WO2021132858A1 - 필러용 생분해성 고분자 미세입자의 제조 방법, 및 이를 포함하는 주사제의 제조 방법 - Google Patents

필러용 생분해성 고분자 미세입자의 제조 방법, 및 이를 포함하는 주사제의 제조 방법 Download PDF

Info

Publication number
WO2021132858A1
WO2021132858A1 PCT/KR2020/013922 KR2020013922W WO2021132858A1 WO 2021132858 A1 WO2021132858 A1 WO 2021132858A1 KR 2020013922 W KR2020013922 W KR 2020013922W WO 2021132858 A1 WO2021132858 A1 WO 2021132858A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
biodegradable polymer
polymer microparticles
filler
organic solvent
Prior art date
Application number
PCT/KR2020/013922
Other languages
English (en)
French (fr)
Inventor
이청천
프리실라리아
곽민석
함정율
권한진
Original Assignee
주식회사 울트라브이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 울트라브이 filed Critical 주식회사 울트라브이
Priority to CN202080097517.0A priority Critical patent/CN115151282A/zh
Priority to BR112022012798A priority patent/BR112022012798A2/pt
Publication of WO2021132858A1 publication Critical patent/WO2021132858A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/0059Cosmetic or alloplastic implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/14Powdering or granulating by precipitation from solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/06Flowable or injectable implant compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/34Materials or treatment for tissue regeneration for soft tissue reconstruction
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/02Applications for biomedical use

