WO2023027401A1 - 생분해성 고분자 미립구의 제조를 위한 병렬식 막유화 방법과 장치, 및 이를 이용한 주사제의 제조방법 - Google Patents
생분해성 고분자 미립구의 제조를 위한 병렬식 막유화 방법과 장치, 및 이를 이용한 주사제의 제조방법 Download PDFInfo
- Publication number
- WO2023027401A1 WO2023027401A1 PCT/KR2022/012123 KR2022012123W WO2023027401A1 WO 2023027401 A1 WO2023027401 A1 WO 2023027401A1 KR 2022012123 W KR2022012123 W KR 2022012123W WO 2023027401 A1 WO2023027401 A1 WO 2023027401A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- biodegradable polymer
- microspheres
- polymer microspheres
- parallel
- membrane
- Prior art date
Links
- 239000004005 microsphere Substances 0.000 title claims abstract description 156
- 229920002988 biodegradable polymer Polymers 0.000 title claims abstract description 100
- 239000004621 biodegradable polymer Substances 0.000 title claims abstract description 100
- 238000000034 method Methods 0.000 title claims abstract description 63
- 239000012528 membrane Substances 0.000 title claims abstract description 62
- 238000004945 emulsification Methods 0.000 title claims abstract description 49
- 238000002347 injection Methods 0.000 title claims abstract description 37
- 239000007924 injection Substances 0.000 title claims abstract description 37
- 239000000203 mixture Substances 0.000 title claims abstract description 16
- 238000002360 preparation method Methods 0.000 title abstract description 6
- 238000009472 formulation Methods 0.000 title abstract description 5
- 238000004519 manufacturing process Methods 0.000 claims abstract description 39
- 238000006243 chemical reaction Methods 0.000 claims abstract description 38
- 239000002245 particle Substances 0.000 claims abstract description 23
- 229940079593 drug Drugs 0.000 claims abstract description 20
- 239000003814 drug Substances 0.000 claims abstract description 20
- 238000005538 encapsulation Methods 0.000 claims abstract description 11
- 238000009826 distribution Methods 0.000 claims abstract description 5
- 239000006185 dispersion Substances 0.000 claims description 59
- 239000000839 emulsion Substances 0.000 claims description 58
- 239000007864 aqueous solution Substances 0.000 claims description 31
- 239000007788 liquid Substances 0.000 claims description 27
- 230000001954 sterilising effect Effects 0.000 claims description 19
- 150000003839 salts Chemical class 0.000 claims description 17
- 238000003756 stirring Methods 0.000 claims description 17
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 15
- 238000004659 sterilization and disinfection Methods 0.000 claims description 15
- 239000011148 porous material Substances 0.000 claims description 13
- 230000006641 stabilisation Effects 0.000 claims description 13
- 238000011105 stabilization Methods 0.000 claims description 13
- 238000005406 washing Methods 0.000 claims description 13
- 239000002904 solvent Substances 0.000 claims description 11
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 10
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 10
- 239000000243 solution Substances 0.000 claims description 9
- 238000001035 drying Methods 0.000 claims description 8
- 238000004108 freeze drying Methods 0.000 claims description 8
- 229920002463 poly(p-dioxanone) polymer Polymers 0.000 claims description 8
- 229920001610 polycaprolactone Polymers 0.000 claims description 8
- 239000000622 polydioxanone Substances 0.000 claims description 8
- 238000001816 cooling Methods 0.000 claims description 7
- 239000004632 polycaprolactone Substances 0.000 claims description 7
- 230000000087 stabilizing effect Effects 0.000 claims description 7
- 230000017423 tissue regeneration Effects 0.000 claims description 7
- 229920000954 Polyglycolide Polymers 0.000 claims description 6
- 229920001214 Polysorbate 60 Polymers 0.000 claims description 6
- 239000000654 additive Substances 0.000 claims description 6
- 238000007599 discharging Methods 0.000 claims description 6
- 238000001704 evaporation Methods 0.000 claims description 6
- 239000004633 polyglycolic acid Substances 0.000 claims description 6
- 239000004626 polylactic acid Substances 0.000 claims description 6
- 229920000642 polymer Polymers 0.000 claims description 6
- 238000007789 sealing Methods 0.000 claims description 6
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims description 5
- AQYSYJUIMQTRMV-UHFFFAOYSA-N hypofluorous acid Chemical class FO AQYSYJUIMQTRMV-UHFFFAOYSA-N 0.000 claims description 5
- LDVVTQMJQSCDMK-UHFFFAOYSA-N 1,3-dihydroxypropan-2-yl formate Chemical compound OCC(CO)OC=O LDVVTQMJQSCDMK-UHFFFAOYSA-N 0.000 claims description 4
- JLPULHDHAOZNQI-ZTIMHPMXSA-N 1-hexadecanoyl-2-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCC\C=C/C\C=C/CCCCC JLPULHDHAOZNQI-ZTIMHPMXSA-N 0.000 claims description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 4
- 230000008020 evaporation Effects 0.000 claims description 4
- 238000007710 freezing Methods 0.000 claims description 4
- 230000008014 freezing Effects 0.000 claims description 4
- 230000005923 long-lasting effect Effects 0.000 claims description 4
- 229940083466 soybean lecithin Drugs 0.000 claims description 4
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 claims description 3
- XBBVURRQGJPTHH-UHFFFAOYSA-N 2-hydroxyacetic acid;2-hydroxypropanoic acid Chemical compound OCC(O)=O.CC(O)C(O)=O XBBVURRQGJPTHH-UHFFFAOYSA-N 0.000 claims description 3
- 102000008186 Collagen Human genes 0.000 claims description 3
- 108010035532 Collagen Proteins 0.000 claims description 3
- 229920002307 Dextran Polymers 0.000 claims description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 3
- 102000016942 Elastin Human genes 0.000 claims description 3
- 108010014258 Elastin Proteins 0.000 claims description 3
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 claims description 3
- 108010010803 Gelatin Proteins 0.000 claims description 3
- 206010046543 Urinary incontinence Diseases 0.000 claims description 3
- 230000000996 additive effect Effects 0.000 claims description 3
- 235000010443 alginic acid Nutrition 0.000 claims description 3
- 239000000783 alginic acid Substances 0.000 claims description 3
- 229920000615 alginic acid Polymers 0.000 claims description 3
- 229960001126 alginic acid Drugs 0.000 claims description 3
- 150000004781 alginic acids Chemical class 0.000 claims description 3
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims description 3
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 3
- 239000008112 carboxymethyl-cellulose Substances 0.000 claims description 3
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 claims description 3
- 229920001436 collagen Polymers 0.000 claims description 3
- 239000002537 cosmetic Substances 0.000 claims description 3
- 230000006837 decompression Effects 0.000 claims description 3
- 229920002549 elastin Polymers 0.000 claims description 3
- 239000004210 ether based solvent Substances 0.000 claims description 3
- 125000004494 ethyl ester group Chemical group 0.000 claims description 3
- 230000001815 facial effect Effects 0.000 claims description 3
- 239000000945 filler Substances 0.000 claims description 3
- 238000004388 gamma ray sterilization Methods 0.000 claims description 3
- 239000008273 gelatin Substances 0.000 claims description 3
- 229920000159 gelatin Polymers 0.000 claims description 3
- 235000019322 gelatine Nutrition 0.000 claims description 3
- 235000011852 gelatine desserts Nutrition 0.000 claims description 3
- 229920002674 hyaluronan Polymers 0.000 claims description 3
- 229960003160 hyaluronic acid Drugs 0.000 claims description 3
