WO2024024873A1 - チオ化溶液 - Google Patents

チオ化溶液 Download PDF

Info

Publication number
WO2024024873A1
WO2024024873A1 PCT/JP2023/027486 JP2023027486W WO2024024873A1 WO 2024024873 A1 WO2024024873 A1 WO 2024024873A1 JP 2023027486 W JP2023027486 W JP 2023027486W WO 2024024873 A1 WO2024024873 A1 WO 2024024873A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
nucleic acid
same
independently
Prior art date
Application number
PCT/JP2023/027486
Other languages
English (en)
French (fr)
Inventor
俊史 加納
雄樹 田中
隼人 河合
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2024024873A1 publication Critical patent/WO2024024873A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B45/00Formation or introduction of functional groups containing sulfur
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/16Esters of thiophosphoric acids or thiophosphorous acids
    • C07F9/165Esters of thiophosphoric acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6561Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing systems of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring or ring system, with or without other non-condensed hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity

Definitions

  • the present invention relates to a highly stable thiolated solution and a method for producing nucleic acid molecules by the amidite method using the thiolated solution.
  • nucleic acid molecules that induce genome editing, such as antisense nucleic acids, aptamers, ribozymes, siRNAs, and gRNAs.
  • Nucleic acid molecules can be synthesized by solid phase synthesis, in which nucleoside phosphoramidites (hereinafter also referred to as "amidites") are used as raw materials.
  • amidites nucleoside phosphoramidites
  • solid-phase synthesis of nucleic acid molecules using amidites it is known that phosphite triester produced by a coupling reaction is converted into a phosphodiester bond or a phosphorothioate bond using an oxidation solution or a thiolation solution.
  • Thiotizing agents used in the thiolating solution include phenylacetyl disulfide (PADS), 3-amino-1,2,4-dithiazole-5-thione (ADTT), [(N,N-dimethylaminomethylidene)amino ]-3H-1,2,4-dithiazoline-3-thione (DDTT), 3H-1,2-benzodithiol-3-one-1,1-dioxide (Beaucage reagent), 5-phenyl-3H-1, 2,4-dithiazol-3-one (POS), [(N,N-dimethylaminomethylidene)amino]-3H-1,2,4-dithiazolin-3-thione (DTD), etc.
  • PADS phenylacetyl disulfide
  • ADTT 3-amino-1,2,4-dithiazole-5-thione
  • DDTT [(N,N-dimethylaminomethylidene)amino
  • Non-patent document 1 thiolating agents are usually used in the reaction in a solution state, but among thiolating agents, formula (3) It could not be said that ADTT, a thiolating agent represented by , has high stability in a solution state (composition state). Therefore, a stable thiolation solution containing ADTT has been desired.
  • the present invention provides a highly stable thiolation solution containing a compound represented by formula (3) (i.e., ADTT) as a thiolation agent, and a method for producing nucleic acid molecules by the amidite method using the thiolation solution.
  • the purpose is to provide.
  • a thiolated solution containing the compound represented by formula (3), an aromatic heterocyclic compound, and an aromatic hydrocarbon compound has high stability. It was discovered that The present invention provides a highly stable thiolated solution containing a compound represented by formula (3), an aromatic heterocyclic compound, and an aromatic hydrocarbon compound. Furthermore, an efficient method for producing nucleic acid molecules using the thiolated solution is provided.
  • the present invention includes, but is not limited to, the following aspects.
  • Formula (1) [In the formula, X 1 to X 5 each independently, the same or different, represent a hydrogen atom or a C1 to C5 alkyl group. ]
  • the aromatic heterocyclic compound is pyridine, 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, 2,6-lutidine, 3,4-lutidine, 3,5-lutidine, 2,3-lutidine,
  • the aromatic hydrocarbon compound is benzene, toluene, o-xylene, m-xylene, p-xylene, chlorobenzene, o-dichlorobenzene, m-dichlorobenzene, or p-dichlorobenzene, [1] to [ 3]. 5.
  • composition according to any one of [1] to [4], wherein the aromatic hydrocarbon compound is toluene, o-xylene, or o-dichlorobenzene.
  • the composition according to any one of [1] to [7] wherein the volume ratio of the aromatic heterocyclic compound and the aromatic hydrocarbon compound is 1:99 to 99:1.
  • concentration of the thiolating agent represented by formula (3) in the composition is 0.001 to 0.3M.
  • G 1 and G 2 are each independently the same or different and represent a hydroxyl protecting group
  • B a represents a nucleobase that may be protected with a protecting group
  • R represents a protected hydroxyl group
  • Q' represents an alkylene group or carbonyl group bonded to the carbon atom at the 4' position of ribose
  • the bond marked with * indicates the bonding position to the nucleotide unit on the 3' end side.
  • composition according to any one of [1] to [12] is brought into contact with a precursor having a phosphite triester bond represented by formula (5): [In the formula, the symbols have the same meanings as above. ]
  • a method for producing a nucleic acid molecule comprising the step of converting it into a nucleic acid compound having a thiophosphoric acid triester bond represented by: 14.
  • the precursor having a phosphorous triester bond has the formula (6):
  • G 1 represents a hydroxyl protecting group
  • G 2 each independently represent a hydroxyl protecting group, and are the same or different
  • B a each independently represents a nucleobase which may be the same or different and is optionally protected with a protecting group
  • R each independently represents a protected hydroxyl group, hydrogen atom, fluorine atom, methoxy group, 2-methoxyethyl group, OQ' group, or NQ' group
  • Q' is each independently the same or different and represents an alkylene group or a carbonyl group bonded to the carbon atom at the 4' position of ribose
  • Y each independently represents an oxygen atom or a sulfur atom, the same or different
  • n represents any integer from 1 to 300,
  • X represents an OZ group
  • W represents an OV group
  • V represents a hydroxyl protecting group
  • Z represents a group having a phosphorous triester bond
  • the precursor having a phosphorous triester bond has the formula (8):
  • G 1 represents a hydroxyl protecting group
  • G 2 each independently represent a hydroxyl protecting group, and are the same or different
  • B a each independently represents a nucleobase which may be the same or different and is optionally protected with a protecting group
  • R each independently, the same or different, represents a protected hydroxyl group, hydrogen atom, fluorine atom, methoxy group, 2-methoxyethyl group, OQ' group, or NQ' group
  • Q' each independently represents an alkylene group or a carbonyl group that is the same or different and is bonded to the carbon atom at the 4' position of ribose
  • Y each independently represents an oxygen atom or a sulfur atom, the same or different
  • n represents any integer from 1 to 300,
  • X represents an OZ group
  • W represents an OV group
  • V represents a hydroxyl protecting group
  • W represents an OZ group
  • a compound represented by the formula (9) and having a thiophosphoric acid triester bond is a compound represented by the formula (9): [In the formula, the symbols have the same meanings as above. ]
  • the present invention provides a highly stable thiolated solution and a method for producing nucleic acid molecules by the amidite method using the thiolated solution.
  • the present invention can be expected to improve the stability of thiolated solutions.
  • the present invention can be expected to improve the purity of the nucleic acid molecules produced.
  • FIG. 1 is a drawing showing a scheme (scheme A) of steps (1) to (6) of the manufacturing method of the present invention.
  • the thiolated solution of the present invention is Formula (1): [In the formula, X 1 to X 5 each independently, the same or different, represent a hydrogen atom or a C1 to C5 alkyl group. ] Aromatic heterocyclic compound represented by formula (2): [In the formula, Y 1 to Y 6 each independently, the same or different, represent a hydrogen atom, a C1 to C5 alkyl group, or a halogen atom. ] An aromatic hydrocarbon compound represented by and formula (3): The present invention relates to a composition containing a thiolating agent represented by:
  • composition can be used as a thiolating agent herein and is also referred to as a "thiolating solution.”
  • examples of the aromatic heterocyclic compound used include pyridine, 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, 2,6-lutidine, 3,4-lutidine, 3 Examples include, but are not limited to, ,5-lutidine, 2,3-lutidine, 2,4-lutidine, and 2,5-lutidine.
  • the aromatic heterocyclic compound is preferably pyridine or 2,6-lutidine, more preferably pyridine.
  • aromatic hydrocarbon compounds examples include benzene, toluene, o-xylene, m-xylene, p-xylene, monochlorobenzene, o-dichlorobenzene, m-dichlorobenzene, and p-dichlorobenzene. , but not limited to these.
  • the aromatic hydrocarbon compound includes toluene, o-xylene, or o-dichlorobenzene, and more preferably toluene.
  • the volume ratio of the aromatic heterocyclic compound and the aromatic hydrocarbon compound contained in the composition of the present invention can be set to any desired ratio, for example, the aromatic heterocyclic compound and the aromatic carbonized Examples include compositions in which the volume ratio of the hydrogen compound is 9:1, 4:1, 2:1, 1:1, 1:2, 1:4, 1:9, preferably 1 to 99:1 to 99. , more preferably 20-80:20-80 (ie, 1:4-4:1), still more preferably 40-80:40-80 (ie, 1:2-2:1).
  • the concentration of the compound represented by formula (3) contained in the composition of the present invention is usually 0.001M to 0.3M, but is not particularly limited as long as it is an effective concentration for synthesizing nucleic acid molecules. , preferably 0.001M to 0.2M, more preferably 0.003M to 0.1M, even more preferably 0.005M to 0.05M.
  • the water content contained in the composition of the present invention is usually 0.001% to 0.2% by weight, preferably 0.001% to 0.1% by weight, more preferably 0.001% by weight. ⁇ 0.05% by weight.
  • a method for analyzing the compound represented by formula (3) contained in the thiolated solution will be explained. It is carried out by analyzing a sample of a thiolated solution by high performance liquid chromatography (HPLC).
  • HPLC high performance liquid chromatography
  • Analysis of the compound represented by formula (3) by HPLC is usually performed using an ODS column.
  • the mobile phase for example, a gradient is used in which the mobile phase A is an aqueous ammonium acetate solution and the mobile phase B is an aqueous ammonium acetate-methanol mixture.
  • the UV detection wavelength is typically 285 nm.
  • a method for producing a nucleic acid molecule by the amidite method includes a step of bringing a thiolation solution containing an aromatic heterocyclic compound and an aromatic hydrocarbon compound into contact with a precursor having a phosphite triester bond.
  • a method for producing a nucleic acid molecule containing the following will be described.
  • a nucleic acid compound represented by formula (4) is exemplified as the precursor having a phosphite triester bond.
  • the nucleic acid compound produced by contacting with the thiolated solution is exemplified by the nucleic acid compound represented by formula (5).
  • the symbols have the same meanings as above.
  • the structure is Specifically, LNA-1 to LNA-7 of the following formula (10) are exemplified.
  • Nucleotide units contained in the nucleic acid molecules used in the present invention include DNA, RNA, 2'-O-Me, 2'-F, 2'-O-MOE (2'-O-methoxyethyl), UNA, Examples include, but are not limited to, morpholino nucleic acids and the above-mentioned LNA.
  • the linking part that connects the solid phase support and the oxygen atom of the hydroxyl group at the 2' position or 3' position of the ribose at the 3' end of the nucleic acid oligomer also referred to as "oligonucleotide"
  • Z the nucleic acid oligomer
  • examples of the group include a structure represented by the following formula (11). More specifically, a structure represented by the following formula (11) may be mentioned.
  • Sp represents a spacer. Examples of the spacer (Sp) include those having the structural formula shown in formula (12) below.
  • Linker may be, for example, a structure shown in the following formula (13), or may be a structure in which the structure of formula (13) does not have a hexamethylene amino group moiety and an aminopropyl group is bonded to Si. .
  • the Linker may have a structure represented by the following formula (14).
  • A may be a hydroxyl group, an alkoxy group, or an alkyl group. Examples of alkoxy groups include methoxy and ethoxy groups. Examples of the alkyl group include methyl group, ethyl group, isopropyl group, and n-propyl group. Si indicates that it is bonded to the oxygen of the hydroxyl group on the surface of the carrier.
  • the solid support include inorganic porous carriers and organic resin carriers. Inorganic porous carriers include, for example, controlled pore glass (CPG) and zeolites. Examples of organic resin carriers include carriers made of polystyrene.
  • the step of bringing the thiolated solution into contact can be performed under an atmospheric atmosphere, but it is preferably performed under an inert gas (eg, nitrogen, argon) atmosphere.
  • an inert gas eg, nitrogen, argon
  • a method for synthesizing a nucleic acid molecule by solid phase synthesis which includes the step of contacting with the thiolated solution, typically includes the following steps. (1) a step of deprotecting the 5'-position hydroxyl group of the hydroxyl-protected nucleoside that is bonded to the solid phase support via a linker; (2) a step of coupling the 5'-position hydroxyl group generated in the step with an amidite to obtain a phosphite triester compound; (3) A step of producing an elongated nucleic acid molecule by oxidizing the phosphorous triester produced in the above step and converting it into a phosphoric triester, or converting it into a thiophosphoric triester by reacting with a thiolation solution.
  • Steps (1) to (3) above that is, the step of deprotecting the 5'-position hydroxyl group of the generated nucleic acid molecule, the coupling step of the 5'-position hydroxyl group with the amidite compound, and the generated phosphorus
  • the method for synthesizing a nucleic acid molecule may include, subsequent to step (2) or (3), a step of capping the hydroxyl group at the 5' position where the coupling reaction with the amidite did not proceed.
  • a capping step may be added between any steps in the series of reaction cycles constituting step (4).
  • step (5) the nucleic acid molecules on the solid support produced in step (4) are reacted in the following steps (5-1) and (5-2) in order.
