WO2023101348A1 - 류프로라이드를 포함하는 마이크로 입자 및 이의 제조 방법 - Google Patents

류프로라이드를 포함하는 마이크로 입자 및 이의 제조 방법 Download PDF

Info

Publication number
WO2023101348A1
WO2023101348A1 PCT/KR2022/018982 KR2022018982W WO2023101348A1 WO 2023101348 A1 WO2023101348 A1 WO 2023101348A1 KR 2022018982 W KR2022018982 W KR 2022018982W WO 2023101348 A1 WO2023101348 A1 WO 2023101348A1
Authority
WO
WIPO (PCT)
Prior art keywords
leuprolide
microparticles
mixture
injection
particles
Prior art date
Application number
PCT/KR2022/018982
Other languages
English (en)
French (fr)
Inventor
김주희
김민성
Original Assignee
(주)인벤티지랩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)인벤티지랩 filed Critical (주)인벤티지랩
Priority to EP22901706.6A priority Critical patent/EP4420657A1/en
Priority to CN202280079931.8A priority patent/CN118354762A/zh
Publication of WO2023101348A1 publication Critical patent/WO2023101348A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/08Peptides having 5 to 11 amino acids
    • A61K38/09Luteinising hormone-releasing hormone [LHRH], i.e. Gonadotropin-releasing hormone [GnRH]; Related peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • A61K47/38Cellulose; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • A61K9/0024Solid, semi-solid or solidifying implants, which are implanted or injected in body tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1641Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poloxamers
    • A61K9/1647Polyesters, e.g. poly(lactide-co-glycolide)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1682Processes
    • A61K9/1694Processes resulting in granules or microspheres of the matrix type containing more than 5% of excipient

Definitions

  • the present invention relates to microparticles containing leuprolide and a method for preparing the same.
  • LHRH luteinizing hormone-releasing hormone
  • GnRH gonadotropin-releasing hormone
  • LHRH reaches the anterior lobe of the pituitary gland through this capillary network, and reaches gonadotropin target cells through the second capillary network.
  • GnRH acts at the membrane level of target cells through a receptor with seven transmembrane segments that couples to phospholipase C via a G protein to increase intracellular calcium flux.
  • LHRH agonists and antagonists are indicated for the treatment of endometriosis, fibroids, polycystic ovaries, breast, ovarian and endometrial cancers in women, gonadotropin-pituitary desensitization during medical-assisted birth protocols, benign prostate hyperplasia and prostate in men. It has been shown to be effective in the treatment of cancer and in the treatment of precocious puberty in males or females.
  • LHRH agonists are peptide compounds that generally require intravenous or subvenous administration due to their low oral bioavailability.
  • LHRH agonists must be administered for a long period of time as drugs for chronic diseases. It is known that drugs of the LHRH agonist series require exposure to a sufficient amount of drug in the early stage for the expression of drug effect.
  • Leuprolide acetate one of the LHRH agonists, has a short half-life when conventionally injected subcutaneously or intramuscularly, resulting in a rapid decrease in blood concentration after administration, which disappears within several hours. Due to this, in order to maintain the medicinal effect, there was an inconvenience of daily administration, and in particular, this inconvenience was aggravated due to the characteristics of an injection.
  • Patent Document 1 KR 10-2003-0064401 A1
  • An object of the present invention relates to microparticles containing leuprolide and a method for preparing the same.
  • Another object of the present invention is to reduce the pain due to the small size of the microparticles when administered by injection, to control the release rate of leuprolide at the target site, to prevent the initial overrelease, and to improve the effect of leuprolide To show, it is to provide microparticles containing leuprolide capable of exhibiting the effect of leuprolide for at least one month when exposed to a sufficient amount of the drug.
  • Another object of the present invention is to provide a method for preparing microparticles capable of exhibiting a release effect of leuprolide continuously for a long time, wherein the microparticles have a uniform size and a smooth surface.
