WO2024019137A1 - オリゴヌクレオチドの製造方法 - Google Patents

オリゴヌクレオチドの製造方法 Download PDF

Info

Publication number
WO2024019137A1
WO2024019137A1 PCT/JP2023/026733 JP2023026733W WO2024019137A1 WO 2024019137 A1 WO2024019137 A1 WO 2024019137A1 JP 2023026733 W JP2023026733 W JP 2023026733W WO 2024019137 A1 WO2024019137 A1 WO 2024019137A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
amidite
ome
represented
Prior art date
Application number
PCT/JP2023/026733
Other languages
English (en)
French (fr)
Inventor
玲央 竹下
俊史 加納
雄樹 田中
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2024019137A1 publication Critical patent/WO2024019137A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • C07H19/10Pyrimidine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • Oligonucleotides which are nucleic acid oligomers, are useful materials used in various fields such as nucleic acid probes for gene detection, DNA probes used in PCR, antisense nucleic acids for medicine, siRNA, and aptamers.
  • Oligonucleotides can be produced by solid phase synthesis using the phosphoramidite method.
  • phosphoramidites hereinafter referred to as "amidites" of nucleosides, which are monomers, are sequentially linked on a glass or resin carrier to produce an oligonucleotide having an arbitrary sequence.
  • the specific manufacturing process consists of a deprotection step in which the protecting group of the hydroxyl group at the 5' end of the nucleotide is removed using an acidic solution, and an activator is used to protect the hydroxyl group at the 5' end of the deprotected nucleotide and the amidite group of the amidite.
  • amidites are linked in any order to produce an oligonucleotide having a desired sequence.
  • the amidite used in the condensation step is dissolved in acetonitrile and used as an amidite solution.
  • 2'-OMe-U amidite is one of the amidites with low solubility in acetonitrile.
  • Patent Document 2 Non-Patent Document 1
  • Addition of these solvents improves the solubility of 2'-OMe-U amidites.
  • n-1 mer impurities is an impurity that occurs during oligonucleotide production and has a chain length one length shorter than the target chain length. It is known that it is difficult to separate this n-1 mer impurity from an oligonucleotide of the desired chain length (Non-patent Document 2). Therefore, reducing n-1 mer impurities generated during production is important for efficient oligonucleotide production.
  • An object of the present invention is to provide a method for producing highly pure oligonucleotides having one or more 2'-OMe-U.
  • the present inventors have provided a method for producing nucleic acids characterized by using acetonitrile and aromatic hydrocarbons as solvents for a 2'-OMe-U amidite solution. do.
  • the present invention includes, but is not limited to, the following aspects.
  • Formula (2) [During the ceremony, G2 represents a hydroxyl protecting group, B a represents a nucleobase that may be protected with a protecting group, R represents a protected hydroxyl group, hydrogen atom, fluorine atom, methoxy group, 2-methoxyethyl group, or OQ' group, Q' represents an alkylene group bonded to the carbon atom at the 4' position of ribose, X represents an oxygen atom or a sulfur atom, and A bond marked with * indicates a bond to the 3' end of the nucleic acid.
  • the 2'-OMe-U amidite is acetonitrile and formula (3): [In the formula, Y 1 to Y 6 each independently, the same or different, represent a hydrogen atom, a methyl group, an ethyl group, or a halogen atom. ] Dissolved in a mixture containing aromatic hydrocarbons shown in Method for producing oligonucleotides. 2.
  • the aromatic hydrocarbon represented by formula (3) is benzene having one or two substituents selected from the group consisting of a methyl group, an ethyl group, and a halogen atom, and benzene has two substituents.
  • the aromatic hydrocarbon represented by formula (3) is toluene, o-xylene, m-xylene, p-xylene, chlorobenzene, o-dichlorobenzene, m-dichlorobenzene, p-dichlorobenzene, and two types thereof.
  • the method for producing an oligonucleotide according to [1] which is selected from the group consisting of the above mixtures. 4.
  • the volume ratio of acetonitrile contained in the mixed liquid in which the 2'-OMe-U amidite shown by formula (4) is dissolved and the aromatic hydrocarbon shown by formula (3) is expressed as acetonitrile:shown by formula (3).
  • the volume ratio of acetonitrile contained in the mixed solution in which the 2'-OMe-U amidite shown by formula (4) is dissolved and the aromatic hydrocarbon shown by formula (3) is expressed by acetonitrile:formula (3)
  • the volume ratio of acetonitrile contained in the mixed solution in which the 2'-OMe-U amidite shown by formula (4) is dissolved and the aromatic hydrocarbon shown by formula (3) is expressed by acetonitrile:formula (3)
  • the 2'-OMe-U amidite concentration in the 2'-OMe-U amidite solution represented by formula (4) is 0.01 to 0.4M.
  • the 2'-OMe-U amidite concentration in the 2'-OMe-U amidite solution represented by formula (4) is 0.05 to 0.2M.
  • R in the compound represented by formula (2) is a protected hydroxyl group
  • the protecting group for the hydroxyl group is represented by formula (10):
  • q represents an integer from 0 to 5
  • R a and R b are each the same or different and represent a methyl group, an ethyl group, or a hydrogen atom
  • the bond marked * is bonded to the oxygen of the 2' hydroxyl group
  • Ew represents an electron-withdrawing group.
  • the present invention provides a method for producing highly pure oligonucleotides containing one or more 2'-OMe-U amidites.
  • FIG. 1 is a drawing showing a scheme (scheme A) of steps (1) to (6) of the manufacturing method of the present invention.
  • the method for producing oligonucleotides of the present invention includes: Formula (2): [During the ceremony, G2 represents a hydroxyl protecting group, B a represents a nucleobase that may be protected with a protecting group, R represents a protected hydroxyl group, hydrogen atom, fluorine atom, methoxy group, 2-methoxyethyl group, or OQ' group, Q' represents an alkylene group bonded to the carbon atom at the 4' position of ribose, X represents an oxygen atom or a sulfur atom, and A bond marked with * indicates a bond to the 3' end of the nucleic acid. ]
  • a step of condensing 2'-OMe-U amidite shown in the presence of an activator is acetonitrile and formula (3): [In the formula, Y 1 to Y 6 each independently, the same or different, represent a hydrogen atom, a methyl group, an ethyl group, or a halogen atom. ] Dissolved in a mixture containing aromatic hydrocarbons shown in The present invention relates to a method for producing oligonucleotides.
  • the method for producing oligonucleotides involves dissolving 2'-OMe-U amidite represented by formula (4) in a mixture of acetonitrile and aromatic hydrocarbon represented by formula (3).
  • the method may include a step of reacting an amidite solution and an activator. The method for producing oligonucleotides will be described below.
  • the n-1 mer contained in the produced oligonucleotide can be isolated. can be reduced.
  • the mixing ratio in the liquid mixture containing acetonitrile and the aromatic hydrocarbon represented by formula (3) is not particularly limited, but the volume ratio of acetonitrile to the aromatic hydrocarbon is, for example, 99:1 to 1: 99, preferably 90:10 to 10:90, more preferably 90:10 to 40:60.
  • the aromatic hydrocarbon is benzene having a substituent selected from the group consisting of a methyl group, an ethyl group, or a halogen atom, preferably one selected from the group consisting of a methyl group, an ethyl group, or a halogen atom. or benzene having two substituents, more preferably toluene, o-xylene, m-xylene, p-xylene, chlorobenzene, o-dichlorobenzene, m-dichlorobenzene, p-dichlorobenzene, and two or more thereof Mixtures can be used.
  • Solvents other than acetonitrile and aromatic hydrocarbons may be mixed and used in the 2'-OMe-U amidite solution.
  • the 2'-OMe-U amidite concentration in the 2'-OMe-U amidite solution is preferably adjusted to 0.01 M to 0.4 M, more preferably 0.05 M to 0.2 M.
  • Glass containers, plastic containers, or metal containers can be used to store the 2'-OMe-U amidite solution.
  • a container made of polyethylene or polypropylene can be used
  • a container made of SUS or Hastelloy can be used as the metal container.
  • the reaction precursor with the 2'-OMe-U amidite represented by the formula (4) is the following formula (12):
  • G2 represents a hydroxyl protecting group
  • B a each independently represents a nucleobase that may be protected with a protecting group
  • R represents a protected hydroxyl group, hydrogen atom, fluorine atom, methoxy group, 2-methoxyethyl group, or OQ' group
  • Q' represents an alkylene group bonded to the carbon atom at the 4' position of ribose
  • X each independently represents an oxygen atom or a sulfur atom, the same or different
  • Z represents a group consisting of a solid phase support and a linking part connecting the solid phase support and the oxygen atom of the hydroxyl group at the 3' position of the ribose at the 3' end of the oligonucleotide
  • l represents an integer from 0 to 300.
  • Nucleosides (ribose and deoxyribose) contained in the oligonucleotides used in the present invention include DNA, RNA, 2'-O-MOE (2'-O-methoxyethyl), 2'-O-Me, Examples include 2'-F RNA and the above-mentioned LNA, but the nucleoside is not limited thereto.
  • the group represented by Z consisting of a solid phase support and a linking part connecting the solid phase support and the oxygen atom of the hydroxyl group at the 2' position or 3' position of the ribose at the 3' end of the nucleic acid oligomer is Examples include a structure represented by the following formula (18).
  • formula (18) Sp represents a spacer.
  • Examples of the spacer (Sp) include those having the structural formula shown in formula (19) below.
  • Linker may be, for example, a structure shown in the following formula (20), or may be a structure in which the structure of formula (20) does not have a hexamethylene amino group moiety and an aminopropyl group is bonded to Si. .
  • the Linker may have a structure represented by the following formula (21).
  • A may be a hydroxyl group, an alkoxy group, or an alkyl group. Examples of alkoxy groups include methoxy and ethoxy groups. Examples of the alkyl group include methyl group, ethyl group, isopropyl group, and n-propyl group. Si indicates that it is bonded to the oxygen of the hydroxyl group on the surface of the carrier.
  • the solid support include inorganic porous carriers and organic resin carriers. Inorganic porous carriers include, for example, controlled pore glass (CPG) and zeolites. Examples of organic resin carriers include carriers made of polystyrene.
  • the oligonucleotide synthesis method typically includes the following steps. (1) a step of deprotecting the hydroxyl group at the 5' position of a nucleoside with a protected hydroxyl group bonded to the solid phase support via a linker; (2) a step of obtaining a phosphorous acid triester compound by subjecting the 5'-position hydroxyl group generated in the step to a condensation reaction with an amidite compound; (3) A step of oxidizing the phosphite triester produced in the above step to convert it into a phosphotriester bond to produce an elongated nucleic acid molecule, or an optional step of converting it into a thiophosphotriester; (4) Steps (1) to (3) above, that is, the step of deprotecting the 5'-position hydroxyl group of the generated nucleic acid molecule, the condensation step of the 5'-position hydroxyl group and the amidite compound, and the generated phosphorous acid A step of synthesizing a nucleic acid molecule on
  • the method for synthesizing the oligonucleotide may include, subsequent to step (2) or (3), a step of capping the hydroxyl group at the 5' position where the condensation reaction with the amidite compound did not proceed.