- 229930195733 hydrocarbon Natural products 0.000 claims description 3
- 150000002430 hydrocarbons Chemical class 0.000 claims description 3
- 239000007943 implant Substances 0.000 claims description 3
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims description 2
- 230000001804 emulsifying effect Effects 0.000 claims 1
- 239000010419 fine particle Substances 0.000 claims 1
- 239000012798 spherical particle Substances 0.000 abstract description 4
- 239000013022 formulation composition Substances 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 239000000843 powder Substances 0.000 description 10
- 239000011259 mixed solution Substances 0.000 description 9
- 239000003960 organic solvent Substances 0.000 description 9
- 238000000935 solvent evaporation Methods 0.000 description 8
- 239000012153 distilled water Substances 0.000 description 6
- 238000011049 filling Methods 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 125000005233 alkylalcohol group Chemical group 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000004094 surface-active agent Substances 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 239000000546 pharmaceutical excipient Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 238000012377 drug delivery Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000001694 spray drying Methods 0.000 description 3
- 102000029749 Microtubule Human genes 0.000 description 2
- 108091022875 Microtubule Proteins 0.000 description 2
- 229920001213 Polysorbate 20 Polymers 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- -1 alcohol compound Chemical class 0.000 description 2
- 239000012620 biological material Substances 0.000 description 2
- 229960001701 chloroform Drugs 0.000 description 2
- 238000013270 controlled release Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 210000004688 microtubule Anatomy 0.000 description 2
- 238000000879 optical micrograph Methods 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- 229920000747 poly(lactic acid) Polymers 0.000 description 2
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 2
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 2
- 229920000136 polysorbate Polymers 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 238000007738 vacuum evaporation Methods 0.000 description 2
- BYEAHWXPCBROCE-UHFFFAOYSA-N 1,1,1,3,3,3-hexafluoropropan-2-ol Chemical compound FC(F)(F)C(O)C(F)(F)F BYEAHWXPCBROCE-UHFFFAOYSA-N 0.000 description 1
- 239000004147 Sorbitan trioleate Substances 0.000 description 1
- PRXRUNOAOLTIEF-ADSICKODSA-N Sorbitan trioleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](OC(=O)CCCCCCC\C=C/CCCCCCCC)[C@H]1OC[C@H](O)[C@H]1OC(=O)CCCCCCC\C=C/CCCCCCCC PRXRUNOAOLTIEF-ADSICKODSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000002280 amphoteric surfactant Substances 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 230000003796 beauty Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 238000002316 cosmetic surgery Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 239000003978 infusion fluid Substances 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 235000010483 polyoxyethylene sorbitan monopalmitate Nutrition 0.000 description 1
- 239000000249 polyoxyethylene sorbitan monopalmitate Substances 0.000 description 1
- 235000010989 polyoxyethylene sorbitan monostearate Nutrition 0.000 description 1
- 239000001818 polyoxyethylene sorbitan monostearate Substances 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 235000011069 sorbitan monooleate Nutrition 0.000 description 1
- 239000001593 sorbitan monooleate Substances 0.000 description 1
- 229940035049 sorbitan monooleate Drugs 0.000 description 1
- 235000019337 sorbitan trioleate Nutrition 0.000 description 1
- 229960000391 sorbitan trioleate Drugs 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2/00—Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
- B01J2/02—Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops
- B01J2/06—Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops in a liquid medium
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61J—CONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
- A61J3/00—Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61J—CONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
- A61J3/00—Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms
- A61J3/02—Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms into the form of powders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/40—Mixing liquids with liquids; Emulsifying
Definitions
- the present invention relates to a method and apparatus for producing biodegradable polymer microspheres, and to a method for preparing an injection using the same, and more particularly, to biodegradable polymer microspheres whose size can be adjusted and which maintains a spherical shape while maintaining a uniform size. It relates to a parallel continuous reaction film emulsification method and apparatus capable of mass production, and a method for preparing a microsphere injectable composition comprising the same.
- Microsphere manufacturing technology for biodegradable polymers is a technology that is very popular in the field of long-lasting sustained release drug delivery through drug encapsulation as well as plastic surgery and skin beauty fields [Heller, J. et al., Controlled release of water- soluble macromolecules from bioerodible hydrogels, Biomaterials, 4, 262-266, 1983; Langer, R., New methods of drug delivery, Science, 249, 1527-1533, 1990; Langer, R., Chem. Eng. Commun., 6, 1-48, 1980; Langer, R. S. and Peppas, N. A., Biomaterials, 2, 201-214, 1981; Heller, J., CRC Crit. Rev. Ther. Drug Cattrier Syst., 1(1), 39-90, 1984; Holland, S.J. Tighe, B. J. and Gould, P. L., J. Controlled Release, 155-180, 1986].
- microspheres Common methods for preparing microspheres currently used include phase separation, spray-drying, organic solvent evaporation, and micro-fluidic methods.
- phase separation method Korean Patent Registration No. 10-1105292
- a spray dryer since a spray dryer is basically used, it is difficult to manufacture uniformly sized particles and exhibits porosity, so it is not suitable as a technology for encapsulating a drug that needs to control a constant release rate.
- This method is a method of forming microspheres by vigorously stirring a dispersion liquid in which a polymer is dissolved in an organic solvent and an emulsified solution containing a surfactant. Since the emulsion is in a thermodynamically unstable state, there is a high tendency for the aqueous phase and the organic phase to be separated from each other through processes such as coalescence, fusion, and creaming. Due to the necessary relationship, it has the disadvantage that mass synthesis is difficult with conventional batch reactions, and although spherical microspheres can be made, it has the disadvantage that fundamentally uniform particles cannot be made.
- the fluid flow method [Korean Patent Registration No. 10-2101969] is a technology that has recently been in the spotlight due to its advantage of being able to create uniformly sized particles and perfect spheres.
- the facility equipment cost is very high and each microtube must be finely controlled technically because two micro-adjustable pumps must be connected at right angles to hundreds and thousands of microtubules.
- the size of microspheres it has the disadvantage that thousands of bundles of microtubules must be completely changed.
