WO2021135523A1 - 在甲硫氨酸制备过程中使用的添加剂及甲硫氨酸的制备方法 - Google Patents

在甲硫氨酸制备过程中使用的添加剂及甲硫氨酸的制备方法 Download PDF

Info

Publication number
WO2021135523A1
WO2021135523A1 PCT/CN2020/122134 CN2020122134W WO2021135523A1 WO 2021135523 A1 WO2021135523 A1 WO 2021135523A1 CN 2020122134 W CN2020122134 W CN 2020122134W WO 2021135523 A1 WO2021135523 A1 WO 2021135523A1
Authority
WO
WIPO (PCT)
Prior art keywords
methionine
sodium
component
methyl taurate
additive
Prior art date
Application number
PCT/CN2020/122134
Other languages
English (en)
French (fr)
Inventor
陈志荣
尹红
王志轩
陈聪
张双双
王钰
Original Assignee
浙江新和成股份有限公司
山东新和成氨基酸有限公司
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江新和成股份有限公司, 山东新和成氨基酸有限公司, 浙江大学 filed Critical 浙江新和成股份有限公司
Priority to US17/782,904 priority Critical patent/US20230022196A1/en
Priority to KR1020227025344A priority patent/KR20220116545A/ko
Priority to JP2022539205A priority patent/JP7388647B2/ja
Priority to DE112020006405.0T priority patent/DE112020006405T5/de
Publication of WO2021135523A1 publication Critical patent/WO2021135523A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/12Methionine; Cysteine; Cystine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/26Separation; Purification; Stabilisation; Use of additives
    • C07C319/28Separation; Purification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0004Crystallisation cooling by heat exchange
    • B01D9/0013Crystallisation cooling by heat exchange by indirect heat exchange
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/26Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/50Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton
    • C07C323/51Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C323/57Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being further substituted by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C323/58Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being further substituted by nitrogen atoms, not being part of nitro or nitroso groups with amino groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/80Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
    • Y02P60/87Re-use of by-products of food processing for fodder production