  • the microparticles containing leuprolide according to an embodiment of the present invention include leuprolide and a biodegradable polymer, and the average diameter of the microparticles is 40 to 100 ⁇ m, and the following formula 1
  • the value by can be from 0.5 to 2:
  • D10 is the particle diameter corresponding to 10% of the maximum value in the cumulative distribution of particles
  • D50 is the particle diameter corresponding to 50% of the maximum value in the cumulative distribution of particles
  • D90 is the diameter of a particle corresponding to 90% of the maximum value in the cumulative distribution of particles.
  • the leuprolide and the biodegradable polymer may be included in a weight ratio of 1:2 to 1:10.
  • the release rate of leuprolide is controlled at the target site, so there is no problem of initial over-release, and the testosterone suppression effect by the leuprolide can last for more than one month.
  • Equation 2 The value by Equation 2 below may be 1 to 5:
  • Microparticles containing leuprolide were administered as an injection to beagle dogs, and the blood concentration of leuprolide was measured.
  • Leuprolide acetate administered to the beagle dog by the one injection is 11.25 mg
  • C max is the maximum blood concentration of leuprolide for 24 hours after administration of the injection
  • C 24h is the blood concentration value of leuprolide in blood collected 24 hours after administration of the injection.
  • a method for preparing microparticles containing leuprolide includes: 1) preparing a first mixture by mixing leuprolide and a biodegradable polymer; 2) preparing a second mixture by dissolving a surfactant in a solvent; 3) injecting and flowing the first mixture and the second mixture into the first microchannel and the second microchannel where the intersection points are formed, thereby generating microparticles at the intersection points; 4) collecting the microparticles in a water tank containing the second mixture; 5) removing the organic solvent present in the collected microparticles; and 6) washing and freeze-drying the microparticles from which the organic solvent is removed with purified water, and the value according to Equation 1 below may be 0.5 to 2:
  • D10 is the particle diameter corresponding to 10% of the maximum value in the cumulative distribution of particles
  • D50 is the particle diameter corresponding to 50% of the maximum value in the cumulative distribution of particles
  • D90 is the diameter of a particle corresponding to 90% of the maximum value in the cumulative distribution of particles.
  • the pressure When injecting the first mixture into the first microchannel, after injection under a pressure condition of 700 to 1,300 mbar, the pressure is raised under a first condition of 10 to 30 mbar/min, and the injection pressure condition reaches 950 to 1,500 mbar. When, the pressure may be increased to a second condition of 2 to 8 mbar/min.
  • the second mixture may be injected into the second microchannel under a pressure condition 2 to 4 times greater than the pressure condition when the first mixture is injected into the first microchannel.
  • Step 5) may include: 5-1) primary stirring at 15 to 20° C. for 20 to 40 minutes at a speed of 100 to 300 rpm; 5-2) secondary stirring at 30 to 40° C. for 60 to 120 minutes at a rate of 100 to 300 rpm; and 5-3) 3rd stirring at 40 to 45° C. for 4 to 8 hours at a rate of 100 to 300 rpm.
  • the size of the microparticles when administered as an injection, is small, so pain can be reduced, and the release rate of leuprolide is controlled at the target site to prevent over-release in the initial stage, and the effect of leuprolide is shown.
  • the effect of leuprolide when exposed to a sufficient amount of the drug, the effect of leuprolide can be seen for more than 1 month.
  • microparticles are uniform in size, have a smooth surface, and relate to a method for preparing microparticles capable of continuously releasing leuprolide for a long time.
  • 1 is a SEM picture of microparticles according to an embodiment of the present invention.
  • 3 is a SEM picture of microparticles according to an embodiment of the present invention.
  • 5 is a SEM picture of microparticles according to an embodiment of the present invention.
  • FIG. 6 is a SEM picture of microparticles according to an embodiment of the present invention.
  • FIG. 7 is a PK-PD result after administering microparticles according to an embodiment of the present invention to a beagle dog as an injection.
  • FIG. 8 is a PK-PD result after administering microparticles according to an embodiment of the present invention to a beagle dog as an injection.
  • FIG. 9 is a PD result after administering microparticles according to an embodiment of the present invention to a beagle dog as an injection.
