WO2021135803A1 - 一种碱式碳酸铈的合成方法 - Google Patents

一种碱式碳酸铈的合成方法 Download PDF

Info

Publication number
WO2021135803A1
WO2021135803A1 PCT/CN2020/133608 CN2020133608W WO2021135803A1 WO 2021135803 A1 WO2021135803 A1 WO 2021135803A1 CN 2020133608 W CN2020133608 W CN 2020133608W WO 2021135803 A1 WO2021135803 A1 WO 2021135803A1
Authority
WO
WIPO (PCT)
Prior art keywords
cerium
solution
precipitant
carbonate according
synthesizing basic
Prior art date
Application number
PCT/CN2020/133608
Other languages
English (en)
French (fr)
Inventor
尹先升
刘同君
王雨春
Original Assignee
安集微电子科技(上海)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安集微电子科技(上海)股份有限公司 filed Critical 安集微电子科技(上海)股份有限公司
Publication of WO2021135803A1 publication Critical patent/WO2021135803A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/10Preparation or treatment, e.g. separation or purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/247Carbonates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram

Definitions

  • the invention relates to a method for synthesizing basic cerium carbonate.
  • cerium oxide has a higher polishing activity to silicon dioxide, and can achieve a higher polishing effect at a lower solid content, it has attracted much attention as an abrasive in the field of chemical mechanical polishing liquids. Studies have shown that when cerium oxide is used as an abrasive, its own particle characteristics are critical to the polishing effect. For example, in the application of STI polishing, it is reported in the literature that the cerium oxide particle size and morphological characteristics have an important influence on the generation of defects during the polishing process and the polishing rate selection ratio.
  • the high-temperature roasting method is a traditional synthesis method of cerium oxide, which has the problems of particle sintering and agglomeration.
  • the synthesized cerium oxide powder needs further ball milling and dispersion treatment to meet the requirements of CMP polishing application.
  • the cerium oxide product prepared by the traditional ball milling dispersion method has low purity and uneven particle size, which is difficult to meet the requirements of CMP for abrasive particle size, surface morphology and other characteristics.
  • the method for synthesizing cerium oxide can be to first synthesize cerium carbonate as a precursor, and then roast the cerium carbonate at a high temperature to obtain the target product cerium oxide powder.
  • cerium carbonate has a variety of crystal forms, and the cerium oxide abrasive synthesized from hexagonal phase or orthorhombic phase cerium carbonate (ie basic cerium carbonate) as a precursor has higher polishing activity.
  • the traditional synthesis method of basic cerium carbonate is a hydrothermal process, which needs to be carried out at high temperature and high pressure, and the synthesis process has high potential safety hazards, and at the same time causes greater pollution and energy consumption to the environment.
  • the present invention proposes a hydrothermal synthesis method of basic cerium carbonate under normal pressure, which has mild synthesis conditions and high synthesis process safety. Further, by optimizing the design of synthesis conditions, orthorhombic phase basic cerium carbonate and hexagonal phase basic cerium carbonate can be selectively synthesized.
  • the preparation method of basic cerium carbonate in the present invention includes:
  • the molar ratio of the cerium source to the precipitating agent is 1:2 to 1:6.
  • the cerium source is selected from one or more of cerium nitrate, cerium chloride, cerium acetate, ammonium cerium nitrate, and cerium sulfate; preferably, the cerium source is cerium nitrate.
  • the precipitating agent is selected from one or more of ammonium carbonate, ammonium bicarbonate, potassium carbonate, potassium bicarbonate, urea, sodium carbonate, and sodium bicarbonate; preferably, the precipitating agent is ammonium carbonate .
  • the molar concentration of the cerium source solution is 0.1 to 1M; preferably, the molar concentration of the cerium source solution is 0.3 to 0.6M.
  • the molar concentration of the precipitant solution is 0.1-3M; preferably, the molar concentration of the precipitant solution is 0.9-1.8M.
  • the cerium source solution and the precipitation agent solution are mixed in a temperature range of 50-100°C.
