WO2023027401A1 - 생분해성 고분자 미립구의 제조를 위한 병렬식 막유화 방법과 장치, 및 이를 이용한 주사제의 제조방법 - Google Patents

생분해성 고분자 미립구의 제조를 위한 병렬식 막유화 방법과 장치, 및 이를 이용한 주사제의 제조방법 Download PDF

Info

Publication number
WO2023027401A1
WO2023027401A1 PCT/KR2022/012123 KR2022012123W WO2023027401A1 WO 2023027401 A1 WO2023027401 A1 WO 2023027401A1 KR 2022012123 W KR2022012123 W KR 2022012123W WO 2023027401 A1 WO2023027401 A1 WO 2023027401A1
Authority
WO
WIPO (PCT)
Prior art keywords
biodegradable polymer
microspheres
polymer microspheres
parallel
membrane
Prior art date
Application number
PCT/KR2022/012123
Other languages
English (en)
French (fr)
Inventor
정민욱
Original Assignee
정민욱
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정민욱 filed Critical 정민욱
Priority to EP22861611.6A priority Critical patent/EP4393482A1/en
Priority to CN202280057184.8A priority patent/CN117940116A/zh
Publication of WO2023027401A1 publication Critical patent/WO2023027401A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/02Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops
    • B01J2/06Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops in a liquid medium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J3/00Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J3/00Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms
    • A61J3/02Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms into the form of powders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying

