WO2021153047A1 - 核酸オリゴマーの製造方法 - Google Patents

核酸オリゴマーの製造方法 Download PDF

Info

Publication number
WO2021153047A1
WO2021153047A1 PCT/JP2020/046572 JP2020046572W WO2021153047A1 WO 2021153047 A1 WO2021153047 A1 WO 2021153047A1 JP 2020046572 W JP2020046572 W JP 2020046572W WO 2021153047 A1 WO2021153047 A1 WO 2021153047A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
nucleic acid
iodine
production method
formula
Prior art date
Application number
PCT/JP2020/046572
Other languages
English (en)
French (fr)
Inventor
宮川 卓也
匡 西尾
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020227024706A priority Critical patent/KR20220133878A/ko
Priority to US17/759,597 priority patent/US20230312635A1/en
Priority to CN202080095007.XA priority patent/CN115003682A/zh
Priority to EP20917061.2A priority patent/EP4098655A4/en
Priority to JP2021574515A priority patent/JPWO2021153047A1/ja
Publication of WO2021153047A1 publication Critical patent/WO2021153047A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/02Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with ribosyl as saccharide radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H23/00Compounds containing boron, silicon, or a metal, e.g. chelates, vitamin B12
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • DNA and RNA which are nucleic acid oligomers, can be used as DNA probes, RNA probes, antisense, ribozymes, siRNA, aptamers, etc., and are useful materials.
  • Nucleic acid oligomers can be synthesized by the solid-phase synthesis method, and the nucleoside phosphoramidite (hereinafter referred to as "amidite”) is used as a raw material in the solid-phase synthesis method.
  • the nucleic acid oligomer synthesized by extending the nucleic acid through the steps of coupling, oxidation and deprotection on the solid-phase carrier is excised from the solid-phase carrier, and then the protecting group is removed to produce the desired nucleic acid oligomer. Has been done. The purity of the nucleic acid oligomer synthesized in this way was not always satisfactory, and the synthesis was not efficient (Non-Patent Document 1).
  • An object of the present invention is to provide an efficient method for producing a nucleic acid oligomer.
  • an oxidation solution used to oxidize a phodic acid ester produced by a coupling reaction using phosphoramidite in the synthesis of nucleic acid oligomers As a result of diligent research to achieve the above object, the present inventors have conducted an oxidation solution used to oxidize a phodic acid ester produced by a coupling reaction using phosphoramidite in the synthesis of nucleic acid oligomers.
  • an efficient method for producing a nucleic acid oligomer which comprises using a solution containing iodine, water and pyridine and having an iodic acid ratio to iodine of a certain level or less.
  • Q' represents a methylene group bonded to the carbon atom at the 4'position of ribose, an ethylene group bonded to the carbon atom at the 4'position, or an ethylidene group bonded to the carbon atom at the 4'position.
  • oxidation solution of the present invention a production method including a step of reacting in the present specification.
  • Item 2 The precursor having a phosphite triester bond is the formula (4) :.
  • G 1 represents a hydroxyl-protecting group
  • G 2 independently represents the same or different hydroxyl protecting groups.
  • B a are each independently the same or different, represents a nucleic acid base which may be protected by a protecting group
  • R independently represents a protected hydroxyl group, hydrogen atom, fluorine atom, methoxy group, 2-methoxyethyl group, or OQ'group, respectively, the same or differently.
  • Q' is independently the same or different from the methylene group bonded to the carbon atom at the 4'position of ribose, or the ethylene group bonded to the carbon atom at the 4'position, or the 4'position.
  • n represents any integer from 1 to 200
  • W represents an OV group
  • V represents a hydroxyl protecting group
  • W represents a group represented by OZ
  • Z is a group having a structure consisting of a solid phase carrier and a linking group.
  • the compound represented by the above and having a phosphoric acid triester bond is represented by the formula (5): (During the ceremony, G 1 , G 2 , Ba , R, n, W, X, and Y are as described above, and As defined in formula (4), a non-nucleotide linker may be incorporated in place of the nucleotide. )
  • nucleic acid compound of formula (5) is arbitrarily extended in chain length by the amidite method: (During the ceremony, G 2, B a, R, X and W are as defined for formula (5), G 5 represents a hydroxyl-protecting group or a hydrogen atom. m is an integer satisfying m ⁇ n, and Y independently represents oxygen or sulfur. However, at least one Y is an oxygen atom. ) Step of obtaining the nucleic acid compound represented by, From the compound of formula (5') to formula (6): (During the ceremony, G 5, R and m are as defined above, B c independently represent the same or different nucleobases, respectively.
  • G 4 represents a hydrogen atom, an alkali metal ion, an ammonium ion, an alkylammonium ion, or a hydroxyalkylammonium ion.
  • Y each independently represents oxygen or sulfur, and at least one is an oxygen atom, and X 1 represents a hydroxyl group and W 1 represents an OV group, where V represents a protecting group for the hydroxyl group, or X 1 represents an R group and W 1 represents a hydroxyl group.
  • R'independently represents a hydroxyl group, a hydrogen atom, a fluorine atom, a methoxy group, a 2-methoxyethyl group, or an OQ'group, respectively.
  • Q' is independently the same or different from the methylene group bonded to the carbon atom at the 4'position of ribose, or the ethylene group bonded to the carbon atom at the 4'position, or the 4'position.
  • Item 4 The production method according to any one of 2 or 3 above, wherein the non-nucleotide linker is a linker consisting of an amino acid skeleton.
  • linker consisting of an amino acid skeleton is a linker having a structure selected from the group consisting of the following formulas (A14-1), (A14-2) and (A14-3).
  • Item 6 The production method according to any one of the above items 1 to 5, wherein the iodine concentration of the oxidation solution is 0.005 to 2M.
  • Item 7. The production method according to any one of the above items 1 to 5, wherein the iodine concentration of the oxidation solution is 0.005 to 0.2 M.
  • Item 8. The production method according to any one of the above items 1 to 5, wherein the iodine concentration of the oxidation solution is 0.007 to 0.1 M.
  • Item 9 The production method according to any one of the above items 1 to 5, wherein the iodine concentration of the oxidation solution is 0.008 to 0.07 M.
  • the oxidation solution is prepared by mixing iodine, pyridine and water.
  • the oxidizing solution is an oxidizing solution further containing at least one solvent selected from the group consisting of acetonitrile and tetrahydrofuran.
  • the oxidizing solution is an oxidizing solution further containing an acetonitrile solvent.
  • Item 8 The production method according to any one of Items 1 to 14, wherein the molar ratio of iodic acid to iodine (mol of iodic acid / mol of iodine) is 10 ⁇ 10 -3 or less. Item 19. Item 8. The production method according to any one of Items 1 to 14, wherein the molar ratio of iodic acid to iodine (mol of iodic acid / mol of iodine) is 5 ⁇ 10 -3 or less. Item 20. Item 8.
  • RNA ribonucleoside
  • Item 24 The production method according to any one of Items 2 to 23, wherein the nucleic acid is ribonucleoside (RNA), and the 2'protecting group thereof is a protecting group represented by the formula (12). Equation (12): (During the ceremony, q represents an integer from 1 to 5 and represents R a and R b are the same or different from each other and represent a methyl group, an ethyl group or a hydrogen atom, respectively. Bonds marked with * bind to the oxygen of the OQ group and E W represents an electron-withdrawing group. ) Item 25.
  • R a and R b are simultaneously hydrogen atom, an E W is a cyano group,
  • Item 26. The production method according to any one of Items 1 to 25, wherein the nucleic acid is a ribonucleoside (RNA) having a length of 40 chains or more.
  • Item 2. The production method according to any one of Items 1 to 26, further comprising a step of preparing the oxidation solution according to Item 1.
  • the present invention provides an efficient method for producing a nucleic acid oligomer.
  • the production method of the present invention can be expected to improve the purity of the produced nucleic acid oligomer.
  • the body comprises a step of reacting an oxidizing solution (oxidation solution of the present invention) containing iodine, pyridine and water and having a molar ratio of iodic acid to iodine (mol of iodic acid / mol of iodine) of 30 ⁇ 10 -3 or less. , The manufacturing method will be described.
  • a method for producing a nucleic acid compound which comprises a step of reacting an oxidation solution containing iodine, pyridine and water with a nucleic acid precursor having a phosphite triester bond to oxidize the nucleic acid triester bond, in the oxidation solution.
  • a production method in which the molar ratio of iodic acid to iodine (mol iodic acid / mol iodium) is 30 ⁇ 10 -3 or less will be described.
  • the molar ratio of iodic acid to iodine (mol of iodic acid / mol of iodine) in the oxidation solution of the present invention containing iodine, pyridine and water is usually 30 ⁇ 10 -3 or less.
  • the molar ratio of iodic acid to iodine (mol of iodic acid / mol of iodine) is preferably 25 ⁇ 10 -3 or less, more preferably 20 ⁇ 10 -3 or less, and even more preferably 15 ⁇ 10 -3 or less. Even more preferably, it is 10 ⁇ 10 -3 or less, even more preferably 5 ⁇ 10 -3 or less, and even more preferably 3 ⁇ 10 -3 or less.
  • the amounts of iodine and iodic acid are measured by an ion chromatograph method described later.
  • the oxidation solution is typically prepared from iodine, water and pyridine.
  • a solution satisfying the above-mentioned molar ratio of iodic acid to iodine is used.
  • the period from the preparation of the oxidation solution to the synthesis of nucleic acid for example, at 25 to 60 ° C. for 1 day or longer, preferably 1 week or longer after preparation, more preferably 2 weeks or longer after preparation, still more preferably 1 month or longer after preparation.
  • a solution having a molar ratio of iodine to the predetermined iodic acid or less can be used.
  • the storage temperature after preparation of the oxidation solution is not limited to the above range, and may be stored at 0 to 80 ° C. and satisfy the above-mentioned predetermined conditions.
  • the concentration of iodine in the oxidative solution containing iodine, pyridine and water is usually 0.005 to 2M, preferably 0.005 to 0.2M, more preferably 0.007 to 0.1M, even more preferably. It is adjusted to 0.008 to 0.07M.
  • the oxidation solution is typically prepared from iodine and water and pyridine, but the oxidation solution is mixed with at least one solvent selected from the group consisting of acetonitrile and tetrahydrofuran (THF). May be good.
  • the solvent of the oxidation solution is obtained by mixing, for example, pyridine in a volume ratio of 1 to 90, water in an amount of 1 to 50, acetonitrile in an amount of 0 to 90, and tetrahydrofuran in a volume ratio of 0 to 90, based on the total volume of the solution.
  • a mixed solvent is preferably obtained by mixing pyridine in a volume ratio of 5 to 90, water in a volume ratio of 2 to 30, acetonitrile in a volume ratio of 0 to 80, and tetrahydrofuran in a volume ratio of 0 to 80.
  • Stirring of the reaction system is not essential when preparing the oxidation solution, but usually, stirring is performed in the range of stirring power Pv of 0.0 to 0.5 kW / m 3 , and Pv is 0.1 to 0.3 kW / m. Stirring of 3 is preferable.
  • the oxidation solution prepared as described above can also be stored by preparing the iodine concentration at a higher concentration than that at the time of use in the oxidation reaction. At the time of use, such a high-concentration oxidation solution may be finally adjusted to a desired concentration by diluting with the above-mentioned solvent before use.
  • at least one compound selected from the group consisting of N-methylimidazole (NMI), N-methylmorpholin, lutidine and triethylamine may be further added to the oxidation solution. ..
  • iodide such as potassium iodide may be added.
  • a glass container, a plastic container, or a metal container can be used for storing the oxidation solution.
  • a container made of polyethylene or polypropylene can be used
  • a container made of SUS or Hastelloy can be used as the plastic container.
  • the oxidizing solution can be stored in an air atmosphere or an inert gas atmosphere, and as the inert gas, argon, nitrogen, carbon dioxide, helium or the like can be used.
  • Examples of the compound containing a phosphite (phosphite) triester bond include the compound of the above formula (4).
  • Examples of the nucleic acid compound produced by reacting the oxidation solution include the nucleic acid compound represented by the above formula (5).
  • the methylene group represented by Q' which is independently the same or differently bonded to the carbon atom at the 4'position of ribose, and the carbon atom at the 4'position.
  • the structure of the following formula (8) is shown as a compound representing an ethylene group bonded or an ethylidene group bonded to a carbon atom at the 4'position.
  • B a represents a nucleic acid base which may be protected.
  • the group consisting of the solid-phase carrier and the connecting portion connecting the solid-phase carrier and the oxygen atom of the hydroxyl group at the 2'- or 3'-position of ribose at the 3'end of the nucleic acid oligomer which is represented by Z.
  • Z represents a structure represented by the following formula (9).
  • Sp represents a spacer. Examples of the spacer (Sp) include those having the structural formula shown in the following formula (10).
  • the Linker may have, for example, a structure represented by the following formula (11), or a structure having no hexamethyleneamino group moiety in the structure of the formula (11) and having an aminopropyl group bonded to Si. ..