- the size can be easily adjusted according to the use while having a certain size, the manufacturing method is simple and economical, and mass production is easy, and the mechanical strength and density are high, so that the drug encapsulation and There is a need for a method for preparing microspheres having a constant release rate.
- Patent Document 1 Korean Patent No. 10-1105292
- Patent Document 2 Korean Patent No. 10-0566573
- Patent Document 3 Korean Patent No. 10-2089560
- Patent Document 4 Korean Patent No. 10-2101969
- An object of the present invention is to provide a method for manufacturing biodegradable polymer microspheres, which can easily control the size of particles while maintaining a constant shape and size, and which is easy to manufacture and can be economically and mass-produced, and a manufacturing apparatus for mass production.
- Another object of the present invention is to provide the use of the biodegradable polymer microspheres prepared by the above method for skin tissue reconstruction and tissue regeneration or as medical and pharmaceutical injections through drug encapsulation.
- the present invention comprises the steps of preparing a dispersion in which the biodegradable polymer is dissolved; generating microspheres by slowly injecting the dispersion into the emulsion through parallel membranes under pressure to the dispersion; discharging a mixed solution in which microspheres are mixed; stabilizing the microspheres by receiving the discharged liquid mixture; and washing and drying the stabilized microspheres, wherein the emulsion is continuously replaced and supplied.
- the present invention is a parallel continuous reaction film emulsification device for preparing the polymer microspheres, comprising: a dispersion tank for storing the dispersion; a pressure tank and a pressure line for pressurizing the dispersion; An emulsion tank equipped with a film emulsification module and receiving a dispersion solution; Emulsion continuous supply line for continuously supplying the emulsion to the emulsion tank; a discharge line for discharging a mixture of dispersion and emulsion into a stabilization tank; a stabilization tank to stabilize microspheres through decompression or evaporation; And an operating unit; and, wherein the membrane emulsification module is a parallel membrane emulsification module in which membranes for injecting the dispersion into the emulsion are arranged in parallel, providing a membrane emulsification device using parallel membranes and continuous reactions. do.
- the biodegradable polymer is polylactic acid (PLA) and its isomers, polyglycolic acid (PGA), polycaprolactone (PCL), polydioxanone ( It is selected from polydioxanone (PDO), poly lactic acid-glycolic acid (PLGA) and its isomers, and the average molecular weight of the polymer may be 20,000 to 300,000.
- the dispersion in which the biodegradable polymer is dissolved includes a solvent.
- the solvent includes at least one of chlorinated hydrocarbons, hydrocarbons, perfluoroalcohols, EA (ethyl ester), ether-based solvents, DMF (N, N-Dimethyl Formamide), and DMSO (dimethyl sulfoxide).
- the content of the biodegradable polymer in the dispersion may be 1 to 20% by weight.
- the dispersion liquid tank is sealed, includes a regulator capable of finely adjusting the pressure from the pressurization tank, and adjusts the pressure from the pressurization tank to 1 kPa to 300 kPa depending on the pore size of the membrane.
- the membranes disposed in parallel in the membrane emulsification module may be configured in parallel with a plurality of small membranes, or may be configured in parallel with several small reactors equipped with one membrane.
- the size of the biodegradable polymer microparticles can be easily controlled within the range of 1 to 300 ⁇ m by replacing the membrane with a membrane having a different air gap.
- an emulsion continuous supply device for continuously injecting a new emulsion so that the mixture of the dispersion and the emulsion maintains a constant concentration. and may include a stirring device so that the mixed solution is evenly dispersed. At this time, the amount of the emulsion may be 1 to 20 times that of the dispersion.
- the emulsion contains at least one of polyvinyl alcohol, polyoxyethylene sorbitan and salts thereof, soybean lecithin, and monoglyceride.
- polyvinyl alcohol polyoxyethylene sorbitan and salts thereof
- soybean lecithin soybean lecithin
- monoglyceride may include
- the outlet line may include a discharge port at the top of the emulsion tank for discharging the overflowing mixed solution when the emulsion is continuously injected, or may include a fluid pump.
- natural evaporation or vacuum evaporation through agitation may be performed.
- the stabilizing liquid used in the stabilizing step includes at least one of polyvinyl alcohol, polyoxyethylene sorbitan and its salts, soybean lecithin, and monoglyceride. it could be
- the microspheres are separated by a solid-liquid separation method in which the microspheres are precipitated and the upper layer solution is removed, and then washing is repeated several times using a washing liquid, and the washing liquid is alkyl alcohol or distilled water. , Or it may include at least one of a mixed solution of alkyl alcohol and distilled water.
- a lyophilization method may be used to evenly spread the water-containing microsphere cake, freeze it, and then dry it.
- dry heat or natural drying may be used.
- the present invention also provides an injectable preparation comprising microspheres prepared according to the present invention.
- preparing an aqueous solution containing the biodegradable polymer microspheres prepared according to the present invention injecting the aqueous solution into a vial or syringe; Freeze-drying after freezing the injected aqueous solution by cooling; and sterilizing the vial or syringe after sealing.
- the content of the polymer mixed in the aqueous solution may be 1 to 10% by weight.
- the aqueous solution further includes additives, the additives being carboxymethyl cellulose and its salts, alginic acid and its salts, Contains at least one of hyaluronic acid and its salts, dextran and its salts, collagen, gelatin, and elastin, and the content of the additive is based on the total weight of the aqueous solution It may be from 1 to 30% by weight.
- the aqueous solution may be injected into a vial or syringe, cooled, and then lyophilized.
- an aqueous solution containing biodegradable polymer microspheres may be cooled, lyophilized, pulverized into powder, and then filled.
- the filled vial or syringe may be cooled and then freeze-dried.
- the aqueous solution containing the biodegradable polymer microspheres may be cooled, freeze-dried, pulverized into powder, and then filled.
- the sterilization method may be gamma ray sterilization, E-beam sterilization, ethylene oxide sterilization, or vacuum sterilization.
- the injection may be used as a facial cosmetic filler for skin tissue reconstruction and tissue regeneration, a male implant, or a treatment for urinary incontinence, or may be used as a long-lasting injection for medical and pharmaceutical use through drug encapsulation.
- the particle size of biodegradable polymer microspheres can be easily controlled and spherical particles of uniform size can be easily manufactured. It is suitable for mass production.
- biodegradable polymer microspheres optimized for drug encapsulation due to low injection pressure and strong mechanical strength due to uniform particle size distribution can be used for medical devices or pharmaceutical injections.
- FIG. 1 is a flowchart schematically showing a method for producing biodegradable polymer microspheres according to an embodiment of the present invention.
- Figure 2 is a flow chart schematically showing a method for preparing an injection according to an embodiment of the present invention.
- Figure 3 is a conceptual diagram schematically showing a parallel continuous reaction membrane emulsification device for producing biodegradable polymer microsphere particles according to an embodiment of the present invention.