Definitions

  • the invention relates to an additive used in the crystallization process of methionine and a method of use thereof, in particular to an additive containing a compound with defoaming effect and a compound that regulates crystal growth used in the crystallization process, and a method for preparing methionine .
  • Methionine is one of the essential amino acids for animal growth. It participates in the synthesis of protein and is also the only amino acid containing sulfur. It is used as a nutrient fortifier for feed and can make up for the balance of amino acids.
  • the current methionine is mainly synthesized by chemical methods. According to different raw material routes, the main synthetic methods are malonate method, acrolein method, or aminolactone method. In contrast, 5-(2-methylthioethyl)hydantoin is prepared by condensation of hydrocyanic acid and its salt with methylthiopropionaldehyde, and then hydrolyzed with potassium carbonate and carbon dioxide is used to acidify and crystallize the synthetic route. The most competitive.
  • EP1256571A1 discloses a method for releasing methionine from an aqueous solution of alkali metal methionine salt with carbon dioxide. The method includes releasing Before methionine, a defoamer is added to the aqueous solution containing the alkali metal salt of methionine. All compounds that have the function of inhibiting foam can be used as defoamers.
  • the defoamer is added to the solution in the form of a dispersion to improve the effect of the defoamer on the methionine reaction crystallization process, especially to inhibit the formation Fine leaf-like or flake-like crystal products, spherical crystals can be obtained, and there is almost no powder after drying.
  • JPH04244056A, JPH11-158140A, and JPH04-169570A Sumitomo Chemical Corporation of Japan proposed to add additives during the reaction crystallization with carbon dioxide.
  • the additives used in each patent document are casein or semi-synthetic cellulose-based water-soluble polymers (including Methyl cellulose, ethyl cellulose, hydroxyethyl methyl cellulose, hydroxyethyl cellulose, hydroxypropyl methyl cellulose, etc.); aggregating agent (sorbitan monolaurate, polyvinyl alcohol , Hydroxypropyl methylcellulose, etc.); and polyvinyl alcohol.
  • the finally obtained methionine crystals are granular or thick flakes with a bulk density of 0.55 to 0.60 g/cc.
  • Japan's Soda Company discloses that by adding polyvinyl alcohol or gluten, DL-methionine crystals are precipitated from a solution containing DL-methionine to produce granular DL-methionine crystal product.
  • the specific volume of the product is 1.3-1.6mL/g.
  • the granular methionine crystals obtained by the above method are actually agglomerates of scaly crystals, and their bulk density is small, and they are easily broken and powdered after being squeezed during drying and use. Therefore, it is inconvenient for subsequent use. .
  • the additives are non-ionic surfactants (such as oxyethylene fatty acid esters, polyoxyethylene alkylphenol ethers, polyoxyethylene-polyoxypropylene, or sorbitan fatty acid esters) or anionic surfactants (such as nonionic Sulfonate, alkyl naphthalene sulfonate, alkyl benzene sulfonate or dialkyl sulfonate succinate). But the bulk density of the product is not high.
  • additive (1) is as follows:
  • the additive (2) is selected from modified cellulose, specifically methyl cellulose, methyl hydroxy cellulose, methyl hydroxypropyl cellulose, hydroxypropyl cellulose, hydroxyethyl cellulose, sodium carboxymethyl cellulose , Sodium carboxymethyl hydroxyethyl cellulose, or sodium carboxymethyl hydroxypropyl cellulose, preferably hydroxyethyl cellulose.
  • modified cellulose specifically methyl cellulose, methyl hydroxy cellulose, methyl hydroxypropyl cellulose, hydroxypropyl cellulose, hydroxyethyl cellulose, sodium carboxymethyl cellulose , Sodium carboxymethyl hydroxyethyl cellulose, or sodium carboxymethyl hydroxypropyl cellulose, preferably hydroxyethyl cellulose.
  • the methionine recrystallized product obtained by this method has a better crystal form, and the maximum bulk density is 620 g/L.
  • crystalline additives and defoamers that are nonionic surfactants, anionic surfactants, or mixtures of different nonionic surfactants and anionic surfactants. Perform recrystallization.
  • the crystalline additive is one of additive (1) and additive (2).
  • the crystalline additive (1) is one of the compounds represented by the following three structural formulas, or a mixture thereof:
  • the additive (2) is a sorbitol fatty acid ester or a mixture of different sorbitol fatty acid esters. Preference is given to polyethoxylated sorbitol fatty acid esters, especially polyethoxylated sorbitol tristearate.
  • the defoaming agent contains silicone oil, and also contains a component as an emulsifier (preferably a mixture of polyethoxylated fatty acid and polyethoxylated fatty alcohol), and the defoaming agent additionally contains silicon dioxide.
  • a component as an emulsifier preferably a mixture of polyethoxylated fatty acid and polyethoxylated fatty alcohol
  • the bulk density of the methionine obtained by this method is 537-651 g/L.
  • the crystalline additives used include nonionic or anionic surfactants, or a mixture of multiple nonionic or anionic surfactants.
  • the anionic surfactant is one of the compounds represented by the following three structural formulas or a mixture thereof:
  • the nonionic surfactant is a sorbitol fatty acid ester or a mixture of multiple sorbitol fatty acid esters, and polyethoxylated sorbitol tristearate is particularly preferred.
  • the antifoaming agent contains silicone oil, and also contains a component used as an emulsifier (preferably a mixture of polyethoxylated fatty acid and polyethoxylated fatty alcohol), and may also contain silicon dioxide.
  • a component used as an emulsifier preferably a mixture of polyethoxylated fatty acid and polyethoxylated fatty alcohol
  • the maximum bulk density of the methionine recrystallized product obtained by this method is 651 g/L.
  • the additives used in the above methods all contain ester bonds, which are prone to hydrolysis under higher methionine preparation temperature conditions, thereby losing the regulation and defoaming effects. Therefore, under the conditions of the crystallization mother liquor, the crystallization process is likely to be undesirable. Stable, thereby affecting the stable operation of the continuous crystallization process. In addition, there is still room for improvement in the bulk density of methionine crystal products.
  • the present invention provides an additive used in the preparation of methionine and a method for preparing methionine.
  • methionine can be prepared with high bulk density and good fluidity. Crystal products.
  • the present invention provides an additive used in the preparation of methionine, wherein the additive is a mixture containing components A, B and C,
  • the A component has a structural formula represented by the following general formula (1):
  • R is a saturated or unsaturated C 7 to C 36 hydrocarbon group, preferably a C 7 to C 36 alkyl or alkenyl group;
  • the B component has the structural formula represented by the following general formula (2):
  • X and Y are each an integer from 1 to 30, and R 1 to R 4 are the same or different from each other, and independently represent hydrogen, a C 1 to C 3 alkyl group, a saturated or unsaturated aliphatic hydroxyl group , Or a saturated or unsaturated polyether group; provided that at least one of R 1 to R 4 represents a saturated or unsaturated polyether group, and the polyether group is more preferably a group represented by the following general formula (3) group:
  • a represents an integer from 0 to 50
  • b represents an integer from 0 to 50
  • R 0 represents hydrogen, an alkyl group, an acyloxy group, or an alkoxy group
  • the C component is silicone oil.
  • the additive used in the preparation process of methionine according to the invention wherein the component A is sodium octanoyl methyl taurate, sodium decanoyl methyl taurate, sodium lauroyl methyl taurate , Sodium myristoyl methyl taurate, sodium palmitoyl methyl taurate, sodium stearoyl methyl taurate, sodium oleoyl methyl taurate, sodium linoleyl methyl taurate, Sodium linoleyl methyl taurate, sodium erucyl methyl taurate, sodium cocoyl methyl taurate, sodium palmitoyl methyl taurate, soybean oil acyl methyl taurate sodium, peanut oil acyl Sodium methyl taurate, sesame oil acyl methyl taurate sodium, mustard oil acyl methyl taurate sodium, hardened tallow acyl methyl taurate sodium, and hardened vegetable oil acyl methyl taurate sodium
  • the component A is sodium octanoyl methyl taurate, sodium
  • sodium lauroyl methyl taurate Preferably sodium lauroyl methyl taurate, sodium myristoyl methyl taurate, sodium palmitoyl methyl taurate, sodium stearoyl methyl taurate, sodium cocoyl methyl taurate , And one or more of sodium palmitoyl methyl taurate.
  • the molecular weight of the B component is 1,000 to 10,000, preferably 3,000 to 6,000.
  • the HLB value of the B component is 7-15, preferably 9-12.
  • the component B is polyether grafted modified silicone oil, preferably allyl polyoxyalkyl ether grafted modified silicone oil.
  • the C component includes one or more of dimethyl silicone oil, hydroxy silicone oil and hydrogen-containing silicone oil, preferably the C component
  • the dynamic viscosity at 25°C is 90 mm 2 /s to 1500 mm 2 /s.
  • the additive used in the preparation process of methionine according to the present invention wherein the additive is an aqueous mixture containing components A, B and C, and based on the total mass of the additive, the content of the A component The content is 1-8wt%, the content of the B component is 0.5-8wt%, the content of the C component is 0.5-4wt%; preferably the content of the A component is 2-6wt%, the B The content of the component is 2 to 6 wt%, and the content of the C component is 1 to 3 wt%.
  • the present invention also provides a method for preparing methionine, which includes:
  • the crystallization and/or recrystallization of methionine is carried out in the presence of the additives provided according to the present invention.
  • the amount of the additive in the step (1) is 50 ppm to 500 ppm based on the total mass of the methionine salt aqueous solution, preferably 70 ppm to 300 ppm.
  • the concentration of the methionine suspension in the step (2) is 8-15 wt%, preferably 10-13 wt%.
  • the amount of the additive in the step (2) is 100 ppm to 1000 ppm based on the total mass of the methionine suspension, preferably 200 ppm to 500 ppm .
  • the crystallization is performed by cooling down or evaporation, preferably evaporation and cooling are used for crystallization;
  • the vapor generated by evaporation is pressurized by a steam compressor to increase the temperature and then used in the process of heating and dissolving the methionine suspension.
  • the crystallizer used in the step (2) includes a stirred crystallizer, a forced circulation crystallizer (FC crystallizer), and an Oslo crystallizer (OSLO crystallizer) And the guide tube plus baffle crystallizer (DTB crystallizer); preferred FC crystallizer, OSLO crystallizer and DTB crystallizer.
  • the beneficial effects obtained are:
  • the additive provided by the present invention it is easy to use, and when the emulsification system is formed by the reaction crystallization and recrystallization of methionine, the emulsification is uniform, the system is stable, and it is not easy to separate.
  • the additive provided by the present invention has good stability, is not easy to decompose in the continuous application process, can be used stably for a long time, and is suitable for continuous crystallization process.
  • the methionine prepared by using the additive of the present invention has good crystal form, large bulk density and good fluidity, and is convenient for subsequent use, and the bulk density is above 786g/L, even as high as 802g/L.
  • the crystallization system can be operated continuously and stably for a long time without obvious foaming phenomenon, and the crystallization process of the methionine product can proceed smoothly.
  • Figures 1 to 5 show microscopic photographs of methionine crystals corresponding to Examples 1 to 5, respectively.
  • the additive used in the preparation process of methionine provided according to the present invention is a mixture containing A, B and C components. And, in a preferred embodiment of the present invention, the additive is used in the form of an aqueous mixture.
  • the A component is a crystal growth regulator, and its structural formula is shown in the following general formula (1):
  • R is a saturated or unsaturated C 7 to C 36 hydrocarbon group, preferably a C 7 to C 36 alkyl or alkenyl group.
  • a component examples include, sodium octanoyl methyl taurate, sodium decanoyl methyl taurate, sodium lauroyl methyl taurate, sodium myristoyl methyl taurate, palmitate Sodium methyl taurate, sodium stearoyl methyl taurate, sodium oleoyl methyl taurate, sodium linoleyl methyl taurate, sodium linoleyl methyl taurate, erucyl methyl beef Sodium sulfonate, sodium cocoyl methyl taurate, sodium palmitoyl methyl taurate, sodium soybean oil acyl methyl taurate, sodium peanut oil acyl methyl taurate, sesame oil acyl methyl taurine One or more of sodium, mustard oil acyl methyl taurate sodium, hardened tallow tallow acyl methyl taurate sodium, and hardened vegetable oil acyl methyl taurate sodium.
  • sodium lauroyl methyl taurate sodium myristoyl methyl taurate, sodium palmitoyl methyl taurate, sodium stearoyl methyl taurate, and cocoyl methyl taurine are preferred.
  • sodium, and sodium palmitoyl methyl taurate are preferred.
  • the specific compound of the aforementioned A component is usually commercially available.
  • the A component has the characteristics of extremely low irritation, non-toxicity, and easy biodegradability, and has good biodegradability.
  • the substance can be decomposed into fatty acids and amino acids by enzymes in the animal body, and can be passively decomposed into fatty acids and amino acids.
  • Object utilization compared with the ester additives used in the prior art, the additive of the present invention has better hydrolysis resistance and stability, can circulate in the system for a long time, and stably exert a crystal growth regulating effect.
  • the above-mentioned component B is an emulsified foam suppressor, which mainly has foam suppressing and emulsifying effects, and has a structural formula represented by the following general formula (2):