  • the Linker may have a structure represented by the following formula (15).
  • A may be either a hydroxyl group, an alkoxy group, or an alkyl group.
  • the alkoxy group include a methoxy group and an ethoxy group.
  • Examples of the alkyl group include a methyl group, an ethyl group, an isopropyl group and an n-propyl group.
  • Si indicates that it is bonded to oxygen of the hydroxyl group on the surface of the carrier.
  • the solid support include an inorganic porous carrier and an organic resin carrier.
  • the inorganic porous carrier include Controlled Pole Glass (CPG).
  • the organic resin carrier include a carrier made of polystyrene.
  • 2'-F RNA and the above-mentioned LNA are exemplified, but the above-mentioned nucleoside is not limited thereto.
  • the method for synthesizing a nucleic acid oligomer by a solid-phase synthesis method including an oxidation step with the oxidation solution typically includes the following steps. (1) A step of deprotecting the 5'-hydroxyl group of a nucleoside in which the hydroxyl group bonded to the solid-phase carrier via a linker is protected. (2) A step of coupling the hydroxyl group at the 5'position generated in the above step with a phosphoramidite compound to obtain a phosphite triester compound.
  • the above steps (1) to (3) that is, the deprotection step of the 5'-position hydroxyl group of the produced nucleic acid molecule, the coupling step of the 5'-position hydroxyl group and the amidite compound, and the produced subphosphorus.
  • a series of reaction cycles consisting of an acid triester oxidation step is repeated an arbitrary number of times to synthesize a nucleic acid molecule on the solid phase carrier, and (5) on the solid phase carrier produced in step (4).
  • the method for synthesizing the nucleic acid oligomer includes a step of capping the hydroxyl group at the 5'position in which the coupling reaction with the phosphoramidite compound has not proceeded, following the step (2) or (3).
  • a capping step may be added between any steps of the series of reaction cycles constituting step (4).
  • the step (5) is carried out in the order of the following steps (5-1) and (5-2) on the nucleic acid molecule on the solid-phase carrier produced in the step (4). Then, it is carried out by subjecting it to the reaction of step (5-3).
  • the reaction of the step (5-1) may be carried out arbitrarily, and the reaction of the step (5-2) may be carried out by the method described in Japanese Patent No. 4705716.
  • the nucleic acid compound of the formula (5) can be further extended by an arbitrary chain length using a nucleotide-type or non-nucleotide-type linker by the amidite method, and used for producing the nucleic acid compound represented by the above formula (5'). can. Only the nucleic acid compound is cut out from the nucleic acid compound bound to the solid phase carrier of the formula (5') to obtain the nucleic acid oligomer represented by the formula (6), and then further deprotected and represented by the formula (7). Nucleic acid oligomers can also be obtained.
  • the substituents in each formula will be described in more detail.
  • B nucleic acid base which may be protected by a protecting group represented by a is not particularly limited.
  • the nucleobase include adenine, cytosine, guanine, uracil, thymine, 5-methylcytosine, pseudouracil, 1-methyl pseudouracil and the like.
  • the nucleobase may be substituted with a substituent.
  • substituents include, for example, halogen atoms such as fluoro, chloro, bromo and iodo groups, acyl groups such as acetyl groups, alkyl groups such as methyl and equyl groups, and benzyl groups.
  • Arylalkyl group alkoxy group such as methoxy group, alkoxyalkyl group such as methoxyethyl group, cyanoalkyl group such as cyanoethyl group, hydroxy group, hydroxyalkyl group, acyloxymethyl group, amino group, monoalkylamino group , Dialkylamino groups, carboxy groups, cyano groups, nitro groups and the like, as well as combinations of two or more substituents thereof.
  • the protecting group for the amino group is not particularly limited, and a protecting group used in known nucleic acid chemistry can be used, and as such a protecting group, For example, benzoyl group, 4-methoxybenzoyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, phenylacetyl group, phenoxyacetyl group, 4-tert-butylphenoxyacetyl group, 4-isopropylphenoxyacetyl group, and (dimethyl). Amino) methylene groups and the like, as well as combinations of two or more of these protecting groups can be mentioned.
  • R 4 represents a hydrogen atom, a methyl group, a phenoxyacetyl group, a 4-tert-butylphenoxyacetyl group, a 4-isopropylphenoxyacetyl group, a phenylacetyl group, an acetyl group or a benzoyl group.
  • R 5 represents a hydrogen atom, an acetyl group, an isobutyryl group or a benzoyl group.
  • R 6 represents a hydrogen atom, a phenoxyacetyl group, a 4-tert-butylphenoxyacetyl group, a 4-isopropylphenoxyacetyl group, a phenylacetyl group, an acetyl group or an isobutylyl group.
  • R 7 represents a 2-cyanoethyl group
  • R 8 represents a hydrogen atom, a methyl group, a benzoyl group, a 4-methoxybenzoyl group or a 4-methylbenzoyl group
  • R 9 represents a dimethylaminomethylene group.
  • any one that can function as a protecting group can be used without particular limitation, and a known protecting group used in an amidite compound can be widely used.
  • G 1 is preferably the following group. (In the formula, R 1 , R 2 and R 3 independently represent the same or different hydrogen or alkoxy groups.)
  • R 1, R 2 and R 3 one is hydrogen and it is preferable that remaining two are the same or different (the same is preferred) alkoxy group, the alkoxy group and particularly preferably a methoxy group.
  • G 2 any one that can function as a protecting group can be used without particular limitation, and a known protecting group used in an amidite compound can be widely used.
  • Examples of G 2 include an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, a haloalkyl group, an aryl group, a heteroaryl group, an arylalkyl group, a cycloalkyl group, a cycloalkylalkyl group, a cyclylalkyl group, and a hydroxyalkyl.
  • G 2 is preferably an alkyl group substituted with an electron attracting group.
  • the electron attracting group include a cyano group, a nitro group, an alkylsulfonyl group, a halogen atom, an arylsulfonyl group, a trihalomethyl group, a trialkylamino group and the like, and a cyano group is preferable.
  • the G 3 may be formed by combining two G 3s with each other to form a ring structure.
  • the alkyl group in the definition of R 1 , R 2 , R 3 and G 2 may be linear or branched, preferably an alkyl group having 1 to 12 carbon atoms, and more preferably 1 to 6 carbon atoms.
  • Alkyl group of. Examples of specific alkyl groups include, for example, methyl, ethyl, n-provyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, and hexyl.
  • the alkyl group moiety constituting the alkoxy group in the definition of the substituent has the same definition as the definition of the alkyl group here.
  • the amidite compound can be used in a free state or in a salt state.
  • the salt of the amidite compound include base addition salts and acid addition salts, but are not particularly limited.
  • Specific examples of the base addition salt include salts with inorganic bases such as sodium salt, magnesium salt, potassium salt, calcium salt and aluminum salt; salts with organic bases such as methylamine, ethylamine and ethanolamine; lysine, Salts with basic amino acids such as ornithine, arginine; and ammonium salts.
  • the acid addition salt include mineral acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, nitric acid, and phosphoric acid; formic acid, acetic acid, propionic acid, oxalic acid, malonic acid, and malic acid.
  • Organic acids such as tartrate, fumaric acid, succinic acid, lactic acid, maleic acid, citric acid, methanesulfonic acid, trifluoromethanesulfonic acid, ethanesulfonic acid; and acid addition salts with acidic amino acids such as aspartic acid and glutamic acid. Be done.
  • Amidite compounds also include forms such as salts, hydrates, solvates, polymorphs.
  • the protective group may be any as long as it can be used in the amidite method, for example, a 2'-tert-butyldimethylsilyl (TBDMS) group, 2'-bis (2-acetoxy).
  • TDMS 2'-tert-butyldimethylsilyl
  • ACE Methyl
  • TOM triisopropylsilyloxy
  • CEE 2-cyanoethoxy
  • CEM 2'-(2-cyanoethoxy) methyl
  • TEM 2'-para-toluylsulfonylethoxymethyl
  • 2'-EMM International Publication No.
  • RNA ribonucleoside
  • the protecting group represented by the above formula (12) is exemplified as a preferable protecting group. More preferably, the protecting group represented by the formula (13) having a cyano group are exemplified as the electron withdrawing group represented by E W.
  • E W electron withdrawing group
  • the protecting group represented by the formula (13) can be synthesized, for example, according to International Publication No. 2013/027843 and International Publication No. 2019/208571, and an amidite compound having such a protecting group can be used for producing a nucleic acid compound. can do.
  • the amidite compound of the formula (3) shown in Scheme A of FIG. 1 is used.
  • the non-nucleotide linker include a linker having an amino acid skeleton (for example, a linker having an amino acid skeleton described in Japanese Patent No. 5157168 or Japanese Patent No. 5554881).
  • a linker represented by the formula (A14-1) or (A14-2) or (A14-3) (for example, described in WO2019 / 074110) is exemplified. ..
  • the linkers described in WO2012 / 00568, WO2018 / 182008 or WO2019 / 074110 are exemplified.
  • Nucleotides and amidites in which the R group in the formula (3) and the R'group in the formula (4) are substituents other than hydroxyl groups are known methods described in Japanese Patent No. 3745226 and the like, WO2001 / 0535528 or It can also be produced from JP-A-2014-221817 and a nucleoside synthesized by a known method cited therein, and further, using a commercially available product, the method described in Examples described later. It can be produced according to the above or by a method obtained by appropriately modifying these methods.
  • the synthesis of the nucleic acid compound by the amidite method of the steps (1) to (6) is a generally known method (for example, the above-mentioned method) except for the oxidation reaction step according to the present invention in the step (3) in the scheme of FIG.
  • the nucleic acid extension reaction can be carried out by repeating each step of the deprotection step and the condensation step according to the method described in Japanese Patent No. 5157168 or Japanese Patent No. 5554881). Hereinafter, each step will be described.
  • G 4 represents a hydrogen atom, an alkali metal ion, an ammonium ion, an alkylammonium ion, or a hydroxyalkylammonium ion.
  • the alkali metal ion include sodium ion and lithium ion.
  • Specific examples of the alkyl group as the alkylammonium ion include methyl, ethyl, n-provyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, and hexyl.
  • hydroxyalkylammonium ion examples of a specific hydroxyalkyl moiety include, for example, hydroxymethyl, hydroxyethyl, hydroxy-n-provir, hydroxyisopropyl, hydroxy-n-butyl, and trishydroxymethyl. More specific examples of hydroxyalkylammonium ions include trishydroxymethylammonium ions.
  • G 5 represents a hydrogen atom or a protecting group, and when representing a protecting group, it represents the same protecting group as G 1.
  • G 5 is a hydrogen atom when deprotected, but the nucleotide compound in that case is also subjected to a series of nucleic acid extension reaction steps.
  • nucleic acid extension reaction means a reaction in which an oligonucleotide is extended by sequentially binding nucleotides via a phosphodiester bond.
  • the nucleic acid extension reaction can be carried out according to the procedure of a general phosphoramidite method.
  • the nucleic acid extension reaction may be carried out using an automatic nucleic acid synthesizer or the like that employs the phosphoramidite method.
  • the chain length of the nucleic acid oligomer may be, for example, 2 to 200 mer, 10 to 150 mer, or 15 to 110 mer.
  • the 5'deprotection step of the step (1) is a step of deprotecting the protecting group of the 5'hydroxyl group at the end of the RNA chain supported on the solid phase carrier.
  • a general protecting group a 4,4'-dimethoxytrityl group (DMTr group), a 4-monomethoxytrityl group, and a 4,4', 4 "-trimethoxytrityl group are used.
  • DMTr group 4,4'-dimethoxytrityl group
  • 4-monomethoxytrityl group 4-monomethoxytrityl group
  • a 4,4', 4 "-trimethoxytrityl group are used for deprotection.
  • an acid is used for deprotection.
  • deprotecting acid examples include trifluoroacetic acid, dichloroacetic acid, trifluoromethanesulfonic acid, trichloroacetic acid, methanesulfonic acid, hydrochloric acid, acetic acid, p-toluenesulfonic acid and the like.
  • the nucleoside phosphoramidite represented by the following formula (3) shown in the scheme A of FIG. 1 is subjected to the 5'hydroxyl group at the terminal of the oligonucleotide chain deprotected by the deprotection step. Is a reaction that binds.
  • an amidite compound represented by the formula (3) or (A12) is used as the phosphoramidite used for nucleic acid elongation.
  • phosphoramidite that can be used, 2'-OMe, 2'-F, 2'-O-tert-butyldimethylsilyl group, 2'-O-methoxyethyl group, 2'-H, 2' -Fluoro-2'-deoxy- ⁇ -D-arabinofuranosyl and the like can be mentioned.
  • the nucleoside phosphoramidite one in which a 5'hydroxyl group is protected with a protecting group (eg, DMTr group) is used.
  • the condensation step can be carried out using an activator that activates the nucleoside phosphoramidite.
  • Examples of the activator include 5-benzylthio-1H-tetrazole (BTT), 1H-tetrazole, 4,5-dicyanoimidazole (DCI), 5-ethylthio-1H-tetrazole (ETT), and N-methylbenzimidazolium.
  • Triflate N-MeBIT
  • benzimidazolium triflate BIT
  • N-PhIMT N-phenylimidazolium triflate
  • IMT imidazolium triflate
  • NBT 1-hydroxybenzotriazole
  • HOBT 1-hydroxybenzotriazole
  • 5- (bis-3,5-trifluoromethylphenyl) -1H-tetrazole and the like can be mentioned.
  • amidite The nucleoside phosphoramidite (hereinafter referred to as amidite) represented by the formula (3) described in Scheme A of FIG. 1 is as follows. formula: (During the ceremony, G 1 , G 2 , G 3 , Ba , and R are as described above. ).