- Figure 4 is a schematic view of the core device of the parallel continuous reaction film emulsification device for producing biodegradable polymer microspheres according to an embodiment of the present invention.
- FIG. 7 is an optical micrograph of microspheres having a desired size using membranes having different pore sizes.
- FIG. 8 is a particle size distribution graph of microspheres prepared according to an embodiment of the present invention.
- FIG. 1 is a flowchart schematically showing a method for producing biodegradable polymer microspheres according to an embodiment of the present invention.
- Figure 2 is a flow chart schematically showing a method for preparing an injection according to an embodiment of the present invention.
- the step of preparing the biodegradable polymer microspheres is a step of injecting a dispersion in which the biodegradable polymer is dispersed into a parallel continuous reaction film emulsification device (S10), and the dispersion slowly generates microspheres through a parallel membrane.
- step (S20) discharging the mixed solution while continuously flowing the emulsion (S30), stabilizing the microspheres generated in the collected discharged liquid (S40), washing the generated microspheres (S50), completely removing moisture and drying to remove (S60).
- the biodegradable polymers used are polylactic acid (PLA) and its isomers, polyglycolic acid (PGA), polycarprolactone (PCL), polydioxanone (PDO), and polylactic glycol. It is selected from poly lactic acid-glycolic acid (PLGA).
- Perfluoroalcohol is an alcohol compound having 1 to 6 carbon atoms in which 3 to 13 fluorine atoms are substituted, and may include, for example, 1,1,1,3,3,3-hexafluoro-2-propanol.
- the average molecular weight of the biodegradable polymer may be 20,000 to 300,000. If the average molecular weight of the biodegradable polymer is less than 20,000, the degradation rate is fast, and the value as a material for tissue repair, tissue regeneration, or drug delivery is reduced. It is difficult to make microspheres.
- the content of the biodegradable polymer may be 1 to 20% by weight based on the dispersion. If the content of the biodegradable polymer is less than 1%, the strength of the generated microspheres is weak and is not suitable for drug encapsulation, and if it exceeds 20%, it cannot pass through the membrane due to high viscosity or requires high pressure, so it is not suitable for mass production. .
- the dispersion includes a solvent.
- the solvent includes at least one of chlorinated hydrocarbons, hydrocarbons, perfluoroalcohols, EA (ethyl ester), ether-based solvents, DMF (N, N-Dimethyl Formamide), and DMSO (dimethyl sulfoxide).
- the pressure applied according to the pore size of the membrane may be 1 kPa to 300 kPa. The smaller the pores of the membrane, the higher pressure is required, and the larger the pores of the membrane, the smaller the pressure value.
- the film emulsification method has the advantage of being able to control the size of microspheres, making microspheres of a certain size, and making accurate spherical particles. However, it can be produced in a small amount only through a small membrane, and when the polymer content in the dispersion is high, the membrane is clogged or the microspheres are agglomerated.
- the present invention is a microsphere manufacturing equipment in which the concept of parallel membrane arrangement and continuous reaction is introduced, and it can mass-produce biodegradable polymer microspheres with an efficiency of more than 100 times based on a single production volume by improving the disadvantages of the existing single-channel batch type membrane emulsification device. has the advantage of being
- the emulsion may include at least one of polyvinyl alcohol, polyoxyethylene sorbitan and salts thereof, soybean lecithin, and monoglyceride.
- the emulsion may also contain a surfactant.
- a surfactant anionic, cationic or amphoteric surfactants may all be used.
- Surfactants include, for example, polyoxyethylene sorbitan monolaurate (Tween 20 product), polyoxyethylene sorbitan monopalmitate (Tween 40 product), polyoxyethylene sorbitan monostearate (Tween 60 product), and at least one of oxyethylene sorbitan monooleate (Tween 80 product) and polyoxyethylene sorbitan trioleate (Tween 85 product).
- the polyvinyl alcohol may be dissolved in water or a mixed solution of water and alkyl alcohol.
- polyvinyl alcohol may have an average molecular weight of 50,000 to 200,000.
- the content of polyvinyl alcohol may be included in the range of 1 to 10% by weight based on the emulsion. Outside the above range, the emulsification action of polyvinyl alcohol acting as a surfactant is weakened, making it difficult to form microspheres.
- the emulsion is continuously supplied to the emulsion tank and may be 1 to 20 times the amount of the dispersion. If it is less than 1 times, it is difficult to emulsify, and if it is more than 20 times, productivity decreases due to excessive use of solvent.
- the discharged liquid is a mixture of a dispersion liquid and an emulsion liquid continuously introduced, and includes the microspheres generated in S20, and is continuously discharged into the stabilization tank.
- S40 Stabilize the microspheres by evaporating the solvent while slowly stirring the mixed solution collected in the stabilization tank.
- the washing liquid may include at least one of alkyl alcohol, distilled water, or a mixed solution of alkyl alcohol and distilled water.
- S60 Collect moisture-containing microspheres through washing and completely remove remaining moisture through drying.
- a freeze-drying method may be used to evenly spread the water-containing microsphere cake, freeze it, and then dry it.
- dry heat or natural drying may be used.
- the method for producing biodegradable polymer microspheres according to an embodiment of the present invention has a uniform particle size, so there is no need to use a pulverizer, so the yield of microspheres of the desired size is over 90%, and by replacing the membrane with a different pore size, Microsphere size can be easily controlled.
- the biodegradable polymer microspheres may have a size of 1 to 300 ⁇ m.
- the size of the biodegradable polymer microspheres may mean, for example, the particle diameter of the biodegradable polymer microspheres.
- the size of the biodegradable polymer microspheres is less than 1 ⁇ m, there is a risk of toxicity in vivo, and if the size of the biodegradable polymer microspheres exceeds 300 ⁇ m, it is not suitable for use in injections.
- the method for preparing an injection may include preparing an aqueous solution containing biodegradable polymer microspheres (S100), injecting or filling the aqueous solution into a vial or syringe ( S200), cooling the aqueous solution in the filled vial or syringe (S300), lyophilizing the aqueous solution in the vial or syringe (S400), sealing the vial or syringe with a vial cap or rubber cap (S500), vial or sterilizing the syringe (S600).
- S100 biodegradable polymer microspheres
- S100 Prepare an aqueous solution containing biodegradable polymer microspheres.
- the aqueous solution may contain an excipient.
- excipients are alginic acid and its salts, hyaluronic acid and its salts, carboxylmethyl cellulose and its salts, dextran and its salts, collagen, gelatin ), and at least one of elastin.
- the ratio of the biodegradable polymer microspheres and the excipient in the aqueous solution may be 2:8 to 8:2. Outside of the above range, it is difficult to evenly disperse the biodegradable polymer microspheres at an appropriate concentration beyond the range in which the content of the excipient can be adjusted. At this time, the high viscosity mixture may be evenly dispersed using a three roll mill or other mixing equipment.