  • Ru the reaction in step (5-1) may be carried out arbitrarily, and the reaction in step (5-2) may be carried out using the method described in Japanese Patent No. 4705716.
  • step (6) the nucleic acid molecule obtained in step (5), released from the solid phase support and from which the protecting group has been removed, is subjected to the deprotection reaction in step (6) below. It is carried out by subjecting it to.
  • (6) A reaction for deprotecting the hydroxyl group at the 2'-position or the 3'-terminus of the ribose constituting the nucleic acid molecule.
  • the scheme of steps (1) to (6) is shown in Scheme A of FIG.
  • the synthesis of nucleic acid compounds by the amidite method in steps (1) to (5) above generally involves steps other than the thiolation step related to the present invention in step (1) or step (5) in the scheme of FIG.
  • a nucleic acid elongation reaction can be carried out by repeatedly performing each step of the deprotection step and the condensation step according to a known method (for example, the method described in the above-mentioned Japanese Patent No. 5157168 or Japanese Patent No. 5554881). . Each step will be explained below.
  • the thiolation reaction in step (3) or step (4) shown in FIG. 1 is carried out using the above-mentioned thiolation solution.
  • G 1 , G 2 , B a , and R are defined as described above. Furthermore, the definitions of G 3 , G 4 , G 5 , B c and R' are as described below.
  • Y each independently represents an oxygen atom or a sulfur atom, the same or different;
  • X represents an R group or represents an OZ group, where Z is as defined above, W represents an OZ group when X represents an R group, where Z is as defined above, or W represents an OV group when X represents an OZ group, where V represents a hydroxyl protecting group, W may also include a group derived from the W group (e.g., a residue excised from a solid support, a deprotected group, etc.), X may also include a group derived from the X group (e.g., a residue excised from a solid support, a deprotected group, etc.), n represents any integer from 1 to 300, and m represents any integer from 1 to 300.
  • G 1 can be used without particular limitation as long as it can function as a protecting group, and a wide variety of known protecting groups used in amidite compounds can be used.
  • G 1 is preferably the following group. (In the formula, R 1 , R 2 and R 3 are each independently the same or different and represent hydrogen or an alkoxy group.)
  • R 1 , R 2 and R 3 is hydrogen, and the remaining two are the same or different (preferably the same) alkoxy groups, and the alkoxy group is particularly preferably a methoxy group.
  • G 2 can be used without particular limitation as long as it can function as a protecting group, and a wide variety of known protecting groups used in amidite compounds can be used.
  • Examples of G2 include an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, a haloalkyl group, an aryl group, a heteroaryl group, an arylalkyl group, a cycloalkenyl group, a cycloalkylalkyl group, a cyclylalkyl group, and a hydroxyalkyl group.
  • aminoalkyl group aminoalkyl group, alkoxyalkyl group, heterocyclylalkenyl group, heterocyclylalkyl group, heteroarylalkyl group, silyl group, silyloxyalkyl group, mono-, di- or trialkylsilyl group, mono-, di- or trialkylsilyloxyalkyl group etc., which may be substituted with one or more electron-withdrawing groups.
  • G 2 is preferably an alkyl group substituted with an electron-withdrawing group.
  • the electron-withdrawing group include a cyano group, a nitro group, an alkylsulfonyl group, a halogen atom, an arylsulfonyl group, a trihalomethyl group, a trialkylamino group, and preferably a cyano group.
  • G 2 is a 2-cyanoethyl group (a group represented by the following formula).
  • G 3 two G 3 may be bonded to each other to form a cyclic structure.
  • both are preferably isopropyl groups.
  • the alkyl group in the above definitions of R 1 , R 2 , R 3 , G 2 , and G 3 may be linear or branched, preferably having 1 to 12 carbon atoms, and more preferably having 1 to 12 carbon atoms. It is an alkyl group of 1 to 6. Specific examples of alkyl groups include, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, and n-hexyl.
  • the alkyl group moiety constituting the alkoxy group in the definition of the substituent has the same definition as the alkyl group herein.
  • nucleobase means a group having a natural or non-natural nucleobase skeleton.
  • the nucleobases also include modified forms in which the backbone of a natural or non-natural nucleobase is modified.
  • the nucleobase that may be protected with the protecting group represented by B a is not particularly limited.
  • the nucleobase include adenine, cytosine, guanine, uracil, thymine, 5-methylcytosine, pseudouracil, 1-methylpseudouracil, and the like.
  • the nucleobase may be substituted with a substituent. Examples of such substituents include halogen atoms such as fluoro, chloro, bromo, and iodo groups, acyl groups such as acetyl, alkyl groups such as methyl and ethyl, and benzyl groups.
  • arylalkyl group alkoxy group such as methoxy group, alkoxyalkyl group such as methoxyethyl group, cyanoalkyl group such as cyanoethyl group, hydroxy group, hydroxyalkyl group, acyloxymethyl group, amino group, monoalkylamino group , dialkylamino group, carboxy group, cyano group, nitro group, and combinations of two or more types of substituents thereof.
  • the protecting group for the amino group is not particularly limited, and any protecting group used in known nucleic acid chemistry can be used.
  • protecting groups include benzoyl group, 4-methoxybenzoyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, phenylacetyl group, phenoxyacetyl group, 4-tert-butylphenoxyacetyl group, 4- Examples include isopropylphenoxyacetyl group, (dimethylamino)methylene group, and combinations of two or more of these protecting groups.
  • nucleobase represented by B a include the following structures.
  • R 4 represents a hydrogen atom, a methyl group, a phenoxyacetyl group, a 4-tert-butylphenoxyacetyl group, a 4-isopropylphenoxyacetyl group, a phenylacetyl group, an acetyl group, or a benzoyl group
  • R 5 represents a hydrogen atom, an acetyl group, an isobutyryl group, or a benzoyl group
  • R 6 represents a hydrogen atom, a phenoxyacetyl group, a 4-tert-butylphenoxyacetyl group, a 4-isopropylphenoxyacetyl group, a phenylacetyl group, an acetyl group, or an isobutyryl group
  • R 7 represents a 2-cyanoethyl group
  • R 8 represents a hydrogen atom, a methyl group, a benzoyl group, a 4-methoxybenzoyl group
  • amidite can be used in a free state or a salt state.
  • Amidite salts include base addition salts and acid addition salts, but are not particularly limited.
  • base addition salts include salts with inorganic bases such as sodium salts, magnesium salts, potassium salts, calcium salts, and aluminum salts; salts with organic bases such as methylamine, ethylamine, and ethanolamine; lysine, Examples include salts with basic amino acids such as ornithine and arginine; and ammonium salts.
  • acid addition salts include mineral acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, nitric acid, and phosphoric acid; formic acid, acetic acid, propionic acid, oxalic acid, malonic acid, malic acid, Organic acids such as tartaric acid, fumaric acid, succinic acid, lactic acid, maleic acid, citric acid, methanesulfonic acid, trifluoromethanesulfonic acid, ethanesulfonic acid; and acid addition salts with acidic amino acids such as aspartic acid and glutamic acid. It will be done. Amidite compounds also include forms such as salts, hydrates, solvates, and crystal polymorphs.
  • the protecting group may be one that can be used in the amidite method, such as 2'-tert-butyldimethylsilyl (TBDMS) group, 2'-bis(2-acetoxy ethoxy)methyl (ACE) group, 2'-(triisopropylsilyloxy)methyl (TOM) group, 2'-(2-cyanoethoxy)ethyl (CEE) group, 2'-(2-cyanoethoxy)methyl (CEM) ) group (International Publication No. 2006/022323), 2'-para-tolylsulfonylethoxymethyl (TEM) group, 2'-EMM group (International Publication No.
  • RNA ribonucleoside
  • the protecting group represented by formula (15) is exemplified as a preferable protecting group. More preferably, a protecting group represented by formula (16) having a cyano group as the electron-withdrawing group represented by E W is exemplified.
  • q represents an integer from 1 to 5
  • R a and R b are each the same or different and represent a methyl group, an ethyl group, or a hydrogen atom
  • the protecting group represented by formula (16) can be synthesized, for example, as described in International Publication No. 2013/027843 and International Publication No. 2019/208571, and an amidite having such a protecting group is used for producing a nucleic acid molecule. be able to.
  • an amidite of formula (3) shown in Scheme A of FIG. 1 is used.
  • nucleic acid elongation reaction refers to a reaction in which a nucleic acid molecule is elongated by sequentially bonding nucleotides via phosphodiester bonds.
  • the nucleic acid elongation reaction can be carried out according to the general amidite method (phosphoramidite method).
  • the nucleic acid elongation reaction may be performed using an automatic nucleic acid synthesizer that employs the amidite method.
  • the chain length of the nucleic acid oligomer is, for example, 20mer or more, 40mer or more, 50mer or more, 60mer or more, 80mer or more, 100mer or more, 200mer or more, 2-300mer, 2-250mer, 2-200mer, 10-300mer, 10-250mer, It may be 10-200mer, 10-150mer, 15-300mer, 15-250mer, 15-200mer, 15-150mer, 15-110mer.
  • the 5' deprotection step of step (1) is a step of deprotecting the protecting group of the 5' hydroxyl group at the end of the RNA chain supported on the solid phase support.
  • general protecting groups 4,4'-dimethoxytrityl group (DMTr group), 4-monomethoxytrityl group, and 4,4',4''-trimethoxytrityl group are used.
  • deprotecting acids include trifluoroacetic acid, dichloroacetic acid, trifluoromethanesulfonic acid, trichloroacetic acid, methanesulfonic acid, hydrochloric acid, acetic acid, p-toluenesulfonic acid, and the like.
  • a nucleoside amidite represented by the following formula (3) shown in Scheme A of FIG. 1 is bonded to the 5' hydroxyl group at the end of the oligonucleotide chain deprotected in the deprotection step.
  • This is a reaction that causes Note that as the amidite used for nucleic acid extension, an amidite compound represented by formula (3) is used.
  • other amidites that can be used include 2'-OMe, 2'-F, 2'-O-tert-butyldimethylsilyl group, 2'-O-methoxyethyl group, 2'-H, 2'-fluoro -2'-deoxy- ⁇ -D-arabinofuranosyl and the like.
  • the nucleoside amidite used is one in which the 5' hydroxyl group is protected with a protecting group (eg, DMTr group).
  • the condensation step can be carried out using an activator that activates the nucleoside amidite.
  • the activator include 5-benzylthio-1H-tetrazole (BTT), 1H-tetrazole, 4,5-dicyanoimidazole (DCI), 5-ethylthio-1H-tetrazole (ETT), and N-methylbenzimidazolium.
  • N-MeBIT benzimidazolium triflate
  • BIT N-phenylimidazolium triflate
  • IMT imidazolium triflate
  • NBT 5-nitrobenzimidazolium triflate
  • HOBT 1-hydroxybenzotriazole
  • amidite The nucleoside amidite (hereinafter referred to as amidite) represented by formula (3) shown in Scheme A of FIG. 1 is as follows.
  • formula: (In the formula, G 1 , G 2 , G 3 , B a , and R are as described above.)
  • Capping can be performed using a known capping solution such as an acetic anhydride-tetrahydrofuran solution or a phenoxyacetic anhydride/N-methylimidazole solution.
  • the oxidation step of step (3) is a step of converting the phosphorous acid group formed in the condensation step into a phosphoric acid group or a thiophosphoric acid group.
  • This step is a reaction that converts trivalent phosphorus into pentavalent phosphorus using an oxidizing agent, and can be carried out by allowing an oxidizing agent to act on the oligonucleic acid derivative supported on a solid phase support. .
  • iodine can be used as the "oxidizing agent”.
  • the oxidizing agent can be used after being adjusted to a concentration of 0.005 to 2M.
  • Water can be used as the oxygen source for oxidation, and pyridine, N-methylimidazole (NMI), N-methylmorpholine, and triethylamine can be used as the base for advancing the reaction.
  • the solvent is not particularly limited as long as it does not participate in the reaction, but acetonitrile, tetrahydrofuran (THF), or a mixture of these in any ratio can also be used.
  • acetonitrile, tetrahydrofuran (THF), or a mixture of these in any ratio can also be used.
  • iodine/water/pyridine/acetonitrile, or iodine/water/pyridine or iodine/water/pyridine/NMI, or iodine/water/pyridine/THF can be used.
  • the reaction temperature is preferably 5°C to 50°C.
  • the appropriate reaction time is usually 1 minute to 30 minutes.
  • the amount of the reagent used is preferably 1 to 100 mol
  • the composition of the present invention When converting a phosphorous triester group to a thiophosphoric acid group, the composition of the present invention is used as a "thiolating agent" that acts as an oxidizing agent.
  • the concentration of the compound represented by formula (3) contained in the composition of the present invention is usually 0.001M to 0.3M, but is not particularly limited as long as it is an effective concentration for synthesizing nucleic acid molecules. , preferably 0.001M to 0.2M, more preferably 0.003M to 0.1M, even more preferably 0.005M to 0.05M.
  • the volume ratio of the aromatic heterocyclic compound and the aromatic hydrocarbon compound contained in the composition of the present invention can be set to any desired ratio, for example, the aromatic heterocyclic compound and the aromatic carbonized Examples include compositions in which the volume ratio of the hydrogen compound is 9:1, 4:1, 2:1, 1:1, 1:2, 1:4, 1:9, preferably 1 to 99:1 to 99. , more preferably 20-80:20-80 (ie, 1:4-4:1), still more preferably 40-80:40-80 (ie, 1:2-2:1).
  • the water content contained in the composition of the present invention is usually 0.001% to 0.2% by weight, preferably 0.001% to 0.1% by weight, more preferably 0.001% by weight. ⁇ 0.05% by weight.
  • the oxidation step including the thiolation step may be performed after the capping operation, or conversely, the capping operation may be performed after the oxidation step, and the order is not limited.
  • step (5) in the step of deprotecting the phosphate protecting group, after the synthesis of the nucleic acid having the desired sequence is completed, an amine compound is used to deprotect the protecting group of the phosphate moiety.
  • the amine compound include diethylamine described in Japanese Patent No. 4705716.
  • the protecting group for the 5' hydroxyl group of the nucleoside introduced at the end of elongation is used for column purification using the 5' protecting group as a tag after cleavage from the solid phase support and deprotection of the protecting group as described below. Alternatively, after column purification, the protecting group for the 5' hydroxyl group may be deprotected.