  • a capping step may be added between any steps in the series of reaction cycles constituting step (4).
  • step (5) the nucleic acid molecules on the solid support produced in step (4) are reacted in the following steps (5-1) and (5-2) in order.
  • Ru the reaction in step (5-1) may be carried out arbitrarily, and the reaction in step (5-2) may be carried out using the method described in Japanese Patent No. 4705716.
  • the reaction in step (5-2) may be carried out using the method described in Japanese Patent No. 4705716.
  • (5-1) A reaction for deprotecting the hydroxyl group protecting group at the 5′ end of the nucleic acid molecule
  • (5-2) A reaction in which a nucleic acid molecule is cut out and released from a solid phase support.
  • Y each independently represents an oxygen atom or a sulfur atom, the same or different;
  • X represents an R group or represents an OZ group, where Z is as defined above, W represents an OZ group when X represents an R group, where Z is as defined above, or W represents an OV group when X represents an OZ group, where V represents a hydroxyl protecting group,
  • W 1 is a W group or a group derived from a W group (for example, a residue cut out from a solid phase support, a deprotected group, etc.)
  • W 10 is a W 1 group or a group derived from a W 1 group (e.g., a residue excised from a solid support, a deprotected group, etc.)
  • X 1 is an X group or a group derived from an X group (for example, a residue excised from a solid phase support, a deprotected group, etc.)
  • X 10 is an X 1 group or a group derived from
  • the nucleic acid compound of formula (A5) can be further extended by an arbitrary chain length using a nucleotide type or non-nucleotide type linker by the amidite method, and used to produce a nucleic acid compound represented by formula (A5'). .
  • the oligonucleotide represented by formula (A6) is further deprotected to obtain the oligonucleotide represented by formula (A7). You can also get
  • G 1 can be used without particular limitation as long as it can function as a protecting group, and a wide variety of known protecting groups used in amidite compounds can be used.
  • G 1 is preferably a protecting group represented by the following formula (14). (In the formula, R 1 , R 2 and R 3 are each independently the same or different and represent hydrogen or an alkoxy group.)
  • R 1 , R 2 and R 3 are hydrogen, and the remaining two are the same or different (preferably the same) alkoxy groups, and the alkoxy group is particularly preferably a methoxy group.
  • G 1 is preferably a 4,4'-dimethoxytrityl group (DMTr group), a 4-monomethoxytrityl group, and a 4,4',4''-trimethoxytrityl group; -dimethoxytrityl group is particularly preferred.
  • G 2 can be used without particular limitation as long as it can function as a protecting group, and a wide variety of known protecting groups used in amidite compounds can be used.
  • Examples of G2 include an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, a haloalkyl group, an aryl group, a heteroaryl group, an arylalkyl group, a cycloalkenyl group, a cycloalkylalkyl group, a cyclylalkyl group, and a hydroxyalkyl group.
  • aminoalkyl group aminoalkyl group, alkoxyalkyl group, heterocyclylalkenyl group, heterocyclylalkyl group, heteroarylalkyl group, silyl group, silyloxyalkyl group, mono-, di- or trialkylsilyl group, mono-, di- or trialkylsilyloxyalkyl group etc., which may be substituted with one or more electron-withdrawing groups.
  • G 2 is preferably an alkyl group substituted with an electron-withdrawing group.
  • the electron-withdrawing group include a cyano group, a nitro group, an alkylsulfonyl group, a halogen atom, an arylsulfonyl group, a trihalomethyl group, a trialkylamino group, and preferably a cyano group.
  • Particularly preferred as G 2 is a 2-cyanoethyl group (a group represented by the following formula).
  • G3 is an alkyl group, and two G3s may be bonded to each other to form a cyclic structure, and preferably both are isopropyl groups.
  • the alkyl group in the above definitions of R 1 , R 2 , R 3 and G 2 , G 3 may be linear or branched, preferably having 1 to 12 carbon atoms, more preferably having 1 to 12 carbon atoms. It is an alkyl group of 1 to 6. Specific examples of alkyl groups include, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, and hexyl.
  • the alkyl group moiety constituting the alkoxy group in the definition of the substituent has the same definition as the alkyl group herein.
  • G 4 represents a hydrogen atom, an alkali metal ion, an ammonium ion, an alkylammonium ion, or a hydroxyalkylammonium ion.
  • alkali metal ions include sodium ions and lithium ions.
  • alkylammonium ion specific examples of alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, and hexyl.
  • hydroxyalkylammonium ion examples include diethylammonium ion, triethylammonium ion, tetrabutylammonium ion, hexylammonium ion, and dibutylammonium ion.
  • hydroxyalkylammonium ion specific examples include hydroxymethyl, hydroxyethyl, hydroxy-n-propyl, hydroxyisopropyl, hydroxy-n-butyl, and trishydroxymethyl. More specific examples of hydroxyalkylammonium ions include trishydroxymethylammonium ions.
  • G 5 represents a hydrogen atom or a protecting group, and when it represents a protecting group, it represents the same protecting group as G 1 .
  • G 5 is a hydrogen atom when deprotected, and the nucleotide compound in that case is also subjected to a series of nucleic acid extension reaction steps.
  • the amidite compound can be used in a free state or in a salt state.
  • Salts of amidite compounds include, but are not particularly limited to, base addition salts and acid addition salts.
  • base addition salts include salts with inorganic bases such as sodium salts, magnesium salts, potassium salts, calcium salts, and aluminum salts; salts with organic bases such as methylamine, ethylamine, and ethanolamine; lysine, Examples include salts with basic amino acids such as ornithine and arginine; and ammonium salts.
  • acid addition salts include mineral acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, nitric acid, and phosphoric acid; formic acid, acetic acid, propionic acid, oxalic acid, malonic acid, malic acid, Organic acids such as tartaric acid, fumaric acid, succinic acid, lactic acid, maleic acid, citric acid, methanesulfonic acid, trifluoromethanesulfonic acid, ethanesulfonic acid; and acid addition salts with acidic amino acids such as aspartic acid and glutamic acid. It will be done. Amidite compounds also include forms such as salts, hydrates, solvates, and crystal polymorphs.
  • nucleobase means a group having a natural or non-natural nucleobase skeleton.
  • the nucleobases also include modified forms in which the backbone of a natural or non-natural nucleobase is modified.
  • the nucleobase that may be protected with the protecting group represented by B a is not particularly limited.
  • the nucleobase include adenine, cytosine, guanine, uracil, thymine, 5-methylcytosine, pseudouracil, 1-methylpseudouracil, and the like.
  • the nucleobase may be substituted with a substituent. Examples of such substituents include halogen atoms such as fluoro, chloro, bromo, and iodo groups, acyl groups such as acetyl, alkyl groups such as methyl and ethyl, and benzyl groups.
  • arylalkyl group alkoxy group such as methoxy group, alkoxyalkyl group such as methoxyethyl group, cyanoalkyl group such as cyanoethyl group, hydroxy group, hydroxyalkyl group, acyloxymethyl group, amino group, monoalkylamino group , dialkylamino group, carboxy group, cyano group, nitro group, and combinations of two or more types of substituents thereof.
  • R 4 represents a hydrogen atom, a methyl group, a phenoxyacetyl group, a 4-tert-butylphenoxyacetyl group, a 4-isopropylphenoxyacetyl group, a phenylacetyl group, an acetyl group, or a benzoyl group
  • R 5 represents a hydrogen atom, an acetyl group, an isobutyryl group or a benzoyl group
  • R 6 represents a hydrogen atom, phenoxyacetyl group, 4-tert-butylphenoxyacetyl group, 4-isopropylphenoxyacetyl group, phenylacetyl group, acetyl group or isobutyryl group
  • R 7 represents a 2-cyanoethyl group
  • R 8 represents a hydrogen atom, a methyl group, a benzoyl group, a 4-
  • the protecting group for the amino group is not particularly limited, and any protecting group used in known nucleic acid chemistry can be used, and such protecting groups include: For example, benzoyl group, 4-methoxybenzoyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, phenylacetyl group, phenoxyacetyl group, 4-tert-butylphenoxyacetyl group, 4-isopropylphenoxyacetyl group, and (dimethyl Examples include amino)methylene groups, and combinations of two or more of these protecting groups.
  • Bc represents an unprotected nucleobase, but its type is not particularly limited.
  • the nucleobase include adenine, cytosine, guanine, uracil, thymine, 5-methylcytosine, pseudouracil, 1-methylpseudouracil, and the like.
  • the nucleobase may be substituted with a substituent. Examples of such substituents include halogen atoms such as fluoro, chloro, bromo, and iodo groups, acyl groups such as acetyl, alkyl groups such as methyl and ethyl, and benzyl groups.
  • arylalkyl group alkoxy group such as methoxy group, alkoxyalkyl group such as methoxyethyl group, cyanoalkyl group such as cyanoethyl group, hydroxy group, hydroxyalkyl group, acyloxymethyl group, amino group, monoalkylamino group , dialkylamino group, carboxy group, cyano group, nitro group, and combinations of two or more types of substituents thereof.
  • the protecting group may be one that can be used in the amidite method, such as 2'-tert-butyldimethylsilyl (TBDMS) group, 2'-bis(2-acetoxy ) Methyl (ACE) group, 2'-(triisopropylsilyloxy)methyl (TOM) group, 2'-(2-cyanoethoxy)ethyl (CEE) group, 2'-(2-cyanoethoxy)methyl (CEM) group (International Publication No. 2006/022323), 2'-para-tolylsulfonylethoxymethyl (TEM) group, 2'-EMM group (International Publication No.
  • RNA ribonucleoside
  • the protecting group represented by formula (10) is exemplified as a preferable protecting group.
  • a protecting group represented by formula (15) having a cyano group as the electron-withdrawing group represented by E W is exemplified.
  • q represents an integer from 0 to 5
  • R a and R b are each the same or different and represent a methyl group, an ethyl group or a hydrogen atom
  • Bonds marked with * are bonded to the oxygen of the 2' hydroxyl group.
  • Ew represents an electron-withdrawing group.
  • the protecting group represented by formula (15) can be synthesized, for example, according to the description in International Publication No. 2013/027843 and International Publication No. 2019/208571, and an amidite compound having such a protecting group is used for producing an oligonucleotide. can do.
  • Nucleotides and amidites in which the R group is a substituent other than a hydroxyl group can be prepared using known methods described in Japanese Patent No. 3745226, International Publication No. 2001/053528 or Japanese Patent Application Publication No. 2014-221817, and the methods cited therein. It can also be produced from nucleosides synthesized by known methods such as It can be manufactured by the method mentioned above.
  • R' represents a hydroxyl group, a hydrogen atom, a fluorine atom, a methoxy group, a 2-methoxyethyl group, or an OQ' group
  • Q' represents a methylene group bonded to the carbon atom at the 4' position of ribose, 4' It represents an ethylene group bonded to the carbon atom at the 4'-position, or an ethylidene group bonded to the 4'-position carbon atom.
  • the synthesis of the oligonucleotide is performed by a generally known method (for example, as described in the above-mentioned Japanese Patent No. 5157168 or Japanese Patent No. 5554881, except for the condensation step using 2'-OMe-U amidites related to the present invention).
  • a nucleic acid elongation reaction can be carried out by repeating each step of the deprotection step and the condensation step according to the method of . Each step will be explained below.