- S200 Inject/fill the prepared aqueous solution into a vial or syringe.
- a pressurized or nozzle type device may be used as the injection/filling device.
- the aqueous solution containing the biodegradable polymer microspheres may be cooled, lyophilized, pulverized into powder, and then filled into powder form.
- the temperature may be -80°C to -10°C. Less than -80°C is unsuitable for production cooling equipment, and if it exceeds -10°C, cooling is not done evenly, causing melting or splashing of the injected liquid during freeze-drying.
- Freeze-drying is a process for making a product in the form of a cake from an injection solution, and may be filled with pre-lyophilized powder-type microspheres.
- S500 Seal the lyophilized vial or syringe with a vial cap or rubber seal.
- the vial or syringe When sealing the vial or syringe, depending on the sterilization method, it can be done in a half-turning or half-turning method, and when sterilization is completed, it can be sealed by turning.
- the sterilization method may be performed by gamma ray sterilization, beam sterilization, ethylene oxide sterilization, or reduced pressure sterilization.
- Figure 3 is a conceptual diagram of a parallel continuous reaction film emulsification device for producing biodegradable polymer microspheres according to an embodiment of the present invention
- Figure 4 is a core device in the parallel continuous reaction conceptual diagram according to an embodiment of the present invention it is a drawing
- the parallel continuous reaction film emulsification device includes a pressure tank and a pressure line (1), a dispersion tank (2), an emulsion continuous supply line (5), an emulsion tank (6), stirring motor (7), parallel film emulsification module (8), stirring bar (9), continuous solid-liquid separation device (10), outlet line (11), stabilization tank (13), vacuum exhaust device (14) ), and an operating unit 15.
- biodegradable polymer microspheres of a certain size are formed as the dispersion and the emulsion meet through the parallel membrane.
- the dispersion is moved from the closed dispersion tank (2) to the parallel membrane emulsification module (8) by pressurization of air or nitrogen gas, and the dispersion is slowly ejected through the membrane to meet the emulsion in the emulsion tank (6), and the biodegradable polymer Microspheres are formed.
- the emulsion is continuously supplied by the emulsion continuous supply line 5, the dispersion and the emulsion are mixed by the stirring rod 9, and the mixed liquid is moved to the stabilization tank 13 through the outlet line 11. .
- the solvent is evaporated and removed by the reduced pressure exhaust device 14, thereby stabilizing the generated microspheres, and through the solid-liquid separation of the continuous solid-liquid separation device 10, the microspheres in a cake state can be obtained. there is.
- the stirring motor 7 may have a rotational speed of 10 to 500 rpm. If it is less than 10 rpm, the emulsified solution and the dispersion liquid are not sufficiently stirred, and if it is more than 500 rpm, the generated microspheres are broken and the size changes.
- spherical particles of uniform size can be easily prepared, and are suitable for mass production.
- it has the advantage that the particle size of the biodegradable polymer microspheres can be easily controlled.
- Example 2 Comparison of parallel continuous reaction film emulsification method and organic solvent evaporation method
- microspheres According to a general organic solvent evaporation method, 1 g of polylactic acid having an average molecular weight of 100,000 was completely dissolved in 10 g of trichloromethane by stirring, and then mixed with 100 g of the emulsion and rapidly stirred with a homogenizer to prepare microspheres. After leaving the stirrer for 2 hours to allow the microspheres to precipitate, the upper layer of the filtrate was removed after the microspheres were completely precipitated. Again, 1L of distilled water was added, stirred for 30 minutes, precipitated for 1 hour, and washed 5 times by removing the supernatant. The microspheres in the form of a cake containing water after washing were frozen and lyophilized to prepare microspheres in powder form.
- microspheres prepared under the condition No. 8 of Example 1 and microspheres prepared by a general organic solvent evaporation method are shown in FIG. 6 .
- polylactic acid (PLA), polycaprolactone (PCL), and polylactic acid-glycolic acid (PLGA) were used while changing the pores of the membrane.
- Biodegradable polymer microspheres were prepared.
- FIG. 5 is an electron micrograph of biodegradable polymer microspheres prepared in Example 1; Referring to FIG. 5, it can be seen that in the present invention, perfectly spherical microspheres are formed and manufactured in a uniform size to the extent that a powder process is not required.
- FIG. 6 is a photomicrograph comparing microspheres made by the parallel continuous reaction film emulsification method and the general organic solvent evaporation method in Example 2. Referring to FIG. 6, it was confirmed that the microspheres made by the general organic solvent evaporation method had an irregular particle size, whereas the microspheres made by the parallel continuous reaction film emulsification method according to the present invention had a constant size.
- Example 7 is a photomicrograph comparing microspheres prepared using various biodegradable polymers and membranes having different pores in Example 3. Referring to FIG. 7 , it can be confirmed that the size of microspheres can be easily adjusted according to the pores of the membrane, and that microspheres having a constant particle size distribution can be prepared under similar conditions for various biodegradable polymers.
- Nitrogen tank pressure line 2 Dispersion liquid tank
- stirring motor 8 parallel film emulsification module
- stirring rod 10 continuous solid-liquid separation device
- Discharge liquid continuous supply section 12 Biodegradable polymer microspheres
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Medicinal Preparation (AREA)
- Manufacturing Of Micro-Capsules (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Epidemiology (AREA)
- Dermatology (AREA)
Abstract
Description
실험 순번 | 유화액(mL/min) | 분산액(mL/min) | 상태 |
1 | 10 | 5 | 입자모양 불균일 |
2 | 20 | 10 | 입자모양 불균일 |
3 | 40 | 20 | 멤브레인 막힘 |
4 | 20 | 5 | 입자모양 어그러짐 |
5 | 40 | 10 | 입자모양 어그러짐 |
6 | 80 | 20 | 멤브레인 막힘 |
7 | 50 | 5 | 생성 속도 느림 |
8 | 100 | 10 | 최적 조건 |
9 | 200 | 20 | 멤브레인 막힘 |
Claims (21)
- 생분해성 고분자가 용해된 분산액을 준비하는 단계;분산액에 압력을 걸어 병렬식 멤브레인을 통해 분산액을 유화액 중에 천천히 주입하여 미립구를 생성하는 단계;미립구가 섞인 혼합액이 토출되는 단계;토출되는 상기 혼합액을 받아 미립구를 안정화시키는 단계;안정화된 미립구를 세척, 건조하는 단계;를 포함하며,상기 유화액은 연속적으로 교체 공급되는 것을 특징으로 하는, 병렬식 연속반응 막유화 장치를 이용한 생분해성 고분자 미립구의 제조 방법.
