WO2022196822A1 - 回転電機用ステータ製造方法 - Google Patents

回転電機用ステータ製造方法 Download PDF

Info

Publication number
WO2022196822A1
WO2022196822A1 PCT/JP2022/012872 JP2022012872W WO2022196822A1 WO 2022196822 A1 WO2022196822 A1 WO 2022196822A1 JP 2022012872 W JP2022012872 W JP 2022012872W WO 2022196822 A1 WO2022196822 A1 WO 2022196822A1
Authority
WO
WIPO (PCT)
Prior art keywords
irradiation
laser
stator
laser beam
contact surface
Prior art date
Application number
PCT/JP2022/012872
Other languages
English (en)
French (fr)
Inventor
弘行 大野
Original Assignee
株式会社アイシン
トヨタ自動車株式会社
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アイシン, トヨタ自動車株式会社, 株式会社デンソー filed Critical 株式会社アイシン
Priority to CN202280011856.1A priority Critical patent/CN116762266A/zh
Priority to JP2023507209A priority patent/JPWO2022196822A1/ja
Priority to US18/266,927 priority patent/US20230396135A1/en
Priority to EP22771564.6A priority patent/EP4266562A1/en
Publication of WO2022196822A1 publication Critical patent/WO2022196822A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/0056Manufacturing winding connections
    • H02K15/0068Connecting winding sections; Forming leads; Connecting leads to terminals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/0026Arc welding or cutting specially adapted for particular articles or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/22Spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/167Arc welding or cutting making use of shielding gas and of a non-consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/0056Manufacturing winding connections
    • H02K15/0068Connecting winding sections; Forming leads; Connecting leads to terminals
    • H02K15/0081Connecting winding sections; Forming leads; Connecting leads to terminals for form-wound windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/04Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of windings, prior to mounting into machines
    • H02K15/0414Windings consisting of separate elements, e.g. bars, hairpins, segments, half coils
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/38Conductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/12Copper or alloys thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present disclosure relates to a method for manufacturing a stator for a rotating electric machine.
  • the end portions of the coil pieces are arranged so that the side surfaces (surfaces facing the irradiation source of the laser beam) of the end portions of the coil pieces that are in contact with each other are smoothly continuous. is machined into a C shape (an arcuate surface convex outward in the axial direction) when viewed in the radial direction, and there is room for cost reduction from the viewpoint of machining costs.
  • the present disclosure aims to enable the ends of coil pieces to be appropriately joined together at a relatively low processing cost.
  • an assembling step of assembling a coil piece of a stator coil having a rectangular cross section to a stator core After the assembling step, a joining step of joining the ends of the coil pieces by laser welding,
  • the bonding step includes a setting step of bringing the ends into contact with each other in the radial direction while crossing each other in an X shape when viewed in the radial direction;
  • an irradiation step of axially irradiating a laser beam having a wavelength of 0.6 ⁇ m or less toward a C-shaped side of the contact surface between the end portions when viewed in the radial direction.
  • a method for manufacturing a stator for a rotating electric machine wherein the irradiation step melts not only the side portion of the C shape but also the portion of the non-contact surface on the outer side in the axial direction that is continuous from the contact surface of the end portion. .
  • FIG. 1 is a cross-sectional view schematically showing a cross-sectional structure of a motor according to one embodiment
  • FIG. FIG. 4 is a plan view of the stator core in a single item state
  • FIG. 4 is a diagram schematically showing a pair of coil pieces to be attached to the stator core
  • FIG. 4 is a schematic front view of one coil piece
  • FIG. 4 is a diagram showing tip portions of coil pieces joined to each other and the vicinity thereof; It is a figure which shows roughly the welding target location 90 seen from the irradiation side.
  • FIG. 6 is a cross-sectional view along line AA in FIG. 5 passing through the location to be welded
  • FIG. 6 is a cross-sectional view along line BB in FIG. 5 passing through the location to be welded
  • FIG. 6 is a cross-sectional view along line CC in FIG. 5 passing through the welding target;
  • FIG. 10 is a diagram showing tip portions of mutually joined coil pieces and the vicinity thereof according to a comparative example;
  • FIG. 4 is a diagram showing the relationship between the laser wavelength and the laser absorptivity for solids of various materials;
  • FIG. 10 is an explanatory diagram of a change mode of absorptance during welding;
  • FIG. 10 is an image diagram of a keyhole and the like when a green laser is used;
  • FIG. 4 is an image diagram of a keyhole and the like when an infrared laser is used;
  • FIG. 4 is an explanatory diagram of a welding method using a green laser according to the present embodiment;
  • FIG. 4 is a schematic diagram showing an example of a mode in which the laser output for one pass changes according to the irradiation position
  • FIG. 5 is a schematic diagram showing another example of a mode in which the laser output for one pass changes according to the irradiation position
  • 4 is a flow chart schematically showing the flow of a method for manufacturing a stator of a motor; It is explanatory drawing of a modification.
  • FIG. 4 is a supplementary explanatory diagram of the irradiation range (irradiation direction) of a laser beam;
  • FIG. 1 is a cross-sectional view schematically showing the cross-sectional structure of a motor 1 (an example of a rotating electric machine) according to one embodiment.
  • the rotating shaft 12 of the motor 1 is illustrated in FIG.
  • the axial direction refers to the direction in which the rotation shaft (rotation center) 12 of the motor 1 extends
  • the radial direction refers to the radial direction around the rotation shaft 12 . Therefore, the radially outer side refers to the side away from the rotating shaft 12 , and the radially inner side refers to the side toward the rotating shaft 12 .
  • the circumferential direction corresponds to the direction of rotation about the rotating shaft 12 .
  • the motor 1 may be a vehicle drive motor used in, for example, a hybrid vehicle or an electric vehicle. However, the motor 1 may be used for any other purpose.
  • the motor 1 is of the inner rotor type, and the stator 21 is provided so as to surround the radially outer side of the rotor 30 .
  • the radially outer side of the stator 21 is fixed to the motor housing 10 .
  • the rotor 30 is arranged radially inside the stator 21 .
  • the rotor 30 has a rotor core 32 and a rotor shaft 34 .
  • the rotor core 32 is fixed radially outwardly of the rotor shaft 34 and rotates together with the rotor shaft 34 .
  • the rotor shaft 34 is rotatably supported by the motor housing 10 via bearings 14a and 14b. It should be noted that the rotor shaft 34 defines the rotating shaft 12 of the motor 1 .
  • the rotor core 32 is formed, for example, from laminated steel plates of an annular magnetic material.
  • a permanent magnet 321 is inserted inside the rotor core 32 .
  • the number, arrangement, etc. of the permanent magnets 321 are arbitrary.
  • the rotor core 32 may be formed of a powder compact in which magnetic powder is compressed and hardened.
  • End plates 35A and 35B are attached to both sides of the rotor core 32 in the axial direction.
  • the end plates 35A and 35B may have the function of supporting the rotor core 32 as well as the function of adjusting the imbalance of the rotor 30 (the function of eliminating the imbalance by cutting or the like).
  • the rotor shaft 34 has a hollow portion 34A, as shown in FIG.
  • the hollow portion 34A extends over the entire length of the rotor shaft 34 in the axial direction.
  • the hollow portion 34A may function as an oil passage.
  • oil is supplied to the hollow portion 34A from one end in the axial direction as indicated by an arrow R1 in FIG. can be cooled from the radially inner side.
  • the oil flowing along the radially inner surface of the rotor shaft 34 is jetted radially outward through oil holes 341 and 342 formed in both end portions of the rotor shaft 34 (arrows R5 and R6) to 220A, 220B may be provided for cooling.
  • FIG. 1 shows the motor 1 with a specific structure
  • the structure of the motor 1 is arbitrary as long as it has a stator coil 24 (described later) that is joined by welding.
  • the rotor shaft 34 may have no hollow portion 34A, or may have a hollow portion with an inner diameter significantly smaller than that of the hollow portion 34A.
  • a specific cooling method is disclosed in FIG. 1, the cooling method for the motor 1 is arbitrary. Therefore, for example, an oil introduction pipe inserted into the hollow portion 34A may be provided, or oil may be dripped from the oil passage in the motor housing 10 from the radially outer side toward the coil ends 220A and 220B. .
  • FIG. 1 shows the inner rotor type motor 1 in which the rotor 30 is arranged inside the stator 21, it may be applied to other types of motors.
  • it may be applied to an outer rotor type motor in which the rotor 30 is concentrically arranged outside the stator 21, a dual rotor type motor in which the rotor 30 is arranged both outside and inside the stator 21, or the like.
  • stator 21 Next, the configuration of the stator 21 will be described in detail with reference to FIG. 2 onwards.
  • FIG. 2 is a plan view of the stator core 22 in a single item state.
  • FIG. 3 is a diagram schematically showing a pair of coil pieces 52 assembled to stator core 22. As shown in FIG. FIG. 3 shows the relationship between the pair of coil pieces 52 and the slots 220 when the radially inner side of the stator core 22 is expanded. Also, in FIG. 3, the stator core 22 is indicated by a dotted line, and illustration of a part of the slots 220 is omitted.
  • the stator 21 includes a stator core 22 and stator coils 24 .
  • the stator core 22 is made of, for example, an annular laminated steel plate of a magnetic material, but in a modified example, the stator core 22 may be formed of a powder compact in which magnetic powder is compressed and hardened. It should be noted that the stator core 22 may be formed by split cores that are split in the circumferential direction, or may be in a form that is not split in the circumferential direction. A plurality of slots 220 around which the stator coils 24 are wound are formed radially inside the stator core 22 . Specifically, as shown in FIG. 2, the stator core 22 includes an annular back yoke 22A and a plurality of teeth 22B extending radially inward from the back yoke 22A. A slot 220 is formed therebetween. Although the number of slots 220 is arbitrary, in this embodiment, it is 48 as an example.
  • the stator coil 24 includes a U-phase coil, a V-phase coil, and a W-phase coil (hereinafter referred to as "phase coils" when U, V, and W are not distinguished).
  • phase coils when U, V, and W are not distinguished.
  • the proximal end of each phase coil is connected to an input terminal (not shown), and the distal end of each phase coil is connected to the distal end of another phase coil to form the neutral point of the motor 1 . That is, the stator coil 24 is star-connected.
  • the connection mode of the stator coil 24 may be appropriately changed according to the required motor characteristics, etc.
  • the stator coil 24 may be delta-connected instead of star-connected.
  • FIG. 4 is a schematic front view of one coil piece 52.
  • the coil pieces 52 are in the form of segment coils obtained by dividing a phase coil into units that are easy to assemble (for example, units that are inserted into two slots 220).
  • the coil piece 52 is formed by coating a linear conductor (rectangular wire) 60 having a rectangular cross section with an insulating coating 62 .
  • the linear conductor 60 is made of copper, for example.
  • the linear conductor 60 may be made of other conductor material such as iron.
  • the coil piece 52 may be formed in a substantially U-shape having a pair of rectilinear portions 50 and a connecting portion 54 connecting the pair of rectilinear portions 50 before being assembled to the stator core 22 .
  • the pair of rectilinear portions 50 are respectively inserted into the slots 220 (see FIG. 3).
  • the connecting portion 54 extends in the circumferential direction so as to straddle the plurality of teeth 22B (and thus the plurality of slots 220 ) on the other axial end side of the stator core 22 .
  • the number of slots 220 spanned by the connecting portion 54 is arbitrary, it is three in FIG.
  • the rectilinear portion 50 is bent in the circumferential direction in the middle, as indicated by the two-dot chain line in FIG. As a result, the rectilinear portion 50 becomes a leg portion 56 extending in the axial direction within the slot 220 and a transition portion 58 extending in the circumferential direction on one axial end side of the stator core 22 .
  • the pair of rectilinear portions 50 are bent in directions away from each other, but the present invention is not limited to this.
  • the pair of rectilinear portions 50 may be bent in a direction toward each other.
  • the stator coil 24 may also have a neutral point coil piece or the like for connecting the ends of the three-phase coils to form a neutral point.
  • a plurality of leg portions 56 of the coil piece 52 shown in FIG. 4 are inserted into one slot 220 so as to line up in the radial direction. Accordingly, a plurality of transition portions 58 extending in the circumferential direction are arranged radially on one axial end side of the stator core 22 . As shown in FIG. 3 , the crossover portion 58 of one coil piece 52 that protrudes from one slot 220 and extends in the first circumferential direction (for example, clockwise direction) protrudes from another slot 220 and extends in the second circumferential direction. It is joined to the crossover portion 58 of the other one coil piece 52 extending sideways (for example, counterclockwise direction).
  • the radially outermost coil pieces 52 are also referred to as the first turn, the second turn, and the third turn in order.
  • the coil piece 52 of the first turn and the coil piece 52 of the second turn are joined together at their distal end portions 40 by a joining step described later, and the coil piece 52 of the third turn and the coil piece 52 of the fourth turn are joined together.
  • the tip portions 40 are joined to each other by a joining step described later, and the tip portions 40 of the fifth turn coil piece 52 and the sixth turn coil piece 52 are joined to each other by a joining step described later.