  • nucleic acid elongation reaction refers to a reaction in which a nucleic acid molecule is elongated by sequentially bonding nucleotides via phosphodiester bonds.
  • the nucleic acid elongation reaction can be carried out according to the general amidite method (phosphoramidite method).
  • the nucleic acid elongation reaction may be performed using an automatic nucleic acid synthesizer that employs the amidite method, or may be performed by liquid phase synthesis.
  • the chain length of the oligonucleotide is, for example, 20mer or more, 40mer or more, 50mer or more, 60mer or more, 80mer or more, 100mer or more, 200mer or more, 2-300mer, 2-250mer, 2-200mer, 10-300mer, 10-250mer, It may be 10-200mer, 10-150mer, 15-300mer, 15-250mer, 15-200mer, 15-150mer, 15-110mer.
  • the deprotection step of step (1) is a step of deprotecting the protecting group of the 5' hydroxyl group at the end of the RNA chain supported on the solid phase carrier (see Scheme A in FIG. 1).
  • a general protecting group represented by G 1 a 4,4'-dimethoxytrityl group (DMTr group), a 4-monomethoxytrityl group, or a 4,4',4''-trimethoxytrityl group is used. Deprotection can be carried out using an acid.
  • acids for deprotection include trifluoroacetic acid, dichloroacetic acid, trifluoromethanesulfonic acid, trichloroacetic acid, methanesulfonic acid, hydrochloric acid, acetic acid, p-toluenesulfone. Examples include acids.
  • the phosphoramidites represented by the following formula (A3) used for nucleic acid elongation include R protected hydroxyl group, 2'-OMe, 2'-F, 2'-O-tert-butyldimethylsilyl group, 2 Examples include '-O-methoxyethyl group, 2'-H, 2'-fluoro-2'-deoxy- ⁇ -D-arabinofuranosyl, and the like.
  • the condensation step can be carried out using an activator that activates the nucleoside phosphoramidite.
  • the activator include 5-benzylthio-1H-tetrazole (BTT), 1H-tetrazole, 4,5-dicyanoimidazole (DCI), 5-ethylthio-1H-tetrazole (ETT), and N-methylbenzimidazolium triflate.
  • N-MeBIT benzimidazolium triflate
  • BIT N-phenylimidazolium triflate
  • IMT imidazolium triflate
  • NBT 5-nitrobenzimidazolium triflate
  • HOBT 1-hydroxybenzotriazole
  • BTT 5-benzylthio-1H-tetrazole
  • amidite The nucleoside phosphoramidite (hereinafter referred to as amidite) represented by the formula (A3) shown in Scheme A of FIG. 1 is as follows.
  • 2'-OMe-U amidite compound represented by formula (4)
  • a solution in which 2'-OMe-U amidite is dissolved in a mixed solution containing acetonitrile and an aromatic hydrocarbon represented by formula (3) can be used.
  • An activator may be added to the mixture. The activator may be dissolved in the mixed liquid.
  • Capping can be performed using a known capping solution such as an acetic anhydride-tetrahydrofuran solution or a phenoxyacetic anhydride/N-methylimidazole solution.
  • the oxidation step of step (3) is a step of converting the phosphorous acid group formed by the condensation step into a phosphoric acid group or a thiophosphoric acid group.
  • This step is a reaction that converts trivalent phosphorus into pentavalent phosphorus using an oxidizing agent, and can be carried out by allowing an oxidizing agent to act on the oligonucleic acid derivative supported on a solid phase support. .
  • iodine When converting a phosphorous acid group to a phosphoric acid group, for example, iodine can be used as the "oxidizing agent".
  • the oxidizing agent can be used after being adjusted to a concentration of 0.005 to 2M.
  • Water can be used as the oxygen source for oxidation, and pyridine, N-methylimidazole (NMI), N-methylmorpholine, and triethylamine can be used as the base for advancing the reaction.
  • the solvent is not particularly limited as long as it does not participate in the reaction, but acetonitrile, tetrahydrofuran (THF), or a mixture of these in any ratio can also be used.
  • iodine/water/pyridine/acetonitrile or iodine/water/pyridine or iodine/water/pyridine/NMI, or iodine/water/pyridine/THF can be used.
  • the reaction temperature is preferably 5°C to 50°C.
  • the appropriate reaction time is usually 1 minute to 30 minutes.
  • the amount of the reagent used is preferably 1 to 100 mol, more preferably 1 to 10 mol, per 1 mol of the compound supported on the solid support.
  • examples of the "oxidizing agent" include sulfur, 3H-1,2-benzodithiol-3-one-1,1-dioxide (Beaucage reagent), 3-amino-1,2,4-dithiazol-5-thione (ADTT), 5-phenyl-3H-1,2,4-dithiazol-3-one (POS), [(N,N-dimethylaminomethylidene) ) amino]-3H-1,2,4-dithiazoline-3-thione (DDTT), and phenylacetyl disulfide (PADS) can be used.
  • STT 3-amino-1,2,4-dithiazol-5-thione
  • POS 5-phenyl-3H-1,2,4-dithiazol-3-one
  • DDTT phenylacetyl disulfide
  • PADS phenylacetyl disulfide
  • the oxidizing agent can be used after being diluted with an appropriate solvent to a concentration of 0.001 to 2M.
  • the solvent used in the reaction is not particularly limited as long as it does not participate in the reaction, and examples thereof include dichloromethane, acetonitrile, pyridine, or any mixed solvent thereof.
  • the oxidation step may be performed after the capping operation, or conversely, the capping operation may be performed after the oxidation step, and the order is not limited.
  • step (5) in the step of deprotecting the phosphate protecting group, after the synthesis of the nucleic acid having the desired sequence is completed, an amine compound is used to deprotect the protecting group of the phosphate moiety.
  • the amine compound include diethylamine described in Japanese Patent No. 4705716.
  • the protecting group for the 5' hydroxyl group of the nucleoside introduced at the end of elongation can be used for column purification using the 5' protecting group as a tag after cutting out from the solid phase support and deprotecting the protecting group as described below. Often, after column purification, the protecting group for the 5' hydroxyl group may be deprotected.
  • step (5) the oligonucleotide that has been elongated to the desired chain length on the solid support is usually excised from the solid support using concentrated aqueous ammonia as a cutting agent.
  • the oligonucleotide chain is cleaved from the solid phase support and recovered.
  • the amine compound include methylamine, ethylamine, isopropylamine, ethylenediamine, diethylamine, and the like.
  • step (6) the protecting group for the 2' hydroxyl group of the ribose of the nucleic acid compound (A6) excised from the solid phase support in step (5) is selected from WO 2006/022323) and WO 2013/027843. , or can be removed according to the method described in International Publication No. 2019/208571 to obtain a deprotected oligonucleotide (A7).
  • oligonucleotides that can be produced using the production method of the present invention include RNA, DNA, and 2'-O-MOE, 2'-O-Me, and 2'-F nucleosides.
  • examples include, but are not limited to, oligonucleotides that are RNA, and LNA.
  • oligonucleotides that are RNA, and LNA For example, Xiulong, Shen et al., Nucleic Acids Research, 2018, Vol. 46, No. 46, 1584-1600, and Daniel O'Reilly et al., Nucleic Acids Research, 2019, Vol. 47, No. 2, 546- Examples of various nucleosides are those described in 558.
  • oligonucleotides that can be used in the production method of the present invention are shown below in addition to the examples described in Examples, but the oligonucleotides are not limited thereto.
  • U represents uridine (ST.25 format)
  • C represents cytidine
  • A represents adenosine
  • G represents guanosine.
  • T in accordance with ST.26 format indicates uridine.
  • oligonucleotides having the following sequences (A) and (B) described in International Publication No. 2019/060442.
  • oligonucleotides described in Japanese translation of PCT publication No. 2017-537626 examples include oligonucleotides described in Japanese translation of PCT publication No. 2017-537626.
  • a typical example is an oligonucleotide having the following sequence (C).
  • CPG Controlled Pore Glass
  • AKTA oligopilot plus 100 manufactured by GE Healthcare
  • nucleic acid synthesizer oligos consisting of the above sequence (I) were synthesized by the phosphoramidite solid phase synthesis method. Nucleotides were synthesized from the 3' side to the 5' side. Synthesis was performed on an approximately 53 ⁇ mol scale.
  • a 2'-OMe-U amidite solution in which the 2'-OMe-U amidite shown by formula (4) is dissolved in an arbitrary solvent is used, and a high-purity dichloroacetic acid toluene solution is used as a deblocking solution.
  • a 5-benzylthio-1H-tetrazole solution was used as the condensing agent, an iodine solution was used as the oxidizing agent, and a phenoxyacetic anhydride solution and an N-methylimidazole solution were used as the capping solution.
  • the oligonucleotide produced by the production method of the present invention is an oligonucleotide having the sequence (I) shown in SEQ ID NO: 4 above.
  • the 2'-OMe-U derivative CPG described in the following Examples and Comparative Examples means a compound represented by the following formula (17).
  • the circle illustrated in equation (17) schematically represents the CPG.
  • Example 1 Using 53.7 ⁇ mol of 2'-OMe-U derivative CPG and a 2'-OMe-U amidite solution adjusted to 75 mM using acetonitrile:toluene 9:1 as a solvent, the oligonucleotide shown in sequence (I) was purified by AKTA. Automatic synthesis was performed from the 3' side to the 5' side using oligopilot plus 100 (manufactured by GE Healthcare).
  • the automatic synthesis procedure is as follows: First, a 3% dichloroacetic acid toluene solution is sent to CPG to deprotect the trityl protecting group at the 5' position, and then a 2'-OMe-U amidite solution and 5- as a condensing agent are added. A benzylmercapto-1H-tetrazole acetonitrile solution was fed to the CPG to allow a condensation reaction to proceed with the hydroxyl group at the 5' position. Subsequently, a 50 mM iodine solution was fed to convert the phosphorous acid groups into phosphoric acid groups.
  • the oligonucleotide was released from the solid support using 4.09 g of ammonia water and 1.21 g of ethanol on the CPG support carrying 8.0 ⁇ mol of oligonucleotide. Thereafter, the solid phase carrier was removed by filtration, and aqueous ammonia and ethanol were removed by drying under reduced pressure to obtain the desired oligonucleotide as a dry solid.
  • the yield was 57.3 mg
  • the FLP ratio was 76.04% and the n-1 mer ratio was 7.17%.
  • Example 2 In the method of Example 1, the sequence (I ) oligonucleotide was obtained. The yield was 58.3 mg, the FLP ratio was 78.01%, and the n-1 mer ratio was 5.24%.
  • Example 3 In the method of Example 1, the sequence (I ) oligonucleotide was obtained. The yield was 54.3 mg, the FLP ratio was 74.24%, and the n-1 mer ratio was 4.14%.
  • Example 4 Arrangements were made in the same manner as in Example 1, except that 53.1 ⁇ mol of 2'-OMe-U derivative CPG and acetonitrile:o-xylene 4:1 were used as the solvent for the 2'-OMe-U amidite solution. Oligonucleotide (I) was obtained. The yield was 58.6 mg, the FLP ratio was 77.84%, and the n-1 mer ratio was 5.22%.
  • Example 5 In the method of Example 1, the sequence (I ) oligonucleotide was obtained. The yield was 57.3 mg, the FLP ratio was 77.82%, and the n-1 mer ratio was 5.78%.
  • Example 6 In the same manner as in Example 1, except that 52.4 ⁇ mol of 2'-OMe-U derivative CPG and acetonitrile:o-dichlorobenzene 4:1 were used as the solvent for the 2'-OMe-U amidite solution. An oligonucleotide of sequence (I) was obtained. The yield was 56.4 mg, the FLP ratio was 76.62%, and the n-1 mer ratio was 5.50%.
  • Comparative example 1 In the method of Example 1, the sequence (I ) oligonucleotide was obtained. The yield was 59.4 mg, the FLP ratio was 76.87%, and the n-1 mer ratio was 7.68%.
  • Table 2 shows the results of Examples 1 to 6 and Comparative Example 1 regarding the FLP ratio and n-1 mer ratio.
  • SEQ ID NOS: 1 to 4 in the sequence listing represent the base sequences of oligonucleotides produced according to the production method of the present invention.