Definitions

  • the present invention relates to a method and apparatus for producing biodegradable polymer microspheres, and to a method for preparing an injection using the same, and more particularly, to biodegradable polymer microspheres whose size can be adjusted and which maintains a spherical shape while maintaining a uniform size. It relates to a parallel continuous reaction film emulsification method and apparatus capable of mass production, and a method for preparing a microsphere injectable composition comprising the same.
  • Microsphere manufacturing technology for biodegradable polymers is a technology that is very popular in the field of long-lasting sustained release drug delivery through drug encapsulation as well as plastic surgery and skin beauty fields [Heller, J. et al., Controlled release of water- soluble macromolecules from bioerodible hydrogels, Biomaterials, 4, 262-266, 1983; Langer, R., New methods of drug delivery, Science, 249, 1527-1533, 1990; Langer, R., Chem. Eng. Commun., 6, 1-48, 1980; Langer, R. S. and Peppas, N. A., Biomaterials, 2, 201-214, 1981; Heller, J., CRC Crit. Rev. Ther. Drug Cattrier Syst., 1(1), 39-90, 1984; Holland, S.J. Tighe, B. J. and Gould, P. L., J. Controlled Release, 155-180, 1986].
  • microspheres Common methods for preparing microspheres currently used include phase separation, spray-drying, organic solvent evaporation, and micro-fluidic methods.
  • phase separation method Korean Patent Registration No. 10-1105292
  • a spray dryer since a spray dryer is basically used, it is difficult to manufacture uniformly sized particles and exhibits porosity, so it is not suitable as a technology for encapsulating a drug that needs to control a constant release rate.
  • This method is a method of forming microspheres by vigorously stirring a dispersion liquid in which a polymer is dissolved in an organic solvent and an emulsified solution containing a surfactant. Since the emulsion is in a thermodynamically unstable state, there is a high tendency for the aqueous phase and the organic phase to be separated from each other through processes such as coalescence, fusion, and creaming. Due to the necessary relationship, it has the disadvantage that mass synthesis is difficult with conventional batch reactions, and although spherical microspheres can be made, it has the disadvantage that fundamentally uniform particles cannot be made.
  • the fluid flow method [Korean Patent Registration No. 10-2101969] is a technology that has recently been in the spotlight due to its advantage of being able to create uniformly sized particles and perfect spheres.
  • the facility equipment cost is very high and each microtube must be finely controlled technically because two micro-adjustable pumps must be connected at right angles to hundreds and thousands of microtubules.
  • the size of microspheres it has the disadvantage that thousands of bundles of microtubules must be completely changed.
  • the size can be easily adjusted according to the use while having a certain size, the manufacturing method is simple and economical, and mass production is easy, and the mechanical strength and density are high, so that the drug encapsulation and There is a need for a method for preparing microspheres having a constant release rate.
  • Patent Document 1 Korean Patent No. 10-1105292
  • Patent Document 2 Korean Patent No. 10-0566573
  • Patent Document 3 Korean Patent No. 10-2089560
  • Patent Document 4 Korean Patent No. 10-2101969
  • An object of the present invention is to provide a method for manufacturing biodegradable polymer microspheres, which can easily control the size of particles while maintaining a constant shape and size, and which is easy to manufacture and can be economically and mass-produced, and a manufacturing apparatus for mass production.
  • Another object of the present invention is to provide the use of the biodegradable polymer microspheres prepared by the above method for skin tissue reconstruction and tissue regeneration or as medical and pharmaceutical injections through drug encapsulation.
  • the present invention comprises the steps of preparing a dispersion in which the biodegradable polymer is dissolved; generating microspheres by slowly injecting the dispersion into the emulsion through parallel membranes under pressure to the dispersion; discharging a mixed solution in which microspheres are mixed; stabilizing the microspheres by receiving the discharged liquid mixture; and washing and drying the stabilized microspheres, wherein the emulsion is continuously replaced and supplied.
  • the present invention is a parallel continuous reaction film emulsification device for preparing the polymer microspheres, comprising: a dispersion tank for storing the dispersion; a pressure tank and a pressure line for pressurizing the dispersion; An emulsion tank equipped with a film emulsification module and receiving a dispersion solution; Emulsion continuous supply line for continuously supplying the emulsion to the emulsion tank; a discharge line for discharging a mixture of dispersion and emulsion into a stabilization tank; a stabilization tank to stabilize microspheres through decompression or evaporation; And an operating unit; and, wherein the membrane emulsification module is a parallel membrane emulsification module in which membranes for injecting the dispersion into the emulsion are arranged in parallel, providing a membrane emulsification device using parallel membranes and continuous reactions. do.
  • the biodegradable polymer is polylactic acid (PLA) and its isomers, polyglycolic acid (PGA), polycaprolactone (PCL), polydioxanone ( It is selected from polydioxanone (PDO), poly lactic acid-glycolic acid (PLGA) and its isomers, and the average molecular weight of the polymer may be 20,000 to 300,000.
  • the dispersion in which the biodegradable polymer is dissolved includes a solvent.
  • the solvent includes at least one of chlorinated hydrocarbons, hydrocarbons, perfluoroalcohols, EA (ethyl ester), ether-based solvents, DMF (N, N-Dimethyl Formamide), and DMSO (dimethyl sulfoxide).
  • the content of the biodegradable polymer in the dispersion may be 1 to 20% by weight.
  • the dispersion liquid tank is sealed, includes a regulator capable of finely adjusting the pressure from the pressurization tank, and adjusts the pressure from the pressurization tank to 1 kPa to 300 kPa depending on the pore size of the membrane.
  • the membranes disposed in parallel in the membrane emulsification module may be configured in parallel with a plurality of small membranes, or may be configured in parallel with several small reactors equipped with one membrane.
  • the size of the biodegradable polymer microparticles can be easily controlled within the range of 1 to 300 ⁇ m by replacing the membrane with a membrane having a different air gap.
  • an emulsion continuous supply device for continuously injecting a new emulsion so that the mixture of the dispersion and the emulsion maintains a constant concentration. and may include a stirring device so that the mixed solution is evenly dispersed. At this time, the amount of the emulsion may be 1 to 20 times that of the dispersion.
  • the emulsion contains at least one of polyvinyl alcohol, polyoxyethylene sorbitan and salts thereof, soybean lecithin, and monoglyceride.
  • polyvinyl alcohol polyoxyethylene sorbitan and salts thereof
  • soybean lecithin soybean lecithin
  • monoglyceride may include
  • the outlet line may include a discharge port at the top of the emulsion tank for discharging the overflowing mixed solution when the emulsion is continuously injected, or may include a fluid pump.
  • natural evaporation or vacuum evaporation through agitation may be performed.
  • the stabilizing liquid used in the stabilizing step includes at least one of polyvinyl alcohol, polyoxyethylene sorbitan and its salts, soybean lecithin, and monoglyceride. it could be
  • the microspheres are separated by a solid-liquid separation method in which the microspheres are precipitated and the upper layer solution is removed, and then washing is repeated several times using a washing liquid, and the washing liquid is alkyl alcohol or distilled water. , Or it may include at least one of a mixed solution of alkyl alcohol and distilled water.
  • a lyophilization method may be used to evenly spread the water-containing microsphere cake, freeze it, and then dry it.
  • dry heat or natural drying may be used.
  • the present invention also provides an injectable preparation comprising microspheres prepared according to the present invention.
  • preparing an aqueous solution containing the biodegradable polymer microspheres prepared according to the present invention injecting the aqueous solution into a vial or syringe; Freeze-drying after freezing the injected aqueous solution by cooling; and sterilizing the vial or syringe after sealing.
  • the content of the polymer mixed in the aqueous solution may be 1 to 10% by weight.
  • the aqueous solution further includes additives, the additives being carboxymethyl cellulose and its salts, alginic acid and its salts, Contains at least one of hyaluronic acid and its salts, dextran and its salts, collagen, gelatin, and elastin, and the content of the additive is based on the total weight of the aqueous solution It may be from 1 to 30% by weight.
  • the aqueous solution may be injected into a vial or syringe, cooled, and then lyophilized.
  • an aqueous solution containing biodegradable polymer microspheres may be cooled, lyophilized, pulverized into powder, and then filled.
  • the filled vial or syringe may be cooled and then freeze-dried.
  • the aqueous solution containing the biodegradable polymer microspheres may be cooled, freeze-dried, pulverized into powder, and then filled.
  • the sterilization method may be gamma ray sterilization, E-beam sterilization, ethylene oxide sterilization, or vacuum sterilization.
  • the injection may be used as a facial cosmetic filler for skin tissue reconstruction and tissue regeneration, a male implant, or a treatment for urinary incontinence, or may be used as a long-lasting injection for medical and pharmaceutical use through drug encapsulation.
  • the particle size of biodegradable polymer microspheres can be easily controlled and spherical particles of uniform size can be easily manufactured. It is suitable for mass production.
  • biodegradable polymer microspheres optimized for drug encapsulation due to low injection pressure and strong mechanical strength due to uniform particle size distribution can be used for medical devices or pharmaceutical injections.
  • FIG. 1 is a flowchart schematically showing a method for producing biodegradable polymer microspheres according to an embodiment of the present invention.
  • Figure 2 is a flow chart schematically showing a method for preparing an injection according to an embodiment of the present invention.
  • Figure 3 is a conceptual diagram schematically showing a parallel continuous reaction membrane emulsification device for producing biodegradable polymer microsphere particles according to an embodiment of the present invention.
  • Figure 4 is a schematic view of the core device of the parallel continuous reaction film emulsification device for producing biodegradable polymer microspheres according to an embodiment of the present invention.
  • FIG. 7 is an optical micrograph of microspheres having a desired size using membranes having different pore sizes.
  • FIG. 8 is a particle size distribution graph of microspheres prepared according to an embodiment of the present invention.
  • FIG. 1 is a flowchart schematically showing a method for producing biodegradable polymer microspheres according to an embodiment of the present invention.
  • Figure 2 is a flow chart schematically showing a method for preparing an injection according to an embodiment of the present invention.
  • the step of preparing the biodegradable polymer microspheres is a step of injecting a dispersion in which the biodegradable polymer is dispersed into a parallel continuous reaction film emulsification device (S10), and the dispersion slowly generates microspheres through a parallel membrane.
  • step (S20) discharging the mixed solution while continuously flowing the emulsion (S30), stabilizing the microspheres generated in the collected discharged liquid (S40), washing the generated microspheres (S50), completely removing moisture and drying to remove (S60).
