スパッタ発生数が少ない点で有利である反面、図13Aからも分かるように溶接深さが不十分となる点(及びそれに伴い接合面積が不十分となる点)で不利である。
 そこで、本実施例では、以下で詳説するように、一パス中において比較的低い溶接速度と比較的高い溶接速度とを適切に使い分けることで、接合面積の確保とスパッタ発生数の低減の両立を図る。
 図16は、本実施例による溶接速度プロフィールの説明図である。図16では、前出の図14A及び図14Bと同様、横軸に位置を取り、縦軸に溶接速度を取り、一パスに係る溶接速度プロフィールが示されている。
 本実施例による溶接速度プロフィールは、図16に示すように、照射開始位置から照射終了位置に向かう方向(矢印参照)の順序で、比較的高い第1速度V1の第1区間15Dと、比較的低い第2速度V2の第2区間15Bと、比較的高い第3速度V3の第3区間15Fとを含む。
 第1区間15Dは、照射開始位置からの区間であり、例えば一パスに係る連続的な照射時間(例えば10msec)の初期期間に実現される。第1区間15Dは、比較的高い第1速度V1により溶融池を発生させかつ安定化させる機能を有する。なお、第1区間15Dでは、第1速度V1が比較的高いが故に、スパッタ発生数は少ない(図15Bの状態150D参照)。
 第2区間15Bは、第1区間15Dから連続する区間であり、例えば一パスに係る連続的な照射時間(例えば10msec)の中間期間に実現される。第2区間15Bは、比較的低い第2速度V2により溶接深さを確保する機能を有する。第2区間15Bでは、図15Aに示した状態150Bに類似する状態が実現され、第2速度V2が比較的低いが故に、必要な溶接深さを確保することができる。また、第2区間15Bを過剰に長く維持しないことで、図15Aに示した状態150Cに至る可能性を防止し、スパッタ発生数を抑えることができる。換言すると、第2区間15Bは、図15Aに示した状態150Cに至る前に終了される。
 第3区間15Fは、第2区間15Bから連続する区間であり、例えば一パスに係る連続的な照射時間(例えば10msec)の最終期間に実現される。第3区間15Fは、比較的高い第3速度V3によりスパッタ発生数を低減する機能を有する。第3区間15Fでは、図15Bに示した状態150Fに類似する状態が実現される。ただし、第3区間15Fでは、第2区間15Bを経由しているが故に、第2区間15Bで確保された必要な溶接深さが依然として維持されやすい。すなわち、第2区間15Bで形成されたキーホールが維持されやすい。他方、第3区間15Fでは、上述したようにキーホールに対して溶融池が後方に流れやすく(図15Bに示した状態150F参照)、スパッタ発生数も少ない。
 このようにして、本実施例によれば、照射開始位置からの第1区間15Dによって、溶融池を発生させかつ安定化させ、第2区間15Bによって、必要な溶接深さを確保し、第3区間15Fによって、必要な溶接深さを維持しつつ、第2区間15Bを継続した場合に生じうるスパッタを低減できる。このようにして、本実施例によれば、必要な溶接深さを確保することで接合面積の確保を図るとともに、第3区間15Fによってスパッタ発生数の低減を図ることができる。
 本実施例において、第1速度V1及び第3速度V3は、好ましくは、200mm/sよりも有意に大きく、より好ましくは、230mm/sよりも有意に大きい。また、第1速度V1及び第3速度V3は、同じであってもよいし、図16に示すように、第1速度V1が第3速度V3よりも有意に大きくてもよいし、あるいは、第1速度V1が第3速度V3よりも有意に小さくてもよい。なお、図16では、第1速度V1=350mm/sであり、第3速度V3=250mm/sである。
 また、第2速度V2は、好ましくは、100mm/sから200mm/sの範囲内であり、より好ましくは、120mm/sから180mm/sの範囲内であり、最も好ましくは、140mm/sから160mm/sの範囲内である。なお、図16では、第2速度V2=150mm/sである。
 また、図16に示す例では、第1速度V1は、第1区間15Dの全体にわたり一定であるが、変化してもよい。これは、第2速度V2及び/又は第3速度V3についても同様である。例えば、第1区間15Dから第2区間15Bに遷移する際に、第1速度V1が第2速度V2に向けて徐々に低減されてもよい。
 ここで、本実施例による溶接速度プロフィールによる一パス中において、レーザ出力は、好ましくは、図17Aに示すように、一定である。図17Aは、一のパスに係るレーザ出力(及び溶接入熱)が、照射位置に応じて変化する態様の一例を示す概略図であり、照射位置に応じたレーザ出力の変化特性150Pと、照射位置に応じた溶接入熱の変化特性150Lとが概略的に示される。なお、図17Aでは、一例として、一パスの全体による入熱量が面積Q14で表されている。