Definitions

  • It relates to a method for producing biodegradable polymer microparticles for a filler, and a method for producing an injection containing the same.
  • Biodegradable polymer microparticles are a material that has recently begun to attract a lot of attention as a tissue repair material applicable to the face and body. Unlike conventional hyaluronic acid hydrogels, biodegradable polymers do not contain components that are harmful to the human body, and can be decomposed over a long period of 6 months to 4 years, so they can be applied to various uses.
  • Emulsification-Solvent Evaporation Method is an emulsion by strongly stirring a dispersion solution in which a polymer is dissolved in an organic solvent and an emulsion solution containing a surfactant, and then evaporating the solvent to remove polymer fine particles. method of manufacturing.
  • One aspect is to provide a method for preparing biodegradable polymer microparticles for a filler, which can easily produce biodegradable polymer microparticles having a size suitable for the filler in high yield.
  • Another aspect is to provide a method for preparing an injection containing the biodegradable polymer microparticles for a filler prepared by the above method.
  • a first composition comprising an organic solvent miscible with water, and a biodegradable polymer
  • an injection preparation method comprising the step of hydrating the biodegradable polymer microparticles for the filler in one or more selected from water for injection, sterile water and distilled water.
  • biodegradable polymer microparticles having a size suitable for a filler can be simply manufactured in high yield by a new method for producing biodegradable polymer microparticles for a filler.
  • Example 1 is a scanning electron microscope image of the biodegradable polymer fine particles for fillers prepared in Example 1.
  • Example 2 is a scanning electron microscope image of the biodegradable polymer microparticles for fillers prepared in Example 5.
  • Example 3 is a scanning electron microscope image of the biodegradable polymer microparticles for fillers prepared in Example 6.
  • Example 4 is a graph showing the particle size distribution of the biodegradable polymer microparticles for filler prepared in Example 1.
  • Example 5 is a graph showing the particle size distribution of the biodegradable polymer microparticles for filler prepared in Example 1.
  • Example 6 is a graph showing the particle size distribution of the biodegradable polymer microparticles for filler prepared in Example 1.
  • first, second, etc. may be used to describe various elements, but the elements should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, a first component may be referred to as a second component, and similarly, a second component may also be referred to as a first component.
  • the singular expression includes the plural expression unless the context clearly dictates otherwise.
  • a method for producing biodegradable polymer microparticles for a filler includes providing a first composition comprising an organic solvent miscible with water, and a biodegradable polymer; providing a second composition comprising a surfactant and water; preparing a mixture by mixing the first composition and the second composition; preparing a third composition comprising fine polymer particles by stirring the mixture; and separating the polymer microparticles from the third composition.
  • a water-miscible organic solvent By mixing a water-miscible organic solvent, and a first composition comprising a biodegradable polymer, and a second composition comprising a surfactant, it has a particle size of 20 um to 100 um suitable for use as a facial filler and improved particle size uniformity Biodegradable polymer microparticles having a high yield can be easily prepared.
  • a first composition comprising an organic solvent miscible with water, and a biodegradable polymer.
  • the first composition may be prepared, for example, by dissolving a biodegradable polymer in an organic solvent.
  • the biodegradable polymer contained in the first composition is polydioxanone (Polydioxanone, PDO), polylactic acid (Poly-Lactic acid, PLA), poly-L-lactic acid (Poly-L-Lactic acid, PLLA), poly-D -Lactic acid (Poly-D-Lactic acid, PDLA), poly- ⁇ -caprolactone (Poly- ⁇ -caprolactone, PCL), polyglycolic acid (Polyglycolic acid, PGA), copolymers thereof, and one selected from mixtures thereof may be more than These copolymers may be, for example, a polylactic acid-glycolic acid copolymer, a polydioxanone-caprolactone copolymer, a polylactic acid-caprolactone copolymer, and the like.
  • the biodegradable polymer is, for example, polydioxanone.
  • the number average molecular weight (Mn) of the biodegradable polymer included in the first composition is, for example, 50,000 to 500,000 Dalton, 50,000 to 300,000 Dalton, or 50,000 to 200,000 Dalton. If the number average molecular weight of the biodegradable polymer is less than 50,000, the decomposition rate of the biodegradable polymer microparticles increases, and thus may not be suitable as a biomaterial for a filler. If the number average molecular weight of the biodegradable polymer exceeds 500,000 Dalton, it may be difficult to process due to high viscoelasticity, so it may be difficult to manufacture particles having a uniform size and quality.
  • the content of the biodegradable polymer included in the first composition is, for example, 0.1 to 20wt%, 0.1 to 10wt%, 1 to 10wt%, 3 to 9wt%, or 4wt% to 8wt% with respect to the entire first composition. If the content of the biodegradable polymer included in the first composition is too low, the content of the biodegradable polymer included in the first composition is too low, so that the production efficiency of the polymer microparticles may be reduced. If the content of the biodegradable polymer included in the first composition is too high, it may be difficult to obtain polymer microparticles of uniform size.
  • the first composition may be free of surfactants.
  • the first composition can easily form uniform polymeric microparticles without including, for example, a surfactant.
  • the first composition may not include, for example, an additive having a surface activity at the interface between the first composition and the second composition. Since the first composition does not contain such a surfactant, the preparation of the polymer microparticles is simplified, and the polymer microparticles having a low content of impurities can be prepared. Accordingly, the biocompatibility of the polymer microparticles prepared by using the first composition is further improved.
  • the organic solvent included in the first composition is a water-miscible organic solvent.
  • water-miscible organic solvent is an organic solvent that is completely or partially miscible with water.
  • the organic solvent miscible with water means, for example, an organic solvent that does not form a separate phase distinct from water.
  • the water-miscible organic solvent is, for example, a solvent having a solubility in 100 g of water at 20°C of 3 g or more, 5 g or more, 10 g or more, 20 g or more, or 50 g or more. Therefore, the manufacturing method of the present invention is distinguished from the conventional manufacturing method using an organic solvent that is immiscible with water.
  • the organic solvent included in the first composition may be, for example, one or more selected from halogenated alcohols, halogenated hydrocarbons, aromatic hydrocarbons, aliphatic hydrocarbons, aliphatic alcohols, aliphatic amides, aliphatic ketones, aliphatic ethers, and aliphatic aldehydes.
  • the organic solvent included in the first composition is, for example, a fluorinated alcohol having 1 to 6 carbon atoms, a fluorinated hydrocarbon having 1 to 6 carbon atoms, a chlorinated hydrocarbon having 1 to 6 carbon atoms, an aromatic hydrocarbon having 5 to 10 carbon atoms, and an aromatic hydrocarbon having 5 to 10 carbon atoms.
  • It may be at least one selected from aliphatic hydrocarbons, dialkyl ketones having 3 to 5 carbon atoms, dialkyl ethers having 2 to 6 carbon atoms, alkylaldehydes having 1 to 6 carbon atoms, alkylnitriles having 1 to 5 carbon atoms, and fatty acids having 2 to 5 carbon atoms.
  • the organic solvent included in the first composition is, for example, HFIP (1,1,1,3,3,3-Hexafluoro-2-propanol), acetone (Acetone), acetonitrile (Acetonitrile), acetic acid (Acetic acid), Dioxane, ethanol, methanol, isopropyl alcohol (IPA), propanol (Propanol), tetrahydrofuran (Tetrahydrofuran, THF), pentane (Pentane) and mixtures thereof It may be one or more selected from.
  • fluorinated alcohol may be used as an organic solvent for dissolving polydioxanone.
  • the fluorinated alcohol is, for example, an alcohol having 1 to 6 carbon atoms in which 3 to 13 fluorine atoms are substituted.
  • the fluorinated alcohol is, for example, 1,1,1,3,3,3-hexafluoro-2-propanol.
  • the boiling point of the organic solvent included in the first composition may be, for example, 10 to less than 100°C, 20 to 90°C, or 30 to 80°C.
  • the organic solvent has a boiling point in this range, the organic solvent can be easily volatilized. If the boiling point of the organic solvent is too low, it is difficult to maintain the liquid phase. If the boiling point of the organic solvent is too high, evaporation of the organic solvent is difficult and the content of the residual solvent increases, thereby reducing the biocompatibility of the biodegradable polymer microparticles.
  • the content of the organic solvent included in the first composition is, for example, 50 to 99.9wt%, 60 to 99.9wt%, 70 to 99.9wt%, 80 to 99.9wt%, or 90 to 99.9wt% with respect to the entire first composition. to be. If the content of the organic solvent included in the first composition is too low, the viscosity of the first composition may increase, so that uniform polymer microparticles may not be obtained. If the content of the organic solvent included in the first composition is too high, the content of the polymer microparticles generated from the first composition is too low, so that the production efficiency of the polymer microparticles may be reduced.
  • the second composition comprising a surfactant and water.
  • the second composition may be prepared by, for example, dissolving one or more surfactants selected from water-soluble polymers and water-soluble monomers in one or more selected from water and alcohol.
  • the aqueous solution is a composition containing water, and is not necessarily limited to 100%.
  • the content of water in the solvent of the second composition is, for example, 50% by weight or more, 60% by weight or more, 70% by weight or more, 80% by weight or more, or 90% by weight or more.
  • the solvent that the second composition comprises is, for example, water.
  • the surfactant included in the second composition is one selected from water-soluble polymers such as polyvinyl alcohol, polyoxyethylene sorbitan and salts thereof, and water-soluble monomers such as soybean lecithin and monoglyceride may be more than
  • the content of the surfactant included in the second composition may be, for example, 1 to 10 wt%, 3 to 9 wt%, or 4 to 8 wt%, based on the total amount of the second composition. If the content of the surfactant is too low, the surface activity of the surfactant may be weakened, and thus it may be difficult to prepare polymer microparticles having a uniform size.
  • the size of the polymer microparticles is excessively reduced, so that they are searched by macrophages in the living body and cannot function as a filler, or the size of the polymer microparticles increases due to aggregation of the polymer microparticles can
  • polyvinyl alcohol which is a water-soluble polymer
  • water or a mixed solution of water and alkyl alcohol may be used as a solvent in which polyvinyl alcohol is dissolved.
  • the number average molecular weight of the water-soluble polymer may be, for example, 50,000 to 200,000 Daltons, 70,000 to 170,000 Daltons, or 100,000 to 150,000 Daltons. If the number average molecular weight of the water-soluble polymer is less than 50,000 Daltons, the surface activity may decrease, and if the number average molecular weight of the water-soluble polymer exceeds 200,000 Daltons, it may be difficult to form uniform polymer microparticles due to the high concentration.
  • the second composition may further include other surfactants in addition to the aforementioned surfactants.
  • Other surfactants that the second composition may additionally include may be anionic surfactants, cationic surfactants or amphoteric surfactants.
  • Other surfactants that the second composition may additionally include include, for example, polyoxyethylene sorbitan monolaurate (Tween 20), polyoxyethylene sorbitan monopalmitate (Tween 40), polyoxyethylene sorbitan monostearate. Late (Tween 60), polyoxyethylene sorbitan monooleate (Tween 80), and polyoxyethylene sorbitan trioleate (Tween 85) may be selected from, but not necessarily limited to, surfactants in the art. Anything is possible as long as it is used as Even when the second composition does not additionally include other surfactants, polymer microparticles having a uniform particle size suitable for filler use can be prepared in high yield.
  • the pH of the second composition may be, for example, 5.0 or higher, 5.5 or higher, 6.0 or higher, or 6.5 or higher.
  • the pH of the second composition may be, for example, 5.0 to 8.0, 5.0 to 7.5, 5.0 to 7, or 5 to 6.5.
  • polymer microparticles having a uniform size can be prepared in high yield.
  • a mixture is prepared by mixing the first composition and the second composition.
  • the organic solvent and water may be mixed in a ratio of 50 to 200 parts by volume of water included in the second composition with respect to 100 parts by volume of the organic solvent included in the first composition.
  • the mixing volume ratio of the organic solvent and water is 1:0.5 to 1:2, 1:0.6 to 1:1.9, 1:0.6 to 1:1.8, 1:0.7 to 1:1.7, 1:0.7 to 1:1.6 , 1:0.7 to 1:1.5, 1:0.8 to 1:1.4, 1:0.8 to 1:1.3, or 1:0.8 to 1:1.2.
  • the amount of water used is significantly reduced compared to the conventional manufacturing method in which 100 parts by volume of the organic solvent and 800 parts by volume or more of water are mixed.
  • the rapid precipitation of the biodegradable polymer proceeds by adding the first composition to excess water. It is difficult to manufacture.
  • the manufacturing method of the present invention in which the organic solvent and water are mixed in a similar volume ratio, the precipitation of the biodegradable polymer proceeds slowly, so that polymer microparticles having a uniform particle size can be easily manufactured.
  • the amount of the solvent used is significantly reduced compared to the prior art using an excess of solvent, and the polymer microparticles can be prepared more simply.
  • the mixture is stirred to prepare a third composition comprising high-rich fine particles.
  • Mixing the first composition and the second composition and stirring the mixture may be performed sequentially or substantially simultaneously.
  • the first composition and the second composition may be simultaneously or sequentially added to a container in which the stirrer rotates to prepare a mixture, and stirring may be performed at the same time.
  • Agitation of the mixture may be performed at 100 to 800 rpm, 100 to 700 rpm, 200 to 700 rpm, 200 to 600 rpm, 300 to 600 rpm, or 300 to 500 rpm. If the stirring of the mixture (eg, stirring speed, rpm) is too slow, mixing of the first composition and the second composition may not be performed smoothly. If the agitation of the mixture (eg, stirring speed, rpm) is too fast, the uniformity of the particle size of the polymer microparticles may be deteriorated.
  • Agitation of the mixture may be carried out for 1 day (ie, 24 hours) or longer.
  • the organic solvent is slowly volatilized, so that the biodegradable polymer can be gradually precipitated as polymer microparticles under uniform conditions. Accordingly, the uniformity of the particle size of the polymer fine particles may be improved.
  • the stirring time of the mixture may be, for example, 1 to 10 days, 2 to 9 days, 3 to 8 days, 3 to 7 days, or 4 to 6 days. If the stirring time of the mixture is excessively increased, the production efficiency of the polymer microparticles may be reduced.
  • a method of separating the polymer microparticles from the third composition is not particularly limited, and includes, but is not limited to, filtration, precipitation, washing, and the like.
  • Separating the polymer microparticles from the third composition may include, for example, precipitating and separating the polymer microparticles from the third composition; and washing the separated polymer fine particles a plurality of times.
  • the third composition after the agitation has been completed may be left standing for, for example, 1 hour or more, 2 hours or more, 5 hours or more, 12 hours or more, or 24 hours or more, and then the supernatant may be removed and the polymer microparticles may be separated. Then, a distilled water frame is put into the separated polymer microparticles, stirred at 100 to 1000 rpm for 1 to 24 hours, and then a washing process of removing distillation may be performed one or more times. By this washing process, impurities remaining in the polymer microparticles can be effectively removed.
  • the preparation method of the present invention may not include the step of stabilizing in a stabilizing agent or stabilizing solution. Accordingly, the preparation of the polymer microparticles becomes simpler.
  • the conventional manufacturing method since it includes a step of stabilizing the prepared polymer microparticles for a long time in an excessive amount of alcohol or an excessive amount of a surfactant aqueous solution in order to stabilize or ripen them, a large consumption of time and solvent is required.
  • the third composition containing the polymeric microparticles is prepared without such a stabilization step, and then the polymeric microparticles are obtained by separation and/or washing, the preparation time and the use of the solvent can be significantly reduced.
  • the average particle diameter (D50) of the polymer microparticles prepared by the method of the present invention is 40um to 300um, 40um to 200um, 40um to 130um, 40um to 100um, 40um to 90um, 40um to 80um, 40um to 70um, 40um to 60um , or may be 40um to 50um. Since the polymer microparticles have an average particle diameter in this range, they may have a size more suitable for application as a filler. If the average particle diameter of the polymer microparticles is too small, they may be searched by macrophages and may not function as a filler. If the average particle diameter of the biodegradable polymer microparticles exceeds 300 um, it may not be suitable for use as an injection.