  • the biodegradable polymers used are polylactic acid (PLA) and its isomers, polyglycolic acid (PGA), polycarprolactone (PCL), polydioxanone (PDO), and polylactic glycol. It is selected from poly lactic acid-glycolic acid (PLGA).
  • Perfluoroalcohol is an alcohol compound having 1 to 6 carbon atoms in which 3 to 13 fluorine atoms are substituted, and may include, for example, 1,1,1,3,3,3-hexafluoro-2-propanol.
  • the average molecular weight of the biodegradable polymer may be 20,000 to 300,000. If the average molecular weight of the biodegradable polymer is less than 20,000, the degradation rate is fast, and the value as a material for tissue repair, tissue regeneration, or drug delivery is reduced. It is difficult to make microspheres.
  • the content of the biodegradable polymer may be 1 to 20% by weight based on the dispersion. If the content of the biodegradable polymer is less than 1%, the strength of the generated microspheres is weak and is not suitable for drug encapsulation, and if it exceeds 20%, it cannot pass through the membrane due to high viscosity or requires high pressure, so it is not suitable for mass production. .
  • the dispersion includes a solvent.
  • the solvent includes at least one of chlorinated hydrocarbons, hydrocarbons, perfluoroalcohols, EA (ethyl ester), ether-based solvents, DMF (N, N-Dimethyl Formamide), and DMSO (dimethyl sulfoxide).
  • the pressure applied according to the pore size of the membrane may be 1 kPa to 300 kPa. The smaller the pores of the membrane, the higher pressure is required, and the larger the pores of the membrane, the smaller the pressure value.
  • the film emulsification method has the advantage of being able to control the size of microspheres, making microspheres of a certain size, and making accurate spherical particles. However, it can be produced in a small amount only through a small membrane, and when the polymer content in the dispersion is high, the membrane is clogged or the microspheres are agglomerated.
  • the present invention is a microsphere manufacturing equipment in which the concept of parallel membrane arrangement and continuous reaction is introduced, and it can mass-produce biodegradable polymer microspheres with an efficiency of more than 100 times based on a single production volume by improving the disadvantages of the existing single-channel batch type membrane emulsification device. has the advantage of being
  • the emulsion may include at least one of polyvinyl alcohol, polyoxyethylene sorbitan and salts thereof, soybean lecithin, and monoglyceride.
  • the emulsion may also contain a surfactant.
  • a surfactant anionic, cationic or amphoteric surfactants may all be used.
  • Surfactants include, for example, polyoxyethylene sorbitan monolaurate (Tween 20 product), polyoxyethylene sorbitan monopalmitate (Tween 40 product), polyoxyethylene sorbitan monostearate (Tween 60 product), and at least one of oxyethylene sorbitan monooleate (Tween 80 product) and polyoxyethylene sorbitan trioleate (Tween 85 product).
  • the polyvinyl alcohol may be dissolved in water or a mixed solution of water and alkyl alcohol.
  • polyvinyl alcohol may have an average molecular weight of 50,000 to 200,000.
  • the content of polyvinyl alcohol may be included in the range of 1 to 10% by weight based on the emulsion. Outside the above range, the emulsification action of polyvinyl alcohol acting as a surfactant is weakened, making it difficult to form microspheres.
  • the emulsion is continuously supplied to the emulsion tank and may be 1 to 20 times the amount of the dispersion. If it is less than 1 times, it is difficult to emulsify, and if it is more than 20 times, productivity decreases due to excessive use of solvent.
  • the discharged liquid is a mixture of a dispersion liquid and an emulsion liquid continuously introduced, and includes the microspheres generated in S20, and is continuously discharged into the stabilization tank.
  • S40 Stabilize the microspheres by evaporating the solvent while slowly stirring the mixed solution collected in the stabilization tank.
  • the washing liquid may include at least one of alkyl alcohol, distilled water, or a mixed solution of alkyl alcohol and distilled water.
  • S60 Collect moisture-containing microspheres through washing and completely remove remaining moisture through drying.
  • a freeze-drying method may be used to evenly spread the water-containing microsphere cake, freeze it, and then dry it.
  • dry heat or natural drying may be used.
  • the method for producing biodegradable polymer microspheres according to an embodiment of the present invention has a uniform particle size, so there is no need to use a pulverizer, so the yield of microspheres of the desired size is over 90%, and by replacing the membrane with a different pore size, Microsphere size can be easily controlled.
  • the biodegradable polymer microspheres may have a size of 1 to 300 ⁇ m.
  • the size of the biodegradable polymer microspheres may mean, for example, the particle diameter of the biodegradable polymer microspheres.
  • the size of the biodegradable polymer microspheres is less than 1 ⁇ m, there is a risk of toxicity in vivo, and if the size of the biodegradable polymer microspheres exceeds 300 ⁇ m, it is not suitable for use in injections.
  • the method for preparing an injection may include preparing an aqueous solution containing biodegradable polymer microspheres (S100), injecting or filling the aqueous solution into a vial or syringe ( S200), cooling the aqueous solution in the filled vial or syringe (S300), lyophilizing the aqueous solution in the vial or syringe (S400), sealing the vial or syringe with a vial cap or rubber cap (S500), vial or sterilizing the syringe (S600).
  • S100 biodegradable polymer microspheres
  • S100 Prepare an aqueous solution containing biodegradable polymer microspheres.
  • the aqueous solution may contain an excipient.
  • excipients are alginic acid and its salts, hyaluronic acid and its salts, carboxylmethyl cellulose and its salts, dextran and its salts, collagen, gelatin ), and at least one of elastin.
  • the ratio of the biodegradable polymer microspheres and the excipient in the aqueous solution may be 2:8 to 8:2. Outside of the above range, it is difficult to evenly disperse the biodegradable polymer microspheres at an appropriate concentration beyond the range in which the content of the excipient can be adjusted. At this time, the high viscosity mixture may be evenly dispersed using a three roll mill or other mixing equipment.
  • S200 Inject/fill the prepared aqueous solution into a vial or syringe.
  • a pressurized or nozzle type device may be used as the injection/filling device.
  • the aqueous solution containing the biodegradable polymer microspheres may be cooled, lyophilized, pulverized into powder, and then filled into powder form.
  • the temperature may be -80°C to -10°C. Less than -80°C is unsuitable for production cooling equipment, and if it exceeds -10°C, cooling is not done evenly, causing melting or splashing of the injected liquid during freeze-drying.
  • Freeze-drying is a process for making a product in the form of a cake from an injection solution, and may be filled with pre-lyophilized powder-type microspheres.
  • S500 Seal the lyophilized vial or syringe with a vial cap or rubber seal.
  • the vial or syringe When sealing the vial or syringe, depending on the sterilization method, it can be done in a half-turning or half-turning method, and when sterilization is completed, it can be sealed by turning.
  • the sterilization method may be performed by gamma ray sterilization, beam sterilization, ethylene oxide sterilization, or reduced pressure sterilization.
  • Figure 3 is a conceptual diagram of a parallel continuous reaction film emulsification device for producing biodegradable polymer microspheres according to an embodiment of the present invention
  • Figure 4 is a core device in the parallel continuous reaction conceptual diagram according to an embodiment of the present invention it is a drawing
  • the parallel continuous reaction film emulsification device includes a pressure tank and a pressure line (1), a dispersion tank (2), an emulsion continuous supply line (5), an emulsion tank (6), stirring motor (7), parallel film emulsification module (8), stirring bar (9), continuous solid-liquid separation device (10), outlet line (11), stabilization tank (13), vacuum exhaust device (14) ), and an operating unit 15.
  • biodegradable polymer microspheres of a certain size are formed as the dispersion and the emulsion meet through the parallel membrane.
  • the dispersion is moved from the closed dispersion tank (2) to the parallel membrane emulsification module (8) by pressurization of air or nitrogen gas, and the dispersion is slowly ejected through the membrane to meet the emulsion in the emulsion tank (6), and the biodegradable polymer Microspheres are formed.
  • the emulsion is continuously supplied by the emulsion continuous supply line 5, the dispersion and the emulsion are mixed by the stirring rod 9, and the mixed liquid is moved to the stabilization tank 13 through the outlet line 11. .
  • the solvent is evaporated and removed by the reduced pressure exhaust device 14, thereby stabilizing the generated microspheres, and through the solid-liquid separation of the continuous solid-liquid separation device 10, the microspheres in a cake state can be obtained. there is.
  • the stirring motor 7 may have a rotational speed of 10 to 500 rpm. If it is less than 10 rpm, the emulsified solution and the dispersion liquid are not sufficiently stirred, and if it is more than 500 rpm, the generated microspheres are broken and the size changes.
  • spherical particles of uniform size can be easily prepared, and are suitable for mass production.
  • it has the advantage that the particle size of the biodegradable polymer microspheres can be easily controlled.
  • Example 2 Comparison of parallel continuous reaction film emulsification method and organic solvent evaporation method
  • microspheres According to a general organic solvent evaporation method, 1 g of polylactic acid having an average molecular weight of 100,000 was completely dissolved in 10 g of trichloromethane by stirring, and then mixed with 100 g of the emulsion and rapidly stirred with a homogenizer to prepare microspheres. After leaving the stirrer for 2 hours to allow the microspheres to precipitate, the upper layer of the filtrate was removed after the microspheres were completely precipitated. Again, 1L of distilled water was added, stirred for 30 minutes, precipitated for 1 hour, and washed 5 times by removing the supernatant. The microspheres in the form of a cake containing water after washing were frozen and lyophilized to prepare microspheres in powder form.
  • microspheres prepared under the condition No. 8 of Example 1 and microspheres prepared by a general organic solvent evaporation method are shown in FIG. 6 .
  • polylactic acid (PLA), polycaprolactone (PCL), and polylactic acid-glycolic acid (PLGA) were used while changing the pores of the membrane.
  • Biodegradable polymer microspheres were prepared.
  • FIG. 5 is an electron micrograph of biodegradable polymer microspheres prepared in Example 1; Referring to FIG. 5, it can be seen that in the present invention, perfectly spherical microspheres are formed and manufactured in a uniform size to the extent that a powder process is not required.
  • FIG. 6 is a photomicrograph comparing microspheres made by the parallel continuous reaction film emulsification method and the general organic solvent evaporation method in Example 2. Referring to FIG. 6, it was confirmed that the microspheres made by the general organic solvent evaporation method had an irregular particle size, whereas the microspheres made by the parallel continuous reaction film emulsification method according to the present invention had a constant size.
  • Example 7 is a photomicrograph comparing microspheres prepared using various biodegradable polymers and membranes having different pores in Example 3. Referring to FIG. 7 , it can be confirmed that the size of microspheres can be easily adjusted according to the pores of the membrane, and that microspheres having a constant particle size distribution can be prepared under similar conditions for various biodegradable polymers.
  • Nitrogen tank pressure line 2 Dispersion liquid tank
  • stirring motor 8 parallel film emulsification module
  • stirring rod 10 continuous solid-liquid separation device
  • Discharge liquid continuous supply section 12 Biodegradable polymer microspheres