  • the present invention relates to microparticles containing leuprolide containing leuprolide and a biodegradable polymer, having an average diameter of 40 to 100 ⁇ m, and having a value of 0.5 to 2 according to the following formula 1:
  • D10 is the particle diameter corresponding to 10% of the maximum value in the cumulative distribution of particles
  • D50 is the particle diameter corresponding to 50% of the maximum value in the cumulative distribution of particles
  • D90 is the diameter of a particle corresponding to 90% of the maximum value in the cumulative distribution of particles.
  • 'leuprolide' is 5-Oxo-L-prolyl-Lhistidyl-L-tryptophanyl-L-seryl-L-tyrosyl-D-leucyl-L-leucyl-L-arginyl-L-prolyl ethylamide and pharmaceutically acceptable salts thereof.
  • the leuprolide may be expressed as leuprorelin, and regardless of labeling, both leuprolide and pharmaceutically acceptable salts thereof may be used.
  • 'pharmaceutically acceptable means that it is physiologically acceptable and does not usually cause allergic reactions or similar reactions when administered to humans.
  • 'pharmaceutically acceptable salt means an acid addition salt formed by a pharmaceutically acceptable free acid.
  • Organic acids and inorganic acids may be used as the free acid.
  • the organic acid is not limited thereto, but citric acid, acetic acid, lactic acid, tartaric acid, maleic acid, fumaric acid, formic acid, propionic acid, oxalic acid, trifluoroacetic acid, benzoic acid, gluconic acid, metasulfonic acid, glycolic acid, succinic acid, 4-toluenesulfonic acid , glutamic acid and aspartic acid.
  • the inorganic acid includes, but is not limited to, hydrochloric acid, hydrobromic acid, sulfuric acid and phosphoric acid.
  • Microparticles containing leuprolide according to an embodiment of the present invention include leuprolide and a biodegradable polymer, and the average diameter of the microparticles is 40 to 100 ⁇ m, and the value according to Equation 1 below is 0.5 to 2 can be:
  • D10 is the particle diameter corresponding to 10% of the maximum value in the cumulative distribution of particles
  • D50 is the particle diameter corresponding to 50% of the maximum value in the cumulative distribution of particles
  • D90 is the diameter of a particle corresponding to 90% of the maximum value in the cumulative distribution of particles.
  • the D10, D50, and D90 measure the diameter of the microparticles, and mean values corresponding to 10%, 50%, and 90% of the maximum value on the cumulative distribution.
  • Equation 1 defines the average diameter of the particles in claim 1 and at the same time limits the ratio of (D90-D50) and (D50-D10), within the average particle distribution, 90 for the maximum value on the cumulative distribution of the particles
  • the difference between the diameter of the particle corresponding to % and the diameter of the particle corresponding to 50%, and the diameter difference between the diameter of the particle corresponding to 50% and the diameter of the particle corresponding to 10% are checked as a ratio to confirm the degree of uniform particle distribution. The closer the value is to 1, the more uniform the distribution width.
  • Equation 1 of the present invention is to more clearly confirm the size distribution of the microparticles, and the value according to Equation 1 may be 0.5 to 2, 0.7 to 1.5, and 0.9 to 1.3.
  • the value according to Equation 1 is satisfied and the average diameter of the microparticles is 40 to 100 ⁇ m, it means that the size of the microparticles is distributed close to the average diameter value. This is because microparticles having a uniform size are injected into the body through injection, microparticles having a uniform size are biodegraded to a similar degree, and the biodegradation of the microparticles can exhibit an effect of releasing leuprolide.
  • the degree of release of leuprolide in the body is highly correlated with the particle size and specific surface area, and it is essential to use microparticles having a uniform diameter in order to increase the specific surface area. .
  • microparticles having a very uniform particle size it is possible to prevent over-release at the initial stage when injected into the body, and to show the effect of releasing leuprolide continuously for a long time, so that the effect of leuprolide can be used for more than 1 month.
  • the leuprolide and the biodegradable polymer are included in a weight ratio of 1:2 to 1:10, preferably 1:2 to 1:8, and more preferably 1:4 to 1:7.
  • leuprolide may exhibit a continuous release effect for a long time due to the decomposition of the biodegradable polymer.