  • the size of the biodegradable polymer microparticles used in the face filler may be 40 to 100 um.
  • the size of the biodegradable polymer microparticles used for applications other than the face may be, for example, 100 to 300 um.
  • the content of polymer microparticles in the range of 25um to 75um in particle diameter among the polymer microparticles prepared by the above manufacturing method is 50% by volume or more, 55% by volume or more, 60% by volume or more, 65% by volume or more, 70% by volume or more, 75 It may be at least 80% by volume, or at least 80% by volume. Therefore, by the above manufacturing method, it is possible to simply manufacture fine polymer particles having a size suitable for such a facial filler with high yield without additional processes such as filtration and classification.
  • the biodegradable polymer microparticles may further include classifying by size.
  • the biodegradable polymer microparticles separated from the first composition may be classified by size using a pulverizer.
  • a size sieving machine may be used to classify the biodegradable polymer microparticles by size by dry or wet methods. When powder is wetted, freeze-drying is additionally performed to remove moisture, and then, it can be sorted.
  • the method for preparing polymer microparticles of the present invention can produce particles having a size in the range of 25 to 75 um in high yield without such a classification process.
  • the biodegradable polymer microparticles for fillers may be used for wrinkle improvement, face shaping, body shaping, male implants, or treatment of incontinence.
  • the size of the biodegradable polymer microparticles used in the face filler may be 25 to 100 um.
  • the size of the biodegradable polymer microparticles used for male implants or treatment for urinary incontinence may be 100 to 300 um.
  • the injection preparation method comprises the steps of preparing biodegradable polymer microparticles for a filler prepared by the method; and hydrating the biodegradable polymer microparticles for the filler in one or more selected from water for injection, sterile water and distilled water.
  • biodegradable polymer microparticles for fillers are prepared.
  • a fourth composition is prepared by mixing the prepared biodegradable polymer microparticles with a biocompatible carrier.
  • the fourth composition may be prepared by, for example, adding biodegradable polymer microparticles and a biocompatible carrier to a solvent.
  • the fourth composition may be prepared by adding a biocompatible carrier to an aqueous solution containing biodegradable polymer microparticles.
  • a solvent water or a mixed solution of water and an alkyl alcohol may be used.
  • the fourth composition for example, using a three roll mill (Three roll mill), etc. can be uniformly dispersed in the high viscosity mixed solution.
  • the fourth composition may further include additional ingredients such as a physiologically active substance and a local anesthetic depending on the use.
  • additional ingredients such as a physiologically active substance and a local anesthetic depending on the use.
  • the ingredients to be added are not necessarily limited thereto, and the ingredients and content to be added may be determined according to the use.
  • the biocompatible carrier included in the fourth composition is alginic acid and its salts, hyaluronic acid and its salts, carboxymethyl cellulose and its salts, dextran and its salts, collagen (collagen), gelatin (Gelatin), and may include one or more selected from elastin (Elastin).
  • the biocompatible carrier may be, for example, carboxymethyl cellulose.
  • the viscosity of the aqueous solution containing 0.5 to 3 wt% of the biocompatible carrier may be, for example, 1,000 to 10,000 cps at 25°C. When the biocompatible carrier has such a viscosity, it may be easier to control the viscosity of the second composition.
  • the content of the biodegradable polymer microparticles included in the fourth composition may be 10 to 80 wt%, 10 to 50 wt%, 10 to 30 wt%, or 15 to 30 wt% based on the entire fourth composition. If the content of the biodegradable polymer microparticles is less than 10% by weight, the concentration is low and it may be difficult to disperse evenly, and if the content of the biodegradable polymer microparticles is more than 80% by weight, it is difficult to freeze-drying and mixing with the biocompatible carrier due to the low moisture content. can
  • the ratio of the biodegradable polymer microparticles and the biocompatible carrier included in the fourth composition may be 20:80 to 80:20 by weight. If the ratio of the biodegradable polymer microparticles to the biocompatible carrier is out of this range, it may be difficult to evenly disperse the biodegradable polymer microparticles at an appropriate concentration by the biocompatible carrier.
  • the fourth composition can be used as an injection to prepare an injection.
  • the fourth composition is dried and transformed into a solid form such as powder or particles, and then hydrated in one or more selected from water for injection, sterile water and distilled water to be used as an injection.
  • the fourth composition is injected into a mold and frozen to prepare a frozen product.
  • a frozen product is prepared by injecting the fourth composition into a mold and pre-freezing. Pre-freezing may be performed, for example, at -10 to -30°C for 1 to 48 hours.
  • the frozen material may be separated from the mold.
  • the shape of the mold is not particularly limited, but may be spherical.
  • a frozen material molded in a certain shape is prepared by removing moisture from the frozen material.
  • the dried biodegradable polymer microparticles are prepared by drying the frozen material molded in a certain shape. Freeze drying may be performed, for example, at -70 to -100°C for 1 to 72 hours. By freeze-drying, moisture and solvent are removed from the frozen material to obtain a dried biodegradable polymer filler.
  • the biodegradable polymer filler may be, for example, spheric porous particles, but is not necessarily limited to such a shape and may be selected according to required conditions. Since the biodegradable polymer filler has a spherical shape and porosity, it can be quickly hydrated in water or the like by capillary action.
  • the spherical porous particles have a density of, for example, 0.2 to 0.9 g/cm 3 , 0.2 to 0.8 g/cm 3 , 0.2 to 0.7 g/cm 3 , 0.2 to 0.6 g/cm 3 , or 0.2 to 0.5 g/cm 3 .
  • the spherical porous particles may have, for example, an average diameter of 3 to 8 mm, 3 to 7 mm, 3 to 6 mm. Since the spherical porous particles have a particle size in this range, storage is easy and workability is improved.
  • the method may further include sterilizing the spherical porous particles after removing moisture from the frozen material to prepare the spherical porous particles.
  • Sterilization is performed by gamma-ray sterilization, ethylene oxide sterilization, or reduced pressure sterilization, but is not necessarily limited to these methods and any sterilization method used in the art is possible.
  • the injection prepared by the above method has, for example, a viscosity of 8,000 to 30,000 cps at 25° C., and an extrusion force of 5N to 12N.
  • biodegradable polymer microparticles may be in the form of a dry powder.
  • hydrocarbon refers to an organic compound having 1 to 20 carbon atoms and consisting of carbon and hydrogen.
  • aliphatic hydrocarbon refers to a fully saturated branched or unbranched (or straight-chain or linear) hydrocarbon.
  • An “aliphatic hydrocarbon” is, for example, methane, ethane, n-propane, isopropane, butane, n-isobutane, n-pentane, n-hexane, n-heptane, n-octane, n-nonane, and the like.
  • aromatic hydrocarbon refers to a hydrocarbon containing an aromatic ring.
  • Aromatic hydrocarbons are, for example, benzene, naphthalene, and the like.
  • aliphatic alcohol refers to an alcohol comprising an aliphatic chain.
  • aliphatic amide refers to an amide comprising an aliphatic chain.
  • aliphatic ketone refers to a ketone comprising an aliphatic chain.
  • aliphatic ether refers to an ether comprising an aliphatic chain.
  • fatty aldehyde refers to an aldehyde comprising an aliphatic chain.
  • halogenated hydrocarbon refers to a hydrocarbon substituted with one or more halogens.
  • chlorinated hydrocarbon refers to a hydrocarbon substituted with one or more chlorines.
  • halogenated alcohol refers to an alcohol substituted with one or more halogens.
  • fluorinated alcohol refers to an alcohol substituted with one or more fluorine.
  • halogenated alcohol refers to an alcohol substituted with one or more halogens.
  • alkyl alcohol refers to an alcohol linked to an alkyl group with a hydroxyl group.
  • alkyl refers to a fully saturated branched or unbranched (or straight-chain or linear) hydrocarbon.
  • alcohol refers to an organic compound containing one hydroxyl group (-OH).
  • the alcohol is, for example, methanol, ethanol, and the like.
  • Amides are, for example, acetamide, N,N-dimethylacetamide, and the like.
  • the ketone is, for example, dimethyl ketone, diethyl ketone, methyl ethyl ketone and the like.
  • ether refers to an organic compound containing one or more ether groups (-O-).
  • the ether is, for example, dimethyl ether, diethyl ether, methyl ethyl ether or the like.
  • the aldehyde is, for example, methylaldehyde, ethylaldehyde and the like.
  • alkyl include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, 3-methylhexyl, 2,2-dimethylpentyl, 2,3-dimethylpentyl, n-heptyl, and the like.
  • halogen includes fluorine, bromine, chlorine, and iodine.
  • Example 1 Preparation of polydioxanone fine particles, PVA 6 wt%
  • polydioxanone PDO, Inherent Viscosity, IV
  • HFIP hexafluoroisopropanol
  • a second composition having a pH of about 5.5, which is a 6 wt% PVA aqueous solution obtained by dissolving PVA (Polyvinyl alcohol, number average molecular weight 130,000 Dalton) in distilled water as a surfactant was prepared.
  • a mixture was prepared by mixing the first composition and the second composition in a volume ratio of 1:1. The organic solvent was removed while the prepared mixture was stirred at 400 rpm for 5 days to obtain a third composition including polymer microparticles.
  • Purified water was added to the separated polymer microparticles and washed again by stirring. This washing step was performed a total of three times to prepare polymer microparticles.
  • Polymer microparticles were prepared in the same manner as in Example 1, except that the PVA content included in the second composition was changed to 3 wt%.
  • Polymer microparticles were prepared in the same manner as in Example 1, except that the PVA content included in the second composition was changed to 1 wt%.
  • Polymer microparticles were prepared in the same manner as in Example 1, except that the PVA content included in the second composition was changed to 10 wt%.
  • poly-L-lactic acid Poly-L-Lactic acid, PLLA, Inherent Viscosity, IV
  • PLLA Poly-L-Lactic acid
  • IV Inherent Viscosity, IV
  • polydioxanone number average molecular weight (80,000 ⁇ 120,000) Dalton
  • polycaprolactone Poly- ⁇ -caprolactone PCL, Inherent Viscosity, IV
  • a first composition was prepared by dissolving 0.5 g of a biodegradable polymer polydioxanone (PDO; weight average molecular weight 200,000) in 50 g of 1,1,1,3,3,3-hexafluoro-2-propanol as an organic solvent. did.
  • PDO biodegradable polymer polydioxanone
  • PEO Polyethylene
  • PPO polypropylene
  • PEO polyethylene
  • a mixture was prepared by mixing the first composition and the second composition.
  • the prepared mixture was stirred at 1500 rpm for 1 hour at high speed to prepare a third composition in which polydioxanone particles were evenly dispersed.
  • terpolymer F-127 product of BASF, average molecular weight 12,600
  • terpolymer F-68 product of BASF, average molecular weight of 8,400
  • a second composition which is a 5 wt% PVA aqueous solution obtained by dissolving PVA (Polyvinyl alcohol, number average molecular weight 130,000 Dalton) in distilled water as a surfactant, was prepared.
  • PVA Polyvinyl alcohol, number average molecular weight 130,000 Dalton
  • the residence time of the mixture in the continuous reactor was 10 minutes, and then the reaction solution was discharged to the outside of the continuous reactor.
  • the flow rate of the continuous reactor using Couet Taylor fluid flow was 1500 rpm.
  • the discharged reaction solution was added to a 7,500 mL aqueous solution of 1 wt% PVA (average molecular weight 93,500) as a stabilizing solution, and the stabilizing solution was stirred.
  • the reaction solution containing the polymer fine particles was separated into solid and liquid by a centrifugal separator to obtain polymer fine particles.
  • the polydioxanone fine particles prepared in Example 1 were mixed with carboxylmethylcellulose (CMC: Carboxylmethylcellulose) in a weight ratio of 1:1 using sterile water for injection to prepare a mixed composition.
  • CMC Carboxylmethylcellulose
  • the content of the polydioxanone fine particles included in the mixed composition was 30 wt%.
  • the mixed composition can be used as an injection as it is, or a freeze-dried powder of the mixed composition can be hydrated in sterile water for injection and used as an injection.
  • FIGS. 1, 2 and 3 Microscopic images of the polymer microparticles prepared in Examples 1, 5 and 6 are shown in FIGS. 1, 2 and 3, respectively.
  • the polymer microparticles had a spherical particle shape regardless of the type of biodegradable polymer.
  • the shape and average diameter (D50) of the polymer microparticles prepared in Examples 1 to 4 were measured using a laser diffraction scattering particle size analyzer (Particle Size Analyzer, PSA), and the results are shown in Table 1 below.
  • the average particle diameter (D50) of the particles was measured using a laser diffraction scattering particle size analyzer (Particle Size Analyzer, PSA).
  • the median diameter (D50) based on the cumulative volume measured from the particle size distribution was calculated, and this was taken as the average diameter.
  • the average diameter of the fine particles decreased, and the shape of the particles was maintained. Since the content of fine particles is increased and removed through phagocytosis by macrophages in living tissues, the content of particles that cannot function as a filler may be relatively increased.
  • the size of the polymer microparticles prepared in Example 1, Comparative Example 1 and Comparative Example 2 was analyzed.
  • the average particle diameter (D50) and particle size distribution of the particles was performed using a laser diffraction scattering particle size analyzer (PSA).
  • FIGS. 4, 5 and 6, The size distribution of the polymer microparticles prepared in Example 1, Comparative Example 1, and Comparative Example 2 is shown in FIGS. 4, 5 and 6, respectively.
  • the particle size distribution diagrams of FIGS. 4 to 6 are particle size distribution diagrams based on the volume of the particles.
  • the full width at half maximum (FWHM) of the particle size distribution of the polymer microparticles prepared in Example 1 was very narrow, less than 50 ⁇ m.
  • Example 1 significantly improved the uniformity of the size of the polymer microparticles prepared compared to the manufacturing methods of Comparative Examples 1 and 2.
  • the size of the polymer microparticles prepared in Example 1, Comparative Example 1 and Comparative Example 2 was analyzed.
  • the average particle diameter (D50) and particle size distribution of the particles was performed using a laser diffraction scattering particle size analyzer (PSA).
  • FIGS. 4, 5 and 6, The size distribution of the polymer microparticles prepared in Example 1, Comparative Example 1, and Comparative Example 2 is shown in FIGS. 4, 5 and 6, respectively.
  • the particle size distribution diagrams of FIGS. 4 to 6 are particle size distribution diagrams based on the volume of the particles.
  • the yield of particles is the volume percentage of particles having a particle diameter in the range of 20 ⁇ m to 75 ⁇ m among the entire polymer microparticles.
  • Example 2 most of the polymer microparticles obtained in Example 1 had a particle size in the range of 20-75 ⁇ m, so they were suitable for use as fillers. On the other hand, prepared in Comparative Examples 1 and 2 The polymer microparticles used were not suitable for use as fillers as the proportion of particles included in the above range was 35% or less.
  • the size of the polymer microparticles is less than 20 ⁇ m, as described above, they are removed early by macrophages, so that there is little effect of controlling the volume of the skin.
  • the diameter of the injection needle required for filler injection must be increased, so side effects may increase. For example, scarring and pain during the procedure may increase.
  • Evaluation Example 5 Evaluation of the amount of use of auxiliary materials according to the manufacturing method
  • the amount of the solvent required for the preparation of the polymer microparticles using 50 g of the biodegradable polymer was about 1.7 L, but the amount of the solvent required in the preparation methods of Comparative Examples 1 and 2 was The total amount used was 9L to 97L. Therefore, in the preparation method of Example 1, the amount of solvent consumed is significantly reduced compared to the preparation methods of Comparative Examples 1 and 2, so that polymer microparticles can be produced very simply and with high efficiency. .
  • Evaluation Example 6 Evaluation of the amount of solvent used according to the manufacturing method
  • Example 2 Based on the content of the solvents used in Example 1, Comparative Example 1 and Comparative Example 2, the amount of the auxiliary material required to prepare the biodegradable polymer microparticles was evaluated and shown in Table 4 below.
  • Example 1 the amount of consumable auxiliary material is significantly reduced compared to the manufacturing methods of Comparative Examples 1 and 2, so that the polymer microparticles can be manufactured very simply and with high efficiency.
  • biodegradable polymer microparticles for fillers By the new method for producing biodegradable polymer microparticles for fillers, biodegradable polymer microparticles having a size suitable for fillers can be simply manufactured with high yield.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dermatology (AREA)
  • Epidemiology (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Cardiology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