  • X and Y are each an integer from 1 to 30, and R 1 to R 4 are the same or different from each other, and independently represent hydrogen, a C 1-3 alkyl group, a saturated or unsaturated aliphatic hydroxyl group, Or a saturated or unsaturated polyether group; when at least one of R 1 to R 4 represents a saturated or unsaturated polyether group, it is more preferably a group represented by the following general formula (3):
  • a represents an integer of 0-50
  • b represents an integer of 0-50
  • R 0 represents hydrogen, an alkyl group, an acyloxy group, or an alkoxy group
  • the molecular weight of the B component is 1000-10000, preferably 3000-6000, and its HLB value is 7-15, preferably 9-12.
  • the B component is preferably a polyether modified silicone oil.
  • the B component is an allyl polyoxyalkyl ether graft modified silicone oil, and the B component is even more preferably polyoxyethylene. Polyoxypropylene ether grafted with silicone oil.
  • the B component can be self-emulsified in water or miscible with water in any ratio. Therefore, during the process of methionine crystal filtration, almost all enters the water phase and will not adhere to the surface of the methionine product. The defoaming effect can be maintained stably for a long time. It is believed that component B can achieve the functions of defoaming, foam suppression, and emulsification when used under the conditions of the present invention, and it mainly plays the role of foam suppression and emulsification.
  • component A during the recrystallization of methionine will also produce a large amount of foam. It will affect the stable operation of the system, and affect the shape and bulk density of the product, so it is necessary to use the B component to suppress foam. In the presence of component B, component A and component C can form an emulsified state and be dispersed in the system.
  • the C component is a silicone oil with an enhanced defoaming effect, which eliminates the foam generated during the crystallization process, stabilizes the crystallization environment, improves the smoothness of the crystallization, and makes the product have good fluidity.
  • the C component includes dimethyl silicone oil, hydroxy silicone oil, or hydrogen-containing silicone oil.
  • the dynamic viscosity of component C at 25°C is 90 mm 2 /s to 1500 mm 2 /s.
  • the additives of the present invention in the A component, B component and C group Under the synergistic effect of the components, a powdered methionine crystal product with higher bulk density and better fluidity can be obtained, and the crystallization system can operate continuously and stably for a long time without obvious foaming phenomenon.
  • the crystallization process proceeded smoothly.
  • the additive according to the present invention can exhibit its defoaming, foam suppressing and crystal growth promoting effects when added in a small amount.
  • the total content of the A component, the B component and the C component accounts for 2%-20% of the total weight of the additive in the form of an aqueous mixture, preferably 5%-15%, and the remainder is water.
  • the additives of the present invention are used in the form of an aqueous mixture.
  • the above three components A, B and C are all present in the additive in a specific proportion, that is, based on the total mass of the additive, the content of the A component is 1 to 8% by weight, and the content of the B component
  • the content is 0.5-8wt%
  • the content of the C component is 0.5-4wt%; preferably the content of the A component is 2-6wt%, the content of the B component is 2-6wt%, the C
  • the content of the components is 1 to 3 wt%.
  • the method for preparing methionine provided according to the present invention includes: crystallization and/or recrystallization of methionine in the presence of the additive according to the present invention.
  • the method for preparing methionine of the present invention includes the following steps:
  • the method for preparing methionine of the present invention includes:
  • the crystallization mother liquor may be the crystallization mother liquor obtained by filtering after recrystallization in step (2) in the method for preparing methionine of the present invention, or may be the step in the method for preparing methionine of the present invention ( 1) A mixed liquid of the crystallization mother liquor obtained by filtering after crystallization and the crystallization mother liquor obtained by filtering after recrystallization in step (2).
  • step (1) 5-(2-methylthioethyl)hydantoin can be obtained commercially.
  • step (1) the method for obtaining an aqueous solution of methionine salt by hydrolysis of 5-(2-methylthioethyl)hydantoin, and then introducing carbon dioxide to precipitate the crude methionine crystals:
  • the operating conditions can adopt the operating conditions commonly used in the art.
  • the method may be, in the presence of potassium hydroxide, potassium carbonate and/or potassium bicarbonate or their mixtures, under the conditions of a temperature of 120-250°C and a pressure of 5-30 bar, the hydrolysis of 5-(2-formaldehyde) Thioethyl) hydantoin obtains the potassium salt of methionine, and then carbon dioxide is used to release the methionine crystals from the aqueous solution of the potassium salt of methionine.
  • the amount of additives used in the step (1) is 50 ppm to 500 ppm based on the total mass of the methionine salt aqueous solution, preferably 70 ppm to 300 ppm.
  • the additive amount exceeds the upper limit of the above range, defoamer accumulation will occur, resulting in a decrease in bulk density and an increase in cost. If it is lower than the lower limit of the range, it will not play its due role. .
  • step (2) the crude methionine and additives, and water and/or crystallization mother liquor are dissolved together to obtain a methionine solution containing additives
  • the process is usually carried out in a dissolving tank, and then the additive-containing methionine solution is preferably added to the crystallizer in a continuous state and crystallized continuously therein.
  • the concentration of the additive-containing methionine solution is 8-15 wt%, preferably 10-13 wt%.
  • concentration of the additive-containing methionine solution if it is too low, a large amount of water needs to be evaporated and removed in the subsequent stage, resulting in increased costs; if the concentration is too high, the crystalline crude product of methionine cannot be made It is completely dissolved, so that the crystal growth during recrystallization cannot achieve the expected effect.
  • step (2) the amount of additives added is 100 ppm to 1000 ppm based on the total mass of the methionine suspension, preferably 200 ppm to 500 ppm.
  • the additive amount exceeds the upper limit of the above-mentioned range, the defoamer will accumulate, resulting in a decrease in bulk density and increase the cost. If it is lower than the lower limit of the range, it will not play its due role. .
  • cooling and cooling or evaporative cooling can be preferably used for crystallization, and evaporative cooling and crystallization are more preferred.
  • the vapor generated by evaporation can be used in the process of heating and dissolving the methionine suspension after being pressurized by a steam compressor to increase the temperature, so as to achieve the effect of energy reuse.
  • the crystallizer used in step (2) can be various types of crystallizers suitable for continuous crystallization, and is not particularly limited.
  • it can use stirred crystallization kettles, such as stirred crystallization kettles with external circulation and horizontal stirring crystallizers, forced circulation crystallizers (FC crystallizers), Norway crystallizers (OSLO crystallizers), and deflector cylinders plus baffles for crystallization.
  • FC crystallizers forced circulation crystallizers
  • OSLO crystallizers DTB crystallizer
  • FC crystallizer forced circulation crystallizers
  • OSLO crystallizers DTB crystallizer
  • DTB crystallizer preferably FC crystallizer, OSLO crystallizer and DTB crystallizer for continuous crystallization.
  • the additive of this example is that sodium stearoyl methyl taurate accounts for 6 wt%, the polyoxyethylene polyoxypropylene ether grafted silicone oil with a molecular weight of 3000 and an HLB value of 10 accounts for 6 wt%, dynamic viscosity at 25°C Hydroxy silicone oil of 90 mm 2 /s accounts for 3 wt%, and the rest is an aqueous mixture of water.
  • the above-mentioned methionine solution containing additives was continuously added to a DTB crystallizer with a volume of 1000L at 500L/h, and the temperature in the crystallizer was maintained at 25°C by evaporating water under reduced pressure (vacuum degree -0.092MPa) for continuous crystallization.
  • the crystalline slurry is continuously produced by controlling the liquid level to be constant.
  • the crystalline slurry is filtered, washed, and dried to obtain a methionine crystal product at 3.6Kg/h (Figure 1 shows the microscopic photo of the crystal) ,
  • the bulk density is 786g/L.
  • step (2) The water vapor evaporated during crystallization in step (2) is compressed by a vapor compressor to an absolute pressure of 0.09 MPa, which can be used as a heating medium for heating up when dissolving the crude methionine crystal; in addition, in this step (2) and step ( 1)
  • the crystallization mother liquor obtained by filtering methionine crystals is used to prepare a solution of crude methionine crystals.
  • the crystallization system operated continuously for 15 days without obvious foaming and the crystallization process was stable.
  • the additive of this example is polyoxyethylene polyoxypropylene ether grafted silicone oil with a molecular weight of 6000 and an HLB value of 12 accounting for 2% by weight of sodium cocoyl methyl taurate accounting for 2% by weight, and a dynamic viscosity at 25°C.
  • step (2) The water vapor evaporated during crystallization in step (2) is compressed by a vapor compressor to an absolute pressure of 0.1 MPa and can be used as a heating medium for heating up when dissolving the crude methionine; in addition, in this step (2) and step (1)
  • the crystallization mother liquor obtained by filtering methionine crystals in) is used to prepare a solution of crude methionine crystals.
  • the crystallization system operated continuously for 15 days without obvious foaming and the crystallization process was stable.
  • the additive of this example is that sodium lauroyl methyl taurate accounts for 3wt%, has a molecular weight of 5300 and a polyoxyethylene polyoxypropylene ether grafted silicone oil with an HLB value of 11 accounts for 4wt%, and the dynamic viscosity at 25°C is 1100mm 2 /s simethicone accounts for 3wt%, and the rest is an aqueous mixture of water.
  • step (2) The water vapor evaporated during crystallization in step (2) is compressed by a vapor compressor to an absolute pressure of 0.15 MPa, which can be used as a heating medium for heating up when dissolving the crude methionine; in addition, this step (2) and step (1)
  • the crystallization mother liquor obtained by filtering methionine crystals in) is used to prepare a solution of crude methionine crystals.
  • the crystallization system operated continuously for 15 days without obvious foaming and the crystallization process was stable.
  • the additive of this example is polyoxyethylene polyoxypropylene ether grafted silicone oil with 3wt% sodium palmitoyl methyl taurate, a molecular weight of 4200 and an HLB value of 9 occupies 3wt%, and a dynamic viscosity at 25°C of 510 mm 2 /s simethicone accounts for 2wt%, and the rest is an aqueous mixture of water.
  • the above-mentioned methionine solution containing additives was continuously added to a DTB crystallizer with a volume of 1000L at 500L/h, and the temperature in the crystallizer was maintained at 50°C by evaporating water under reduced pressure (vacuum degree -0.082MPa) for continuous crystallization.
  • the crystalline slurry is continuously produced by controlling the liquid level to be constant.
  • the crystalline slurry is filtered, washed, and dried to obtain a powdered methionine crystal product at 2.0Kg/h (Figure 4 shows the crystalline product Microscope photo), the density of the pile is 791g/L.
  • step (2) The water vapor evaporated during crystallization in step (2) is compressed by a vapor compressor to an absolute pressure of 0.13 MPa, which can be used as a heating medium for heating up when dissolving the crude methionine; in addition, this step (2) and step (1)
  • the crystallization mother liquor obtained by filtering methionine crystals in) is used to prepare a solution of crude methionine crystals.
  • the crystallization system operated continuously for 15 days without obvious foaming and the crystallization process was stable.
  • the additives of this example are polyoxyethylene polyoxypropylene ether grafted silicone oil with 5 wt% of sodium myristoyl methyl taurate, a molecular weight of 3600 and an HLB value of 10.5, and a dynamic viscosity of 270 mm at 25°C. 2 /s dimethyl silicone oil accounts for 2wt%, and the rest is an aqueous mixture of water.
  • the above-mentioned methionine solution containing additives is continuously added to a DTB crystallizer with a volume of 1000L at 500L/h, and the temperature in the crystallizer is maintained at 30°C by evaporating water under reduced pressure (vacuum degree -0.09MPa) for continuous crystallization.
  • the crystalline slurry is continuously produced by controlling the liquid level to be constant.
  • the crystalline slurry is filtered, washed, and dried to obtain a methionine crystal product at 2.4Kg/h (Figure 5 shows the microscopic photo of its crystal) ,
  • the bulk density is 795g/L.
  • step (2) The water vapor evaporated during crystallization in step (2) is compressed by a vapor compressor to an absolute pressure of 0.095MPa, which can be used as a heating medium for heating up when dissolving crude methionine; in addition, this step (2) and step (1)
  • the crystallization mother liquor obtained by filtering methionine crystals in) is used to prepare a solution of crude methionine crystals.
  • the crystallization system operated continuously for 15 days without obvious foaming and the crystallization process was stable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Zoology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及在甲硫氨酸制备过程中使用的添加剂及甲硫氨酸的制备方法。本发明提供的添加剂为包含A、B和C组分的混合物,A组分具有由以下通式(1)表示的结构式;B组分具有以下通式(2)表示的结构式:C组分为硅油; RCON(CH 3)CH 2CH 2SO 3Na (1)本发明提供的甲硫氨酸的制备方法,其包括在本发明提供的添加剂的存在下进行甲硫氨酸的结晶和/或重结晶。根据本发明提供的添加剂,乳化均匀,稳定性好,可长期稳定使用,适用于连续结晶过程。所制备的甲硫氨酸结晶晶型好、堆密度大、流动性好。此外,根据本发明的甲硫氨酸的制备方法,可以使结晶系统长期连续稳定地运行,没有明显的发泡现象,甲硫氨酸产品的结晶过程平稳进行。