Abstract

本発明は、式(2)〔式中、Gは水酸基の保護基を示し、Bは、保護基で保護されていてもよい核酸塩基を示し、Rは、保護された水酸基等を表し、Xは、酸素原子等を表し、そして、*のついた結合は、核酸の3'末端側への結合を示す。〕で示される化合物と、式(4)〔式中、Gは水酸基の保護基を示す。〕で示される2'-OMe-Uアミダイトとをアクチベーターの存在下で縮合させる工程を含み、前記2'-OMe-Uアミダイトが、アセトニトリル及び式(3)〔式中、Y~Yは、水素原子、メチル基等を表す。〕で示される芳香族系炭化水素を含む混合液に溶解している、オリゴヌクレオチドの製造方法、に関する。

Description

オリゴヌクレオチドの製造方法
 本特許出願は、日本国特許出願2022-117422号(2022年7月22日出願)に基づくパリ条約上の優先権および利益を主張するものであり、ここに引用することによって、上記出願に記載された内容の全体が、本明細書中に組み込まれるものとする。
 本発明は、ホスホロアミダイト法を用いたオリゴヌクレオチドの製造方法に関する。
 核酸オリゴマーであるオリゴヌクレオチドは、遺伝子検出を目的とした核酸プローブや、PCRに用いられるDNAプローブ、医薬品としてのアンチセンス核酸、siRNA、アプタマーなど様々な分野において利用される有用な素材である。
 オリゴヌクレオチドは、ホスホロアミダイト法を用いた固相合成法により製造可能である。ホスホロアミダイト法では、ガラスや樹脂担体上にてモノマーであるヌクレオシドのホスホロアミダイト(以下「アミダイト」と称する)を順次連結させていき、任意の配列を有するオリゴヌクレオチドを製造する。具体的な製造工程は、酸性溶液を用いてヌクレオチドの5’末端の水酸基の保護基を脱保護する脱保護工程と、脱保護したヌクレオチドの5’末端の水酸基とアミダイトのアミダイト基をアクチベーター存在下で反応させる縮合工程と、新たに生じたヌクレオシド間の結合を3価のリンから5価のリンへと酸化する酸化工程と、未反応の5’末端の水酸基をアシル化するキャッピング工程を含む。これらの工程を順次繰り返すことにより、アミダイトを任意の順番に連結し、所望の配列を有するオリゴヌクレオチドが製造される。
 特許文献1等に開示されるように、縮合工程で用いるアミダイトはアセトニトリルに溶解させてアミダイト溶液として使用する。一方でアセトニトリルへの溶解度が低いアミダイトの場合には、この手法を用いることは困難である。
 アセトニトリルへの溶解度が低いアミダイトの1つとして2’-OMe-Uアミダイトが挙げられる。2’-OMe-Uアミダイトの溶解度を向上させる目的として、アセトニトリルに追加してジクロロメタン(特許文献2、非特許文献1)を添加してアミダイト溶液を調製する報告がなされている。これらの溶媒を添加することで、2’-OMe-Uアミダイトの溶解度が向上する。
 このようなオリゴヌクレオチドの製造法が開発されているが、合成されたオリゴヌクレオチドの純度は、必ずしも満足いくものではなかった。その理由の一つにn-1 mer不純物の存在がある。n-1 mer不純物はオリゴヌクレオチド製造中に生じる不純物であり、目的鎖長と比較して1つ短い鎖長を持つ不純物のことである。このn-1 mer不純物は目的鎖長のオリゴヌクレオチドとの分離が困難であることが知られている(非特許文献2)。そのため、製造中に生じるn-1 mer不純物を低減させることが、オリゴヌクレオチドの効率的な製造において重要である。
国際公開第2019/170731号 中国特許出願公開第112007040号明細書
Bioorganic & Medicinal Chemistry Letters 28 (2018) 3774-3779 Mass Spectrometry Reviews 40 (2021) 75-109
 本発明は、2’-OMe-Uを1つ以上有するオリゴヌクレオチドの高純度な製造方法を提供することを目的とする。
 本発明者は、上記目的を達成するため鋭意検討を重ねた結果、2’-OMe-Uアミダイト溶液の溶媒として、アセトニトリルと芳香族系炭化水素を用いることを特徴とする、核酸製造方法を提供する。
 本発明は、以下の態様を包含するが、これらに限定されるものではない。
1. 式(2):
Figure JPOXMLDOC01-appb-C000007
〔式中、
 Gは水酸基の保護基を示し、
 Bは、保護基で保護されていてもよい核酸塩基を示し、
 Rは、保護された水酸基、水素原子、フッ素原子、メトキシ基、2-メトキシエチル基、またはOQ’基を表し、
 Q’は、リボースの4’位の炭素原子と結合しているアルキレン基を表し、
 Xは、酸素原子または硫黄原子を表し、そして、
 *のついた結合は、核酸の3’末端側への結合を示す。〕
で示される化合物と、式(4):
Figure JPOXMLDOC01-appb-C000008
〔式中、
 Gは水酸基の保護基を示す。〕
で示される2’-OMe-Uアミダイトとをアクチベーターの存在下で縮合させる工程を含み、
前記2’-OMe-Uアミダイトが、アセトニトリル及び式(3):
Figure JPOXMLDOC01-appb-C000009
〔式中、Y~Yは、それぞれ独立して、同一又は相異なって、水素原子、メチル基、エチル基、又はハロゲン原子を表す。〕
で示される芳香族系炭化水素を含む混合液に溶解している、
オリゴヌクレオチドの製造方法。
2. 式(3)で示される芳香族系炭化水素が、メチル基、エチル基、及びハロゲン原子からなる群より選ばれる1つ又は2つの置換基を有するベンゼンであり、ベンゼンが2つの置換基を有する場合、置換基は同一でも異なっていてもよい、[1]に記載のオリゴヌクレオチドの製造方法。
3. 式(3)で示される芳香族系炭化水素が、トルエン、o-キシレン、m-キシレン、p-キシレン、クロロベンゼン、o-ジクロロベンゼン、m-ジクロロベンゼン、p-ジクロロベンゼン、及びそれらの2種以上の混合物からなる群より選ばれる、[1]に記載のオリゴヌクレオチドの製造方法。
4. 式(4)で示される2’-OMe-Uアミダイトが溶解する混合液に含まれるアセトニトリルと式(3)で示される芳香族系炭化水素との体積比率が、アセトニトリル:式(3)で示される芳香族系炭化水素で99:1~1:99である、[1]~[3]のいずれか一項に記載のオリゴヌクレオチドの製造方法。
5. 式(4)で示される2’-OMe-Uアミダイトが溶解する混合液に含まれるアセトニトリルと式(3)で示される芳香族系炭化水素の体積比率が、アセトニトリル:式(3)で示される芳香族系炭化水素で90:10~10:90である、[1]~[3]のいずれか一項に記載のオリゴヌクレオチドの製造方法。
6. 式(4)で示される2’-OMe-Uアミダイトが溶解する混合液に含まれるアセトニトリルと式(3)で示される芳香族系炭化水素の体積比率が、アセトニトリル:式(3)で示される芳香族系炭化水素で90:10~40:60である、[1]~[3]のいずれか一項に記載のオリゴヌクレオチドの製造方法。
7. 式(4)で示される2’-OMe-Uアミダイト溶液における2’-OMe-Uアミダイト濃度が、0.01~0.4Mである、[1]~[6]のいずれか一項に記載のオリゴヌクレオチドの製造方法。
8. 式(4)で示される2’-OMe-Uアミダイト溶液における2’-OMe-Uアミダイト濃度が、0.05~0.2Mである、[1]~[6]のいずれか一項に記載のオリゴヌクレオチドの製造方法。
9. アクチベーターが5-ベンジルチオ-1H-テトラゾールである、[1]~[8]のいずれか一項に記載のオリゴヌクレオチドの製造方法。
10. 式(2)で示される化合物におけるRが保護された水酸基である場合、その水酸基の保護基が、式(10):
Figure JPOXMLDOC01-appb-C000010
〔式中、
 qは0~5の整数を表し、
 RおよびRは、それぞれ同一または相異なり、メチル基、エチル基又は水素原子を表し、
 *印のついた結合は2’水酸基の酸素に結合し、
 Ewは電子求引性基を表す。〕
で示される保護基である、[1]~[9]のいずれか一項に記載のオリゴヌクレオチドの製造方法。
11. 式(4)で示される2’-OMe-Uアミダイトにおいて、Gが4,4’-ジメトキシトリチル基である、[1]~[10]のいずれか一項に記載のオリゴヌクレオチドの製造方法。
12. 固相合成法により行われる、[1]~[11]のいずれか一項に記載のオリゴヌクレオチドの製造方法。
13. 式(4):
Figure JPOXMLDOC01-appb-C000011
〔式中、
 Gは水酸基の保護基を示す。〕
で示される2’-OMe-Uアミダイト、アセトニトリル及び式(3):
Figure JPOXMLDOC01-appb-C000012
〔式中、Y~Yは、それぞれ独立して、同一又は相異なって、水素原子、メチル基、エチル基、又はハロゲン原子を表す。〕
で示される芳香族系炭化水素を含む、溶液。
14. [13]に記載された式(4)で示される2’-OMe-Uアミダイト、アセトニトリル及び式(3)で示される芳香族系炭化水素を含む溶液を、オリゴヌクレオチドの製造に用いる方法。
 本発明は、2’-OMe-Uアミダイトを1つ以上含むオリゴヌクレオチドの高純度な製造方法を提供する。
本発明の製法の工程(1)から(6)のスキーム(スキームA)を示す図面である。
 本発明のオリゴヌクレオチドの製造方法は、
 式(2):
Figure JPOXMLDOC01-appb-C000013
〔式中、
 Gは水酸基の保護基を示し、
 Bは、保護基で保護されていてもよい核酸塩基を示し、
 Rは、保護された水酸基、水素原子、フッ素原子、メトキシ基、2-メトキシエチル基、またはOQ’基を表し、
 Q’は、リボースの4’位の炭素原子と結合しているアルキレン基を表し、
 Xは、酸素原子または硫黄原子を表し、そして、
 *のついた結合は、核酸の3’末端側への結合を示す。〕
で示される化合物と、式(4):
Figure JPOXMLDOC01-appb-C000014
〔式中、
 Gは水酸基の保護基を示す。〕
で示される2’-OMe-Uアミダイトとをアクチベーターの存在下で縮合させる工程を含み、
前記2’-OMe-Uアミダイトが、アセトニトリル及び式(3):
Figure JPOXMLDOC01-appb-C000015
〔式中、Y~Yは、それぞれ独立して、同一又は相異なって、水素原子、メチル基、エチル基、又はハロゲン原子を表す。〕
で示される芳香族系炭化水素を含む混合液に溶解している、
オリゴヌクレオチドの製造方法、に関する。
 オリゴヌクレオチドの製造方法は、アセトニトリルと式(3)で示される芳香族系炭化水素の混合液に、式(4)で示される2’-OMe-Uアミダイトを溶解させた2’-OMe-Uアミダイト溶液およびアクチベーターを反応させる工程を含むものであってよい。以下、オリゴヌクレオチドの製造方法について説明する。
 本発明における2’-OMe-Uアミダイト溶液の溶媒において、アセトニトリルと式(3)で示される芳香族系炭化水素を含む混合液を用いることで、製造したオリゴヌクレオチドの含まれるn-1 merを低減することができる。アセトニトリルと式(3)で示される芳香族系炭化水素を含む混合液における混合比は特に限定されるものではないが、アセトニトリルと芳香族系炭化水素の体積比が、例えば99:1~1:99、好ましくは90:10~10:90、より好ましくは90:10~40:60である。
 芳香族系炭化水素としては、メチル基、エチル基、またはハロゲン原子、からなる群から選ばれる置換基を有するベンゼン、好ましくはメチル基、エチル基、またはハロゲン原子、からなる群から選ばれる1つもしくは2つの置換基を有するベンゼン、より好ましくはトルエン、o-キシレン、m-キシレン、p-キシレン、クロロベンゼン、o-ジクロロベンゼン、m-ジクロロベンゼン、p-ジクロロベンゼン、及びそれらの2種以上の混合物が使用可能である。
 2’-OMe-Uアミダイト溶液にはアセトニトリルと芳香族系炭化水素以外の溶媒も混合して使用してもよい。
 2’-OMe-Uアミダイト溶液中の2’-OMe-Uアミダイト濃度は、好ましくは0.01 M~0.4 M、より好ましくは0.05 M~0.2 Mに調整される。
 2’-OMe-Uアミダイトを前述の混合溶媒に溶解させたのちに、ゼオラム等の乾燥材で水分を低減させたのちに使用することも可能である。