  • the coil piece 52 is covered with the insulating coating 62 as described above, but the insulating coating 62 is removed only from the tip portion 40 . This is to ensure electrical connection with other coil pieces 52 at the distal end portion 40 .
  • FIG. 5 is a diagram showing the distal ends 40 of the coil pieces 52 joined together and the vicinity thereof. 5 schematically shows a circumferential range D1 of the welding target location 90.
  • FIG. 6 is a diagram schematically showing a welding target portion 90 viewed from the irradiation side.
  • 7A-7C are cross-sectional views along lines AA, BB, and CC of FIG. 5 through the weld target 90, respectively.
  • the area of the weld pool formed during welding is schematically indicated by a hatched area 1102.
  • FIG. FIG. 8 is a diagram showing tip portions 40' of mutually joined coil pieces 52' and the vicinity thereof according to a comparative example as a comparison with the configuration of this embodiment shown in FIG.
  • the Z direction along the axial direction is defined.
  • the Z direction Z1 side (that is, the irradiation side of the laser beam 110) will be referred to as the "upper side” and the Z direction Z2 side will be referred to as the "lower side.”
  • the X direction along the radial direction and the X1 side and the X2 side along the X direction are defined.
  • the tip portions 40 of the coil pieces 52 When the tip portions 40 of the coil pieces 52 are joined together, the tip portions 40 of the one coil piece 52 and the other coil piece 52 are aligned in the view (vertical to the contact surface 401) shown in FIG. , i.e., in the radial direction), and are in contact with each other in the radial direction.
  • the configuration related to one coil piece 52 is denoted by the symbol "A” after the reference numeral, such as the tip portion 40A, and the configuration related to the other coil piece 52. Configurations may have the designation suffixed with a "B", such as tip 40B.
  • the welding target portion 90 extends linearly along the contact surface 401 as indicated by the range D1 in FIG. That is, when viewed from the irradiation side of the laser beam 110 (see arrow W in FIG. 5), the welding target location 90 extends linearly over the range D1 with the width of the range D2 shown in FIGS. 7A to 7C.
  • the contact surface 401 has a rhombus shape when viewed in the radial direction. Two sides form an upward C shape.
  • the welding target portion 90 extends on both sides of the intersection P0. Specifically, in the view (viewed in the radial direction) shown in FIG. 2 sides). Specifically, in the view (viewed in the radial direction) shown in FIG.
  • the point of intersection with the axially inner end face 43B (the end face facing downward) of the tip portion 40B is defined as P1
  • the axial outer end face 42B the end face facing upward
  • the point of intersection with the axial inner end face 43A (downward facing end face) of 40A is P2
  • it is set within a range D11 from the intersection point P1 to the intersection point P0 and a range D12 from the intersection point P2 to the intersection point P0.
  • the welding target portion 90 is preferably a portion (for example, a section from the intersection point P3 to the intersection point P4) excluding the vicinity of the intersection point P1 and the intersection point P2. This is because it is difficult to ensure a sufficient welding depth (see dimension L1 in FIG. 5) near the intersection points P1 and P2.
  • the range D1 in the circumferential direction of the welding target portion 90 may be adapted so as to ensure the required bonding area between the coil pieces 52, the required welding strength, and the like.
  • welding is used as a joining method for joining the tip portions 40 of the coil pieces 52 .
  • the welding method laser welding using a laser beam source as a heat source is adopted instead of arc welding represented by TIG welding.
  • TIG welding By using laser welding instead of TIG welding, the axial length of coil ends 220A and 220B can be reduced. That is, in the case of TIG welding, it is necessary to bend the ends of the coil pieces to be in contact with each other in the axial direction so as to extend in the axial direction. As shown in FIG. 5, welding can be performed in a state in which the tip portions 40 of the contacting coil pieces 52 are extended in the circumferential direction. As a result, the axial length of the coil ends 220A and 220B can be reduced compared to the case where the distal end portions 40 of the contacting coil pieces 52 are bent axially outward and extended in the axial direction.
  • a welding laser beam 110 is applied to a welding target portion 90 of two tip portions 40 that are in contact with each other.
  • the irradiation direction (propagation direction) of the laser beam 110 is substantially parallel to the axial direction, and is the direction toward the axial outer end surfaces 42A and 42B of the two tip portions 40 that are in contact with each other from the axial outer side.
  • heating can be performed locally, only the tip portion 40 and its vicinity can be heated, and damage (carbonization) of the insulating coating 62 can be effectively reduced.
  • the plurality of coil pieces 52 can be electrically connected while maintaining appropriate insulation performance.
  • the laser beam 110 is directed to the contact surface 401 side of the axially outer end surface 42A of the tip portion 40 of the coil piece 52A as shown in FIG. (the edge forming the C-shaped side) and the edge on the contact surface 401 side of the axially outer end surface 42B of the distal end portion 40 of the coil piece 52B (the edge forming the C-shaped side ) are irradiated to melt them. This makes it easy to secure the required bonding area by the laser beam 110 at the intersection P0 as shown in FIG. 7A.
  • the laser beam 110 is directed to the edges (C-shaped edges) of the axially outer end surfaces 42A and 42B on the contact surface 401 side in the ranges D11 and D12, respectively.
  • the non-contact surface 409 on the outer side in the axial direction which is continuous with the contact surface 401, is melted together with the portion of the side of the shape).
  • the tip portions 40A and 40B of the coil pieces 52A and 52B cross each other in an X shape when viewed in the radial direction, the tip portions 40A and 40B each have a contact surface 401 on the upper side of the contact surface 401.
  • Non-contact surfaces 409A and 409B that are continuous with the surface 401 are formed.
  • the reliability of the welded portion can be improved.
  • Such non-contact surfaces 409A and 409B do not occur in the comparative example shown in FIG. 8, which will be described later.
  • the laser beam 110 is applied to the edge ( The edge forming the C-shaped side) and the edge on the contact surface 401 side of the non-contact surface 409 of the tip portion 40B (the edge related to the boundary with the contact surface 401) are melted. is irradiated to As a result, it becomes easy to secure a required bonding area with the laser beam 110 even for a welding target portion 90 having a step in the axial direction on the contact surface 401 as shown in FIG. 7B.
  • the radial range D2 of the welding target portion 90 is centered on the contact surfaces 401 between the tip portions 40 of the two coil pieces 52, as shown in FIGS. 7A to 7C.
  • a radial range D2 of the welding target location 90 may correspond to the diameter of the laser beam 110 (beam diameter). That is, the laser beam 110 is irradiated in such a manner that the irradiation position changes linearly along the circumferential direction without substantially changing in the radial direction. In other words, the laser beam 110 is moved such that the irradiation position changes linearly parallel to the contact surface 401 .
  • the laser beam 110 can be irradiated to the linear welding target portion 90 more efficiently than when the irradiation position is changed in a loop (spiral) or zigzag (meandering) shape, for example.
  • the contact surface 401 may be irradiated with the laser beam 110 from the X direction X1 side. may be irradiated.
  • the axially outer end faces 42A and 42B of the tip portion 40 are not processed into convex arcuate surfaces. That is, the distal end portion 40 has axially outer end surfaces 42A and 42B and a distal end surface 44 that are continuous and substantially perpendicular when viewed in the radial direction. Therefore, since the tip portion 40 according to the present embodiment can be formed substantially by simply removing the insulating coating 62, the manufacturing cost can be reduced unlike the comparative example. It should be noted that the term "substantially right angle" is a concept that allows not only perfect right angles but also errors (errors relative to perfect right angles) caused by processing errors and the like.
  • the smaller the bending angle ⁇ of the coil piece 52 the larger the dimension even if the intersection P3 (the same applies to the intersection P4) is farther from the intersection P0 (that is, even if the range D11 is lengthened). It becomes easy to secure L1. Being able to secure a relatively large dimension L1 means that it becomes easier to secure a relatively large welding depth (and thus a bonding area). Thereby, it is easy to lengthen the distance of the range D1 in which the required bonding area can be secured. Further, as the bending angle ⁇ of the coil piece 52 becomes smaller, the size of the coil ends 220A and 220B in the axial direction can be reduced.
  • the entire tip surface 44A of the tip portion 40A when viewed in the radial direction, the entire tip surface 44A of the tip portion 40A extends above the axial outer end surface 42B of the tip portion 40B, and the entire tip surface 44B of the tip portion 40B extends beyond the tip portion.
  • the tip portions 40A and 40B cross each other in an X shape so as to extend over the axial outer end surface 42A of 40A. In this case, it becomes easy to secure the range D1 in which the required bonding area can be secured with a relatively long distance. Further, in this case, the laser beam 110 can be reliably irradiated in the circumferential direction to the range between the tip surface 44A of the tip portion 40A and the tip surface 44B of the tip portion 40B (range on the intersection P0 side).
  • FIG. 9 is a diagram showing the relationship between the laser wavelength and the laser absorptivity (hereinafter also simply referred to as "absorptivity”) for solids of various materials.
  • absorptivity hereinafter also simply referred to as "absorptivity”
  • FIG. 9 the horizontal axis represents the wavelength ⁇ and the vertical axis represents the absorptance. is shown.
  • a green laser is used instead of an infrared laser.
  • the green laser is a concept that includes not only a laser with a wavelength of 532 nm, that is, an SHG (Second Harmonic Generation) laser, but also a laser with a wavelength close to 532 nm.
  • a laser with a wavelength of 0.6 ⁇ m or less, which does not belong to the green laser category may be used.
  • a wavelength related to a green laser can be obtained by converting a fundamental wavelength produced by, for example, a YAG laser or YVO4 laser through an oxide single crystal (for example, LBO: lithium triborate).
  • the characteristic that the green laser has a higher absorption rate than the infrared laser is remarkable in the case of copper. I can confirm. Therefore, even when the material of the linear conductor 60 of the coil piece 52 is other than copper, welding by the green laser may be realized.
  • FIG. 10 is an explanatory diagram of a change in absorption rate during welding.
  • the abscissa represents the laser power density and the ordinate represents the laser absorptance of copper, showing a characteristic 100G for a green laser and a characteristic 100R for an infrared laser.
  • FIG. 10 shows points P100 and P200 at which copper melting starts in the case of a green laser and in the case of an infrared laser, and a point P300 at which a keyhole is formed.
  • the green laser can start the melting of copper with a lower laser power density than the infrared laser.
  • the green laser has a higher absorptance at the point P300 where the keyhole is formed and an absorptance at the start of irradiation (that is, the laser power density) than the infrared laser.
  • the difference from the absorption rate at 0) is small.
  • the change in absorptance during welding is about 80%
  • the change in absorptance during welding is about 40%, which is about half be.
  • the change (head) in the absorption rate during welding is relatively large at about 80%, so the keyhole becomes unstable and the welding depth and width vary, and the molten pool is disturbed (for example, , spatter, etc.) are likely to occur.
  • the change in absorption rate (drop) during welding is relatively small at about 40%, so the keyhole is less likely to become unstable, and the welding depth and welding width do not vary and the molten pool Disturbance (for example, spatter, etc.) hardly occurs.
  • the spatter is metal particles or the like that are scattered by irradiation with a laser or the like.
  • FIG. 11B is an image diagram of a keyhole and the like when an infrared laser is used, 1100 indicates a weld bead, 1102 indicates a molten pool, and 1104 indicates a keyhole. Also, an arrow R1116 schematically indicates a mode of gas release. An arrow R110 schematically shows how the irradiation position of the infrared laser is moved due to the small beam diameter.
  • FIG. 11A is an image diagram of a keyhole, etc., when a green laser is used, and the meanings of the symbols are as described above with reference to FIG. 11B.
  • FIG. 11A it can be easily understood as an image that the keyhole is stabilized and gas escape is improved due to the expansion of the beam diameter.
  • the absorption rate is relatively high as described above, and the beam diameter can be made relatively large.
  • the movement locus (irradiation time) of the irradiation position required to obtain the range D2 can be relatively short (shortened).
  • FIG. 12 is an explanatory diagram of a welding method using a green laser according to this embodiment.
  • the horizontal axis represents time and the vertical axis represents laser output, schematically showing the time-series waveform of laser output during welding.
  • welding is achieved by green laser pulse irradiation with a laser output of 3.8 kW.
  • pulse oscillation of the laser oscillator is realized so that the laser output is 3.8 kW for 10 msec, and after an interval of 100 msec, pulse oscillation of the laser oscillator is again realized so that the laser output is 3.8 kW for 10 msec.
  • one pulse irradiation pulse irradiation of 10 msec
  • one pulse irradiation that can be performed by one pulse oscillation in this manner is also referred to as "one pass”. Note that in FIG.