  • Capping can be performed using known capping solutions such as acetic anhydride-tetrahydrofuran solution and phenoxyacetic acid anhydride / N-methylimidazole solution.
  • the oxidation step of the step (3) is a step of converting the phosphorous acid group formed by the condensation step into a phosphorous acid group or a thiophosphate group.
  • This step is a reaction for converting trivalent phosphorus to pentavalent phosphorus using an oxidizing agent, and can be carried out by allowing an oxidizing agent to act on the oligonucleic acid derivative supported on the solid-phase carrier. ..
  • iodine can be used as the "oxidizing agent”.
  • the oxidizing agent can be prepared and used so as to have a concentration of 0.005 to 2M.
  • Water can be used as the oxygen source for oxidation, and pyridine, N-methylimidazole (NMI), N-methylmorpholin, and triethylamine can be used as the base for advancing the reaction.
  • the solvent is not particularly limited as long as it does not participate in the reaction, but acetonitrile, tetrahydrofuran (THF) or any ratio thereof may be mixed and used.
  • iodine / water / pyridine / acetonitrile, iodine / water / pyridine, iodine / water / pyridine / NMI, or iodine / water / pyridine / THF can be used.
  • the reaction temperature is preferably 5 ° C to 50 ° C.
  • the reaction time is usually 1 to 30 minutes.
  • the amount of the reagent used is preferably 1 to 100 mol, more preferably 1 to 10 mol, based on 1 mol of the compound supported on the solid phase carrier.
  • an "oxidizing agent” for example, sulfur, 3H-1,2-benzodithiol-3-one-1,1-dioxide (Beaucage reagent), 3-Amino-1,2,4-dithiazole-5-thione (ADTT), 5-phenyl-3H-1,2,4-dithiazole-3-one (POS), [(N, N-dimethylaminomethylidene) ) Amino] -3H-1,2,4-dithiazolin-3-thione (DDTT), and phenylacetyldisulfide (PADS) can be used.
  • an "oxidizing agent” for example, sulfur, 3H-1,2-benzodithiol-3-one-1,1-dioxide (Beaucage reagent), 3-Amino-1,2,4-dithiazole-5-thione (ADTT), 5-phenyl-3H-1,2,4-dithiazole-3-one (POS), [(N, N-dimethylamino
  • the oxidizing agent can be used by diluting it with a suitable solvent so as to have a concentration of 0.001 to 2M.
  • the solvent used in the reaction is not particularly limited as long as it is not involved in the reaction, and examples thereof include dichloromethane, acetonitrile, pyridine, and any mixed solvent thereof.
  • the oxidation step may be performed after the capping operation, or conversely, the capping operation may be performed after the oxidation step, and the order is not limited.
  • step (5) in the step of deprotecting the phosphoric acid protecting group, after the synthesis of the nucleic acid having the desired sequence is completed, an amine compound is allowed to act in order to deprotect the protecting group of the phosphoric acid moiety.
  • the amine compound include diethylamine described in Japanese Patent No. 4705716.
  • the protecting group for the 5'hydroxyl group of nucleoside introduced at the end of the extension was used for column purification tagged with the 5'protecting group after excision from the solid phase carrier and deprotection of the protecting group described below.
  • the protecting group of the 5'hydroxyl group may be deprotected after column purification.
  • step (5) the nucleic acid oligomer extended to a desired chain length on the solid-phase carrier is usually cut out from the solid-phase carrier using concentrated aqueous ammonia as a cutting agent.
  • the oligonucleotide chain is cleaved from the solid phase carrier and recovered.
  • the amine compound include methylamine, ethylamine, isopropylamine, ethylenediamine, diethylamine and the like.
  • step (6) the protecting group for the hydroxyl group at the 2- or 3-position of ribose of the nucleic acid compound (6) excised from the solid-phase carrier in step (5) is International Publication No. 2006/022233), International Publication No. 2013.
  • the deprotected nucleic acid oligomer (7) can be obtained by removing it according to the method described in / 027443 or WO 2019/208571.
  • the nucleoside contained in the nucleic acid oligomer has RNA, DNA, and 2'-O-MOE, 2'-O-Me, and 2'-F.
  • examples include, but are not limited to, RNA and nucleic acid oligomers that are LNAs.
  • RNA and nucleic acid oligomers that are LNAs.
  • nucleic acid oligomers that can be used in the production method of the present invention are shown below in addition to the examples described in Examples, but the present invention is not limited thereto.
  • U stands for uridine
  • C stands for cytidine
  • A stands for adenosine
  • G stands for guanosine.
  • Nucleic acid oligomers having the following sequences (B) and (C), which are described in WO 2019/060442, can be mentioned.
  • a typical example is a nucleic acid oligomer having the following sequence (D). Sequence (D): 5'-AGAGCCAGCCUUCUUAUUGUUUUAGAGCUAUGCUGU-3' (SEQ ID NO: 5) 36mer Nucleic acid oligomers described in JP4965745 can be mentioned. A typical example is a nucleic acid oligomer having the following sequence (E). Sequence (E): 5'-CCAUGAGAAGUAUGACAACAGCC-P-GGCUGUUGUCAUACUUCUCAUGGUU-3'49mer. CCAUGAGAAGUAUGACAACAGCC (SEQ ID NO: 6), GGCUGUUGUCAUACUUCUCAUGGUU (SEQ ID NO: 7).
  • P is represented by a partial structure separated by wavy lines in the following formula (A5).
  • Examples thereof include nucleic acid oligomers having the following sequence (F) described in Nucleic Acids Research, 2019, Vol. 47, No. 2: 547. Sequence (F): 5'-ACAGCAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCU-3' (SEQ ID NO: 8) 67mer Examples thereof include nucleic acid oligomers having the following sequence (G), which are described in JP 2015-523856, 173.
  • U indicates 2'-O-methyluridine
  • Am indicates 2'-O-methyladenosine
  • Gm indicates 2'-O-methylguanosine
  • s indicates phosphorothioate modification.
  • Oligonucleotide purity was measured using HPLC.
  • the HPLC measurement conditions are shown in Table 1 below. (Measurement method 1: Measurement of oligonucleotide purity)
  • the "A” at the 5'end is represented by a partial structure separated by a wavy line in the following formula (A6). Further, the "G” at the 3'end is represented by a partial structure separated by a wavy line in the following formula (A7).
  • AGCAGAGUAC ACACAGCAUA UACC (SEQ ID NO: 1) GGUAUAUGCU GUGUGUACUC UGCUUC (SEQ ID NO: 2)
  • oligonucleotide using Controlled Pole Glass (CPG) as a solid-phase carrier and NTS M-4MX-E (manufactured by Nippon Techno Service Co., Ltd.) or AKTA oligonucleotide plus100 (manufactured by GE Healthcare) as a nucleic acid synthesizer.
  • CPG Controlled Pole Glass
  • NTS M-4MX-E manufactured by Nippon Techno Service Co., Ltd.
  • AKTA oligonucleotide plus100 manufactured by GE Healthcare
  • the synthesis was carried out on a scale of about 1 ⁇ mol when NTS M-4MX-E (manufactured by Nippon Techno Service Co., Ltd.) was used, and on a scale of about 80 ⁇ mol when AKTA oligopilot plus100 (manufactured by GE Healthcare Co., Ltd.) was used. It was carried out at. Further, for the synthesis, the uridine EMM amidite described in Example 2 of US2012 / 0035246, the cytidine EMM amidite described in Example 3, the adenosine EMM amidite described in Example 4, the guanosine EMM amidite described in Example 5, and the like.
  • Compound (3) according to WO2017 / 188042 is used, a high-purity trichloroacetate toluene solution is used as a deblocking solution, 5-benzyl mercapto-1H-tetrazole is used as a condensing agent, and an iodine solution is used as an oxidizing agent. Then, a phenoxyacetic acid anhydride solution and an N-methylimidazole solution were used as the capping solution.
  • the oligonucleotide produced by the production method of the present invention in the following examples is a nucleic acid oligomer having the sequences (I) shown in SEQ ID NOs: 1 and 2.
  • the guanosine derivative described in the following Examples and Comparative Examples means a compound represented by the following structural formula.
  • the circles illustrated in the following structural formulas schematically represent CPG.
  • Example 1 Using a Controlled Pole Glass (CPG) carrying a 1.08 ⁇ mol guanosine derivative and an amidite represented by the formula (A8), formula (A9), formula (A10), formula (A11), or formula (A12).
  • CPG Controlled Pole Glass
  • the nucleic acid oligomer shown in sequence (I) was automatically synthesized from the 3'side to the 5'side by NTS M-4MX-E (manufactured by Nippon Techno Service Co., Ltd.).
  • the procedure for automatic synthesis is as follows: First, a 3% toluene trichloroacetate solution is sent to 1.4 mL CPG each time to deprotect the trityl protecting group at the 5'position, and then 0.3 mL of various amidites and 5 as a condensing agent are used. -Benzyl mercapto-1H-tetrazole was sent to CPG for 0.4 mL each, and the coupling reaction was allowed to proceed to the hydroxyl group at the 5'position.
  • the ratio of the molar concentration of iodic acid to the molar concentration of iodine in the oxidizing solution when used for synthesis was 2.6 ⁇ 10 -3 .
  • 0.5 mL of 0.1 M phenoxyacetic anhydride acetonitrile solution and 0.5 mL of 10% N-methylimidazole / 10% 2,6-lutidine acetonitrile solution were used as capping solutions, and the coupling did not proceed. Capping was applied to the reaction point.
  • nucleic acid oligonucleotide of the sequence shown in sequence (I) on the CPG carrier, and then the trityl protecting group at the 5'position was deprotected with a 3% toluene trichloroacetate solution. .. Then, the nucleic acid oligomer was liberated from the solid-phase carrier using 752 ⁇ L of aqueous ammonia and 252 ⁇ L of ethanol on the CPG carrier carrying the entire amount of oligonucleotide, and then the aqueous ammonia and ethanol were removed by spraying nitrogen.
  • the free oligonucleotide was dissolved in 400 ⁇ L of dimethyl sulfoxide, 5.3 ⁇ L of nitromethane and a stirrer were added, and then dehydration treatment was performed with molecular sieve 4A to obtain 1 M tetra-n-butylammonium fluoride (TBAF) dimethyl.
  • TBAF tetra-n-butylammonium fluoride
  • 530 ⁇ L of sulfoxide solution (TBAF amount: 10.2 mol per 1 mol of protecting group) was introduced at 30 ° C. under stirring with a stirrer, and the mixture was kept warm for 4 hours to deprotect the 2'-EMM protecting group. Nucleic acid oligomers were obtained by precipitation operation.
  • the yield was 9.1 mg
  • as a result of the measurement by the measuring method 1 the purity was 61%.
  • Example 2 In the experiment of Example 1, a scale using Controlled Pole Glass (CPG) carrying a 78.20 ⁇ mol guanosine derivative was used, and AKTA oligonucleotide plus100 (manufactured by GE Healthcare) was used as an oxidation solution containing iodine, as shown in Table 2. After using the above solution and completing the nucleic acid synthesis operation, a CPG carrier carrying 20.13 ⁇ mol worth of oligonucleotide was collected, and 7.5 mL of aqueous ammonia and 2.5 mL of ethanol were used to prepare the nucleic acid oligomer.
  • CPG Controlled Pole Glass
  • AKTA oligonucleotide plus100 manufactured by GE Healthcare
  • Example 3 In the experiment of Example 1, a sequence (I) was used in the same manner except that the solution shown in Table 2 was used as the oxidation solution containing iodine by using it with Controlled Pole Glass (CPG) carrying a 1.10 ⁇ mol guanosine derivative. ) Nucleic acid oligomer was obtained. The yield was 8.4 mg and the purity was 60%.
  • CPG Controlled Pole Glass
  • Example 4 In the experiment of Example 2, the oxidation solution described in the table below was used, and the scale was set using Controlled Pole Glass (CPG) carrying 78.20 ⁇ mol of guanosine derivative, and the oxidation solution containing iodine was shown in Table 2.
  • CPG Controlled Pole Glass
  • the nucleic acid oligomer of sequence (I) was obtained in the same manner except that the above-mentioned oxidation solution was used and a CPG carrier carrying an oligonucleotide of 20.16 ⁇ mol was collected after the nucleic acid synthesis operation was completed. The yield was 180.0 mg and the purity was 59%.
  • Example 5 In the method of Example 1, the nucleic acid oligomer of sequence (I) is used in the same manner except that the Controlled Pole Glass (CPG) carrying a 1.06 ⁇ mol guanosine derivative and the oxidation solution containing iodine shown in Table 2 are used. Got The yield was 9.1 mg and the purity was 56%.
  • CPG Controlled Pole Glass
  • Example 6 In the method of Example 2, except that the oxidation solution shown in Table 2 was used as the oxidation solution containing iodine and the CPG carrier carrying 20.20 ⁇ mol of oligonucleotide was collected after the nucleic acid synthesis operation was completed. , The nucleic acid oligomer of sequence (I) was obtained in the same manner. The yield was 154.8 mg and the purity was 57%.
  • Example 7 In the method of Example 1, the nucleic acid oligomer of sequence (I) was obtained in the same manner except that Controlled Pole Glass (CPG) carrying a 1.09 ⁇ mol guanosine derivative and the oxidation solution shown in Table 2 were used. .. The crude product was obtained by precipitation operation. The yield was 9.2 mg and the purity was 49%.
  • CPG Controlled Pole Glass
  • Example 8 In the method of Example 1, the nucleic acid oligonucleotide of sequence (I) is obtained in the same manner except that Controlled Pole Glass (CPG) carrying a 1.04 ⁇ mol guanosine derivative and the oxidation solution shown in Table 2 are used. rice field. The yield was 7.7 mg and the purity was 46%.
  • CPG Controlled Pole Glass
  • Example 9 In the method of Example 1, the nucleic acid oligomer of sequence (I) was obtained in the same manner except that Controlled Pole Glass (CPG) carrying a 1.00 ⁇ mol guanosine derivative and the oxidation solution shown in Table 2 were used. .. The yield was 7.9 mg and the purity was 42%.
  • CPG Controlled Pole Glass
  • the present invention provides an efficient method for producing a nucleic acid oligomer. Further, the purity of the nucleic acid oligomer produced according to the method for producing the nucleic acid oligomer can be expected to be improved.
  • SEQ ID NOs: 1 to 13 in the sequence listing represent the base sequences of oligonucleotides produced according to the production method of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Saccharide Compounds (AREA)