 2’-OMe-Uアミダイト溶液の保管には、ガラス製容器、プラスチック製容器、または金属製容器を使用することができる。プラスチック製容器としては、ポリエチレンまたはポリプロピレン製等の容器を使用することができ、金属製容器としては、SUS製容器またはハステロイ製等の容器を使用することができる。
 式(4)で示される2’-OMe-Uアミダイトとの反応前駆体は、具体的には以下の式(12):
Figure JPOXMLDOC01-appb-C000016
(式中、
 Gは水酸基の保護基を示し、
 Bは、それぞれ独立して、保護基で保護されていてもよい核酸塩基を示し、
 Rは、保護された水酸基、水素原子、フッ素原子、メトキシ基、2-メトキシエチル基、またはOQ’基を表し、
 Q’は、リボースの4’位の炭素原子と結合しているアルキレン基を表し、
 Xは、それぞれ独立して、同一又は相異なって、酸素原子または硫黄原子を表し、
 Zは、固相担体、および固相担体とオリゴヌクレオチドの3’末端のリボースの3’位の水酸基の酸素原子とをつなぐ連結部からなる基を表し、そして、
 lは、0~300の整数を示す。)
で示される化合物であり、2’-OMe-Uアミダイトと反応することで、式(13):
Figure JPOXMLDOC01-appb-C000017
(式中、
 Gは水酸基の保護基を表し、
 G、B、R、X、Z、lは、前記定義のとおりである。)
で示されるオリゴヌクレオチドへと変換される。
 式(2)、(12)および(13)において、RがOQ’基を表し、Q’がリボースの4’位の炭素原子と結合しているアルキレン基表すとき、当該構造としては、具体的には下記のLNA-1~LNA-4が例示される。
Figure JPOXMLDOC01-appb-C000018
(式中、Bは、保護されていてもよい核酸塩基を表す。)
 本発明で使用されるオリゴヌクレオチド内に含まれるヌクレオシド(リボース、およびデオキシリボース)としては、DNA、RNA、2’-O-MOE(2’-O-メトキシエチル)、2’-O-Me、2’-F RNA、および前記のLNAが例示されるが、前記ヌクレオシドは、これらに限定されない。
 Zで示される、固相担体、および固相担体と核酸オリゴマーの3’末端のリボースの2’位もしくは3’位の水酸基の酸素原子とをつなぐ連結部からなる基としては、より具体的には、下記式(18)で示される構造が挙げられる。
Figure JPOXMLDOC01-appb-C000019
 式(18)において、Spは、スペーサーを表す。
 スペーサー(Sp)としては、例えば、下記式(19)に示す構造式を有するものが例示される。
Figure JPOXMLDOC01-appb-C000020
 Linkerは、例えば、下記式(20)に示す構造でもよいし、または式(20)の構造においてヘキサメチレンアミノ基部分を有さない構造であって、アミノプロピル基がSiに結合した構造でもよい。または、Linkerは下記式(21)で示す構造でもよい。
Figure JPOXMLDOC01-appb-C000021
(式中、
 Aは、水酸基、アルコキシ基、またはアルキル基のいずれかであってもよい。アルコキシ基としては、例えばメトキシ基およびエトキシ基が挙げられる。アルキル基としては、例えばメチル基、エチル基、イソプロピル基、n-プロピル基が挙げられる。Siは、担体表面の水酸基の酸素と結合していることを示す。)
 Solid supportとしては、無機多孔質担体や有機系樹脂担体などが挙げられる。無機多孔質担体には、例えば、Controlled Pore Glass(CPG)およびゼオライトが挙げられる。有機系樹脂担体には、例えば、ポリスチレンからなる担体が挙げられる。
 オリゴヌクレオチドの合成方法は、典型的には、以下の工程を含む。
(1)固相担体にリンカーを介して結合している水酸基が保護されたヌクレオシドの5’位の水酸基を脱保護する工程、
(2)前記工程で生成した5’位の水酸基をアミダイト化合物と縮合反応させて亜リン酸トリエステル化合物を得る工程、
(3)前記工程で生成した亜リン酸トリエステルを酸化してリン酸トリエステル結合に変換して伸長した核酸分子を製造する工程、あるいは、チオリン酸トリエステルに変換する任意の工程、
(4)前記工程(1)~(3)、すなわち、生成した核酸分子の5’位の水酸基の脱保護工程、5’位の水酸基とアミダイト化合物との縮合工程、および、生成した亜リン酸トリエステルの酸化工程、から構成される一連の反応のサイクルを、任意の回数繰り返し、固相担体上に核酸分子を合成する工程、
(5)工程(4)で生成した固相担体上の核酸分子を、切り出しおよび脱保護する工程に供し、固相担体から遊離させて、保護基が除かれたオリゴヌクレオチドを製造する工程、および、
(6)核酸分子を構成するリボースの2’水酸基の保護基を脱保護する工程。
 ただし、前記オリゴヌクレオチドの合成方法においては、工程(2)または(3)に続けて、アミダイト化合物との縮合反応が進行しなかった5’位の水酸基をキャッピングする工程を含んでいてもよく、工程(4)を構成する一連の反応のサイクルの何れかの工程の間にキャッピング工程が付加されていてもよい。
 前記(5)の工程は、より具体的には、工程(4)で生成した固相担体上の核酸分子を、以下の工程(5-1)および(5-2)の反応の順に実施される。ここで工程(5-1)の反応の実施は、任意であってもよいし、工程(5-2)の反応の実施は、特許第4705716号公報に記載の方法を用いてもよい。その結果、固相担体から遊離した核酸分子から保護基が除かれたオリゴヌクレオチド、あるいは、5’末端の水酸基が保護されたオリゴヌクレオチドを製造することができる。
  (5-1)核酸分子の5’末端の水酸基の保護基を脱保護する反応、および、
  (5-2)核酸分子を固相担体から切りだして遊離させる反応。
 前記工程(1)から(6)のスキームを、図1のスキームAに示す。スキームAにおける化学式中の置換基のうち、G、G、B、およびRの定義は、前記定義のとおりである。また、G、G、G、B、およびR’の定義は、後述のとおりである。また、スキームAの化学式中、
 Yは、それぞれ独立して、同一又は相異なって、酸素原子または硫黄原子を表し、
 Xは、R基を表すか、または、OZ基を表し、ここで、Zは、前記定義のとおりであり、
 Wは、XがR基を表すとき、OZ基を表し、ここで、Zは、前記定義のとおりであり、あるいは、Wは、XがOZ基を表すとき、OV基を表し、ここで、Vは、水酸基の保護基を表し、
 Wは、W基、またはW基から誘導された基(例えば、固相担体から切り出された残基、脱保護された基など)であり、
 W10は、W基、またはW基から誘導された基(例えば、固相担体から切り出された残基、脱保護された基など)であり、
 Xは、X基、またはX基から誘導された基(例えば、固相担体から切り出された残基、脱保護された基など)であり、
 X10は、X基、またはX基から誘導された基(例えば、固相担体から切り出された残基、脱保護された基など)であり、
 nは、1~300の整数を示し、そして、
 mは、1~300の整数を示す。
 式(A5)の核酸化合物は、さらにアミダイト法によりヌクレオチド型または非ヌクレオチド型のリンカーを用いて任意の鎖長だけ伸長し、式(A5’)で示される核酸化合物の製造に使用することができる。式(A5’)の固相担体に結合した核酸化合物から核酸化合物のみを切り出して、式(A6)で示されるオリゴヌクレオチドを得たのち、更に脱保護して式(A7)で示されるオリゴヌクレオチドを得ることもできる。
 以下、各式中の置換基についてさらに詳細に説明する。
 Gとしては、保護基として機能し得るものであれば特に制限なく使用することができ、アミダイト化合物で使用される公知の保護基を広く使用することができる。Gは好ましくは、以下式(14)で示される保護基である。
Figure JPOXMLDOC01-appb-C000022
(式中、R、R及びRは、それぞれ独立して、同一又は相異なって水素又はアルコキシ基を表す。)
 R、R及びRは、1つが水素であり、残りの2つが同一または相異なる(同一が好ましい)アルコキシ基であることが好ましく、アルコキシ基としてはメトキシ基が特に好ましい。Gとしては、具体的には、4,4’-ジメトキシトリチル基(DMTr基)、4-モノメトキシトリチル基、および4,4’,4”-トリメトキシトリチル基が好ましく、4,4’-ジメトキシトリチル基が特に好ましい。
 Gとしては、保護基として機能し得るものであれば特に制限なく使用することができ、アミダイト化合物で使用される公知の保護基を広く使用することができる。Gとしては、例えば、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、ハロアルキル基、アリール基、ヘテロアリール基、アリールアルキル基、シクロアルケニル基、シクロアルキルアルキル基、シクリルアルキル基、ヒドロキシアルキル基、アミノアルキル基、アルコキシアルキル基、ヘテロシクリルアルケニル基、ヘテロシクリルアルキル基、ヘテロアリールアルキル基、シリル基、シリルオキシアルキル基、モノ、ジ又はトリアルキルシリル基、モノ、ジ又はトリアルキルシリルオキシアルキル基などが挙げられ、これらは1つ以上の電子求引基で置換されていてもよい。
 Gは、好ましくは、電子求引基で置換されたアルキル基である。当該電子求引基としては、例えば、シアノ基、ニトロ基、アルキルスルホニル基、ハロゲン原子、アリールスルホニル基、トリハロメチル基、トリアルキルアミノ基などが挙げられ、好ましくはシアノ基である。Gとしては、特に好ましいのは、2-シアノエチル基(下記式で表される基)である。
Figure JPOXMLDOC01-appb-C000023
 Gは、アルキル基であり、2つのGが互いに結合して環状構造を形成していてもよく、好ましくは両方がイソプロピル基である。
 前記R、R、RおよびG、Gの定義におけるアルキル基は、直鎖状又は分岐鎖状のいずれでもよく、好ましくは炭素数1~12のアルキル基、より好ましくは炭素数1~6のアルキル基である。具体的なアルキル基の例としては、例えば、メチル、エチル、n-プロビル、イソプロピル、n-ブチル、イソブチル、tert-ブチル、n-ペンチル、イソペンチル、及びヘキシルが挙げられる。前記置換基の定義におけるアルコキシ基を構成するアルキル基部分は、ここでのアルキル基の定義と同じ定義を有する。
 Gは、水素原子、アルカリ金属イオン、アンモニウムイオン、アルキルアンモニウムイオン、またはヒドロキシアルキルアンモニウムイオンを表す。アルカリ金属イオンとしては、例えば、ナトリウムイオン、およびリチウムイオンが挙げられる。また、アルキルアンモニウムイオンとして、具体的なアルキル基の例としては、例えば、メチル、エチル、n-プロビル、イソプロピル、n-ブチル、イソブチル、tert-ブチル、n-ペンチル、イソペンチル、及びヘキシルが挙げられるが、より具体的には、例えば、ジエチルアンモニウムイオン、トリエチルアンモニウムイオン、テトラブチルアンモニウムイオン、ヘキシルアンモニウムイオン、およびジブチルアンモニウムイオンなどが挙げられる。また、ヒドロキシアルキルアンモニウムイオンとして、具体的なヒドロキシアルキル部分の例としては、例えば、ヒドロキシメチル、ヒドロキシエチル、ヒドロキシ-n-プロビル、ヒドロキシイソプロピル、ヒドロキシ-n-ブチル、トリスヒドロキシメチルが挙げられるが、より具体的なヒドロキシアルキルアンモニウムイオンの例としては、トリスヒドロキシメチルアンモニウムイオンなどが挙げられる。
 Gは、水素原子、または保護基を表し、保護基を表す場合はGと同じ保護基を表す。Gは脱保護された場合には水素原子であるが、その場合のヌクレオチド化合物もまた、一連の核酸伸張反応の工程に供される。
 また、本発明の方法において、アミダイト化合物は、フリーの状態又は塩の状態で使用することができる。アミダイト化合物の塩としては、塩基付加塩または酸付加塩が挙げられるが、特に制限されない。塩基付加塩としては、具体的には、ナトリウム塩、マグネシウム塩、カリウム塩、カルシウム塩、アルミニウム塩等の無機塩基との塩;メチルアミン、エチルアミン、エタノールアミン等の有機塩基との塩;リジン、オルニチン、アルギニン等の塩基性アミノ酸との塩;及びアンモニウム塩が挙げられる。酸付加塩としては、具体的には、塩酸、臭化水素酸、ヨウ化水素酸、硫酸、硝酸、リン酸等の鉱酸;ギ酸、酢酸、プロピオン酸、シュウ酸、マロン酸、リンゴ酸、酒石酸、フマル酸、コハク酸、乳酸、マレイン酸、クエン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、エタンスルホン酸等の有機酸;および、アスパラギン酸、グルタミン酸等の酸性アミノ酸との酸付加塩が挙げられる。アミダイト化合物には、塩、水和物、溶媒和物、結晶多形などの形態も含まれる。