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)

Abstract

본 발명은 생분해성 고분자 미립구를 제조하는 방법과 장치, 이를 이용한 주사제의 제조방법에 관한 것으로, 더욱 상세하게는 크기를 조절할 수 있을 뿐만 아니라 균일한 크기를 유지하면서도 구형을 유지하는 생분해성 고분자 미립구를 대량으로 생산 가능한 병렬식 연속반응 막유화 방법과 장치, 및 이를 포함하는 미립구 주사제 조성물의 제조방법에 관한 것이다. 본 발명의 일 실시예에 따른 생분해성 고분자 미립구 제조를 위한 병렬식 연속반응 막유화 방법과 장치에 따르면, 생분해성 고분자 미립구의 입자 크기를 손쉽게 조절할 수 있을 뿐만 아니라 균일한 크기의 구형 입자를 손쉽게 제조할 수 있어 대량 생산에 적합하다. 본 발명의 일 실시예에 따른 주사제의 제조방법에 의하면 고른 입도분포로 인하여 주사압이 낮고, 기계적 강도가 강하여 약물 봉입에 최적화된 생분해성 고분자 미립구를 의료기기 또는 의약품용 주사제에 활용할 수 있다.

Description

생분해성 고분자 미립구의 제조를 위한 병렬식 막유화 방법과 장치, 및 이를 이용한 주사제의 제조방법
본 발명은 생분해성 고분자 미립구를 제조하는 방법과 장치, 이를 이용한 주사제의 제조방법에 관한 것으로, 더욱 상세하게는 크기를 조절할 수 있을 뿐만 아니라 균일한 크기를 유지하면서도 구형을 유지하는 생분해성 고분자 미립구를 대량으로 생산 가능한 병렬식 연속반응 막유화 방법과 장치, 및 이를 포함하는 미립구 주사제 조성물의 제조방법에 관한 것이다.
생분해성 고분자들에 대한 미립구 제조기술은 성형수술, 피부미용 분야 뿐만 아니라 약물 봉입을 통한 장기지속 서방형 약물전달 분야에 매우 각광받고 있는 기술이다[Heller, J. et al., Controlled release of water-soluble macromolecules from bioerodible hydrogels, Biomaterials, 4, 262-266, 1983; Langer, R., New methods of drug delivery, Science, 249, 1527-1533, 1990; Langer, R., Chem. Eng. Commun., 6, 1-48, 1980; Langer, R. S. and Peppas, N. A., Biomaterials, 2, 201-214, 1981; Heller, J., CRC Crit. Rev. Ther. Drug Cattrier Syst., 1(1), 39-90, 1984; Holland, S.J. Tighe, B. J. and Gould, P. L., J. Controlled Release, 155-180, 1986].
최근 생분해성 고분자 미립구를 이용한 필러와 약물 봉입을 통한 데포(depot) 제제들이 많이 개발되고 있으나 입자 모양과 크기가 일정치 않아 활용에 있어서 여러가지 문제가 있다.
우선 입자 크기가 일정치 않으므로 막히지 않도록 굵은 주사바늘을 사용해야하기 때문에 환자들에 대한 순응도가 낮고, 주사압이 높으며 주입시 압력이 일정치 않아 의사 편의성이 떨어진다.
또한, 쉘(shell)의 두께가 일정치 않아 약물 봉입시 약물의 초기 과다 방출(initial burst effect)이 발생하고, 일정 기간동안 약물의 방출율이 일정한 속도로 조절되지 않으며, 약물이 100% 방출되지 않는 불완전한 방출(Incomplete release)과 같은 이유 때문에 생체내에서 일정한 방출율을 조절하기 어렵다는 큰 문제점을 가진다[Crotts, G. and Park, T.G., J. Control. Release, 44, 123-134, 1997; Leonard, N.B., Michael, L. H., Lee, M.M. J. Pharm. Sci., 84, 707-712].
현재 이용되는 미립구의 일반적인 제조방법으로는 상분리법(Phase separation), 분무건조법(Spry-drying), 유기용매 증발법(Emulsification Solvent Evaporation Method), 유체흐름법(Micro-fluidic Method)]이 알려져 있다.
상분리법[대한민국 특허 등록번호 10-1105292호]의 경우 기본적으로 스프레이 드라이어를 사용하므로 균일한 크기의 입자제조가 어렵고 다공성을 나타기에, 일정한 방출률을 조절해야 하는 약물 봉입을 위한 기술로는 적합치 않다.
분무 건조법[대한민국 특허 등록번호 10-0566573호]의 경우에도 다량의 용매를 사용하고 다공성을 나타내기 때문에 균일한 크기의 입자제조와 약물 봉입 기술로는 적합치 않다. 또한 경우에 따라 60℃ 이상의 고온에서 분무 건조 공정을 거쳐야 하므로, 열에 약한 생분해성 고분자들 및 봉입되어 있는 약물에 변성을 초래할 수 있다.
현재 가장 일반적으로 사용되는 방법이 유기용매 증발법[대한민국 특허 등록번호 10-2089560호]이다. 이 방법은 유기 용매에 고분자를 녹인 분산액과 계면활성제가 포함된 유화 용액을 강하게 교반시켜 미립구를 형성하는 방법이다. 유화 용액(emulsion)은 열역학적으로 불안정한 상태이기 때문에 뭉침(Coalescence), 융합(Fusion), 상분리(Creaming) 등의 과정을 거쳐 수상과 유기상이 서로 분리되려는 성향이 높은바, 이를 막기 위해 강력한 교반력이 필요한 관계로 통상적인 회분식 반응으로는 대량합성이 어렵다는 단점이 있으며, 구형의 미립구를 만들 수 있으나 원천적으로 균일한 입자를 만들 수 없는 단점을 가진다.
유체흐름법[대한민국 특허 등록번호 10-2101969호]은 균일한 크기의 입자와 완벽한 구형을 만들 수 있다는 장점으로 최근들어 매우 각광받는 기술이다. 하지만 양산을 위해서는 수백 수천다발의 미세관에 직각으로 2개의 미세조절 펌프를 연결해야 하는 관계로 설비 장치비가 매우 높고 기술적으로 각각의 미세관을 세밀하게 조절해야 한다는 문제점을 가지고 있다. 또한 미립구의 크기를 바꾸려면 수천다발의 미세관을 통째로 바꿔야 한다는 단점을 가진다.
그러므로 조직재생 또는 약물 봉입을 위한 미립구를 제조하는데 있어서, 일정한 크기를 가지면서도 용도에 따라 크기조절이 쉽게 가능하고, 제조방법이 간단하여 경제적이면서도 양산이 용이하고, 기계적 강도와 밀도가 높아 약물 봉입과 일정한 방출율을 가지는 미립구 제조방법이 요구되고 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 대한민국 특허번호 제10-1105292호
(특허문헌 2) 대한민국 특허번호 제10-0566573호
(특허문헌 3) 대한민국 특허번호 제10-2089560호
(특허문헌 4) 대한민국 특허번호 제10-2101969호
본 발명의 목적은 생분해성 고분자 미립구의 형태와 크기를 일정하게 유지하면서도 입자의 크기를 손쉽게 조절할 수 있고, 제조가 용이하여 경제적이면서도 양산이 가능한 미립구의 제조방법과 양산용 제조 장치를 제공하는 것이다. 또한 본 발명은 상기한 방법으로 제조된 생분해성 고분자 미립구를 피부 조직 재건 및 조직재생용 또는 약물 봉입을 통한 의료 및 의약용 주사제로 사용하는 용도 제공을 다른 목적으로 한다.
상기한 과제를 해결하기 위한 생분해성 고분자 미립구의 제조방법으로서, 본 발명은 생분해성 고분자가 용해된 분산액을 준비하는 단계; 분산액에 압력을 걸어 병렬식 멤브레인을 통해 분산액을 유화액 중에 천천히 주입하여 미립구를 생성하는 단계; 미립구가 섞여있는 혼합액이 토출되는 단계; 토출되는 상기 혼합액을 받아 미립구를 안정화시키는 단계; 및 안정화된 미립구를 세척, 건조하는 단계;를 포함하며, 상기 유화액은 연속적으로 교체 공급되는 것을 특징으로 하는, 병렬식 연속반응 막유화 장치를 이용한 생분해성 고분자 미립구의 제조 방법을 제공한다.
*또한 본 발명은 상기 고분자 미립구를 제조하기 위한 병렬식 연속반응 막유화 장치로서, 분산액을 보관하는 분산액 탱크; 상기 분산액에 가압하는 가압탱크와 가압라인; 막유화 모듈이 구비되며, 분산액을 공급받는 유화액 탱크; 유화액 탱크에 유화액을 연속적으로 공급하는 유화액 연속공급 라인; 분산액과 유화액의 혼합액을 안정화 탱크로 토출해 내는 토출구 라인; 감압 또는 증발을 통해 미립구를 안정화 시키는 안정화 탱크; 및 조작부;를 포함하며, 상기 막유화 모듈은 분산액을 유화액 중에 주입하는 멤브레인이 병렬식으로 배치된 병렬식 막유화 모듈인 것을 특징으로 하는, 병렬식 멤브레인과 연속식 반응을 이용한 막유화 장치를 제공한다.
본 발명의 일 실시예에 따르면, 상기 생분해성 고분자는 폴리락트산(Polylactic acid, PLA) 및 그 이성질체, 폴리글리콜산(Polyglycolic acid, PGA), 폴리카프로락톤(Polycarprolactone, PCL), 폴리디옥사논(Polydioxanone, PDO), 폴리락틱글리콜릭산(Poly Lactic acid-glycolic acid, PLGA) 및 그 이성질체 등에서 선택되고, 상기 고분자의 평균 분자량은 20,000 내지 300,000인 것일 수 있다.
본 발명의 일 실시예에 따르면, 상기 생분해성 고분자가 용해된 분산액은 용매를 포함한다. 상기 용매는 염소화탄화수소, 탄화수소, 과불소알콜, EA(Ethyl ester), Ether계열 용매, DMF(N,N-Dimethyl Formamide), DMSO(Dimethyl sulfoxide) 중 적어도 하나를 포함한다.
본 발명의 일 실시예에 따르면, 상기 분산액 중 생분해성 고분자의 함량은 1내지 20 중량%일 수 있다.
본 발명의 일 실시예에 따르면, 상기 분산액 탱크는 밀폐되어 있으며, 가압 탱크로부터의 압력을 미세하게 조절 가능한 조절장치를 포함하고, 가압 탱크로부터의 압력을 멤브레인의 공극 크기에 따라 1kPa 내지 300kPa 로 조절할 수 있다.
상기 막유화 모듈에 병력식으로 배치되는 멤브레인은 작은 멤브레인이 여러 개 장착되어 병렬식으로 구성되거나, 또는 하나의 멤브레인이 장착된 작은 소형 반응기를 여러 개 병렬식으로 구성 할 수도 있다. 또한 공극이 다른 멤브레인으로 교체하여 손쉽게 생분해성 고분자 미립자의 크기를 1 내지 300μm 내에서 조절할 수 있다.
본 발명의 일 실시예에 따르면, 막유화 모듈의 멤브레인을 통해 분산액이 유화액 중에 천천히 주입될 때, 분산액과 유화액의 혼합액이 일정한 농도를 유지하도록 새로운 유화액을 연속적으로 주입해 주는 유화액 연속 공급장치를 포함할 수 있으며, 혼합액이 고르게 분산되도록 교반장치를 포함할 수 있다. 이때 유화액의 투입되는 양은 분산액의 1배 내지 20배일 수 있다.
본 발명의 일 실시예에 따르면, 상기 유화액은 폴리비닐알콜(Polyvinyl alcohol), 폴리옥시에틸렌 솔비탄(Polyoxyethylene Sorbitan) 및 그 염, 대두 레시틴(soybean Lecithin), 및 모노글리세리드(monoglyceride) 중 적어도 하나를 포함하는 것일 수 있다.
본 발명의 일 실시예에 따르면, 상기 토출구 라인은 유화액이 연속해서 주입될 때 넘쳐나는 혼합액을 내보내는 유화액 탱크 상단의 토출구를 포함하거나, 유체 펌프를 포함할 수 있다.