Abstract

本発明は、核酸オリゴマーの効率的な製造方法、とりわけ、亜リン酸トリエステル結合を有する核酸前駆体を酸化して、リン酸トリエステル結合を有する核酸分子を効率よく製造する方法、を提供することを目的とする。本発明はまた、式(I)で示されるヌクレオチドを5'末端に有する核酸化合物の、ホスホロアミダイト法による製造方法であって、5'末端に式(II)(式(I)および(II)の置換基の定義は、明細書に定義のとおりである。)で示される亜リン酸トリエステル結合を有する前駆体に、ヨウ素、ピリジンおよび水を含み、ヨウ素酸とヨウ素のモル比(ヨウ素酸mol/ヨウ素mol)が30×10-3以下である酸化溶液を反応させる工程を含む、製造方法、を提供する。

Description

核酸オリゴマーの製造方法
 本特許出願は、日本国特許出願2020-012787号(2020年1月29日出願)に基づくパリ条約上の優先権および利益を主張するものであり、ここに引用することによって、上記出願に記載された内容の全体が本明細書中に組み込まれるものとする。
 本発明は、核酸オリゴマーの製造方法に関する。
 核酸オリゴマーであるDNAやRNAは、DNAプローブ、RNAプローブ、アンチセンス、リボザイム、siRNA、アプタマーなどとして利用可能であり、有用な素材である。
 核酸オリゴマーは、固相合成法により合成可能であり、固相合成法ではヌクレオシドのホスホロアミダイト(以下、「アミダイト」と称する)が原料として用いられる。固相担体上で、カップリング、酸化および脱保護の工程を経て核酸を伸長して合成された核酸オリゴマーは、固相担体から切り出し、次いで、保護基を除いて、目的とする核酸オリゴマーが製造されている。このようにして合成された核酸オリゴマーの純度は、必ずしも満足いくものではなく、合成は効率的ではなかった(非特許文献1)。
Tetrahedron 69 (2013) 3615―3637
 本発明は、核酸オリゴマーの効率的な製造方法を提供することを目的とする。
 本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、核酸オリゴマーの合成において、ホスホロアミダイトを用いたカップリング反応により生成する亜リン酸エステルを酸化する際に使用する酸化溶液として、ヨウ素、水およびピリジンを含み、ヨウ素酸のヨウ素に対する比率が一定の水準以下の溶液を使用することを特徴とする、核酸オリゴマーの効率的な製造方法を提供する。
 本発明は、以下の態様を包含するが、これらに限定されるものではない。
項1. 式(I):
Figure JPOXMLDOC01-appb-C000010
(式中、
 GおよびGは各々、独立して、水酸基の保護基を示し、Bは、保護基で保護されていてもよい核酸塩基を示し、
 Rは、保護された水酸基、水素原子、フッ素原子、メトキシ基、2-メトキシエチル基、またはOQ’基を表し、
 Q’は、リボースの4’位の炭素原子と結合しているメチレン基、4’位の炭素原子と結合しているエチレン基、または4’位の炭素原子と結合しているエチリデン基を表し、そして、
 *のついた結合は、核酸の3’末端側への結合を示す。)
で示されるヌクレオチドを5’末端に有する核酸化合物の、ホスホロアミダイト法による製造方法であって、5’末端に式(II):
Figure JPOXMLDOC01-appb-C000011
(式中、
 G、G、B、Rおよび*は、前記定義のとおりである。)
で示される亜リン酸トリエステル結合を有する前駆体に、ヨウ素、ピリジンおよび水を含み、ヨウ素酸とヨウ素のモル比(ヨウ素酸mol/ヨウ素mol)が30×10-3以下である酸化溶液(以下、本明細書中、「本発明の酸化溶液」と称す)を反応させる工程を含む、製造方法。
項2. 亜リン酸トリエステル結合を有する前駆体が、式(4):
Figure JPOXMLDOC01-appb-C000012
(式中、
 Gは、水酸基の保護基を表し、
 Gは、それぞれ独立して、同一又は相異なる水酸基の保護基を表し、
 Bは、それぞれ独立して、同一又は相異なり、保護基で保護されていてもよい核酸塩基を表し、
 Rは、それぞれ独立して、同一又は相異なって、保護された水酸基、水素原子、フッ素原子、メトキシ基、2-メトキシエチル基、またはOQ’基を表し、
 Q’は、それぞれ独立して、同一又は相異なって、リボースの4’位の炭素原子と結合しているメチレン基、4’位の炭素原子と結合しているエチレン基、または4’位の炭素原子と結合しているエチリデン基を表し、
 Yは、それぞれ独立して、同一又は相異なって、酸素原子または硫黄原子を表し、
 nは、1以上200までの何れかの整数を表し、
 XがOZを表すとき、WはOV基を表し、Vは水酸基の保護基を表し、
 XがR基を表すとき、WはOZで表される基を表し、
 Zは、固相担体および連結基からなる構造を有する基である。
 そして、nが2以上の整数のとき、式(4)で示される核酸化合物は、それぞれの5’末端と3’末端のヌクレオチドの間の少なくとも1つのヌクレオチドの代わりに、非ヌクレオチドリンカーが組み込まれていてもよい。)
で示される化合物であり、リン酸トリエステル結合を有する化合物が、式(5):
Figure JPOXMLDOC01-appb-C000013
(式中、
 G、G、B、R、n、W、X、およびYは、前記のとおりであり、そして、
 式(4)において定義されたとおり、ヌクレオチドの代わりに、非ヌクレオチドリンカーが組み込まれていてもよい。)
で示される核酸化合物である、前項1に記載の製造方法。
項3. 式(5)の核酸化合物をアミダイト法で任意に鎖長を伸長した式(5’):
Figure JPOXMLDOC01-appb-C000014
(式中、
 G、B、R、XおよびWは、式(5)について定義されたとおりであり、
 Gは、水酸基の保護基、もしくは水素原子を表し、
 mは、m≧nを満たす整数であり、そして、
 Yは、それぞれ独立して、酸素または硫黄を表す。
 ただし、少なくとも1つのYは、酸素原子である。)
で示される核酸化合物を得る工程、
 式(5’)の化合物から式(6):
Figure JPOXMLDOC01-appb-C000015
(式中、
 G、Rおよびmは、前記のとおりであり、
 Bはそれぞれ独立して同一又は相異なる核酸塩基を表し、
 Gは水素原子、アルカリ金属イオン、アンモニウムイオン、アルキルアンモニウムイオン、またはヒドロキシアルキルアンモニウムイオンを表し、
 Yは、それぞれ独立して、酸素または硫黄を表し、かつ、少なくとも1つが、酸素原子であり、そして、
 Xは、水酸基を表し、かつWは、OV基を表し、ここでVは、水酸基の保護基を表すか、あるいは
 Xは、R基を表し、かつWは、水酸基を表す。)
で示される化合物を切り出し、
 さらに式(6)の化合物を脱保護して、式(7):
Figure JPOXMLDOC01-appb-C000016
(式中、
 m、Y、GおよびBは、前記定義のとおりであり、
 R’は、それぞれ独立して、同一又は相異なって、水酸基、水素原子、フッ素原子、メトキシ基、2-メトキシエチル基、またはOQ’基を表し、
 Q’は、それぞれ独立して、同一又は相異なって、リボースの4’位の炭素原子と結合しているメチレン基、4’位の炭素原子と結合しているエチレン基、または4’位の炭素原子と結合しているエチリデン基を表し、
 そして、
 X10およびW10は各々、それぞれ独立して、水酸基を表すか、あるいは
 X10は、R’基を表し、かつ、W10は、水酸基を表す。)
で示される脱保護した核酸オリゴマーを製造する工程をさらに含む、前項2に記載の核酸オリゴマーの製造方法。
項4. 非ヌクレオチドリンカーが、アミノ酸骨格からなるリンカーである、前項2または3のいずれかに記載の製造方法。
項5. アミノ酸骨格からなるリンカーが、下記式(A14-1)、(A14-2)および(A14-3)からなる群から選ばれる構造を有するリンカーである、前項4に記載の製造方法。
Figure JPOXMLDOC01-appb-C000017
項6. 酸化溶液のヨウ素の濃度が、0.005~2Mである、前項1~5の何れか一項に記載の製造方法。
項7. 酸化溶液のヨウ素の濃度が、0.005~0.2Mである、前項1~5の何れか一項に記載の製造方法。
項8. 酸化溶液のヨウ素の濃度が、0.007~0.1Mである、前項1~5の何れか一項に記載の製造方法。
項9. 酸化溶液のヨウ素の濃度が、0.008~0.07Mである、前項1~5の何れか一項に記載の製造方法。
項10. 酸化溶液が、ヨウ素、ピリジンおよび水を混合して調製される、前項1~9の何れか一項に記載の製造方法。
項11. 酸化溶液が、アセトニトリルおよびテトラヒドロフランからなる群から選ばれる少なくとも1つの溶媒をさらに含む酸化溶液である、前項10に記載の製造方法。
項12. 酸化溶液が、アセトニトリル溶媒をさらに含む酸化溶液である、前項10または11に記載の製造方法。
項13. 酸化溶液の溶媒が、ピリジン、水、アセトニトリル、およびテトラヒドロフランを、1~90:1~50:0~90:0~90の体積比率で混合した混合溶媒である、前項11に記載の製造方法。
項14. 酸化溶液の溶媒が、ピリジン、水、およびアセトニトリルを、1~90:1~50:0~90の体積比率で混合した混合溶媒である、前項11または12に記載の製造方法。
項15. ヨウ素酸とヨウ素のモル比(ヨウ素酸mol/ヨウ素mol)が25×10-3以下である、項1~14の何れか一項に製造方法。
項16. ヨウ素酸とヨウ素のモル比(ヨウ素酸mol/ヨウ素mol)が20×10-3以下である、項1~14の何れか一項に製造方法。
項17. ヨウ素酸とヨウ素のモル比(ヨウ素酸mol/ヨウ素mol)が15×10-3以下である、項1~14の何れか一項に記載の製造方法。
項18. ヨウ素酸とヨウ素のモル比(ヨウ素酸mol/ヨウ素mol)が10×10-3以下である、項1~14の何れか一項に記載の製造方法。
項19. ヨウ素酸とヨウ素のモル比(ヨウ素酸mol/ヨウ素mol)が5×10-3以下である、項1~14の何れか一項に記載の製造方法。
項20. ヨウ素酸とヨウ素のモル比(ヨウ素酸mol/ヨウ素mol)が3×10-3以下である、項1~14の何れか一項に記載の製造方法。
項21. 酸化溶液が、調製から酸化反応に使用するまでの時間が1週間以上経た酸化溶液である、項1~20の何れか一項に記載の製造方法。
項22. 酸化溶液が、調製から酸化反応に使用するまでの時間が2週間以上経た酸化溶液である、項1~20の何れか一項に記載の製造方法。
項23. 核酸がリボヌクレオシド(RNA)である、項1~22の何れか一項に記載の製造方法。
項24. 核酸が、リボヌクレオシド(RNA)であり、その2’保護基が、式(12)に示す保護基である、項2~23の何れか一項に記載の製造方法。
 式(12):
Figure JPOXMLDOC01-appb-C000018
(式中、
 qは、1~5の整数を表し、
 RおよびRは各々、それぞれ同一又は相異なって、メチル基、エチル基または水素原子を表し、
 *印のついた結合は、OQ基の酸素に結合し、そして、
 Eは、電子求引基を表す。)
項25. RおよびRが同時に水素原子であり、Eがシアノ基である、項24に記載の製造方法。
項26. 核酸が40鎖長以上のリボヌクレオシド(RNA)である、項1~25の何れか一項に記載の製造方法。
項27. さらに項1に記載の酸化溶液を調製する工程を含む、項1~26の何れか一項に記載の製造方法。
 本発明は、効率的な核酸オリゴマーの製造方法を提供する。本発明の製造方法により、製造される核酸オリゴマーの純度向上が期待できる。
本発明の製法の工程(1)から(6)のスキームを示す図面である。
 前記式(I)で示されるヌクレオチドを5’末端に有する核酸化合物のホスホロアミダイト法による製造方法であって、5’末端に前記式(II)で示される亜リン酸トリエステル結合を有する前駆体に、ヨウ素、ピリジンおよび水を含み、ヨウ素酸とヨウ素のモル比(ヨウ素酸mol/ヨウ素mol)が30×10-3以下である酸化溶液(本発明の酸化溶液)を反応させる工程を含む、製造方法について説明する。
 亜リン酸トリエステル結合を有する核酸前駆体に、ヨウ素、ピリジンおよび水を含む酸化溶液を反応させ、リン酸トリエステル結合に酸化する工程を含む核酸化合物の製造方法であって、前記酸化溶液におけるヨウ素酸とヨウ素のモル比(ヨウ素酸mol/ヨウ素mol)が30×10-3以下である、製造方法について説明する。
 ヨウ素、ピリジンおよび水を含む本発明の酸化溶液中のヨウ素酸とヨウ素のモル比(ヨウ素酸mol/ヨウ素mol)は、通常、30×10-3以下である。ヨウ素酸とヨウ素のモル比(ヨウ素酸mol/ヨウ素mol)は、好ましくは、25×10-3以下、さらに好ましくは、20×10-3以下、さらにより好ましくは、15×10-3以下、さらにより好ましくは、10×10-3以下、さらにより好ましくは、5×10-3以下、よりさらに好ましくは、3×10-3以下である。ここで、ヨウ素およびヨウ素酸の量は、後述するイオンクロマトグラフ法により測定されたものである。
 前記酸化溶液としては、典型的には、ヨウ素と、水およびピリジンから調製される。調製された溶液は、前記のヨウ素酸とヨウ素のモル比を満たすものが使用される。
 酸化溶液の調製から核酸合成までの期間、例えば、25~60℃で1日以上、好ましくは調製後1週間以上、より好ましくは調製後2週間以上、更に好ましくは調製後1ヶ月以上保管し、前記所定のヨウ素酸とヨウ素のモル比以下の溶液が使用できる。酸化溶液の調製後の保管温度は、前記範囲に限定されず、0~80℃で保管し、前記所定の条件を満たすものであればよい。
 ヨウ素、ピリジンおよび水を含む酸化溶液中のヨウ素の濃度は、通常、0.005~2M、好ましくは0.005~0.2M、より好ましくは、0.007~0.1M、更に好ましくは、0.008~0.07Mに調整される。
 前記酸化溶液は、典型的には、ヨウ素と、水およびピリジンから調製されるが、かかる酸化溶液には、アセトニトリルおよびテトラヒドロフラン(THF)からなる群から選ばれる少なくとも1つの溶媒を混合して用いてもよい。
 酸化溶液の溶媒は、溶液の総体積当たり、例えば、ピリジンを1~90、水を1~50、アセトニトリルを0~90、テトラヒドロフランを0~90の体積比率で、混合して得られたものであり、好ましくは、ピリジンを5~90、水を2~30、アセトニトリルを0~80、テトラヒドロフランを0~80の体積比率で混合して得られた混合溶媒である。酸化溶液を調製する時に反応系の攪拌は必須ではないが、通常、攪拌動力Pvが0.0~0.5kW/mの範囲で攪拌を行い、Pvが0.1~0.3kW/mの攪拌が好ましい。
 前記のごとく調製される酸化溶液は、ヨウ素の濃度を酸化反応での使用時よりも高濃度で調製して保管することもできる。かかる高濃度の酸化溶液は、使用に際して、前記溶媒で希釈することにより最終的に所望の濃度に調整して、使用してもよい。
 亜リン酸トリエステル結合の酸化反応においては、前記酸化溶液に、N-メチルイミダゾール(NMI)、N-メチルモルフォリン、ルチジンおよびトリエチルアミンからなる群から選ばれる少なくとも一種の化合物をさらに加えてもよい。あるいはヨウ化カリウムなどのヨウ化物を添加してもよい。
 酸化溶液の保管には、ガラス製容器、プラスチック製容器、または金属製容器を使用することができる。プラスチック製容器としては、ポリエチレンまたはポリプロピレン製等の容器を使用することができ、金属製容器としては、SUS製容器またはハステロイ製等の容器を使用することができる。
 空気雰囲気下または不活性ガス雰囲気下で酸化溶液を保管することができ、不活性ガスとしては、アルゴン、窒素、二酸化炭素またはヘリウム等を使用することができる。
 亜リン酸(ホスファイト)トリエステル結合を含む化合物としては、前記式(4)の化合物が例示される。酸化溶液を作用させて生成する核酸化合物としては、前記式(5)で示される核酸化合物が例示される。
 式(4)および(5)において、Q’で表される、それぞれ独立して同一又は相異なって、リボースの4’位の炭素原子と結合しているメチレン基、4’位の炭素原子と結合しているエチレン基、または4’位の炭素原子と結合しているエチリデン基を表す化合物として、具体的には下記式(8)の構造が示される。
Figure JPOXMLDOC01-appb-C000019
(式中、Baは、保護されていてもよい核酸塩基を表す。)
 Zで示される、固相担体、および固相担体と核酸オリゴマーの3’末端のリボースの2’位もしくは3’位の水酸基の酸素原子とをつなぐ連結部からなる基としては、より具体的には、Zは、下記式(9)で示される構造を表し、
Figure JPOXMLDOC01-appb-C000020
 式(9)において、Spは、スペーサーを表す。
 スペーサー(Sp)としては、例えば、下記式(10)に示す構造式を有するものが例示される。
Figure JPOXMLDOC01-appb-C000021
 Linkerは、例えば、下記式(11)に示す構造でもよいし、または式(11)の構造においてヘキサメチレンアミノ基部分を有さない構造であって、アミノプロピル基がSiに結合した構造でもよい。または、Linkerは下記式(15)で示す構造でもよい。
Figure JPOXMLDOC01-appb-C000022
(式中、
 Aは、水酸基、アルコキシ基、またはアルキル基のいずれかであってもよい。アルコキシ基としては、例えばメトキシ基およびエトキシ基が挙げられる。アルキル基としては、例えばメチル基、エチル基、イソプロピル基、n-プロピル基が挙げられる。Siは、担体表面の水酸基の酸素と結合していることを示す。)
 Solid supportとしては、無機多孔質担体や有機系樹脂担体などが挙げられる。無機多孔質担体には、例えば、Controlled Pore Glass(CPG)が挙げられる。有機系樹脂担体には、例えば、ポリスチレンからなる担体が挙げられる。
 本発明で使用される核酸オリゴマー内に含まれるヌクレオシド(リボース、およびデオキシリボース)としては、DNA、RNA、2’-O-MOE(2’-O-メトキシエチル)、2’-O-Me、2’-F RNA、および前記のLNAが例示されるが、前記ヌクレオシドは、これらに限定されない。
 前記の酸化溶液による酸化工程を含む固相合成法による核酸オリゴマーの合成方法は、典型的には、以下の工程を含む。
(1)固相担体にリンカーを介して結合している水酸基が保護されたヌクレオシドの5’位の水酸基を脱保護する工程、