 図17Aに示す例では、一のパスは、照射開始位置である位置P10から開始される。すなわち、位置P10から一のパルス発振が開始される。この場合、位置P10でレーザ出力が所定値(本例では、一例として3.8kW)まで立ち上がる(矢印R140参照)。そして、照射位置が位置P10から位置P12へと直線状に変化される。この間、レーザ出力は所定値(本例では、一例として3.8kW)で維持される(矢印R141参照)。照射位置が、照射終了位置である位置P12に達すると、レーザ出力は所定値(本例では、一例として3.8kW)から0へと立ち下げられる(矢印R142参照)。すなわち、一のパルス発振が終了される。なお、照射位置が位置P12に達しても、照射位置は、位置P12から更に僅かな距離だけ離れた位置P13に移動するまで変化されてもよい。この間、残留するレーザ出力に起因して僅かな溶接入熱が発生する(図17AのQ14参照)。ただし、変形例では、照射位置が位置P12又はその直前の位置(図示せず)に達した際に、照射位置の変化が終了されてもよい。
 このような照射態様によれば、位置P10にてレーザ出力が所定値(本例では、一例として3.8kW)まで立ち上がるが、実際のレーザ出力が所定値に達するまでの間は、溶接入熱は最大値までは一気に増加しない。このため、図17Aに変化特性150Lにて示すように、位置P10から位置P11までは溶接入熱は徐々に増加していく。そして、位置P12にてレーザ出力が0まで瞬時的に立ち下げられるが、この直前まで溶接入熱は最大値で維持されている。
 なお、この場合、本実施例による溶接速度プロフィールは、位置P10から位置P13までの区間や、位置P11から位置P12までの区間等に適用されてもよい。例えば、本実施例による溶接速度プロフィールに係る第1区間15D(図16参照)は、位置P10から位置P11までの区間内、又は、位置P11から位置P12までの区間内に包含されてもよい。また、第2区間15B(図16参照)は、位置P11から位置P12までの区間内に包含されてもよい。また、第3区間15F(図16参照)は、位置P11から位置P12までの区間内、又は、位置P11から位置P13までの区間内に包含されてもよい。
 ただし、本実施例による溶接速度プロフィールによる一パス中において、レーザ出力は、図17Bに示すように、一定でなくてもよい。図17Bは、一のパスに係る溶接入熱が照射位置に応じて変化する態様の他の一例を示す概略図であり、図17Aと同様、照射位置に応じたレーザ出力の変化特性150Pと、照射位置に応じた溶接入熱の変化特性150Lとが概略的に示される。
 図17Bに示す例では、一のパスは、照射開始位置である位置P10から開始される。すなわち、位置P10から一のパルス発振が開始される。この場合、位置P10でレーザ出力が所定値(本例では、一例として3.8kW)まで立ち上がる(矢印R140参照)。そして、照射位置が位置P10から位置P12へと直線状に変化される。照射位置が位置P10から位置P14までの間、レーザ出力は所定値(本例では、一例として3.8kW)で維持される(矢印R141参照)。照射位置が位置P14に達すると、レーザ出力は所定値(本例では、一例として3.8kW)から0へと段階的に立ち下げられる(矢印R143参照)。具体的には、照射位置が位置P14に達すると、レーザ出力は一段階だけ下げられ、照射位置が位置P12に達すると、レーザ出力は更に一段階だけ下げられ、照射位置が、照射終了位置である位置P15に達すると、レーザ出力は0へと立ち下げられる。なお、照射位置が位置P15に達しても、照射位置は、位置P15から更に僅かな距離だけ離れた位置P16に移動するまで変化されてもよい。この間、残留するレーザ出力に起因して僅かな溶接入熱が発生する(図17AのQ14参照)。ただし、変形例では、照射位置が位置P15に達した際に、照射位置の変化は終了されてもよい。
 なお、この場合、本実施例による溶接速度プロフィールは、位置P10から位置P15までの区間や、位置P11から位置P12までの区間等に適用されてもよい。例えば、本実施例による溶接速度プロフィールに係る第1区間15D(図16参照)は、位置P10から位置P11までの区間内、又は、位置P10から位置P14までの区間内に包含されてもよい。また、第2区間15B(図16参照)は、位置P11から位置P14までの区間内、又は、位置P11から位置P12までの区間内に包含されてもよい。また、第3区間15F(図16参照)は、位置P11から位置P14までの区間内、位置P11から位置P12までの区間内、位置P14から位置P12までの区間内、又は、位置P14から位置P16までの区間内、に包含されてもよい。