  • the mixing of the cerium source solution and the precipitant solution is that the cerium source solution is dripped into the precipitant solution, the precipitant solution is dripped into the cerium source solution, or the cerium source solution and the precipitant solution are convectively mixed.
  • the cerium source solution is added dropwise to the precipitant solution, and the resultant product is orthorhombic phase basic cerium carbonate;
  • the precipitant solution is added dropwise to the cerium source solution, and the resultant product is hexagonal basic cerium carbonate;
  • the cerium source solution and precipitation The agent solution is convectively mixed, and the product obtained is orthorhombic phase basic cerium carbonate.
  • the reaction temperature of the cerium source solution and the precipitant solution is 50-100°C.
  • the cerium source solution and the precipitant solution are mixed for 10-100 minutes; preferably, the cerium source solution and the precipitant solution are mixed for 20-60 minutes.
  • the cerium source solution reacts with the precipitant solution for 1 to 8 hours; preferably, the cerium source solution reacts with the precipitant solution for 3 to 6 hours.
  • the advantages of the present invention are: the synthesis conditions of basic cerium carbonate are mild, and the synthesis process is safe; further, by controlling the synthesis conditions, the orthorhombic phase basic cerium carbonate can be selectively synthesized And the hexagonal phase basic cerium carbonate.
  • Fig. 1 is an XRD pattern of basic cerium carbonate synthesized by the synthesis method in Example 1.
  • Example 2 is an XRD pattern of basic cerium carbonate synthesized by the synthesis method in Example 10.
  • Fig. 3 is an XRD pattern of basic cerium carbonate synthesized by the synthesis method in Example 16.
  • Figure 4 shows the XRD spectra of the products of the synthetic methods of Comparative Examples 1, 2, and 3.
  • Table 1 shows the types and contents of reactants and specific synthesis conditions for the synthesis of basic cerium carbonate in the synthesis methods of Examples 1-17 and Comparative Examples 1-3
  • Examples 1-9 and Comparative Example 1 are that the precipitation agent solution is added dropwise to the cerium source solution
  • Examples 10-15 and Comparative Example 2 are that the cerium source solution is dropped into the precipitation agent solution.
  • Comparative Example 3 is the convective mixing of the precipitant solution and the cerium source solution.
  • Figure 4 is the XRD spectra of the products corresponding to the synthesis methods of Comparative Examples 1 to 3.
  • the diffraction peaks in the spectra are relatively fuzzy and the peak intensity is weak, indicating that the products of Comparative Examples 1 to 3 are impure and have poor crystallization properties.
  • Comparing the synthesis conditions of Example 1 and Comparative Example 1 it can be seen that adding an excessive amount of cerium salt or a small amount of precipitant will result in low product purity and poor crystallization performance; comparing the synthesis conditions of Example 2 and Comparative Example 2, it can be seen that when the reaction If the temperature is too low, the reactants cannot react completely, resulting in impure products; comparing Example 3 with Comparative Example 3, it can be seen that when other types of cerium salts are selected, the XRD pattern corresponding to Comparative Example 3 does not show obvious diffraction peaks, indicating No product with crystalline properties has been synthesized, and the product is not pure.
  • the method for synthesizing basic cerium carbonate provided by the present invention is selective for the types of synthetic raw materials, the molar ratio of the synthetic raw materials, the reaction temperature and other synthetic conditions.
  • the synthesis method of the present invention can synthesize basic cerium carbonate crystals with different crystal structures through different synthesis methods by controlling the synthesis conditions, and at the same time, the reaction conditions are mild and the safety is reliable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

一种碱式碳酸铈的合成方法,包括:将铈源与沉淀剂分别溶于水中,制成铈源溶液和沉淀剂溶液;将所述铈源溶液与沉淀剂溶液混合形成反应溶液;搅拌所述反应溶液,使所述铈源与沉淀剂反应;离心分离或过滤洗涤所述反应溶液,得到碱式碳酸铈固体。碱式碳酸铈的水热合成条件温和,合成过程安全性高。进一步地,通过对合成条件的优化设计,可以选择性合成出斜方相碱式碳酸铈和六方相碱式碳酸铈。