  • step (5) the nucleic acid oligomer that has been elongated to the desired chain length on the solid phase carrier is excised from the solid phase carrier, usually using concentrated aqueous ammonia as a cutting agent.
  • the oligonucleotide chain is cleaved from the solid phase support and recovered.
  • the amine compound include methylamine, ethylamine, isopropylamine, ethylenediamine, diethylamine, and the like.
  • step (6) the protecting group for the hydroxyl group at the 2- or 3-position of the ribose of the nucleic acid compound (6) excised from the solid phase support is determined according to International Publication No. 2006/022323, International Publication No. 2013/027843, or International Publication No. 2013/027843. It can be removed according to the method described in Publication No. 2019/208571 to obtain a deprotected nucleic acid oligomer (7).
  • Nucleotides and amidites in which the R group in formula (4) is a substituent other than a hydroxyl group can be prepared using known methods such as those described in Japanese Patent No. 3745226, International Publication No. 2001/053528, or Japanese Patent Application Publication No. 2014-221817. It can also be produced from nucleosides synthesized by public publications and the known methods cited therein, and furthermore, it can be produced using commercially available nucleosides according to the methods described in the Examples below or by using these. It can be manufactured by a method obtained by appropriately modifying the method described above.
  • Nucleic acid molecules that can be produced using the production method of the present invention include RNA, DNA, and nucleosides containing 2'-O-MOE, 2'-O-Me, and 2'-F.
  • Nucleic acid molecules include, but are not limited to, RNA, and LNA.
  • RNA Ribonucleic Acids Research, 2018, Vol. 46, No. 46, 1584-1600, and Daniel O'Reilly et al., Nucleic Acids Research, 2019, Vol. 47, No. 2, 546- Examples of various nucleosides are those described in 558.
  • the nucleic acid molecule produced by the method of the invention is RNA.
  • nucleic acid molecules that can be used in the production method of the present invention are shown below in addition to the examples described in Examples, but are not limited thereto.
  • U represents uridine (ST.25 format)
  • C represents cytidine
  • A represents adenosine
  • G represents guanosine.
  • nucleic acid molecules having the following sequences (A) and (B), which are described in International Publication No. 2019/060442.
  • nucleic acid molecules examples include the nucleic acid molecules described in Daniel O'Reilly et al., Nucleic Acids Research, 2019, Vol. 47, No. 2, 546-558 (see page 553).
  • a typical example is a nucleic acid molecule having the following sequence (C). Sequence (C): 5'-AGAGCCAGCCUUCUUAUUGUUUUAGAGCUAUGCUGU-3' (according to ST.25 format) (5'-AGAGCCAGCCTTCTTATTGTTTTAGAGCTATGCTGT-3' (according to ST.26 format)) (SEQ ID NO: 3) 36mer
  • Nucleic acid molecules having the following sequence (D) described in Nucleic Acids Research, 2019, Vol. 47, No. 2: 547 are included. Sequence (D): 5'-ACAGCAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCU-3' (according to ST.25 format) (5'-ACAGCATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCT-3' (according to ST.26 format)) (SEQ ID NO: 4) 67mer
  • nucleic acid molecules having the following sequence (E), which are described in PCT International Publication No. 2015-523856, page 173. Sequence (E): 5'-GUUUUCCCUUUUCAAAGAAAUCUCCUGGGCACCUAUCUUCUUAGGUGCCCUCCCUUGUUUAAACCUGACCAGUUAACCGGCUGGUUAGGUUUU-3' (according to ST.25 format) (5'-GTTTTCCCTTTTCAAAGAAATCTCCTGGGCACCTATCTTCTTAGGTGCCCTCCCTTGTTTAAACCTGACCAGTTAACCGGCTGGTTAGGTT TT-3' (according to ST.26 format) (SEQ ID NO: 5) 94mer
  • nucleic acid molecules described in PCT Publication No. 2017-537626 examples include nucleic acid molecules having the following sequences (F), (G), (H), and (I).
  • Example 1 12.2 g of pyridine and 10.8 g of toluene were added to 37.5 mg of commercially available ADTT to dissolve ADTT and prepare a thiolated solution. This solution was stored at 50° C. for 6 days, and the residual rate of ADTT was measured using the method described in measurement method 3. As a result, the residual rate was 96%. The results are shown in Table 4. The solutions stored at 50°C for 6 days were used in Examples 15 and 19.
  • Comparative example 1 A thiolated solution was prepared by adding 12.2 g of pyridine and 9.8 g of acetonitrile to 37.5 mg of commercially available ADTT to dissolve ADTT. This solution was stored at 50° C. for 6 days, and the residual rate of ADTT was measured using the method described in measurement method 3. As a result, the residual rate was 28%. The results are shown in Table 4. The solution stored at 50° C. for 6 days was used in Comparative Example 2.
  • Example 2 A thiolated solution was prepared by adding 12.2 g of pyridine and 16.3 g of o-dichlorobenzene to 37.5 mg of commercially available ADTT to dissolve ADTT. This solution was stored at 50° C. for 6 days, and the residual rate of ADTT was measured using the method described in measurement method 3. As a result, the residual rate was 91%. The results are shown in Table 4. The solution stored at 50° C. for 6 days was used in Example 16.
  • Example 3 A thiolated solution was prepared by adding 12.2 g of pyridine and 11.0 g of o-xylene to 37.5 mg of commercially available ADTT to dissolve ADTT. This solution was stored at 50° C. for 6 days, and the residual rate of ADTT was measured using the method described in measurement method 3. As a result, the residual rate was 98%. The results are shown in Table 4. The solution stored at 50° C. for 6 days was used in Example 17.
  • Example 4 A thiolated solution was prepared by adding 11.5 g of 2,6-lutidine and 10.8 g of toluene to 37.5 mg of commercially available ADTT to dissolve ADTT. This solution was stored at 50° C. for 6 days, and the residual rate of ADTT was measured using the method described in measurement method 3. As a result, the residual rate was 93%. The results are shown in Table 4. The solution stored at 50° C. for 6 days was used in Example 18.
  • Example 5 A thiolated solution was prepared by adding 19.6 g of pyridine and 4.3 g of toluene to 37.5 mg of commercially available ADTT to dissolve ADTT. This solution was stored at 50° C. for 6 days, and the residual rate of ADTT was measured using the method described in measurement method 3. As a result, the residual rate was 88%. The results are shown in Table 5.
  • Example 6 16.3 g of pyridine and 7.2 g of toluene were added to 37.5 mg of commercially available ADTT to dissolve ADTT and prepare a thiolated solution. This solution was stored at 50° C. for 6 days, and the residual rate of ADTT was measured using the method described in measurement method 3. As a result, the residual rate was 94%. The results are shown in Table 5.
  • Example 7 12.2 g of pyridine and 10.8 g of toluene were added to 37.5 mg of commercially available ADTT to dissolve ADTT and prepare a thiolated solution. This solution was stored at 50° C. for 6 days, and the residual rate of ADTT was measured using the method described in measurement method 3. As a result, the residual rate was 96%. The results are shown in Table 5.
  • Example 8 8.2 g of pyridine and 14.3 g of toluene were added to 37.5 mg of commercially available ADTT to dissolve ADTT and prepare a thiolated solution. This solution was stored at 50° C. for 6 days, and the residual rate of ADTT was measured using the method described in measurement method 3. As a result, the residual rate was 99%. The results are shown in Table 5.
  • Example 9 A thiolated solution was prepared by adding 4.9 g of pyridine and 17.3 g of toluene to 37.5 mg of commercially available ADTT to dissolve ADTT. This solution was stored at 50° C. for 6 days, and the residual rate of ADTT was measured using the method described in measurement method 3. As a result, the residual rate was 100%. The results are shown in Table 5.
  • Example 10 12.2 g of pyridine and 10.8 g of toluene were added to 375 mg of commercially available ADTT to dissolve ADTT and prepare a thiolated solution. This solution was stored at 50° C. for 6 days, and the residual rate of ADTT was measured using the method described in measurement method 3. As a result, the residual rate was 72%. The results are shown in Table 6.
  • Example 11 12.2 g of pyridine and 10.8 g of toluene were added to 188 mg of commercially available ADTT to dissolve ADTT and prepare a thiolated solution. This solution was stored at 50° C. for 6 days, and the residual rate of ADTT was measured using the method described in measurement method 3. As a result, the residual rate was 75%. The results are shown in Table 6.
  • Example 12 12.2 g of pyridine and 10.8 g of toluene were added to 94.2 mg of commercially available ADTT to dissolve ADTT and prepare a thiolated solution. This solution was stored at 50° C. for 6 days, and the residual rate of ADTT was measured using the method described in measurement method 3. As a result, the residual rate was 90%. The results are shown in Table 6.
  • Example 13 12.2 g of pyridine and 10.8 g of toluene were added to 37.9 mg of commercially available ADTT to dissolve ADTT to prepare a thiolated solution. This solution was stored at 50° C. for 6 days, and the residual rate of ADTT was measured using the method described in measurement method 3. As a result, the residual rate was 98%. The results are shown in Table 6.
  • Example 14 12.2 g of pyridine and 10.8 g of toluene were added to 18.6 mg of commercially available ADTT to dissolve ADTT and prepare a thiolated solution. This solution was stored at 50° C. for 6 days, and the residual rate of ADTT was measured using the method described in measurement method 3. As a result, the residual rate was 100%. The results are shown in Table 6.
  • C is represented by a partial structure separated between wavy lines in the following formula (A4).
  • G is represented by a partial structure separated between wavy lines in the following formula (A5).
  • U is represented by a partial structure separated between wavy lines in the following formula (A6).
  • Ams is represented by a partial structure separated between wavy lines in the following formula (A7).
  • Cms is represented by a partial structure separated by a wavy line in the following formula (A8).
  • Ums is represented by a partial structure separated between wavy lines in the following formula (A9). Note that “Ams” at the 5' end is represented by the upper partial structure separated by a wavy line in the following formula (A10). Further, “U” at the 3' end is represented by a lower partial structure separated by a wavy line in the following formula (A11).
  • PMM is an abbreviation for (((1-cyanopropan-2-yl)oxy)methoxy)methyl group.
  • the 2'-OMe uridine derivative (A12) and uridine derivative (A13) described in the following Examples and Comparative Examples refer to compounds represented by the following structural formula.
  • the circle illustrated in the structural formula below schematically represents CPG.
  • Example 15 Using Controlled Pore Glass (CPG) carrying 1.0 ⁇ mol of 2'-OMe uridine derivative and 2'-OMe uridine amidite, the oligonucleotide consisting of SEQ ID NO: J (sequence (J)) was produced in NTS M-4MX. -E (manufactured by Nihon Techno Service Co., Ltd.) to automatically synthesize from the 3' side to the 5' side. In the automatic synthesis procedure, first, a 3% dichloroacetic acid toluene solution was sent to CPG to deprotect the trityl protecting group at the 5' position.
  • CPG Controlled Pore Glass
  • the protecting group (DMTr group) in 2'-OMe uridine at the 5' end was deprotected with a 3% dichloroacetic acid toluene solution, and the oligonucleotide of SEQ ID NO: 12 was synthesized on a CPG carrier. Thereafter, 1.5 mL of 28% ammonia water and 0.5 mL of ethanol were poured into the CPG carrier supporting 1.0 ⁇ mol of oligonucleotide. The resulting mixture was incubated at 40° C. for 4 hours to release the nucleic acid molecules from the solid support, and then the solvent was removed by concentration. The resulting crude product was dissolved in water, and the purity of the oligonucleotide was measured using the method described in Measuring Method 1 above. As a result, the purity was 58%. The results are shown in Table 7.
  • Example 16 In the experiment of Example 15, nucleic acid molecules were obtained in the same manner except that the thiolation solution prepared in Example 2 was used as the thiolation solution. The purity of the oligonucleotide was measured using the method described in Measurement Method 1 above, and the purity of the crude product was 52%. The results are shown in Table 7.
  • Example 17 In the experiment of Example 15, nucleic acid molecules were obtained in the same manner except that the thiolation solution prepared in Example 3 was used as the thiolation solution. The purity of the oligonucleotide was measured using the method described in Measurement Method 1 above, and the purity of the crude product was 52%. The results are shown in Table 7.
  • Example 18 In the experiment of Example 15, nucleic acid molecules were obtained in the same manner except that the thiolation solution prepared in Example 4 was used as the thiolation solution. The purity of the oligonucleotide was measured using the method described in Measurement Method 1 above, and as a result, the purity of the crude product was 55%. The results are shown in Table 7.
  • Example 19 Using Controlled Pore Glass (CPG) carrying 1.0 ⁇ mol of uridine derivative, 2'-OMe amidite and PMM amidite, the oligonucleotide consisting of SEQ ID NO: 10 (sequence (K)) was synthesized into NTS M-4MX-E. (manufactured by Nippon Techno Service Co., Ltd.) to automatically synthesize from the 3' side to the 5' side. In the automatic synthesis procedure, first, a 3% dichloroacetic acid toluene solution was sent to CPG to deprotect the trityl protecting group at the 5' position.
  • CPG Controlled Pore Glass
  • Examples 1 to 14 using the thiolated solution of the present invention showed a higher ADTT residual rate compared to the thiolated solution of Comparative Example 1.
  • Examples 15 to 19 using the thiolated solution of the present invention nucleic acid molecules were obtained with higher purity than when the thiolated solution of Comparative Example 2 was used. .
  • the present invention provides a highly stable thiolation solution containing a compound represented by formula (3) (i.e., ADTT) as a thiolation agent, and a method for producing nucleic acid molecules by the amidite method using the thiolation solution.
  • a compound represented by formula (3) i.e., ADTT
  • the present invention can be expected to improve the stability of thiolated solutions. Furthermore, the present invention can be expected to improve the purity of the nucleic acid molecules produced.
  • SEQ ID NOS: 1 to 10 in the sequence listing represent the base sequences of oligonucleotides produced according to the production method of the present invention.