 本明細書においては、核酸塩基とは、天然型あるいは非天然型の核酸塩基骨格を有する基を意味する。前記核酸塩基は、天然型あるいは非天然型の核酸塩基骨格が修飾された修飾体も包含する。
 Bで示される保護基で保護されていてもよい核酸塩基は、特に限定されない。当該核酸塩基としては、アデニン、シトシン、グアニン、ウラシル、チミン、5-メチルシトシン、シュードウラシル、1-メチルシュードウラシルなどが挙げられる。また、核酸塩基は、置換基により置換されていてもよい。そのような置換基としては、例えば、フルオロ基やクロロ基やブロモ基やヨード基のようなハロゲン原子、アセチル基のようなアシル基、メチル基やエキル基のようなアルキル基、ベンジル基のようなアリールアルキル基、メトキシ基のようなアルコキシ基、メトキシエチル基のようなアルコキシアルキル基、シアノエチル基のようなシアノアルキル基、ヒドロキシ基、ヒドロキシアルキル基、アシルオキシメチル基、アミノ基、モノアルキルアミノ基、ジアルキルアミノ基、カルボキシ基、シアノ基、およびニトロ基など、並びにそれらの2種類以上の置換基の組み合わせが挙げられる。
 Bで表される核酸塩基としては、より具体的には、以下の構造が例示される。
Figure JPOXMLDOC01-appb-C000024
(上記式中、
 Rは、水素原子、メチル基、フェノキシアセチル基、4-tert-ブチルフェノキシアセチル基、4-イソプロピルフェノキシアセチル基、フェニルアセチル基、アセチル基又はベンゾイル基を表し、
 Rは、水素原子、アセチル基、イソブチリル基又はベンゾイル基を表し、
 Rは、水素原子、フェノキシアセチル基、4-tert-ブチルフェノキシアセチル基、4-イソプロピルフェノキシアセチル基、フェニルアセチル基、アセチル基又はイソブチリル基を表し、
 Rは、2-シアノエチル基を表し、
 Rは、水素原子、メチル基、ベンゾイル基、4-メトキシベンゾイル基又は4-メチルベンゾイル基を表し、そして、
 Rは、ジメチルアミノメチレン基を表す。)
 核酸塩基が環外にアミノ基を有する場合、当該アミノ基の保護基としては、特に限定されず、公知の核酸化学で用いられる保護基を使用することができ、そのような保護基としては、例えば、ベンゾイル基、4-メトキシベンゾイル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、フェニルアセチル基、フェノキシアセチル基、4-tert-ブチルフェノキシアセチル基、4-イソプロピルフェノキシアセチル基、および(ジメチルアミノ)メチレン基など、並びにそれらの2種類以上の保護基の組み合わせが挙げられる。
 Bは無保護の核酸塩基を示すが、その種類は特に限定されない。当該核酸塩基としては、アデニン、シトシン、グアニン、ウラシル、チミン、5-メチルシトシン、シュードウラシル、1-メチルシュードウラシルなどが挙げられる。また、核酸塩基は、置換基により置換されていてもよい。そのような置換基としては、例えば、フルオロ基やクロロ基やブロモ基やヨード基のようなハロゲン原子、アセチル基のようなアシル基、メチル基やエキル基のようなアルキル基、ベンジル基のようなアリールアルキル基、メトキシ基のようなアルコキシ基、メトキシエチル基のようなアルコキシアルキル基、シアノエチル基のようなシアノアルキル基、ヒドロキシ基、ヒドロキシアルキル基、アシルオキシメチル基、アミノ基、モノアルキルアミノ基、ジアルキルアミノ基、カルボキシ基、シアノ基、およびニトロ基など、並びにそれらの2種類以上の置換基の組み合わせが挙げられる。
 Rが、保護された水酸基を示すとき、その保護基は、アミダイト法において使用できるものであればよく、例えば、2’-tert-ブチルジメチルシリル(TBDMS)基、2’-ビス(2-アセトキシ)メチル(ACE)基、2’-(トリイソプロピルシリロキシ)メチル(TOM)基、2’-(2-シアノエトキシ)エチル(CEE)基、2’-(2-シアノエトキシ)メチル(CEM)基(国際公開2006/022323号)、2’-パラ-トルイルスルホニルエトキシメチル(TEM)基、2’-EMM基(国際公開2013/027843号)の他に、国際公開第2019/208571号に記載のものが使用できる。これらのリボヌクレオシド(RNA)の2’保護基のうち、式(10)で示される保護基が好ましい保護基として例示される。さらに好ましくは、Eで示される電子求引基としてシアノ基を有する式(15)で示される保護基が例示される。
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
(式中、
 qは0~5の整数を表し、
 RおよびRはそれぞれ同一または相異なって、メチル基、エチル基または水素原子を表し、
 *印のついた結合は2’水酸基の酸素に結合する。
 そして、Ewは電子求引性基を表す。)
 式(15)で示される保護基は、例えば国際公開第2013/027843号および国際公開第2019/208571号に記載に従って合成することができ、かかる保護基を有するアミダイト化合物をオリゴヌクレオチドの製造に使用することができる。
 R基が、水酸基以外の置換基であるヌクレオチドおよびアミダイトは、特許第3745226号公報などに記載された公知の方法、国際公開第2001/053528号あるいは特開2014-221817号公報およびそれらに引用される公知の方法で合成されるヌクレオシドから製造することもでき、さらには、市販品として入手可能なものを用いて、後述する実施例に記載の方法に則して又はこれらの方法に適宜変更を加えた方法により製造することができる。
 R’は、水酸基、水素原子、フッ素原子、メトキシ基、2-メトキシエチル基、またはOQ’基を表し、Q’は、リボースの4’位の炭素原子と結合しているメチレン基、4’位の炭素原子と結合しているエチレン基、または4’位の炭素原子と結合しているエチリデン基を表す。
 前記オリゴヌクレオチドの合成は、本発明に関わる2’-OMe-Uアミダイトを用いた縮合工程以外は、一般的に公知の方法(例えば、前記の特許第5157168号公報または特許第5554881号公報に記載の方法)に従って、脱保護工程、縮合工程、の各工程を繰り返し行うことにより、核酸伸長反応を行うことができる。以下、各工程について説明する。
(核酸伸長反応)
 本明細書において、「核酸伸長反応」とは、ホスホジエステル結合を介して、ヌクレオチドを順次結合させることにより、核酸分子を伸長させる反応を意味する。核酸伸長反応は、一般的なアミダイト法(ホスホロアミダイト法)の手順に従い行うことができる。核酸伸長反応は、アミダイト法を採用する核酸自動合成装置等を用いて行ってもよく、液相合成で行ってもよい。
 オリゴヌクレオチドの鎖長は、例えば、20mer以上、40mer以上、50mer以上、60mer以上、80mer以上、100mer以上、200mer以上、2~300mer、2~250mer、2~200mer、10~300mer、10~250mer、10~200mer、10~150mer、15~300mer、15~250mer、15~200mer、15~150mer、15~110merであってもよい。
 工程(1)の脱保護工程は、固相担体上に担持されるRNA鎖末端の5’水酸基の保護基を脱保護する工程である(図1のスキームA参照)。Gで表される一般的な保護基としては、4,4’-ジメトキシトリチル基(DMTr基)や4-モノメトキシトリチル基、4,4’,4”-トリメトキシトリチル基が用いられる。脱保護は、酸を用いて行うことができる。脱保護用の酸としては、例えば、トリフルオロ酢酸、ジクロロ酢酸、トリフルオロメタンスルホン酸、トリクロロ酢酸、メタンスルホン酸、塩酸、酢酸、p-トルエンスルホン酸等が挙げられる。
 工程(2)の縮合工程は、前記脱保護工程により脱保護したオリゴヌクレオチド鎖末端の5’水酸基に対して、図1のスキームAに記載の下記式(A3)で示されるヌクレオシドホスホロアミダイトを結合させる反応である。なお、核酸伸長に用いる下記式(A3)で示されるホスホロアミダイトとしては、Rが保護された水酸基、2’-OMe、2’-F、2’-O-tert-ブチルジメチルシリル基,2’-O-メトキシエチル基,2’-H,2'-フルオロ-2’-デオキシ-β-D-アラビノフラノシル等であるものが挙げられる。前記ヌクレオシドホスホロアミダイトとしては、5’水酸基が保護基(例、DMTr基)で保護されたものを用いる。縮合工程は、前記ヌクレオシドホスホロアミダイトを活性化するアクチベーターを用いて行うことができる。アクチベーターとしては、例えば、5-ベンジルチオ-1H-テトラゾール(BTT)、1H-テトラゾール、4,5-ジシアノイミダゾール(DCI)、5-エチルチオ-1H-テトラゾール(ETT)、N-メチルベンズイミダゾリウムトリフラート(N-MeBIT)、ベンズイミダゾリウムトリフラート(BIT)、N-フェニルイミダゾリウムトリフラート(N-PhIMT)、イミダゾリウムトリフラート(IMT)、5-ニトロベンズイミダゾリウムトリフラート(NBT)、1-ヒドロキシベンゾトリアゾール(HOBT)又は5-(ビス-3,5-トリフルオロメチルフェニル)-1H-テトラゾール等が挙げられ、5-ベンジルチオ-1H-テトラゾール(BTT)が好ましい。
 図1のスキームAに記載の式(A3)で示されるヌクレオシドホスホロアミダイト(以下、アミダイトと呼称する)とは、以下のとおりである。
 式(A3):
Figure JPOXMLDOC01-appb-C000027
(式中、
 G、G、G、B、およびRは、前記の通りである。)
で示される化合物。
 本発明では、式(A3)のアミダイトとして、縮合工程の少なくとも1回に、2’-OMe-Uアミダイト(式(4)で示される化合物)が用いられる。そして、その縮合工程において、2’-OMe-Uアミダイトが、アセトニトリル及び式(3)で示される芳香族系炭化水素を含む混合液に溶解された溶液を用いることができる。アクチベーターは、前記混合液に添加され得る。アクチベーターは、前記混合液に溶解していてもよい。
 縮合工程の後は、適宜、未反応の5’水酸基をキャッピングしてもよい。キャッピングは、無水酢酸-テトラヒドロフラン溶液、フェノキシ酢酸無水物/N-メチルイミダゾール溶液等の公知のキャッピング溶液を用いて行うことができる。
 工程(3)の酸化工程は、前記縮合工程により形成された亜リン酸基をリン酸基又はチオリン酸基に変換する工程である。本工程は、3価のリンから5価のリンに酸化剤を使用して変換する反応であり、固相担体に担持されているオリゴ核酸誘導体に酸化剤を作用させることにより実施することができる。
 亜リン酸基をリン酸基に変換する場合には、「酸化剤」として、例えば、ヨウ素を使用することができる。該酸化剤は、0.005~2Mの濃度になるように調製して使用することができる。酸化の酸素源としては水を用いることができ、反応を進行させる塩基としてはピリジン、N-メチルイミダゾール(NMI)、N-メチルモルフォリン、トリエチルアミンを用いることができる。また、溶媒としては、反応に関与しなければ特に限定されないが、アセトニトリル、テトラヒドロフラン(THF)又はこれらの任意の割合で混合して使用することもできる。例えば、ヨウ素/水/ピリジン/アセトニトリル、あるいはヨウ素/水/ピリジンあるいはヨウ素/水/ピリジン/NMI、あるいはヨウ素/水/ピリジン/THFを用いることができる。反応温度は、5℃~50℃が好ましい。反応時間は、通常1分~30分が適当である。使用する試薬の量は固相担体に担持されている化合物1molに対して1~100molが好ましく、より好ましくは1~10molである。
 亜リン酸トリエステル基をチオリン酸基に変換する場合には、「酸化剤」として、例えば、硫黄、3H-1,2-ベンゾジチオール-3-オン-1,1-ジオキシド(Beaucage試薬)、3-アミノ-1,2,4-ジチアゾール-5-チオン(ADTT)、5-フェニル-3H-1,2,4-ジチアゾール-3-オン(POS)、[(N,N-ジメチルアミノメチリデン)アミノ]-3H-1,2,4-ジチアゾリン-3-チオン(DDTT)、およびフェニルアセチルジスルフィド(PADS)を使用することができる。該酸化剤は、0.001~2Mの濃度になるように適当な溶媒で希釈して使用することができる。反応に使用する溶媒としては、反応に関与しなければ特に限定されないが、例えば、ジクロロメタン、アセトニトリル、ピリジン又はこれらの任意の混合溶媒が挙げられる。酸化工程は、前記キャッピング操作の後で行ってもよいし、逆に、酸化工程の後でキャッピング操作を行ってもよいし、この順序は限定されない。