(2)前記工程で生成した5’位の水酸基をホスホロアミダイト化合物とカップリング反応させて亜リン酸トリエステル化合物を得る工程、
(3)前記工程で生成した亜リン酸トリエステルを酸化してリン酸トリエステル結合に変換して伸長した核酸分子を製造する工程、あるいは、チオリン酸トリエステルに変換する任意の工程、
(4)前記工程(1)~(3)、すなわち、生成した核酸分子の5’位の水酸基の脱保護工程、5’位の水酸基とアミダイト化合物とのカップリング工程、および、生成した亜リン酸トリエステルの酸化工程、から構成される一連の反応のサイクルを、任意の回数繰り返し、固相担体上に核酸分子を合成する工程、および
(5)工程(4)で生成した固相担体上の核酸分子を、切り出しおよび脱保護する工程に供し、固相担体から遊離させて、保護基が除かれた核酸オリゴマーを製造する工程。
ただし、前記核酸オリゴマーの合成方法においては、工程(2)または(3)に続けて、ホスホロアミダイト化合物とのカップリング反応が進行しなかった5’位の水酸基をキャッピングする工程を含んでいてもよく、工程(4)を構成する一連の反応のサイクルの何れかの工程の間にキャッピング工程が付加されていてもよい。
 前記(5)の工程は、より具体的には、工程(4)で生成した固相担体上の核酸分子を、以下の工程(5-1)および(5-2)の反応の順に実施し、次いで工程(5-3)の反応に供することにより実施される。ここで工程(5-1)の反応の実施は、任意であってもよいし、工程(5-2)の反応の実施は、特許第4705716号公報に記載の方法を用いてもよい。その結果、固相担体から遊離した核酸分子から保護基が除かれた核酸オリゴマー、あるいは、5’末端の水酸基が保護された核酸オリゴマーを製造することができる。
  (5-1)核酸分子の5’末端の水酸基の保護基を脱保護する反応、
  (5-2)核酸分子を固相担体から切りだして遊離させる反応、および、
  (5-3)核酸分子を構成するリボースの2’位もしくは3’末端の水酸基の3’位の水酸基の保護基を脱保護する反応。
 前記工程(1)から(6)のスキームを、図1に示す。図1に示される工程(3)または工程(4)における酸化反応が、前記の酸化溶液を用いて実施される。スキームAにおける化学式中の置換基の定義は、前記定義のとおりである。
 式(5)の核酸化合物は、さらにアミダイト法によりヌクレオチド型または非ヌクレオチド型のリンカーを用いて任意の鎖長だけ伸長し、前記式(5’)で示される核酸化合物の製造に使用することができる。前記式(5’)の固相担体に結合した核酸化合物から核酸化合物のみを切り出して、前記式(6)で示される核酸オリゴマーを得たのち、更に脱保護して前記式(7)で示される核酸オリゴマーを得ることもできる。以下、各式中の置換基についてさらに詳細に説明する。
 Bで示される保護基で保護されていてもよい核酸塩基は、特に限定されない。当該核酸塩基としては、アデニン、シトシン、グアニン、ウラシル、チミン、5-メチルシトシン、シュードウラシル、1-メチルシュードウラシルなどが挙げられる。また、核酸塩基は、置換基により置換されていてもよい。そのような置換基としては、例えば、フルオロ基やクロロ基やブロモ基やヨード基のようなハロゲン原子、アセチル基のようなアシル基、メチル基やエキル基のようなアルキル基、ベンジル基のようなアリールアルキル基、メトキシ基のようなアルコキシ基、メトキシエチル基のようなアルコキシアルキル基、シアノエチル基のようなシアノアルキル基、ヒドロキシ基、ヒドロキシアルキル基、アシルオキシメチル基、アミノ基、モノアルキルアミノ基、ジアルキルアミノ基、カルボキシ基、シアノ基、およびニトロ基など、並びにそれらの2種類以上の置換基の組み合わせが挙げられる。
 核酸塩基が環外にアミノ基を有する場合、当該アミノ基の保護基としては、特に限定されず、公知の核酸化学で用いられる保護基を使用することができ、そのような保護基としては、例えば、ベンゾイル基、4-メトキシベンゾイル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、フェニルアセチル基、フェノキシアセチル基、4-tert-ブチルフェノキシアセチル基、4-イソプロピルフェノキシアセチル基、および(ジメチルアミノ)メチレン基など、並びにそれらの2種類以上の保護基の組み合わせが挙げられる。
 Bは、より具体的には、
Figure JPOXMLDOC01-appb-C000023
(上記式中、
 Rは、水素原子、メチル基、フェノキシアセチル基、4-tert-ブチルフェノキシアセチル基、4-イソプロピルフェノキシアセチル基、フェニルアセチル基、アセチル基又はベンゾイル基を表し、
 Rは、水素原子、アセチル基、イソブチリル基又はベンゾイル基を表し、
 Rは、水素原子、フェノキシアセチル基、4-tert-ブチルフェノキシアセチル基、4-イソプロピルフェノキシアセチル基、フェニルアセチル基、アセチル基又はイソブチリル基を表し、
 Rは、2-シアノエチル基を表し、
 Rは、水素原子、メチル基、ベンゾイル基、4-メトキシベンゾイル基又は4-メチルベンゾイル基を表し、そして、
 Rは、ジメチルアミノメチレン基を表す。)
のいずれかで表される基を表す。
 Gとしては、保護基として機能し得るものであれば特に制限なく使用することができ、アミダイト化合物で使用される公知の保護基を広く使用することができる。
 Gは、好ましくは、以下の基である。
Figure JPOXMLDOC01-appb-C000024
(式中、R、R及びRは、それぞれ独立して、同一又は相異なって水素又はアルコキシ基を表す。)
 R、R及びRは、1つが水素であり、残りの2つが同一または相異なる(同一が好ましい)アルコキシ基であることが好ましく、アルコキシ基としてはメトキシ基が特に好ましい。
 Gとしては、保護基として機能し得るものであれば特に制限なく使用することができ、アミダイト化合物で使用される公知の保護基を広く使用することができる。Gとしては、例えば、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、ハロアルキル基、アリール基、ヘテロアリール基、アリールアルキル基、シクロアルケニル基、シクロアルキルアルキル基、シクリルアルキル基、ヒドロキシアルキル基、アミノアルキル基、アルコキシアルキル基、ヘテロシクリルアルケニル基、ヘテロシクリルアルキル基、ヘテロアリールアルキル基、シリル基、シリルオキシアルキル基、モノ、ジ又はトリアルキルシリル基、モノ、ジ又はトリアルキルシリルオキシアルキル基などが挙げられ、これらは1つ以上の電子求引基で置換されていてもよい。
 Gは、好ましくは、電子求引基で置換されたアルキル基である。当該電子求引基としては、例えば、シアノ基、ニトロ基、アルキルスルホニル基、ハロゲン原子、アリールスルホニル基、トリハロメチル基、トリアルキルアミノ基などが挙げられ、好ましくはシアノ基である。
 Gとしては、特に好ましいのは、以下の基である。
Figure JPOXMLDOC01-appb-C000025
 Gは、2つのGが互いに結合して環状構造を形成していてもよい。Gとしては、両方がイソプロピル基であることが好ましい。
 前記R、R、RおよびGの定義におけるアルキル基は、直鎖状又は分岐鎖状のいずれでもよく、好ましくは炭素数1~12のアルキル基、より好ましくは炭素数1~6のアルキル基である。具体的なアルキル基の例としては、例えば、メチル、エチル、n-プロビル、イソプロピル、n-ブチル、イソブチル、tert-ブチル、n-ペンチル、イソペンチル、及びヘキシルが挙げられる。前記置換基の定義におけるアルコキシ基を構成するアルキル基部分は、ここでのアルキル基の定義と同じ定義を有する。
 また、本発明の方法において、アミダイト化合物は、フリーの状態又は塩の状態で使用することができる。アミダイト化合物の塩としては、塩基付加塩または酸付加塩が挙げられるが、特に制限されない。塩基付加塩としては、具体的には、ナトリウム塩、マグネシウム塩、カリウム塩、カルシウム塩、アルミニウム塩等の無機塩基との塩;メチルアミン、エチルアミン、エタノールアミン等の有機塩基との塩;リジン、オルニチン、アルギニン等の塩基性アミノ酸との塩;及びアンモニウム塩が挙げられる。酸付加塩としては、具体的には、塩酸、臭化水素酸、ヨウ化水素酸、硫酸、硝酸、リン酸等の鉱酸;ギ酸、酢酸、プロピオン酸、シュウ酸、マロン酸、リンゴ酸、酒石酸、フマル酸、コハク酸、乳酸、マレイン酸、クエン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、エタンスルホン酸等の有機酸;および、アスパラギン酸、グルタミン酸等の酸性アミノ酸との酸付加塩が挙げられる。アミダイト化合物には、塩、水和物、溶媒和物、結晶多形などの形態も含まれる。
 Rが、保護された水酸基を示すとき、その保護基は、アミダイト法において使用できるものであればよく、例えば、2’-tert-ブチルジメチルシリル(TBDMS)基、2’-ビス(2-アセトキシ)メチル(ACE)基、2’-(トリイソプロピルシリロキシ)メチル(TOM)基、2’-(2-シアノエトキシ)エチル(CEE)基、2’-(2-シアノエトキシ)メチル(CEM)基、2’-パラ-トルイルスルホニルエトキシメチル(TEM)基、2’-EMM基(国際公開2006/022323号)の他に、国際公開第2013/027843号および国際公開第2019/208571号に記載のものが使用できる。これらのリボヌクレオシド(RNA)の2’保護基のうち、前記式(12)で示される保護基が好ましい保護基として例示される。さらに好ましくは、Eで示される電子求引基としてシアノ基を有する式(13)で示される保護基が例示される。
Figure JPOXMLDOC01-appb-C000026
(式中、
 q、RおよびRは、前記式(12)における定義と同義である。ただし、RおよびRが同時に水素原子を表すことはない。)
 式(13)で示される保護基は、例えば国際公開第2013/027843号および国際公開第2019/208571号に記載に従って合成することができ、かかる保護基を有するアミダイト化合物を核酸化合物の製造に使用することができる。
 核酸の伸長反応には、図1のスキームAに記載の式(3)のアミダイト化合物が使用される。
 非ヌクレオチドリンカーとしては、アミノ酸骨格からなるリンカー(例えば、特許第5157168号公報または特許第5554881号公報に記載されたアミノ酸骨格からなるリンカー)が例示される。具体的には、非限定的な例として、例えば、式(A14-1)もしくは(A14-2)もしくは(A14-3)(例えば、WO2019/074110に記載)で表されるリンカーが例示される。これらのリンカー以外にWO2012/005368、WO2018/182008またはWO2019/074110に記載のリンカーが例示される。
Figure JPOXMLDOC01-appb-C000027
 式(3)におけるR基および式(4)におけるR’基が、水酸基以外の置換基であるヌクレオチドおよびアミダイトは、特許第3745226号公報などに記載された公知の方法、WO2001/053528号公報あるいは特開2014-221817号公報およびそれらに引用される公知の方法で合成されるヌクレオシドから製造することもでき、さらには、市販品として入手可能なものを用いて、後述する実施例に記載の方法に則して又はこれらの方法に適宜変更を加えた方法により製造することができる。
 前記工程(1)から(6)のアミダイト法による核酸化合物の合成は、図1のスキーム中の工程(3)における本発明に関わる酸化反応工程以外は、一般的に公知の方法(例えば、前記の特許第5157168号公報または特許第5554881号公報に記載の方法)に従って、脱保護工程、縮合工程、の各工程を繰り返し行うことにより、核酸伸長反応を行うことができる。以下、各工程について説明する。
 Gは、水素原子、アルカリ金属イオン、アンモニウムイオン、アルキルアンモニウムイオン、またはヒドロキシアルキルアンモニウムイオンを表す。アルカリ金属イオンとしては、例えば、ナトリウムイオン、およびリチウムイオンが挙げられる。また、アルキルアンモニウムイオンとして、具体的なアルキル基の例としては、例えば、メチル、エチル、n-プロビル、イソプロピル、n-ブチル、イソブチル、tert-ブチル、n-ペンチル、イソペンチル、及びヘキシルが挙げられるが、より具体的には、例えば、ジエチルアンモニウムイオン、トリエチルアンモニウムイオン、テトラブチルアンモニウムイオン、ヘキシルアンモニウムイオン、およびジブチルアンモニウムイオンなどが挙げられる。また、ヒドロキシアルキルアンモニウムイオンとして、具体的なヒドロキシアルキル部分の例としては、例えば、ヒドロキシメチル、ヒドロキシエチル、ヒドロキシ-n-プロビル、ヒドロキシイソプロピル、ヒドロキシ-n-ブチル、トリスヒドロキシメチルが挙げられるが、より具体的なヒドロキシアルキルアンモニウムイオンの例としては、トリスヒドロキシメチルアンモニウムイオンなどが挙げられる。
 Gは、水素原子、または保護基を表し、保護基を表す場合はGと同じ保護基を表す。Gは脱保護された場合には水素原子であるが、その場合のヌクレオチド化合物もまた、一連の核酸伸張反応の工程に供される。
(核酸伸長反応)
 本明細書において、「核酸伸長反応」とは、ホスホジエステル結合を介して、ヌクレオチドを順次結合させることにより、オリゴヌクレオチドを伸長させる反応を意味する。核酸伸長反応は、一般的なホスホロアミダイト法の手順に従い行うことができる。核酸伸長反応は、ホスホロアミダイト法を採用する核酸自動合成装置等を用いて行ってもよい。
 核酸オリゴマーの鎖長は、例えば、2~200merや10~150mer、15~110merであってもよい。
 工程(1)の5’脱保護工程は、固相担体上に担持されるRNA鎖末端の5’ヒドロキシル基の保護基を脱保護する工程である。一般的な保護基としては、4,4’-ジメトキシトリチル基(DMTr基)や4-モノメトキシトリチル基、4,4’,4”-トリメトキシトリチル基が用いられる。脱保護は、酸を用いて行うことができる。脱保護用の酸としては、例えば、トリフルオロ酢酸、ジクロロ酢酸、トリフルオロメタンスルホン酸、トリクロロ酢酸、メタンスルホン酸、塩酸、酢酸、p-トルエンスルホン酸等が挙げられる。
 工程(2)の縮合工程は、前記脱保護工程により脱保護したオリゴヌクレオチド鎖末端の5’ヒドロキシル基に対して、図1のスキームAに記載の下記式(3)で示されるヌクレオシドホスホロアミダイトを結合させる反応である。なお、核酸伸長に用いるホスホロアミダイトとしては、式(3)または(A12)で示されるアミダイト化合物を用いる。また、他に使用可能なホスホロアミダイトとして、2’-OMe、2’-F、2’-O-tert-ブチルジメチルシリル基,2’-O-メトキシエチル基,2’-H,2'-フルオロ-2’-デオキシ-β-D-アラビノフラノシル等が挙げられる。前記ヌクレオシドホスホロアミダイトとしては、5’ヒドロキシル基が保護基(例、DMTr基)で保護されたものを用いる。縮合工程は、前記ヌクレオシドホスホロアミダイトを活性化する活性化剤を用いて行うことができる。活性化剤としては、例えば、5-ベンジルチオ-1H-テトラゾール(BTT)、1H-テトラゾール、4,5-ジシアノイミダゾール(DCI)、5-エチルチオ-1H-テトラゾール(ETT)、N-メチルベンズイミダゾリウムトリフラート(N-MeBIT)、ベンズイミダゾリウムトリフラート(BIT)、N-フェニルイミダゾリウムトリフラート(N-PhIMT)、イミダゾリウムトリフラート(IMT)、5-ニトロベンズイミダゾリウムトリフラート(NBT)、1-ヒドロキシベンゾトリアゾール(HOBT)又は5-(ビス-3,5-トリフルオロメチルフェニル)-1H-テトラゾール等が挙げられる。
 図1のスキームAに記載の式(3)で示されるヌクレオシドホスホロアミダイト(以下、アミダイトと呼称する)とは、以下のとおりである。
 式:
Figure JPOXMLDOC01-appb-C000028
(式中、
 G、G、G、B、およびRは、前記の通りである。)で示される化合物。
 縮合工程の後は、適宜、未反応の5’ヒドロキシル基をキャッピングしてもよい。キャッピングは、無水酢酸-テトラヒドロフラン溶液、フェノキシ酢酸無水物/N-メチルイミダゾール溶液等の公知のキャッピング溶液を用いて行うことができる。
 工程(3)の酸化工程は、前記縮合工程により形成された亜リン酸基をリン酸基又はチオリン酸基に変換する工程である。本工程は、3価のリンから5価のリンに酸化剤を使用して変換する反応であり、固相担体に担持されているオリゴ核酸誘導体に酸化剤を作用させることにより実施することができる。
 亜リン酸基をリン酸基に変換する場合には、「酸化剤」として、例えば、ヨウ素を使用することができる。該酸化剤は、0.005~2Mの濃度になるように調製して使用することができる。酸化の酸素源としては水を用いることができ、反応を進行させる塩基としてはピリジン、N-メチルイミダゾール(NMI)、N-メチルモルフォリン、トリエチルアミンを用いることができる。また、溶媒としては、反応に関与しなければ特に限定されないが、アセトニトリル、テトラヒドロフラン(THF)又はこれらの任意の割合で混合して使用することもできる。例えば、ヨウ素/水/ピリジン/アセトニトリル、あるいはヨウ素/水/ピリジンあるいはヨウ素/水/ピリジン/NMI、あるいはヨウ素/水/ピリジン/THFを用いることができる。反応温度は、5℃~50℃が好ましい。反応時間は、通常1分~30分が適当である。使用する試薬の量は固相担体に担持されている化合物1molに対して1~100molが好ましく、より好ましくは1~10molである。
 亜リン酸トリエステル基をチオリン酸基に変換する場合には、「酸化剤」として、例えば、硫黄、3H-1,2-ベンゾジチオール-3-オン-1,1-ジオキシド(Beaucage試薬)、3-アミノ-1,2,4-ジチアゾール-5-チオン(ADTT)、5-フェニル-3H-1,2,4-ジチアゾール-3-オン(POS)、[(N,N-ジメチルアミノメチリデン)アミノ]-3H-1,2,4-ジチアゾリン-3-チオン(DDTT)、およびフェニルアセチルジスルフィド(PADS)を使用することができる。該酸化剤は、0.001~2Mの濃度になるように適当な溶媒で希釈して使用することができる。反応に使用する溶媒としては、反応に関与しなければ特に限定されないが、例えば、ジクロロメタン、アセトニトリル、ピリジン又はこれらの任意の混合溶媒が挙げられる。酸化工程は、前記キャッピング操作の後で行ってもよいし、逆に、酸化工程の後でキャッピング操作を行ってもよいし、この順序は限定されない。