  • FIG. 12 shows a pulse waveform 130R related to pulse irradiation in the case of an infrared laser.
  • the output of the laser oscillator is low (for example, a maximum of 400 W during continuous irradiation), and the high output required to ensure deep penetration (for example, a high output of 3.0 kW or more). difficult to obtain. That is, since the green laser is generated through a wavelength conversion crystal, such as an oxide single crystal, as described above, the output power drops as it passes through the wavelength conversion crystal. For this reason, if it is attempted to continuously irradiate the laser beam of the green laser, it is not possible to obtain the high output necessary for ensuring deep penetration.
  • the high output for example, a high laser output of 3.0 kW or more
  • the high output for example, a high laser output of 3.0 kW or more
  • pulse irradiation enables a high output of, for example, 3.0 kW or more.
  • pulse irradiation is realized by accumulating continuous energy for increasing peak power and pulsing.
  • the range D1 in the circumferential direction of one welding target location 90 is relatively wide as in this embodiment, multiple pulse oscillations may be realized for the one welding target location.
  • two or more passes of irradiation with a relatively high laser output may be performed on the one welding target location.
  • a relatively high laser output for example, a laser output of 3.0 kW or more
  • the interval is a specific value of 100 msec in FIG. 12, the interval is arbitrary and may be minimized within a range in which the required high output is ensured. Also, in FIG. 12, the laser output is a specific value of 3.8 kW, but the laser output may be appropriately changed as long as it is 3.0 kW or more within a range in which the required welding depth is ensured.
  • FIG. 12 also shows a pulse waveform 130R when the infrared laser is continuously irradiated for a relatively long time of 130 msec with a laser output of 2.3 kW.
  • an infrared laser unlike a green laser, continuous irradiation is possible with a relatively high laser output (2.3 kW).
  • a relatively long movement trajectory of the irradiation position (continuous irradiation time) including meandering is required in order to obtain the required melt width. , about 312 J, which is significantly higher than the heat input for the green laser shown in FIG. 12, which is about 80 J (for two passes).
  • the material (copper in this example) of the linear conductor 60 of the coil piece 52 is reduced as compared with the case of using an infrared laser. Welding with a laser beam having a high absorption rate becomes possible.
  • the movement locus (time) of the irradiation position required to obtain the required fusion width can be relatively short (small). That is, due to the increased keyhole per pulse due to the larger beam diameter, fewer pulses are required to obtain the required melt width. As a result, it is possible to secure the required bonding area between the coil pieces 52 with a relatively small amount of heat input.
  • the welding target by performing two or more passes of green laser irradiation on one welding target location, even when the circumferential range D1 of the welding target location 90 is relatively wide, the welding target It becomes easier to ensure deep penetration over the entire portion 90, and high-quality welding can be achieved.
  • the tip portions 40A and 40B of the coil pieces 52A and 52B cross each other in an X shape when viewed in the radial direction.
  • a non-contact surface 409 continuous with the contact surface 401 is formed on the upper side of the .
  • the non-contact surface 409 can cause reflection of the laser beam 110 and compromise the reliability of the weld.
  • Such reflection on the non-contact surface 409 becomes remarkable in the case of an infrared laser with a low absorption rate as described above. Note that such a non-contact surface 409 does not occur in the comparative example shown in FIG. 8, as described above.
  • the green laser having a high absorptivity is used for welding, so that the reflection of the laser beam 110 on the non-contact surface 409 is suppressed.
  • the laser beam 110 can be irradiated in such a manner that a molten pool is also formed on the non-contact surface 409, and the non-contact surface 409 continues to the contact surface 401. A weld can be formed.
  • the laser output during one pass may be substantially constant, as shown in FIG.
  • FIG. 13 is a schematic diagram showing an example of a mode in which the laser output (and welding heat input) for one pass changes according to the irradiation position.
  • a change characteristic 150L of welding heat input according to position is schematically shown.
  • the amount of heat input for one pass as a whole is represented by an area Q14.
  • one pulse oscillation ends.
  • the irradiation position may be changed until it moves to position P13, which is slightly further away from position P12. During this time, a slight welding heat input occurs due to the residual laser power (see Q14 in FIG. 13).
  • the change in irradiation position may be terminated when the irradiation position reaches the position P12 or a position immediately preceding it (not shown).
  • the laser output rises to a predetermined value (3.8 kW as an example in this example) at the position P10, but until the actual laser output reaches the predetermined value, welding heat input does not increase abruptly up to its maximum value. Therefore, the welding heat input gradually increases from the position P10 to the position P11, as indicated by the change characteristic 150L in FIG. At position P12, the laser output is instantaneously lowered to 0, but the welding heat input is maintained at the maximum value until just before this point.
  • a predetermined value 3.8 kW as an example in this example
  • Such an irradiation mode can be applied in various modes to the range D1 related to the welding target location 90 described above.
  • the range D1 related to the welding target location 90 described above is covered by one pass according to the irradiation mode shown in FIG. It may be included in a section or a section from position P11 to position P12 or position P13.
  • the above-described ranges D11 and D12 in the welding target location 90 are symmetrical with respect to the intersection point P0 when viewed in the radial direction, as shown in FIG. Therefore, in the present embodiment, the range D1 related to the welding target portion 90 is preferably covered by two passes.
  • the position P10 or P11 may correspond to the intersection P3, and the position P12 or P13 may correspond to the intersection P0.
  • the position P10 or P11 may correspond to the intersection P4, and the position P12 or P13 may correspond to the intersection P0.
  • each of the range D11 and the range D12 can be welded in a mode having an equivalent bonding area.
  • the position P10 or P11 may correspond to the intersection P0, and the position P12 or P13 may correspond to the intersection P3.
  • the position P10 or P11 may correspond to the intersection P0, and the position P12 or P13 may correspond to the intersection P4.
  • each of the range D11 and the range D12 can be welded in a mode having an equivalent bonding area.
  • the irradiation range in the first pass that is, the range of movement of the irradiation position
  • the irradiation range in the second pass may overlap within a range centered on the intersection P0. As a result, it becomes easy to reliably secure the necessary bonding area at the intersection P0.
  • FIG. 14 is a schematic diagram showing another example of a mode in which the welding heat input in one pass changes according to the irradiation position. Similar to FIG. A change characteristic 150L of welding heat input according to the irradiation position is schematically shown.
  • one pass starts from position P10, which is the irradiation start position. That is, one pulse oscillation is started from the position P10.
  • the laser output rises to a predetermined value (3.8 kW as an example in this example) at position P10 (see arrow R140).
  • the irradiation position is linearly changed from position P10 to position P12. While the irradiation position is from position P10 to position P14, the laser output is maintained at a predetermined value (3.8 kW as an example in this example) (see arrow R141).
  • the laser output is stepped down from a predetermined value (3.8 kW as an example in this example) to 0 while the irradiation position further changes (see arrow R143). Specifically, when the irradiation position reaches the position P14, the laser output is lowered by one step, and when the irradiation position reaches the position P12, the laser output is further lowered by one step, When a certain position P15 is reached, the laser power is ramped down to zero. Note that even when the irradiation position reaches the position P15, the irradiation position may be changed until it moves to a position P16 that is slightly further away from the position P15.
  • the change of the irradiation position may be terminated when the irradiation position reaches the position P15.
  • Such an irradiation mode can also be applied in various modes to the range D1 related to the welding target location 90 described above.
  • range D1 related to the welding target location 90 described above may be included in the section from the position P10 to the position P15 in the first pass.
  • the above-described ranges D11 and D12 in the welding target location 90 are symmetrical with respect to the intersection point P0 when viewed in the radial direction, as shown in FIG. Therefore, in the present embodiment, the range D1 related to the welding target portion 90 is preferably covered by two passes.
  • the position P10 in the first pass, the position P10 may correspond to the intersection P3, and the position P15 may correspond to the intersection P0.
  • the position P10 in the second pass, the position P10 may correspond to the intersection P4, and the position P15 may correspond to the intersection P0.
  • each of the range D11 and the range D12 can be welded in a mode having an equivalent bonding area.
  • the position P10 may correspond to the intersection P0 and the position P15 may correspond to the intersection P3.
  • the position P10 may correspond to the intersection P0, and the position P15 may correspond to the intersection P4.
  • each of the range D11 and the range D12 can be welded in a mode having an equivalent bonding area.
  • the irradiation range in the first pass and the irradiation range in the second pass may overlap in a range around the intersection P0. As a result, it becomes easy to reliably secure the necessary bonding area at the intersection P0.
  • FIG. 15 is a flowchart schematically showing the flow of the manufacturing method of the stator 21 of the motor 1.
  • this manufacturing method includes an assembling step (step S150) of assembling the coil pieces 52 to the stator core 22.
  • this manufacturing method includes a joining step (step S152) of joining tip portions 40 of coil pieces 52 to each other by laser welding after the assembling step. The method of joining the tip portions 40 of the coil pieces 52 to each other by laser welding is as described above.
  • the joining step is performed in such a manner that the tip portions 40 of the coil pieces 52 forming each pair intersect with each other in an X-shaped manner as shown in FIG. It includes a setting step (step S1521) of setting so as to abut.
  • a jig or the like is used to keep the tip portions 40 of the paired coil pieces 52 in contact with each other in an X-shaped crossing manner in the radial direction. you can
  • the joining process includes an irradiation process (step S1522) of irradiating the welding target location 90 with the laser beam 110 as described above.
  • the setting process and the irradiation process may be performed as a set for each of a predetermined number of one or more welding target points 90, or collectively for all the welding target points 90 related to one stator 21. may be performed. This manufacturing method may be terminated by completing the stator 21 by appropriately performing various necessary processes after the bonding process.
  • the distal end portions 40A and 40B are configured so that, when viewed in the radial direction, the entire distal end surface 44A of the distal end portion 40A is positioned so that the axially outer end surface 42B of the distal end portion 40B is on the upper side. and the entire tip surface 44B of the tip portion 40B crosses over the axial outer end surface 42A of the tip portion 40A upward, but is not limited thereto.
  • the entire tip surface 44B of the tip portion 40B crosses over the axial outer end surface 42A of the tip portion 40A upward, but is not limited thereto.
  • the distal end portions 40A and 40B are configured so that, when viewed in the radial direction, the entire distal end surface 44A of the distal end portion 40A is positioned so that the axially outer end surface 42B of the distal end portion 40B is on the upper side. and the entire tip surface 44B of the tip portion 40B crosses over the axial outer end surface 42A of the tip portion 40A upward, but is not limited thereto
  • the edges of the tip surfaces 440A and 440B on the contact surface 401 side may also be irradiated with the laser beam 110 .
  • the irradiation direction of the laser beam 110 is substantially parallel to the contact surface 401.
  • the angle ⁇ is relatively small as shown in FIG. (For example, ⁇ 10 degrees) may be shifted.
  • a mirror (not shown) is used to change the angle from the irradiation source of the laser beam 110 to weld a plurality of locations.
  • Cheap the angle ⁇ is greater than 0, similarly to the case where the angle ⁇ is 0, the irradiation width of the laser beam is the above-described C-shaped side (outer side in the axial direction) when viewed in a direction parallel to the contact surface 401.
  • the contact surface 401 side of the end surfaces 42A and 42B), the non-contact surface 409A or 409B, and the contact surface 401 may be included.
  • the irradiation width including sides of the C-shape means an irradiation range having a width corresponding to the irradiation width of the laser beam as shown in FIG. 17, and the irradiation range of the laser beam extending in the irradiation direction ( indicated by a hatched area R16 in ) includes a C-shaped side and the like.
  • the angle ⁇ (and the range D2 described above) is such that the laser beam 110 is projected onto the opposite outer side surfaces 405 and 406 (see FIG.
  • Reference Signs List 1 motor (rotary electric machine), 24 stator coil, 52 coil piece, 40 tip (end), 401 contact surface, 409 non-contact Surfaces 42 (42A, 42B)... Axial outer end faces (axial outer end faces) 44A, 44B... Tip faces 22... Stator core 110... Laser beam