Description

在甲硫氨酸制备过程中使用的添加剂及甲硫氨酸的制备方法 技术领域
本发明涉及甲硫氨酸的结晶过程中使用的添加剂及其使用方法,特别涉及在结晶过程中使用的包含具有除泡作用的化合物和调节晶体生长的化合物的添加剂及甲硫氨酸的制备方法。
背景技术
甲硫氨酸是动物生长所必需的氨基酸之一,参与蛋白质的合成,也是唯一含硫的氨基酸,用作饲料的营养强化剂,可以弥补氨基酸平衡。
目前的甲硫氨酸主要采用化学法合成。按照原料路线不同,其合成方法主要有丙二酸酯法、丙烯醛法、或氨基内酯法等。相比之下,采用氢氰酸及其盐与甲硫基丙醛缩合制备5-(2-甲硫基乙基)乙内酰脲,再用碳酸钾水解、二氧化碳来酸化反应结晶的合成路线最具竞争力。
在上述合成工艺中,由于使用气态二氧化碳进行酸化反应结晶,因而会产生非常严重的发泡现象,导致结晶过程不能连续顺畅进行。此外,通过反应结晶或冷却重结晶得到的甲硫氨酸结晶的晶型都为鳞片状,其堆密度小、流动性差、容易飘粉,不方便后续使用。
为了控制反应结晶过程中的发泡现象并获得更好的晶体形态,EP1256571A1中公开了一种用二氧化碳从甲硫氨酸碱金属盐的水溶液中释放甲硫氨酸的方法,该方法包括在释放甲硫氨酸之前,向含有甲硫氨酸碱金属盐的水溶液中加入消泡剂。所有具有抑制泡沫功能的化合物都可以用做消泡剂,优选将消泡剂以分散液的形式加入到溶液中,以提高消泡剂对甲硫氨酸反应结晶过程的作用,特别是抑制形成细叶状或薄片状的晶体产物,可以得到球形晶体,干燥后基本无粉末。
在JPH04244056A、JPH11-158140A、JPH04-169570A中,日本住友化学公司提出在用二氧化碳反应结晶时分别加入添加剂,各专利文献中使用的添加剂分别为酪蛋白或半合成纤维素系水溶性高分子(包括甲基纤维素、乙基纤维素、羟乙基甲基纤维素、羟乙基纤维素、羟丙基甲基纤维素等);聚集剂(失水山梨糖醇单月桂酸酯、聚乙烯醇、羟丙基甲基纤维素等);和聚乙烯醇。最终得到的甲硫氨酸结晶为颗粒状或厚片状,堆密度为0.55~0.60g/cc。
在JPH10-306071A和JP2004-292324A中,日本曹达公司公开了,通过添加聚乙烯醇或者谷蛋白而从含有DL-甲硫氨酸的溶液中析出DL-甲硫氨酸晶体来生产颗粒状的DL-甲硫氨酸晶体产品。该产品的比容积为1.3-1.6mL/g。
上述方法所得到的颗粒状甲硫氨酸晶体实际上是鳞片状晶体的团聚体,其堆密度较小,在干燥、使用过程中承受挤压后容易破碎、飘粉,因此,不方便后续使用。
在JPS46-019610中,日本住友公司描述了一种蛋氨酸重结晶的方法,重结晶过程中也需要加入添加剂和消泡剂。其中的添加剂为非离子表面活性剂(如氧乙烯脂肪酸酯,聚氧乙烯烷基酚醚,聚氧乙烯-聚氧丙烯,或脱水山梨糖醇脂肪酸酯)或阴离子表面活性剂(如壬磺酸盐,烷基萘磺酸盐,烷基苯磺酸盐或二烷基磺酸盐琥珀酸盐)。但是产品堆积密度不高。
为获得高堆积密度的甲硫氨酸晶体,在CN1599712A(授权公告号为CN1332926C)中,德国德固赛公司提出在将5-(2-甲硫基乙基)乙内酰脲转化成甲硫氨酸并通入二氧化碳之前添加添加剂(1)和添加剂(2)。其中,添加剂(1)结构式如下:
C nH 2n+xCOO-[CH 2CH 2O] m-H
n:9~19;m:在1~10范围内的分布;x:1、-1、-3、-5,其中2n+x≥1。
添加剂(2)选自改性纤维素,具体为甲基纤维素、甲基羟基纤维素、甲基羟丙基纤维素、羟丙基纤维素、羟乙基纤维素、羧甲基纤维素钠、羧甲 基羟乙基纤维素钠、或羧甲基羟丙基纤维素钠,优选羟乙基纤维素。该方法所得到的甲硫氨酸重结晶产品晶型较好,堆密度最大为620g/L。
在CN104203912A中,德国赢创公司提出,通过将二氧化碳通入到5-(2-甲硫基乙基)乙内酰脲粗品的水解产品中,得到粗甲硫氨酸结晶。并且,出于纯化目的,将该粗甲硫氨酸在为非离子表面活性剂、阴离子表面活性剂或者不同的非离子表面活性剂与阴离子表面活性剂的混合物的结晶添加剂和消泡剂存在下进行重结晶。结晶添加剂为添加剂(1)和添加剂(2)中的一种。其中,结晶添加剂(1)是以下三种结构式表示的化合物的一种、或它们的混合物:
R 1-O-SO 3M
R 2-O-(CH 2) n-SO 3M
R 3-(O-C 2H 4) n-O-SO 3M
其中,n是1~12的整数,优选n=2;M是钠或钾;R 1-R 3是线性、支化或环状的、饱和或不饱和的C 8~C 20烷基或芳基,优选R 1、R 2和R 3是线性的、饱和的C 8~C 18烷基。
添加剂(2)是山梨糖醇脂肪酸酯或不同的山梨糖醇脂肪酸酯的混合物。优选聚乙氧基化山梨糖醇脂肪酸酯,尤其是聚乙氧基化山梨糖醇三硬脂酸酯。
消泡剂包含硅油,还包含作为乳化剂的成分(优选为聚乙氧基化脂肪酸和聚乙氧基化脂肪醇的混合物),消泡剂另外还包含二氧化硅。
该方法所得的的甲硫氨酸的堆密度为537-651g/L。
在CN105764886A中,德国德固赛公司提出在结晶添加剂和消泡剂的存在下来进行D,L-蛋氨酸的结晶。所采用的结晶添加剂包括非离子或阴离子表面活性剂、或者多种非离子或阴离子表面活性剂的混合物。其中阴离子表面活性剂为以下三种结构式表示的化合物之一或其混合物:
C nH 2n+1-O-SO 3Na,其中n=12-18(
Figure PCTCN2020122134-appb-000001
1218G,Oleochemicals)
C nH 2n+1-O-C 2H 4-SO 3Na,其中n=8-18(
Figure PCTCN2020122134-appb-000002
SCI 85,Clariant)
C nH 2n+1-(OC 2H 4) 2-O-SO 3Na,其中n=12(
Figure PCTCN2020122134-appb-000003
FES 27,Cognis)
非离子表面活性剂为山梨糖醇脂肪酸酯或多种山梨糖醇脂肪酸酯的混合物,特别优选聚乙氧基化山梨糖醇三硬脂酸酯。
并且,消泡剂包含硅油、还有包含用作乳化剂的成分(优选为聚乙氧基化脂肪酸和聚乙氧基化脂肪醇的混合物)、还可以包含二氧化硅。
该方法所得到的甲硫氨酸重结晶产品堆密度最大为651g/L。
上述方法所使用的添加剂均含有酯键,在较高的甲硫氨酸配制温度条件下容易发生水解,从而失去调节、消泡效果,因此,在结晶母液套用条件下,易造成结晶过程的不稳定,从而影响连续结晶过程的稳定运行。并且,甲硫氨酸结晶产品的堆密度仍有提高的空间。
发明内容
针对文献中存在的问题,本发明提供一种在甲硫氨酸制备过程中使用的添加剂以及甲硫氨酸的制备方法,通过使用该添加剂可以制备高堆密度且流动性好的甲硫氨酸晶体产品。
本发明提供一种在甲硫氨酸制备过程中使用的添加剂,其中,所述添加剂为包含A、B和C组分的混合物,
所述A组分具有由以下通式(1)表示的结构式:
RCON(CH 3)CH 2CH 2SO 3Na    (1)
式(1)中,R为饱和或者不饱和的C 7~C 36烃基,优选为C 7~C 36的烷基或烯基;
所述B组分具有以下通式(2)表示的结构式:
Figure PCTCN2020122134-appb-000004
式(2)中,X和Y各自为1~30的整数,R 1~R 4彼此相同或不同,并且独立地表示氢、C 1~C 3的烷基、饱和或者不饱和的脂肪族羟基、或者饱和或者不饱和的聚醚基;条件是,R 1~R 4的至少之一表示饱和或者不饱和的聚醚基,该聚醚基更优选为由以下通式(3)表示的基团:
-C 3H 6O(C 2H 4O) a(C 3H 6O) bR 0   (3)
式(3)中,a表示0~50的整数,b表示0~50的整数,R 0表示氢、烷基、酰氧基、或烷氧基;
所述C组分为硅油。
根据发明提供的在甲硫氨酸制备过程中使用的添加剂,其中,所述A组分为辛酰基甲基牛磺酸钠、癸酰基甲基牛磺酸钠、月桂酰基甲基牛磺酸钠、肉豆蔻酰基甲基牛磺酸钠、软脂酰基甲基牛磺酸钠、硬脂酰基甲基牛磺酸钠、油酰基甲基牛磺酸钠、亚油酰基甲基牛磺酸钠、亚麻酰基甲基牛磺酸钠、芥酰基甲基牛磺酸钠、椰油酰基甲基牛磺酸钠、棕榈酰基甲基牛磺酸钠、大豆油脂酰基甲基牛磺酸钠、花生油脂酰基甲基牛磺酸钠、芝麻油脂酰基甲基牛磺酸钠、芥菜油脂酰基甲基牛磺酸钠、硬化牛脂酰基甲基牛磺酸钠、和硬化植物油脂酰基甲基牛磺酸钠中的一种或多种;
优选为月桂酰基甲基牛磺酸钠、肉豆蔻酰基甲基牛磺酸钠、软脂酰基甲基牛磺酸钠、硬脂酰基甲基牛磺酸钠、椰油酰基甲基牛磺酸钠、和棕榈酰基甲基牛磺酸钠中的一种或多种。
根据本发明提供的在甲硫氨酸制备过程中使用的添加剂,其中,所述B组分的分子量为1000~10000,优选为3000~6000。
根据本发明提供的在甲硫氨酸制备过程中使用的添加剂,其中,所述B组分的HLB值为7~15,优选为9~12。
根据本发明提供的在甲硫氨酸制备过程中使用的添加剂,其中,所述B组分为聚醚接枝改性硅油,优选为烯丙基聚氧烷基醚类接枝改性硅油。
根据本发明提供的在甲硫氨酸制备过程中使用的添加剂,其中,所述C组分包括二甲基硅油、羟基硅油和含氢硅油的一种或多种,优选所述C组分 的在25℃下的动力学粘度为90mm 2/s~1500mm 2/s。
根据本发明提供的在甲硫氨酸制备过程中使用的添加剂,其中,所述添加剂为包含A、B和C组分的含水混合物,并且基于所述添加剂的总质量,所述A组分的含量为1~8wt%,所述B组分的含量为0.5~8wt%,所述C组分的含量为0.5~4wt%;优选所述A组分的含量为2~6wt%,所述B组分的含量为2~6wt%,所述C组分的含量为1~3wt%。
本发明还提供一种甲硫氨酸的制备方法,其包括:
在根据本发明提供的添加剂的存在下进行甲硫氨酸的结晶和/或重结晶。
根据本发明提供的甲硫氨酸的制备方法,其包括以下步骤:
(1)在添加剂以及二氧化碳的存在下,使由5-(2-甲硫基乙基)乙内酰脲水解而获得的甲硫氨酸盐水溶液反应结晶而得到甲硫氨酸结晶粗品;和
(2)使上述甲硫氨酸结晶粗品、与水和/或结晶母液形成甲硫氨酸悬浮液,并加入添加剂,将获得的含添加剂的甲硫氨酸溶液重结晶,以得到甲硫氨酸结晶产品。
根据本发明提供的甲硫氨酸的制备方法,其中,所述步骤(1)中所述添加剂的用量基于所述甲硫氨酸盐水溶液的总质量为50ppm~500ppm,优选为70ppm~300ppm。
根据本发明提供的甲硫氨酸的制备方法,其中,所述步骤(2)中所述甲硫氨酸悬浮液的浓度为8~15wt%,优选为10~13wt%。
根据本发明提供的甲硫氨酸的制备方法,其中,并且所述步骤(2)中所述添加剂的用量基于所述甲硫氨酸悬浮液的总质量为100ppm~1000ppm,优选为200ppm~500ppm。
根据本发明提供的甲硫氨酸的制备方法,其中,所述步骤(2)中,所述结晶采用冷却降温或蒸发降温的方式进行,优选采用蒸发降温来进行结晶;
当采用蒸发降温进行结晶时,蒸发所产生的蒸汽通过蒸汽压缩机加压提高温度后用于甲硫氨酸悬浮液的升温溶解过程。
根据本发明提供的甲硫氨酸的制备方法,其中,所述步骤(2)中使用的结 晶器包括,搅拌结晶釜、强制循环结晶器(FC结晶器)、奥斯陆结晶器(OSLO结晶器)和导流筒加挡板结晶器(DTB结晶器);优选FC结晶器、OSLO结晶器和DTB结晶器。
根据本发明提供的在甲硫氨酸制备过程中使用的添加剂以及甲硫氨酸的制备方法,所获得的有益效果是:
根据本发明提供的添加剂,其便于使用,并且在制备甲硫氨酸的反应结晶以及重结晶形成乳化体系时,乳化均匀,体系稳定,不易分层。并且,本发明提供的添加剂稳定性好,在连续套用过程中不易分解,可长期稳定使用,适用于连续结晶过程。采用本发明的添加剂所制备的甲硫氨酸结晶晶型好、堆密度大、流动性好,便于后续使用,堆密度为786g/L以上,甚至高达802g/L。此外,根据本发明的甲硫氨酸的制备方法,可以使结晶系统长期连续稳定地运行,没有明显的发泡现象,甲硫氨酸产品的结晶过程平稳进行。
附图说明
图1~5,分别示出实施例1~5对应的甲硫氨酸晶体的显微镜照片。
具体实施方式
根据本发明提供的在甲硫氨酸制备过程中使用的添加剂,其为包含A、B和C组分的混合物。并且,在本发明的优选实施方案中,该添加剂以含水混合物的形式使用。
所述A组分为结晶生长调节剂,其结构式如以下通式(1)所示:
RCON(CH 3)CH 2CH 2SO 3Na    (1)
式(1)中R为饱和或者不饱和的C 7~C 36烃基,优选为C 7~C 36的烷基或烯基。
所述A组分的具体实例包括,辛酰基甲基牛磺酸钠、癸酰基甲基牛磺酸钠、月桂酰基甲基牛磺酸钠、肉豆蔻酰基甲基牛磺酸钠、软脂酰基甲基牛磺 酸钠、硬脂酰基甲基牛磺酸钠、油酰基甲基牛磺酸钠、亚油酰基甲基牛磺酸钠、亚麻酰基甲基牛磺酸钠、芥酰基甲基牛磺酸钠、椰油酰基甲基牛磺酸钠、棕榈酰基甲基牛磺酸钠、大豆油脂酰基甲基牛磺酸钠、花生油脂酰基甲基牛磺酸钠、芝麻油脂酰基甲基牛磺酸钠、芥菜油脂酰基甲基牛磺酸钠、硬化牛脂酰基甲基牛磺酸钠、和硬化植物油脂酰基甲基牛磺酸钠中的一种或多种。
其中,优选月桂酰基甲基牛磺酸钠、肉豆蔻酰基甲基牛磺酸钠、软脂酰基甲基牛磺酸钠、硬脂酰基甲基牛磺酸钠、椰油酰基甲基牛磺酸钠、和棕榈酰基甲基牛磺酸钠中的一种或多种。
上述A组分的具体化合物通常可以通过商购获得。
根据本发明提供的添加剂,其中的A组分具有刺激性极低、无毒、易生物降解的特点,具有良好的生物降解性,该物质能够被动物体内的酶分解为脂肪酸和氨基酸,能够被动物体利用。此外,与现有技术中所使用的酯类添加剂相比,本发明的添加剂耐水解稳定性更好,可以长时间在体系内循环,稳定发挥结晶生长调节作用。
上述B组分为乳化抑泡剂,主要具有抑泡作用和乳化作用,其具有以下通式(2)表示的结构式:
Figure PCTCN2020122134-appb-000005
式(2)中,X和Y各自为1~30的整数,R 1~R 4彼此相同或不同,并且独立地表示氢、C 1~3的烷基、饱和或者不饱和的脂肪族羟基、或者饱和或者不饱和的聚醚基;当R 1~R 4的至少之一表示饱和或者不饱和的聚醚基时,其更优选为由以下通式(3)表示的基团:
-C 3H 6O(C 2H 4O) a(C 3H 6O) bR 0    (3)
其中,a表示0~50的整数,b表示0~50的整数,R 0表示氢、烷基、酰氧基、 或烷氧基;
所述B组分的分子量为1000~10000,优选为3000~6000,并且其HLB值为7~15,优选为9~12。
所述B组分优选为聚醚改性硅油,在更优选的实施方案中,B组分为烯丙基聚氧烷基醚类接枝改性硅油,B组分还更优选为聚氧乙烯聚氧丙烯醚接枝硅油。
所述B组分可以在水中自乳化或与水以任意比例互溶,因此在甲硫氨酸结晶过滤的过程中,几乎全部进入水相,不会附着在甲硫氨酸产品表面,因此,其消泡作用可以长时间稳定维持。认为B组分在本发明条件下使用可以实现消泡、抑泡、乳化的功能,其主要起到抑泡和乳化的作用。
在甲硫氨酸的制备过程中,由于在获得甲硫氨酸结晶粗品时需要通入二氧化碳而产生大量泡沫,同时在甲硫氨酸重结晶时加入A组分也会产生大量泡沫,这些泡沫会影响系统的稳定运行,并且影响产品的形态和堆密度,因此需要使用B组分来抑制泡沫。在B组分的存在下,A组分和C组分才可以形成乳化状态并分散在体系中。
所述C组分为具有强化消泡作用的硅油,消灭结晶过程中产生的泡沫,稳定结晶环境,提高结晶的光滑度,使产品具有很好的流动性。
该C组分包括二甲基硅油、羟基硅油或含氢硅油。优选C组分在25℃下的动力学粘度为90mm 2/s~1500mm 2/s。
在使5-(2-甲硫基乙基)乙内酰脲水解、并用二氧化碳来酸化反应结晶以及重结晶的过程中,通过使用本发明的添加剂,在A组分、B组分和C组分的协同作用下,可以获得堆密度更高、流动性更好的粉末状的甲硫氨酸晶体产品,并且使得结晶系统长期连续稳定地运行,没有明显的发泡现象,甲硫氨酸产品的结晶过程平稳进行。并且,根据本发明的添加剂在加入少量时就可以表现出其消泡、抑泡和促进晶体生长的作用。
所述A组分、B组分和C组分的总含量占以含水混合物形式的添加剂总重量的2%~20%,优选为5%~15%,其余部分为水。
在优选情况下,为了便于添加剂的配给和均匀分布,本发明的添加剂以含水混合物的形式使用。并且上述A、B和C三种组分在添加剂中均以特定的比例存在,即,基于所述添加剂的总质量,所述A组分的含量为1~8wt%,所述B组分的含量为0.5~8wt%,所述C组分的含量为0.5~4wt%;优选所述A组分的含量为2~6wt%,所述B组分的含量为2~6wt%,所述C组分的含量为1~3wt%。如果A、B和C组分各自的含量不在上述范围内,则不能形成稳定的乳化剂,不能均匀的分散在体系中,由此不能起到预期的效果。三种组分中的任一组分不在上述范围内都会打破添加剂的协同作用的平衡,从而降低预期效果。
根据本发明提供的甲硫氨酸的制备方法,其包括:在根据本发明所述的添加剂的存在下进行甲硫氨酸的结晶和/或重结晶。
在优选情况下,本发明的甲硫氨酸的制备方法包括以下步骤:
(1)在所述添加剂以及二氧化碳的存在下,使由5-(2-甲硫基乙基)乙内酰脲水解而获得的甲硫氨酸盐水溶液反应结晶而得到甲硫氨酸结晶粗品;和
(2)使上述甲硫氨酸结晶粗品、与水和/或结晶母液形成甲硫氨酸悬浮液,并将使所述甲硫氨酸悬浮液与所述添加剂一起溶解所获得的含添加剂的甲硫氨酸溶液重结晶,以得到甲硫氨酸结晶产品。
具体而言,本发明的甲硫氨酸的制备方法包括:
(1)在由5-(2-甲硫基乙基)乙内酰脲水解而获得的甲硫氨酸盐水溶液中加入根据本发明的添加剂,并且在搅拌下通入二氧化碳,以反应结晶方式析出甲硫氨酸结晶,过滤得到甲硫氨酸结晶粗品;
(2)将上述甲硫氨酸结晶粗品、与水和/或结晶母液混合得到甲硫氨酸悬浮液,加入所述添加剂,在搅拌下并在90℃~110℃的温度下使得甲硫氨酸结 晶粗品完全溶解,得到含添加剂的甲硫氨酸溶液;将上述含添加剂的甲硫氨酸溶液在25~65℃的温度下重结晶,将获得的结晶浆料经过滤、洗涤、干燥,得到甲硫氨酸结晶产品。
其中,结晶母液可以为本发明的甲硫氨酸的制备方法中的步骤(2)中重结晶后进行过滤获得的结晶母液,或者可以为本发明的甲硫氨酸的制备方法中的步骤(1)中结晶后进行过滤获得的结晶母液与步骤(2)中重结晶后进行过滤获得的结晶母液的混合液。
根据本发明提供的甲硫氨酸的制备方法,其中,在步骤(1)中,关于5-(2-甲硫基乙基)乙内酰脲,其可以通过商购获得。
在步骤(1)中,关于通过由5-(2-甲硫基乙基)乙内酰脲水解而获得甲硫氨酸盐水溶液、随后通入二氧化碳从而析出甲硫氨酸结晶粗品的方法为本领域中通常使用的方法,其操作条件可以采用本领域通常使用的操作条件。例如,该方法可以为,在氢氧化钾、碳酸钾和/或碳酸氢钾或它们的混合物的存在下,在温度为120-250℃,压力5-30bar的条件下水解5-(2-甲硫基乙基)乙内酰脲得到甲硫氨酸的钾盐,随后用二氧化碳从甲硫氨酸钾盐的水溶液中释放甲硫氨酸结晶。
另外,所述步骤(1)中添加剂的用量基于甲硫氨酸盐水溶液的总质量为50ppm~500ppm,优选为70ppm~300ppm。在该步骤(1)中,添加剂的添加量超过上述范围的上限,则产生消泡剂累积,导致堆密度降低,并且增加成本,如果低于该范围的下限,则不能起到应有的作用。