Abstract

本発明は、チオ化剤として式(3)で示される化合物を含む、高い安定性を有するチオ化溶液、および該チオ化溶液を用いたアミダイト法による核酸分子の製造方法を提供する。本発明はまた、式(1)〔式中、X~Xは、それぞれ独立して、同一又は相異なって、水素原子等を表す。〕で示される芳香族系ヘテロ環化合物、式(2)(式中、Y~Yは、それぞれ独立して、同一又は相異なって、水素原子、C1~C5アルキル基、またはハロゲン原子を表す。)で示される芳香族系炭化水素化合物、および式(3)で示されるチオ化剤を含む組成物、を提供する。

Description

チオ化溶液
 本特許出願は、日本国特許出願2022-120815号(2022年7月28日出願)に基づくパリ条約上の優先権および利益を主張するものであり、ここに引用することによって、上記出願に記載された内容の全体が本明細書中に組み込まれるものとする。
 本発明は、高い安定性を有するチオ化溶液、および該チオ化溶液を用いたアミダイト法による核酸分子の製造方法に関する。
 近年、核酸分子の医療分野への応用に関心が高まっている。例えば、アンチセンス核酸、アプタマー、リボザイム、siRNA、およびgRNAなどのゲノム編集を誘導する核酸などが挙げられる。
 核酸分子は、固相合成法により合成可能であり、固相合成法ではヌクレオシドのホスホロアミダイト(以下、「アミダイト」とも称する)が原料として用いられる。アミダイトによる核酸分子の固相合成において、カップリング反応によって生成する亜リン酸トリエステルを酸化溶液あるいはチオ化溶液によってホスホジエステル結合あるいはホスホロチオエート結合へと変換することが知られている。チオ化溶液に使用するチオ化剤には、フェニルアセチルジスルフィド(PADS)、3-アミノ-1,2,4-ジチアゾール-5-チオン(ADTT)、[(N,N-ジメチルアミノメチリデン)アミノ]-3H-1,2,4-ジチアゾリン-3-チオン(DDTT)、3H-1,2-ベンゾジチオール-3-オン-1,1-ジオキシド(Beaucage reagent)、5-フェニル-3H-1,2,4-ジチアゾール-3-オン(POS)、[(N,N-ジメチルアミノメチリデン)アミノ]-3H-1,2,4-ジチアゾリン-3-チオン(DTD)等が一般的に用いられる(非特許文献1)。また、前記の通り、チオ化剤は、通常、溶液状態で反応に用いられるが、チオ化剤の中でも、式(3)
Figure JPOXMLDOC01-appb-C000010
で示されるチオ化剤であるADTTは、溶液状態(組成物状態)での安定性が高いとは言えなかった。そのため、ADTTを含む安定なチオ化溶液が望まれていた。
Current protocols in nucleic acid chemistry 46.1 (2011) 4.1
 本発明は、チオ化剤として式(3)で示される化合物(即ち、ADTT)を含む、高い安定性を有するチオ化溶液、および該チオ化溶液を用いたアミダイト法による核酸分子の製造方法を提供することを目的とする。
 本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、式(3)で示される化合物、芳香族系ヘテロ環化合物および芳香族系炭化水素化合物を含有するチオ化溶液が高い安定性を有することを見出した。本発明は、式(3)で示される化合物、芳香族系ヘテロ環化合物および芳香族系炭化水素化合物を含有することを特徴とする、高い安定性を有するチオ化溶液を提供する。また、該チオ化溶液を用いた核酸分子の効率的な製造方法を提供する。
 本発明は、以下の態様を包含するが、これらに限定されるものではない。
1.式(1):
Figure JPOXMLDOC01-appb-C000011
〔式中、X~Xは、それぞれ独立して、同一又は相異なって、水素原子またはC1~C5アルキル基を表す。〕
で示される芳香族系ヘテロ環化合物、式(2):
Figure JPOXMLDOC01-appb-C000012
〔式中、Y~Yは、それぞれ独立して、同一又は相異なって、水素原子、C1~C5アルキル基、またはハロゲン原子を表す。〕
で示される芳香族系炭化水素化合物、および式(3):
Figure JPOXMLDOC01-appb-C000013
で示されるチオ化剤を含む組成物。
2.前記芳香族系ヘテロ環化合物が、ピリジン、2-メチルピリジン、3-メチルピリジン、4-メチルピリジン、2,6-ルチジン、3,4-ルチジン、3,5-ルチジン、2,3-ルチジン、2,4-ルチジン、または2,5-ルチジンである、[1]に記載の組成物。
3.前記芳香族系ヘテロ環化合物が、ピリジン、または2,6-ルチジンである、[1]に記載の組成物。
4.前記芳香族系炭化水素化合物が、ベンゼン、トルエン、o-キシレン、m-キシレン、p-キシレン、クロロベンゼン、o-ジクロロベンゼン、m-ジクロロベンゼン、またはp-ジクロロベンゼンである、[1]~[3]のいずれか一項に記載の組成物。
5.前記芳香族系炭化水素化合物が、トルエン、o-キシレン、またはo-ジクロロベンゼンである、[1]~[4]のいずれか一項に記載の組成物。
6.前記芳香族系ヘテロ環化合物がピリジンである、[1]~[5]のいずれか一項に記載の組成物。
7.前記芳香族系炭化水素化合物がトルエンである、[1]~[6]のいずれか一項に記載の組成物。
8.前記芳香族系ヘテロ環化合物および前記芳香族系炭化水素化合物の体積比が、1:99~99:1である、[1]~[7]のいずれか一項に記載の組成物。
9.前記芳香族系ヘテロ環化合物および前記芳香族系炭化水素化合物の体積比が、1:4~4:1である、[1]~[7]のいずれか一項に記載の組成物。
10.前記芳香族系ヘテロ環化合物および前記芳香族系炭化水素系化合物の体積比が、2:1~1:2である、[1]~[7]のいずれか一項に記載の組成物。
11.組成物における式(3)で示されるチオ化剤の濃度が、0.001~0.3Mである、[1]~[10]のいずれか一項に記載の組成物。
12.[1]~[11]のいずれか一項に記載の組成物を用いて亜リン酸トリエステル結合をチオリン酸トリエステル結合に変換する工程を含む、アミダイト法による核酸分子の製造方法。
13.式(4):
Figure JPOXMLDOC01-appb-C000014
〔式中、
 GおよびGは、それぞれ独立して、同一又は相異なって、水酸基の保護基を表し、
 Bは、保護基で保護されていてもよい核酸塩基を表し、
 Rは、保護された水酸基、水素原子、フッ素原子、メトキシ基、2-メトキシエチル基、OQ’基、またはNQ’基を表し、
 Q’は、リボースの4’位の炭素原子と結合しているアルキレン基またはカルボニル基を表し、そして、
 *のついた結合は、3’末端側のヌクレオチドユニットへの結合位置を示す。〕
で示される亜リン酸トリエステル結合を有する前駆体に、[1]~[12]のいずれか一項に記載の組成物を接触させ、式(5):
Figure JPOXMLDOC01-appb-C000015
〔式中、記号は前記と同じ意味を表す。〕
で示されるチオリン酸トリエステル結合を有する核酸化合物に変換する工程を含む、核酸分子の製造方法。
14.前記亜リン酸トリエステル結合を有する前駆体が、式(6):
Figure JPOXMLDOC01-appb-C000016
〔式中、
 Gは、水酸基の保護基を表し、
 Gは、それぞれ独立して、同一又は相異なって、水酸基の保護基を表し、
 Baは、それぞれ独立して、同一又は相異なって、保護基で保護されていてもよい核酸塩基を表し、
 Rは、それぞれ独立して、同一又は相異なって、保護された水酸基、水素原子、フッ素原子、メトキシ基、2-メトキシエチル基、OQ’基、またはNQ’基を表し、
 Q’は、それぞれ独立して、同一又は相異なって、リボースの4’位の炭素原子と結合しているアルキレン基またはカルボニル基を表し、
 Yは、それぞれ独立して、同一又は相異なって、酸素原子または硫黄原子を表し、
 nは、1以上300以下の何れかの整数を表し、
 XがOZ基を表すとき、WはOV基を表し、Vは水酸基の保護基を表し、あるいは、
 XがR基を表すとき、WはOZ基を表し、そして、
 Zは、固相担体および連結基からなる構造を有する基を表す。
で表される化合物であり、チオリン酸トリエステル結合を有する化合物が、式(7):
Figure JPOXMLDOC01-appb-C000017
〔式中、記号は、前記と同じ意味を表す。〕
で示される核酸化合物である、[13]に記載の核酸分子の製造方法。
15.前記亜リン酸トリエステル結合を有する前駆体が、式(8):
Figure JPOXMLDOC01-appb-C000018
〔式中、
 Gは、水酸基の保護基を表し、
 Gは、それぞれ独立して、同一又は相異なって、水酸基の保護基を表し、
 Baは、それぞれ独立して、同一又は相異なって、保護基で保護されていてもよい核酸塩基を表し、
 Rは、それぞれ独立して、同一又は相異なって、保護された水酸基、水素原子、フッ素原子、メトキシ基、2-メトキシエチル基、OQ’基、またはNQ’基を表し、
 Q’は、それぞれ独立して、同一又は相異なって、リボースの4’位の炭素原子と結合しているアルキレン基またはカルボニル基を表し、
 Yは、それぞれ独立して、同一又は相異なって、酸素原子または硫黄原子を表し、
 nは、1以上300以下の何れかの整数を表し、
 XがOZ基を表すとき、WはOV基を表し、Vは水酸基の保護基を表し、あるいは、
 XがR基を表すとき、WはOZ基を表し、そして、
 Zは、固相担体および連結基からなる構造を有する基を表す。〕
で示される化合物であり、チオリン酸トリエステル結合を有する化合物が、式(9):
Figure JPOXMLDOC01-appb-C000019
〔式中、記号は、前記と同じ意味を表す。〕
で表される核酸化合物である、[13]または[14]に記載の核酸分子の製造方法。
 本発明は、高い安定性を有するチオ化溶液および、該チオ化溶液を用いたアミダイト法による核酸分子の製造方法を提供する。本発明により、チオ化溶液の安定性向上が期待できる。また、本発明により、製造される核酸分子の純度向上が期待できる。
図1は、本発明の製法の工程(1)から(6)のスキーム(スキームA)を示す図面である。
 本発明のチオ化溶液は、
式(1):
Figure JPOXMLDOC01-appb-C000020
〔式中、X~Xは、それぞれ独立して、同一又は相異なって、水素原子またはC1~C5アルキル基を表す。〕
で示される芳香族系ヘテロ環化合物、式(2):
Figure JPOXMLDOC01-appb-C000021
〔式中、Y~Yは、それぞれ独立して、同一又は相異なって、水素原子、C1~C5アルキル基、またはハロゲン原子を表す。〕
で示される芳香族系炭化水素化合物、および式(3):
Figure JPOXMLDOC01-appb-C000022
で示されるチオ化剤を含む組成物、に関する。
 芳香族系ヘテロ環化合物、芳香族系炭化水素化合物および、チオ化剤として使用される式(3)で示される化合物(該化合物は、「3-アミノ-1,2,4-ジチアゾール-5-チオン」と命名される(以下、本明細書中、「ADTT」と略す)」)を含有する組成物を説明する。
 該組成物は、本明細書中、チオ化剤として使用することができ、「チオ化溶液」とも呼称する。
 本発明の組成物において、使用する芳香族系ヘテロ環化合物としては、例えば、ピリジン、2-メチルピリジン、3-メチルピリジン、4-メチルピリジン、2,6-ルチジン、3,4-ルチジン、3,5-ルチジン、2,3-ルチジン、2,4-ルチジン、および2,5-ルチジンが例示されるが、これらに限定されるものではない。芳香族系ヘテロ環化合物は、好ましくは、ピリジンまたは2,6-ルチジンが挙げられ、より好ましくは、ピリジンが挙げられる。
 芳香族系炭化水素化合物としては、例えば、ベンゼン、トルエン、o-キシレン、m-キシレン、p-キシレン、モノクロロベンゼン、o-ジクロロベンゼン、m-ジクロロベンゼン、およびp-ジクロロベンゼンが例示されるが、これらに限定されるものではない。芳香族系炭化水素化合物は、好ましくは、トルエン、o-キシレン、またはo-ジクロロベンゼンが挙げられ、より好ましくは、トルエンが挙げられる。
 本発明の組成物に含有される芳香族系ヘテロ環化合物と芳香族系炭化水素化合物の体積比としては任意の比率とすることができるが、例えば、芳香族系ヘテロ環化合物と芳香族系炭化水素化合物の体積比が9:1、4:1、2:1、1:1、1:2、1:4、1:9である組成物が例示され、好ましくは1~99:1~99、より好ましくは20~80:20~80(つまり、1:4~4:1)、さらに好ましくは40~80:40~80(つまり、1:2~2:1)である。
 本発明の組成物に含有される式(3)で示される化合物の濃度は、通常0.001M~0.3Mであるが、核酸分子の合成に有効な濃度であればよく、特に限定されないが、好ましくは0.001M~0.2M、より好ましくは0.003M~0.1M、さらに好ましくは0.005M~0.05Mである。
 本発明の組成物に含有される水分は、通常0.001重量%~0.2重量%であるが、好ましくは0.001重量%~0.1重量%、より好ましくは0.001重量%~0.05重量%である。
 チオ化溶液に含まれる式(3)で示される化合物の分析方法について説明する。
 チオ化溶液のサンプル所定量を高速液体クロマトグラフィー(HPLC)で分析することにより実施される。
 HPLCによる式(3)で示される化合物の分析は、通常、ODSカラムを用いて行われる。移動相としては、例えば、移動相Aとして、酢酸アンモニウム水溶液を用い、移動相Bとして、酢酸アンモニウム水溶液-メタノール混合液を用いたグラジエントで実施される。UV検出波長は、典型的には、285nmである。
 次いで、アミダイト法による核酸分子の製造方法であって、芳香族系ヘテロ環化合物および芳香族系炭化水素化合物を含有するチオ化溶液を、亜リン酸トリエステル結合を持つ前駆体と接触させる工程を含む核酸分子の製造方法について説明する。
 亜リン酸トリエステル結合を持つ前駆体としては、式(4)で示される核酸化合物が例示される。
Figure JPOXMLDOC01-appb-C000023
〔式中、記号は前記と同じ意味を表す。〕
 前記チオ化溶液を接触させて生成する核酸化合物としては、式(5)で示される核酸化合物が例示される。
Figure JPOXMLDOC01-appb-C000024
〔式中、記号は前記と同じ意味を表す。〕
 式(4)および(5)において、RがOQ’基またはNQ’基を表し、Q’がリボースの4’位の炭素原子と結合しているアルキレン基またはカルボニル基を表すとき、当該構造としては、具体的には下記式(10)のLNA-1~LNA-7が例示される。