 工程(5)において、リン酸保護基を脱保護する工程は、所望の配列を有する核酸の合成が完了した後は、リン酸部分の保護基を脱保護するためにアミン化合物を作用させる。アミン化合物としては、例えば、特許第4705716号公報に記載されるジエチルアミン等が挙げられる。
 伸長の最後に導入したヌクレオシドの5’ヒドロキシル基の保護基は、後述の固相担体からの切り出し及び保護基の脱保護の後、5’保護基をタグとするカラム精製のために使用してもよく、カラム精製後、5’ヒドロキシル基の保護基を脱保護してもよい。
 工程(5)における、固相担体上で所望の鎖長に伸長した核酸オリゴマーの、固相担体からの切り出しは、通常、切り出し剤として濃アンモニア水を用いて実施される。
 更にアンモニア又はアミン化合物等を用いて、例えば、固相担体からオリゴヌクレオチド鎖を切断して回収する。アミン化合物としては、例えば、メチルアミン、エチルアミン、イソプロピルアミン、エチレンジアミン、ジエチルアミン等が挙げられる。
 工程(6)において、工程(5)において固相担体から切り出された核酸化合物(6)のリボースの2位もしくは3位の水酸基の保護基は、国際公開2006/022323号)、国際公開第2013/027843号、または国際公開第2019/208571号に記載の方法に従って除くことができて、脱保護した核酸オリゴマー(7)を得ることができる。
 本発明の製造方法を用いて製造可能な核酸オリゴマーとしては、核酸オリゴマー内に含まれるヌクレオシドが、RNA、DNA、並びに2’-O-MOE、2’-O-Me、2’-Fを有するRNA、およびLNAである核酸オリゴマーが挙げられるが、これらに限定されるものではない。例えば、Xiulong, Shenら著、Nucleic Acids Research, 2018, Vol. 46, No.46, 1584-1600、およびDaniel O'Reillyら著、Nucleic Acids Research, 2019, Vol. 47, No.2, 546-558に記載された、様々なヌクレオシドの例が挙げられる。
 本発明の製造方法において使用可能な核酸オリゴマーの典型的な例を、実施例に記載の例に加えて下記の例を示すが、これらに限定されるものではない。
 以下、配列の説明中、Uはウリジンを、Cはシチジンを、Aはアデノシンを、またGはグアノシンを示す。
 国際公開第2019/060442号に記載されている、下記の配列(B)および(C)を有する核酸オリゴマーを挙げられる。
配列(B):5’-AUGGAAUmACUCUUGGUUmACdTdT-3’(Antisense)(配列番号3) 21mer
配列(C):5’-GUmAACmCmAAGAGUmAUmUmCmCmAUmdTdT-3’(Sense)(配列番号4) 21mer
 配列(B)および(C)中、Umは2'-O-メチルウリジンを、Cmは2'-O-メチルシチジンを、またdTはチミジンを示す。
 Daniel O'Reillyら著、Nucleic Acids Research, 2019, Vol. 47, No.2, 546-558に記載されている核酸オリゴマー(553頁参照)が挙げられる。典型例として、下記の配列(D)を有する核酸オリゴマーを挙げられる。
配列(D):5’-AGAGCCAGCCUUCUUAUUGUUUUAGAGCUAUGCUGU-3’(配列番号5) 36mer
 JP4965745に記載されている核酸オリゴマーが挙げられる。典型例として、下記の配列(E)を有する核酸オリゴマーを挙げられる。
配列(E):5’-CCAUGAGAAGUAUGACAACAGCC-P-GGCUGUUGUCAUACUUCUCAUGGUU-3’ 49mer。CCAUGAGAAGUAUGACAACAGCC(配列番号6)、GGCUGUUGUCAUACUUCUCAUGGUU(配列番号7)。
 配列(E)中、”P”は、以下の式(A5)において波線で区切られる部分構造で示される。
 Nucleic Acids Research, 2019, Vol. 47, No. 2: 547に記載されている、下記の配列(F)を有する核酸オリゴマーを挙げられる。
配列(F):5’-ACAGCAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCU-3’(配列番号8) 67mer
 JP 2015-523856, 173に記載されている、下記の配列(G)を有する核酸オリゴマーを挙げられる。
配列(E):5’-GUUUUCCCUUUUCAAAGAAAUCUCCUGGGCACCUAUCUUCUUAGGUGCCCUCCCUUGUUUAAACCUGACCAGUUAACCGGCUGGUUAGGUUUUU-3’(配列番号9) 94mer
 JP 2017-537626に記載されている核酸オリゴマーが挙げられる。典型例として、下記の配列(F)(G)(H)(J)を有する核酸オリゴマーを挙げられる。
配列(F):5’-AGUCCUCAUCUCCCUCAAGCGUUUUAGAGCUAGUAAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU-3’(配列番号10) 100mer
配列(G):5’-GCAGAUGUAGUGUUUCCACAGUUUAAGAGCUAUGCUGGAAACAGCAUAGCAAGUUUAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUUUUU-3’(配列番号11) 113mer
配列(H):5’-dAdGdTdCdCdTdCdAdTdCdTdCdCdCdTdCdAdAdGdCGUUUAAGAGCUAUGCUGGUAACAGCAUAGCAAGUUUAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUUUUU -3’(配列番号12) 113mer
配列(H)中、dTはチミジンを、dCは2'-デオキシシチジンを、dAは2'-デオキシアデノシンを、またdGは2'-デオキシグアノシンを示す。
配列(J):5’-AmsGmsUmsCCUCAUCUCCCUCAAGCGUUUAAGAGCUAUGCUGGUAACAGCAUAGCAAGUUUAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUUmsUmsUmsU-3’(配列番号13) 113mer
 配列(J)中、Umは2'-O-メチルウリジンを、Amは2'-O-メチルアデノシンを、Gmは2'-O-メチルグアノシンを、またsはホスホロチオエート修飾を示す。
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの例に限定されるものではない。
<測定方法>
 まず、以下の試験で用いた各種測定方法を以下に示す。
 オリゴヌクレオチド純度は、HPLCを用いて測定した。
 HPLC測定条件を下記表1に示す。
(測定方法1:オリゴヌクレオチド純度の測定)
Figure JPOXMLDOC01-appb-T000029
(測定方法2:オリゴヌクレオチド収量の測定)
 前記粗生成物のOD260を測定した。OD260とは1mL溶液(pH=7.5)における10mm光路長あたりのUV260nmの吸光度を表す。一般的にRNAでは1OD=40μgであることが知られていることから、前記OD260の測定値に基づき、収量を算出した。
(測定方法3:ヨウ素酸濃度の測定)
 ヨウ素酸の測定は、イオンクロマトグラフ法により行った。標準品(NaIO)と比較して濃度を算出した。イオンクロマトグラフ法の測定条件を下記表2に示す。
Figure JPOXMLDOC01-appb-T000030
(測定方法4:ヨウ素濃度の測定)
 ヨウ素の測定は、イオンクロマトグラフ法により行った。標準品(I)と比較して濃度を算出した。イオンクロマトグラフ法の測定条件を下記表3に示す。
Figure JPOXMLDOC01-appb-T000031
<オリゴヌクレオチドの固相合成>
 配列(I):5’-AGCAGAGUACACACAGCAUAUACC-P-GGUAUAUGCUGUGUGUACUCUGCUUC-P-G-3’(配列番号1、2) 53mer
 前記配列(I)において、”A”は、以下の式(A1)において波線で区切られる部分構造で示される。”C”は、以下の式(A2)において波線で区切られる部分構造で示される。”G”は、以下の式(A3)において波線で区切られる部分構造で示される。Uは、以下の式(A4)において波線で区切られる部分構造で示される。”P”は、以下の式(A5)において波線で区切られる部分構造で示される。なお、5‘末端の”A”は、以下の式(A6)において波線で区切られる部分構造で示される。また、3‘末端の”G”は、以下の式(A7)において波線で区切られる部分構造で示される。
AGCAGAGUAC ACACAGCAUA UACC(配列番号1)
GGUAUAUGCU GUGUGUACUC UGCUUC(配列番号2)
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
 固相担体として、Controlled Pore Glass(CPG)を使用し、核酸合成機としてNTS M-4MX-E(日本テクノサービス社製)若しくはAKTA oligopilot plus100(GEヘルスケア社製)を用いて、ホスホロアミダイト固相合成法により、上記配列(I)からなるオリゴヌクレオチドを3’側から5’側に向かって合成した。合成は、NTS M-4MX-E(日本テクノサービス社製)を用いた場合には、約1μmolスケールにて実施し、AKTA oligopilot plus100(GEヘルスケア社製)を用いた場合には約80μmolスケールにて実施した。また、合成には、US2012/0035246の実施例2に記載のウリジンEMMアミダイト、実施例3に記載のシチジンEMMアミダイト、実施例4に記載のアデノシンEMMアミダイト、実施例5に記載のグアノシンEMMアミダイトおよびWO2017/188042に記載の化合物(3)を使用し、デブロッキング溶液として高純度トリクロロ酢酸トルエン溶液を使用し、縮合剤として5-ベンジルメルカプト-1H-テトラゾールを使用し、酸化剤としてヨウ素溶液を使用し、キャッピング溶液としてフェノキシ酢酸無水物溶液とN-メチルイミダゾール溶液を使用した。
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
 次に、本発明の製法により製造される核酸オリゴマーの具体的な製造例を示す。ここで、下記の実施例において本発明の製法により製造されるオリゴヌクレオチドは、前記配列番号1および2で示される配列(I)を有する核酸オリゴマーである。
 また、以下の実施例および比較例中に記載するグアノシン誘導体とは、下記の構造式で示される化合物を意味する。下記構造式において図示されたサークルは、CPGを模式的に示すものである。
Figure JPOXMLDOC01-appb-C000044
(実施例1)
 1.08μmolのグアノシン誘導体を担持したControlled Pore Glass(CPG)と、式(A8)、式(A9)、式(A10)、式(A11)、または式(A12)に示すアミダイトとを用いて、配列(I)に示す核酸オリゴマーをNTS M-4MX-E(日本テクノサービス社製)により、3’側から5’側に向かって自動合成した。自動合成の手順は、まず、3%トリクロロ酢酸トルエン溶液を各回1.4mLCPGに送液し、5’位のトリチル保護基を脱保護し、続いて、各種アミダイトを0.3mLと縮合剤として5-ベンジルメルカプト-1H-テトラゾールを各0.4mL分CPGに送液し、5’位の水酸基にカップリング反応を進行させた。続いて、11mMヨウ素を含むアセトニトリル:水:ピリジン=58.2:34.4:7.2(重量%)溶液を調製した後、25℃で2年間保管したものを0.7mL送液し、亜リン酸基をリン酸基に変換した。核酸合成に用いた時の酸化溶液中のヨウ素のモル濃度は、測定方法4により測定することができ、その濃度は11mMであり、ヨウ素酸濃度は、測定方法3により測定することができ、その濃度は0.029mMであった。すなわち、合成に使用した際の酸化溶液中のヨウ素のモル濃度に対するヨウ素酸のモル濃度の比は2.6x10-3であった。続いて、キャッピング溶液として0.1Mフェノキシ酢酸無水物アセトニトリル溶液0.5mLと10%N-メチルイミダゾール/10%2,6-ルチジンアセトニトリル溶液0.5mLを使用し、カップリングが進行しなかった反応点にキャッピングを施した。更にこれらの工程を合計52回繰り返し、配列(I)に示される配列の核酸オリゴヌクレオチドをCPG担体上に合成した後、5’位のトリチル保護基を3%トリクロロ酢酸トルエン溶液にて脱保護した。その後、全量のオリゴヌクレオチドを担持したCPG担体に対して、752μLのアンモニア水と252μLのエタノールを用いて、核酸オリゴマーを固相担体から遊離させた後、窒素吹付によりアンモニア水とエタノールを除去した。次いで遊離オリゴヌクレオチドを400μLのジメチルスルホキシドに溶解後、ニトロメタン5.3μLと撹拌子を入れた後、モレキュラーシーブ4Aにて脱水処理を施した1Mのフッ化テトラ-n-ブチルアンモニウム(TBAF)のジメチルスルホキシド溶液530μL(TBAFの量は保護基1モル当たり10.2mol)をスターラーによる攪拌下30℃で流入し、混合物を4時間保温することで2’-EMM保護基の脱保護を行った。核酸オリゴマーを沈殿操作により得た。測定方法2による測定の結果、収量は9.1mg、測定方法1による測定の結果、純度は61%であった。
(実施例2)
 実施例1の実験において、78.20μmolのグアノシン誘導体を担持したControlled Pore Glass(CPG)を用いるスケールにし、AKTA oligopilot plus100(GEヘルスケア社製)を用い、ヨウ素を含む酸化溶液として、表2に記載の溶液を用いること及び、核酸合成操作終了後、20.13μmol分のオリゴヌクレオチドを担持したCPG担体を採取して、7.5mLのアンモニア水と2.5mLのエタノールを用いて、核酸オリゴマーを固相担体から遊離させた後、エバポレーターによる濃縮によりアンモニア水とエタノールを除去して、次いで遊離オリゴヌクレオチドを8.0mLのジメチルスルホキシドに溶解後、ニトロメタン106μLと撹拌子を入れた後、モレキュラーシーブ4Aにて脱水処理を施した1Mのフッ化テトラ-n-ブチルアンモニウム(TBAF)のジメチルスルホキシド溶液10.6mL(TBAFの量は保護基1モル当たり10.2mol)を用いたこと以外は、同様のやり方で、配列(I)の核酸オリゴマーを得た。収量は170.5mg、純度は60%であった。
(実施例3)
 実施例1の実験において、1.10μmolのグアノシン誘導体を担持したControlled Pore Glass(CPG)と用い、ヨウ素を含む酸化溶液として、表2に記載の溶液を用いる以外は、同様のやり方で配列(I)の核酸オリゴマーを得た。収量は8.4mg、純度は60%であった。
(実施例4)
 実施例2の実験において、酸化溶液として、下記表に記載のものを用い、78.20μmolのグアノシン誘導体を担持したControlled Pore Glass(CPG)を用いるスケールとし、ヨウ素を含む酸化溶液として、表2に記載の酸化溶液を用いること及び、核酸合成操作終了後、20.16μmol分のオリゴヌクレオチドを担持したCPG担体を採取したこと以外は、同様のやり方で配列(I)の核酸オリゴマーを得た。収量は180.0mg、純度は59%であった。
(実施例5)
 実施例1の方法において、1.06μmolのグアノシン誘導体を担持したControlled Pore Glass(CPG)と、表2に記載のヨウ素を含む酸化溶液を用いる以外は、同様のやり方で配列(I)の核酸オリゴマーを得た。収量は9.1mg、純度は56%であった。
(実施例6)
 実施例2の方法において、ヨウ素を含む酸化溶液として、表2に記載の酸化溶液を用いること及び、核酸合成操作終了後、20.20μmol分のオリゴヌクレオチドを担持したCPG担体を採取したこと以外は、同様のやり方で配列(I)の核酸オリゴマーを得た。収量は154.8mg、純度は57%であった。
(実施例7)
 実施例1の方法において、1.09μmolのグアノシン誘導体を担持したControlled Pore Glass(CPG)と、表2に記載の酸化溶液を用いる以外は、同様のやり方で配列(I)の核酸オリゴマーを得た。粗生成物は沈殿操作により得た。収量は9.2mg、純度は49%であった。
(実施例8)
 実施例1の方法において、1.04μmolのグアノシン誘導体を担持したControlled Pore Glass(CPG)と表2に記載の酸化溶液を用いる以外は、同様のやり方で、配列(I)の核酸オリゴヌクレオチドを得た。収量は7.7mg、純度は46%であった。
(実施例9)
 実施例1の方法において、1.00μmolのグアノシン誘導体を担持したControlled Pore Glass(CPG)と、表2に記載の酸化溶液を用いる以外は、同様のやり方で配列(I)の核酸オリゴマーを得た。収量は7.9mg、純度は42%であった。
参考例1
 実施例1の方法において、1.04μmolのグアノシン誘導体を担持したControlled Pore Glass(CPG)と、表2に記載の酸化溶液を用いる以外は、同様のやり方で配列(I)の核酸オリゴマーを得た。収量は7.8mg、純度は35%であった。
 実施例1~9、および参考例1の結果を、表4に示す。
Figure JPOXMLDOC01-appb-T000045
 上記表の結果より、一定の比率のヨウ素酸のヨウ素に対するモル比率が30×10-3以下である本発明の酸化溶液を用いた場合には、参考例1の酸化溶液を用いた場合と比較して、高純度の核酸オリゴマーが得られた。
 本発明は、効率的な核酸オリゴマーの製造方法を提供する。また、核酸オリゴマーの製造方法に従って製造される核酸オリゴマーの純度向上が期待できる。
 配列表の配列番号1~13は、本発明の製造方法に従って製造されるオリゴヌクレオチドの塩基配列を表す。