Abstract

ステータコイルの断面矩形状のコイル片をステータコアに組み付ける組付工程と、組付工程の後に、コイル片の端部同士をレーザ溶接により接合する接合工程とを含み、接合工程は、端部同士を、径方向に視てX字状に交差させつつ径方向に当接させるセット工程と、セット工程の後、端部同士の当接面における径方向に視てC字状の辺に向けて、0.6μm以下の波長を有するレーザビームを軸方向に照射する照射工程とを含み、照射工程は、C字状の辺の部分とともに、端部における当接面から連続する軸方向外側の非当接面の部分を溶融させる、回転電機用ステータ製造方法が開示される。

Description

回転電機用ステータ製造方法
 本開示は、回転電機用ステータ製造方法に関する。
 回転電機のステータコイルを形成するための一のコイル片と他の一のコイル片の端部同士を当接させ、当接させた端部に係る溶接対象箇所に、ループ状に照射位置が移動する態様でレーザビームを照射するステータの製造方法が知られている(例えば、特許文献1参照))。
特開2018-20340号公報
 上記の特許文献1に記載されるような従来技術は、当接されるコイル片の端部同士の側面(レーザビームの照射源に向く表面)がなめらかに連続するように、コイル片の端部が径方向に視てC字状(軸方向外側に凸の円弧面)に加工されており、加工コストの観点からコスト低減の余地がある。
 そこで、1つの側面では、本開示は、比較的低い加工コストでコイル片の端部同士を適切に接合可能とすることを目的とする。
 本開示の一局面によれば、ステータコイルの断面矩形状のコイル片をステータコアに組み付ける組付工程と、
 前記組付工程の後に、前記コイル片の端部同士をレーザ溶接により接合する接合工程とを含み、
 前記接合工程は、
 前記端部同士を、径方向に視てX字状に交差させつつ径方向に当接させるセット工程と、
 前記セット工程の後、前記端部同士の当接面における径方向に視てC字状の辺に向けて、0.6μm以下の波長を有するレーザビームを軸方向に照射する照射工程とを含み、
 前記照射工程は、前記C字状の辺の部分とともに、前記端部における前記当接面から連続する軸方向外側の非当接面の部分を溶融させる、回転電機用ステータ製造方法が提供される。
 本開示によれば、比較的低い加工コストでコイル片の端部同士を適切に接合することが可能となる。
一実施例によるモータの断面構造を概略的に示す断面図である。 ステータコアの単品状態の平面図である。 ステータコアに組み付けられる1対のコイル片を模式的に示す図である。 一のコイル片の概略正面図である。 互いに接合されたコイル片の先端部及びその近傍を示す図である。 照射側から視た溶接対象箇所90を概略的に示す図である。 溶接対象箇所を通る図5のラインA-Aに沿った断面図である。 溶接対象箇所を通る図5のラインB-Bに沿った断面図である。 溶接対象箇所を通る図5のラインC-Cに沿った断面図である。 比較例による互いに接合されたコイル片の先端部及びその近傍を示す図である。 レーザ波長と各種材料の個体に対するレーザ吸収率との関係を示す図である。 溶接中の吸収率の変化態様の説明図である。 グリーンレーザを用いた場合のキーホール等のイメージ図である。 赤外レーザを用いた場合のキーホール等のイメージ図である。 本実施例によるグリーンレーザによる溶接方法の説明図である。 一のパスに係るレーザ出力が照射位置に応じて変化する態様の一例を示す概略図である。 一のパスに係るレーザ出力が照射位置に応じて変化する態様の他の一例を示す概略図である。 モータのステータの製造方法の流れを概略的に示すフローチャートである。 変形例の説明図である。 レーザビームの照射範囲(照射方向)の補足的な説明図である。
 以下、添付図面を参照しながら各実施例について詳細に説明する。なお、図面の寸法比率はあくまでも一例であり、これに限定されるものではなく、また、図面内の形状等は、説明の都合上、部分的に誇張している場合がある。なお、本明細書において、「所定」とは、「予め規定された」という意味で用いられている。
 図1は、一実施例によるモータ1(回転電機の一例)の断面構造を概略的に示す断面図である。
 図1には、モータ1の回転軸12が図示されている。以下の説明において、軸方向とは、モータ1の回転軸(回転中心)12が延在する方向を指し、径方向とは、回転軸12を中心とした径方向を指す。従って、径方向外側とは、回転軸12から離れる側を指し、径方向内側とは、回転軸12に向かう側を指す。また、周方向とは、回転軸12まわりの回転方向に対応する。
 モータ1は、例えばハイブリッド車両や電気自動車で使用される車両駆動用のモータであってよい。ただし、モータ1は、他の任意の用途に使用されるものであってもよい。
 モータ1は、インナーロータ型であり、ステータ21がロータ30の径方向外側を囲繞するように設けられる。ステータ21は、径方向外側がモータハウジング10に固定される。
 ロータ30は、ステータ21の径方向内側に配置される。ロータ30は、ロータコア32と、ロータシャフト34とを備える。ロータコア32は、ロータシャフト34の径方向外側に固定され、ロータシャフト34と一体となって回転する。ロータシャフト34は、モータハウジング10にベアリング14a、14bを介して回転可能に支持される。なお、ロータシャフト34は、モータ1の回転軸12を画成する。
 ロータコア32は、例えば円環状の磁性体の積層鋼板から形成される。ロータコア32の内部には、永久磁石321が挿入される。永久磁石321の数や配列等は任意である。変形例では、ロータコア32は、磁性粉末が圧縮して固められた圧粉体により形成されてもよい。
 ロータコア32の軸方向の両側には、エンドプレート35A、35Bが取り付けられる。エンドプレート35A、35Bは、ロータコア32を支持する支持機能の他、ロータ30のアンバランスの調整機能(切削等されることでアンバランスを無くす機能)を有してよい。
 ロータシャフト34は、図1に示すように、中空部34Aを有する。中空部34Aは、ロータシャフト34の軸方向の全長にわたり延在する。中空部34Aは、油路として機能してもよい。例えば、中空部34Aには、図1にて矢印R1で示すように、軸方向の一端側から油が供給され、ロータシャフト34の径方向内側の表面を伝って油が流れることで、ロータコア32を径方向内側から冷却できる。また、ロータシャフト34の径方向内側の表面を伝う油は、ロータシャフト34の両端部に形成される油穴341、342を通って径方向外側へと噴出され(矢印R5、R6)、コイルエンド220A、220Bの冷却に供されてもよい。
 なお、図1では、特定の構造のモータ1が示されるが、モータ1の構造は、溶接により接合されるステータコイル24(後述)を有する限り、任意である。従って、例えば、ロータシャフト34は、中空部34Aを有さなくてもよいし、中空部34Aよりも有意に内径の小さい中空部を有してもよい。また、図1では、特定の冷却方法が開示されているが、モータ1の冷却方法は任意である。従って、例えば、中空部34A内に挿入される油導入管が設けられてもよいし、モータハウジング10内の油路から径方向外側からコイルエンド220A、220Bに向けて油が滴下されてもよい。
 また、図1では、ロータ30がステータ21の内側に配されたインナーロータ型のモータ1であるが、他の形態のモータに適用されてもよい。例えば、ステータ21の外側にロータ30が同心に配されたアウターロータ型のモータや、ステータ21の外側及び内側の双方にロータ30が配されたデュアルロータ型のモータ等に適用されてもよい。
 次に、図2以降を参照して、ステータ21に関する構成を詳説する。
 図2は、ステータコア22の単品状態の平面図である。図3は、ステータコア22に組み付けられる1対のコイル片52を模式的に示す図である。図3では、ステータコア22の径方向内側を展開した状態で、1対のコイル片52とスロット220との関係が示される。また、図3では、ステータコア22が点線で示され、スロット220の一部については図示が省略されている。
 ステータ21は、ステータコア22と、ステータコイル24とを含む。
 ステータコア22は、例えば円環状の磁性体の積層鋼板からなるが、変形例では、ステータコア22は、磁性粉末が圧縮して固められた圧粉体により形成されてもよい。なお、ステータコア22は、周方向で分割される分割コアにより形成されてもよいし、周方向で分割されない形態であってもよい。ステータコア22の径方向内側には、ステータコイル24が巻回される複数のスロット220が形成される。具体的には、ステータコア22は、図2に示すように、円環状のバックヨーク22Aと、バックヨーク22Aから径方向内側に向かって延びる複数のティース22Bとを含み、周方向で複数のティース22B間にスロット220が形成される。スロット220の数は任意であるが、本実施例では、一例として、48個である。
 ステータコイル24は、U相コイル、V相コイル、及びW相コイル(以下、U、V、Wを区別しない場合は「相コイル」と称する)を含む。各相コイルの基端は、入力端子(図示せず)に接続されており、各相コイルの末端は、他の相コイルの末端に接続されてモータ1の中性点を形成する。すなわち、ステータコイル24は、スター結線される。ただし、ステータコイル24の結線態様は、必要とするモータ特性等に応じて、適宜、変更してもよく、例えば、ステータコイル24は、スター結線に代えて、デルタ結線されてもよい。
 各相コイルは、複数のコイル片52を接合して構成される。図4は、一のコイル片52の概略正面図である。コイル片52は、相コイルを、組み付けやすい単位(例えば2つのスロット220に挿入される単位)で分割したセグメントコイルの形態である。コイル片52は、断面矩形状の線状導体(平角線)60を、絶縁被膜62で被覆してなる。本実施例では、線状導体60は、一例として、銅により形成される。ただし、変形例では、線状導体60は、鉄のような他の導体材料により形成されてもよい。
 コイル片52は、ステータコア22に組み付ける前の段階では、一対の直進部50と、当該一対の直進部50を連結する連結部54と、を有した略U字状に成形されてよい。コイル片52をステータコア22に組み付ける際、一対の直進部50は、それぞれ、スロット220に挿入される(図3参照)。これにより、連結部54は、図3に示すように、ステータコア22の軸方向他端側において、複数のティース22B(及びそれに伴い複数のスロット220)を跨ぐように周方向に延びる。連結部54が跨ぐスロット220の数は、任意であるが、図3では3つである。また、直進部50は、スロット220に挿入された後は、図4において、二点鎖線で示すように、その途中で周方向に屈曲される。これにより、直進部50は、スロット220内において軸方向に延びる脚部56と、ステータコア22の軸方向一端側において周方向に延びる渡り部58と、になる。
 なお、図4では、一対の直進部50は、互いに離れる方向に屈曲するが、これに限られない。例えば、一対の直進部50は、互いに近づく方向に屈曲されてもよい。また、ステータコイル24は、3相の相コイルの末端同士を連結して中性点を形成するための中性点用コイル片等も有することがある。
 一つのスロット220には、図4に示すコイル片52の脚部56が複数、径方向に並んで挿入される。従って、ステータコア22の軸方向一端側には、周方向に延びる渡り部58が複数、径方向に並ぶ。図3に示すように、一つのスロット220から飛び出て周方向第1側(例えば時計回りの向き)に延びる一のコイル片52の渡り部58は、他のスロット220から飛び出て周方向第2側(例えば反時計回りの向き)に延びる他の一のコイル片52の渡り部58に接合される。