  • the biodegradable polymer is polylactic acid, polylactide, polylactic-co-glycolic acid, polylactide-co-glycolide (PLGA), polyphosphazine, polyiminocarbonate, polyphosphoester, polyanhydride, It is selected from the group consisting of polyorthoesters, polycaprolactones, polyhydroxyvalates, polyhydroxybutyrates, polyamino acids and combinations thereof, preferably polylactide-co-glycolide (PLGA) or polylac Tide, but is not limited to the above examples.
  • Microparticles containing leuprolide according to another embodiment of the present invention may have a value of 1 to 15 according to Equation 2 below:
  • Microparticles containing leuprolide were administered as an injection to beagle dogs, and the blood concentration of leuprolide was measured.
  • Leuprolide acetate administered to the beagle dog by the one injection is 11.25 mg
  • C max is the maximum blood concentration of leuprolide for 24 hours after administration of the injection
  • C 24h is the blood concentration value of leuprolide in blood collected 24 hours after administration of the injection.
  • initial over-release corresponds to an essential factor. That is, when administered as an injection, it was required that the initial release rate of the drug be high so that the blood concentration of leuprolide may be initially high. That is, it is known that in order to exhibit sufficient pharmacological effects as an LHRH agonist, the release rate of the drug must be high at the initial stage of administration. It is currently being manufactured.
  • leuprolide not only leuprolide, but most drugs can cause side effects when overexposed. That is, side effects such as nausea, pain around the injection site, headache, dysuria, and joint pain may occur due to excessive release of leuprolide.
  • the maximum blood concentration value within 24 hours is lower than that of conventional leuprolide formulations, and the sustained release effect of leuprolide can be exhibited for a long time.
  • the value represents a high value of 50 to 60, whereas the microparticles of the present invention In the case of administration, it was confirmed that it is 1 to 15, preferably 2 to 10, and more preferably 3 to 8, showing a large difference.
  • the value according to Equation 2 includes the maximum blood concentration value of leuprolide in the numerator, so the value of Equation 2 may increase as the maximum blood concentration value increases, and conversely, when the value of C 24h , which is the denominator, is small, The value of Equation 2 may be large.
  • Equation 2 As described above, as the maximum blood concentration value of leuprolide increases, the large value of Equation 2 means that the initial overrelease appears when used as an injection, and the value of C 24h is small, An increase in the value of Equation 2 means that the drug release effect is not shown for a long time.
  • Equation 2 when the value of Equation 2 is included within the scope of the present invention, the initial over-release of leuprolide can be prevented, the medicinal effect of leuprolide can be exerted, and when administered as an injection, leuprolide It can be said that the efficacy of the drug can be continuously exerted.
  • a method for preparing microparticles containing leuprolide includes: 1) preparing a first mixture by mixing leuprolide and a biodegradable polymer; 2) preparing a second mixture by dissolving a surfactant in a solvent; 3) injecting and flowing the first mixture and the second mixture into the first microchannel and the second microchannel where the intersection points are formed, thereby generating microparticles at the intersection points; 4) collecting the microparticles in a water tank containing the second mixture; 5) removing the organic solvent present in the collected microparticles; and 6) washing and freeze-drying the microparticles from which the organic solvent is removed with purified water, and the value according to Equation 1 below may be 0.5 to 2:
  • D10 is the particle diameter corresponding to 10% of the maximum value in the cumulative distribution of particles
  • D50 is the particle diameter corresponding to 50% of the maximum value in the cumulative distribution of particles
  • D90 is the diameter of a particle corresponding to 90% of the maximum value in the cumulative distribution of particles.
  • Step 1) is a step of preparing a first mixture, which is a step of preparing a first mixture by dissolving leuprolide and a biodegradable polymer in an organic solvent, wherein the biodegradable polymer is polylactic acid, polylactide, or polylactic -co-glycolic acid, polylactide-co-glycolide (PLGA), polyphosphazine, polyiminocarbonate, polyphosphoester, polyanhydride, polyorthoester, polycaprolactone, polyhydroxyvalate , polyhydroxybutyrate, polyamino acids, and combinations thereof, preferably polylactide-co-glycolide (PLGA), but is not limited to the above examples.