 なお、上述では、一の溶接対象箇所90に対して1パスのグリーンレーザの照射が実行される場合を説明したが、一の溶接対象箇所90の範囲(長さ)に応じて、一の溶接対象箇所90に対して2パス以上のグリーンレーザの照射が実行されてもよい。
 図18は、一の溶接対象箇所90に対して2パスのグリーンレーザの照射が実行される場合の、好ましい溶接速度プロフィールを示す図である。図18では、前出の図16と同様、横軸に位置を取り、縦軸に溶接速度を取り、2つのパスに係る溶接速度プロフィールがそれぞれ示されている。なお、図18では、2パス目の溶接速度プロフィールは、点線で示されている。
 図18に示す例では、1パス目は、本実施例による溶接速度プロフィールにしたがって、第1照射区間D11に対して一のパルス発振により実現され、2パス目は、本実施例による溶接速度プロフィールにしたがって、第2照射区間D12に対して次の一のパルス発振により実現される。1パス目による溶接と2パス目による溶接は、協動して、溶接対象箇所90の周方向の範囲D1(図7参照)の全体をカバーする。
 本実施例では、好ましくは、1パス目の第1照射区間D11と2パス目の第2照射区間D12とは、一方の第1区間15Dが他方の第2区間15B又は第3区間15Fと重なる態様で、互いに重なる。すなわち、1パス目の第1区間15Dは、2パス目の第2区間15B又は第3区間15Fと重なり、2パス目の第1区間15Dは、1パス目の第2区間15B又は第3区間15Fと重なる。これにより、1パス目と2パス目のいずれの第1区間15Dにおいても、他方のパスの第2区間15B又は第3区間15Fによって必要な溶接深さ(及びそれに伴う接合面積)を確保することが可能となる。
 図18に示す例では、1パス目の第1区間15Dは、2パス目の第3区間15Fと重なり、2パス目の第1区間15Dは、1パス目の第3区間15Fと重なる。また、1パス目の第2区間15Bは、2パス目の第2区間15Bと完全に重なる。ただし、変形例では、1パス目の第2区間15Bは、2パス目の第2区間15Bとは部分的に重なってもよいし、オフセットされてもよい。
 このようにして、溶接対象箇所90の周方向の範囲D1が比較的広い場合でも、本実施例による溶接速度プロフィールによる2パス以上のグリーンレーザの照射を適用することで、必要な溶接深さ(及びそれに伴い必要な接合面積)の確保を図るとともに、スパッタ発生数の低減を図ることができる。
 なお、図18に示す例は、1パス目と2パス目とで溶接方向(照射位置の変化方向)が対向する場合に関するが、溶接方向(照射位置の変化方向)が同一である2つのパスにより溶接が実現される場合にも、本実施例による溶接速度プロフィールは適用可能である。この場合、2パス目の第1区間15Dは、1パス目の第3区間15F(又は第2照射区間D12)に重なるように設定されてよい。これにより、2パス目の第2照射区間D12の第1区間15Dにおいても、1パス目の第3区間15F(又は第2照射区間D12)によって必要な溶接深さ(及びそれに伴う接合面積)を確保することが可能となる。すなわち、溶接対象箇所90の周方向の範囲D1において、2パス目の第1区間15Dに起因して溶接深さ(及びそれに伴う接合面積)が不足する箇所が生じてしまう不都合を、防止できる。また、1パス目の第1区間15Dは、溶接対象箇所90の周方向の範囲D1よりも外側に設定されてよい。このようにして、溶接方向(照射位置の変化方向)が同一である2つのパスにより溶接が実現される場合にも、本実施例による溶接速度プロフィールによって、溶接対象箇所90の周方向の範囲D1において必要な溶接深さ(及びそれに伴い必要な接合面積)を確保するとともに、スパッタ発生数を低減できる。
 図19は、モータ1のステータ21の製造方法の流れを概略的に示すフローチャートである。
 まず、本製造方法は、コイル片52をステータコア22に組み付ける組付工程(ステップS150)を含む。また、本製造方法は、組付工程後に、コイル片52の先端部40同士をレーザ溶接により接合する接合工程(ステップS152)を含む。コイル片52の先端部40同士をレーザ溶接により接合する方法は、上述したとおりである。
 この場合、接合工程は、上述したように、各対となるコイル片52のそれぞれの先端部40同士が径方向に当接するようにセットするセット工程(ステップS1521)を含む。なお、セット工程では、治具等を用いて、各対となるコイル片52のそれぞれの先端部40同士が径方向に当接した状態が、維持されてよい。