Claims (27)

  1.  式(I):
    Figure JPOXMLDOC01-appb-C000001
    (式中、
     GおよびGは各々、独立して、水酸基の保護基を示し、Bは、保護基で保護されていてもよい核酸塩基を示し、
     Rは、保護された水酸基、水素原子、フッ素原子、メトキシ基、2-メトキシエチル基、またはOQ’基を表し、
     Q’は、リボースの4’位の炭素原子と結合しているメチレン基、4’位の炭素原子と結合しているエチレン基、または4’位の炭素原子と結合しているエチリデン基を表し、そして、
     *のついた結合は、核酸の3’末端側への結合を示す。)
    で示されるヌクレオチドを5’末端に有する核酸化合物の、ホスホロアミダイト法による製造方法であって、5’末端に式(II):
    Figure JPOXMLDOC01-appb-C000002
    (式中、
     G、G、B、Rおよび*は、前記定義のとおりである。)
    で示される亜リン酸トリエステル結合を有する前駆体に、ヨウ素、ピリジンおよび水を含み、ヨウ素酸とヨウ素のモル比(ヨウ素酸mol/ヨウ素mol)が30×10-3以下である酸化溶液を反応させる工程を含む、製造方法。
  2.  亜リン酸トリエステル結合を有する前駆体が、式(4):
    Figure JPOXMLDOC01-appb-C000003
    (式中、
     Gは、水酸基の保護基を表し、
     Gは、それぞれ独立して、同一又は相異なる水酸基の保護基を表し、
     Baは、それぞれ独立して、同一又は相異なり、保護基で保護されていてもよい核酸塩基を表し、
     Rは、それぞれ独立して、同一又は相異なって、保護された水酸基、水素原子、フッ素原子、メトキシ基、2-メトキシエチル基、またはOQ’基を表し、
     Q’は、それぞれ独立して、同一又は相異なって、リボースの4’位の炭素原子と結合しているメチレン基、4’位の炭素原子と結合しているエチレン基、または4’位の炭素原子と結合しているエチリデン基を表し、
     Yは、それぞれ独立して、同一又は相異なって、酸素原子または硫黄原子を表し、
     nは、1以上200までの何れかの整数を表し、
     XがOZを表すとき、WはOV基を表し、Vは水酸基の保護基を表し、
     XがR基を表すとき、WはOZで表される基を表し、
     Zは、固相担体および連結基からなる構造を有する基である。
     そして、nが2以上の整数のとき、式(4)で示される核酸化合物は、それぞれの5’末端と3’末端のヌクレオチドの間の少なくとも1つのヌクレオチドの代わりに、非ヌクレオチドリンカーが組み込まれていてもよい。)
    で示される化合物であり、リン酸トリエステル結合を有する化合物が、式(5):
    Figure JPOXMLDOC01-appb-C000004
    (式中、
     G、G、B、R、n、W、X、およびYは、前記のとおりであり、そして、
     式(4)において定義されたとおり、ヌクレオチドの代わりに、非ヌクレオチドリンカーが組み込まれていてもよい。)
    で示される核酸化合物である、請求項1に記載の製造方法。
  3.  式(5)の核酸化合物をアミダイト法で任意に鎖長を伸長した式(5’):
    Figure JPOXMLDOC01-appb-C000005
    (式中、
     G、B、R、XおよびWは、式(5)について定義されたとおりであり、
     Gは、水酸基の保護基、もしくは水素原子を表し、
     mは、m≧nを満たす整数であり、そして、
     Yは、それぞれ独立して、酸素または硫黄を表す。
     ただし、少なくとも1つのYは、酸素原子である。)
    で示される核酸化合物を得る工程、
     式(5’)の化合物から式(6):
    Figure JPOXMLDOC01-appb-C000006
    (式中、
     G、Rおよびmは、前記のとおりであり、
     Bはそれぞれ独立して同一又は相異なる核酸塩基を表し、
     Gは水素原子、アルカリ金属イオン、アンモニウムイオン、アルキルアンモニウムイオン、またはヒドロキシアルキルアンモニウムイオンを表し、
     Yは、それぞれ独立して、酸素または硫黄を表し、かつ、少なくとも1つが、酸素原子であり、そして、
     Xは、水酸基を表し、かつWは、OV基を表し、ここでVは、水酸基の保護基を表すか、あるいは
     Xは、R基を表し、かつWは、水酸基を表す。)
    で示される化合物を切り出し、
     さらに式(6)の化合物を脱保護して、式(7):
    Figure JPOXMLDOC01-appb-C000007
    (式中、
     m、Y、GおよびBは、前記定義のとおりであり、
     R’は、それぞれ独立して、同一又は相異なって、水酸基、水素原子、フッ素原子、メトキシ基、2-メトキシエチル基、またはOQ’基を表し、
     Q’は、それぞれ独立して、同一又は相異なって、リボースの4’位の炭素原子と結合しているメチレン基、4’位の炭素原子と結合しているエチレン基、または4’位の炭素原子と結合しているエチリデン基を表し、
     そして、
     X10およびW10は各々、それぞれ独立して、水酸基を表すか、あるいは
     X10は、R’基を表し、かつ、W10は、水酸基を表す。)
    で示される脱保護した核酸オリゴマーを製造する工程をさらに含む、前項2に記載の核酸オリゴマーの製造方法。
  4.  非ヌクレオチドリンカーが、アミノ酸骨格からなるリンカーである、請求項2または3のいずれかに記載の製造方法。
  5.  アミノ酸骨格からなるリンカーが、下記式(A14-1)、(A14-2)および(A14-3)からなる群から選ばれる構造を有するリンカーである、請求項4に記載の製造方法。
    Figure JPOXMLDOC01-appb-C000008
  6.  酸化溶液のヨウ素の濃度が、0.005~2Mである、請求項1~5の何れか一項に記載の製造方法。
  7.  酸化溶液のヨウ素の濃度が、0.005~0.2Mである、請求項1~5の何れか一項に記載の製造方法。
  8.  酸化溶液のヨウ素の濃度が、0.007~0.1Mである、請求項1~5の何れか一項に記載の製造方法。
  9.  酸化溶液のヨウ素の濃度が、0.008~0.07Mである、請求項1~5の何れか一項に記載の製造方法。
  10.  酸化溶液が、ヨウ素、ピリジンおよび水を混合して調製される、請求項1~9の何れか一項に記載の製造方法。
  11.  酸化溶液が、アセトニトリルおよびテトラヒドロフランからなる群から選ばれる少なくとも1つの溶媒をさらに含む酸化溶液である、請求項10に記載の製造方法。
  12.  酸化溶液が、アセトニトリル溶媒をさらに含む酸化溶液である、請求項10または11に記載の製造方法。
  13.  酸化溶液の溶媒が、ピリジン、水、アセトニトリル、およびテトラヒドロフランを、1~90:1~50:0~90:0~90の体積比率で混合した混合溶媒である、請求項11に記載の製造方法。
  14.  酸化溶液の溶媒が、ピリジン、水、およびアセトニトリルを、1~90:1~50:0~90の体積比率で混合した混合溶媒である、請求項11または12に記載の製造方法。
  15.  ヨウ素酸とヨウ素のモル比(ヨウ素酸mol/ヨウ素mol)が25×10-3以下である、請求項1~14の何れか一項に製造方法。
  16.  ヨウ素酸とヨウ素のモル比(ヨウ素酸mol/ヨウ素mol)が20×10-3以下である、請求項1~14の何れか一項に製造方法。
  17.  ヨウ素酸とヨウ素のモル比(ヨウ素酸mol/ヨウ素mol)が15×10-3以下である、請求項1~14の何れか一項に製造方法。
  18.  ヨウ素酸とヨウ素のモル比(ヨウ素酸mol/ヨウ素mol)が10×10-3以下である、請求項1~14の何れか一項に製造方法。
  19.  ヨウ素酸とヨウ素のモル比(ヨウ素酸mol/ヨウ素mol)が5×10-3以下である、請求項1~14の何れか一項に記載の製造方法。
  20.  ヨウ素酸とヨウ素のモル比(ヨウ素酸mol/ヨウ素mol)が3×10-3以下である、請求項1~14の何れか一項に記載の製造方法。
  21.  酸化溶液が、調製から酸化反応に使用するまでの時間が1週間以上経た酸化溶液である、請求項1~20の何れか一項に記載の製造方法。
  22.  酸化溶液が、調製から酸化反応に使用するまでの時間が2週間以上経た酸化溶液である、請求項1~20の何れか一項に記載の製造方法。
  23.  核酸がリボヌクレオシド(RNA)である、請求項1~22の何れか一項に記載の製造方法。
  24.  核酸が、リボヌクレオシド(RNA)であり、その2’保護基が、式(12)に示す保護基である、請求項2~23の何れか一項に記載の製造方法。
     式(12):
    Figure JPOXMLDOC01-appb-C000009
    (式中、
     qは、1~5の整数を表し、
     RおよびRは各々、それぞれ同一又は相異なって、メチル基、エチル基または水素原子を表し、
     *印のついた結合は、OQ基の酸素に結合し、そして、
     Eは、電子求引基を表す。)
  25.  RおよびRが同時に水素原子であり、Eがシアノ基である、請求項24に記載の製造方法。
  26.  核酸が40鎖長以上のリボヌクレオシド(RNA)である、請求項1~25の何れか一項に記載の製造方法。
  27.  さらに項1に記載の酸化溶液を調製する工程を含む、請求項1~26の何れか一項に記載の製造方法。
PCT/JP2020/046572 2020-01-29 2020-12-14 核酸オリゴマーの製造方法 WO2021153047A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020227024706A KR20220133878A (ko) 2020-01-29 2020-12-14 핵산 올리고머의 제조 방법
US17/759,597 US20230312635A1 (en) 2020-01-29 2020-12-14 Method for producing nucleic acid oligomer
CN202080095007.XA CN115003682A (zh) 2020-01-29 2020-12-14 核酸寡聚物的制造方法
EP20917061.2A EP4098655A4 (en) 2020-01-29 2020-12-14 PROCESS FOR THE PRODUCTION OF NUCLEIC ACID OLIGOMERS
JP2021574515A JPWO2021153047A1 (ja) 2020-01-29 2020-12-14