- 제1항에 있어서,상기 생분해성 고분자가 용해된 분산액을 준비하는 단계에서,상기 생분해성 고분자는 폴리락트산(Polylactic acid, PLA) 및 그 이성질체, 폴리글리콜산(Polyglycolic acid, PGA), 폴리카프로락톤(Polycarprolactone, PCL), 폴리디옥사논(Polydioxanone, PDO), 및 폴리락틱글리콜릭산(Poly Lactic acid-glycolic acid, PLGA) 및 그 이성질체를 포함하는 그룹에서 선택되고, 상기 고분자의 평균 분자량은 20,000 내지 300,000인 것을 특징으로 하는, 병렬식 연속반응 막유화 장치를 이용한 생분해성 고분자 미립구의 제조 방법.
- 제1항에 있어서,상기 생분해성 고분자가 용해된 분산액은 용매를 포함하고,상기 용매는 염소화탄화수소, 탄화수소, 과불소알콜, EA(Ethyl ester), Ether계열 용매, DMF(N,N-Dimethyl Formamide), DMSO(Dimethyl sulfoxide) 중 적어도 하나를 포함하고,상기 분산액 중 생분해성 고분자의 함량은 1 내지 20 중량%인 것을 특징으로 하는, 병렬식 연속반응 막유화 장치를 이용한 생분해성 고분자 미립구의 제조 방법.
- 제1항에 있어서,상기 미립구를 생성하는 단계에서,상기 생성되는 미립구는 크기에 있어서 표준편차 30% 이내의 균일한 입도분포를 가지는 것을 특징으로 하는, 병렬식 연속반응 막유화 장치를 이용한 생분해성 고분자 미립구의 제조 방법.
- 제1항에 있어서,상기 미립구를 생성하는 단계에서,상기 생분해성 고분자 미립구의 크기는 1 내지 300㎛인 것을 특징으로 하는, 병렬식 연속반응 막유화 장치를 이용한 생분해성 고분자 미립구의 제조 방법.
- 제1항에 있어서,상기 미립구를 생성하는 단계에서,공극이 다른 멤브레인을 사용하여 1 내지 300㎛ 사이에서 미립구 크기를 조절할 수 있는 것을 특징으로 하는, 병렬식 연속반응 막유화 장치를 이용한 생분해성 고분자 미립구의 제조 방법.
- 제1항에 있어서,상기 유화액은 폴리비닐알콜(Polyvinyl alcohol), 폴리옥시에틸렌 솔비탄(Polyoxyethylene Sorbitan) 및 그 염, 대두 레시틴(soybean Lecithin), 및 모노글리세리드(monoglyceride) 중 적어도 하나를 포함하는 것을 특징으로 하는, 병렬식 연속반응 막유화 장치를 이용한 생분해성 고분자 미립구의 제조 방법.
- 제1항에 있어서,상기 생분해성 고분자 미립구는 피부 조직 재건 및 조직 재생용 안면 성형 필러, 남성 보형물, 또는 요실금 치료제 또는 약물 봉입을 통한 의료 및 의약용 장기지속 주사제로 사용되는 것을 특징으로 하는, 병렬식 연속반응 막유화 장치를 이용한 생분해성 고분자 미립구의 제조 방법.
- 제1항 내지 제8항 중 어느 한 항에 의해 제조된 생분해성 고분자 미립구를 포함하는 수용액을 준비하는 단계;상기 수용액을 바이알 또는 주사기에 주입하는 단계;주입된 수용액을 냉각시켜 얼린 후 동결건조 하는 단계; 및바이알 또는 주사기를 밀폐 후 멸균하는 단계;를 포함하는 것을 특징으로 하는, 생분해성 고분자 미립구가 포함된 주사제의 제조 방법.
- 제9항에 있어서,상기 생분해성 고분자 미립구를 포함하는 수용액을 준비하는 단계에서,상기 생분해성 고분자 미립구는 상기 수용액의 전체 중량을 기준으로 10 내지 80 중량% 포함되는 것을 특징으로 하는, 생분해성 고분자 미립구가 포함된 주사제의 제조 방법.
- 제9항에 있어서,상기 생분해성 고분자 미립구를 포함하는 수용액을 준비하는 단계에서,상기 수용액은 첨가물을 추가로 포함하며, 상기 첨가물은 카르복시메틸 셀룰로오스(Carboxylmethyl cellulose) 및 그 염, 알긴산(Alginic acid) 및 그 염, 히알루론산(Hyalurinic acid) 및 그 염, 덱스트란(Dextran) 및 그 염, 콜라겐(collagen), 젤라틴(Gelatin), 및 엘라스틴(Elastin) 중 적어도 하나를 포함하고,첨가물의 함량은 수용액 전체 중량을 기준으로 1 내지 30 중량%인 것을 특징으로 하는, 생분해성 고분자 미립구가 포함된 주사제의 제조 방법.
- 제11항에 있어서,상기 첨가물은 카르복시메틸 셀룰로오스이고,상기 생분해성 고분자 미립구는 상기 카르복시메틸 셀룰로오스가 포함된 상기 수용액 전체 중량을 기준으로, 30 내지 60 중량% 포함되는 것을 특징으로 하는, 생분해성 고분자 미립구가 포함된 주사제의 제조 방법.
- 제9항에 있어서,상기 생분해성 고분자 미립구의 크기는 10 내지 300㎛인 것을 특징으로 하는, 생분해성 고분자 미립구가 포함된 주사제의 제조 방법.
- 제9항에 있어서,상기 멸균하는 단계에서,감마선 멸균, 이빔 멸균, 에틸렌옥사이드 멸균, 또는 감압 멸균으로 멸균하는 것을 특징으로 하는, 생분해성 고분자 미립구가 포함된 주사제의 제조 방법.
- 제9항 내지 제14항 중 어느 한 항의 제조방법에 따라 제조된 주사제로서,피부 조직 재건 및 조직 재생용 안면 성형 필러, 남성 보형물, 또는 요실금 치료제 또는 약물 봉입을 통한 의료 및 의약용 장기지속 주사제로 사용되는 것을 특징으로 하는, 생분해성 고분자 미립구가 포함된 주사제.
- 분산액을 보관하는 분산액 탱크;상기 분산액에 가압하는 가압탱크와 가압라인;막유화 모듈이 구비되며, 분산액을 공급받는 유화액 탱크;유화액 탱크에 유화액을 연속적으로 공급하는 유화액 연속공급 라인;분산액과 유화액의 혼합액을 안정화 탱크로 토출해 내는 토출구 라인;감압 또는 증발을 통해 미립구를 안정화 시키는 안정화 탱크; 및조작부;를 포함하며,상기 막유화 모듈은 분산액을 유화액 중에 주입하는 멤브레인이 병렬식으로 배치된 병렬식 막유화 모듈인 것을 특징으로 하는, 병렬식 멤브레인과 연속식 반응을 이용한 막유화 장치.