본 발명의 일 실시예에 따르면, 미립구를 안정화시키는 단계에서는 교반을 통한 자연증발 또는 감압 증발이 행해질 수 있다.
상기 안정화 시키는 단계에서 사용되는 안정화액은 폴리비닐알콜(Polyvinyl alcohol), 폴리옥시에틸렌 솔비탄(Polyoxyethylene Sorbitan) 및 그 염, 대두 레시틴(soybean Lecithin), 및 모노글리세리드(monoglyceride) 중 적어도 하나를 포함하는 것일 수 있다.
본 발명의 일 실시예에 따르면, 미립구를 세척하는 단계에서, 미립구를 침전시켜 상층 용액을 제거하는 고액 분리 방법으로 미립구를 분리한 후 세척액을 이용하여 세척을 수회 반복하며, 세척액은 알킬알콜, 증류수, 또는 알킬알콜과 증류수의 혼합 용액 중 적어도 하나를 포함하는 것일 수 있다.
본 발명의 일 실시예에 따르면, 상기 건조단계에 수분을 포함한 미립구 케익을 고르게 펴서 얼린 후 건조 시키기 위해 동결건조 방법을 사용할 수 있다. 또는, 열에 강한 생분해성 고분자 소재로 제조된 미립구일 경우 건열 또는 자연건조 시킬 수 있다.
본 발명은 또한 본 발명에 따라 제조된 미립구를 포함하는 주사제를 제공한다.
본 발명의 일 실시예에 따르면, 본 발명에 따라 제조된 생분해성 고분자 미립구를 포함하는 수용액을 준비하는 단계, 상기 수용액을 바이알 또는 주사기에 주입하는 단계; 주입된 수용액을 냉각시켜 얼린 후 동결건조 하는 단계; 및 바이알 또는 주사기를 밀폐 후 멸균하는 단계;를 포함한다.
상기 생분해성 고분자 미립구를 포함하는 수용액을 준비하는 단계에서, 수용액에 혼합되는 고분자 함량은 1 내지 10 중량%인 것일 수 있다.
또한, 상기 생분해성 고분자 미립구를 포함하는 수용액을 준비하는 단계에서, 상기 수용액은 첨가물을 추가로 포함하며, 상기 첨가물은 카르복시메틸 셀룰로오스(Carboxylmethyl cellulose) 및 그 염, 알긴산(Alginic acid) 및 그 염, 히알루론산(Hyalurinic acid) 및 그 염, 덱스트란(Dextran) 및 그 염, 콜라겐(collagen), 젤라틴(Gelatin), 및 엘라스틴(Elastin) 중 적어도 하나를 포함하고, 첨가물의 함량은 수용액 전체 중량을 기준으로 1 내지 30 중량%인 것일 수 있다.
상기 수용액을 바이알 또는 주사기에 주입하는 단계에서, 상기 수용액을 바이알 또는 주사기에 주입하여 냉각 후 동결건조를 할 수 있다. 또한 분말 상태로 바이알이나 주사기에 충진할 경우 생분해성 고분자 미립구를 포함하는 수용액을 냉각 후 동결건조 하여 분말로 분쇄한 뒤 충친할 수 있다.
상기 주입된 혼합액을 냉각시켜 얼린 후 동결건조 하는 단계에서, 충진된 바이알이나 주사기를 냉각시킨 후 동결건조를 진행할 수 있다. 또한 분말 형태로 충진할 경우 생분해성 고분자 미립구를 포함하는 수용액을 냉각 후 동결건조 하여 분말로 분쇄한 뒤 충진할 수 있다.
상기 바이알 또는 주사기를 밀폐 후 멸균하는 단계에서, 멸균 방법은 감마선 멸균, 이빔(E-beam) 멸균, 에틸렌옥사이드 멸균, 또는 감압 멸균으로 수행되는 것일 수 있다.
상기 주사제는 피부 조직 재건 및 조직 재생용 안면 성형 필러, 남성 보형물, 또는 요실금 치료제로 사용될 수 있으며, 또는 약물 봉입을 통한 의료 및 의약용 장기지속 주사제로 사용될 수 있다.
본 발명의 일 실시예에 따른 생분해성 고분자 미립구 제조를 위한 병렬식 연속반응 막유화 방법과 장치에 따르면, 생분해성 고분자 미립구의 입자 크기를 손쉽게 조절할 수 있을 뿐만 아니라 균일한 크기의 구형 입자를 손쉽게 제조할 수 있어 대량 생산에 적합하다.
본 발명의 일 실시예에 따른 주사제의 제조방법에 의하면 고른 입도분포로 인하여 주사압이 낮고, 기계적 강도가 강하여 약물 봉입에 최적화된 생분해성 고분자 미립구를 의료기기 또는 의약품용 주사제에 활용할 수 있다.
도 1은 본 발명의 일 실시예에 따른 생분해성 고분자 미립구의 제조방법을 개략적으로 나타낸 순서도이다.
도 2는 본 발명의 일 실시예에 따른 주사제의 제조방법을 개략적으로 나타낸 순서도이다.
도 3은 본 발명의 일 실시예에 따른 생분해성 고분자 미립구 입자의 제조용 병렬식 연속반응 막유화 장치를 개략적으로 나타낸 개념도이다.
도 4는 본 발명의 일 실시예에 따른 생분해성 고분자 미립구의 제조용 병렬식 연속반응 막유화 장치의 핵심창치를 모식화한 도면이다.
도 5는 실시예 1 내지 3의 생분해성 고분자 일반 미립구에 대한 광학 현미경 확대 사진이다.
도 6은 실시예 1 내지 3의 병렬식 연속반응 막유화법과 유기용매 증발법으로 만든 생분해성 고분자 미립구에 대한 광학 현미경 사진이다.
도 7은 공극 크기가 다른 멤브레인을 사용하여 원하는 크기로 만든 미립구에 대한 광학현미경 사진이다.
도 8은 본 발명의 일 실시예에 따라 만든 미립구의 입도분포 그래프이다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
먼저, 생분해성 고분자 미립구의 병렬식 연속반응 막유화 제조방법과 장치, 제조된 미립구를 포함하는 주사제의 제조방법에 대하여 설명한다.
도 1은 본 발명의 일 실시예에 따른 생분해성 고분자 미립구의 제조방법을 개략적으로 나타낸 순서도이다. 그리고 도 2는 본 발명의 일 실시예에 따른 주사제의 제조방법을 개략적으로 나타낸 순서도이다.
도 1을 참조하면, 생분해성 고분자 미립구를 준비하는 단계는 병렬식 연속반응 막유화 장치에, 생분해성 고분자가 분산된 분산액을 주입하는 단계(S10), 분산액이 병렬식 멤브레인을 통해 천천히 미립구를 생성하는 단계(S20), 연속적으로 유화액을 흘려주면서 혼합액을 토출시키는 단계(S30), 모아진 토출액에서 생성된 미립구를 안정화 시키는 단계(S40), 생성된 미립구를 세척하는 단계(S50), 수분을 완전히 제거하기 위해 건조시키는 단계(S60)을 포함한다.
S10 : 먼저 생분해성 고분자가 분산된 분산액을 분산액 탱크에 주입한다.
사용되는 생분해성 고분자는 폴리락트산(Polylactic acid, PLA) 및 그 이성질체, 폴리글리콜산(Polyglycolic acid, PGA), 폴리카프로락톤(Polycarprolactone, PCL), 폴리디옥사논(Polydioxanone, PDO), 폴리락틱글리콜릭산(Poly Lactic acid-glycolic acid, PLGA) 중에서 선택된다.
폴리디옥사논(Polydioxanone)은 과불소알콜류에 녹일 수 있다. 과불소알콜은 불소원자가 3 내지 13개 치환된 탄소수 1 내지 6의 알콜화합물로, 예를 들면 1,1,1,3,3,3-헥사플루오로-2-프로판올이 포함될 수 있다.
생분해성 고분자의 평균 분자량은 20,000 내지 300,000인 것일 수 있다. 생분해성 고분자의 평균 분자량이 20,000 미만이면 분해속도가 빨라 조직수복 조직재생 또는 약물전달 소재로서의 가치가 떨어지고, 생분해성 고분자의 평균 분자량이 300,000 초과되면 높은 점탄성으로 인해 가공이 어려워 균일한 크기와 품질의 미립구를 만들기 어렵다.
생분해성 고분자의 함량은, 분산액을 기준으로, 1 내지 20 중량%인 것일 수 있다. 생분해성 고분자의 함량이 1% 미만일 경우 생성된 미립구의 강도가 약하여 약물 봉입에 적당하지 않으며, 20%를 초과할 경우 높은 점도로 인해 멤브레인을 통과하지 못하거나 높은 압력이 필요하여 양산에 적합하지 않다.
상기 분산액은 용매를 포함한다. 상기 용매는 염소화탄화수소, 탄화수소, 과불소알콜, EA(Ethyl ester), Ether계열 용매, DMF(N,N-Dimethyl Formamide), DMSO(Dimethyl sulfoxide) 중 적어도 하나를 포함한다.
S20 : 분산액을 가압하여 병렬식 멤브레인에 천천히 통과 시킬 경우 유화액과 접촉하면서 생분해성 고분자 미립구를 생성한다.
밀폐된 분산액 탱크에 공기 또는 질소가스로 가압하여 분산액을 밀어내 병렬식 멤브레인에 천천히 통과 시키면 유화액과 접촉하여 유화가 일어난다. 이때 멤브레인의 공극 크기에 따라 가해지는 압력은 1kPa 내지 300kPa 일 수 있다. 멤브레인의 공극이 작을수록 높은 압력이 필요하며 멤브레인의 공극이 클수록 작은 압력값을 가진다.
이때 유화가 일어나면서 동시에 생분해성 고분자 미립구가 생성된다. 이는 일반적인 기계적 교반법, 예를 들어 마그네틱 바를 이용한 교반법, 기계적 스터러(mechanical stirrer) 또는 균질기를 사용한 교반법이 아닌 막유화법을 적용한 방법이다. 막유화법은 회분식 교반법에 비하여 미립구의 크기를 조절할 수 있고, 일정한 크기의 미립구를 만들 수 있으며 정확한 구형의 입자를 만들 수 있다는 장점이 있다. 단, 소형 멤브레인을 통해서만 소량 만들 수 있고 분산액 중의 고분자 함량이 높아질 경우 멤브레인이 막히거나 미립구들이 뭉치는 단점을 가지고 있다.
본 발명은 병렬식 멤브레인 배치와 연속반응 개념이 도입된 미립구 제조 장비로서, 기존 단일 채널 회분식 막유화 장치의 단점을 개선하여 1회 생산량 기준 100배 이상의 효율을 가져 생분해성 고분자 미립구를 대량생산 할 수 있다는 장점을 가지고 있다.
상기 유화액은 폴리비닐알콜(Polyvinyl alcohol), 폴리옥시에틸렌 솔비탄(Polyoxyethylene Sorbitan) 및 그 염, 대두 레시틴(soybean Lecithin), 및 모노글리세리드(monoglyceride) 중 적어도 하나를 포함하는 것일 수 있다.
상기 유화액은 또한 계면활성제를 포함할 수 있다. 계면활성제로는 음이온성, 양이온성 또는 양쪽성의 계면활성제를 모두 사용할 수 있다. 계면활성제는 예를 들어, 폴리옥시에틸렌 솔비탄모노라우레이트(트윈 20 상품), 폴리옥시에틸렌 솔비탄 모노팔미테이트(트윈 40 상품), 폴리옥시에틸렌 솔비탄 모노스테아레이트(트윈 60 상품), 폴리옥시에틸렌 솔비탄 모노올레에이트(트윈 80 상품), 및 폴리옥시에틸렌 솔비탄 트리올레에이트(트윈 85 상품) 중 적어도 하나를 포함할 수 있다.
유화액이 폴리비닐알콜을 포함할 때, 폴리비닐알콜을 물 또는 물과 알킬알콜 혼합 용액에 용해하여 사용할 수 있다. 이 때 폴리비닐알콜은 50,000 내지 200,000의 평균 분자량을 갖는 것일 수 있다. 또한 폴리비닐알콜의 함량은 유화액을 기준으로 1 내지 10 중량% 포함될 수 있다. 상기 범위를 벗어나면, 계면활성제로 작용하는 폴리비닐알콜의 유화작용이 약화되어 미립구를 만들기 어렵다.
S30 : 연속적인 투입을 통해 생성된 분산액과 유화액의 혼합액을 안정화 탱크로 토출시킨다.
상기 유화액은 연속적으로 유화액 탱크에 공급되며 분산액 양 대비 1배 내지 20배가 될 수 있다. 1배 미만일 경우 유화가 일어나기 어려우며 20배 초과일 경우 과량의 용매사용으로 생산성이 떨어진다.
상기 토출액은 연속적으로 투입되는 분산액과 유화액의 혼합물로, 상기 S20에서 생성된 미립구를 포함하며, 연속적으로 안정화 탱크로 토출된다.
S40 : 안정화 탱크에 모인 혼합액을 천천히 교반시키면서 용매를 증발시키는 방법으로 미립구를 안정화 시킨다.
상기 용매를 증발시키는 방법으로 교반을 통한 자연증발 또는 감압을 통한 감압증발을 사용할 수 있다.
S50 : 안정화 탱크에서 고액분리를 통해 미립구를 침전시키고, 침전된 미립구를 분리하여 세척액으로 수회 반복세척한다.