 工程(5)において、リン酸保護基を脱保護する工程は、所望の配列を有する核酸の合成が完了した後は、リン酸部分の保護基を脱保護するためにアミン化合物を作用させる。アミン化合物としては、例えば、特許第4705716号公報に記載されるジエチルアミン等が挙げられる。
 伸長の最後に導入したヌクレオシドの5’水酸基の保護基は、後述の固相担体からの切り出し及び保護基の脱保護の後、5’保護基をタグとするカラム精製のために使用してもよく、カラム精製後、5’水酸基の保護基を脱保護してもよい。
 工程(5)における、固相担体上で所望の鎖長に伸長したオリゴヌクレオチドの、固相担体からの切り出しは、通常、切り出し剤として濃アンモニア水を用いて実施される。
 更にアンモニア又はアミン化合物等を用いて、例えば、固相担体からオリゴヌクレオチド鎖を切断して回収する。アミン化合物としては、例えば、メチルアミン、エチルアミン、イソプロピルアミン、エチレンジアミン、ジエチルアミン等が挙げられる。
 工程(6)において、工程(5)において固相担体から切り出された核酸化合物(A6)のリボースの2’水酸基の保護基は、国際公開第2006/022323号)、国際公開第2013/027843号、または国際公開第2019/208571号に記載の方法に従って除くことができて、脱保護したオリゴヌクレオチド(A7)を得ることができる。
 本発明の製造方法を用いて製造可能なオリゴヌクレオチドとしては、オリゴヌクレオチド内に含まれるヌクレオシドが、RNA、DNA、並びに2’-O-MOE、2’-O-Me、2’-Fを有するRNA、およびLNAであるオリゴヌクレオチドが挙げられるが、これらに限定されるものではない。例えば、Xiulong, Shenら著、Nucleic Acids Research, 2018, Vol. 46, No.46, 1584-1600、およびDaniel O'Reillyら著、Nucleic Acids Research, 2019, Vol. 47, No.2, 546-558に記載された、様々なヌクレオシドの例が挙げられる。
 本発明の製造方法において使用可能なオリゴヌクレオチドの典型的な例を、実施例に記載の例に加えて下記の例を示すが、これらに限定されるものではない。
 以下、配列の説明中、Uはウリジン(ST.25形式)を、Cはシチジンを、Aはアデノシンを、またGはグアノシンを示す。また、ST.26形式に準じたTはウリジンを示す。
 国際公開第2019/060442号に記載されている、下記の配列(A)および(B)を有するオリゴヌクレオチドを挙げられる。
配列(A):5’-AUGGAAUmACUCUUGGUUmACdTdT-3’(ST.25形式に準じる)(5’-ATGGAATmACTCTTGGTTmACdTdT-3’(ST.26形式に準じる))(Antisense)(配列番号1) 21mer
配列(B):5’-GUmAACmCmAAGAGUmAUmUmCmCmAUmdTdT-3’(ST.25形式に準じる)(5’-GTmAACmCmAAGAGTmATmTmCmCmATmdTdT-3’(ST.26形式に準じる))(Sense)(配列番号2) 21mer
 配列(A)および(B)中、Umは2'-O-メチルウリジン(ST.25形式)を、Tmは2'-O-メチルウリジン(ST.26形式)を、Cmは2'-O-メチルシチジンを、またdTはチミジンを示す。本明細書中、特に断らない限り、配列における略号はST.25形式およびST.26形式の両方に適用する。
 特表2017-537626号に記載されているオリゴヌクレオチドが挙げられる。典型例として、下記の配列(C)を有するオリゴヌクレオチドを挙げられる。
配列(C):5’-AmsGmsUmsCCUCAUCUCCCUCAAGCGUUUAAGAGCUAUGCUGGUAACAGCAUAGCAAGUUUAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUUmsUmsUmsU-3’(ST.25形式に準じる)(5’-AmsGmsTmsCCTCATCTCCCTCAAGCGTTTAAGAGCTATGCTGGTAACAGCATAGCAAGTTTAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTmsTmsTmsT-3’(ST.26形式に準じる))(配列番号3) 113mer
 配列(C)中、Umは2'-O-メチルウリジン(ST.25形式)を、Tmは2'-O-メチルウリジン(ST.26形式)を、Amは2'-O-メチルアデノシンを、Gmは2'-O-メチルグアノシンを、またsはホスホロチオエート修飾を示す。
 以下、実施例により本発明をさらに詳細に説明するが、本発明の技術範囲はこれらの実施例に限定されるものではない。
測定方法
 まず、以下の試験で用いた各種測定方法を以下に示す。
(測定方法1:オリゴヌクレオチド中のn-1 mer不純物およびFLP割合の測定)
 オリゴヌクレオチド純度は、HPLCを用いて測定した。FLPとは目的物質(Full Length Product)を意味する。
 HPLC測定条件を下記表1に示す。
Figure JPOXMLDOC01-appb-T000028
(測定方法2:オリゴヌクレオチド収量の測定)
 前記粗生成物のOD260を測定した。OD260とは1mL溶液(pH=7.5)における10mm光路長あたりのUV260nmの吸光度を表す。一般的にRNAでは1OD=40μgであることが知られていることから、前記OD260の測定値に基づき、収量を算出した。
オリゴヌクレオチドの固相合成
 配列(I):5’-UmUmUmUmUmUmUmUmUmUmUmUmUmUmUmUmUmUmUmUmUmUmUmUmUm-3’(ST.25形式に準じる)(5’-TmTmTmTmTmTmTmTmTmTmTmTmTmTmTmTmTmTmTmTmTmTmTmTmTm-3’(ST.26形式に準じる))(配列番号4) 25mer
 配列(I)中、Umは2'-O-メチルウリジン(ST.25形式)を、またTmは2'-O-メチルウリジン(ST.26形式)を示す。
 前記配列(I)は以下の構造(16)を示す。
Figure JPOXMLDOC01-appb-C000029
 固相担体として、Controlled Pore Glass(CPG)を使用し、核酸合成機としてAKTA oligopilot plus100(GEヘルスケア社製)を用いて、ホスホロアミダイト固相合成法により、上記配列(I)からなるオリゴヌクレオチドを3’側から5’側に向かって合成した。合成は、約53μmolスケールにて実施した。また、合成には、式(4)で示される2’-OMe-Uアミダイトを任意の溶媒に溶解させた2’-OMe-Uアミダイト溶液を使用し、デブロッキング溶液として高純度ジクロロ酢酸トルエン溶液を使用し、縮合剤として5-ベンジルチオ-1H-テトラゾール溶液を使用し、酸化剤としてヨウ素溶液を使用し、キャッピング溶液としてフェノキシ酢酸無水物溶液とN-メチルイミダゾール溶液を使用した。
 次に、本発明の製法により製造されるオリゴヌクレオチドの具体的な製造例を示す。ここで、下記の実施例において本発明の製法により製造されるオリゴヌクレオチドは、前記配列番号4で示される配列(I)を有するオリゴヌクレオチドである。
 また、以下の実施例および比較例中に記載する2’-OMe-U誘導体CPGは下記式(17)に示される化合物を意味する。ただし、式(17)において図示されたサークルは、CPGを模式的に示すものである。
Figure JPOXMLDOC01-appb-C000030
実施例1
 53.7μmolの2’-OMe-U誘導体CPGと、アセトニトリル:トルエン 9:1を溶媒として75 mMに調整した2’-OMe-Uアミダイト溶液とを用いて、配列(I)に示すオリゴヌクレオチドをAKTA oligopilot plus100(GEヘルスケア社製)により、3’側から5’側に向かって自動合成した。自動合成の手順は、まず、3%ジクロロ酢酸トルエン溶液をCPGに送液し、5’位のトリチル保護基を脱保護し、続いて、2’-OMe-Uアミダイト溶液と縮合剤として5-ベンジルメルカプト-1H-テトラゾールアセトニトリル溶液をCPGに送液し、5’位の水酸基に縮合反応を進行させた。続いて、50mMヨウ素溶液を送液し、亜リン酸基をリン酸基に変換した。続いて、キャッピング溶液として0.1Mフェノキシ酢酸無水物アセトニトリル溶液と10wt%N-メチルイミダゾール/10wt%2,6-ルチジンアセトニトリル溶液を使用し、縮合反応が進行しなかった反応点にキャッピングを施した。これらの工程を合計24回繰り返し、配列(I)に示される配列の核酸オリゴヌクレオチドをCPG担体上に合成した。その後、5’位のトリチル保護基を3%ジクロロ酢酸トルエン溶液にて脱保護した。その後、8.0μmolのオリゴヌクレオチドを担持したCPG担体に対して、4.09gのアンモニア水と1.21gのエタノールを用いて、オリゴヌクレオチドを固相担体から遊離させた。その後、固相担体をろ過により除去し、減圧乾燥によりアンモニア水とエタノールを除去し、所望のオリゴヌクレオチドを乾固体として得た。測定方法2による測定の結果、収量は57.3mg、測定方法1による測定の結果、FLP割合は76.04%、n-1 mer割合は7.17%であった。
実施例2
 実施例1の方法において、55.6μmolの2’-OMe-U誘導体CPGと、2’-OMe-Uアミダイト溶液の溶媒としてアセトニトリル:トルエン 4:1を用いる以外は、同様の方法で配列(I)のオリゴヌクレオチドを得た。収量は58.3mg、FLP割合は78.01%、n-1 mer割合は5.24%であった。
実施例3
 実施例1の方法において、53.5μmolの2’-OMe-U誘導体CPGと、2’-OMe-Uアミダイト溶液の溶媒としてアセトニトリル:トルエン 4:6を用いる以外は、同様の方法で配列(I)のオリゴヌクレオチドを得た。収量は54.3mg、FLP割合は74.24%、n-1 mer割合は4.14%であった。
実施例4
 実施例1の方法において、53.1μmolの2’-OMe-U誘導体CPGと、2’-OMe-Uアミダイト溶液の溶媒としてアセトニトリル:o-キシレン 4:1を用いる以外は、同様の方法で配列(I)のオリゴヌクレオチドを得た。収量は58.6mg、FLP割合は77.84%、n-1 mer割合は5.22%であった。
実施例5
 実施例1の方法において、53.1μmolの2’-OMe-U誘導体CPGと、2’-OMe-Uアミダイト溶液の溶媒としてアセトニトリル:クロロベンゼン 4:1を用いる以外は、同様の方法で配列(I)のオリゴヌクレオチドを得た。収量は57.3mg、FLP割合は77.82%、n-1 mer割合は5.78%であった。
実施例6
 実施例1の方法において、52.4μmolの2’-OMe-U誘導体CPGと、2’-OMe-Uアミダイト溶液の溶媒としてアセトニトリル:o-ジクロロベンゼン 4:1を用いる以外は、同様の方法で配列(I)のオリゴヌクレオチドを得た。収量は56.4mg、FLP割合は76.62%、n-1 mer割合は5.50%であった。
比較例1
 実施例1の方法において、52.8μmolの2’-OMe-U誘導体CPGと、2’-OMe-Uアミダイト溶液の溶媒としてアセトニトリル:ジクロロメタン 4:1を用いる以外は、同様の方法で配列(I)のオリゴヌクレオチドを得た。収量は59.4mg、FLP割合は76.87%、n-1 mer割合は7.68%であった。
 FLP割合と、n-1 mer割合について、実施例1~6、および比較例1の結果を、表2に示す。
Figure JPOXMLDOC01-appb-T000031
 上記表2の結果より、アセトニトリルと芳香族系炭化水素を2’-OMe-Uアミダイト溶液の溶媒として用いた場合には、比較例1の溶液を用いた場合と比較して、n-1 mer不純物を相対的に低減可能であることが分かった。
 配列表の配列番号1~4は、本発明の製造方法に従って製造されるオリゴヌクレオチドの塩基配列を表す。