Description

一种碱式碳酸铈的合成方法 技术领域
本发明涉及一种碱式碳酸铈的合成方法。
背景技术
氧化铈因对二氧化硅具有较高的抛光活性,且在较低的固含量下就可达到较高的抛光效果,因此,其作为磨料在化学机械抛光液领域备受关注。研究表明,以氧化铈作为磨料时,其自身的颗粒特性对抛光效果的影响至关重要。如在STI抛光应用中,有文献报道氧化铈颗粒尺寸、形貌特征对抛光过程中缺陷的产生和抛光速率选择比均有着重要影响。
高温焙烧法为氧化铈的传统合成方法,存在颗粒烧结、团聚问题,合成出的氧化铈粉体需要进一步进行球磨分散处理才能达到CMP抛光应用要求。同时,传统的球磨分散方法制备出的氧化铈产品纯度低、颗粒尺寸不均匀,难以满足CMP对磨料颗粒尺寸、表面形貌等特性的要求。除此之外,氧化铈的合成方法可以为先合成碳酸铈作为前驱体,进一步高温焙烧碳酸铈,得到目标产物氧化铈粉体。其中,碳酸铈具有多种晶型,六方相或斜方相碳酸铈(即碱式碳酸铈)作为前驱体合成出的氧化铈磨料具有较高的抛光活性。但是,碱式碳酸铈的传统合成方法为水热工艺,需要在高温高压下进行,合成过程存在较高的安全隐患,同时还会对环境造成较大的污染和能源消耗。
发明内容
为解决上述问题,本发明提出一种常压下碱式碳酸铈水热合成方法,合成条件温和,合成过程安全性高。进一步地,通过对合成条件的优化设计,可以选择性合成出斜方相碱式碳酸铈和六方相碱式碳酸铈。
具体的,本发明中的碱式碳酸铈的制备方法,包括:
(1)将铈源与沉淀剂分别溶于水中,制成铈源溶液和沉淀剂溶液;
(2)将所述铈源溶液与沉淀剂溶液混合形成反应溶液;
(3)搅拌所述反应溶液,使所述铈源溶液与沉淀剂溶液反应;
(4)离心分离或过滤洗涤所述反应溶液,得到碱式碳酸铈固体。
本发明中,所述铈源和沉淀剂的摩尔比为1:2~1:6。
本发明中,所述铈源选自硝酸铈、氯化铈、醋酸铈、硝酸铈铵、硫酸铈中的一种或 多种;优选的,所述铈源为硝酸铈。
本发明中,所述沉淀剂选自碳酸铵、碳酸氢铵、碳酸钾、碳酸氢钾、尿素、碳酸钠、碳酸氢钠中的一种或多种;优选的,所述沉淀剂为碳酸铵。
本发明中,所述铈源溶液的摩尔浓度为0.1~1M;优选的,所述铈源溶液的摩尔浓度为0.3~0.6M.
本发明中,所述沉淀剂溶液的摩尔浓度为0.1~3M;优选的,所述沉淀剂溶液的摩尔浓度为0.9~1.8M。
本发明中,在50~100℃温度范围内将所述铈源溶液与沉淀剂溶液混合。
本发明中,所述铈源溶液与沉淀剂溶液混合为铈源溶液滴加至沉淀剂溶液中、沉淀剂溶液滴加至铈源溶液中或者铈源溶液与沉淀剂溶液对流混合。其中,铈源溶液滴加至沉淀剂溶液中,所得产物为斜方相碱式碳酸铈;沉淀剂溶液滴加至铈源溶液中,所得产物为六方相碱式碳酸铈;铈源溶液与沉淀剂溶液对流混合,所得产物为斜方相碱式碳酸铈。
本发明中,所述铈源溶液与沉淀剂溶液的反应温度为50~100℃。
本发明中,将所述铈源溶液与沉淀剂溶液混合10~100分钟;优选的,将所述铈源溶液与沉淀剂溶液混合20~60分钟。
本发明中,所述铈源溶液与沉淀剂溶液反应1~8小时;优选的,所述铈源溶液与沉淀剂溶液反应3~6小时。
与现有技术相比较,本发明的优势在于:碱式碳酸铈的合成条件温和,合成过程安全性高;进一步地,通过对合成条件的控制,可以选择性合成出斜方相碱式碳酸铈和六方相碱式碳酸铈。
附图说明
图1为实施例1合成方法合成出的碱式碳酸铈的XRD图谱。
图2为实施例10合成方法合成出的碱式碳酸铈的XRD图谱。
图3是实施例16合成方法合成出的碱式碳酸铈的XRD图谱。
图4为对比例1、2、3合成方法的产物的XRD谱图。
具体实施方式
下面结合附图及具体实施例,详细阐述本发明的优势。
表1为实施例1~17与对比例1~3合成方法中合成碱式碳酸铈的反应物种类和含量以 及具体合成条件
Figure PCTCN2020133608-appb-000001
上述合成方法中,实施例1~9、对比例1为沉淀剂溶液滴加至铈源溶液中,实施例10~15、对比例2为铈源溶液滴加至沉淀剂溶液中,实施例16~17、对比例3为沉淀剂溶液与铈源溶液对流混合。
由图1可知,当沉淀剂溶液滴加至铈源溶液中时,所得产物为六方相碱式碳酸铈;由图2可知,当铈源溶液滴加至沉淀剂溶液中时,所得产物为斜方相碱式碳酸铈;由图3可知,当铈源溶液与沉淀剂溶液对流混合时,所得产物为斜方相碱式碳酸铈。且图1、图2、图3中的XRD图谱的基线较平,衍射峰较为清晰,说明合成的产物纯度较高,且结晶性能较好。图4为对比例1~3合成方法对应产物的XRD谱图,所述谱图中的衍射峰较为模糊,且峰强较弱,说明对比例1~3的产物不纯,且结晶性能差。
比较实施例1与对比例1合成条件可知,添加过量的铈盐或者少量的沉淀剂,都会导致产物纯度不高,且结晶性能不佳;比较实施例2与对比例2合成条件可知,当反应温度过低,反应物不能完全反应,导致产物不纯;比较实施例3与对比例3可知,当选 用其他种类的铈盐时,对比例3对应的XRD图谱并未出现明显的衍射峰,表明并未合成出具有结晶性能的产物,且产物不纯。
综上述,本发明提供的碱式碳酸铈的合成方法对合成原料的种类、合成原料的摩尔比、反应温度等合成条件均具有选择性。本发明的合成方法通过对合成条件的控制,可以通过不同的合成方法合成出具有不同晶体结构的碱式碳酸铈晶体,同时反应条件温和,安全性可靠。
以上对本发明的具体实施例进行了详细描述,但其只是作为范例,本发明并不限制于以上描述的具体实施例。对于本领域技术人员而言,任何对本发明进行的等同修改和替代也都在本发明的范畴之中。因此,在不脱离本发明的精神和范围下所作的均等变换和修改,都应涵盖在本发明的范围内。