물과 혼화하는(miscible) 유기 용매, 및 생분해성 고분자를 포함하는 제1 조성물을 제공하는 단계; 계면활성제 및 물을 포함하는 제2 조성물을 제공하는 단계; 상기 제1 조성물과 상기 제2 조성물을 혼합하여 혼합물을 준비하는 단계; 상기 혼합물을 교반하여 고분자 미세 입자를 포함하는 제3 조성물을 준비하는 단계; 및 상기 제3 조성물로부터 고분자 미세 입자를 분리하는 단계;를 포함하는, 필러용 생분해성 고분자 미세입자의 제조방법 및 이러한 방법으로 제조된 필러용 생분해성 고분자 미세입자를 포함하는 주사제 제조 방법이 제시된다.

Description

필러용 생분해성 고분자 미세입자의 제조 방법, 및 이를 포함하는 주사제의 제조 방법
필러용 생분해성 고분자 미세입자의 제조 방법, 및 이를 포함하는 주사제의 제조 방법에 관한 것이다.
생분해성 고분자 미세입자는 안면 및 전신에 적용가능한 조직수복용 재료로 근래에 많이 주목받기 시작한 재료이다. 생분해성 고분자는 종래의 히알루론산 하이드로젤과 달리 인체에 유해한 성분을 포함하지 않으며, 6개월 내지 4년의 장시간에 걸쳐 분해될 수 있으므로, 다양한 용도에 적용 가능하다.
생분해성 고분자 미세입자의 제조에는 분무 건조법(Spray dry Method), 유화 용매 증발법(Emulsification Solvent Evaporation Method) 등이 사용된다. 분무 건조법으로 제조되는 고분자 미세입자는 중심부가 비어 있거나, 미세입자가 불규칙한 입자 형태를 가지거나, 미세입자가 서로 응집할 수 있다. 예를 들어, 한국 등록 특허 제1481441호에 개시된다. 유화 용매 증발법(Emulsification-Solvent Evaporation Method)은 유기 용매에 고분자를 녹인 분산 용액과 계면활성제가 포함된 유화 용액을 강하게 교반시켜 에멀젼(emulsion)을 형성한 후 용매를 증발시킴에 의하여 고분자 미세 입자를 제조하는 방법이다. 에멀젼은 열역학적으로 불안정한 상태이기 때문에 뭉침(Coalescence), 융합(Fusion), 상분리(Creaming) 등의 과정을 거쳐 수상과 유기상이 서로 분리되려고 하기 때문에 강력한 교반력이 필요하며, 상술한 바와 같이 불안정한 상태이므로 장시간 에멀전이 유지되기 어렵다.
따라서, 생분해성 고분자 미세 입자 및 이를 포함하는 생분해성 고분자 필러를 보다 쉽고 간단하게 제조할 수 있는 방법이 요구된다.
한 측면은 필러에 적합한 크기의 생분해성 고분자 미세 입자를 높은 수율로 간단하게 제조할 수 있는 필러용 생분해성 고분자 미세입자의 제조방법을 제공하는 것이다.
다른 한 측면은 상기 제조방법으로 제조된 필러용 생분해성 고분자 미세입자를 포함하는 주사제의 제조 방법을 제공하는 것이다.
한 측면에 따라,
물과 혼화하는(miscible) 유기 용매, 및 생분해성 고분자를 포함하는 제1 조성물을 제공하는 단계;
계면활성제 및 물을 포함하는 제2 조성물을 제공하는 단계;
상기 제1 조성물과 상기 제2 조성물을 혼합하여 혼합물을 준비하는 단계;
상기 혼합물을 교반하여 고분자 미세 입자를 포함하는 제3 조성물을 준비하는 단계; 및
상기 제3 조성물로부터 고분자 미세 입자를 분리하는 단계; 를 포함하는, 필러용 생분해성 고분자 미세입자의 제조방법이 제공된다.
다른 한 측면에 따라,
상기의 방법으로 제조된 필러용 생분해성 고분자 미세입자를 준비하는 단계; 및
상기 필러용 생분해성 고분자 미세입자를 주사용수, 멸균수 및 증류수 중에서 선택된 하나 이상에 수화시키는 단계를 포함하는 주사제 제조 방법이 제공된다.
한 측면에 따르면, 새로운 필러용 생분해성 고분자 미세입자의 제조 방법에 의하여, 필러에 적합한 크기의 생분해성 고분자 미세 입자를 높은 수율로 간단하게 제조할 수 있다.
도 1은 실시예 1에서 제조된 필러용 생분해성 고분자 미세 입자의 주사전자현미경 이미지이다.
도 2는 실시예 5에서 제조된 필러용 생분해성 고분자 미세 입자의 주사전자현미경 이미지이다.
도 3은 실시예 6에서 제조된 필러용 생분해성 고분자 미세 입자의 주사전자현미경 이미지이다.
도 4는 실시예 1에서 제조된 필러용 생분해성 고분자 미세입자의 입도 분포를 나타내는 그래프이다.
도 5는 실시예 1에서 제조된 필러용 생분해성 고분자 미세입자의 입도 분포를 나타내는 그래프이다.
도 6은 실시예 1에서 제조된 필러용 생분해성 고분자 미세입자의 입도 분포를 나타내는 그래프이다.
이하에서 설명되는 본 창의적 사상(present inventive concept)은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고, 상세하게 설명한다. 그러나, 이는 본 창의적 사상을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 창의적 사상의 기술 범위에 포함되는 모든 변환, 균등물 또는 대체물을 포함하는 것으로 이해되어야 한다.
각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 위하여 실제보다 확대하여 도시한 것이다. 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 또한, 층, 막, 영역, 판 등의 부분이 다른 부분 "상에" 있다고 할 경우, 이는 다른 부분 "바로 위에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 층, 막, 영역, 판 등의 부분이 다른 부분 "하부에" 있다고 할 경우, 이는 다른 부분 "바로 아래에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다.
이하에서 예시적인 구현예들에 따른 필러용 생분해성 고분자 미세입자의 제조방법 및 이를 포함하는 주사제 제조방법에 관하여 더욱 상세히 설명한다.
일구현예에 따른 필러용 생분해성 고분자 미세입자의 제조방법은, 물과 혼화하는(miscible) 유기 용매, 및 생분해성 고분자를 포함하는 제1 조성물을 제공하는 단계; 계면활성제 및 물을 포함하는 제2 조성물을 제공하는 단계; 상기 제1 조성물과 상기 제2 조성물을 혼합하여 혼합물을 준비하는 단계; 상기 혼합물을 교반하여 고분자 미세 입자를 포함하는 제3 조성물을 준비하는 단계; 및 상기 제3 조성물로부터 고분자 미세 입자를 분리하는 단계;를 포함한다. 물과 혼화하는(miscible) 유기 용매, 및 생분해성 고분자를 포함하는 제1 조성물과 계면활성제를 포함하는 제2 조성물을 혼합함에 의하여 안면용 필러 용도에 적합한 20 um 내지 100um의 입경을 가지며 향상된 입경 균일도를 가지는 생분해성 고분자 미세입자를 높은 수율로 간단하게 제조할 수 있다.
먼저, 물과 혼화하는(miscible) 유기 용매, 및 생분해성 고분자를 포함하는 제1 조성물이 제공된다. 제1 조성물은 예를 들어 유기 용매에 생분해성 고분자를 용해시켜 제조할 수 있다.
제1 조성물이 포함하는 생분해성 고분자는 폴리디옥사논(Polydioxanone, PDO), 폴리락트산(Poly-Lactic acid, PLA), 폴리-L-락트산(Poly-L-Lactic acid, PLLA), 폴리-D-락트산(Poly-D-Lactic acid, PDLA), 폴리-ε-카프로락톤(Poly-ε-caprolactone, PCL), 폴리글리콜산(Polyglycolic acid, PGA), 이들의 공중합체 및 이들의 혼합물 중에서 선택된 하나 이상일 수 있다. 이들의 공중합체는 예를 들어 폴리락트산-글리콜산 공중합체, 폴리디옥사논-카프로락톤 공중합체, 폴락트산-카프로락톤 공중합체 등일 수 있다. 생분해성 고분자는 예를 들어 폴리디옥사논이다.
제1 조성물이 포함하는 생분해성 고분자의 수평균 분자량(Mn)은 예를 들어 50,000 내지 500,000 Dalton, 50,000 내지 300,000 Dalton, 또는 50,000 내지 200,000 Dalton이다. 생분해성 고분자의 수평균 분자량이 50,000 미만이면 생분해성 고분자 미세 입자의 분해 속도가 증가하여 필러용 생체 소재로서의 적합하지 않을 수 있다. 생분해성 고분자의 수평균 분자량이 500,000 Dalton을 초과이면 높은 점탄성으로 인해 가공이 어려워 균일한 크기와 품질을 가지는 입자의 제조가 어려울 수 있다.
제1 조성물이 포함하는 생분해성 고분자의 함량은, 제1 조성물 전체에 대하여 예를 들어 0.1 내지 20wt%, 0.1 내지 10wt%, 1 내지 10wt%, 3 내지 9wt%, 또는 4wt% 내지 8wt% 이다. 제1 조성물이 포함하는 생분해성 고분자의 함량이 지나치게 낮으면, 제1 조성물이 포함하는 생분해성 고분자의 함량이 지나치게 낮아 고분자 미세입자의 제조 효율이 저하될 수 있다. 제1 조성물이 포함하는 생분해성 고분자의 함량이 지나치게 높으면 균일한 크기의 고분자 미세입자가 얻어지기 어려울 수 있다.
제1 조성물은 계면활성제를 비함유(free)할 수 있다. 제1 조성물은 예를 들어 계면활성제를 포함하지 않으면서도 균일한 고분자 미세입자를 용이하게 형성시킬 수 있다. 제1 조성물은 예를 들어 제1 조성물과 제2 조성물의 계면에서 계면 활성을 가지는 첨가제를 포함하지 않을 수 있다. 제1 조성물이 이러한 계면활성제를 포함하지 않음에 의하여 고분자 미세입자의 제조가 간단해지고 불순물의 함량이 낮은 고분자 미세입자가 제조될 수 있다. 따라서, 제1 조성물을 사용하여 제조되는 고분자 미세입자의 생체 적합성이 더욱 향상된다.
제1 조성물이 포함하는 유기용매는 물과 혼화하는(miscible) 유기 용매이다. 본 명세서에서 "물과 혼화하는 유기 용매"는 물과 완전히 또는 부분적으로 혼화하는 유기 용매이다. 물과 혼화하는 유기 용매는 예를 들어 물과 구분되는 별개의 상(phase)을 형성하지 않는 유기 용매를 의미한다. 본 명세서에서 물과 혼화하는 유기 용매는 예를 들어, 20℃의 물 100g에 대한 용해도가 예를 들어 3g 이상, 5g 이상, 10 g 이상, 20g 이상, 또는 50g 이상인 용매이다. 따라서, 본원발명의 제조방법은 물과 혼화하지 않는 유기 용매를 사용하는 종래의 제조방법과 구분된다.
제1 조성물이 포함하는 유기용매는 예를 들어 할로겐화 알콜, 할로겐화 탄화수소, 방향족 탄화수소, 지방족 탄화수소, 지방족 알콜, 지방족 아마이드, 지방족 케톤, 지방족 에테르, 및 지방족 알데히드 중에서 선택된 하나 이상일 수 있다. 제1 조성물이 포함하는 유기용매는 예를 들어 탄소수 1 내지 6의 불화 알콜, 탄소수 1 내지 6의 불화 탄화수소, 탄소수 1 내지 6의 염화 탄화수소, 탄소수 5 내지 10의 방향족 탄화수소, 및 탄소수 5 내지 10의 지방족 탄화수소, 탄소수 3 내지 5의 디알킬케톤, 탄소수 2 내지 6의 디알킬에테르, 탄소수 1 내지 6의 알킬알데히드, 탄소수 1 내지 5의 알킬니트릴, 및 탄소수 2 내지 5의 지방산 중에서 선택된 하나 이상일 수 있다. 제1 조성물이 포함하는 유기 용매는 예를 들어 HFIP(1,1,1,3,3,3-Hexafluoro-2-propanol), 아세톤(Acetone), 아세토니트릴(Acetonitrile), 아세트산(Acetic acid), 다이옥산(Dioxane), 에탄올(Ethanol), 메탄올(Methanol), 이소프로필 알코올(Isopropyl alcohol, IPA), 프로판올(Propanol), 테트라하이드로퓨란(Tetrahydrofuran, THF), 펜탄(Pentane) 및 이들의 혼합물로 이루어진 군으로부터 선택된 하나 이상일 수 있다. 예를 들어, 제1 조성물이 포함하는 생분해성 고분자로서 폴리디옥사논이 사용되는 경우에, 폴리디옥사논을 용해시키는 유기 용매로서 불화알콜이 사용될 수 있다. 불화알콜은 예를 들어 불소원자가 3 내지 13개 치환된 탄소수 1 내지 6의 알코올이다. 불화 알콜은 예를 들면 1,1,1,3,3,3-헥사플루오로-2-프로판올이다.
제1 조성물이 포함하는 유기 용매의 비점은 예를 들어 10 내지 100℃ 미만, 20 내지 90℃, 또는 30 내지 80℃일 수 있다. 유기 용매가 이러한 범위의 비점을 가짐에 의하여 유기 용매가 용이하게 휘발될 수 있다. 유기 용매의 비점이 너무 낮으면 액상을 유지하기 어려우며, 유기 용매의 비점이 너무 높으면 유기 용매의 증발이 어려워지고 잔류 용매의 함량이 증가하여 생분해성 고분자 미세입자의 생체 적합성이 저하될 수 있다.
제1 조성물이 포함하는 유기용매의 함량은 제1 조성물 전체에 대하여 예를 들어 50 내지 99.9wt%, 60 내지 99.9wt%, 70 내지 99.9wt%, 80 내지 99.9wt%, 또는 90 내지 99.9wt%이다. 제1 조성물이 포함하는 유기 용매의 함량이 지나치게 낮으면 제1 조성물의 점도가 증가하여 균일한 고분자 미세입자가 얻어지지 않을 수 있다. 제1 조성물이 포함하는 유기 용매의 함량이 지나치게 높으면 제1 조성물로부터 생성되는 고분자 미세입자의 함량이 지나치게 낮아 고분자 미세입자의 제조 효율이 저하될 수 있다.
또한, 계면활성제 및 물을 포함하는 제2 조성물이 제공된다. 제2 조성물은 예를 들어 수용성 고분자 및 수용성 단량체 중에서 선택된 하나 이상의 계면활성제를 물 및 알코올 중에서 선택된 하나 이상에 용해시켜 제조할 수 있다.
본 명세서에서 수용액을 물을 포함하는 조성물이며, 반드시 100% 만으로 한정되지 않는다. 제2 조성물이 용매 중에서 물의 함량은 예를 들어 50 중량% 이상, 60중량% 이상, 70중량% 이상, 80중량% 이상 또는 90 중량% 이상이다. 제2 조성물이 포함하는 용매는 예를 들어 물이다.
제2 조성물이 포함하는 계면활성제는 폴리비닐알콜(Polyvinyl alcohol), 폴리옥시에틸렌 솔비탄 및 그 염 등의 수용성 고분자, 및 대두 레시틴(soybean Lecithin), 모노글리세리드(monoglyceride) 등의 수용성 단량체 중에서 선택된 하나 이상일 수 있다.
제2 조성물이 포함하는 계면 활성제의 함량은 예를 들어 제2 조성물 전체에 대하여 1 내지 10 wt%, 3 내지 9wt%, 또는 4 내지 8wt%일 수 있다. 계면활성제의 함량이 지나치게 낮으면 계면활성제의 계면 활성이 약화되어 균일한 크기의 고분자 미세입자가 제조되기 어려울 수 있다. 계면활성제의 함량이 지나치게 높으면 고분자 미세입자의 크기가 지나치게 감소하여 생체 내에서 대식 세포에 의하여 의하여 탐색되어 필러로서 작용하지 못하거나, 고분자 미세입자의 응집이 발생하여 고분자 미세입자의 크기가 오히려 증가할 수 있다. 제2 조성물이 포함하는 계면활성제로서 수용성 고분자인 폴리비닐알콜이 사용되면, 폴리비닐알콜이 용해되는 용매로서 물 또는 물과 알킬알콜 혼합 용액이 사용될 수 있다.
제2 조성물이 포함하는 계면활성제로서 수용성 고분자가 사용되는 경우, 수용성 고분자의 수평균 분자량은 예를 들어 50,000 내지 200,000 Dalton, 70,000 내지 170,000 Dalton, 또는 100,000 내지 150,000 Dalton 일 수 있다. 수용성 고분자의 수평균 분자량이 50,000 Dalton 미만이면 계면 활성이 저하될 수 있으며, 수용성 고분자의 수평균 분자량이 200,000 Dalton 초과이면 높은 농도로 인해 균일한 고분자 미세입자의 형성이 어려울 수 있다.
제2 조성물은 상술한 계면활성제 외에 다른 계면활성제를 더 포함할 수 있다. 제2 조성물이 추가적으로 포함할 수 있는 다른 계면활성제는 음이온성 계면활성제, 양이온성 계면활성제 또는 양쪽성 계면활성제일 수 있다. 제2 조성물이 추가적으로 포함할 수 있는 다른 계면활성제는 예를 들어, 폴리옥시에틸렌 솔비탄모노라우레이트 (Tween 20), 폴리옥시에틸렌 솔비탄 모노팔미테이트 (Tween 40), 폴리옥시에틸렌 솔비탄 모노스테아레이트(Tween 60), 폴리옥시에틸렌 솔비탄 모노올레에이트 (Tween 80), 및 폴리옥시에틸렌 솔비탄 트리올레에이트(Tween 85) 중에서 선택된 하나일 수 있으나 반드시 이들로 한정되지 않으며 당해 기술분야에서 계면활성제로 사용되는 것이라면 모두 가능하다. 제2 조성물은 다른 계면활성제를 추가적으로 포함하지 않는 경우에도, 필러 용도에 적합한 균일한 입자 크기를 가지는 고분자 미세입자를 높은 수율로 제조할 수 있다.