 式(10):
Figure JPOXMLDOC01-appb-C000025
(式中、
 Baは、保護されていてもよい核酸塩基を表し、
 R’は、水素原子またはメチル基を表す。)
 本発明で使用される核酸分子に含まれるヌクレオチドユニットとしては、DNA、RNA、2’-O-Me、2’-F、2’-O-MOE(2’-O-メトキシエチル)、UNA、モルフォリノ核酸、および前記LNAが例示されるが、これらに限定されるものではない。
 Zで示される、固相担体、および固相担体と核酸オリゴマー(「オリゴヌクレオチド」とも呼称する)の3’末端のリボースの2’位もしくは3’位の水酸基の酸素原子とをつなぐ連結部からなる基としては、より具体的には、下記式(11)で示される構造が挙げられる。より具体的には、下記式(11)で示される構造が挙げられる。
Figure JPOXMLDOC01-appb-C000026
 式(11)において、Spは、スペーサーを表す。
 スペーサー(Sp)としては、例えば、下記式(12)に示す構造式を有するものが例示される。
Figure JPOXMLDOC01-appb-C000027
 Linkerは、例えば、下記式(13)に示す構造でもよいし、または式(13)の構造においてヘキサメチレンアミノ基部分を有さない構造であって、アミノプロピル基がSiに結合した構造でもよい。または、Linkerは下記式(14)で示す構造でもよい。
Figure JPOXMLDOC01-appb-C000028
(式中、
 Aは、水酸基、アルコキシ基、またはアルキル基のいずれかであってもよい。アルコキシ基としては、例えばメトキシ基およびエトキシ基が挙げられる。アルキル基としては、例えばメチル基、エチル基、イソプロピル基、n-プロピル基が挙げられる。Siは、担体表面の水酸基の酸素と結合していることを示す。)
 Solid supportとしては、無機多孔質担体や有機系樹脂担体などが挙げられる。無機多孔質担体には、例えば、Controlled Pore Glass(CPG)およびゼオライトが挙げられる。有機系樹脂担体には、例えば、ポリスチレンからなる担体が挙げられる。
 チオ化溶液を接触させる工程は、大気雰囲気下で行うことができるが、不活性ガス(例えば、窒素、アルゴン)雰囲気下で行うことが好ましい。
 前記チオ化溶液を接触させる工程を含む、固相合成法による核酸分子の合成方法は、典型的には、以下の工程を含む。
(1)固相担体にリンカーを介して結合している、水酸基が保護されたヌクレオシドの5’位の水酸基を脱保護する工程、
(2)前記工程で生成した5’位の水酸基をアミダイトとカップリング反応させて亜リン酸トリエステル化合物を得る工程、
(3)前記工程で生成した亜リン酸トリエステルを酸化してリン酸トリエステルに変換して伸長した核酸分子を製造する工程、あるいは、チオ化溶液と反応させてチオリン酸トリエステルに変換する工程、但し、チオ化溶液と反応させてチオリン酸トリエステルに変換する工程は少なくとも1回含み、
(4)前記工程(1)~(3)、すなわち、生成した核酸分子の5’位の水酸基の脱保護工程、5’位の水酸基とアミダイト化合物とのカップリング工程、および、生成した亜リン酸トリエステルの酸化工程、から構成される一連の反応のサイクルを、任意の回数繰り返し、固相担体上に核酸分子を合成する工程、
(5)工程(4)で生成した固相担体上の核酸分子を、切り出しおよび脱保護する工程に供し、固相担体から遊離させて、保護基が除かれた核酸分子を製造する工程、および、
(6)核酸分子を構成するリボースの2’位もしくは3’末端の3’位の水酸基の保護基を脱保護する工程。
 ただし、前記核酸分子の合成方法においては、工程(2)または(3)に続けて、アミダイトとのカップリング反応が進行しなかった5’位の水酸基をキャッピングする工程を含んでいてもよく、工程(4)を構成する一連の反応のサイクルの何れかの工程の間にキャッピング工程が付加されていてもよい。
 前記(5)の工程は、より具体的には、工程(4)で生成した固相担体上の核酸分子を、以下の工程(5-1)および(5-2)の反応の順に実施される。ここで工程(5-1)の反応の実施は、任意であってもよいし、工程(5-2)の反応の実施は、特許第4705716号公報に記載の方法を用いてもよい。その結果、固相担体から遊離した核酸分子から保護基が除かれた核酸分子、あるいは、5’末端の水酸基が保護された核酸分子を製造することができる。
  (5-1)核酸分子の5’末端の水酸基の保護基を脱保護する反応、
  (5-2)核酸分子を固相担体から切りだして遊離させる反応、および核酸塩基の保護基を脱保護する反応。
 前記(6)の工程は、より具体的には、工程(5)で得られた、固相担体から遊離され、保護基が除かれた核酸分子を、以下の工程(6)の脱保護反応に供することにより実施される。
  (6)核酸分子を構成するリボースの2’位もしくは3’末端の3’位の水酸基の保護基を脱保護する反応。
 前記工程(1)から(6)のスキームを、図1のスキームAに示す。前記工程(1)から(5)のアミダイト法による核酸化合物の合成は、図1のスキーム中の工程(1)または工程(5)における、本発明に関わるチオ化の工程以外は、一般的に公知の方法(例えば、前記の特許第5157168号公報または特許第5554881号公報に記載の方法)に従って、脱保護工程、縮合工程、の各工程を繰り返し行うことにより、核酸伸長反応を行うことができる。以下、各工程について説明する。図1に示される工程(3)または工程(4)におけるチオ化反応が、前記のチオ化溶液を用いて実施される。スキームAにおける化学式中の置換基のうち、G、G、B、およびRの定義は、前記定義のとおりである。また、G、G、G、B、およびR’の定義は、後述のとおりである。また、スキームAの化学式中、 Yは、それぞれ独立して、同一又は相異なって、酸素原子または硫黄原子を表し、
 Xは、R基を表すか、または、OZ基を表し、ここで、Zは、前記定義のとおりであり、
 Wは、XがR基を表すとき、OZ基を表し、ここで、Zは、前記定義のとおりであり、あるいは、Wは、XがOZ基を表すとき、OV基を表し、ここで、Vは、水酸基の保護基を表し、
 Wは、W基から誘導された基(例えば、固相担体から切り出された残基、脱保護された基など)をも含み得て、
 Xは、X基から誘導された基(例えば、固相担体から切り出された残基、脱保護された基など)をも含み得て、
 nは、1以上300以下の何れかの整数を示し、そして、
 mは、1以上300以下の何れかの整数を示す。
 Gとしては、保護基として機能し得るものであれば特に制限なく使用することができ、アミダイト化合物で使用される公知の保護基を広く使用することができる。
 Gは、好ましくは、以下の基である。
Figure JPOXMLDOC01-appb-C000029
(式中、R、R及びRは、それぞれ独立して、同一又は相異なって水素又はアルコキシ基を表す。)
 R、R及びRは、1つが水素であり、残りの2つが同一または相異なる(同一が好ましい)アルコキシ基であることが好ましく、アルコキシ基としてはメトキシ基が特に好ましい。
 Gとしては、保護基として機能し得るものであれば特に制限なく使用することができ、アミダイト化合物で使用される公知の保護基を広く使用することができる。Gとしては、例えば、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、ハロアルキル基、アリール基、ヘテロアリール基、アリールアルキル基、シクロアルケニル基、シクロアルキルアルキル基、シクリルアルキル基、ヒドロキシアルキル基、アミノアルキル基、アルコキシアルキル基、ヘテロシクリルアルケニル基、ヘテロシクリルアルキル基、ヘテロアリールアルキル基、シリル基、シリルオキシアルキル基、モノ、ジ又はトリアルキルシリル基、モノ、ジ又はトリアルキルシリルオキシアルキル基などが挙げられ、これらは1つ以上の電子求引基で置換されていてもよい。
 Gは、好ましくは、電子求引基で置換されたアルキル基である。当該電子求引基としては、例えば、シアノ基、ニトロ基、アルキルスルホニル基、ハロゲン原子、アリールスルホニル基、トリハロメチル基、トリアルキルアミノ基などが挙げられ、好ましくはシアノ基である。
 Gとしては、特に好ましいのは、2-シアノエチル基(下記式で表される基)である。
Figure JPOXMLDOC01-appb-C000030
 Gは、2つのG3が互いに結合して環状構造を形成していてもよい。Gとしては、両方がイソプロピル基であることが好ましい。
 前記R、R、R、G、Gの定義におけるアルキル基は、直鎖状又は分岐鎖状のいずれでもよく、好ましくは炭素数1~12のアルキル基、より好ましくは炭素数1~6のアルキル基である。具体的なアルキル基の例としては、例えば、メチル、エチル、n-プロビル、イソプロピル、n-ブチル、イソブチル、tert-ブチル、n-ペンチル、イソペンチル、及びn-ヘキシルが挙げられる。前記置換基の定義におけるアルコキシ基を構成するアルキル基部分は、ここでのアルキル基の定義と同じ定義を有する。
 本明細書においては、核酸塩基とは、天然型あるいは非天然型の核酸塩基骨格を有する基を意味する。前記核酸塩基は、天然型あるいは非天然型の核酸塩基骨格が修飾された修飾体も包含する。
 Bで示される保護基で保護されていてもよい核酸塩基は、特に限定されない。当該核酸塩基としては、アデニン、シトシン、グアニン、ウラシル、チミン、5-メチルシトシン、シュードウラシル、1-メチルシュードウラシルなどが挙げられる。また、核酸塩基は、置換基により置換されていてもよい。そのような置換基としては、例えば、フルオロ基やクロロ基やブロモ基やヨード基のようなハロゲン原子、アセチル基のようなアシル基、メチル基やエキル基のようなアルキル基、ベンジル基のようなアリールアルキル基、メトキシ基のようなアルコキシ基、メトキシエチル基のようなアルコキシアルキル基、シアノエチル基のようなシアノアルキル基、ヒドロキシ基、ヒドロキシアルキル基、アシルオキシメチル基、アミノ基、モノアルキルアミノ基、ジアルキルアミノ基、カルボキシ基、シアノ基、およびニトロ基など、並びにそれらの2種類以上の置換基の組み合わせが挙げられる。
 核酸塩基が環外にアミノ基を有する場合、当該アミノ基の保護基としては、特に限定されず、公知の核酸化学で用いられる保護基を使用することができる。そのような保護基としては、例えば、ベンゾイル基、4-メトキシベンゾイル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、フェニルアセチル基、フェノキシアセチル基、4-tert-ブチルフェノキシアセチル基、4-イソプロピルフェノキシアセチル基、および(ジメチルアミノ)メチレン基など、並びにそれらの2種類以上の保護基の組み合わせが挙げられる。
 Bで表される核酸塩基としては、より具体的には、以下の構造が例示される。
Figure JPOXMLDOC01-appb-C000031
(上記式中、
 Rは、水素原子、メチル基、フェノキシアセチル基、4-tert-ブチルフェノキシアセチル基、4-イソプロピルフェノキシアセチル基、フェニルアセチル基、アセチル基又はベンゾイル基を表し、
 Rは、水素原子、アセチル基、イソブチリル基又はベンゾイル基を表し、
 Rは、水素原子、フェノキシアセチル基、4-tert-ブチルフェノキシアセチル基、4-イソプロピルフェノキシアセチル基、フェニルアセチル基、アセチル基又はイソブチリル基を表し、
 Rは、2-シアノエチル基を表し、
 Rは、水素原子、メチル基、ベンゾイル基、4-メトキシベンゾイル基又は4-メチルベンゾイル基を表し、そして、
 Rは、ジメチルアミノメチレン基を表す。)
のいずれかで表される基を表す。
 また、本発明の方法において、アミダイトは、フリーの状態又は塩の状態で使用することができる。アミダイトの塩としては、塩基付加塩または酸付加塩が挙げられるが、特に制限されない。塩基付加塩としては、具体的には、ナトリウム塩、マグネシウム塩、カリウム塩、カルシウム塩、アルミニウム塩等の無機塩基との塩;メチルアミン、エチルアミン、エタノールアミン等の有機塩基との塩;リジン、オルニチン、アルギニン等の塩基性アミノ酸との塩;及びアンモニウム塩が挙げられる。酸付加塩としては、具体的には、塩酸、臭化水素酸、ヨウ化水素酸、硫酸、硝酸、リン酸等の鉱酸;ギ酸、酢酸、プロピオン酸、シュウ酸、マロン酸、リンゴ酸、酒石酸、フマル酸、コハク酸、乳酸、マレイン酸、クエン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、エタンスルホン酸等の有機酸;および、アスパラギン酸、グルタミン酸等の酸性アミノ酸との酸付加塩が挙げられる。アミダイト化合物には、塩、水和物、溶媒和物、結晶多形などの形態も含まれる。
 Rが、保護された水酸基を示すとき、その保護基は、アミダイト法において使用できるものであればよく、例えば、2’-tert-ブチルジメチルシリル(TBDMS)基、2’-ビス(2-アセトキシエトキシ)メチル(ACE)基、2’-(トリイソプロピルシリロキシ)メチル(TOM)基、2’-(2-シアノエトキシ)エチル(CEE)基、2’-(2-シアノエトキシ)メチル(CEM)基(国際公開2006/022323号)、2’-パラ-トルイルスルホニルエトキシメチル(TEM)基、2’-EMM基(国際公開2013/027843号)の他に、国際公開第2019/208571号に記載のものが使用できる。これらのリボヌクレオシド(RNA)の2’保護基のうち、式(15)で示される保護基が好ましい保護基として例示される。さらに好ましくは、Eで示される電子求引基としてシアノ基を有する式(16)で示される保護基が例示される。
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
(式中、
 qは、1~5の整数を表し、
 RおよびRは各々、それぞれ同一又は相異なって、メチル基、エチル基または水素原子を表し、
 **印のついた結合は、保護された水酸基の酸素に結合し、そして、
 Eは、電子求引基を表す。)
 式(16)で示される保護基は、例えば国際公開第2013/027843号および国際公開第2019/208571号に記載に従って合成することができ、かかる保護基を有するアミダイトを核酸分子の製造に使用することができる。
 核酸の伸長反応には、図1のスキームAに記載の式(3)のアミダイトが使用される。
(核酸伸長反応)
 本明細書において、「核酸伸長反応」とは、ホスホジエステル結合を介して、ヌクレオチドを順次結合させることにより、核酸分子を伸長させる反応を意味する。核酸伸長反応は、一般的なアミダイト法(ホスホロアミダイト法)の手順に従い行うことができる。核酸伸長反応は、アミダイト法を採用する核酸自動合成装置等を用いて行ってもよい。