Claims (19)

  1. 一种碱式碳酸铈的合成方法,包括:
    (1)将铈源与沉淀剂分别溶于水中,制成铈源溶液和沉淀剂溶液;
    (2)将所述铈源溶液与沉淀剂溶液混合形成反应溶液;
    (3)搅拌所述反应溶液,使所述铈源溶液与沉淀剂溶液反应;
    (4)离心分离或过滤洗涤所述反应溶液,得到碱式碳酸铈固体。
  2. 如权利要求1所述的碱式碳酸铈的合成方法,其特征在于,
    所述铈源和沉淀剂的摩尔比为1:2~1:6。
  3. 如权利要求1所述的碱式碳酸铈的合成方法,其特征在于,
    所述铈源选自硝酸铈、氯化铈、醋酸铈、硫酸铈中的一种或多种。
  4. 如权利要求3所述的碱式碳酸铈的合成方法,其特征在于,
    所述铈源为硝酸铈。
  5. 如权利要求1所述的碱式碳酸铈的合成方法,其特征在于,
    所述沉淀剂选自碳酸铵、碳酸氢铵、碳酸钾、碳酸氢钾、碳酸钠、碳酸氢钠和尿素中的一种或多种。
  6. 如权利要求5所述的碱式碳酸铈的合成方法,其特征在于,
    所述沉淀剂为碳酸铵。
  7. 如权利要求1所述的碱式碳酸铈的合成方法,其特征在于,
    所述铈源溶液的摩尔浓度为0.1~1M。
  8. 如权利要求7所述的碱式碳酸铈的合成方法,其特征在于,
    所述铈源溶液的摩尔浓度为0.3~0.6M。
  9. 如权利要求1所述的碱式碳酸铈的合成方法,其特征在于,
    所述沉淀剂溶液的摩尔浓度为0.1~3M。
  10. 如权利要求9所述的碱式碳酸铈的合成方法,其特征在于,
    所述沉淀剂溶液的摩尔浓度为0.9~1.8M。
  11. 如权利要求1所述的碱式碳酸铈的合成方法,其特征在于,
    在50~100℃温度范围内将所述铈源溶液与沉淀剂溶液混合。
  12. 如权利要求1所述的碱式碳酸铈的合成方法,其特征在于,
    所述铈源溶液与沉淀剂溶液混合为铈源溶液滴加至沉淀剂溶液中。
  13. 如权利要求1所述的碱式碳酸铈的合成方法,其特征在于,
    所述铈源溶液与沉淀剂溶液混合为沉淀剂溶液滴加至铈源溶液中。
  14. 如权利要求1所述的碱式碳酸铈的合成方法,其特征在于,
    所述铈源溶液与沉淀剂溶液混合为铈源溶液与沉淀剂溶液对流混合。
  15. 如权利要求1所述的碱式碳酸铈的合成方法,其特征在于,
    将所述铈源溶液与沉淀剂溶液混合加料时间为10~100分钟。
  16. 如权利要求15所述的碱式碳酸铈的合成方法,其特征在于,
    将所述铈源溶液与沉淀剂溶液混合加料时间为20~60分钟。
  17. 如权利要求1所述的碱式碳酸铈的合成方法,其特征在于,
    所述铈源溶液与沉淀剂溶液的反应温度为50~100℃。
  18. 如权利要求1所述的碱式碳酸铈的合成方法,其特征在于,
    所述铈源溶液与沉淀剂溶液反应1~8小时。
  19. 如权利要求18所述的碱式碳酸铈的合成方法,其特征在于,
    所述铈源溶液与沉淀剂溶液反应3~6小时。
PCT/CN2020/133608 2019-12-30 2020-12-03 一种碱式碳酸铈的合成方法 WO2021135803A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911402376.4 2019-12-30
CN201911402376.4A CN113120943A (zh) 2019-12-30 2019-12-30 一种碱式碳酸铈的合成方法

Publications (1)

Publication Number Publication Date
WO2021135803A1 true WO2021135803A1 (zh) 2021-07-08

Family

ID=76686442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/133608 WO2021135803A1 (zh) 2019-12-30 2020-12-03 一种碱式碳酸铈的合成方法

Country Status (2)

Country Link
CN (1) CN113120943A (zh)