 そして、接合工程は、セット工程後に、上述したように溶接対象箇所90にレーザビーム110を照射する照射工程(ステップS1522)を含む。なお、セット工程と照射工程は、1つ以上の所定数の溶接対象箇所90ごとにセットで実行されてもよいし、一のステータ21に係るすべての溶接対象箇所90に対して、一括的に実行されてもよい。なお、本製造方法は、接合工程後に、適宜、必要な各種の工程を行うことで、ステータ21を完成させて終了してよい。
 以上、各実施例について詳述したが、特定の実施例に限定されるものではなく、特許請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。また、前述した実施例の構成要素を全部又は複数を組み合わせることも可能である。また、各実施形態の効果のうちの、従属項に係る効果は、上位概念(独立項)とは区別した付加的効果である。
 例えば、上述した実施例では、溶接対象箇所90は、図7及び図8に範囲D1及び範囲D2に示すように、当接面401に沿って直線状に延在するが、これに限られない。溶接対象箇所90は、レーザビーム110の照射側から視て、湾曲する態様で設定されてもよい。この場合、レーザビーム110による照射区間は、照射位置が直線状に変化する区間と、照射位置が曲線状に変化する区間とを含んでもよい。そして、上述した本実施例による溶接速度プロフィールは、照射位置が曲線状に変化する区間に対して適用されてもよい。
 また、上述した実施例では、上述したようにグリーンレーザの場合、必要なレーザ出力を確保できる連続的な照射時間が比較的短いが故に、本実施例による溶接速度プロフィールは、第1区間15D、第2区間15B、及び第3区間15Fからなるが、これに限られない。今後の技術の進展に伴い、必要なレーザ出力を確保できる連続的な照射時間が長くできるようになれば、本実施例による溶接速度プロフィールは、第1区間15D、第2区間15B、第3区間15F、第2区間15B、第3区間15Fといった具合に、第1区間15Dの後に、第2区間15Bと第3区間15Fとを交互に繰り返して含んでもよい。この場合、第2区間15B及び第3区間15Fのセット数は、2以上の任意である。また、この場合、溶接速度プロフィールは、第3区間15Fで終了してもよいし、第2区間15Bで終了してもよい。なお、このような、第2区間15Bと第3区間15Fとを交互に繰り返して含む溶接速度プロフィールは、比較的長い連続的な照射が可能な赤外レーザの場合にも好適である。
 また、上述した実施例は、コイル片52の先端部40同士の接合に関するが、コイル片52の先端部40と、バスバーの端部(図示せず)との間の接合にも適用可能である。この場合、バスバーの端部に接合されるコイル片52の先端部40は、動力線や中性点を形成する渡り部の先端部であってよい。
 例えば、図20には、端子台70に保持されるバスバーの端部80、81とコイル片52Aの先端部40Aとが互いに接合される。なお、この場合、端子台70に保持されるバスバーは、端子台70内において3相の外部端子71に電気的に接続される。このようなバスバーの端部80、81とコイル片52Aの先端部40Aとの間の接合部に対しても、本実施例による溶接速度プロフィールによるレーザ溶接が適用されてもよい。この場合、溶接対象箇所は、バスバーの端部80、81とコイル片52Aの先端部40Aのそれぞれの先端面に現れる当接面に設定されてもよい。なお、図20において、L方向は軸方向に対応し、R方向は、径方向に対応し、R1側は径方向内側に対応し、R2側は径方向外側に対応する。なお、図20では、バスバーの端部80、81とコイル片52Aの先端部40Aは、径方向又は軸方向に視て完全に重なる態様で当接されているが、特定の方向(例えば周方向)に視てX字状に交差する態様又はC字状又はL字状をなす態様で、特定の方向に当接されてもよい。この場合、溶接対象箇所90は、当接面の軸方向外側の縁部に沿って直線状に設定されてよい。
 また、上述した実施例では、図6に示すように軸方向外側端面42が凸の円弧面に加工された先端部40を有するコイル片52同士を、図7に示すように径方向に当接させることで、溶接対象箇所90を形成しているが、これに限られない。例えば、このような加工がなされていない先端部(すなわち径方向に視て軸方向外側端面42が直線状に延びて先端面につながる構成)を有するコイル片同士を径方向に当接させることで、溶接対象箇所90を形成してもよい。この場合、コイル片同士は、先端部40(加工がなされていない先端部40)同士が径方向に視てX字状に交差する態様又は径方向に視てC字状又はL字状をなす態様で、径方向に当接されてもよい。
1・・・モータ(回転電機)、24・・・ステータコイル、52・・・コイル片、40・・・先端部(端部)、22・・・ステータコア、80、81・・・バスバーの端部、110・・・レーザビーム