根据本发明提供的甲硫氨酸的制备方法,其中,在步骤(2)中,将甲硫氨酸粗品与添加剂、以及水和/或结晶母液溶解在一起获得含有添加剂的甲硫氨酸溶液的过程通常在溶解釜中进行,随后优选以连续的状态将含添加剂的甲硫氨酸溶液加入结晶器,并在其中连续结晶。
步骤(2)中,含添加剂的甲硫氨酸溶液的浓度为8~15wt%,优选为 10~13wt%。关于该含添加剂的甲硫氨酸溶液的浓度,如果其过低,则在后续阶段需要将大量的水蒸发除去,导致成本增大;如果浓度过高,则不能使甲硫氨酸的结晶粗品完全溶解,由此使得重结晶时的晶体生长不能达到预期的效果。
步骤(2)中,添加剂的加入量基于甲硫氨酸悬浮液的总质量为100ppm~1000ppm,优选为200ppm~500ppm。在该步骤(2)中,添加剂的添加量超过上述范围的上限,则产生消泡剂累积,导致堆密度降低,并且增加成本,如果低于该范围的下限,则不能起到应有的作用。
步骤(2)中,可以优选采用冷却降温或蒸发降温方式进行结晶,更优选采用蒸发降温结晶。并且在蒸发降温结晶时,蒸发所产生的蒸汽可通过蒸汽压缩机加压提高温度后用于甲硫氨酸悬浮液的升温溶解过程,从而达到能源再利用的效果。
步骤(2)中采用的结晶器可以为适合连续结晶的各种形式的结晶器,而没有特别的限制。例如其可以采用搅拌结晶釜,如带有外循环的搅拌结晶釜和卧式搅拌结晶器,强制循环结晶器(FC结晶器),奥斯陆结晶器(OSLO结晶器)和导流筒加挡板结晶器(DTB结晶器);优选FC结晶器、OSLO结晶器和DTB结晶器进行连续结晶。
以下结合实施例进一步说明本发明,但以下所述实施例并不限制本发明的保护范围。
实施例1
此实例的添加剂为,硬脂酰基甲基牛磺酸钠占6wt%、具有的分子量为3000且HLB值为10的聚氧乙烯聚氧丙烯醚接枝硅油占6wt%、25℃下动力学粘度为90mm 2/s的羟基硅油占3wt%、其余为水的含水混合物。
(1)在由5-(2-甲硫基乙基)乙内酰脲水解而获得的甲硫氨酸盐水溶液中加入基于该甲硫氨酸盐水溶液为300ppm的添加剂,搅拌下通入二氧化碳,以 反应结晶方式析出甲硫氨酸结晶,过滤得到甲硫氨酸结晶粗品。
(2)将上述甲硫氨酸结晶粗品送入溶解釜中,加适量水和/或结晶母液配制成固成分含量为11wt%的甲硫氨酸悬浮液,加入基于甲硫氨酸溶液悬浮液为500ppm的添加剂,搅拌升温至釜内温度达到100℃并保温一段时间,直到甲硫氨酸结晶粗品完全溶解,得到浓度为10wt%的含添加剂的甲硫氨酸溶液。将上述含添加剂的甲硫氨酸溶液以500L/h连续加入容积为1000L的DTB结晶器内,通过减压(真空度-0.092MPa)蒸发水的方式维持结晶器内温度为25℃进行连续结晶,同时,以控制液位不变的方式连续出结晶浆料,结晶浆料经过滤、洗涤、干燥,以3.6Kg/h得到甲硫氨酸结晶产品(图1示出其晶体的显微镜照片),堆密度为786g/L。
步骤(2)中结晶时蒸发出来的水蒸气经蒸汽压缩机压缩到绝压0.09MPa后可用于在溶解甲硫氨酸结晶粗品时升温的加热介质;此外,此步骤(2)中以及步骤(1)中过滤甲硫氨酸结晶得到的结晶母液用于配制甲硫氨酸结晶粗品的溶液。
结晶系统连续运行15天,未见明显发泡现象,结晶过程平稳。
实施例2
此实例的添加剂为,椰油酰基甲基牛磺酸钠占2wt%、具有的分子量为6000且HLB值为12的聚氧乙烯聚氧丙烯醚接枝硅油占2wt%、25℃下动力学粘度为1500mm 2/s的二甲基硅油占1wt%、其余为水的含水混合物。
(1)在由5-(2-甲硫基乙基)乙内酰脲水解而获得的甲硫氨酸盐水溶液中加入基于该甲硫氨酸盐水溶液为150ppm的添加剂,搅拌下通入二氧化碳,以反应结晶方式析出甲硫氨酸结晶,过滤得到甲硫氨酸结晶粗品。
(2)将上述甲硫氨酸粗品送入溶解釜中,加适量水和/或结晶母液配制成固成分含量为8wt%的甲硫氨酸悬浮液,加入基于甲硫氨酸溶液悬浮液为200ppm的添加剂,搅拌升温至釜内温度达到90℃并保温一段时间,直到甲硫 氨酸结晶粗品完全溶解,得到浓度为11wt%的含添加剂的甲硫氨酸溶液。将上述含添加剂的甲硫氨酸溶液以500L/h连续加入容积为1000L的OSLO结晶器内,通过减压(真空度-0.088MPa)蒸发水的方式维持结晶器内温度为40℃进行连续结晶,同时,以控制液位不变的方式连续出结晶浆料,结晶浆料经过滤、洗涤、干燥,以1.9Kg/h得到粉末状甲硫氨酸结晶产品(图2示出其结晶的显微镜照片),堆为密度802g/L。
步骤(2)中结晶时蒸发出来的水蒸气经蒸汽压缩机压缩到绝压0.1MPa后可用于在溶解甲硫氨酸粗品时升温的加热介质;此外,此步骤(2)中以及步骤(1)中过滤甲硫氨酸结晶得到的结晶母液用于配制甲硫氨酸结晶粗品的溶液。
结晶系统连续运行15天,未见明显发泡现象,结晶过程平稳。
实施例3
此实例的添加剂为,月桂酰基甲基牛磺酸钠占3wt%、具有的分子量为5300且HLB值为11的聚氧乙烯聚氧丙烯醚接枝硅油占4wt%、25℃下动力学粘度为1100mm 2/s的二甲基硅油占3wt%、其余为水的含水混合物。
(1)在由5-(2-甲硫基乙基)乙内酰脲水解而获得的甲硫氨酸盐水溶液中加入基于该甲硫氨酸盐水溶液为70ppm的添加剂,搅拌下通入二氧化碳,以反应结晶方式析出甲硫氨酸结晶,过滤得到甲硫氨酸结晶粗品。
(2)将上述甲硫氨酸粗品送入溶解釜中,加适量水和/或结晶母液配制成固成分含量为13wt%的甲硫氨酸悬浮液,加入基于甲硫氨酸溶液悬浮液为400ppm的添加剂(月桂酰基甲基牛磺酸钠占3wt%,分子量为5300、HLB值为11的聚氧乙烯聚氧丙烯醚接枝硅油占4wt%,25℃下动力学粘度为1100mm 2/s的二甲基硅油占3wt%,其余为水),搅拌升温至釜内温度达到110℃并保温一段时间,直到甲硫氨酸结晶粗品完全溶解,得到浓度为12wt%的含添加剂的甲硫氨酸溶液。将上述含添加剂的甲硫氨酸溶液以500L/h连续加入容积为1000L的FC结晶器内,通过减压(真空度-0.07MPa)蒸发水的方式维 持结晶器内温度为65℃进行连续结晶,同时,以控制液位不变的方式连续出结晶浆料,结晶浆料经过滤、洗涤、干燥,以2.5Kg/h得到粉末状的甲硫氨酸结晶产品(图3示出其结晶的显微镜照片),堆为密度798g/L。
步骤(2)中结晶时蒸发出来的水蒸气经蒸汽压缩机压缩到绝压0.15MPa后可用于在溶解甲硫氨酸粗品时升温的加热介质;此外,此步骤(2)中以及步骤(1)中过滤甲硫氨酸结晶得到的结晶母液用于配制甲硫氨酸结晶粗品的溶液。
结晶系统连续运行15天,未见明显发泡现象,结晶过程平稳。
实施例4
此实例的添加剂为,棕榈酰基甲基牛磺酸钠占3wt%、分子量为4200且HLB值为9的聚氧乙烯聚氧丙烯醚接枝硅油占3wt%、25℃下动力学粘度为510mm 2/s的二甲基硅油占2wt%、其余为水的含水混合物。
(1)在由5-(2-甲硫基乙基)乙内酰脲水解而获得的甲硫氨酸盐水溶液中加入基于该甲硫氨酸盐水溶液为100ppm的添加剂,搅拌下通入二氧化碳,以反应结晶方式析出甲硫氨酸结晶,过滤得到甲硫氨酸结晶粗品。
(2)将上述甲硫氨酸粗品送入溶解釜中,加适量水和/或结晶母液配制成固成分含量为10wt%的甲硫氨酸悬浮液,加入基于甲硫氨酸溶液悬浮液为250ppm的添加剂,搅拌升温至釜内温度达到105℃并保温一段时间,直到甲硫氨酸结晶粗品完全溶解,得到浓度为13wt%的含添加剂的甲硫氨酸溶液。将上述含添加剂的甲硫氨酸溶液以500L/h连续加入容积为1000L的DTB结晶器内,通过减压(真空度-0.082MPa)蒸发水的方式维持结晶器内温度为50℃进行连续结晶,同时,以控制液位不变的方式连续出结晶浆料,结晶浆料经过滤、洗涤、干燥,以2.0Kg/h得到粉末状的甲硫氨酸结晶产品(图4示出其结晶的显微镜照片),堆为密度791g/L。
步骤(2)中结晶时蒸发出来的水蒸气经蒸汽压缩机压缩到绝压0.13MPa后可用于在溶解甲硫氨酸粗品时升温的加热介质;此外,此步骤(2)中以及步骤 (1)中过滤甲硫氨酸结晶得到的结晶母液用于配制甲硫氨酸结晶粗品的溶液。
结晶系统连续运行15天,未见明显发泡现象,结晶过程平稳。
实施例5
此实例的添加剂为,肉豆蔻酰基甲基牛磺酸钠占5wt%、分子量为3600且HLB值为10.5的聚氧乙烯聚氧丙烯醚接枝硅油占5wt%、25℃下动力学粘度为270mm 2/s的二甲基硅油占2wt%、其余为水的含水混合物。
(1)在由5-(2-甲硫基乙基)乙内酰脲水解而获得的甲硫氨酸盐水溶液中加入基于该甲硫氨酸盐水溶液为200ppm的添加剂,搅拌下通入二氧化碳,以反应结晶方式析出甲硫氨酸结晶,过滤得到甲硫氨酸结晶粗品。
(2)将上述甲硫氨酸粗品送入溶解釜中,加适量水和/或结晶母液配制成固成分含量为9wt%的甲硫氨酸悬浮液,加入基于甲硫氨酸溶液悬浮液为400ppm的添加剂,搅拌升温至釜内温度达到95℃并保温一段时间,直到甲硫氨酸结晶粗品完全溶解,得到浓度为14wt%的含添加剂的甲硫氨酸溶液。将上述含添加剂的甲硫氨酸溶液以500L/h连续加入容积为1000L的DTB结晶器内,通过减压(真空度-0.09MPa)蒸发水的方式维持结晶器内温度为30℃进行连续结晶,同时,以控制液位不变的方式连续出结晶浆料,结晶浆料经过滤、洗涤、干燥,以2.4Kg/h得到甲硫氨酸结晶产品(图5示出其结晶的显微镜照片),堆为密度795g/L。
步骤(2)中结晶时蒸发出来的水蒸气经蒸汽压缩机压缩到绝压0.095MPa后可用于在溶解甲硫氨酸粗品时升温的加热介质;此外,此步骤(2)中以及步骤(1)中过滤甲硫氨酸结晶得到的结晶母液用于配制甲硫氨酸结晶粗品的溶液。
结晶系统连续运行15天,未见明显发泡现象,结晶过程平稳。