  • the biodegradable polymer is polylactic acid, polylactide, or polylactic -co-glycolic acid, polylactide-co-glycolide (PLGA), polyphosphazine, polyiminocarbonate, polyphosphoester, polyanhydride, polyorth
  • the organic solvent is immiscible with water, for example, one or more selected from the group consisting of chloroform, chloroethane, dichloroethane, trichloroethane, and mixtures thereof, preferably dichloromethane, but examples It is not limited to, and is an organic solvent capable of dissolving a biodegradable polymer and leuprolide, and is not limited to the above examples, and any organic solvent that can be easily selected by those skilled in the art will be used.
  • Step 1) is to prepare a first mixture in which leuprolide and biodegradable polymer are dissolved, and an organic solvent is used as the solvent as described above. It is completely dissolved using an organic solvent by using the dissolution properties of leuprolide and biodegradable polymer.
  • leuprolide acetate is dissolved in a first solvent, and a biodegradable polymer is dissolved in a second solvent. Thereafter, the leuprolide acetate mixture dissolved in the first solvent and the biodegradable polymer mixture dissolved in the second solvent were mixed to prepare a first mixture.
  • the first mixture includes leuprolide and a biodegradable polymer in a weight ratio of 1:2 to 1:10. Preferably it is 1:2 to 1:8, and more preferably it may be 1:4 to 1:7.
  • the weight ratio of the leuprolide and the biodegradable polymer is less than 1:2, that is, when the biodegradable polymer is less than the weight ratio, the weight ratio of the biodegradable polymer is small compared to the weight of the leuprolide, resulting in a spherical shape.
  • sustained-release particles in which leuprolide is evenly distributed in biodegradable polymer particles, and when the weight ratio of biodegradable polymer and leuprolide exceeds 1:10, that is, biodegradation
  • the active polymer is included in an amount greater than the above weight ratio, the content of leuprolide in the sustained-release particles is low, so a large amount of sustained-release particles must be administered to administer the drug at a desired concentration.
  • the biodegradable polymer in the first mixture contains 15 to 25% by weight, preferably 20% by weight, but is not limited to the above examples.
  • Step 2) is a step of preparing a second mixture, and the second mixture is prepared by dissolving a surfactant in water.
  • the surfactant may be used without limitation as long as the biodegradable polymer solution can help form a stable emulsion.
  • Step 3) is a step of injecting and flowing the first mixture and the second mixture into the microchannel formed on the wafer.
  • the microchannels may be formed in a material selected from the group consisting of a silicon wafer or a polymer film, but examples of the material are not limited to the above examples, and any material capable of forming microchannels may be used.
  • the polymer film is polyimide, polyethylene, fluorinated ethylene propylene, polypropylene, polyethylene terephthalate, polyethylene naphthalate, polysulfone ( Polysulfone) and mixtures thereof, but is not limited to the above examples.
  • aluminum is deposited on a silicon wafer using an e-beam evaporator, and photoresist is patterned on the aluminum using a photolithography technique. Then, aluminum is etched using the photoresist as a mask, after removing the photoresist, silicon is etched with DRIE (deep ion reactive etching) using aluminum as a mask, and after aluminum is removed, glass is anodic bonded on the wafer to seal Thus, the above microchannel is prepared.
  • DRIE deep ion reactive etching
  • the average diameter of the microchannel is 80 to 120 ⁇ m, preferably 100 ⁇ m, but is not limited to the example.
  • the average diameter of the microchannel is 80 ⁇ m or less, there is a possibility of producing sustained-release particles having a diameter of less than 40 ⁇ m, which may affect effective drug release and absorption in vivo.
  • the size of the prepared sustained-release particles exceeds 100 ⁇ m, foreign body sensation and pain may increase when administered as an injection, and the particle size distribution of the prepared particles increases, making it difficult to prepare sustained-release particles having a uniform particle size.
  • the average diameter of the microchannel may be changed according to the range of injection pressure.
  • the average diameter of the microchannel is closely related to the average diameter of the particles, but is also closely related to the injection pressure of the first mixture and the second mixture.
  • the cross-sectional width (w) and the cross-sectional height (d) of the microchannel are closely related to the average diameter (d') of the prepared sustained-release particles.