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020012787 2020-01-29
JP2020-012787 2020-01-29

Publications (1)

Publication Number Publication Date
WO2021153047A1 true WO2021153047A1 (ja) 2021-08-05

Family

ID=77078498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/046572 WO2021153047A1 (ja) 2020-01-29 2020-12-14 核酸オリゴマーの製造方法

Country Status (6)

Country Link
US (1) US20230312635A1 (ja)
EP (1) EP4098655A4 (ja)
JP (1) JPWO2021153047A1 (ja)
KR (1) KR20220133878A (ja)
CN (1) CN115003682A (ja)
WO (1) WO2021153047A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114685572A (zh) * 2022-06-02 2022-07-01 上海百力格生物技术有限公司 用于mgb核酸探针合成的氧化剂组合物及探针的合成方法
CN115925774A (zh) * 2022-12-22 2023-04-07 百力格生物科技(上海)股份有限公司 合成特异性分子标签的方法及其分子标签接头

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001053528A1 (en) 2000-01-18 2001-07-26 Isis Pharmaceuticals, Inc. Antisense inhibition of ptp1b expression
JP2002371095A (ja) * 2001-06-14 2002-12-26 Rikogaku Shinkokai ヌクレオシドホスホロアミダイト化合物
JP3745226B2 (ja) 1998-09-29 2006-02-15 アイシス・ファーマシューティカルス・インコーポレーテッド サービビン発現のアンチセンス・モジュレーション
WO2006022323A1 (ja) 2004-08-26 2006-03-02 Nippon Shinyaku Co., Ltd. ホスホロアミダイト化合物及びオリゴrnaの製法
JP4705716B2 (ja) 1999-02-05 2011-06-22 ジーイー・ヘルスケア・バイオサイエンス・コーポレイション オリゴヌクレオチドの脱保護法
WO2012005368A1 (ja) 2010-07-08 2012-01-12 株式会社ボナック 遺伝子発現制御のための一本鎖核酸分子
US20120035246A1 (en) 2010-08-03 2012-02-09 Bonac Corporation Single-stranded nucleic acid molecule having nitrogen-containing alicyclic skeleton
JP4965745B2 (ja) 2010-08-03 2012-07-04 株式会社ボナック 含窒素脂環式骨格を有する一本鎖核酸分子
WO2013027843A1 (ja) 2011-08-25 2013-02-28 株式会社ボナック 配糖体化合物、チオエーテルの製造方法、エーテル、エーテルの製造方法、配糖体化合物の製造方法、核酸の製造方法
JP2014221817A (ja) 2006-10-18 2014-11-27 アイシス ファーマシューティカルズ, インコーポレーテッド アンチセンス化合物
JP2015523856A (ja) 2012-05-25 2015-08-20 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフ Rna依存性標的dna修飾およびrna依存性転写調節のための方法および組成物
WO2017188042A1 (ja) 2016-04-26 2017-11-02 住友化学株式会社 一本鎖核酸分子用モノマーの製造方法
JP2017537626A (ja) 2014-12-03 2017-12-21 アジレント・テクノロジーズ・インクAgilent Technologies, Inc. 化学修飾を有するガイドrna
WO2018182008A1 (ja) 2017-03-31 2018-10-04 株式会社ボナック 遺伝子発現制御機能を有する環状型核酸分子
WO2019060442A1 (en) 2017-09-19 2019-03-28 Alnylam Pharmaceuticals, Inc. COMPOSITIONS AND METHODS FOR TREATMENT OF TRANSTHYRETIN MEDIATED AMYLOSIS (TTR)
WO2019074110A1 (ja) 2017-10-13 2019-04-18 株式会社ボナック 一本鎖核酸分子およびその製造方法
WO2019189591A1 (ja) * 2018-03-30 2019-10-03 住友化学株式会社 一本鎖rnaの製造方法
WO2019208571A1 (ja) 2018-04-24 2019-10-31 住友化学株式会社 アミダイト化合物及び該化合物を用いたポリヌクレオチドの製造方法
JP2020012787A (ja) 2018-07-20 2020-01-23 マツダ株式会社 電池状態推定装置、電池状態推定装置の製造方法、電池状態推定方法、および組電池システム

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3745226B2 (ja) 1998-09-29 2006-02-15 アイシス・ファーマシューティカルス・インコーポレーテッド サービビン発現のアンチセンス・モジュレーション
JP4705716B2 (ja) 1999-02-05 2011-06-22 ジーイー・ヘルスケア・バイオサイエンス・コーポレイション オリゴヌクレオチドの脱保護法
WO2001053528A1 (en) 2000-01-18 2001-07-26 Isis Pharmaceuticals, Inc. Antisense inhibition of ptp1b expression
JP2002371095A (ja) * 2001-06-14 2002-12-26 Rikogaku Shinkokai ヌクレオシドホスホロアミダイト化合物
WO2006022323A1 (ja) 2004-08-26 2006-03-02 Nippon Shinyaku Co., Ltd. ホスホロアミダイト化合物及びオリゴrnaの製法
JP5157168B2 (ja) 2004-08-26 2013-03-06 日本新薬株式会社 ホスホロアミダイト化合物及びオリゴrnaの製法
JP2014221817A (ja) 2006-10-18 2014-11-27 アイシス ファーマシューティカルズ, インコーポレーテッド アンチセンス化合物
WO2012005368A1 (ja) 2010-07-08 2012-01-12 株式会社ボナック 遺伝子発現制御のための一本鎖核酸分子
US20120035246A1 (en) 2010-08-03 2012-02-09 Bonac Corporation Single-stranded nucleic acid molecule having nitrogen-containing alicyclic skeleton
JP4965745B2 (ja) 2010-08-03 2012-07-04 株式会社ボナック 含窒素脂環式骨格を有する一本鎖核酸分子
JP5554881B2 (ja) 2011-08-25 2014-07-23 株式会社ボナック 配糖体化合物、チオエーテルの製造方法、エーテル、エーテルの製造方法、配糖体化合物の製造方法、核酸の製造方法
WO2013027843A1 (ja) 2011-08-25 2013-02-28 株式会社ボナック 配糖体化合物、チオエーテルの製造方法、エーテル、エーテルの製造方法、配糖体化合物の製造方法、核酸の製造方法
JP2015523856A (ja) 2012-05-25 2015-08-20 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフ Rna依存性標的dna修飾およびrna依存性転写調節のための方法および組成物
JP2017537626A (ja) 2014-12-03 2017-12-21 アジレント・テクノロジーズ・インクAgilent Technologies, Inc. 化学修飾を有するガイドrna
WO2017188042A1 (ja) 2016-04-26 2017-11-02 住友化学株式会社 一本鎖核酸分子用モノマーの製造方法
WO2018182008A1 (ja) 2017-03-31 2018-10-04 株式会社ボナック 遺伝子発現制御機能を有する環状型核酸分子
WO2019060442A1 (en) 2017-09-19 2019-03-28 Alnylam Pharmaceuticals, Inc. COMPOSITIONS AND METHODS FOR TREATMENT OF TRANSTHYRETIN MEDIATED AMYLOSIS (TTR)
WO2019074110A1 (ja) 2017-10-13 2019-04-18 株式会社ボナック 一本鎖核酸分子およびその製造方法
WO2019189591A1 (ja) * 2018-03-30 2019-10-03 住友化学株式会社 一本鎖rnaの製造方法
WO2019208571A1 (ja) 2018-04-24 2019-10-31 住友化学株式会社 アミダイト化合物及び該化合物を用いたポリヌクレオチドの製造方法
JP2020012787A (ja) 2018-07-20 2020-01-23 マツダ株式会社 電池状態推定装置、電池状態推定装置の製造方法、電池状態推定方法、および組電池システム

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DANIEL O'REILLY ET AL., NUCLEIC ACIDS RESEARCH, vol. 47, no. 2, 2019, pages 547 - 558
See also references of EP4098655A4
TETRAHEDRON, vol. 69, 2013, pages 3615 - 3637
XIULONG, SHEN ET AL., NUCLEIC ACIDS RESEARCH, vol. 46, no. 46, 2018, pages 1584 - 1600

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114685572A (zh) * 2022-06-02 2022-07-01 上海百力格生物技术有限公司 用于mgb核酸探针合成的氧化剂组合物及探针的合成方法
CN115925774A (zh) * 2022-12-22 2023-04-07 百力格生物科技(上海)股份有限公司 合成特异性分子标签的方法及其分子标签接头

Also Published As

Publication number Publication date
JPWO2021153047A1 (ja) 2021-08-05
CN115003682A (zh) 2022-09-02
EP4098655A4 (en) 2024-02-28
EP4098655A1 (en) 2022-12-07
US20230312635A1 (en) 2023-10-05
KR20220133878A (ko) 2022-10-05

Similar Documents

Publication Publication Date Title
JP7492829B2 (ja) 多重カップリングおよび酸化の方法
WO2021153047A1 (ja) 核酸オリゴマーの製造方法
WO2022009959A1 (ja) 核酸オリゴマーの製造方法
AU716391B2 (en) Solid phase synthesis of oligonucleotides
WO2021193954A1 (ja) 核酸オリゴマーの製造方法
EP4097117B1 (en) Process of preparing nucleic acid oligomer
WO2002018406A1 (en) Alkylated hexitol nucleoside analogues and oligomers thereof
WO2022064908A1 (ja) 核酸オリゴマーの製造方法
WO2024024873A1 (ja) チオ化溶液
WO2023054350A1 (ja) 精製ジクロロ酢酸の製造方法
WO2024019137A1 (ja) オリゴヌクレオチドの製造方法
WO2024143276A1 (ja) オリゴヌクレオチドの製造方法
WO2024089953A1 (ja) オリゴヌクレオチドの製造方法
WO2006095739A1 (ja) リボヌクレオシドの2’水酸基の脱保護方法
WO2021070494A1 (ja) 核酸オリゴマーの製造方法
EP1828218B1 (en) Synthesis of phosphitylated compounds using a quaternary heterocyclic activator
JP2020132604A (ja) 核酸合成用固相担体及びそれを用いた核酸の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20917061

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021574515

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020917061

Country of ref document: EP

Effective date: 20220829