- 제16항에 있어서,상기 분산액 탱크는 밀폐되어 있으며, 가압탱크로부터의 압력을 조절 가능한 조절장치를 포함하고,상기 조절장치는 가압탱크로부터의 압력을 멤브레인의 공극 크기에 따라 1kPa 내지 300kPa 로 조절하는 것을 특징으로 하는, 병렬식 멤브레인과 연속식 반응을 이용한 막유화 장치.
- 제16항에 있어서,상기 막유화 모듈의 멤브레인은 멤브레인이 복수개 장착되어 병렬식으로 구성되거나, 또는 하나의 멤브레인이 장착된 반응기가 복수개 병렬식으로 구성되는 것을 특징으로 하는, 병렬식 멤브레인과 연속식 반응을 이용한 막유화 장치.
- 제16항에 있어서,상기 멤브레인은 교체가 가능하여, 이러한 교체를 통해 1 내지 300㎛ 사이에서 생분해성 고분자 미립자의 크기를 조절할 수 있는 것을 특징으로 하는, 병렬식 멤브레인과 연속식 반응을 이용한 막유화 장치.
- 제16항에 있어서,상기 유화액 탱크는,연속적으로 공급되는 유화액 및 분산액이 고르게 분산되도록 교반장치를 포함하는 것을 특징으로 하는, 병렬식 멤브레인과 연속식 반응을 이용한 막유화 장치.
- 제20항에 있어서,상기 교반장치는,10 내지 500 rpm의 회전 속도를 가지는 것을 특징으로 하는, 병렬식 멤브레인과 연속식 반응을 이용한 막유화 장치.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22861611.6A EP4393482A1 (en) | 2021-08-26 | 2022-08-12 | Parallel-type membrane emulsification method and device for preparing biodegradable polymer microspheres, and injection formulation preparation method using same |
CN202280057184.8A CN117940116A (zh) | 2021-08-26 | 2022-08-12 | 用于制备生物降解高分子微球的并列式膜乳化方法和装置及利用其的注射剂的制备方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2021-0113132 | 2021-08-26 | ||
KR1020210113132A KR102377283B1 (ko) | 2021-08-26 | 2021-08-26 | 생분해성 고분자 미립구의 제조를 위한 병렬식 막유화 방법과 장치, 및 이를 이용한 주사제의 제조방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023027401A1 true WO2023027401A1 (ko) | 2023-03-02 |
Family
ID=80991706
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2022/012123 WO2023027401A1 (ko) | 2021-08-26 | 2022-08-12 | 생분해성 고분자 미립구의 제조를 위한 병렬식 막유화 방법과 장치, 및 이를 이용한 주사제의 제조방법 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP4393482A1 (ko) |
KR (1) | KR102377283B1 (ko) |
CN (1) | CN117940116A (ko) |
WO (1) | WO2023027401A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117164945A (zh) * | 2023-07-24 | 2023-12-05 | 广州百奥格林生物科技有限公司 | 一种大孔有机膜、其制备方法及其在膜乳化制备均一大粒径缓释微球中的应用 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102377283B1 (ko) * | 2021-08-26 | 2022-03-22 | 정민욱 | 생분해성 고분자 미립구의 제조를 위한 병렬식 막유화 방법과 장치, 및 이를 이용한 주사제의 제조방법 |
WO2024135975A1 (ko) * | 2022-12-23 | 2024-06-27 | 주식회사 에이엔폴리 | 폴리사카라이드 나노섬유로부터 유래된 친환경 입자의 제조방법 및 폴리사카라이드 나노섬유로부터 유래된 친환경 입자 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100566573B1 (ko) | 2002-04-13 | 2006-03-31 | 주식회사 펩트론 | Lhrh 동족체를 함유하는 서방성 미립구의 제조방법 |
KR101105292B1 (ko) | 2009-06-05 | 2012-01-17 | 주식회사 리젠 바이오텍 | 생분해성 고분자 미세입자와 그의 제조방법 |
KR20140135337A (ko) * | 2013-05-15 | 2014-11-26 | 씨제이헬스케어 주식회사 | 연속 공정의 미립구의 제조 방법 및 이로부터 제조된 미립구 |
KR20190062709A (ko) * | 2017-11-29 | 2019-06-07 | 주식회사 울트라브이 | 연속반응을 이용한 생분해성 고분자 미세 입자의 제조 방법, 이를 포함하는 주사제의 제조 방법, 및 생분해성 고분자 미세 입자의 제조용 반응기 |
KR20190085500A (ko) * | 2018-01-10 | 2019-07-18 | 주식회사 지투지바이오 | 콜라겐 펩타이드가 함유된 폴리카프로락톤 미립구 필러 및 그 제조방법 |
KR102051044B1 (ko) * | 2019-05-27 | 2019-12-02 | 주식회사 울트라브이 | 생분해성 고분자 필러의 제조 방법, 및 이를 포함하는 주사제의 제조 방법 |
KR20200009689A (ko) * | 2018-07-19 | 2020-01-30 | 주식회사 아울바이오 | 주사제용 미립구의 제조방법 |
KR102089560B1 (ko) | 2019-12-27 | 2020-03-17 | 주식회사 울트라브이 | 필러용 생분해성 고분자 미세입자의 제조 방법, 및 이를 포함하는 주사제의 제조 방법 |
KR102101969B1 (ko) | 2017-09-06 | 2020-04-22 | (주)인벤티지랩 | 목시덱틴을 포함하는 마이크로 입자 및 이의 제조 방법 |
KR102377283B1 (ko) * | 2021-08-26 | 2022-03-22 | 정민욱 | 생분해성 고분자 미립구의 제조를 위한 병렬식 막유화 방법과 장치, 및 이를 이용한 주사제의 제조방법 |
-
2021
- 2021-08-26 KR KR1020210113132A patent/KR102377283B1/ko active IP Right Grant
-
2022
- 2022-08-12 CN CN202280057184.8A patent/CN117940116A/zh active Pending
- 2022-08-12 WO PCT/KR2022/012123 patent/WO2023027401A1/ko active Application Filing
- 2022-08-12 EP EP22861611.6A patent/EP4393482A1/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100566573B1 (ko) | 2002-04-13 | 2006-03-31 | 주식회사 펩트론 | Lhrh 동족체를 함유하는 서방성 미립구의 제조방법 |
KR101105292B1 (ko) | 2009-06-05 | 2012-01-17 | 주식회사 리젠 바이오텍 | 생분해성 고분자 미세입자와 그의 제조방법 |
KR20140135337A (ko) * | 2013-05-15 | 2014-11-26 | 씨제이헬스케어 주식회사 | 연속 공정의 미립구의 제조 방법 및 이로부터 제조된 미립구 |
KR102101969B1 (ko) | 2017-09-06 | 2020-04-22 | (주)인벤티지랩 | 목시덱틴을 포함하는 마이크로 입자 및 이의 제조 방법 |
KR20190062709A (ko) * | 2017-11-29 | 2019-06-07 | 주식회사 울트라브이 | 연속반응을 이용한 생분해성 고분자 미세 입자의 제조 방법, 이를 포함하는 주사제의 제조 방법, 및 생분해성 고분자 미세 입자의 제조용 반응기 |