 核酸オリゴマーの鎖長は、例えば、20mer以上、40mer以上、50mer以上、60mer以上、80mer以上、100mer以上、200mer以上、2~300mer、2~250mer、2~200mer、10~300mer、10~250mer、10~200mer、10~150mer、15~300mer、15~250mer、15~200mer、15~150mer、15~110merであってもよい。
 工程(1)の5’脱保護工程は、固相担体上に担持されるRNA鎖末端の5’ヒドロキシル基の保護基を脱保護する工程である。一般的な保護基としては、4,4’-ジメトキシトリチル基(DMTr基)や4-モノメトキシトリチル基、4,4’,4”-トリメトキシトリチル基が用いられる。脱保護は、酸を用いて行うことができる。脱保護用の酸としては、例えば、トリフルオロ酢酸、ジクロロ酢酸、トリフルオロメタンスルホン酸、トリクロロ酢酸、メタンスルホン酸、塩酸、酢酸、p-トルエンスルホン酸等が挙げられる。
 工程(2)の縮合工程は、前記脱保護工程により脱保護したオリゴヌクレオチド鎖末端の5’ヒドロキシル基に対して、図1のスキームAに記載の下記式(3)で示されるヌクレオシドアミダイトを結合させる反応である。なお、核酸伸長に用いるアミダイトとしては、式(3)で示されるアミダイト化合物を用いる。また、他に使用可能なアミダイトとして、2’-OMe、2’-F、2’-O-tert-ブチルジメチルシリル基,2’-O-メトキシエチル基,2’-H,2'-フルオロ-2’-デオキシ-β-D-アラビノフラノシル等が挙げられる。前記ヌクレオシドアミダイトとしては、5’ヒドロキシル基が保護基(例、DMTr基)で保護されたものを用いる。縮合工程は、前記ヌクレオシドアミダイトを活性化する活性化剤を用いて行うことができる。活性化剤としては、例えば、5-ベンジルチオ-1H-テトラゾール(BTT)、1H-テトラゾール、4,5-ジシアノイミダゾール(DCI)、5-エチルチオ-1H-テトラゾール(ETT)、N-メチルベンズイミダゾリウムトリフラート(N-MeBIT)、ベンズイミダゾリウムトリフラート(BIT)、N-フェニルイミダゾリウムトリフラート(N-PhIMT)、イミダゾリウムトリフラート(IMT)、5-ニトロベンズイミダゾリウムトリフラート(NBT)、1-ヒドロキシベンゾトリアゾール(HOBT)又は5-(ビス-3,5-トリフルオロメチルフェニル)-1H-テトラゾール等が挙げられる。
 図1のスキームAに記載の式(3)で示されるヌクレオシドアミダイト(以下、アミダイトと呼称する)とは、以下のとおりである。
 式:
Figure JPOXMLDOC01-appb-C000034
(式中、G、G、G、B、およびRは、前記の通りである。)で示される化合物。
 縮合工程の後は、適宜、未反応の5’ヒドロキシル基をキャッピングしてもよい。キャッピングは、無水酢酸-テトラヒドロフラン溶液、フェノキシ酢酸無水物/N-メチルイミダゾール溶液等の公知のキャッピング溶液を用いて行うことができる。
 工程(3)の酸化工程は、前記縮合工程により形成された亜リン酸基をリン酸基又はチオリン酸基に変換する工程である。本工程は、3価のリンから5価のリンに酸化剤を使用して変換する反応であり、固相担体に担持されているオリゴ核酸誘導体に酸化剤を作用させることにより実施することができる。
 亜リン酸基をリン酸基に変換する場合には、「酸化剤」として、例えば、ヨウ素を使用することができる。該酸化剤は、0.005~2Mの濃度になるように調製して使用することができる。酸化の酸素源としては水を用いることができ、反応を進行させる塩基としてはピリジン、N-メチルイミダゾール(NMI)、N-メチルモルフォリン、トリエチルアミンを用いることができる。また、溶媒としては、反応に関与しなければ特に限定されないが、アセトニトリル、テトラヒドロフラン(THF)又はこれらの任意の割合で混合して使用することもできる。例えば、ヨウ素/水/ピリジン/アセトニトリル、あるいはヨウ素/水/ピリジンあるいはヨウ素/水/ピリジン/NMI、あるいはヨウ素/水/ピリジン/THFを用いることができる。反応温度は、5℃~50℃が好ましい。反応時間は、通常1分~30分が適当である。使用する試薬の量は固相担体に担持されている化合物1molに対して1~100molが好ましく、より好ましくは1~10molである。
 亜リン酸トリエステル基をチオリン酸基に変換する場合には、酸化剤として作用する「チオ化剤」として、本発明の組成物を使用する。本発明の組成物に含有される式(3)で示される化合物の濃度は、通常0.001M~0.3Mであるが、核酸分子の合成に有効な濃度であればよく、特に限定されないが、好ましくは0.001M~0.2M、より好ましくは0.003M~0.1M、さらに好ましくは0.005M~0.05Mである。本発明の組成物に含有される芳香族系ヘテロ環化合物と芳香族系炭化水素化合物の体積比としては任意の比率とすることができるが、例えば、芳香族系ヘテロ環化合物と芳香族系炭化水素化合物の体積比が9:1、4:1、2:1、1:1、1:2、1:4、1:9である組成物が例示され、好ましくは1~99:1~99、より好ましくは20~80:20~80(つまり、1:4~4:1)、さらに好ましくは40~80:40~80(つまり、1:2~2:1)である。本発明の組成物に含有される水分は、通常0.001重量%~0.2重量%であるが、好ましくは0.001重量%~0.1重量%、より好ましくは0.001重量%~0.05重量%である。チオ化工程を含めた酸化工程は、前記キャッピング操作の後で行ってもよいし、逆に、該酸化工程の後でキャッピング操作を行ってよいし、この順序は限定されない。
 工程(5)において、リン酸保護基を脱保護する工程は、所望の配列を有する核酸の合成が完了した後は、リン酸部分の保護基を脱保護するためにアミン化合物を作用させる。アミン化合物としては、例えば、特許第4705716号公報に記載されるジエチルアミン等が挙げられる。
 伸長の最後に導入したヌクレオシドの5’ヒドロキシル基の保護基は、後述の固相担体からの切り出し及び保護基の脱保護の後、5’保護基をタグとするカラム精製のために使用してもよく、カラム精製後、5’ヒドロキシル基の保護基を脱保護してもよい。
 工程(5)における、固相担体上で所望の鎖長に伸長した核酸オリゴマーの、固相担体からの切り出しは、通常、切り出し剤として濃アンモニア水を用いて実施される。
 更にアンモニア又はアミン化合物等を用いて、例えば、固相担体からオリゴヌクレオチド鎖を切断して回収する。アミン化合物としては、例えば、メチルアミン、エチルアミン、イソプロピルアミン、エチレンジアミン、ジエチルアミン等が挙げられる。
 工程(6)において、固相担体から切り出された核酸化合物(6)のリボースの2位もしくは3位の水酸基の保護基は、国際公開2006/022323号、国際公開第2013/027843号、または国際公開第2019/208571号に記載の方法に従って除くことができて、脱保護した核酸オリゴマー(7)を得ることができる。
 式(4)におけるR基が、水酸基以外の置換基であるヌクレオチドおよびアミダイトは、特許第3745226号公報などに記載された公知の方法、国際公開第2001/053528号公報あるいは特開2014-221817号公報およびそれらに引用される公知の方法で合成されるヌクレオシドから製造することもでき、さらには、市販品として入手可能なものを用いて、後述する実施例に記載の方法に則して又はこれらの方法に適宜変更を加えた方法により製造することができる。
 本発明の製造方法を用いて製造可能な核酸分子としては、核酸分子内に含まれるヌクレオシドが、RNA、DNA、並びに2’-O-MOE、2’-O-Me、2’-Fを有するRNA、およびLNAである核酸分子が挙げられるが、これらに限定されるものではない。例えば、Xiulong, Shenら著、Nucleic Acids Research, 2018, Vol. 46, No.46, 1584-1600、およびDaniel O'Reillyら著、Nucleic Acids Research, 2019, Vol. 47, No.2, 546-558に記載された、様々なヌクレオシドの例が挙げられる。好ましくは、本発明の方法で製造される核酸分子はRNAである。
 本発明の製造方法において使用可能な核酸分子の典型的な例を、実施例に記載の例に加えて下記の例を示すが、これらに限定されるものではない。
 以下、配列の説明中、Uはウリジン(ST.25形式)を、Cはシチジンを、Aはアデノシンを、またGはグアノシンを示す。
 国際公開第2019/060442号公報に記載されている、下記の配列(A)および(B)を有する核酸分子が挙げられる。
配列(A):5’-AUGGAAUmACUCUUGGUUmACdTdT-3’(ST.25形式に準じる)(5’-ATGGAATmACTCTTGGTTmACdTdT-3’(ST.26形式に準じる))(Antisense)(配列番号1)21mer
配列(B):5’-GUmAACmCmAAGAGUmAUmUmCmCmAUmdTdT-3’(ST.25形式に準じる)(5’-GTmAACmCmAAGAGTmATmTmCmCmATmdTdT-3’(ST.26形式に準じる))(Sense)(配列番号2)21mer
 配列(A)および(B)中、Umは2'-O-メチルウリジン(ST.25形式)を、Tmは2'-O-メチルウリジン(ST.26形式)を、Cmは2'-O-メチルシチジンを、またdTはチミジンを示す。本明細書中、特に断らない限り、配列における略号はST.25形式およびST.26形式の両方に適用する。
 Daniel O'Reillyら著、Nucleic Acids Research, 2019, Vol. 47, No.2, 546-558に記載されている核酸分子(553頁参照)が挙げられる。典型例として、下記の配列(C)を有する核酸分子が挙げられる。
配列(C):5’-AGAGCCAGCCUUCUUAUUGUUUUAGAGCUAUGCUGU-3’(ST.25形式に準じる)(5’-AGAGCCAGCCTTCTTATTGTTTTAGAGCTATGCTGT-3’(ST.26形式に準じる))(配列番号3)36mer
 Nucleic Acids Research, 2019, Vol. 47, No. 2: 547に記載されている、下記の配列(D)を有する核酸分子が挙げられる。
配列(D):5’-ACAGCAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCU-3’(ST.25形式に準じる)(5’-ACAGCATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCT-3’(ST.26形式に準じる))(配列番号4)67mer
 特表2015-523856号公報、173頁に記載されている、下記の配列(E)を有する核酸分子が挙げられる。
配列(E):5’-GUUUUCCCUUUUCAAAGAAAUCUCCUGGGCACCUAUCUUCUUAGGUGCCCUCCCUUGUUUAAACCUGACCAGUUAACCGGCUGGUUAGGUUUUU-3’(ST.25形式に準じる)(5’-GTTTTCCCTTTTCAAAGAAATCTCCTGGGCACCTATCTTCTTAGGTGCCCTCCCTTGTTTAAACCTGACCAGTTAACCGGCTGGTTAGGTTTT-3’(ST.26形式に準じる))(配列番号5)94mer
 特表2017-537626号公報に記載されている核酸分子が挙げられる。典型例として、下記の配列(F)、(G)、(H)、および(I)を有する核酸分子が挙げられる。
配列(F):5’-AGUCCUCAUCUCCCUCAAGCGUUUUAGAGCUAGUAAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU-3’(ST.25形式に準じる)(5’-AGTCCTCATCTCCCTCAAGCGTTTTAGAGCTAGTAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTT-3’(ST.26形式に準じる))(配列番号6)100mer
配列(G):5’-GCAGAUGUAGUGUUUCCACAGUUUAAGAGCUAUGCUGGAAACAGCAUAGCAAGUUUAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUUUUU-3’(ST.25形式に準じる)(5’-GCAGATGTAGTGTTTCCACAGTTTAAGAGCTATGCTGGAAACAGCATAGCAAGTTTAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTT-3’(ST.26形式に準じる))(配列番号7)113mer
配列(H):5’-dAdGdTdCdCdTdCdAdTdCdTdCdCdCdTdCdAdAdGdCGUUUAAGAGCUAUGCUGGUAACAGCAUAGCAAGUUUAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUUUUU-3’(ST.25形式に準じる)(5’-dAdGdTdCdCdTdCdAdTdCdTdCdCdCdTdCdAdAdGdCGTTTAAGAGCTATGCTGGTAACAGCATAGCAAGTTTAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTT-3’(ST.26形式に準じる))(配列番号8)113mer
 配列(H)中、dTはチミジンを、dCは2'-デオキシシチジンを、dAは2'-デオキシアデノシンを、またdGは2'-デオキシグアノシンを示す。
配列(I):5’-AmsGmsUmsCCUCAUCUCCCUCAAGCGUUUAAGAGCUAUGCUGGUAACAGCAUAGCAAGUUUAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUUmsUmsUmsU-3’(ST.25形式に準じる)(5’-AmsGmsTmsCCTCATCTCCCTCAAGCGTTTAAGAGCTATGCTGGTAACAGCATAGCAAGTTTAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTmsTmsTmsT-3’(ST.26形式に準じる))(配列番号9)113mer