상기 세척액은 알킬알콜, 증류수, 또는 알킬알콜과 증류수의 혼합 용액 중 적어도 하나를 포함하는 것일 수 있다.
S60 : 세척을 통해 수분이 포함된 미립구를 모아 건조를 통해 남은 수분을 완전히 제거한다.
상기 미립구의 건조방법은 상기 수분이 포함된 미립구 케익을 고르게 펴서 얼린 후 건조 시키기 위한 동결건조 방법을 사용할 수 있다. 또는 열에 강한 생분해성 고분자 소재로 제조된 미립구일 경우 건열 또는 자연건조 시킬 수 있다.
*본 발명의 일 실시예에 따른 생분해성 고분자 미립구의 제조방법은 균일한 입자 크기를 가지므로 분체기를 사용할 필요가 없어 원하는 크기의 미립구 수율이 90% 이상되며, 공극의 크기가 다른 멤브레인으로 교체함으로써 미립구 크기를 용이하게 조절할 수 있다.
생분해성 고분자 미립구의 크기는 1 내지 300㎛인 것일 수 있다. 생분해성 고분자 미립구의 크기란 예를 들어, 생분해성 고분자 미립구의 입경을 의미하는 것일 수 있다.
*생분해성 고분자 미립구의 크기가 1㎛ 미만이면, 생체내에서 독성을 가질 유려가 있고, 생분해성 고분자 미립구의 크기가 300㎛를 초과하면 주사제용으로 사용되기 적합하지 않다.
본 발명의 일 실시예에 따른 주사제의 제조방법은 도 2를 참조할 수 있는바, 생분해성 고분자 미립구를 포함하는 수용액을 준비하는 단계(S100), 수용액을 바이알이나 주사기에 주입 또는 충진하는 단계(S200), 충진된 바이알이나 주사기 내의 수용액을 냉각시키는 단계(S300), 바이알이나 주사기 내의 수용액을 동결건조 시키는 단계(S400), 바이알캡 또는 고무캡으로 바이알 또는 주사기를 밀폐 시키는 단계(S500), 바이알 또는 주사기를 멸균시키는 단계(S600)을 포함한다.
본 발명의 상기 주사제의 제조방법을 보다 구체적으로 설명하면 아래와 같다.
*
S100 : 생분해성 고분자 미립구를 포함하는 수용액을 준비한다. 상기 수용액은 부형제를 포함할 수 있다.
상기 부형제는 알긴산(Alginic acid) 및 그 염, 히알루론산(Hyalurinic acid) 및 그 염, 카르복시메틸 셀룰로오스(Carboxylmethyl cellulose) 및 그 염, 덱스트란(Dextran) 및 그 염, 콜라겐(collagen), 젤라틴(Gelatin), 및 엘라스틴(Elastin) 중 적어도 하나를 포함할 수 있다.
상기 수용액 내의 생분해성 고분자 미립구와 부형제의 비율은 2:8 내지 8:2일 수 있다. 상기 범위를 벗어나면 부형제의 함량을 조절할 수 있는 범위를 벗어나 생분해성 고분자 미립구들을 적정 농도로 고르게 분산 시키기 어렵다. 이 때, 3롤밀(Three roll mill)을 사용하거나 기타 혼합 장비를 이용하여 높은 점도의 혼합액을 고르게 분산시킬 수 있다.
S200 : 준비된 수용액을 바이알 또는 주사기에 주입/충진한다.
수용액을 직접 주입/충전할 경우, 주입/충진 장치는 가압식 또는 노즐식 장치를 사용할 수 있다. 또는 분말 상태로 바이알이나 주사기에 충진할 경우, 생분해성 고분자 미립구를 포함하는 수용액을 냉각 후 동결건조 하여 분말로 분쇄한 뒤 분말 형태로 충친할 수 있다.
S300 : 바이알 또는 주사기에 주입된 주입액을 냉각시킨다.
상기 주입액을 냉각할 때 온도는 -80℃ 내지 -10℃ 수 있다. -80℃ 미만은 생산용 냉각장비로는 부적합하며 -10℃ 초과일 경우 냉각이 고르게 이루어지지 않아 동결건조시 녹거나 주입액이 튀는 현상이 발생한다.
S400 : 냉각된 바이알 또는 주사기의 주입액을 동결건조 시킨다.
동결건조는 주입액을 케익 형태의 제품을 만들기 위한 공정이며, 미리 동결건조된 분말 형태의 미립구를 충친할 수도 있다.
S500 : 동결건조 된 바이알 또는 주사기를 바이알캡 또는 고무전으로 밀폐시킨다.
상기 바이알 또는 주사기를 밀폐시킬 때 멸균 방식에 따라 전타전, 반타전 방식으로 할 수 있고, 멸균이 마무리되면 전타전하여 밀폐시킬 수 있다.
S600 : 밀폐된 바이알 또는 주사기를 멸균시킨다.
멸균 방법은 감마선 멸균, 이빔 멸균, 에틸렌옥사이드 멸균, 또는 감압 멸균으로 수행될 수 있다.
이하에서는 본 발명의 일 실시예에 따른 생분해성 고분자 미립구 제조를 위한 병렬식 연속반응 제조장치에 대해 설명한다. 이하에서는 본 발명의 일 실시예에 따른 주사제의 제조방법 및 본 발명의 일 실시예에 따른 생분해성 고분자 미립구의 제조방법과의 차이점에 대하여 설명하고, 동일 또는 유사한 것은 생략한다.
도 3은 본 발명의 일 실시예에 따른 생분해성 고분자 미립구 제조용 병렬식 연속반응 막유화 장치에 대한 개념도이며, 도 4는 본 발명의 일 실시예에 따른 병렬식 연속반응 개념도에서 핵심장치에 해당되는 도면이다.
도 3과 도 4를 참조하면, 본 발명의 일 실시예에 따른 병렬식 연속반응 막유화 장치는 가압탱크와 가압라인(1), 분산액 탱크(2), 유화액 연속공급 라인(5), 유화액 탱크(6), 교반모터(7), 병렬식 막유화 모듈(8), 교반봉(9), 연속 고액분리 장치(10), 토출구 라인(11), 안정화 탱크(13), 감압 배기장치(14), 및 조작부(15)를 포함한다.
본 발명의 병렬식 연속반응 막유화 장치에서는 병렬식 멤브레인을 통해 분산액과 유화액이 만나면서 일정한 크기의 생분해성 고분자 미립구가 형성된다.
밀폐된 분산액 탱크(2)로부터 공기 또는 질소가스의 가압에 의해 병렬식 막유화 모듈(8)까지 분산액이 이동되며, 멤브레인을 통해 분산액이 서서히 분출되어 유화액 탱크(6)의 유화액과 만나면서 생분해성 고분자 미립구가 형성된다. 유화액은 유화액 연속공급 라인(5)에 의해 연속적으로 공급되고, 분산액과 유화액은 교반봉(9)에 의해 혼합되고, 상기 혼합된 혼합액은 토출구 라인(11)을 통해 안정화 탱크(13)로 이동된다.
안정화 탱크(13)로 이동된 혼합액은 감압 배기장치(14)에 의해 용매가 증발 제거되면서, 생성된 미립구를 안정화 시키게 되고 연속 고액분리 장치(10)의 고액분리를 통해 케익 상태의 미립구를 얻을 수 있다.
교반 모터(7)는 10 내지 500 rpm의 회전 속도를 갖는 것일 수 있다. 10 rpm 미만이면 유화 용액과 분산액이 충분히 교반되지 않고, 500 rpm 초과이면 생성된 미립구가 깨져 크기가 달라지는 문제점이 발생한다.
본 발명의 일 실시예에 따른 생분해성 고분자 미립구 제조를 위한 병렬식 연속반응 막유화 방법과 장치에 따르면, 균일한 크기의 구형 입자를 손쉽게 제조할 수 있어 대량 생산에 적합하다. 또한 생분해성 고분자 미립구의 입자 크기를 용이하게 조절할 수 있다는 장점도 가진다.
이하, 구체적인 실시예를 통해 본 발명을 보다 구체적으로 설명한다. 하기 실시예는 본 발명의 이해를 돕기 위한 예시에 불과하며, 본 발명의 범위가 이에 한정되는 것은 아니다.
실시예 1: 미립구의 제조조건
평균 분자량이 100,000인 폴리락트산 10g을 삼염화메탄 100g에 교반하여 완전히 녹인 후 병렬식 연속반응 미립구 제조장치의 분산액 탱크에 주입하였다. 분산액 탱크를 밀폐시킨 후 분산액 탱크에 연결된 가압탱크의 질소가스를 가압하여 표 1의 분산액 유량 조건별로 공극 30μm의 멤브레인을 통해 유화액 탱크에 주입하였다. 유화액 탱크에는 3% PVA(평균분자량 130,000) 유화액을 표 1의 유량 조건별로 연속적으로 공급하였다. 분산액과 유화액이 잘 섞이도록 180rpm으로 교반시키면서 혼합시켰다. 토출되는 반응액(혼합액)을 안정화 탱크에 연속적으로 받은 후 24시간 교반시키면서 삼염화메탄을 자연증발 시키고 교반을 멈춰 미립구가 침전될 수 있도록 2시간 방치시켰다. 미립구가 완전히 침전된 후 상층의 여액을 제거한 뒤 10L의 증류수를 투입하고 30분간 교반하고 1시간 동안 침전 후 상층액을 제거하는 방법으로 세척을 5회 진행하였다. 세척이 완료된 수분을 포함한 케익 상태의 미립구를 냉동한 뒤 동결건조를 진행하여 분말형태의 생분해성 고분자 미립구를 제조하였다.
실험 순번 유화액(mL/min) 분산액(mL/min) 상태
1 10 5 입자모양 불균일
2 20 10 입자모양 불균일
3 40 20 멤브레인 막힘
4 20 5 입자모양 어그러짐
5 40 10 입자모양 어그러짐
6 80 20 멤브레인 막힘
7 50 5 생성 속도 느림
8 100 10 최적 조건
9 200 20 멤브레인 막힘
표 1에 나타낸 바와 같이, 분산액 10mL/min, 유화액 100mL/min 조건에서 가장 입자가 고르고 정확한 구형의 미립구를 수득할 수 있음을 확인하였다.
실시예 2: 병렬식 연속반응 막유화법과 유기용매 증발법 비교
일반적인 유기용매 증발법에 따라, 평균 분자량이 100,000인 폴리락트산 1g을 삼염화메탄 10g에 교반하여 완전히 녹인 후 유화액 100g과 혼합하여 균질기로 빠르게 교반하여 미립구를 제조하였다. 교반기를 미립구가 침전될 수 있도록 2시간 방치시킨 후 미립구가 완전히 침전된 후 상층의 여액을 제거하였다. 다시 1L의 증류수를 투입하고 30분간 교반하고 1시간 동안 침전 후 상층액을 제거하는 방법으로 세척을 5회 진행하였다. 세척이 완료된 수분을 포함한 케익 상태의 미립구를 냉동한 뒤 동결건조를 진행하여 분말형태의 미립구를 제조하였다.
본 발명과의 비교를 위해, 실시예 1의 8번 조건으로 제조한 미립구와 일반적인 유기용매 증발법으로 제조한 미립구를 도 6에 나타내었다.
실시예 3: 여러 생분해성 고분자들에 대한 멤브레인 공극별 미립구의 제조
실시예 1의 8번 제조 조건하에, 멤브레인의 공극을 변경하면서 폴리락트산(Polylactic acid, PLA), 폴리카프로락톤(Polycarprolactone, PCL), 폴리글리콜릭산(Poly Lactic acid-glycolic acid, PLGA)을 사용하여 생분해성 고분자 미립구를 제조하였다.
[측정]
도 5는 실시예 1에서 제조한 생분해성 고분자 미립구를 촬영한 전자 현미경 사진이다. 도 5를 참조하면 본 발명에서는 완벽하게 구형을 이루는 미립구를 형성하고 분체공정이 필요없을 정도로 균일한 크기로 제조됨을 확인할 수 있다.
도 6은 실시예 2에서 병렬식 연속반응 막유화법과 일반 유기용매 증발법으로 만든 미립구를 비교한 현미경 사진이다. 도 6을 참조하면 일반 유기용매 증발법으로 만든 미립구는 입자의 크기가 일정치 않은 반면 본 발명에 따른 병렬식 연속반응 막유화법으로 만든 미립구는 일정한 크기를 가진다는 것을 확인할 수 있었다.
도 7은 실시예 3에서 여러 생분해성 고분자를 사용하고 공극이 다른 멤브레인을 사용하여 제조된 미립구를 비교한 현미경 사진이다. 도 7을 참조하면 멤브레인의 공극에 따라 쉽게 미립구의 크기를 조절할 수 있으며, 다양한 생분해성 고분자들에 대하여 비슷한 조건으로 크기가 조절된 일정한 입도분포를 가지는 미립구를 제조할 수 있음을 확인할 수 있다.
[부호의 설명]
1 : 질소탱크 가압라인 2 : 분산액 탱크
3 : 분산액 4 : 유화액 연속공급 구간
5 : 유화액 연속공급 라인 6 : 유화액 탱크
7 : 교반 모터 8 : 병렬식 막유화 모듈
9 : 교반봉 10 : 연속 고액분리 장치
11 : 토출액 연속공급 구간 12 : 생분해성 고분자 미립구
13 : 안정화 탱크 14 : 감압 배기장치
15 : 조작부