WO (1) WO2021135803A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115595585A (zh) * 2022-11-10 2023-01-13 江西省科学院应用物理研究所(Cn) 一种易氧化金属专用金相抛光剂的制备方法
CN115784292A (zh) * 2022-12-13 2023-03-14 中国科学院赣江创新研究院 一种碱式碳酸铈及其制备方法与应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060134384A (ko) * 2005-06-22 2006-12-28 주식회사 엘지화학 탄산세륨 나노 분말의 제조방법
CN101641289A (zh) * 2007-03-16 2010-02-03 株式会社Lg化学 用尿素制备碳酸铈粉末的方法
CN101652324A (zh) * 2007-05-03 2010-02-17 株式会社Lg化学 用作磨料的氧化铈粉末和含有该粉末的cmp浆料
CN105800664A (zh) * 2014-12-29 2016-07-27 安集微电子(上海)有限公司 一种氧化铈磨料制备方法及其cmp抛光应用
CN106915761A (zh) * 2015-12-28 2017-07-04 安集微电子科技(上海)有限公司 一种氧化铈制备方法及其在sti化学机械抛光中的应用
CN107973332A (zh) * 2018-01-23 2018-05-01 包头科日稀土材料有限公司 一种制备高稀土含量碱式碳酸铈的方法
CN110040759A (zh) * 2019-04-28 2019-07-23 乐山师范学院 一种碱式碳酸铈的合成方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4160184B2 (ja) * 1998-11-24 2008-10-01 信越化学工業株式会社 塩基性炭酸セリウムの製造方法
JP2008260686A (ja) * 2008-06-13 2008-10-30 Shin Etsu Chem Co Ltd 塩基性炭酸セリウム
CN103172101B (zh) * 2012-12-13 2014-12-17 浙江海洋学院 一种碱式碳酸铈的制备方法
CN106975479B (zh) * 2017-04-18 2019-06-04 南京工业大学 一种海胆状CeO2-MnO2复合氧化物催化剂的制备方法
CN110422871A (zh) * 2019-08-20 2019-11-08 南昌大学 氧化铈纳米管的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060134384A (ko) * 2005-06-22 2006-12-28 주식회사 엘지화학 탄산세륨 나노 분말의 제조방법
CN101641289A (zh) * 2007-03-16 2010-02-03 株式会社Lg化学 用尿素制备碳酸铈粉末的方法
CN101652324A (zh) * 2007-05-03 2010-02-17 株式会社Lg化学 用作磨料的氧化铈粉末和含有该粉末的cmp浆料
CN105800664A (zh) * 2014-12-29 2016-07-27 安集微电子(上海)有限公司 一种氧化铈磨料制备方法及其cmp抛光应用
CN106915761A (zh) * 2015-12-28 2017-07-04 安集微电子科技(上海)有限公司 一种氧化铈制备方法及其在sti化学机械抛光中的应用
CN107973332A (zh) * 2018-01-23 2018-05-01 包头科日稀土材料有限公司 一种制备高稀土含量碱式碳酸铈的方法
CN110040759A (zh) * 2019-04-28 2019-07-23 乐山师范学院 一种碱式碳酸铈的合成方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115595585A (zh) * 2022-11-10 2023-01-13 江西省科学院应用物理研究所(Cn) 一种易氧化金属专用金相抛光剂的制备方法
CN115784292A (zh) * 2022-12-13 2023-03-14 中国科学院赣江创新研究院 一种碱式碳酸铈及其制备方法与应用