 配列(I)中、Umは2'-O-メチルウリジン(ST.25形式)を、Tmは2'-O-メチルウリジン(ST.26形式)を、Amは2'-O-メチルアデノシンを、Gmは2'-O-メチルグアノシンを、またsはホスホロチオエート修飾を示す。
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの例に限定されるものではない。
測定方法
 まず、以下の試験で用いた各種測定方法を以下に示す。
 オリゴヌクレオチド純度は、HPLCを用いて測定した。
 HPLC測定条件を下記表1および2に示す。
(測定方法1:オリゴヌクレオチド純度の測定)
Figure JPOXMLDOC01-appb-T000035
(測定方法2:オリゴヌクレオチド純度の測定)
Figure JPOXMLDOC01-appb-T000036
(測定方法3:ADTT残存率の測定)
 チオ化溶液中のADTTは、HPLCを用いて測定した。
 HPLC測定条件を下記表3に示す。
Figure JPOXMLDOC01-appb-T000037
チオ化溶液の調製
 以下の実施例15から19で用いたチオ化溶液は、それぞれ実施例1から4に記載のとおりに調製した。調製したチオ化溶液を50℃で6日保管したときのADTT残存率は表5に示すとおりである。ADTTの残存率は、調製直後のチオ化溶液に含まれるADTTのピーク面積値を基準として計算した。
実施例1
 市販のADTT37.5mgにピリジン12.2gおよびトルエン10.8gを加えて、ADTTを溶解し、チオ化溶液を調製した。この溶液を50℃で6日間保管し、前記測定方法3に記載の方法を用いて、ADTT残存率を測定した結果、残存率は96%であった。結果を表4に示す。50℃で6日間保管後の溶液は実施例15および実施例19で使用した。
比較例1
 市販のADTT37.5mgにピリジン12.2gおよびアセトニトリル9.8gを加えて、ADTTを溶解し、チオ化溶液を調製した。この溶液を50℃で6日間保管し、前記測定方法3に記載の方法を用いて、ADTT残存率を測定した結果、残存率は28%であった。結果を表4に示す。50℃で6日間保管後の溶液は比較例2で使用した。
実施例2
 市販のADTT37.5mgにピリジン12.2gおよびo-ジクロロベンゼン16.3gを加え、ADTTを溶解して、チオ化溶液を調製した。この溶液を50℃で6日間保管し、前記測定方法3に記載の方法を用いて、ADTT残存率を測定した結果、残存率は91%であった。結果を表4に示す。50℃で6日間保管後の溶液は実施例16で使用した。
実施例3
 市販のADTT37.5mgにピリジン12.2gおよびo-キシレン11.0gを加え、ADTTを溶解して、チオ化溶液を調製した。この溶液を50℃で6日間保管し、前記測定方法3に記載の方法を用いて、ADTT残存率を測定した結果、残存率は98%であった。結果を表4に示す。50℃で6日間保管後の溶液は実施例17で使用した。
実施例4
 市販のADTT37.5mgに2,6-ルチジン11.5gおよびトルエン10.8gを加え、ADTTを溶解して、チオ化溶液を調製した。この溶液を50℃で6日間保管し、前記測定方法3に記載の方法を用いて、ADTT残存率を測定した結果、残存率は93%であった。結果を表4に示す。50℃で6日間保管後の溶液は実施例18で使用した。
実施例5
 市販のADTT37.5mgにピリジン19.6gおよびトルエン4.3gを加え、ADTTを溶解して、チオ化溶液を調製した。この溶液を50℃で6日間保管し、前記測定方法3に記載の方法を用いて、ADTT残存率を測定した結果、残存率は88%であった。結果を表5に示す。
実施例6
 市販のADTT37.5mgにピリジン16.3gおよびトルエン7.2gを加えて、ADTTを溶解し、チオ化溶液を調製した。この溶液を50℃で6日間保管し、前記測定方法3に記載の方法を用いて、ADTT残存率を測定した結果、残存率は94%であった。結果を表5に示す。
実施例7
 市販のADTT37.5mgにピリジン12.2gおよびトルエン10.8gを加えて、ADTTを溶解し、チオ化溶液を調製した。この溶液を50℃で6日間保管し、前記測定方法3に記載の方法を用いて、ADTT残存率を測定した結果、残存率は96%であった。結果を表5に示す。
実施例8
 市販のADTT37.5mgにピリジン8.2gおよびトルエン14.3gを加えて、ADTTを溶解し、チオ化溶液を調製した。この溶液を50℃で6日間保管し、前記測定方法3に記載の方法を用いて、ADTT残存率を測定した結果、残存率は99%であった。結果を表5に示す。
実施例9
 市販のADTT37.5mgにピリジン4.9gおよびトルエン17.3gを加えて、ADTTを溶解し、チオ化溶液を調製した。この溶液を50℃で6日間保管し、前記測定方法3に記載の方法を用いて、ADTT残存率を測定した結果、残存率は100%であった。結果を表5に示す。
実施例10
 市販のADTT375mgにピリジン12.2gおよびトルエン10.8gを加えて、ADTTを溶解し、チオ化溶液を調製した。この溶液を50℃で6日間保管し、前記測定方法3に記載の方法を用いて、ADTT残存率を測定した結果、残存率は72%であった。結果を表6に示す。
実施例11
 市販のADTT188mgにピリジン12.2gおよびトルエン10.8gを加えて、ADTTを溶解し、チオ化溶液を調製した。この溶液を50℃で6日間保管し、前記測定方法3に記載の方法を用いて、ADTT残存率を測定した結果、残存率は75%であった。結果を表6に示す。
実施例12
 市販のADTT94.2mgにピリジン12.2gおよびトルエン10.8gを加えて、ADTTを溶解し、チオ化溶液を調製した。この溶液を50℃で6日間保管し、前記測定方法3に記載の方法を用いて、ADTT残存率を測定した結果、残存率は90%であった。結果を表6に示す。
実施例13
 市販のADTT37.9mgにピリジン12.2gおよびトルエン10.8gを加えて、ADTTを溶解し、チオ化溶液を調製した。この溶液を50℃で6日間保管し、前記測定方法3に記載の方法を用いて、ADTT残存率を測定した結果、残存率は98%であった。結果を表6に示す。
実施例14
 市販のADTT18.6mgにピリジン12.2gおよびトルエン10.8gを加えて、ADTTを溶解し、チオ化溶液を調製した。この溶液を50℃で6日間保管し、前記測定方法3に記載の方法を用いて、ADTT残存率を測定した結果、残存率は100%であった。結果を表6に示す。
<オリゴヌクレオチド2merの固相合成>
 配列(J):
5’-UmsUm-3’(ST.25形式)(5’-TmsTm-3’(ST.26形式))(配列番号J)
 前記配列(J)中、5’末端の“Ums”は、以下の式(A1)において波線で区切られる上部の部分構造で示される。3’末端の“Um”は、以下の式(A2)において波線で区切られる下部の部分構造で示される。
<オリゴヌクレオチド100merの固相合成>
配列(K):
5’-AmsCmsUmsCAAUUUGUAAAAAAGUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUUmsUmsUmsU-3’(ST.25形式に準じる)(5’-AmsCmsTmsCAATTTGTAAAAAAGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTmsTmsTmsT-3’(ST.26形式に準じる))(配列番号10)100mer
 前記配列(K)中、”A”は、以下の式(A3)において波線の間で区切られる部分構造で示される。”C”は、以下の式(A4)において波線の間で区切られる部分構造で示される。”G”は、以下の式(A5)において波線の間で区切られる部分構造で示される。”U”は、以下の式(A6)において波線の間で区切られる部分構造で示される。”Ams”は、以下の式(A7)において波線の間で区切られる部分構造で示される。”Cms”は、以下の式(A8)において波線で区切られる部分構造で示される。”Ums”は、以下の式(A9)において波線の間で区切られる部分構造で示される。なお、5‘末端の”Ams”は、以下の式(A10)において波線で区切られる上部の部分構造で示される。また、3‘末端の”U”は、以下の式(A11)において波線で区切られる下部の部分構造で示される。
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
 合成には、2’-OMeアミダイトおよび、国際公開第2019/208571号に記載のPMMアミダイトを使用した。ここで、PMMは、(((1-シアノプロパン-2-イル)オキシ)メトキシ)メチル基の略号である。
 以下の実施例および比較例中に記載する2’-OMeウリジン誘導体(A12)およびウリジン誘導体(A13)とは、下記の構造式で示される化合物を意味する。下記構造式において図示されたサークルは、CPGを模式的に示すものである。
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
(実施例15)
 1.0μmolの2’-OMeウリジン誘導体を担持したControlled Pore Glass(CPG)と、2’-OMeウリジンアミダイトを用いて、配列番号J(配列(J))からなるオリゴヌクレオチドを、NTS M-4MX-E(日本テクノサービス社製)により、3’側から5’側に向かって自動合成した。自動合成の手順は、まず、3%ジクロロ酢酸トルエン溶液をCPGに送液し、5’位のトリチル保護基を脱保護した。続いて、2’-OMeウリジンアミダイトと、縮合剤としての5-ベンジルメルカプト-1H-テトラゾールをCPGに送液し、5’位の水酸基にカップリング反応を進行させた。続いて、実施例1で調製したチオ化溶液100μLを添加し、16分静置して亜リン酸トリエステルをチオリン酸トリエステルに変換した。続いて、5’末端の2’-OMeウリジンにおける保護基(DMTr基)を3%ジクロロ酢酸トルエン溶液で脱保護し、配列番号12のオリゴヌクレオチドをCPG担体上に合成した。その後、1.0μmol分のオリゴヌクレオチドを担持したCPG担体に対して、28%アンモニア水1.5mLとエタノール0.5mLを流入した。得られた混合物を40℃で4時間保温することで核酸分子を固相担体から遊離させた後、濃縮により溶媒を除去した。得られた粗生成物を水に溶解し、前記測定方法1に記載の方法を用いて、オリゴヌクレオチドの純度を測定した結果、純度は58%であった。結果を表7に示す。
(比較例2)
 実施例15の実験において、チオ化溶液として比較例1で調製したチオ化溶液を用いる以外は、同様の方法で核酸分子を得た。前記測定方法1に記載の方法を用いて、オリゴヌクレオチドの純度を測定した結果、粗生成物の純度は23%であった。結果を表7に示す。
(実施例16)
 実施例15の実験において、チオ化溶液として実施例2で調製したチオ化溶液を用いる以外は、同様の方法で核酸分子を得た。前記測定方法1に記載の方法を用いて、オリゴヌクレオチドの純度を測定した結果、粗生成物の純度は52%であった。結果を表7に示す。
(実施例17)
 実施例15の実験において、チオ化溶液として実施例3で調製したチオ化溶液を用いる以外は、同様の方法で核酸分子を得た。前記測定方法1に記載の方法を用いて、オリゴヌクレオチドの純度を測定した結果、粗生成物の純度は52%であった。結果を表7に示す。
(実施例18)
 実施例15の実験において、チオ化溶液として実施例4で調製したチオ化溶液を用いる以外は、同様の方法で核酸分子を得た。前記測定方法1に記載の方法を用いて、オリゴヌクレオチドの純度を測定した結果、粗生成物の純度は55%であった。結果を表7に示す。
(実施例19)
 1.0μmolのウリジン誘導体を担持したControlled Pore Glass(CPG)と、2’-OMeアミダイトおよびPMMアミダイトを用いて、配列番号10(配列(K))からなるオリゴヌクレオチドを、NTS M-4MX-E(日本テクノサービス社製)により、3’側から5’側に向かって自動合成した。自動合成の手順は、まず、3%ジクロロ酢酸トルエン溶液をCPGに送液し、5’位のトリチル保護基を脱保護した。続いて、2’-OMeアミダイトあるいはPMMアミダイトと、縮合剤としての5-ベンジルメルカプト-1H-テトラゾールをCPGに送液し、5’位の水酸基にカップリング反応を進行させた。続いて、実施例1で調製したチオ化溶液を送液して亜リン酸トリエステルをチオリン酸トリエステルに変換するか、あるいは酸化溶液を送液して亜リン酸トリエステルをリン酸トリエステルに変換した。続いて、キャッピング溶液として、0.1Mフェノキシ酢酸無水物アセトニトリル溶液と10%N-メチルイミダゾール/10%2,6-ルチジンアセトニトリル溶液を使用し、カップリングが進行しなかった反応点にキャッピングを施した。更にこれらの工程を合計99回繰り返し、配列番号13のオリゴヌクレオチドをCPG担体上に合成した。その後、5’位のトリチル保護基を3%ジクロロ酢酸トルエン溶液にて脱保護した。その後、1.0μmol分のオリゴヌクレオチドを担持したCPG担体に対して、28%アンモニア水1.5mLとエタノール0.5mLを流入し、混合物を40℃で4時間保温することで核酸分子を固相担体から遊離させた後、濃縮により溶媒を除去した。次いで遊離オリゴヌクレオチドを1.0mLのジメチルスルホキシドに溶解後、ニトロメタン13.5μLと撹拌子を入れた後、モレキュラーシーブ4Aにて脱水処理を施した1Mのフッ化テトラ-n-ブチルアンモニウム(TBAF)のジメチルスルホキシド溶液2.0mLをスターラーによる撹拌下30℃で流入した。得られた混合物を5時間保温することで、2’水酸基の保護基を脱保護した。オリゴヌクレオチドを沈殿操作により得た。得られた粗生成物を水に溶解し、前記測定方法3に記載の方法を用いて、オリゴヌクレオチドの純度を測定した結果、粗生成物の純度は40%であった。結果を表8に示す。
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000055
 上記表4~6の結果より、本発明のチオ化溶液を使用した実施例1~14では、比較例1のチオ化溶液と比較して、高いADTT残存率を示した。
 上記表7~8の結果より、本発明のチオ化溶液を使用した実施例15~19では、比較例2のチオ化溶液を使用した場合と比較して、高純度で核酸分子が得られた。
 本発明は、チオ化剤として式(3)で示される化合物(即ち、ADTT)を含む、高い安定性を有するチオ化溶液および、該チオ化溶液を用いたアミダイト法による核酸分子の製造方法を提供する。本発明により、チオ化溶液の安定性向上が期待できる。また、本発明により、製造される核酸分子の純度向上が期待できる。
 配列表の配列番号1~10は、本発明の製造方法に従って製造されるオリゴヌクレオチドの塩基配列を表す。