Claims (5)

  1.  ステータコイルのコイル片をステータコアに組み付ける組付工程と、
     前記組付工程の後に、前記コイル片の端部同士又は前記コイル片の端部とバスバーの端部とをレーザ溶接により接合する接合工程とを含み、
     前記接合工程は、
     接合対象の2つの端部同士を当接させるセット工程と、
     前記2つの端部にレーザビームを照射する照射工程とを含み、
     前記照射工程による前記レーザビームの照射区間は、前記レーザビームの照射位置が連続的に変化する連続照射区間を含み、
     前記連続照射区間は、照射開始位置から照射終了位置までの前記レーザビームの照射位置の移動方向に沿った順序で、前記レーザビームの照射位置が第1速度で変化する第1区間と、前記レーザビームの照射位置が前記第1速度よりも低い第2速度で変化する第2区間と、前記レーザビームの照射位置が前記第2速度よりも高い第3速度で変化する第3区間とを含む、回転電機用ステータ製造方法。
  2.  前記連続照射区間は、前記レーザビームの照射位置が直線状に変化する態様で、前記第1区間が照射開始位置から開始し、前記第2区間が前記第1区間から連続し、前記第3区間が前記第2区間から連続する、請求項1に記載の回転電機用ステータ製造方法。
  3.  前記照射工程は、0.6μm以下の波長を有するレーザビームを、レーザ発振器におけるパルス発振ごとに発生させ、
     一の前記連続照射区間は、一のパルス発振により実現される、請求項1又は2に記載の回転電機用ステータ製造方法。
  4.  前記照射工程は、一のパルス発振ごとに一の前記連続照射区間が実現される態様で、2回以上のパルス発振により、前記2つの端部を接合する、請求項3に記載の回転電機用ステータ製造方法。
  5.  一の前記連続照射区間と他の一の前記連続照射区間とは、一の前記第1区間が他の一の前記第2区間又は前記第3区間と重なる態様で、互いに重なる、請求項4に記載の回転電機用ステータ製造方法。
PCT/JP2022/012873 2021-03-19 2022-03-18 回転電機用ステータ製造方法 WO2022196823A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-045434 2021-03-19
JP2021045434A JP7478697B2 (ja) 2021-03-19 2021-03-19 回転電機用ステータ製造方法