Claims (14)

  1.  式(2):
    Figure JPOXMLDOC01-appb-C000001
    〔式中、
     Gは水酸基の保護基を示し、
     Bは、保護基で保護されていてもよい核酸塩基を示し、
     Rは、保護された水酸基、水素原子、フッ素原子、メトキシ基、2-メトキシエチル基、またはOQ’基を表し、
     Q’は、リボースの4’位の炭素原子と結合しているアルキレン基を表し、
     Xは、酸素原子または硫黄原子を表し、そして、
     *のついた結合は、核酸の3’末端側への結合を示す。〕
    で示される化合物と、式(4):
    Figure JPOXMLDOC01-appb-C000002
    〔式中、
     Gは水酸基の保護基を示す。〕
    で示される2’-OMe-Uアミダイトとをアクチベーターの存在下で縮合させる工程を含み、
    前記2’-OMe-Uアミダイトが、アセトニトリル及び式(3):
    Figure JPOXMLDOC01-appb-C000003
    〔式中、Y~Yは、それぞれ独立して、同一又は相異なって、水素原子、メチル基、エチル基、又はハロゲン原子を表す。〕
    で示される芳香族系炭化水素を含む混合液に溶解している、
    オリゴヌクレオチドの製造方法。
  2.  式(3)で示される芳香族系炭化水素が、メチル基、エチル基、及びハロゲン原子からなる群より選ばれる1つ又は2つの置換基を有するベンゼンであり、ベンゼンが2つの置換基を有する場合、置換基は同一でも異なっていてもよい、請求項1に記載のオリゴヌクレオチドの製造方法。
  3.  式(3)で示される芳香族系炭化水素が、トルエン、o-キシレン、m-キシレン、p-キシレン、クロロベンゼン、o-ジクロロベンゼン、m-ジクロロベンゼン、p-ジクロロベンゼン、及びそれらの2種以上の混合物からなる群より選ばれる、請求項1に記載のオリゴヌクレオチドの製造方法。
  4.  式(4)で示される2’-OMe-Uアミダイトが溶解する混合液に含まれるアセトニトリルと式(3)で示される芳香族系炭化水素との体積比率が、アセトニトリル:式(3)で示される芳香族系炭化水素で99:1~1:99である、請求項1~3のいずれか一項に記載のオリゴヌクレオチドの製造方法。
  5.  式(4)で示される2’-OMe-Uアミダイトが溶解する混合液に含まれるアセトニトリルと式(3)で示される芳香族系炭化水素の体積比率が、アセトニトリル:式(3)で示される芳香族系炭化水素で90:10~10:90である、請求項1~3のいずれか一項に記載のオリゴヌクレオチドの製造方法。
  6.  式(4)で示される2’-OMe-Uアミダイトが溶解する混合液に含まれるアセトニトリルと式(3)で示される芳香族系炭化水素の体積比率が、アセトニトリル:式(3)で示される芳香族系炭化水素で90:10~40:60である、請求項1~3のいずれか一項に記載のオリゴヌクレオチドの製造方法。
  7.  式(4)で示される2’-OMe-Uアミダイト溶液における2’-OMe-Uアミダイト濃度が、0.01~0.4Mである、請求項1~6のいずれか一項に記載のオリゴヌクレオチドの製造方法。
  8.  式(4)で示される2’-OMe-Uアミダイト溶液における2’-OMe-Uアミダイト濃度が、0.05~0.2Mである、請求項1~6のいずれか一項に記載のオリゴヌクレオチドの製造方法。
  9.  アクチベーターが5-ベンジルチオ-1H-テトラゾールである、請求項1~8のいずれか一項に記載のオリゴヌクレオチドの製造方法。
  10.  式(2)で示される化合物におけるRが保護された水酸基である場合、その水酸基の保護基が、式(10):
    Figure JPOXMLDOC01-appb-C000004
    〔式中、
     qは0~5の整数を表し、
     RおよびRは、それぞれ同一または相異なり、メチル基、エチル基又は水素原子を表し、
     *印のついた結合は2’水酸基の酸素に結合し、
     Ewは電子求引性基を表す。〕
    で示される保護基である、請求項1~9のいずれか一項に記載のオリゴヌクレオチドの製造方法。
  11.  式(4)で示される2’-OMe-Uアミダイトにおいて、Gが4,4’-ジメトキシトリチル基である、請求項1~10のいずれか一項に記載のオリゴヌクレオチドの製造方法。
  12.  固相合成法により行われる、請求項1~11のいずれか一項に記載のオリゴヌクレオチドの製造方法。
  13.  式(4):
    Figure JPOXMLDOC01-appb-C000005
    〔式中、
     Gは水酸基の保護基を示す。〕
    で示される2’-OMe-Uアミダイト、アセトニトリル及び式(3):
    Figure JPOXMLDOC01-appb-C000006
    〔式中、Y~Yは、それぞれ独立して、同一又は相異なって、水素原子、メチル基、エチル基、又はハロゲン原子を表す。〕
    で示される芳香族系炭化水素を含む、溶液。
  14.  請求項13に記載された式(4)で示される2’-OMe-Uアミダイト、アセトニトリル及び式(3)で示される芳香族系炭化水素を含む溶液を、オリゴヌクレオチドの製造に用いる方法。
PCT/JP2023/026733 2022-07-22 2023-07-21 オリゴヌクレオチドの製造方法 WO2024019137A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-117422 2022-07-22
JP2022117422 2022-07-22

Publications (1)

Publication Number Publication Date
WO2024019137A1 true WO2024019137A1 (ja) 2024-01-25

Family

ID=89617881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/026733 WO2024019137A1 (ja) 2022-07-22 2023-07-21 オリゴヌクレオチドの製造方法

Country Status (1)

Country Link
WO (1) WO2024019137A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013027843A1 (ja) * 2011-08-25 2013-02-28 株式会社ボナック 配糖体化合物、チオエーテルの製造方法、エーテル、エーテルの製造方法、配糖体化合物の製造方法、核酸の製造方法
WO2014120861A2 (en) * 2013-01-31 2014-08-07 Isis Pharmaceuticals, Inc. Method of preparing oligomeric compounds using modified coupling protocols
WO2015164693A1 (en) * 2014-04-24 2015-10-29 Isis Pharmaceuticals, Inc. Oligomeric compounds comprising alpha-beta-constrained nucleic acid
WO2020196890A1 (ja) * 2019-03-28 2020-10-01 味の素株式会社 ホスホロチオエート化部位を有するオリゴヌクレオチドの製造方法
WO2021030778A1 (en) * 2019-08-15 2021-02-18 Ionis Pharmaceuticals, Inc. Linkage modified oligomeric compounds and uses thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013027843A1 (ja) * 2011-08-25 2013-02-28 株式会社ボナック 配糖体化合物、チオエーテルの製造方法、エーテル、エーテルの製造方法、配糖体化合物の製造方法、核酸の製造方法
WO2014120861A2 (en) * 2013-01-31 2014-08-07 Isis Pharmaceuticals, Inc. Method of preparing oligomeric compounds using modified coupling protocols
WO2015164693A1 (en) * 2014-04-24 2015-10-29 Isis Pharmaceuticals, Inc. Oligomeric compounds comprising alpha-beta-constrained nucleic acid
WO2020196890A1 (ja) * 2019-03-28 2020-10-01 味の素株式会社 ホスホロチオエート化部位を有するオリゴヌクレオチドの製造方法
WO2021030778A1 (en) * 2019-08-15 2021-02-18 Ionis Pharmaceuticals, Inc. Linkage modified oligomeric compounds and uses thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG CHONG, QIN SHANSHAN, HU BEI, LV JIAZHEN, YANG ZHAOYI, YAN WEIZHU, WANG JUN, HUANG NIU, HUANG ZHEN: "Disruption of nucleobase stacking to restore reactivity", NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS, TAYLOR & FRANCIS, US, vol. 38, no. 8, 3 August 2019 (2019-08-03), US , pages 567 - 577, XP093132094, ISSN: 1525-7770, DOI: 10.1080/15257770.2019.1576882 *

Similar Documents

Publication Publication Date Title
US7982030B2 (en) Synthesis of selenium-derivatized nucleosides, nucleotides, phosphoramidites, triphosphates and nucleic acids
JP7164540B2 (ja) 立体的に規定されたホスホロチオエートオリゴヌクレオチドの調製のための直交保護基
WO2022009959A1 (ja) 核酸オリゴマーの製造方法
JP4574167B2 (ja) オリゴヌクレオチド合成用のアクチベーター
WO1995024413A1 (en) Compositions and methods for use in the synthesis of oligonucleotides
EP1317466B1 (en) Synthons for oligonucleotide synthesis
WO2021193954A1 (ja) 核酸オリゴマーの製造方法
WO2021153047A1 (ja) 核酸オリゴマーの製造方法
CZ19094A3 (en) Modified oligodeoxyribonucleotides, process of their preparation and pharmaceutical preparations in which they are comprised
WO2021153770A1 (en) Process of preparing nucleic acid oligomer
WO2024019137A1 (ja) オリゴヌクレオチドの製造方法
WO2024089953A1 (ja) オリゴヌクレオチドの製造方法
WO2024024873A1 (ja) チオ化溶液
WO2023054350A1 (ja) 精製ジクロロ酢酸の製造方法
KR20230074205A (ko) 핵산 올리고머의 제조 방법
CN117980285A (zh) 纯化二氯乙酸的制造方法
EP1828218B1 (en) Synthesis of phosphitylated compounds using a quaternary heterocyclic activator
KR20220079832A (ko) 핵산 올리고머의 제조 방법
JP2005518451A (ja) ホスフィチル化化合物を製造する方法
CA2245666C (en) Solid phase synthesis of oligonucleotide n3'.fwdarw.p5' phosphoramidates
JP2000505081A (ja) オリゴヌクレオチドn3’→p5’ホスホルアミデートの固相合成

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23843060

Country of ref document: EP

Kind code of ref document: A1