 本実施例では、一例として、1つのスロット220に6つのコイル片52が組み付けられる。以下では、径方向で最も外側のコイル片52から順に、第1ターン、第2ターン、第3ターンとも称する。この場合、第1ターンのコイル片52と第2ターンのコイル片52とは、後述の接合工程により先端部40同士が接合され、第3ターンのコイル片52と第4ターンのコイル片52とは、後述の接合工程により先端部40同士が接合され、第5ターンのコイル片52と第6ターンのコイル片52とは、後述の接合工程により先端部40同士が接合される。
 ここで、コイル片52は、上述したとおり、絶縁被膜62で被覆されているが、先端部40だけは、当該絶縁被膜62が除去される。これは、先端部40にて他のコイル片52との電気的接続を確保するためである。
 図5は、互いに接合されたコイル片52の先端部40及びその近傍を示す図である。なお、図5には、溶接対象箇所90の周方向の範囲D1が模式的に示される。図6は、照射側から視た溶接対象箇所90を概略的に示す図である。図7A~図7Cは、それぞれ、溶接対象箇所90を通る図5のラインA-A、ラインB-B、及びラインC-Cに沿った断面図である。図7A~図7Cには、溶接時に形成される溶融池の範囲が、ハッチング領域1102で模式的に示されている。図8は、図5に示した本実施例の構成に対する対比として、比較例による互いに接合されたコイル片52’の先端部40’及びその近傍を示す図である。
 図5には、軸方向に沿ったZ方向が定義されている。以下では、説明上、Z方向Z1側(すなわちレーザビーム110の照射側)を「上側」とし、Z方向Z2側を「下側」とする。また、図6には、径方向に沿ったX方向と、X方向に沿ったX1側とX2側とが定義されている。
 コイル片52の先端部40を接合する際には、一のコイル片52と他の一のコイル片52は、それぞれの先端部40が、図5に示すビュー(当接面401に対して垂直な方向視、すなわち径方向に視て)でX字状をなす態様で交差しつつ、径方向に当接される。以下では、説明上、区別する際には、一のコイル片52に係る構成は、先端部40Aといった具合に、符号の後ろに記号“A”を付し、他の一のコイル片52に係る構成は、先端部40Bといった具合に、符号の後ろに記号“B”を付す場合がある。
 この場合、溶接対象箇所90は、図6に範囲D1で示すように、当接面401に沿って直線状に延在する。すなわち、溶接対象箇所90は、レーザビーム110の照射側から視て(図5の矢印W参照)、図7A~図7Cに示す範囲D2の幅で、範囲D1にわたり直線状に延在する。なお、図5に示す例では、当接面401は、径方向に視て、ひし形の形態であり、ひし形の上側の2辺が、下向きのC字状の形態をなし、ひし形の下側の2辺が、上向きのC字状の形態をなす。
 本実施例では、図5に示すビュー(径方向に視て)で、一のコイル片52と他の一のコイル片52は、上述したように、X字状をなす態様で交差しており、溶接対象箇所90は、交差点P0を中心とした両側に延在する。具体的には、溶接対象箇所90は、図5に示すビュー(径方向に視て)で、双方の先端部40の軸方向外側端面42A、42Bが形成するC字状の辺(ひし形の上側の2辺)に沿って設定される。具体的には、溶接対象箇所90は、図5に示すビュー(径方向に視て)で、コイル片52Aの先端部40Aの軸方向外側端面42A(上側を向く端面)と、コイル片52Bの先端部40Bの軸方向内側端面43B(下側を向く端面)との交点をP1とし、コイル片52Bの先端部40Bの軸方向外側端面42B(上側を向く端面)と、コイル片52Aの先端部40Aの軸方向内側端面43A(下側を向く端面)との交点をP2としたとき、交点P1から交差点P0までの範囲D11と、交点P2から交差点P0までの範囲D12内に設定される。
 この場合、溶接対象箇所90は、好ましくは、交点P1付近及び交点P2付近を除く部分(例えば交点P3から交点P4までの区間)である。これは、交点P1付近及び交点P2付近では、十分な溶接深さ(図5の寸法L1参照)を確保し難いためである。溶接対象箇所90の周方向の範囲D1は、コイル片52間での必要な接合面積や必要な溶接強度等が確保されるように適合されてよい。
 本実施例では、コイル片52の先端部40を接合する際の接合方法としては、溶接が利用される。そして、本実施例では、溶接方法としては、TIG溶接に代表されるアーク溶接ではなく、レーザビーム源を熱源とするレーザ溶接が採用される。TIG溶接に代えて、レーザ溶接を用いることで、コイルエンド220A、220Bの軸方向の長さを低減できる。すなわち、TIG溶接の場合は、当接させるコイル片の先端部同士を軸方向外側に屈曲させて軸方向に延在させる必要があるのに対して、レーザ溶接の場合は、かかる屈曲の必要性がなく、図5に示すように、当接させるコイル片52の先端部40同士を周方向に延在させた状態で溶接を実現できる。これにより、当接させるコイル片52の先端部40同士を軸方向外側に屈曲させて軸方向に延在させる場合に比べて、コイルエンド220A、220Bの軸方向の長さを低減できる。
 レーザ溶接では、図5に模式的に示すように、当接された2つの先端部40における溶接対象箇所90に溶接用のレーザビーム110を当てる。なお、レーザビーム110の照射方向(伝搬方向)は、軸方向に略平行であり、当接された2つの先端部40の軸方向外側端面42A、42Bに、軸方向外側から向かう方向である。レーザ溶接の場合は、局所的に加熱できるため、先端部40及びその近傍のみを加熱することができ、絶縁被膜62の損傷(炭化)等を効果的に低減できる。その結果、適切な絶縁性能を維持したまま、複数のコイル片52を電気的に接続できる。
 本実施例では、レーザビーム110は、範囲D11と範囲D12の接続位置、すなわち交差点P0において、図7Aに示すように、コイル片52Aの先端部40の軸方向外側端面42Aにおける当接面401側の縁部(C字状の辺を形成する縁部)と、コイル片52Bの先端部40の軸方向外側端面42Bにおける当接面401側の縁部(C字状の辺を形成する縁部)とを、溶融させるように照射される。これにより、図7Aに示すような、交差点P0において、レーザビーム110により必要な接合面積を確保することが容易となる。
 また、本実施例では、レーザビーム110は、図7B及び図7Cに示すように、範囲D11と範囲D12のそれぞれにおいて、軸方向外側端面42A、42Bにおける当接面401側の縁部(C字状の辺の部分)とともに、当接面401から連続する軸方向外側の非当接面409の部分を溶融させる。上述したようにコイル片52A、52Bの先端部40A、40B同士を径方向に視てX字状に交差させる場合、先端部40A、40Bのそれぞれにおいて、当接面401の上側に、当該当接面401に連続する非当接面409A、409Bが形成される。本実施例では、このような非当接面409A、409Bを利用して溶接を実現することで、溶接部の信頼性を高めることができる。なお、このような、非当接面409A、409Bは、後出する図8に示す比較例では発生しない。
 例えば、図6の範囲D11に対しては、図7Bに溶融池のハッチング領域1102で示すように、レーザビーム110は、先端部40Aの軸方向外側端面42Aにおける当接面401側の縁部(C字状の辺を形成する縁部)と、先端部40Bの非当接面409における当接面401側の縁部(当接面401との境界に係る縁部)とを、溶融させるように照射される。これにより、図7Bに示すような、当接面401において軸方向の段差を有する溶接対象箇所90に対しても、レーザビーム110により必要な接合面積を確保することが容易となる。
 同様に、図6の範囲D12に対しては、図7Cに溶融池のハッチング領域1102で示すように、レーザビーム110は、先端部40Bの軸方向外側端面42Bにおける当接面401側の縁部(C字状の辺を形成する縁部)と、先端部40Aの非当接面409における当接面401側の縁部(当接面401との境界に係る縁部)とを、溶融させるように照射される。これにより、図7Cに示すような、当接面401において軸方向の段差を有する溶接対象箇所90に対しても、レーザビーム110により必要な接合面積を確保することが容易となる。
 本実施例では、溶接対象箇所90の径方向の範囲D2は、図7A~図7Cに示すように、2つのコイル片52の先端部40同士の当接面401を中心とする。溶接対象箇所90の径方向の範囲D2は、レーザビーム110の径(ビーム径)に対応してよい。すなわち、レーザビーム110は、照射位置が径方向に実質的に変化することなく周方向に沿って直線的に変化する態様で、照射される。更に換言すると、レーザビーム110は、照射位置が当接面401に対して平行な直線状に変化するように移動される。これにより、例えばループ状(螺旋状)やジグザク状(蛇行)等に照射位置を変化させる場合に比べて、効率的に、直線状の溶接対象箇所90にレーザビーム110を照射できる。なお、範囲D11においては、当接面401に対してX方向X1側からレーザビーム110を照射してもよいし、範囲D12においては、当接面401に対してX方向X2側からレーザビーム110を照射してもよい。
 ところで、図8に示すような比較例では、軸方向外側端面42’が凸の円弧面に加工された先端部40’同士を接合する際には、一の先端部40’と他の一の先端部40’は、図8に示すビュー(当接面401に対して垂直な方向視)でC字状をなす態様で、突き合わせられる。
 このような比較例の場合、先端部40’の軸方向外側端面42’が凸の円弧面に加工されるので、溶接対象箇所90’において軸方向の凹凸を低減できるものの、加工(例えばプレスによる打ち抜き加工)が必要であるがゆえに、加工コストの観点から不利である。
 これに対して、本実施例によれば、先端部40は、比較例の先端部40’とは異なり、軸方向外側端面42A、42Bが凸の円弧面に加工されない。すなわち、先端部40は、径方向に視て略直角をなして連続する軸方向外側端面42A、42B及び先端面44を有する。従って、本実施例による先端部40は、実質的に、絶縁被膜62を除去するだけで形成可能であるので、比較例とは異なり、製造コストの低減を図ることができる。なお、略直角とは、完全な直角のみならず、加工誤差等により生じる誤差(完全な直角に対する誤差)を許容する概念である。
 また、本実施例によれば、コイル片52の屈曲角度αを小さくするほど、交点P3(交点P4も同様)が交差点P0から離れても(すなわち範囲D11が長くなっても)比較的大きい寸法L1を確保することが容易となる。比較的大きい寸法L1を確保できることは、比較的大きい溶接深さ(及びそれに伴い接合面積)を確保しやすくなることを意味する。これにより、必要な接合面積を確保できる範囲D1の距離を長くすることが容易である。また、コイル片52の屈曲角度αが小さくなるほど、コイルエンド220A、220Bの軸方向の体格を低減できる。従って、本実施例によれば、コイルエンド220A、220Bの軸方向の体格を低減しつつ、十分な溶接深さを確保できる範囲D1の距離を長くすることが可能である。なお、必要な接合面積された範囲D1の距離が長いほど溶接部の信頼性が高くなる傾向がある。
 ここで、本実施例では、径方向に視て、先端部40Aの先端面44A全体が先端部40Bの軸方向外側端面42Bを上側に越え、かつ、先端部40Bの先端面44B全体が先端部40Aの軸方向外側端面42Aを上側に越える態様で、先端部40A、40B同士をX字状に交差させる。この場合、必要な接合面積を確保できるような範囲D1を比較的長い距離で確保することが容易となる。また、この場合、レーザビーム110を周方向で先端部40Aの先端面44Aと先端部40Bの先端面44Bとの間の範囲(交差点P0側の範囲)に確実に照射できる。