Claims (14)

  1. 一种在甲硫氨酸制备过程中使用的添加剂,其中,所述添加剂为包含A、B和C组分的混合物,
    所述A组分具有由以下通式(1)表示的结构式:
    RCON(CH 3)CH 2CH 2SO 3Na  (1)
    式(1)中,R为饱和或者不饱和的C 7~C 36烃基,优选为C 7~C 36的烷基或烯基;
    所述B组分具有以下通式(2)表示的结构式:
    Figure PCTCN2020122134-appb-100001
    式(2)中,X和Y各自为1~30的整数,R 1~R 4彼此相同或不同,并且独立地表示氢、C 1~C 3的烷基、饱和或者不饱和的脂肪族羟基、或者饱和或者不饱和的聚醚基;条件是,R 1~R 4的至少之一表示饱和或者不饱和的聚醚基,该聚醚基更优选为由以下通式(3)表示的基团:
    -C 3H 6O(C 2H 4O) a(C 3H 6O) bR 0  (3)
    式(3)中,a表示0~50的整数,b表示0~50的整数,R 0表示氢、烷基、酰氧基、或烷氧基;
    所述C组分为硅油。
  2. 根据权利要求1所述的在甲硫氨酸制备过程中使用的添加剂,其中,所述A组分为辛酰基甲基牛磺酸钠、癸酰基甲基牛磺酸钠、月桂酰基甲基牛磺酸钠、肉豆蔻酰基甲基牛磺酸钠、软脂酰基甲基牛磺酸钠、硬脂酰基甲基牛磺酸钠、油酰基甲基牛磺酸钠、亚油酰基甲基牛磺酸钠、亚麻酰基甲基牛磺酸钠、芥酰基甲基牛磺酸钠、椰油酰基甲基牛磺酸钠、棕榈酰基甲基牛磺酸钠、大豆油脂酰基甲基牛磺酸钠、花生油脂酰基甲基牛磺酸钠、芝麻油脂酰基甲基牛磺酸钠、芥菜油脂酰基甲基牛磺酸钠、硬化牛脂酰基甲基牛磺酸 钠、和硬化植物油脂酰基甲基牛磺酸钠中的一种或多种;
    优选为月桂酰基甲基牛磺酸钠、肉豆蔻酰基甲基牛磺酸钠、软脂酰基甲基牛磺酸钠、硬脂酰基甲基牛磺酸钠、椰油酰基甲基牛磺酸钠、和棕榈酰基甲基牛磺酸钠中的一种或多种。
  3. 根据权利要求1所述的在甲硫氨酸制备过程中使用的添加剂,其中,所述B组分的分子量为1000~10000,优选为3000~6000。
  4. 根据权利要求1-3任一项所述的在甲硫氨酸制备过程中使用的添加剂,其中,所述B组分的HLB值为7~15,优选为9~12。
  5. 根据权利要求1-4任一项所述的在甲硫氨酸制备过程中使用的添加剂,其中,所述B组分为聚醚接枝改性硅油,优选为烯丙基聚氧烷基醚类接枝改性硅油。
  6. 根据权利要求1-5任一项所述的在甲硫氨酸制备过程中使用的添加剂,其中所述C组分包括二甲基硅油、羟基硅油和含氢硅油的一种或多种,优选所述C组分的在25℃下的动力学粘度为90mm 2/s~1500mm 2/s。
  7. 根据权利要求1-6任一项所述的在甲硫氨酸制备过程中使用的添加剂,其中,所述添加剂为包含A、B和C组分的含水混合物,并且基于所述添加剂的总质量,所述A组分的含量为1~8wt%,所述B组分的含量为0.5~8wt%,所述C组分的含量为0.5~4wt%;优选所述A组分的含量为2~6wt%,所述B组分的含量为2~6wt%,所述C组分的含量为1~3wt%。
  8. 一种甲硫氨酸的制备方法,其包括:
    在根据权利要求1-7任一项所述的添加剂的存在下进行甲硫氨酸的结晶和/或重结晶。
  9. 根据权利要求8所述的甲硫氨酸的制备方法,其包括以下步骤:
    (1)在添加剂以及二氧化碳的存在下,使由5-(2-甲硫基乙基)乙内酰脲水解而获得的甲硫氨酸盐水溶液反应结晶而得到甲硫氨酸结晶粗品;和
    (2)使上述甲硫氨酸结晶粗品、与水和/或结晶母液形成甲硫氨酸悬浮液,并加入添加剂,将获得的含添加剂的甲硫氨酸溶液重结晶,以得到甲硫氨酸结晶产品。
  10. 根据权利要求9所述的甲硫氨酸的制备方法,其中,所述步骤(1)中所述添加剂的用量基于所述甲硫氨酸盐水溶液的总质量为50ppm~500ppm,优选为70ppm~300ppm。
  11. 根据权利要求9或10所述的甲硫氨酸的制备方法,其中,所述步骤(2)中所述甲硫氨酸悬浮液的浓度为8~15wt%,优选为10~13wt%。
  12. 根据权利要求9-11任一项所述的甲硫氨酸的制备方法,其中,并且所述步骤(2)中所述添加剂的用量基于所述甲硫氨酸悬浮液的总质量为100ppm~1000ppm,优选为200ppm~500ppm。
  13. 根据权利要求9-12任一项所述的甲硫氨酸的制备方法,其中,所述步骤(2)中,所述结晶采用冷却降温或蒸发降温的方式进行,优选采用蒸发降温来进行结晶;
    当采用蒸发降温进行结晶时,蒸发所产生的蒸汽通过蒸汽压缩机加压提高温度后用于甲硫氨酸悬浮液的升温溶解过程。
  14. 根据权利要求9-13任一项所述的甲硫氨酸的制备方法,其中,所述步骤(2)中使用的结晶器包括,搅拌结晶釜、强制循环结晶器、奥斯陆结晶器和导流筒加挡板结晶器;优选强制循环结晶器、奥斯陆结晶器和导流筒加挡板结晶器。
PCT/CN2020/122134 2019-12-31 2020-10-20 在甲硫氨酸制备过程中使用的添加剂及甲硫氨酸的制备方法 WO2021135523A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/782,904 US20230022196A1 (en) 2019-12-31 2020-10-20 Additive used in methionine preparation process, and methionine preparation method
KR1020227025344A KR20220116545A (ko) 2019-12-31 2020-10-20 메티오닌 제조 프로세스에 사용되는 첨가제 및 메티오닌 제조방법
JP2022539205A JP7388647B2 (ja) 2019-12-31 2020-10-20 メチオニンの製造プロセスで用いられる添加剤及びメチオニンの製造方法
DE112020006405.0T DE112020006405T5 (de) 2019-12-31 2020-10-20 Additiv zur verwendung in methionin-herstellungsprozess und methionin-herstellungsverfahren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911412213.4A CN111100051B (zh) 2019-12-31 2019-12-31 在甲硫氨酸制备过程中使用的添加剂及甲硫氨酸的制备方法
CN201911412213.4 2019-12-31