제2 조성물의 pH는 예를 들어 5.0 이상, 5.5 이상, 6.0 이상, 또는 6.5 이상일 수 있다. 제2 조성물의 pH는 예를 들어 5.0 내지 8.0, 5.0 내지 7.5, 5.0 내지 7, 또는 5 내지 6.5 일 수 있다. 제2 조성물이 이러한 범위의 pH를 가짐에 의하여 균일한 크기를 가지는 고분자 미세입자를 높은 수율로 제조할 수 있다.
다음으로, 제1 조성물과 상기 제2 조성물을 혼합하여 혼합물이 준비된다.
혼합물이 준비되는 단계에서, 유기용매와 물은, 제1 조성물이 포함하는 유기용매 100 부피부에 대하여 제2 조성물이 포함하는 물 50 내지 200 부피부의 비율로 혼합될 수 있다. 예를 들어, 유기용매와 물의 혼합 부피비는 1:0.5 내지 1:2, 1:0.6 내지 1:1.9, 1:0.6 내지 1:1.8, 1:0.7 내지 1:1.7, 1:0.7 내지 1:1.6, 1:0.7 내지 1:1.5, 1:0.8 내지 1:1.4, 1:0.8 내지 1:1.3, 또는 1:0.8 내지 1:1.2이다. 혼합물을 준비하는 단계에서 유기용매 100 부피부와 물 50 내지 200 부피부가 혼합됨에 의하여, 유기용매 100 부피와 물 800 부피부 이상이 혼합되는 종래의 제조방법에 비하여 물의 사용량이 현저하게 감소된다. 또한, 유기용매 100 부피와 물 800 부피부 이상이 혼합되는 종래의 제조방법에서는, 과량의 물에 제1 조성물이 첨가됨에 의하여 생분해성 고분자의 급격한 석출이 진행되므로 균일한 입경을 가지는 고분자 미세입자의 제조가 어렵다. 이에 반해, 유기용매와 물이 유사한 부피비로 혼합되는 본원발명의 제조방법에서는, 생분해성 고분자의 석출인 서서히 진행되므로, 균일한 입경을 가지는 고분자 미세입자가 용이하게 제조될 수 있다. 또한, 과량의 용매를 사용하는 종래기술에 비하여 사용되는 용매의 사용량이 현저히 감소되며, 보다 간단하게 고분자 미세입자의 제조가 가능하다.
다음으로, 혼합물이 교반되어 고부자 미세 입자를 포함하는 제3 조성물이 준비된다. 제1 조성물과 제2 조성물을 혼합하고 상기 혼합물이 교반되는 것은 순차적으로 또는 실질적으로 동시에 수행될 수 있다. 예를 들어, 교반기가 회전하는 용기에 제1 조성물 및 제2 조성물을 동시에 또는 순차적으로 투입하여 혼합물을 준비하고 이와 동시에 교반이 진행될 수 있다.
혼합물의 교반은 100 내지 800rpm, 100 내지 700rpm, 200 내지 700rpm, 200 내지 600rpm, 300 내지 600rpm, 또는 300 내지 500rpm에서 수행될 수 있다. 혼합물의 교반(예를 들어, 교반 속도, rpm)이 지나치게 느리면 제1 조성물과 제2 조성물의 혼합이 원활하게 수행되지 않을 수 있다. 혼합물의 교반(예를 들어, 교반 속도, rpm)이 지나치게 빠르면, 고분자 미세입자의 입자 크기의 균일성이 저하될 수 있다.
혼합물의 교반은 1일(즉, 24 시간) 이상 수행될 수 있다. 혼합물의 교반이 장시간 진행됨에 의하여 유기 용매가 서서히 휘발함에 의하여 생분해성 고분자가 서서히 균일한 조건에 고분자 미세입자로 석출될 수 있다. 따라서, 고분자 미세 입자의 입자 크기의 균일성이 향상될 수 있다. 혼합물의 교반이 800rpm이상의 저속이므로, 교반 시간이 1일(즉, 24시간) 미만이면 고분자 미세 입자의 석출이 충분히 진행되지 않을 수 있다. 혼합물의 교반 시간은 예를 들어, 1일 내지 10일, 2일 내지 9일, 3일 내지 8일, 3일 내지 7일, 또는 4일 내지 6일 수 있다. 혼합물의 교반 시간이 지나치게 증가하면 고분자 미세입자의 제조 효율이 저하될 수 있다.
이어서, 제3 조성물로부터 고분자 미세 입자를 분리한다. 제3 조성물로부터 고분자 미세입자를 분리하는 방법은 특별히 한정되지 않으며, 여과, 침전, 세척 등을 포함하나 이들로 한정되지 않는다.
제3 조성물로부터 고분자 미세입자를 분리하는 단계는 예를 들어, 제3 조성물에서 고분자 미세 입자를 침전시켜 분리하는 단계; 및 상기 분리된 고분자 미세 입자를 복수회 세척하는 단계;를 포함할 수 있다.
교반이 종료된 제3 조성물은 예를 들어 1 시간 이상, 2 시간 이상, 5 시간 이상, 12 시간 이상, 또는 24 시간 이상 방치한 후 상청액(supernatant)을 제거하고 고분자 미세입자를 분리할 수 있다. 이어서, 분리된 고분자 미세입자에 증류수틀 투입하고 100 내지 1000rpm에서 1 내지 24 시간 동안 교반한 후 증류를 제거하는 세척 과정을 1회 이상 수행할 수 있다. 이러한 세척 과정에 의하여 고분자 미세입자에 잔류하는 불순물을 효과적으로 제거할 수 있다.
본원발명의 제조방법은 안정화제 또는 안정화용액에서 안정화시키는 단계를 포함하지 않을 수 있다. 따라서, 고분자 미세입자의 제조가 보다 간단해진다. 종래의 제조방법에서는 제조된 고분자 미세입자를 안정화 또는 숙성시기 위하여 과량의 알코올 또는 과량의 계면활성제 수용액 등에서 장시간 안정화시키는 단계를 포함하므로 시간 및 용매의 소비가 컸다. 이에 반해, 본원발명은 이러한 안정화 단계 없이 고분자 미세입자를 포함하는 제3 조성물을 준비한 후 분리 및/또는 세척에 의하여 고분자 미세입자를 수득하므로 제조 시간 및 용매 사용을 현저히 감소시킬 수 있다.
본원발명의 제조방법에 의하여 제조된 고분자 미세입자의 평균 입경(D50)은 40um 내지 300um, 40um 내지 200um, 40um 내지 130um, 40um 내지 100um, 40um 내지 90um, 40um 내지 80um, 40um 내지 70um, 40um 내지 60um, 또는 40um 내지 50um일 수 있다. 고분자 미세입자가 이러한 범위의 평균 입경을 가짐에 의하여 필러로 적용하기에 보다 적합한 크기를 가질 수 있다. 고분자 미세입자의 평균 입경이 지나치게 작으면 대식 세포에 의하여 의하여 탐색되어 필러로서 작용하지 못할 수 있다. 생분해성 고분자 미세 입자의 평균 입경이 300 um 초과이면, 주사제용으로 사용되기 적합하지 않을 수 있다. 예를 들어, 고분자 미세입자의 평균 입경이 지나치게 증가하면 필러 주입에 필요한 주사 바늘의 직경이 증가하므로, 흉터 및 시술 시의 통증 등의 부작용이 증가할 수 있다. 또한, 안면용 필러의 경우 안면에 주입되어 안면의 미세한 볼륨 조절이 매우 중요하게 요구되나, 필러의 입경이 증가함에 의하여 이러한 미세한 불륨 조절이 어려워 적용이 어려울 수 있다. 안면 성형 필러에 사용되는 생분해성 고분자 미세 입자의 크기는 40 내지 100 um일 수 있다. 안면 이외의 용도에 사용되는 생분해성 고분자 미세 입자의 크기는 예를 들어 100 내지 300 um일 수 있다.
상기 제조방법에 의하여 제조된 고분자 미세입자 중에서 입경 25um 내지 75um 범위에 속하는 고분자 미세입자의 함량은 50부피% 이상, 55부피% 이상, 60부피% 이상, 65부피% 이상, 70부피% 이상, 75부피% 이상, 또는 80부피% 이상일 수 있다. 따라서, 상기 제조방법에 의하여 이러한 안면용 필러에 적합한 크기를 가지는 고분자 미세 입자를 높은 수율로 여과, 분류 등의 추가 공정 없이 간단하게 제조할 수 있다.
생분해성 고분자 미세 입자는 크기별로 분류하는 단계를 더 포함할 수 있다. 제1 조성물로부터 분리된 생분해성 고분자 미세 입자를 분체기를 사용하여 크기별로 분류할 수 있다. 예를 들어, 크기 체별(size sieving)기를 사용하여 건식 또는 습식으로 생분해성 고분자 미세 입자를 크기별로 분류할 수 있다. 습식으로 분체할 경우, 동결 건조를 추가적으로 시행하여, 수분을 제거한 후, 분류할 수 있다. 그러나, 본원발명의 고분자 미세입자 제조방법은 이러한 분류 과정 없이도 25 내지 75 um 범위의 크기를 가지는 입자를 높은 수율로 제조할 수 있다.
필러용 생분해성 고분자 미세입자는 주름 개선, 안면 성형, 바디 성형, 남성 보형물, 또는 요실금 치료용으로 사용되는 것일 수 있다. 안면 성형 필러에 사용되는 생분해성 고분자 미세 입자의 크기는 25 내지 100 um일 수 있다. 남성 보형물 또는 요실금 치료제에 사용되는 생분해성 고분자 미세 입자의 크기는 100 내지 300 um일 수 있다.
다른 일구현예에 따른 주사제 제조방법은 방법으로 제조된 필러용 생분해성 고분자 미세입자를 준비하는 단계; 및 상기 필러용 생분해성 고분자 미세입자를 주사용수, 멸균수 및 증류수 중에서 선택된 하나 이상에 수화시키는 단계를 포함한다.
상술한 바와 같이 필러용 생분해성 고분자 미세입자를 준비한다. 이어서, 준비된 생분해성 고분자 미세 입자와 생체 적합성 캐리어를 혼합하여 제4 조성물을 준비한다.
제4 조성물은 예를 들어 용매에 생분해성 고분자 미세 입자와 생체 적합성 캐리어를 첨가하여 제조할 수 있다. 예를 들어, 제4 조성물은 생분해성 고분자 미세 입자를 포함하는 수용액에 생체 적합성 케리어를 첨가하여 제조할 수 있다. 용매로서 물 또는 물과 알킬알콜 혼합 용액이 사용될 수 있다. 제4 조성물은 예를 들어 3롤-밀(Three roll mill) 등을 사용하여 높은 점도의 혼합액을 고르게 분산시킬 수 있다.
제4 조성물은 용도에 따라 생리활성물질 및 국소마취제 등 추가 성분을 더 포함할 수 있다. 추가되는 성분을 반드시 이들로 한정되지 않으며 용도에 따라 추가되는 성분 및 함량이 정해질 수 있다.
제4 조성물이 포함하는 생체 적합성 캐리어는 알긴산(Alginic acid) 및 그 염, 히알루론산(Hyalurinic acid) 및 그 염, 카르복시메틸 셀룰로오스(Carboxylmethyl cellulose) 및 그 염, 덱스트란(Dextran) 및 그 염, 콜라겐(collagen), 젤라틴(Gelatin), 및 엘라스틴(Elastin) 중에서 선택된 하나 이상을 포함할 수 있다. 생체 적합성 캐리어는 예를 들어 카르복시메틸 셀루로오스일 수 있다. 생체 적합성 캐리어를 0.5 내지 3wt% 포함하는 수용액의 점도는 예를 들어 25℃에서 1,000 내지 10,000cps 일 수 있다. 생체 적합성 캐리어가 이러한 점도를 가짐에 의하여 제2 조성물의 점도 조절이 보다 용이할 수 있다.
제4 조성물이 포함하는 생분해성 고분자 미세 입자의 함량은 제4 조성물 전체에 대하여 10 내지 80 중량%, 10 내지 50wt%, 10 내지 30wt% 또는 15 내지 30wt%일 수 있다. 생분해성 고분자 미세 입자의 함량이 10 중량% 미만이면 농도가 낮아 고르게 분산시키기 어려울 수 있으며 생분해성 고분자 미세 입자의 함량이 80 중량% 초과이면 낮은 수분 함량으로 동결 건조 및 생체 적합성 캐리어와의 혼합이 어려울 수 있다.
제4 조성물이 포함하는 생분해성 고분자 미세 입자와 생체 적합성 캐리어의 비율은 중량비로 20:80 내지 80:20일 수 있다. 생분해성 고분자 미세 입자와 생체 적합성 캐리어의 비율이 이러한 범위를 벗어나면 생체 적합성 캐리어에 의하여 생분해성 고분자 미세입자를 적정 농도로 고르게 분산 시키기 어려울 수 있다. 제4 조성물은 그대로 주사제로 사용되어 주사제가 준비될 수 있다.
다르게는, 보관 등의 목적을 위하여 제4 조성물이 건조되어 분말, 입자 등의 고체 형태로 변형된 후, 주사용수, 멸균수 및 증류수 중에서 선택된 하나 이상에 수화시켜 주사제로 사용될 수 있다.
제4 조성물의 건조를 위하여, 예를 들어 제4 조성물을 몰드에 주입하고 동결시켜 동결물을 준비한다. 예를 들어, 제4 조성물을 몰드에 주입하고 예비 동결시켜 동결물을 준비한다. 예비 동결은 예를 들어 -10 내지 -30℃에서 1 내지 48 시간 동안 수행될 수 있다. 동결물은 몰드로부터 분리될 수 있다. 몰드의 형태는 특별히 한정되지 않으나 구형일 수 있다. 마지막으로, 동결물로부터 수분을 제거하여 일정한 형태로 몰딩된 동결물이 준비된다.
일정한 형태로 몰딩된 동결물을 건조함에 의하여 건조된 생분해성 고분자 미세입자를 준비한다. 동결 건조는 예를 들어 -70 내지 -100℃에서 1 내지 72 시간 동안 수행될 수 있다. 동결 건조에 의하여 동결물로부터 수분 및 용매가 제거되어 건조된 생분해성 고분자 필러가 얻어진다. 생분해성 고분자 필러는 예를 들어 구형(spheric) 다공성(porous) 입자일 수 있으나 반드시 이러한 형태로 한정되지 않으며 요구되는 조건에 따라 선택될 수 있다. 생분해성 고분자 필러가 구형이며 다공성을 가짐에 의하여 모세관 현상 등에 의하여 물 등에 빠르게 수화될 수 있다.
구형 다공성 입자는 예를 들어 0.2 내지 0.9g/cm3, 0.2 내지 0.8g/cm3, 0.2 내지 0.7g/cm3, 0.2 내지 0.6g/cm3, 또는 0.2 내지 0.5g/cm3 의 밀도를 가질 수 있다. 구형 다공성 입자가 이러한 범위의 밀도를 가짐에 의하여 물 등에 쉽고 빠르게 수화될 수 있다. 구형 다공성 입자는 예를 들어 3 내지 8mm, 3 내지 7mm, 3 내지 6mm의 평균 직경을 가질 수 있다. 구형 다공성 입자가 이러한 범위의 입경을 가짐에 의하여 보관이 용이하고 작업성이 향상된다.
도면에 도시되지 않으나, 상기 동결물로부터 수분을 제거하여 구형 다공성 입자를 준비한 후에 구형 다공성 입자를 멸균하는 단계를 더 포함할 수 있다.
멸균은 감마선 멸균, 에틸렌옥사이드 멸균, 또는 감압 멸균으로 수행되나 반드시 이러한 방법으로 한정되지 않으며 당해 기술분야에서 사용하는 멸균 방법이라면 모두 가능하다.
생분해성 고분자 미세 입자가 구형 다공성 입자 형태이므로 수화가 빠르게 진행되므로 주사제의 제조가 용이하다. 상기 방법으로 제조되는 주사제는 예를 들어 25℃에서 8,000 내지 30,000cps의 점도를 가지고, 압출력이 5N 내지 12N이다.
다르게는, 생분해성 고분자 미세입자는 건조 분말 형태일 수 있다.
본 명세서에서 용어 "탄화수소"는 탄소 및 수소로 이루어진 탄소수 1 내지 20의 유기화합물을 말한다.
본 명세서에서 용어 "지방족 탄화수소"는 완전 포화된 분지형 또는 비분지형 (또는 직쇄 또는 선형) 탄화수소를 말한다.
"지방족 탄화수소"는 예를 들어 메탄, 에탄, n-프로판, 이소프로판, 부탄, n-이소부탄, n-펜탄, n-헥산, n-헵탄, n-옥탄, n-노난 등이다.
본 명세서에서 용어 "방향족 탄화수소"는 방향족 고리를 포함하는 탄화수소를 말한다.
"방향족 탄화수소"는 예를 들어 벤젠, 나프탈렌 등이다.
본 명세서에서 용어 "지방족 알콜"은 지방족 사슬을 포함하는 알콜을 말한다.
본 명세서에서 용어 "지방족 아마이드"는 지방족 사슬을 포함하는 아마이드를 말한다.
본 명세서에서 용어 "지방족 케톤"은 지방족 사슬을 포함하는 케톤을 말한다.
본 명세서에서 용어 "지방족 에테르"는 지방족 사슬을 포함하는 에테르를 말한다.
본 명세서에서 용어 "지방족 알데히드"는 지방족 사슬을 포함하는 알데히드를 말한다.
본 명세서에서 용어 "할로겐화 탄화수소"는 하나 이상의 할로겐으로 치환된 탄화수소를 말한다.
본 명세서에서 용어 "염화 탄화수소"는 하나 이상의 염소로 치환된 탄화수소를 말한다.
본 명세서에서 용어 "할로겐화알콜"는 하나 이상의 할로겐으로 치환된 알콜을 말한다.
본 명세서에서 용어 "불화알콜"는 하나 이상의 불소로 치환된 알콜을 말한다.
본 명세서에서 용어 "할로겐화알콜"는 하나 이상의 할로겐으로 치환된 알콜을 말한다.
본 명세서에서 용어 "알킬알콜"는 알킬기에 하이드록시기 연결된 알콜을 말한다.
본 명세서에서 용어 "알킬"은 완전 포화된 분지형 또는 비분지형 (또는 직쇄 또는 선형) 탄화수소를 말한다.