 図9は、レーザ波長と各種材料の個体に対するレーザ吸収率(以下、単に「吸収率」とも称する)との関係を示す図である。図9では、横軸に波長λを取り、縦軸に吸収率を取り、銅(Cu)、アルミ(Al)、銀(Ag)、ニッケル(Ni)、及び鉄(Fe)の各種材料の個体に係る特性が示される。
 ところで、レーザ溶接で一般的に用いられる赤外レーザ(波長が1064nmのレーザ)は、図9にてλ2=1.06μmの点線との交点の黒丸で示すように、コイル片52の線状導体60の材料である銅に対して吸収率が約10%と低い。すなわち、赤外レーザの場合、レーザビーム110の大部分は、コイル片52で反射してしまい、吸収されない。このため、接合対象のコイル片52間での必要な接合面積を得るためには比較的大きい入熱量が必要となり、熱影響が大きく、溶接が不安定となるおそれがある。
 この点を鑑み、本実施例では、赤外レーザに代えて、グリーンレーザを利用する。なお、グリーンレーザとは、波長が532nmのレーザ、すなわちSHG(Second Harmonic Generation:第2高調波)レーザのみならず、532nmに近い波長のレーザをも含む概念である。なお、変形例では、グリーンレーザの範疇に属さない0.6μm以下の波長のレーザが利用されてもよい。グリーンレーザに係る波長は、例えばYAGレーザやYVO4レーザで生み出された基本波長を酸化物単結晶(例えば、LBO:リチウムトリボレート)に通して変換することで得られる。
 グリーンレーザの場合、図9にてλ1=0.532μmの点線との交点の黒丸で示すように、コイル片52の線状導体60の材料である銅に対して吸収率が約50%と高い。従って、本実施例によれば、赤外レーザを利用する場合に比べて、少ない入熱量で、コイル片52間での必要な接合面積を確保することが可能となる。
 なお、赤外レーザに比べてグリーンレーザの方が吸収率が高くなるという特性は、図9に示すように、銅の場合において顕著であるが、銅のみならず、他の金属材料の多くにおいて確認できる。従って、コイル片52の線状導体60の材料が銅以外の場合でもグリーンレーザによる溶接が実現されてもよい。
 図10は、溶接中の吸収率の変化態様の説明図である。図10では、横軸にレーザパワー密度を取り、縦軸に銅のレーザ吸収率を取り、グリーンレーザの場合の特性100Gと、赤外レーザの場合の特性100Rとが示される。
 図10では、グリーンレーザの場合と赤外レーザの場合における銅の溶融が開始するポイントP100、P200が示されるとともに、キーホールが形成されるポイントP300が示される。図10にポイントP100、P200にて示すように、赤外レーザに比べてグリーンレーザの方が、小さいレーザパワー密度で銅の溶融を開始させることができることが分かる。また、上述した吸収率の相違に起因して、赤外レーザに比べてグリーンレーザの方が、キーホールが形成されるポイントP300での吸収率と照射開始時の吸収率(すなわちレーザパワー密度が0のときの吸収率)との差が小さいことが分かる。具体的には、赤外レーザの場合、溶接中の吸収率の変化が約80%であるのに対して、グリーンレーザの場合、溶接中の吸収率の変化が約40%となり、約半分である。
 このように、赤外レーザの場合、溶接中の吸収率の変化(落差)が約80%と比較的大きいため、キーホールが不安定となり溶接深さや溶接幅のバラツキや溶融池の乱れ(例えば、スパッタ等)が生じやすい。これに対して、グリーンレーザの場合、溶接中の吸収率の変化(落差)が約40%と比較的小さいため、キーホールが不安定となり難く、また、溶接深さや溶接幅のバラツキや溶融池の乱れ(例えばスパッタ等)が生じ難い。なお、スパッタとは、レーザ等を照射することにより飛散する金属粒等である。
 なお、赤外レーザの場合、上述のように吸収率が低いため、ビーム径を比較的小さくする(例えばφ0.075mm)ことで、吸収率の低さを補うことが一般的である。この点も、キーホールが不安定となる要因となる。なお、図11Bは、赤外レーザを用いた場合のキーホール等のイメージ図であり、1100は、溶接ビードを示し、1102は、溶融池を示し、1104は、キーホールを示す。また、矢印R1116は、ガス抜けの態様を模式的に示す。また、矢印R110は、ビーム径が小さいことに起因して赤外レーザの照射位置が移動される様子を模式的に示す。このように、赤外レーザの場合、上述のように吸収率が低くビーム径を比較的大きくすることが難しいことに起因して、必要な溶融幅を得るために蛇行を含んだ比較的長い照射位置の移動軌跡(連続的な照射時間)が必要となる傾向がある。
 他方、グリーンレーザの場合、上述のように吸収率が比較的高いため、ビーム径を比較的大きくする(例えばφ0.1mm以上)ことが可能であり、キーホールを大きくして安定化することができる。これにより、ガス抜けが良好となり、スパッタ等の発生を効果的に低減できる。なお、図11Aは、グリーンレーザを用いた場合のキーホール等のイメージ図であり、符号の意義は図11Bを参照して上述したとおりである。グリーンレーザの場合、図11Aから、ビーム径の拡大に起因してキーホールが安定化しガス抜けが良好となる様子がイメージとして容易に理解できる。また、グリーンレーザの場合、赤外レーザの場合とは対照的に、上述のように吸収率が比較的高くビーム径を比較的大きくすることが可能であることから、必要な溶融幅(図7A~図7Cに示す溶接対象箇所90の径方向の範囲D2参照)を得るために必要な照射位置の移動軌跡(照射時間)を比較的短く(小さく)できる。
 図12は、本実施例によるグリーンレーザによる溶接方法の説明図である。図12では、横軸に時間を取り、縦軸にレーザ出力を取り、溶接の際のレーザ出力の時系列波形を模式的に示す。
 本実施例では、図12に示すように、レーザ出力3.8kWでグリーンレーザのパルス照射により溶接を実現する。図12では、10msecだけレーザ出力3.8kWとなるようにレーザ発振器のパルス発振が実現され、インターバル100msec後に、再び、10msecだけレーザ出力3.8kWとなるようにレーザ発振器のパルス発振が実現される。以下では、このようにして一回のパルス発振により可能なパルス照射(10msecのパルス照射)の1回分を、「1パス」とも称する。なお、図12では、1パス目(N=1)から3パス目(N=3)の照射がパルス波形130Gで示され、Nは、Nパス目かを表す。また、図12には、比較用として、赤外レーザの場合のパルス照射に係るパルス波形130Rが併せて示される。
 ここで、グリーンレーザの場合、レーザ発振器の出力が低く(例えば連続的な照射時は最大で400W)、深い溶け込みを確保するために必要な高出力(例えばレーザ出力3.0kW以上の高出力)を得ることが難しい。すなわち、グリーンレーザは、上述のように酸化物単結晶のような波長変換結晶を通して生成されるので、波長変換結晶を通る際に出力が低下する。このため、グリーンレーザのレーザビームを連続的に照射しようとすると、深い溶け込みを確保するために必要な高出力を得ることができない。
 この点、本実施例では、上述のように、深い溶け込みを確保するために必要な高出力(例えばレーザ出力3.0kW以上の高出力)を、グリーンレーザのパルス照射により確保する。これは、連続的な照射の場合は例えば最大で400Wしか出力できない場合でも、パルス照射であれば、例えば3.0kW以上の高出力が可能となるためである。このようにして、パルス照射は、ピークパワーを上げるための連続エネルギを蓄積してパルス発振することで実現される。本実施例のように一の溶接対象箇所90の周方向の範囲D1が比較的広い場合、当該一の溶接対象箇所に対して、複数回のパルス発振が実現されてよい。すなわち、当該一の溶接対象箇所に対して、比較的高いレーザ出力(例えばレーザ出力3.0kW以上)による2パス以上の照射が実行されてよい。これにより、上述の溶接対象箇所90の周方向の範囲D1が比較的広い場合でも、溶接対象箇所90の全体にわたり深い溶け込みを確保しやすくなり、高い品質の溶接を実現できる。
 なお、図12では、インターバルが特定の値100msecであるが、インターバルは、任意であり、必要な高出力が確保される範囲内で最小化されてよい。また、図12では、レーザ出力は特定の値3.8kWであるが、レーザ出力は、3.0kW以上であれば、必要な溶接深さが確保される範囲内で適宜変更されてよい。
 図12では、赤外レーザの場合として、レーザ出力2.3kWで、比較的長い時間である130msec間、連続的に照射される際のパルス波形130Rが併せて示される。赤外レーザの場合は、グリーンレーザとは異なり、比較的高いレーザ出力(2.3kW)で連続的な照射が可能である。ただし、上述したように、赤外レーザの場合、必要な溶融幅を得るために蛇行を含んだ比較的長い照射位置の移動軌跡(連続的な照射時間)が必要となり、この場合、入熱量は、約312Jであり、図12に示すグリーンレーザの場合の入熱量である約80J(2パスの場合)に対して、有意に大きくなる。
 このようにして、本実施例によれば、グリーンレーザを利用することで、赤外レーザを利用する場合に比べて、コイル片52の線状導体60の材料(本例では銅)に対して高い吸収率を有するレーザビームによる溶接が可能となる。これにより、必要な溶融幅(図7A~図7Cに示す溶接対象箇所90の径方向の範囲D2参照)を得るために必要な照射位置の移動軌跡(時間)を比較的短く(小さく)できる。すなわち、比較的大きいビーム径による1回のパルス発振あたりの、増加されたキーホールに起因して、必要な溶融幅を得るために必要なパルス発振回数を比較的少なくできる。この結果、比較的少ない入熱量で、コイル片52間での必要な接合面積を確保することが可能となる。
 また、本実施例によれば、一の溶接対象箇所に対して2パス以上のグリーンレーザの照射を実行することで、溶接対象箇所90の周方向の範囲D1が比較的広い場合でも、溶接対象箇所90の全体にわたり深い溶け込みを確保しやすくなり、高い品質の溶接を実現できる。
 ところで、本実施例では、上述したようにコイル片52A、52Bの先端部40A、40B同士を径方向に視てX字状に交差させるので、先端部40A、40Bのそれぞれにおいて、当接面401の上側に、当該当接面401に連続する非当接面409が形成される。このように非当接面409は、レーザビーム110の反射の原因となりえ、溶接部の信頼性を損なう原因となりうる。このような非当接面409での反射は、上述したように吸収率の低い赤外レーザの場合に顕著となる。なお、このような非当接面409は、上述したように、図8に示す比較例では発生しない。
 この点、本実施例では、上述したように吸収率の高いグリーンレーザを用いて溶接を実現するので、非当接面409でレーザビーム110が反射することが抑制される。この結果、図7B及び図7Cに示して上述したように非当接面409にも溶融池が形成される態様でレーザビーム110を照射でき、非当接面409から当接面401に連続する溶接部を形成できる。
 本実施例において、一パス中におけるレーザ出力は、図13に示すように、略一定であってよい。図13は、一のパスに係るレーザ出力(及び溶接入熱)が、照射位置に応じて変化する態様の一例を示す概略図であり、照射位置に応じたレーザ出力の変化特性150Pと、照射位置に応じた溶接入熱の変化特性150Lとが概略的に示される。なお、図13では、一パスの全体による入熱量が面積Q14で表されている。