KR20190085500A (ko) * | 2018-01-10 | 2019-07-18 | 주식회사 지투지바이오 | 콜라겐 펩타이드가 함유된 폴리카프로락톤 미립구 필러 및 그 제조방법 |
KR20200009689A (ko) * | 2018-07-19 | 2020-01-30 | 주식회사 아울바이오 | 주사제용 미립구의 제조방법 |
KR102051044B1 (ko) * | 2019-05-27 | 2019-12-02 | 주식회사 울트라브이 | 생분해성 고분자 필러의 제조 방법, 및 이를 포함하는 주사제의 제조 방법 |
KR102089560B1 (ko) | 2019-12-27 | 2020-03-17 | 주식회사 울트라브이 | 필러용 생분해성 고분자 미세입자의 제조 방법, 및 이를 포함하는 주사제의 제조 방법 |
KR102377283B1 (ko) * | 2021-08-26 | 2022-03-22 | 정민욱 | 생분해성 고분자 미립구의 제조를 위한 병렬식 막유화 방법과 장치, 및 이를 이용한 주사제의 제조방법 |
Non-Patent Citations (8)
Title |
---|
CROTTS, G.PARK, T.G., J. CONTROL. RELEASE, vol. 44, 1997, pages 123 - 134 |
HELLER, J. ET AL.: "Controlled release of water-soluble macromolecules from bioerodible hydrogels", BIOMATERIALS, vol. 4, 1983, pages 262 - 266, XP024141788, DOI: 10.1016/0142-9612(83)90025-X |
HELLER, J., CRC CRIT. REV. THER. DRUG CATTRIER SYST., vol. 1, no. 1, 1984, pages 39 - 90 |
HOLLAND, S.J.TIGHE, B. J.GOULD, P. L., J. CONTROLLED RELEASE, 1986, pages 155 - 180 |
LANGER, R. S.PEPPAS, N. A., BIOMATERIALS, vol. 2, 1981, pages 201 - 214 |
LANGER, R., CHEM. ENG. COMMUN., vol. 6, 1980, pages 1 - 48 |
LANGER, R.: "New methods of drug delivery", SCIENCE, vol. 249, 1990, pages 1527 - 1533, XP000169082, DOI: 10.1126/science.2218494 |
LEONARD, N.B.MICHAEL, L. H.LEE, M.M., J. PHARM. SCI., vol. 84, pages 707 - 712 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117164945A (zh) * | 2023-07-24 | 2023-12-05 | 广州百奥格林生物科技有限公司 | 一种大孔有机膜、其制备方法及其在膜乳化制备均一大粒径缓释微球中的应用 |
CN117164945B (zh) * | 2023-07-24 | 2024-03-22 | 广州百奥格林生物科技有限公司 | 一种大孔有机膜、其制备方法及其在膜乳化制备均一大粒径缓释微球中的应用 |
Also Published As
Publication number | Publication date |
---|---|
EP4393482A1 (en) | 2024-07-03 |
KR102377283B1 (ko) | 2022-03-22 |
CN117940116A (zh) | 2024-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023027401A1 (ko) | 생분해성 고분자 미립구의 제조를 위한 병렬식 막유화 방법과 장치, 및 이를 이용한 주사제의 제조방법 | |
WO2021132858A1 (ko) | 필러용 생분해성 고분자 미세입자의 제조 방법, 및 이를 포함하는 주사제의 제조 방법 | |
WO2020241984A1 (ko) | 생분해성 고분자 필러의 제조 방법, 및 이를 포함하는 주사제의 제조 방법 | |
WO2019078583A1 (ko) | 약물을 포함하는 지속 방출형 마이크로 입자 및 이의 제조 방법 | |
KR100194827B1 (ko) | 서방성 마이크로캡슐 | |
KR100442931B1 (ko) | 수용성 펩티드의 서방성 제제 및 그의 제조방법 | |
WO2021010719A1 (ko) | 리바스티그민을 포함하는 장기지속형 제제 및 이의 제조방법 | |
WO2021162532A2 (ko) | Glp-1 유사체, 또는 이의 약학적으로 허용가능한 염을 포함하는 서방형 미립구를 포함하는 약학적 조성물 | |
WO2022010317A1 (ko) | 도네페질 함유 서방출성 plga 미립구의 제조방법 | |
WO2018147660A1 (ko) | 정신질환 또는 중추신경계 질환 치료용 약물전달 제형 | |
IT9021019A1 (it) | Metodo per preparare una composizione farmaceutica in forma di microparticelle | |
WO2022205645A1 (zh) | 一种可注射的皮肤填充剂及其制备方法 | |
KR19990067014A (ko) | 용융 공정에 의해 펩티드를 포함하는 생분해가능한미소구의 제조 | |
WO2020197190A1 (en) | Method for preparing biocompatible polymer-based apixaban-loaded microspheres | |
WO2021091246A1 (ko) | 초기 방출 제어가 가능한 서방출성 미립구 및 이의 제조 방법 | |
WO2022124508A1 (ko) | 조직 수복용 주사제 조성물 및 이의 제조 방법 | |
WO2020242234A1 (ko) | 캐스파제 저해제 프로드럭을 함유하는 주사용 조성물 및 이의 제조 방법 | |
WO2019208982A1 (ko) | 안정화된 단상 혼합액을 이용하는 생분해성 미립구의 제조방법 | |
WO2012087051A2 (en) | Microparticles containing physiologically active peptide, method for preparing the same, and pharmaceutical composition comprising the same | |
WO2022050783A1 (ko) | 약물의 지속 방출을 위한 서방형 마이크로입자 | |
WO2020130585A1 (ko) | 데슬로렐린을 함유하는 서방형 주사제 및 그 제조방법 | |
DK171454B1 (da) | Fremgangsmåde til fremstilling af tørforarbejdede partikler, således opnåede tørforarbejdede partikler, og præparater indeholdende sådanne partikler | |
WO2023101348A1 (ko) | 류프로라이드를 포함하는 마이크로 입자 및 이의 제조 방법 | |
WO2023090922A1 (ko) | 날트렉손을 포함하는 서방성 주사용 조성물 및 이의 제조 방법 | |
WO2024101859A1 (ko) | 덱사메타손 아세테이트를 포함하는 서방형 주사제제 및 그 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22861611 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280057184.8 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022861611 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022861611 Country of ref document: EP Effective date: 20240326 |