본 명세서에서 용어 "알콜"는 하나의 하이드록시기(-OH)를 포함하는 유기화합물을 말한다. 알콜은 예를 들어 메탄올, 에탄올 등이다.
본 명세서에서 용어 "아마이드"는 하나 이상의 아마이드기(-(C=O)-N=)를 포함하는 유기화합물을 말한다. 아마이드는 예를 들어 아세트아마이드, N,N-디메틸아세트아마이드 등이다.
본 명세서에서 용어 "케톤"은 하나 이상의 케톤기(-(C=O)-)를 포함하는 유기화합물을 말한다. 케톤은 예를 들어 디메틸케톤, 디에틸케톤, 메틸에틸케톤 등이다.
본 명세서에서 용어 "에테르"는 하나 이상의 에테르기(-O-)를 포함하는 유기화합물을 말한다. 에테르는 예를 들어 디메틸에테르, 디에틸에테르, 메틸에틸에테르 등이다.
본 명세서에서 용어 "알데히드"는 하나 이상의 알데히드기(-(C=O)H)를 포함하는 유기화합물을 말한다. 알데히드는 예를 들어 메틸알데히드, 에틸알데히드 등이다.
"알킬"의 비제한적인 예로는 메틸, 에틸, n-프로필, 이소프로필, n-부틸, 이소부틸, sec-부틸, n-펜틸, 이소펜틸, 네오펜틸, n-헥실, 3-메틸헥실, 2,2-디메틸펜틸, 2,3-디메틸펜틸, n-헵틸 등이다.
본 명세서에서 용어 "할로겐"는 불소, 브롬, 염소, 요오드를 포함한다.
이하의 구체적인 실시예를 통해 본 발명을 보다 구체적으로 설명한다. 하기 실시예는 본 발명의 이해를 돕기 위한 예시에 불과하며, 본 발명의 범위가 이에 한정되는 것은 아니다.
(생분해성 고분자 미세 입자의 제조)
실시예 1: 폴리디옥사논 미세 입자의 제조, PVA 6 wt%
생분해성 고분자로서 폴리디옥사논(Polydioxanone, PDO, 본질 점도(Inherent Viscosity, IV) 1.55 dL/dg, 수평균 분자량 100,000 Dalton )를 유기 용매인 헥사플루오로이소프로판올(Hexafluoroisopropanol, HFIP)에 용해시켜 헥사플루오로이소프로판올 6중량%를 포함하는 제1 조성물을 제조하였다.
계면활성제로서 PVA(Polyvinyl alcohol, 수평균분자량 130,000 Dalton)를 증류수에 용해시킨 6 wt% PVA 수용액인 pH 5.5 정도의 제2 조성물을 준비하였다.
제1 조성물과 제2 조성물을 1:1의 부피비로 혼합하여 혼합물을 준비하였다. 준비된 혼합물을 400 rpm으로 5일 동안 교반하면서 유기 용매를 제거하여 고분자 미세입자를 포함하는 제3 조성물을 얻었다.
교반이 종료된 후 24시간 동안을 방치하여 고분자 미세 입자를 침전시킨 후, 상청액(supernatant)을 제거하고 고분자 미세입자를 분리하였다.
분리된 고분자 미세입자에 정제수를 첨가한 후 다시 교반하여 세척하였다. 이러한 세척 단계를 총 3회 수행하여, 고분자 미세입자를 제조하였다.
실시예 2: 폴리디옥사논 미세 입자의 제조, PVA 3wt%
제2 조성물이 포함하는 PVA 함량을 3wt%로 변경한 것을 제외하고는, 실시예 1과 동일한 방법으로 고분자 미세입자를 제조하였다.
실시예 3: 폴리디옥사논 미세 입자의 제조, PVA 1wt%
제2 조성물이 포함하는 PVA 함량을 1wt%로 변경한 것을 제외하고는, 실시예 1과 동일한 방법으로 고분자 미세입자를 제조하였다.
실시예 4: 폴리디옥사논 미세 입자의 제조, PVA 10wt%
제2 조성물이 포함하는 PVA 함량을 10wt%로 변경한 것을 제외하고는, 실시예 1과 동일한 방법으로 고분자 미세입자를 제조하였다.
실시예 5: 폴리-L-락트산 미세 입자의 제조, PVA 6wt%
생분해성 고분자로서 폴리디옥사논 대신 폴리-L-락트산(Poly-L-Lactic acid, PLLA, 본질 점도(Inherent Viscosity, IV) 0.8~1.2 dL/dg, 수평균 분자량 (80,000 ~ 120,000) Dalton)을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 고분자 미세입자를 제조하였다.
실시예 6: 폴리카프로락톤 미세 입자의 제조, PVA 6wt%
생분해성 고분자로서 폴리디옥사논 대신 폴리카프로락톤(Poly-ε-caprolactone PCL, 본질 점도(Inherent Viscosity, IV) 0.8~1.0 dL/dg, 수평균 분자량 (80,000 ~ 110,000) Dalton)을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 고분자 미세입자를 제조하였다.
비교예 1: 폴리디옥사논 미세 입자의 제조, 산성 조성물
유기 용매인 1,1,1,3,3,3-헥사플로우로-2-프로판올 50 g에 생분해성 고분자인 폴리디옥사논(PDO; 중량평균분자량 200,000) 0.5 g을 녹여서 제1 조성물을 제조하였다.
폴리에틸렌(PEO)-폴리프로필렌(PPO)-폴리에틸렌(PEO) 삼원 공중합체 (바스프사 제품, 제품명 F127, 중량평균분자량 12,600) 10 g, 40% 염산 수용액 25 g, 물 940 g 및 계면활성제로서 트윈-80 (Tween-80) 0.1 g을 넣고 교반하여 pH 2.5 정도의 제2 조성물을 제조하였다.
제1 조성물과 제2 조성물을 혼합하여 혼합물을 준비하였다. 준비된 혼합물을 1500 rpm으로 1 시간 동안 고속 교반하여, 폴리디옥사논 입자가 고루 분산되어 있는 제3 조성물을 제조하였다.
제3 조성물 1025 g에 안정화제로서 에탄올 1025g을 첨가하고, 100rpm으로 교반하면서 4 일 동안 입자를 숙성시켰다. 숙성된 폴리디옥사논 입자는 여과한 후, 물로 세척하고 건조하여 폴리디옥사논 입자를 제조하였다.
비교예 2: 폴리디옥사논 미세 입자의 제조, 연속반응기
생분해성 고분자로서 평균 분자량이 100,000인 폴리디옥사논(Polydioxanone) 90g과 삼원 공중합체 F-127(바스프사 제품, 평균분자량 12,600), 삼원 공중합체 F-68(바스프사 제품, 평균분자량 8,400) 60g을 유기 용매인 헥사플루오로이소프로파놀(Hexafluoroisopropanol) 1500mL에 투입한 후 교반하여 혼합하여 제1 조성물을 1500 mL 준비하였다.
계면활성제로서 PVA(Polyvinyl alcohol, 수평균분자량 130,000 Dalton)를 증류수에 용해시킨 5 wt% PVA 수용액인 제2 조성물을 7500 mL 준비하였다.
쿠에트 테일러 유체 흐름을 이용한 연속반응기에 제1 조성물 1500 mL를 10mL/min의 속도로 투입하면서 제2 조성물 7500 mL를 동시에 50mL/mL의 속도로 투입하여 혼합하여 연속반응기 내에서 혼합물을 준비하였다.
혼합물의 연속 반응기 내 체류시간은 10분이었고, 이어서 반응액을 연속 반응기 외부로 토출하였다. 쿠에트 테일러 유체 흐름을 이용한 연속 반응기의 유속은 1500rpm이었다.
토출되는 반응액을 안정화액인 1wt% PVA(평균분자량 93,500) 7,500mL 수용액에 투입하면서 안정화액을 교반시켰다.
토출되는 반응액을 모두 안정화액에 투입한 후 감압 하에 24시간 교반시키면서 유기 용매를 제거하고 생성된 고분자 미세 입자를 안정화시켰다.
고분자 미세 입자가 포함된 반응액을 원심 분리기로 고액 분리하여 고분자 미세 입자를 얻었다.
분리된 고분자 미세입자를 다시 900 mL 증류수로 5회 세척 후 원심 분리를 진행하여 불순물을 제거한 고분자 미세 입자를 제조하였다.
(주사제의 제조)
실시예 7: 폴리디옥사논 미세 입자: CMC =1:1
실시예 1에서 제조된 폴리디옥사논 미세 입자를 카르복실메틸셀룰로오스(CMC: Carboxylmethylcellulose)와 중량비 1:1 로 멸균 주사용수를 사용하여 혼합하여 혼합 조성물을 준비하였다.
혼합 조성물이 포함하는 폴리디옥사논 미세 입자의 함량은 30wt%이었다.
혼합 조성물은 그대로 주사제로 사용되거나 혼합 조성물을 동결 건조한 분말을 멸균 주사용수에 수화시켜 주사제로 사용될 수 있다.
평가예 1: 주사 전자 현미경(SEM) 이미지
실시예 1, 실시예 5 및 실시예 6에서 제조된 고분자 미세 입자의 현미경 이미지를 도 1, 도 2 및 도 3에 각각 나타내었다.
도 1 내지 3에서 보여지는 바와 같이 고분자 미세 입자는 생분해성 고분자의 종류에 무관하게 구형 입자 형태를 가짐을 확인하였다.
평가예 2: PVA 함량에 따른 영향 평가
실시예 1 내지 4에서 제조된 고분자 미세입자의 형상 및 평균 직경(D50)을 레이저 회절 산란식 입도 분석기(Particle Size Analyzer, PSA)를 사용하여 측정하여 그 결과를 하기 표 1에 나타내었다.
입자의 평균 입경(D50)은 레이저 회절 산란식 입도 분석기(Particle Size Analyzer, PSA)를 사용하여 측정하였다.
입도 분포도로부터 측정되는 누적 부피 기준 메디안 직경(median diameter, D50)을 계산하고, 이를 평균 직경으로 하였다.
PVA 농도[wt%] 평균 직경(D50)[um] 입자 형상
실시예 1 6 45 구형
실시예 2 3 129 구형
실시예 3 1 218 구형
실시예 4 10 5 구형
표 1에 보여지는 바와 같이, PVA 함량이 증가할수록 미세입자의 평균 직경이 감소하고, 입자의 형상은 구형을 유지하였다.실시예 4의 경우 평균 직경이 5 um으로 감소함에 의하여, 20 um 이하의 미세 입자의 함량이 증가하여 생체 조직 내에서 대식 세포에 의하여 식세포작용을 거쳐 제거되므로 필러로서 작용하지 못하는 입자의 함량이 상대적으로 증가할 수 있다.
평가예 3: 제조 방법에 따른 영향 평가
실시예 1, 비교예 1 및 비교예 2에서 제조된 고분자 미세 입자의 크기를 분석하였다. 입자의 평균 입경(D50) 및 입자 크기 분포는 레이저 회절 산란식 입도 분석기(Particle Size Analyzer, PSA)를 사용하여 수행하였다.
실시예 1, 비교예 1 및 비교예 2에서 제조된 고분자 미세 입자의 크기 분포를 도 4, 도 5 및 도 6에 각각 도시하였다. 도 4 내지 6의 입도 분포도는 입자의 부피 기준 입도 분포도이다.
도 4에 보여지는 바와 같이 실시예 1에서 제조된 고분자 미세입자의 입도 분포도의 반가폭(FWHM, Full Width at Half Maximum)은 50 um 미만으로 매우 좁았다.
이에 반해, 도 5 및 6에 보여지는 바와 같이, 비교예 1 내지 2에서 제조된 고분자 미세입자의 입도 분포도의 반가폭은 60~200 um에 달하였다.
따라서, 실시예 1의 제조방법은 비교예 1 내지 2의 제조방법에 비하여 제조되는 고분자 미세입자의 크기의 균일성이 현저히 향상되었다.
비교예 1 내지 2의 제조방법에서는 유기 용매 부피의 10배 내지 30배의 과량의 물이 혼합되므로, 가용성 용매 조건에서 불용성 용매 조건으로 용매 조건이 급격히 변화하면서 생분해성 고분자가 고분자 미세입자로 석출되므로, 균일한 크기를 가지는 고분자 미세입자가 얻어지기 어렵다.
이에 반해, 실시예 1의 제조방법에서는 유기 용매와 물이 동일한 부피로 혼합되므로, 가용성 용매 조건에서 불용성 용매 조건으로 용매 조건이 서서히 변화하면서 생분해성 고분자가 고분자 미세입자로 석출되므로, 균일한 입자 크기를 제공할 수 있다.
평가예 4: 제조 방법에 따른 수득율 평가
실시예 1, 비교예 1 및 비교예 2에서 제조된 고분자 미세 입자의 크기를 분석하였다. 입자의 평균 입경(D50) 및 입자 크기 분포는 레이저 회절 산란식 입도 분석기(Particle Size Analyzer, PSA)를 사용하여 수행하였다.
실시예 1, 비교예 1 및 비교예 2에서 제조된 고분자 미세 입자의 크기 분포를 도 4, 도 5 및 도 6에 각각 도시하였다. 도 4 내지 6의 입도 분포도는 입자의 부피 기준 입도 분포도이다.
실시예 1, 비교예 1 및 비교예 2에서 제조된 고분자 미세 입자 중에서 20um 내지 75um 범위의 입자의 수득율을 측정하여 그 결과를 하기 표 2에 나타내었다.
입자의 수득율은 고분자 미세 입자 전체 중에서 20um 내지 75um 범위의 입경을 가지는 입자의 부피 퍼센트이다.
20~75um 범위의 입자 수득율 [vol%]
실시예 1 86
비교예 1 22
비교예 2 35
표 2에 보여지는 바와 같이, 실시예 1에서 얻어지는 고분자 미세입자는 대부분이 20-75um 범위의 입자 크기를 가짐에 의하여 필러로 사용하기에 적합하였다.이에 반해, 비교예 1 및 비교예 2에서 제조되는 고분자 미세입자는 상기 범위에 포함되는 입자의 비율이 35% 이하로서 필러로 사용하기에 적합하지 않았다.
고분자 미세입자의 크기가 20um 미만인 경우에는 상술한 바와 같이 대식세포에 의하여 조기에 제거되므로 피부의 볼륨 조절 효과가 거의 없다.
그리고, 고분자 미세입자의 크기가 100um 초과인 경우에는 필러 주입에 필요한 주사 바늘의 직경이 증가되어야 하므로 부작용이 증가할 수 있다. 예를 들어, 흉터 및 시술 시의 통증이 증가할 수 있다.
또한, 안면용 필러의 경우 안면에 주입되어 안면의 미세한 볼륨 조절이 매우 중요하게 요구되나, 필러의 입경이 증가함에 의하여 이러한 미세한 불륨 조절이 어려워 적용이 어려울 수 있다.
평가예 5: 제조 방법에 따른 부재료 사용량 평가
실시예 1, 비교예 1 및 비교예 2에서 사용된 부재료들의 함량을 기준으로, 생분해성 고분자 미세입자를 제조하기 위하여 요구되는 용매의 사용량을 평가하여 하기 표 3에 나타내었다.
실시예 1 비교예 1 비교예 2
생분해성 고분자 PDO 50g 50g 50g
유기 용매 HFIP 833.3 mL 3125 mL 833.3 mL
833.3 mL 94000 mL 8333.3mL
용매 총합 1666.6 mL 97125 mL 9166.6 mL
표 3에서 보여지는 바와 같이, 실시예 1의 제조방법에서는 생분해성 고분자 50g을 이용한 고분자 미세입자 제조에 요구되는 용매의 사용량이 1.7 L 정도이나, 비교예 1 및 2의 제조방법에서 요구되는 용매의 전체 사용량이 9L 내지 97L이었다.따라서, 실시예 1의 제조방법은 비교예 1 및 2의 제조방법에 비하여 소비되는 용매의 함량이 현저히 감소하므로 고분자 미세입자를 매우 간단하고 높은 효율로 제조할 수 있다.
평가예 6: 제조 방법에 따른 용매 사용량 평가
실시예 1, 비교예 1 및 비교예 2에서 사용된 용매들의 함량을 기준으로, 생분해성 고분자 미세입자를 제조하기 위하여 요구되는 부재료의 사용량 평가하여 하기 표 4에 나타내었다.
실시예 1 비교예 1 비교예 2
생분해성 고분자 PDO 50g 50g 50g
계면활성제 PVA 50g - 249.9 g
계면활성제 F127 - 1000g 33.3 g
계면활성제 F68 - - 33.3 g
계면활성제 Tween 80 - 10 g -
pH 조절제 염산 - 10 g -
부재료 총합 50 g 1020 g 316.5 g
표 3에서 보여지는 바와 같이, 실시예 1의 제조방법에서는 생분해성 고분자 50g을 이용한 고분자 미세입자 제조에 사용되는 소모성 부재료가 1종이며 그 사용량도 생분해성 고분자와 동일하였다.이에 반해, 비교예 1 및 2의 제조방법에서는 소모성 부재료의 종류가 3종 이상이며, 사용되는 소모성 부재료의 사용량도 생분해성 고분자의 6배 이상이었다.
따라서, 실시예 1의 제조방법은 비교예 1 및 2의 제조방법에 비하여 소모성 부재료의 사용량이 현저히 감소하므로 고분자 미세입자를 매우 간단하고 높은 효율로 제조할 수 있다.
이상, 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징으로 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예는 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
새로운 필러용 생분해성 고분자 미세입자의 제조 방법에 의하여, 필러에 적합한 크기의 생분해성 고분자 미세 입자를 높은 수율로 간단하게 제조할 수 있다.