 図13に示す例では、一のパスは、照射開始位置である位置P10から開始される。すなわち、位置P10から一のパルス発振が開始される。この場合、位置P10でレーザ出力が所定値(本例では、一例として3.8kW)まで立ち上がる(矢印R140参照)。そして、照射位置が位置P10から位置P12へと直線状に変化される。この間、レーザ出力は所定値(本例では、一例として3.8kW)で維持される(矢印R141参照)。照射位置が、照射終了位置である位置P12に達すると、レーザ出力は所定値(本例では、一例として3.8kW)から0へと立ち下げられる(矢印R142参照)。すなわち、一のパルス発振が終了される。なお、照射位置が位置P12に達しても、照射位置は、位置P12から更に僅かな距離だけ離れた位置P13に移動するまで変化されてもよい。この間、残留するレーザ出力に起因して僅かな溶接入熱が発生する(図13のQ14参照)。ただし、変形例では、照射位置が位置P12又はその直前の位置(図示せず)に達した際に、照射位置の変化が終了されてもよい。
 このような照射態様によれば、位置P10にてレーザ出力が所定値(本例では、一例として3.8kW)まで立ち上がるが、実際のレーザ出力が所定値に達するまでの間は、溶接入熱は最大値までは一気に増加しない。このため、図13に変化特性150Lにて示すように、位置P10から位置P11までは溶接入熱は徐々に増加していく。そして、位置P12にてレーザ出力が0まで瞬時的に立ち下げられるが、この直前まで溶接入熱は最大値で維持されている。
 このような照射態様は、上述した溶接対象箇所90に係る範囲D1に多様な態様で適用できる。
 例えば、上述した溶接対象箇所90に係る範囲D1を、図13に示す照射態様による1パスによりカバーする場合、上述した溶接対象箇所90に係る範囲D1は、位置P10から位置P12又は位置P13までの区間や、位置P11から位置P12又は位置P13までの区間内に包含されてもよい。
 また、上述した溶接対象箇所90に係る範囲D1を、図13に示す照射態様による2パスによりカバーする場合、上述した溶接対象箇所90に係る範囲D1のうちの、範囲D11及び範囲D12のそれぞれは、1パス目に係る位置P10から位置P12又は位置P13までの区間や、位置P11から位置P12又は位置P13間内に包含されてもよい。
 特に本実施例では、溶接対象箇所90における上述した範囲D11及び範囲D12は、図5に示すように、径方向に視て、交差点P0に関して対称である。従って、本実施例では、溶接対象箇所90に係る範囲D1は、2パスによるカバーされるのが好適である。
 この場合、1パス目では、位置P10又は位置P11は、交点P3に対応し、位置P12又は位置P13は、交差点P0に対応してよい。また、2パス目では、位置P10又は位置P11は、交点P4に対応し、位置P12又は位置P13は、交差点P0に対応してよい。この場合、範囲D11及び範囲D12のそれぞれを同等の接合面積を有する態様で溶接できる。
 あるいは、1パス目では、位置P10又は位置P11は、交差点P0に対応し、位置P12又は位置P13は、交点P3に対応してよい。また、2パス目では、位置P10又は位置P11は、交差点P0に対応し、位置P12又は位置P13は、交点P4に対応してよい。この場合、範囲D11及び範囲D12のそれぞれを同等の接合面積を有する態様で溶接できる。
 また、いずれの場合も、1パス目での照射範囲(すなわち照射位置の移動範囲)と2パス目での照射範囲は、交差点P0を中心とした範囲で重複してもよい。これにより、交差点P0での必要な接合面積を確実に確保することが容易となる。
 ただし、変形例では、一パス中において、レーザ出力は、図14に示すように、一定でなくてもよい。図14は、一のパスに係る溶接入熱が照射位置に応じて変化する態様の他の一例を示す概略図であり、図13と同様、照射位置に応じたレーザ出力の変化特性150Pと、照射位置に応じた溶接入熱の変化特性150Lとが概略的に示される。
 図14に示す例では、一のパスは、照射開始位置である位置P10から開始される。すなわち、位置P10から一のパルス発振が開始される。この場合、位置P10でレーザ出力が所定値(本例では、一例として3.8kW)まで立ち上がる(矢印R140参照)。そして、照射位置が位置P10から位置P12へと直線状に変化される。照射位置が位置P10から位置P14までの間、レーザ出力は所定値(本例では、一例として3.8kW)で維持される(矢印R141参照)。照射位置が位置P14に達すると、照射位置が更に変化しつつレーザ出力は所定値(本例では、一例として3.8kW)から0へと段階的に立ち下げられる(矢印R143参照)。具体的には、照射位置が位置P14に達すると、レーザ出力は一段階だけ下げられ、照射位置が位置P12に達すると、レーザ出力は更に一段階だけ下げられ、照射位置が、照射終了位置である位置P15に達すると、レーザ出力は0へと立ち下げられる。なお、照射位置が位置P15に達しても、照射位置は、位置P15から更に僅かな距離だけ離れた位置P16に移動するまで変化されてもよい。この間、残留するレーザ出力に起因して僅かな溶接入熱が発生する(図13のQ14参照)。ただし、変形例では、照射位置が位置P15に達した際に、照射位置の変化は終了されてもよい。
 このような照射態様も、上述した溶接対象箇所90に係る範囲D1に多様な態様で適用できる。
 例えば、上述した溶接対象箇所90に係る範囲D1を、図14に示す照射態様による1パスによりカバーする場合、上述した溶接対象箇所90に係る範囲D1は、位置P10から位置P15までの区間内に包含されてもよい。
 また、上述した溶接対象箇所90に係る範囲D1を、図14に示す照射態様による2パスによりカバーする場合、上述した溶接対象箇所90に係る範囲D1のうちの、範囲D11及び範囲D12のそれぞれは、1パス目に係る位置P10から位置P15までの区間内に包含されてもよい。
 特に本実施例では、溶接対象箇所90における上述した範囲D11及び範囲D12は、図5に示すように、径方向に視て、交差点P0に関して対称である。従って、本実施例では、溶接対象箇所90に係る範囲D1は、2パスによるカバーされるのが好適である。この場合、1パス目では、位置P10は、交点P3に対応し、位置P15は、交差点P0に対応してよい。また、2パス目では、位置P10は、交点P4に対応し、位置P15は、交差点P0に対応してよい。この場合、範囲D11及び範囲D12のそれぞれを同等の接合面積を有する態様で溶接できる。
 あるいは、1パス目では、位置P10は、交差点P0に対応し、位置P15は、交点P3に対応してよい。また、2パス目では、位置P10は、交差点P0に対応し、位置P15は、交点P4に対応してよい。この場合、範囲D11及び範囲D12のそれぞれを同等の接合面積を有する態様で溶接できる。
 また、いずれの場合も、1パス目での照射範囲と2パス目での照射範囲は、交差点P0を中心とした範囲で重複してもよい。これにより、交差点P0での必要な接合面積を確実に確保することが容易となる。
 最後に、本実施例によるモータ1のステータ21の製造方法の流れについて、図15を参照して概説する。
 図15は、モータ1のステータ21の製造方法の流れを概略的に示すフローチャートである。
 まず、本製造方法は、コイル片52をステータコア22に組み付ける組付工程(ステップS150)を含む。また、本製造方法は、組付工程後に、コイル片52の先端部40同士をレーザ溶接により接合する接合工程(ステップS152)を含む。コイル片52の先端部40同士をレーザ溶接により接合する方法は、上述したとおりである。
 この場合、接合工程は、上述したように、各対となるコイル片52のそれぞれの先端部40同士が、図5に示したようにX字状をなす態様で交差する態様で、径方向に当接するようにセットするセット工程(ステップS1521)を含む。なお、セット工程では、治具等を用いて、各対となるコイル片52のそれぞれの先端部40同士がX字状をなす態様で交差する態様で径方向に当接した状態が、維持されてよい。
 そして、接合工程は、セット工程後に、上述したように溶接対象箇所90にレーザビーム110を照射する照射工程(ステップS1522)を含む。なお、セット工程と照射工程は、1つ以上の所定数の溶接対象箇所90ごとにセットで実行されてもよいし、一のステータ21に係るすべての溶接対象箇所90に対して、一括的に実行されてもよい。なお、本製造方法は、接合工程後に、適宜、必要な各種の工程を行うことで、ステータ21を完成させて終了してよい。
 以上、各実施例について詳述したが、特定の実施例に限定されるものではなく、特許請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。また、前述した実施例の構成要素を全部又は複数を組み合わせることも可能である。また、各実施例の効果のうちの、従属項に係る効果は、上位概念(独立項)とは区別した付加的効果である。
 例えば、上述した実施例では、好ましい例として、先端部40A、40Bは、上述したように、径方向に視て、先端部40Aの先端面44A全体が先端部40Bの軸方向外側端面42Bを上側に越え、かつ、先端部40Bの先端面44B全体が先端部40Aの軸方向外側端面42Aを上側に越える態様で、X字状に交差されるが、これに限られない。例えば、図16に示す変形例のように、先端部400A、400Bは、径方向に視て、先端面440Aの径方向外側の一部だけが先端部400Bの軸方向外側端面420Bを上側に越え、かつ、先端部400Bの先端面440Bの径方向外側の一部だけが先端部400Aの軸方向外側端面420Aを上側に越える態様で、X字状に交差されてもよい。この場合、先端面440A、440Bにおける当接面401側の縁部にもレーザビーム110が照射されてもよい。
 また、上述した実施例では、レーザビーム110の照射方向は、当接面401に略平行な方向であり、例えば当接面401に平行に視て、図17に示すような比較的小さい角度α(例えば±10度)ずれてもよい。ここで、レーザビーム110の照射源からミラー(図示せず)で角度を変えて複数箇所を溶接する場合があり、かかる場合、0より大きいが比較的小さい角度α(例えば±10度)が生じやすい。角度αが0よりも大きい場合も、角度αが0である場合と同様、レーザビームの照射幅は、当接面401に平行な方向に視て、上述したC字状の辺(軸方向外側端面42A、42Bにおける当接面401側の縁部)と非当接面409A又は409Bと当接面401とを含んでよい。照射幅がC字状の辺等を含むとは、図17示すようなレーザビームの照射幅に対応する幅を有する照射範囲であって、照射方向に延在するレーザビームの照射範囲(図17のハッチング領域R16で指示)が、C字状の辺等を含むことを意味する。また、角度α(及び上述した範囲D2)は、上述した照射工程において、先端部40A、40Bにおける当接面401に平行な逆側の外側面405、406(図17参照)にレーザビーム110が照射されないように、適合されてよい。この場合、溶融部が少ないのでコイル片52の絶縁被膜62への熱の影響が少なくなり、絶縁被膜62の剥離部を最小限とすることができる。その結果、低コスト化を図ることができる。
1・・・モータ(回転電機)、24・・・ステータコイル、52・・・コイル片、40・・・先端部(端部)、401・・・当接面、409・・・非当接面、42(42A、42B)・・・軸方向外側端面(軸方向外側の端面)、44A、44B・・・先端面、22・・・ステータコア、110・・・レーザビーム