Publications (1)

Publication Number Publication Date
WO2022196823A1 true WO2022196823A1 (ja) 2022-09-22

Family

ID=83320461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012873 WO2022196823A1 (ja) 2021-03-19 2022-03-18 回転電機用ステータ製造方法

Country Status (2)

Country Link
JP (1) JP7478697B2 (ja)
WO (1) WO2022196823A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102610475B1 (ko) * 2023-07-04 2023-12-06 주식회사 블루캡캔 이차전지 캡 어셈블리의 이종 금속 레이저 용접방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014007795A (ja) * 2012-06-21 2014-01-16 Aisin Aw Co Ltd 回転電機の導体接合方法及び回転電機のコイル
JP2020040103A (ja) * 2018-09-12 2020-03-19 トヨタ自動車株式会社 コイル線のレーザ溶接方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6593280B2 (ja) 2016-08-25 2019-10-23 トヨタ自動車株式会社 平角線のレーザ溶接方法
JP2020055024A (ja) 2018-10-03 2020-04-09 トヨタ自動車株式会社 ステータコイルのレーザ溶接方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014007795A (ja) * 2012-06-21 2014-01-16 Aisin Aw Co Ltd 回転電機の導体接合方法及び回転電機のコイル
JP2020040103A (ja) * 2018-09-12 2020-03-19 トヨタ自動車株式会社 コイル線のレーザ溶接方法

Also Published As

Publication number Publication date
JP2022144424A (ja) 2022-10-03
JP7478697B2 (ja) 2024-05-07

Similar Documents

Publication Publication Date Title
JP5958109B2 (ja) 回転電機の導体接合方法
JP3889630B2 (ja) 回転電機の巻線接合方法
JP6259115B2 (ja) 回転電機の固定子
JP7335419B2 (ja) 回転電機用ステータ製造方法
WO2021153663A1 (ja) 導線の絶縁被膜の剥離方法
WO2022196823A1 (ja) 回転電機用ステータ製造方法
JP2014007794A (ja) 回転電機の導体接合方法及び回転電機のコイル
JPWO2018179923A1 (ja) コア製造方法及びコア
WO2020170413A1 (ja) 銅を含む部材の溶接方法、および回転電機の製造方法
WO2022196821A1 (ja) 回転電機用ステータ製造方法
JP7335420B2 (ja) 回転電機用ステータ製造方法
WO2022196822A1 (ja) 回転電機用ステータ製造方法
JP7460403B2 (ja) 回転電機用ステータ製造方法
JP7478699B2 (ja) 回転電機用ステータ製造方法
JP7410757B2 (ja) 回転電機用ステータ製造方法
WO2024080097A1 (ja) 回転電機用ステータ製造方法及び回転電機用ステータ製造装置
JPH08331813A (ja) 回転電機の回転子の製造方法
WO2021220666A1 (ja) レーザ溶接方法及びそれを用いた回転電気機械の製造方法
CN115136474A (zh) 旋转电机用定子制造方法
JP2021145481A (ja) 回転電機用ステータ製造方法
JP7222442B2 (ja) 回転電機の固定子コイルの製造方法及び固定子コイル
US20230108304A1 (en) Method for producing an active part for a rotating electric machine, active part for a rotating electric machine and rotating electric machine
EP4336715A1 (en) Electric motor stator manufacturing device and method for manufacturing electric motor stator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22771565

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22771565

Country of ref document: EP

Kind code of ref document: A1