  • the width (w) of the microchannel section ranges from 0.7 to 1.3 with respect to the average diameter (d') of the sustained-release particles, and the height (d) of the microchannel section is the average diameter of the sustained-release particles.
  • the ratio ranges from 0.7 to 1.3 for (d').
  • the width (w) and height (d) of the microchannel section must be set within the range of the ratio of d' to 0.7 to 1.3. , It is possible to manufacture sustained-release particles of a desired size.
  • Step 3) is to flow the first mixture and the second mixture into the first microchannel and the second microchannel in which the crossing points are formed under the injection pressure condition.
  • the first mixture flows along the first microchannel
  • the second mixture flows along the second microchannel formed to form an intersection with the first microchannel, meeting the flow of the first mixture.
  • the pressure when the first mixture is injected into the first microchannel, after injection under a pressure condition of 700 to 1,300 mbar, the pressure is raised to a first condition of 10 to 30 mbar/min, and the injection pressure condition is 950 to 950 mbar/min. When reaching 1,500 mbar, the pressure may be increased to a second condition of 2 to 8 mbar/min.
  • the second mixture may be injected into the second microchannel under a pressure condition 2 to 4 times greater than the pressure condition when the first mixture is injected into the first microchannel.
  • the first mixture is micro It was confirmed that the pressure required to flow the channel at a constant flow rate gradually increased with time.
  • the variability of the flow rate is minimized by using a method of constantly increasing the pressure applied to the first mixture, and the first mixture is gradually cured inside the microchannel, thereby preventing non-uniform distribution of microparticles or problems of channel closure, , it is possible to increase the production yield of target microparticles.
  • the pressure condition when injecting the first mixture and the second mixture into the microchannel is to adjust the average diameter of the prepared microparticles, and when the above range is not specifically satisfied, the size of the prepared particles Problems may occur that are not uniform, do not satisfy the average diameter range of the microparticles of the present invention, or do not satisfy the value of Equation 1 above.
  • the second mixture flows under a higher pressure condition.
  • the flow rate of the first mixture and the second mixture are relatively higher at the point where they meet.
  • the second mixture having a high flow rate compresses the first mixture, and at this time, the biodegradable polymer and leuprolide in the first mixture generate spherical microparticles due to the repulsive force of the first mixture and the second mixture, More specifically, microparticles are formed in which leuprolide is evenly distributed in a spherical biodegradable polymer.
  • Step 4) is the step of collecting the microparticles, which collects the microparticles in the water tank containing the second mixture to prevent aggregation between the initially generated microparticles.
  • Step 4) uses the second mixture prepared in step 2), that is, a mixed solution of a surfactant and water. After preparing the second mixture in step 2), a portion is injected into the microchannel, and the other portion is injected into the microchannel. is moved to the water tank in step 4), and is used to prevent aggregation between the collected microparticles.
  • Step 5) is a step for removing the organic solvent present in the microparticles collected in the water bath, and the organic solvent present on the surface of the sustained-release particles is evaporated and removed by stirring at a constant temperature condition and stirring speed.
  • the stirring conditions are 5-1) primary stirring at a speed of 100 to 300 rpm for 20 to 40 minutes at 15 to 20 ° C; 5-2) secondary stirring at 30 to 40° C. for 60 to 120 minutes at a rate of 100 to 300 rpm; and 5-3) third stirring at a rate of 100 to 300 rpm for 4 to 8 hours at 40 to 45°C.
  • the stirring speed is performed by varying the temperature conditions and the stirring time in the first and second stirring steps.
  • the temperature conditions are raised and stirred in the second stirring process compared to the first stirring process, and as the temperature is raised step by step, the evaporation rate of the organic solvent present on the surface of the microparticles can be controlled.
  • microparticles having a smooth surface can be prepared by gradually evaporating the organic solvent present on the surface of the microparticles.
  • the temperature at which the first mixture and the second mixture flow through the microchannel is also 15 to 20°C, preferably 17°C. That is, after flowing through the microchannel and forming an intersection to generate the microparticles, the collected microparticles are constantly maintained at a low temperature of 15 to 20°C until the first stirring. It is possible to manufacture and maintain spherical particles only when the low temperature is maintained during the manufacturing process of the microparticles. That is, in the case of non-low-temperature conditions, it is difficult to manufacture spherical particles.