Claims (20)

  1. 물과 혼화하는(miscible) 유기 용매, 및 생분해성 고분자를 포함하는 제1 조성물을 제공하는 단계;
    계면활성제 및 물을 포함하는 제2 조성물을 제공하는 단계;
    상기 제1 조성물과 상기 제2 조성물을 혼합하여 혼합물을 준비하는 단계;
    상기 혼합물을 교반하여 고분자 미세 입자를 포함하는 제3 조성물을 준비하는 단계; 및
    상기 제3 조성물로부터 고분자 미세 입자를 분리하는 단계;를 포함하는, 필러용 생분해성 고분자 미세입자의 제조방법.
  2. 제1 항에 있어서, 상기 생분해성 고분자는 폴리디옥사논(Polydioxanone, PDO), 폴리락트산(Poly-Lactic acid, PLA), 폴리-L-락트산(Poly-L-Lactic acid, PLLA), 폴리-D-락트산(Poly-D-Lactic acid, PDLA), 폴리-ε-카프로락톤(Poly-ε-caprolactone, PCL), 폴리글리콜산(Polyglycolic acid, PGA), 이들의 공중합체 및 이들의 혼합물로 이루어진 군으로부터 선택된 하나 이상이며,
    상기 생분해성 고분자의 수평균 분자량(Mn)은 50,000 Dalton 내지 500,000 Dalton인, 필러용 생분해성 고분자 필러의 제조방법.
  3. 제1 항에 있어서, 상기 생분해성 고분자의 함량이 상기 제1 조성물 전체에 대하여 0.1 내지 10wt%인, 필러용 생분해성 고분자 미세입자의 제조방법.
  4. 제1 항에 있어서, 상기 제1 조성물이 계면활성제를 비함유(free)하는, 필러용 생분해성 고분자 미세 입자의 제조방법.
  5. 제1 항에 있어서, 상기 유기 용매는 할로겐화 알콜, 할로겐화 탄화수소, 방향족 탄화수소, 지방족 탄화수소, 지방족 알콜, 지방족 아마이드, 지방족 케톤, 지방족 에테르, 및 지방족 알데히드 중에서 선택된 하나 이상을 포함하는, 필러용 생분해성 고분자 미세입자의 제조방법.
  6. 제1 항에 있어서, 상기 유기 용매는 탄소수 1 내지 6의 불화 알콜, 탄소수 1 내지 6의 불화 탄화수소, 탄소수 1 내지 6의 염화 탄화수소, 탄소수 5 내지 10의 방향족 탄화수소, 및 탄소수 5 내지 10의 지방족 탄화수소, 탄소수 3 내지 5의 디알킬케톤, 탄소수 2 내지 6의 디알킬에테르, 탄소수 1 내지 6의 알킬알데히드, 탄소수 1 내지 5의 알킬니트릴, 및 탄소수 2 내지 5의 지방산 중에서 선택된 하나 이상을 포함하는, 필러용 생분해성 고분자 미세입자의 제조방법.
  7. 제1 항에 있어서, 상기 유기용매는 HFIP(1,1,1,3,3,3-Hexafluoro-2-propanol), 아세톤(Acetone), 아세토니트릴(Acetonitrile), 아세트산(Acetic acid), 다이옥산(Dioxane), 에탄올(Ethanol), 메탄올(Methanol), 이소프로필 알코올(Isopropyl alcohol, IPA), 프로판올(Propanol), 테트라하이드로퓨란(Tetrahydrofuran, THF), 펜탄(Pentane) 및 이들의 혼합물로 이루어진 군으로부터 선택된 하나 이상인, 필러용 생분해성 고분자 미세입자의 제조방법.
  8. 제1 항에 있어서, 상기 유기 용매의 비점이 10 내지 100℃ 미만인, 필러용 생분해성 고분자 미세입자의 제조방법.
  9. 제1 항에 있어서, 상기 유기 용매의 함량이 상기 제1 조성물 전체에 대하여 90 내지 99.9wt%인, 필러용 생분해성 고분자 미세입자의 제조방법.
  10. 제1 항에 있어서, 상기 제2 조성물이 포함하는 계면활성제가 폴리비닐알콜(Polyvinyl alcohol), 폴리옥시에틸렌 솔비탄 및 그 염, 대두 레시틴(soybean Lecithin), 및 모노글리세리드(monoglyceride) 중에서 선택된 하나 이상을 포함하는, 필러용 생분해성 고분자 미세입자의 제조방법.
  11. 제1 항에 있어서, 상기 계면활성제의 함량이 제2 조성물 전체에 대하여 1 내지 10 wt%인, 필러용 생분해성 고분자 미세입자의 제조방법.
  12. 제1 항에 있어서, 상기 제2 조성물의 pH가 5.0 이상인, 필러용 생분해성 고분자 미세입자의 제조방법.
  13. 제1 항에 있어서, 상기 혼합물을 준비하는 단계에서,
    상기 유기용매와 물이, 상기 제1 조성물이 포함하는 유기용매 100 부피부에 대하여 상기 제2 조성물이 포함하는 물 50 내지 200 부피부의 비율로 혼합되는, 필러용 생분해성 고분자 미세입자의 제조방법.
  14. 제1 항에 있어서, 상기 혼합물의 교반이 100 내지 800rpm에서 수행되는, 필러용 생분해성 고분자 미세입자의 제조방법.
  15. 제1 항에 있어서, 상기 혼합물의 교반이 1일 내지 10일 동안 수행되는, 필러용 생분해성 고분자 미세입자의 제조방법.
  16. 제1 항에 있어서, 상기 제3 조성물로부터 고분자 미세 입자를 분리하는 단계가,
    제3 조성물에서 고분자 미세 입자를 침전시켜 분리하는 단계; 및
    상기 분리된 고분자 미세 입자를 복수회 세척하는 단계;를 포함하는 필러용 생분해성 고분자 미세입자의 제조방법.
  17. 제1 항에 있어서, 상기 고분자 미세입자의 평균 입경(D50)이 40um 내지 100um 인, 필러용 생분해성 고분자 미세입자의 제조방법.
  18. 제1 항에 있어서, 상기 고분자 미세입자 중에서 입경 25um 내지 75um 범위에 속하는 고분자 미세입자의 함량이 50부피% 이상인, 필러용 생분해성 고분자 미세입자의 제조방법.
  19. 제1 항에 있어서, 상기 필러용 생분해성 고분자 미세입자가, 주름 개선, 안면 성형, 바디 성형, 남성 보형물, 또는 요실금 치료용으로 사용되는, 필러용 생분해성 고분자 미세입자의 제조방법.
  20. 제1 항 내지 제19 항 중 어느 한 항에 따른 방법으로 제조된 필러용 생분해성 고분자 미세입자를 준비하는 단계; 및
    상기 필러용 생분해성 고분자 미세입자를 주사용수, 멸균수 및 증류수 중에서 선택된 하나 이상에 수화시키는 단계를 포함하는 주사제 제조 방법.
PCT/KR2020/013922 2019-12-27 2020-10-13 필러용 생분해성 고분자 미세입자의 제조 방법, 및 이를 포함하는 주사제의 제조 방법 WO2021132858A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080097517.0A CN115151282A (zh) 2019-12-27 2020-10-13 填充物用生物可降解聚合物微粒的制备方法,以及包括其的注射剂的制备方法
BR112022012798A BR112022012798A2 (pt) 2019-12-27 2020-10-13 Método de preparação de micropartículas biodegradáveis para um material de enchimento, e método de preparação de uma composição de injeção