Claims (21)

  1. 생분해성 고분자가 용해된 분산액을 준비하는 단계;
    분산액에 압력을 걸어 병렬식 멤브레인을 통해 분산액을 유화액 중에 천천히 주입하여 미립구를 생성하는 단계;
    미립구가 섞인 혼합액이 토출되는 단계;
    토출되는 상기 혼합액을 받아 미립구를 안정화시키는 단계;
    안정화된 미립구를 세척, 건조하는 단계;
    를 포함하며,
    상기 유화액은 연속적으로 교체 공급되는 것을 특징으로 하는, 병렬식 연속반응 막유화 장치를 이용한 생분해성 고분자 미립구의 제조 방법.
  2. 제1항에 있어서,
    상기 생분해성 고분자가 용해된 분산액을 준비하는 단계에서,
    상기 생분해성 고분자는 폴리락트산(Polylactic acid, PLA) 및 그 이성질체, 폴리글리콜산(Polyglycolic acid, PGA), 폴리카프로락톤(Polycarprolactone, PCL), 폴리디옥사논(Polydioxanone, PDO), 및 폴리락틱글리콜릭산(Poly Lactic acid-glycolic acid, PLGA) 및 그 이성질체를 포함하는 그룹에서 선택되고, 상기 고분자의 평균 분자량은 20,000 내지 300,000인 것을 특징으로 하는, 병렬식 연속반응 막유화 장치를 이용한 생분해성 고분자 미립구의 제조 방법.
  3. 제1항에 있어서,
    상기 생분해성 고분자가 용해된 분산액은 용매를 포함하고,
    상기 용매는 염소화탄화수소, 탄화수소, 과불소알콜, EA(Ethyl ester), Ether계열 용매, DMF(N,N-Dimethyl Formamide), DMSO(Dimethyl sulfoxide) 중 적어도 하나를 포함하고,
    상기 분산액 중 생분해성 고분자의 함량은 1 내지 20 중량%인 것을 특징으로 하는, 병렬식 연속반응 막유화 장치를 이용한 생분해성 고분자 미립구의 제조 방법.
  4. 제1항에 있어서,
    상기 미립구를 생성하는 단계에서,
    상기 생성되는 미립구는 크기에 있어서 표준편차 30% 이내의 균일한 입도분포를 가지는 것을 특징으로 하는, 병렬식 연속반응 막유화 장치를 이용한 생분해성 고분자 미립구의 제조 방법.
  5. 제1항에 있어서,
    상기 미립구를 생성하는 단계에서,
    상기 생분해성 고분자 미립구의 크기는 1 내지 300㎛인 것을 특징으로 하는, 병렬식 연속반응 막유화 장치를 이용한 생분해성 고분자 미립구의 제조 방법.
  6. 제1항에 있어서,
    상기 미립구를 생성하는 단계에서,
    공극이 다른 멤브레인을 사용하여 1 내지 300㎛ 사이에서 미립구 크기를 조절할 수 있는 것을 특징으로 하는, 병렬식 연속반응 막유화 장치를 이용한 생분해성 고분자 미립구의 제조 방법.
  7. 제1항에 있어서,
    상기 유화액은 폴리비닐알콜(Polyvinyl alcohol), 폴리옥시에틸렌 솔비탄(Polyoxyethylene Sorbitan) 및 그 염, 대두 레시틴(soybean Lecithin), 및 모노글리세리드(monoglyceride) 중 적어도 하나를 포함하는 것을 특징으로 하는, 병렬식 연속반응 막유화 장치를 이용한 생분해성 고분자 미립구의 제조 방법.
  8. 제1항에 있어서,
    상기 생분해성 고분자 미립구는 피부 조직 재건 및 조직 재생용 안면 성형 필러, 남성 보형물, 또는 요실금 치료제 또는 약물 봉입을 통한 의료 및 의약용 장기지속 주사제로 사용되는 것을 특징으로 하는, 병렬식 연속반응 막유화 장치를 이용한 생분해성 고분자 미립구의 제조 방법.
  9. 제1항 내지 제8항 중 어느 한 항에 의해 제조된 생분해성 고분자 미립구를 포함하는 수용액을 준비하는 단계;
    상기 수용액을 바이알 또는 주사기에 주입하는 단계;
    주입된 수용액을 냉각시켜 얼린 후 동결건조 하는 단계; 및
    바이알 또는 주사기를 밀폐 후 멸균하는 단계;
    를 포함하는 것을 특징으로 하는, 생분해성 고분자 미립구가 포함된 주사제의 제조 방법.
  10. 제9항에 있어서,
    상기 생분해성 고분자 미립구를 포함하는 수용액을 준비하는 단계에서,
    상기 생분해성 고분자 미립구는 상기 수용액의 전체 중량을 기준으로 10 내지 80 중량% 포함되는 것을 특징으로 하는, 생분해성 고분자 미립구가 포함된 주사제의 제조 방법.
  11. 제9항에 있어서,
    상기 생분해성 고분자 미립구를 포함하는 수용액을 준비하는 단계에서,
    상기 수용액은 첨가물을 추가로 포함하며, 상기 첨가물은 카르복시메틸 셀룰로오스(Carboxylmethyl cellulose) 및 그 염, 알긴산(Alginic acid) 및 그 염, 히알루론산(Hyalurinic acid) 및 그 염, 덱스트란(Dextran) 및 그 염, 콜라겐(collagen), 젤라틴(Gelatin), 및 엘라스틴(Elastin) 중 적어도 하나를 포함하고,
    첨가물의 함량은 수용액 전체 중량을 기준으로 1 내지 30 중량%인 것을 특징으로 하는, 생분해성 고분자 미립구가 포함된 주사제의 제조 방법.
  12. 제11항에 있어서,
    상기 첨가물은 카르복시메틸 셀룰로오스이고,
    상기 생분해성 고분자 미립구는 상기 카르복시메틸 셀룰로오스가 포함된 상기 수용액 전체 중량을 기준으로, 30 내지 60 중량% 포함되는 것을 특징으로 하는, 생분해성 고분자 미립구가 포함된 주사제의 제조 방법.
  13. 제9항에 있어서,
    상기 생분해성 고분자 미립구의 크기는 10 내지 300㎛인 것을 특징으로 하는, 생분해성 고분자 미립구가 포함된 주사제의 제조 방법.
  14. 제9항에 있어서,
    상기 멸균하는 단계에서,
    감마선 멸균, 이빔 멸균, 에틸렌옥사이드 멸균, 또는 감압 멸균으로 멸균하는 것을 특징으로 하는, 생분해성 고분자 미립구가 포함된 주사제의 제조 방법.
  15. 제9항 내지 제14항 중 어느 한 항의 제조방법에 따라 제조된 주사제로서,
    피부 조직 재건 및 조직 재생용 안면 성형 필러, 남성 보형물, 또는 요실금 치료제 또는 약물 봉입을 통한 의료 및 의약용 장기지속 주사제로 사용되는 것을 특징으로 하는, 생분해성 고분자 미립구가 포함된 주사제.
  16. 분산액을 보관하는 분산액 탱크;
    상기 분산액에 가압하는 가압탱크와 가압라인;
    막유화 모듈이 구비되며, 분산액을 공급받는 유화액 탱크;
    유화액 탱크에 유화액을 연속적으로 공급하는 유화액 연속공급 라인;
    분산액과 유화액의 혼합액을 안정화 탱크로 토출해 내는 토출구 라인;
    감압 또는 증발을 통해 미립구를 안정화 시키는 안정화 탱크; 및
    조작부;
    를 포함하며,
    상기 막유화 모듈은 분산액을 유화액 중에 주입하는 멤브레인이 병렬식으로 배치된 병렬식 막유화 모듈인 것을 특징으로 하는, 병렬식 멤브레인과 연속식 반응을 이용한 막유화 장치.
  17. 제16항에 있어서,
    상기 분산액 탱크는 밀폐되어 있으며, 가압탱크로부터의 압력을 조절 가능한 조절장치를 포함하고,
    상기 조절장치는 가압탱크로부터의 압력을 멤브레인의 공극 크기에 따라 1kPa 내지 300kPa 로 조절하는 것을 특징으로 하는, 병렬식 멤브레인과 연속식 반응을 이용한 막유화 장치.
  18. 제16항에 있어서,
    상기 막유화 모듈의 멤브레인은 멤브레인이 복수개 장착되어 병렬식으로 구성되거나, 또는 하나의 멤브레인이 장착된 반응기가 복수개 병렬식으로 구성되는 것을 특징으로 하는, 병렬식 멤브레인과 연속식 반응을 이용한 막유화 장치.
  19. 제16항에 있어서,
    상기 멤브레인은 교체가 가능하여, 이러한 교체를 통해 1 내지 300㎛ 사이에서 생분해성 고분자 미립자의 크기를 조절할 수 있는 것을 특징으로 하는, 병렬식 멤브레인과 연속식 반응을 이용한 막유화 장치.
  20. 제16항에 있어서,
    상기 유화액 탱크는,
    연속적으로 공급되는 유화액 및 분산액이 고르게 분산되도록 교반장치를 포함하는 것을 특징으로 하는, 병렬식 멤브레인과 연속식 반응을 이용한 막유화 장치.
  21. 제20항에 있어서,
    상기 교반장치는,
    10 내지 500 rpm의 회전 속도를 가지는 것을 특징으로 하는, 병렬식 멤브레인과 연속식 반응을 이용한 막유화 장치.
PCT/KR2022/012123 2021-08-26 2022-08-12 생분해성 고분자 미립구의 제조를 위한 병렬식 막유화 방법과 장치, 및 이를 이용한 주사제의 제조방법 WO2023027401A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22861611.6A EP4393482A1 (en) 2021-08-26 2022-08-12 Parallel-type membrane emulsification method and device for preparing biodegradable polymer microspheres, and injection formulation preparation method using same
CN202280057184.8A CN117940116A (zh) 2021-08-26 2022-08-12 用于制备生物降解高分子微球的并列式膜乳化方法和装置及利用其的注射剂的制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0113132 2021-08-26
KR1020210113132A KR102377283B1 (ko) 2021-08-26 2021-08-26 생분해성 고분자 미립구의 제조를 위한 병렬식 막유화 방법과 장치, 및 이를 이용한 주사제의 제조방법