Claims (15)

  1.  式(1):
    Figure JPOXMLDOC01-appb-C000001
    〔式中、X~Xは、それぞれ独立して、同一又は相異なって、水素原子またはC1~C5アルキル基を表す。〕
    で示される芳香族系ヘテロ環化合物、式(2):
    Figure JPOXMLDOC01-appb-C000002
    〔式中、Y~Yは、それぞれ独立して、同一又は相異なって、水素原子、C1~C5アルキル基、またはハロゲン原子を表す。〕
    で示される芳香族系炭化水素化合物、および式(3):
    Figure JPOXMLDOC01-appb-C000003
    で示されるチオ化剤を含む組成物。
  2.  前記芳香族系ヘテロ環化合物が、ピリジン、2-メチルピリジン、3-メチルピリジン、4-メチルピリジン、2,6-ルチジン、3,4-ルチジン、3,5-ルチジン、2,3-ルチジン、2,4-ルチジン、または2,5-ルチジンである、請求項1に記載の組成物。
  3.  前記芳香族系ヘテロ環化合物が、ピリジン、または2,6-ルチジンである、請求項1に記載の組成物。
  4.  前記芳香族系炭化水素化合物が、ベンゼン、トルエン、o-キシレン、m-キシレン、p-キシレン、クロロベンゼン、o-ジクロロベンゼン、m-ジクロロベンゼン、またはp-ジクロロベンゼンである、請求項1~3のいずれか一項に記載の組成物。
  5.  前記芳香族系炭化水素化合物が、トルエン、o-キシレン、またはo-ジクロロベンゼンである、請求項1~4のいずれか一項に記載の組成物。
  6.  前記芳香族系ヘテロ環化合物がピリジンである、請求項1~5のいずれか一項に記載の組成物。
  7.  前記芳香族系炭化水素化合物がトルエンである、請求項1~6のいずれか一項に記載の組成物。
  8.  前記芳香族系ヘテロ環化合物および前記芳香族系炭化水素化合物の体積比が、1:99~99:1である、請求項1~7のいずれか一項に記載の組成物。
  9.  前記芳香族系ヘテロ環化合物および前記芳香族炭化水素系化合物の体積比が、1:4~4:1である、請求項1~7のいずれか一項に記載の組成物。
  10.  前記芳香族系ヘテロ環化合物および前記芳香族炭化水素系化合物の体積比が、2:1~1:2である、請求項1~7のいずれか一項に記載の組成物。
  11.  組成物における式(3)で示されるチオ化剤の濃度が、0.001~0.3Mである、請求項1~10のいずれか一項に記載の組成物。
  12.  請求項1~11のいずれか一項に記載の組成物を用いて亜リン酸トリエステル結合をチオリン酸トリエステル結合に変換する工程を含む、アミダイト法による核酸分子の製造方法。
  13.  式(4):
    Figure JPOXMLDOC01-appb-C000004
    〔式中、
     GおよびGは、それぞれ独立して、同一又は相異なって、水酸基の保護基を表し、
     Bは、保護基で保護されていてもよい核酸塩基を表し、
     Rは、保護された水酸基、水素原子、フッ素原子、メトキシ基、2-メトキシエチル基、OQ’基、またはNQ’基を表し、
     Q’は、リボースの4’位の炭素原子と結合しているアルキレン基またはカルボニル基を表し、そして、
     *のついた結合は、3’末端側のヌクレオチドユニットへの結合位置を示す。〕
    で示される亜リン酸トリエステル結合を有する前駆体に、請求項1~12のいずれか一項に記載の組成物を接触させ、式(5):
    Figure JPOXMLDOC01-appb-C000005
    〔式中、記号は前記と同じ意味を表す。〕
    で示されるチオリン酸トリエステル結合を有する核酸化合物に変換する工程を含む、核酸分子の製造方法。
  14.  前記亜リン酸トリエステル結合を有する前駆体が、式(6):
    Figure JPOXMLDOC01-appb-C000006
    〔式中、
     Gは、水酸基の保護基を表し、
     Gは、それぞれ独立して、同一又は相異なって、水酸基の保護基を表し、
     Baは、それぞれ独立して、同一又は相異なって、保護基で保護されていてもよい核酸塩基を表し、
     Rは、それぞれ独立して、同一又は相異なって、保護された水酸基、水素原子、フッ素原子、メトキシ基、2-メトキシエチル基、OQ’基、またはNQ’基を表し、
     Q’は、それぞれ独立して、同一又は相異なって、リボースの4’位の炭素原子と結合しているアルキレン基またはカルボニル基を表し、
     Yは、それぞれ独立して、同一又は相異なって、酸素原子または硫黄原子を表し、
     nは、1以上300以下の何れかの整数を表し、
     XがOZ基を表すとき、WはOV基を表し、Vは水酸基の保護基を表し、あるいは、
     XがR基を表すとき、WはOZ基を表し、そして、
     Zは、固相担体および連結基からなる構造を有する基を表す。〕
    で表される化合物であり、チオリン酸トリエステル結合を有する化合物が、式(7):
    Figure JPOXMLDOC01-appb-C000007
    〔式中、記号は、前記と同じ意味を表す。〕
    で示される核酸化合物である、請求項13に記載の核酸分子の製造方法。
  15.  前記亜リン酸トリエステル結合を有する前駆体が、式(8):
    Figure JPOXMLDOC01-appb-C000008
    〔式中、
     Gは、水酸基の保護基を表し、
     Gは、それぞれ独立して、同一又は相異なって、水酸基の保護基を表し、
     Baは、それぞれ独立して、同一又は相異なって、保護基で保護されていてもよい核酸塩基を表し、
     Rは、それぞれ独立して、同一又は相異なって、保護された水酸基、水素原子、フッ素原子、メトキシ基、2-メトキシエチル基、OQ’基、またはNQ’基を表し、
     Q’は、それぞれ独立して、同一又は相異なって、リボースの4’位の炭素原子と結合しているアルキレン基またはカルボニル基を表し、
     Yは、それぞれ独立して、同一又は相異なって、酸素原子または硫黄原子を表し、
     nは、1以上300以下の何れかの整数を表し、
     XがOZ基を表すとき、WはOV基を表し、Vは水酸基の保護基を表し、あるいは、
     XがR基を表すとき、WはOZ基を表し、そして、
     Zは、固相担体および連結基からなる構造を有する基を表す。〕
    で示される化合物であり、チオリン酸トリエステル結合を有する化合物が、式(9):
    Figure JPOXMLDOC01-appb-C000009
    〔式中、記号は、前記と同じ意味を表す。〕で表される核酸化合物である、請求項13または14に記載の核酸分子の製造方法。
PCT/JP2023/027486 2022-07-28 2023-07-27 チオ化溶液 WO2024024873A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022120815 2022-07-28
JP2022-120815 2022-07-28

Publications (1)

Publication Number Publication Date
WO2024024873A1 true WO2024024873A1 (ja) 2024-02-01

Family

ID=89706556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027486 WO2024024873A1 (ja) 2022-07-28 2023-07-27 チオ化溶液

Country Status (1)

Country Link
WO (1) WO2024024873A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157723A1 (ja) * 2011-05-17 2012-11-22 味の素株式会社 オリゴヌクレオチドの製造方法
WO2018212236A1 (ja) * 2017-05-16 2018-11-22 日産化学株式会社 オリゴヌクレオチドの製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157723A1 (ja) * 2011-05-17 2012-11-22 味の素株式会社 オリゴヌクレオチドの製造方法
WO2018212236A1 (ja) * 2017-05-16 2018-11-22 日産化学株式会社 オリゴヌクレオチドの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FILLON YANNICK A., AKHTAR NADIM, ANDREWS BENJAMIN I., BENSTEAD DAVID, BREITLER SIMON, GRONKE ROBERT S., OLBRICH MARTIN, STOLEE JES: "Determination of Purge Factors for Use in Oligonucleotide Control Strategies", ORGANIC PROCESS RESEARCH & DEVELOPMENT, AMERICAN CHEMICAL SOCIETY, US, vol. 26, no. 4, 15 April 2022 (2022-04-15), US , pages 1130 - 1144, XP093133982, ISSN: 1083-6160, DOI: 10.1021/acs.oprd.1c00398 *

Similar Documents

Publication Publication Date Title
JP3207915B2 (ja) オリゴヌクレオチドとオリゴヌクレオチド類似体の固相合成のための方法と化合物
AU716391B2 (en) Solid phase synthesis of oligonucleotides
WO2022009959A1 (ja) 核酸オリゴマーの製造方法
WO2021153047A1 (ja) 核酸オリゴマーの製造方法
WO2021193954A1 (ja) 核酸オリゴマーの製造方法
EP4097117B1 (en) Process of preparing nucleic acid oligomer
WO2024024873A1 (ja) チオ化溶液
WO2024019137A1 (ja) オリゴヌクレオチドの製造方法
WO2023054350A1 (ja) 精製ジクロロ酢酸の製造方法
WO2024089953A1 (ja) オリゴヌクレオチドの製造方法
WO2022064908A1 (ja) 核酸オリゴマーの製造方法
CN117980285A (zh) 纯化二氯乙酸的制造方法
EP1828218B1 (en) Synthesis of phosphitylated compounds using a quaternary heterocyclic activator
WO2021070494A1 (ja) 核酸オリゴマーの製造方法
JPWO2005085270A1 (ja) ピリジン環5位にピロリル基を導入した核酸誘導体
FR2612930A1 (fr) Sondes oligonucleotidiques a

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846603

Country of ref document: EP

Kind code of ref document: A1