Publications (1)

Publication Number Publication Date
WO2021135523A1 true WO2021135523A1 (zh) 2021-07-08

Family

ID=70424900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122134 WO2021135523A1 (zh) 2019-12-31 2020-10-20 在甲硫氨酸制备过程中使用的添加剂及甲硫氨酸的制备方法

Country Status (6)

Country Link
US (1) US20230022196A1 (zh)
JP (1) JP7388647B2 (zh)
KR (1) KR20220116545A (zh)
CN (1) CN111100051B (zh)
DE (1) DE112020006405T5 (zh)
WO (1) WO2021135523A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114920675B (zh) * 2022-04-20 2024-02-06 天津大学 一种蛋氨酸晶体及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04244056A (ja) * 1991-01-31 1992-09-01 Sumitomo Chem Co Ltd メチオニンの製造方法
JPH10306071A (ja) * 1997-05-06 1998-11-17 Nippon Soda Co Ltd 粒状dl−メチオニン結晶およびその製造方法
CN1473145A (zh) * 2000-11-02 2004-02-04 ��ʽ�����ɽ 氨基酸衍生物的光学异构体的分离方法
JP2004292324A (ja) * 2003-03-26 2004-10-21 Nippon Soda Co Ltd メチオニンの精製方法
CN1599712A (zh) * 2001-12-08 2005-03-23 德古萨股份公司 甲硫氨酸的制备方法
CN104203912A (zh) * 2012-03-20 2014-12-10 赢创工业集团股份有限公司 甲硫氨酸的制备方法
CN105764886A (zh) * 2013-09-17 2016-07-13 赢创德固赛有限公司 获得蛋氨酸的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4619610B1 (zh) * 1966-08-25 1971-06-01
DE19547236A1 (de) 1995-12-18 1997-07-03 Degussa Verfahren zur Herstellung von D,L-Methionin oder dessen Salz
CN105418933A (zh) * 2015-12-18 2016-03-23 江西蓝星星火有机硅有限公司 一种长链烷基聚醚共改性硅油的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04244056A (ja) * 1991-01-31 1992-09-01 Sumitomo Chem Co Ltd メチオニンの製造方法
JPH10306071A (ja) * 1997-05-06 1998-11-17 Nippon Soda Co Ltd 粒状dl−メチオニン結晶およびその製造方法
CN1473145A (zh) * 2000-11-02 2004-02-04 ��ʽ�����ɽ 氨基酸衍生物的光学异构体的分离方法
CN1599712A (zh) * 2001-12-08 2005-03-23 德古萨股份公司 甲硫氨酸的制备方法
JP2004292324A (ja) * 2003-03-26 2004-10-21 Nippon Soda Co Ltd メチオニンの精製方法
CN104203912A (zh) * 2012-03-20 2014-12-10 赢创工业集团股份有限公司 甲硫氨酸的制备方法
CN105646304A (zh) * 2012-03-20 2016-06-08 赢创德固赛有限公司 甲硫氨酸的制备方法
EP3187489A1 (en) * 2012-03-20 2017-07-05 Evonik Degussa GmbH Process for the preparation of methionine
CN105764886A (zh) * 2013-09-17 2016-07-13 赢创德固赛有限公司 获得蛋氨酸的方法

Also Published As

Publication number Publication date
JP7388647B2 (ja) 2023-11-29
JP2023509409A (ja) 2023-03-08
US20230022196A1 (en) 2023-01-26
CN111100051B (zh) 2022-01-28
DE112020006405T5 (de) 2022-11-17
CN111100051A (zh) 2020-05-05
KR20220116545A (ko) 2022-08-23

Similar Documents

Publication Publication Date Title
CN104203912B (zh) 甲硫氨酸的制备方法
RU2402523C2 (ru) Способ получения диформиата натрия
RU2678585C2 (ru) Способ непрерывной подготовки кристаллов метионина высокой насыпной плотности
WO2021135523A1 (zh) 在甲硫氨酸制备过程中使用的添加剂及甲硫氨酸的制备方法
RU2294922C2 (ru) Способ получения метионина
EP1198444A1 (en) Process for crystallization of dicarboxylic acids
KR101370191B1 (ko) 이포름산나트륨의 제조
CN106893014A (zh) 一种聚醋酸乙烯酯颗粒的制备方法及其产品
KR20100127292A (ko) 2-아미노-2-[2-[4-(3-벤질옥시페닐티오)-2-클로로페닐]에틸]-1,3-프로판디올염산염의 결정화 방법
CN113993841B (zh) 用于制备d,l-甲硫氨酸的方法
JP3964965B2 (ja) 水中油型エマルション型消泡剤組成物の安定化方法
JP2003286228A (ja) ヒドロキシアルキル(メタ)アクリレートの精製方法、および、ヒドロキシアルキル(メタ)アクリレートの製造方法
CN118255749A (zh) 一种阿利沙坦酯微粉的制备方法
JP2009529024A (ja) サルブタモールおよびサルブタモール前駆体のエナンチオマー濃縮プロセス
CN103588860A (zh) 丙谷二肽球形晶体的制备方法
CN116178291A (zh) 乙基己基三嗪酮产品及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20909032

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022539205

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227025344

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20909032

Country of ref document: EP

Kind code of ref document: A1