Claims (7)

  1.  ステータコイルの断面矩形状のコイル片をステータコアに組み付ける組付工程と、
     前記組付工程の後に、前記コイル片の端部同士をレーザ溶接により接合する接合工程とを含み、
     前記接合工程は、
     前記端部同士を、径方向に視てX字状に交差させつつ径方向に当接させるセット工程と、
     前記セット工程の後、前記端部同士の当接面における径方向に視てC字状の辺に向けて、0.6μm以下の波長を有するレーザビームを軸方向に照射する照射工程とを含み、
     前記照射工程は、前記C字状の辺の部分とともに、前記端部における前記当接面から連続する軸方向外側の非当接面の部分を溶融させる、回転電機用ステータ製造方法。
  2.  前記レーザビームの照射幅は、前記当接面に平行な方向に視て、前記C字状の辺と非当接面と前記当接面とを含む、請求項1に記載の回転電機用ステータ製造方法。
  3.  前記照射工程は、前記端部における前記当接面に平行な逆側の外側面に前記レーザビームが照射されないように、実行される、請求項1又は2に記載の回転電機用ステータ製造方法。
  4.  前記コイル片の端部は、径方向に視て略直角をなして連続する軸方向外側の端面及び先端面を有し、
     前記セット工程は、径方向に視て一方の前記端部の前記先端面全体が他方の前記端部における軸方向外側の前記端面を越える態様で、前記端部同士をX字状に交差させる、請求項1から3のうちのいずれか1項に記載の回転電機用ステータ製造方法。
  5.  前記レーザビームは、レーザ発振器におけるパルス発振ごとに発生され、
     前記照射工程は、2回以上のパルス発振により、一組の前記端部同士を接合する、請求項1から4のうちのいずれか1項に記載の回転電機用ステータ製造方法。
  6.  前記照射工程は、
     一のパルス発振により、前記X字状の交差点を中心とした前記C字状の辺のうちの一方側を前記レーザビームにより照射する第1照射工程と、
     他の一のパルス発振により、前記X字状の交差点を中心とした前記C字状の辺のうちの他方側を前記レーザビームにより照射する第2照射工程と含む、請求項5に記載の回転電機用ステータ製造方法。
  7.  前記第1照射工程は、前記レーザビームの照射位置を前記当接面に沿った方向に直線状に変化させることを含み、
     前記第2照射工程は、前記レーザビームの照射位置を前記当接面に沿った方向に直線状に変化させることを含み、
     前記第1照射工程による前記レーザビームの照射位置の移動範囲と、前記第2照射工程による前記レーザビームの照射位置の移動範囲は、それぞれ、前記X字状の交差点を含む、請求項6に記載の回転電機用ステータ製造方法。
PCT/JP2022/012872 2021-03-19 2022-03-18 回転電機用ステータ製造方法 WO2022196822A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280011856.1A CN116762266A (zh) 2021-03-19 2022-03-18 旋转电机用定子制造方法
JP2023507209A JPWO2022196822A1 (ja) 2021-03-19 2022-03-18
US18/266,927 US20230396135A1 (en) 2021-03-19 2022-03-18 Method for manufacturing stator for rotating electrical machine
EP22771564.6A EP4266562A1 (en) 2021-03-19 2022-03-18 Method for manufacturing stator for rotary electric machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-045433 2021-03-19
JP2021045433 2021-03-19

Publications (1)

Publication Number Publication Date
WO2022196822A1 true WO2022196822A1 (ja) 2022-09-22

Family

ID=83320560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012872 WO2022196822A1 (ja) 2021-03-19 2022-03-18 回転電機用ステータ製造方法

Country Status (5)

Country Link
US (1) US20230396135A1 (ja)
EP (1) EP4266562A1 (ja)
JP (1) JPWO2022196822A1 (ja)
CN (1) CN116762266A (ja)
WO (1) WO2022196822A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018020340A (ja) 2016-08-02 2018-02-08 トヨタ自動車株式会社 平角線のレーザ溶接方法
JP2020054155A (ja) * 2018-09-27 2020-04-02 トヨタ自動車株式会社 コイル線の被膜層除去方法
JP2020055024A (ja) * 2018-10-03 2020-04-09 トヨタ自動車株式会社 ステータコイルのレーザ溶接方法
JP2021010947A (ja) * 2019-07-09 2021-02-04 日立金属株式会社 平角導線の切断方法および平角導線

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018020340A (ja) 2016-08-02 2018-02-08 トヨタ自動車株式会社 平角線のレーザ溶接方法
JP2020054155A (ja) * 2018-09-27 2020-04-02 トヨタ自動車株式会社 コイル線の被膜層除去方法
JP2020055024A (ja) * 2018-10-03 2020-04-09 トヨタ自動車株式会社 ステータコイルのレーザ溶接方法
JP2021010947A (ja) * 2019-07-09 2021-02-04 日立金属株式会社 平角導線の切断方法および平角導線

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HENRIK PANZER, EVA MARIA DOLD, MARK KIRCHHOFF, OLIVA BOXROCKER: "Laser welding at green wavelength and benefits of e-mobility", INDUSTRIAL LASER SOLUTIONS JAPAN, JP, no. 2, 13 September 2019 (2019-09-13), pages 24 - 26, XP009539763 *

Also Published As

Publication number Publication date
EP4266562A1 (en) 2023-10-25
CN116762266A (zh) 2023-09-15
JPWO2022196822A1 (ja) 2022-09-22
US20230396135A1 (en) 2023-12-07

Similar Documents

Publication Publication Date Title
JP5958109B2 (ja) 回転電機の導体接合方法
JP6086226B2 (ja) 回転電機の導体接合方法
JP7063693B2 (ja) 平角線のレーザ溶接方法
WO2021182635A1 (ja) 回転電機用ステータ製造方法
JP2014007794A (ja) 回転電機の導体接合方法及び回転電機のコイル
WO2022196823A1 (ja) 回転電機用ステータ製造方法
WO2022196821A1 (ja) 回転電機用ステータ製造方法
JP7432626B2 (ja) 導線の絶縁被膜の剥離方法
WO2022196822A1 (ja) 回転電機用ステータ製造方法
JPWO2018179923A1 (ja) コア製造方法及びコア
JPH09215280A (ja) 電機子コイルの接合方法
WO2020170413A1 (ja) 銅を含む部材の溶接方法、および回転電機の製造方法
WO2024080097A1 (ja) 回転電機用ステータ製造方法及び回転電機用ステータ製造装置
JP7478699B2 (ja) 回転電機用ステータ製造方法
JP7483650B2 (ja) 回転電機用ステータ製造方法
JP7460403B2 (ja) 回転電機用ステータ製造方法
JP7335420B2 (ja) 回転電機用ステータ製造方法
JP7410757B2 (ja) 回転電機用ステータ製造方法
JP2017040368A (ja) トルクコンバータのコアリングの接合方法、トルクコンバータの製造方法、及びそれを用いて製造されたトルクコンバータ
JP2021145481A (ja) 回転電機用ステータ製造方法
WO2023282060A1 (ja) 回転電機用ステータ製造装置及び回転電機用ステータ製造方法
CN115940531A (zh) 生产有源部件的方法、旋转电机有源部件和旋转电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22771564

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023507209

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280011856.1

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2022771564

Country of ref document: EP

Effective date: 20230718

NENP Non-entry into the national phase

Ref country code: DE