Also Published As

Publication number Publication date
CN113120943A (zh) 2021-07-16

Similar Documents

Publication Publication Date Title
WO2021135803A1 (zh) 一种碱式碳酸铈的合成方法
TWI483899B (zh) 分散性優異之氧化鎂粉末及其製造方法
JP4118818B2 (ja) 単結晶酸化セリウム粉末の製造方法
TWI503281B (zh) Titanium oxide sol, method for producing the same, ultrafine particulate titanium oxide, method and use thereof
JP4992003B2 (ja) 金属酸化物微粒子の製造方法
CN102807243B (zh) 一种氢氧化铝凝胶
CN106915761A (zh) 一种氧化铈制备方法及其在sti化学机械抛光中的应用
CN107986312A (zh) 一种高比表面积沉淀碳酸钙的制备方法
CN102850938A (zh) 一种球型复合稀土抛光粉的制备方法
CN102583467A (zh) 一种以锌铝低摩尔比类水滑石为前躯体制备锌铝尖晶石的方法
JP2013522151A (ja) 結晶性酸化セリウム及びその製造方法
CN103241753A (zh) 一种α-氧化铝的制备方法
CN112266244A (zh) 一种高烧结活性氧化锆粉体的制备方法
CN104877573A (zh) 一种球形纳米掺氟CeO2抛光粉的制备方法
CN103496727B (zh) 一种微晶α-Al2O3 聚集体的制备方法
CN108217702A (zh) 一种超微孔碱式碳酸铝铵的合成及其热解制备氧化铝的方法
Hirano et al. Direct precipitation of spinel type oxide ZnGa2O4 from aqueous solutions at low temperature below 90° C
JP2001026419A (ja) 炭酸カルシウムの製造方法、及び石灰石からの沈降製炭酸カルシウムの白化方法
CN105800664A (zh) 一种氧化铈磨料制备方法及其cmp抛光应用
CN101707913A (zh) 氧化镁粉末
KR20090104088A (ko) 입방체상 산화마그네슘 분말 및 그 제조방법
CN105837222A (zh) 基于溶胶-凝胶工艺低温合成γ-AlON粉体的方法
CN116199270A (zh) 一种减少钴氧化物生产过程废水的处理工艺
JP3666555B2 (ja) 水酸化物の混合組成物及び複合酸化物粉末の製造方法
JPH03141115A (ja) 酸化イットリウム微粉末の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20910504

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20910504

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20910504

Country of ref document: EP

Kind code of ref document: A1