Publications (1)

Publication Number Publication Date
WO2023027401A1 true WO2023027401A1 (ko) 2023-03-02

Family

ID=80991706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/012123 WO2023027401A1 (ko) 2021-08-26 2022-08-12 생분해성 고분자 미립구의 제조를 위한 병렬식 막유화 방법과 장치, 및 이를 이용한 주사제의 제조방법

Country Status (4)

Country Link
EP (1) EP4393482A1 (ko)
KR (1) KR102377283B1 (ko)
CN (1) CN117940116A (ko)
WO (1) WO2023027401A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117164945A (zh) * 2023-07-24 2023-12-05 广州百奥格林生物科技有限公司 一种大孔有机膜、其制备方法及其在膜乳化制备均一大粒径缓释微球中的应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102377283B1 (ko) * 2021-08-26 2022-03-22 정민욱 생분해성 고분자 미립구의 제조를 위한 병렬식 막유화 방법과 장치, 및 이를 이용한 주사제의 제조방법
WO2024135975A1 (ko) * 2022-12-23 2024-06-27 주식회사 에이엔폴리 폴리사카라이드 나노섬유로부터 유래된 친환경 입자의 제조방법 및 폴리사카라이드 나노섬유로부터 유래된 친환경 입자

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100566573B1 (ko) 2002-04-13 2006-03-31 주식회사 펩트론 Lhrh 동족체를 함유하는 서방성 미립구의 제조방법
KR101105292B1 (ko) 2009-06-05 2012-01-17 주식회사 리젠 바이오텍 생분해성 고분자 미세입자와 그의 제조방법
KR20140135337A (ko) * 2013-05-15 2014-11-26 씨제이헬스케어 주식회사 연속 공정의 미립구의 제조 방법 및 이로부터 제조된 미립구
KR20190062709A (ko) * 2017-11-29 2019-06-07 주식회사 울트라브이 연속반응을 이용한 생분해성 고분자 미세 입자의 제조 방법, 이를 포함하는 주사제의 제조 방법, 및 생분해성 고분자 미세 입자의 제조용 반응기
KR20190085500A (ko) * 2018-01-10 2019-07-18 주식회사 지투지바이오 콜라겐 펩타이드가 함유된 폴리카프로락톤 미립구 필러 및 그 제조방법
KR102051044B1 (ko) * 2019-05-27 2019-12-02 주식회사 울트라브이 생분해성 고분자 필러의 제조 방법, 및 이를 포함하는 주사제의 제조 방법
KR20200009689A (ko) * 2018-07-19 2020-01-30 주식회사 아울바이오 주사제용 미립구의 제조방법
KR102089560B1 (ko) 2019-12-27 2020-03-17 주식회사 울트라브이 필러용 생분해성 고분자 미세입자의 제조 방법, 및 이를 포함하는 주사제의 제조 방법
KR102101969B1 (ko) 2017-09-06 2020-04-22 (주)인벤티지랩 목시덱틴을 포함하는 마이크로 입자 및 이의 제조 방법
KR102377283B1 (ko) * 2021-08-26 2022-03-22 정민욱 생분해성 고분자 미립구의 제조를 위한 병렬식 막유화 방법과 장치, 및 이를 이용한 주사제의 제조방법

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100566573B1 (ko) 2002-04-13 2006-03-31 주식회사 펩트론 Lhrh 동족체를 함유하는 서방성 미립구의 제조방법
KR101105292B1 (ko) 2009-06-05 2012-01-17 주식회사 리젠 바이오텍 생분해성 고분자 미세입자와 그의 제조방법
KR20140135337A (ko) * 2013-05-15 2014-11-26 씨제이헬스케어 주식회사 연속 공정의 미립구의 제조 방법 및 이로부터 제조된 미립구
KR102101969B1 (ko) 2017-09-06 2020-04-22 (주)인벤티지랩 목시덱틴을 포함하는 마이크로 입자 및 이의 제조 방법
KR20190062709A (ko) * 2017-11-29 2019-06-07 주식회사 울트라브이 연속반응을 이용한 생분해성 고분자 미세 입자의 제조 방법, 이를 포함하는 주사제의 제조 방법, 및 생분해성 고분자 미세 입자의 제조용 반응기
KR20190085500A (ko) * 2018-01-10 2019-07-18 주식회사 지투지바이오 콜라겐 펩타이드가 함유된 폴리카프로락톤 미립구 필러 및 그 제조방법
KR20200009689A (ko) * 2018-07-19 2020-01-30 주식회사 아울바이오 주사제용 미립구의 제조방법
KR102051044B1 (ko) * 2019-05-27 2019-12-02 주식회사 울트라브이 생분해성 고분자 필러의 제조 방법, 및 이를 포함하는 주사제의 제조 방법
KR102089560B1 (ko) 2019-12-27 2020-03-17 주식회사 울트라브이 필러용 생분해성 고분자 미세입자의 제조 방법, 및 이를 포함하는 주사제의 제조 방법
KR102377283B1 (ko) * 2021-08-26 2022-03-22 정민욱 생분해성 고분자 미립구의 제조를 위한 병렬식 막유화 방법과 장치, 및 이를 이용한 주사제의 제조방법

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
CROTTS, G.PARK, T.G., J. CONTROL. RELEASE, vol. 44, 1997, pages 123 - 134
HELLER, J. ET AL.: "Controlled release of water-soluble macromolecules from bioerodible hydrogels", BIOMATERIALS, vol. 4, 1983, pages 262 - 266, XP024141788, DOI: 10.1016/0142-9612(83)90025-X
HELLER, J., CRC CRIT. REV. THER. DRUG CATTRIER SYST., vol. 1, no. 1, 1984, pages 39 - 90
HOLLAND, S.J.TIGHE, B. J.GOULD, P. L., J. CONTROLLED RELEASE, 1986, pages 155 - 180
LANGER, R. S.PEPPAS, N. A., BIOMATERIALS, vol. 2, 1981, pages 201 - 214
LANGER, R., CHEM. ENG. COMMUN., vol. 6, 1980, pages 1 - 48
LANGER, R.: "New methods of drug delivery", SCIENCE, vol. 249, 1990, pages 1527 - 1533, XP000169082, DOI: 10.1126/science.2218494
LEONARD, N.B.MICHAEL, L. H.LEE, M.M., J. PHARM. SCI., vol. 84, pages 707 - 712

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117164945A (zh) * 2023-07-24 2023-12-05 广州百奥格林生物科技有限公司 一种大孔有机膜、其制备方法及其在膜乳化制备均一大粒径缓释微球中的应用
CN117164945B (zh) * 2023-07-24 2024-03-22 广州百奥格林生物科技有限公司 一种大孔有机膜、其制备方法及其在膜乳化制备均一大粒径缓释微球中的应用

Also Published As

Publication number Publication date
EP4393482A1 (en) 2024-07-03
KR102377283B1 (ko) 2022-03-22
CN117940116A (zh) 2024-04-26

Similar Documents

Publication Publication Date Title
WO2023027401A1 (ko) 생분해성 고분자 미립구의 제조를 위한 병렬식 막유화 방법과 장치, 및 이를 이용한 주사제의 제조방법
WO2021132858A1 (ko) 필러용 생분해성 고분자 미세입자의 제조 방법, 및 이를 포함하는 주사제의 제조 방법
WO2020241984A1 (ko) 생분해성 고분자 필러의 제조 방법, 및 이를 포함하는 주사제의 제조 방법
WO2019078583A1 (ko) 약물을 포함하는 지속 방출형 마이크로 입자 및 이의 제조 방법
KR100194827B1 (ko) 서방성 마이크로캡슐
KR100442931B1 (ko) 수용성 펩티드의 서방성 제제 및 그의 제조방법
WO2021010719A1 (ko) 리바스티그민을 포함하는 장기지속형 제제 및 이의 제조방법
WO2021162532A2 (ko) Glp-1 유사체, 또는 이의 약학적으로 허용가능한 염을 포함하는 서방형 미립구를 포함하는 약학적 조성물
WO2022010317A1 (ko) 도네페질 함유 서방출성 plga 미립구의 제조방법
WO2018147660A1 (ko) 정신질환 또는 중추신경계 질환 치료용 약물전달 제형
IT9021019A1 (it) Metodo per preparare una composizione farmaceutica in forma di microparticelle
WO2022205645A1 (zh) 一种可注射的皮肤填充剂及其制备方法
KR19990067014A (ko) 용융 공정에 의해 펩티드를 포함하는 생분해가능한미소구의 제조
WO2020197190A1 (en) Method for preparing biocompatible polymer-based apixaban-loaded microspheres
WO2021091246A1 (ko) 초기 방출 제어가 가능한 서방출성 미립구 및 이의 제조 방법
WO2022124508A1 (ko) 조직 수복용 주사제 조성물 및 이의 제조 방법
WO2020242234A1 (ko) 캐스파제 저해제 프로드럭을 함유하는 주사용 조성물 및 이의 제조 방법
WO2019208982A1 (ko) 안정화된 단상 혼합액을 이용하는 생분해성 미립구의 제조방법
WO2012087051A2 (en) Microparticles containing physiologically active peptide, method for preparing the same, and pharmaceutical composition comprising the same
WO2022050783A1 (ko) 약물의 지속 방출을 위한 서방형 마이크로입자
WO2020130585A1 (ko) 데슬로렐린을 함유하는 서방형 주사제 및 그 제조방법
DK171454B1 (da) Fremgangsmåde til fremstilling af tørforarbejdede partikler, således opnåede tørforarbejdede partikler, og præparater indeholdende sådanne partikler
WO2023101348A1 (ko) 류프로라이드를 포함하는 마이크로 입자 및 이의 제조 방법
WO2023090922A1 (ko) 날트렉손을 포함하는 서방성 주사용 조성물 및 이의 제조 방법
WO2024101859A1 (ko) 덱사메타손 아세테이트를 포함하는 서방형 주사제제 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22861611

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280057184.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022861611

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022861611

Country of ref document: EP

Effective date: 20240326