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0176886 2019-12-27
KR1020190176886A KR102089560B1 (ko) 2019-12-27 2019-12-27 필러용 생분해성 고분자 미세입자의 제조 방법, 및 이를 포함하는 주사제의 제조 방법

Publications (1)

Publication Number Publication Date
WO2021132858A1 true WO2021132858A1 (ko) 2021-07-01

Family

ID=70003773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/013922 WO2021132858A1 (ko) 2019-12-27 2020-10-13 필러용 생분해성 고분자 미세입자의 제조 방법, 및 이를 포함하는 주사제의 제조 방법

Country Status (4)

Country Link
KR (1) KR102089560B1 (ko)
CN (1) CN115151282A (ko)
BR (1) BR112022012798A2 (ko)
WO (1) WO2021132858A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114377200A (zh) * 2022-01-12 2022-04-22 北京冠合医疗科技有限公司 面部注射填充用可生物降解亲水高分子微球及制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102089560B1 (ko) * 2019-12-27 2020-03-17 주식회사 울트라브이 필러용 생분해성 고분자 미세입자의 제조 방법, 및 이를 포함하는 주사제의 제조 방법
KR102173939B1 (ko) * 2020-03-25 2020-11-04 권한진 생분해성 고분자 미세입자의 혼합물로 구성된 성형용 필러 조성물의 제조방법
KR102178306B1 (ko) * 2020-05-25 2020-11-16 주식회사 울트라브이 필러용 유무기 복합 미세입자의 제조 방법, 및 이를 포함하는 주사제의 제조 방법
KR102193951B1 (ko) * 2020-05-25 2020-12-24 주식회사 울트라브이 필러용 생분해성 고분자 미세입자의 제조 방법, 및 이를 포함하는 주사제의 제조 방법
KR20220036069A (ko) * 2020-09-15 2022-03-22 가톨릭관동대학교산학협력단 의료 보형물
KR102266385B1 (ko) * 2021-01-22 2021-06-21 주식회사 울트라브이 필러용 생분해성 고분자 미세입자, 그 제조방법 및 이를 포함하는 동결건조체 및 필러용 주사제
KR102266384B1 (ko) * 2021-01-25 2021-06-21 주식회사 울트라브이 필러용 생분해성 고분자 미세입자, 이를 포함한 필러용 동결건조체, 그 제조방법 및 상기 동결건조체를 포함하는 필러용 주사제
KR102377283B1 (ko) 2021-08-26 2022-03-22 정민욱 생분해성 고분자 미립구의 제조를 위한 병렬식 막유화 방법과 장치, 및 이를 이용한 주사제의 제조방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040042152A (ko) * 2002-11-13 2004-05-20 주식회사 태평양 지속적 약물방출이 가능한 고분자 미립구 및 그 제조방법
KR20060045910A (ko) * 2004-05-04 2006-05-17 주식회사 태평양 비스포스포네이트-함유 고분자 미립구를 포함하는 골-관련질환 치료 또는 예방용 서방 효과를 갖는 주사제
WO2016010388A1 (ko) * 2014-07-17 2016-01-21 주식회사 울트라브이 필러용 폴리디옥사논 입자의 제조방법
KR20180130344A (ko) * 2017-05-29 2018-12-07 주식회사 휴메딕스 미립구 제조방법 및 이에 의해 제조된 미립구
KR102051044B1 (ko) * 2019-05-27 2019-12-02 주식회사 울트라브이 생분해성 고분자 필러의 제조 방법, 및 이를 포함하는 주사제의 제조 방법
KR102089560B1 (ko) * 2019-12-27 2020-03-17 주식회사 울트라브이 필러용 생분해성 고분자 미세입자의 제조 방법, 및 이를 포함하는 주사제의 제조 방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100120731A (ko) * 2009-05-07 2010-11-17 한불화장품주식회사 유용성 활성물질 함유 미세캡슐 입자, 이의 제조방법 및 이를 포함하는 화장료 조성물
KR101481441B1 (ko) 2013-02-22 2015-01-13 주식회사 바임 폴리락트산(pla) 미세입자의 스프레이 공법에 따른 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040042152A (ko) * 2002-11-13 2004-05-20 주식회사 태평양 지속적 약물방출이 가능한 고분자 미립구 및 그 제조방법
KR20060045910A (ko) * 2004-05-04 2006-05-17 주식회사 태평양 비스포스포네이트-함유 고분자 미립구를 포함하는 골-관련질환 치료 또는 예방용 서방 효과를 갖는 주사제
WO2016010388A1 (ko) * 2014-07-17 2016-01-21 주식회사 울트라브이 필러용 폴리디옥사논 입자의 제조방법
KR20180130344A (ko) * 2017-05-29 2018-12-07 주식회사 휴메딕스 미립구 제조방법 및 이에 의해 제조된 미립구
KR102051044B1 (ko) * 2019-05-27 2019-12-02 주식회사 울트라브이 생분해성 고분자 필러의 제조 방법, 및 이를 포함하는 주사제의 제조 방법
KR102089560B1 (ko) * 2019-12-27 2020-03-17 주식회사 울트라브이 필러용 생분해성 고분자 미세입자의 제조 방법, 및 이를 포함하는 주사제의 제조 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114377200A (zh) * 2022-01-12 2022-04-22 北京冠合医疗科技有限公司 面部注射填充用可生物降解亲水高分子微球及制备方法

Also Published As

Publication number Publication date
CN115151282A (zh) 2022-10-04
KR102089560B1 (ko) 2020-03-17
BR112022012798A2 (pt) 2022-10-04

Similar Documents

Publication Publication Date Title
WO2021132858A1 (ko) 필러용 생분해성 고분자 미세입자의 제조 방법, 및 이를 포함하는 주사제의 제조 방법
WO2020241984A1 (ko) 생분해성 고분자 필러의 제조 방법, 및 이를 포함하는 주사제의 제조 방법
WO2023027401A1 (ko) 생분해성 고분자 미립구의 제조를 위한 병렬식 막유화 방법과 장치, 및 이를 이용한 주사제의 제조방법
KR102193951B1 (ko) 필러용 생분해성 고분자 미세입자의 제조 방법, 및 이를 포함하는 주사제의 제조 방법
WO2020197190A1 (en) Method for preparing biocompatible polymer-based apixaban-loaded microspheres
WO2016108534A1 (ko) 고분자 나노입자 동결건조물 및 그 제조방법
WO2016043547A1 (ko) 조직 수복용 조성물 및 이의 제조방법
KR102094407B1 (ko) 하이브리드 하이드로젤 제조 방법, 이를 포함하는 주사제 제조 방법, 및 하이브리드 하이드로젤
WO2020197185A1 (en) Compositions of dispersed phase for preparation of apixaban-loaded microspheres and biocompatible polymer-based apixaban-loaded microspheres prepared therefrom
WO2017014431A1 (ko) 생분해성 고분자를 포함하는 마이크로파티클의 제조방법
KR102266384B1 (ko) 필러용 생분해성 고분자 미세입자, 이를 포함한 필러용 동결건조체, 그 제조방법 및 상기 동결건조체를 포함하는 필러용 주사제
WO2022124508A1 (ko) 조직 수복용 주사제 조성물 및 이의 제조 방법
WO2022010317A1 (ko) 도네페질 함유 서방출성 plga 미립구의 제조방법
US11597834B2 (en) Biodegradable polymer microparticle for filler, manufacturing method thereof, freeze-dried body including the same, and filler injection including the same
Kazemimostaghim et al. Ultrafine silk powder from biocompatible surfactant-assisted milling
Kazemimostaghim et al. Structure and characteristics of milled silk particles
WO2023282413A1 (ko) 고팽윤성 히알루론산 비드 겔
WO2012087051A2 (en) Microparticles containing physiologically active peptide, method for preparing the same, and pharmaceutical composition comprising the same
WO2020130585A1 (ko) 데슬로렐린을 함유하는 서방형 주사제 및 그 제조방법
WO2023101348A1 (ko) 류프로라이드를 포함하는 마이크로 입자 및 이의 제조 방법
DK171454B1 (da) Fremgangsmåde til fremstilling af tørforarbejdede partikler, således opnåede tørforarbejdede partikler, og præparater indeholdende sådanne partikler
KR102178306B1 (ko) 필러용 유무기 복합 미세입자의 제조 방법, 및 이를 포함하는 주사제의 제조 방법
WO2021177503A1 (ko) 연골 성분 기반 바이오 잉크를 이용한 소이증 치료 목적 구조체 제작용 조성물 및 그 제조방법
WO2021060934A1 (ko) 고분자 마이크로 입자의 제조방법, 고분자 마이크로 입자, 이를 포함하는 의료용 조성물, 미용 조성물, 의료 용품 및 미용 용품
WO2024101859A1 (ko) 덱사메타손 아세테이트를 포함하는 서방형 주사제제 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20908046

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022012798

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112022012798

Country of ref document: BR

Free format text: EXPLIQUE A DIVERGENCIA NO NOME DE UM DOS INVENTORES (HAN JIN KWON ) QUE CONSTA NA PUBLICACAO INTERNACIONAL WO 2021/132858 E O CONSTANTE DA PETICAO INICIAL NO 870220055963 .

ENP Entry into the national phase

Ref document number: 112022012798

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220627

122 Ep: pct application non-entry in european phase

Ref document number: 20908046

Country of ref document: EP

Kind code of ref document: A1