  • the second stirring process and the third stirring process gradually increase the temperature and increase the stirring time so that the organic solvent present on the surface of the microparticles is gradually evaporated, and as the organic solvent evaporates from the surface, the microparticles The effect on the surface of the can be minimized. That is, when the organic solvent is rapidly evaporated, the surface of the microparticles may not be smooth and become rough due to the evaporation of the organic solvent.
  • the evaporation rate of the organic solvent can be controlled by gradually increasing the temperature condition and increasing the time for the stirring process as described above. Due to the control of the evaporation rate of the organic solvent, the micro The surface roughness of the particles can be controlled.
  • step 6) is a step of washing and drying the microparticles.
  • the organic solvents on the surface of the microparticles are washed several times with sterile filtered purified water by stirring to remove the surfactant remaining on the microparticles, then freeze-dried.
  • microparticles have a form in which leuprolide is evenly distributed in microparticles made of spherical biodegradable polymers, and include leuprolide and biodegradable polymers in a weight ratio of 1:2 to 1:10.
  • the weight ratio of leuprolide and the biodegradable polymer contained in the microparticles is the same as that in the first mixture, which is the same as the weight ratio in the first mixture, as the microparticles are prepared and all organic solvents are removed by evaporation. It is possible to prepare microparticles containing leuprolide and biodegradable polymer in the same ratio as the weight ratio of.
  • an injectable composition containing microparticles containing leuprolide includes microparticles containing leuprolide; and a suspending solvent.
  • the composition for injection is a form in which microparticles are uniformly contained in a suspended solvent, and when the composition for injection is administered, the microparticles themselves are injected into the body, so that the effect of administration of leuprolide for a long time can be exhibited.
  • the effect of releasing leuprolide by decomposition of the biodegradable polymer appears. Since it is in the form, it can show the effect of administration of leuprolide at a constant concentration for a long time.
  • a long-acting formulation capable of continuously releasing leuprolide for 1 month a long-acting formulation capable of continuously releasing leuprolide for 3 months, or a 6-month It can be provided as a long-acting formulation that can continuously release leuprolide during a period of time.
  • the suspending solvent includes an isotonic agent, a suspending agent and a solvent.
  • the tonicity agent is selected from the group consisting of D-Mannitol, Maltitol, Sorbitol, Lactitol, Xylitol, Sodium chloride, and mixtures thereof.
  • D-Mannitol Maltitol, Sorbitol, Lactitol, Xylitol, Sodium chloride, and mixtures thereof.
  • the suspending agent is sodium carboxymethylcellulose (Soduim Carboxymethylcellulose), polysorbate 80 (Polysorbate 80), starch, starch derivatives, polyhydric alcohols, chitosan, chitosan derivatives, cellulose, cellulose derivatives, collagen (collagen), gelatin, hyaluronic acid (HA), alginic acid, algin, pectin, carrageenan, chondroitin, chondroitin sulfate , dextran, dextran sulfate, polylysine, titin, fibrin, agarose, fluran, xanthan gum and It is selected from the group consisting of mixtures thereof, preferably sodium carboxymethylcellulose and polysorbate 80, but is not limited to the above examples.
  • injection water may be used, and all solvents usable as the injection water may be used without limitation.
  • An API mixture was prepared by dissolving leuprolide acetate in dimethyl sulfoxide.
  • a biodegradable polymer mixture was prepared by dissolving poly(lactide-co-glycolide) (PLGA) in dichloromethane.
  • a first mixture was prepared by mixing the API mixture and the biodegradable polymer mixture. At this time, the weight ratio of the leuprolide acetate and the biodegradable polymer in the first mixture is 1:5.
  • Polyvinyl alcohol a surfactant, was mixed with water to prepare a second mixture containing 0.5% by weight of polyvinyl alcohol.
  • the first mixture and the second mixture were injected into a microchannel formed on a silicon wafer and allowed to flow.
  • the first mixture starts with a pressure condition of 1000 mbar and flows under a condition of constantly increasing the pressure at a rising rate of 20 mbar per minute, and then when reaching 1200 mbar per minute It was run under conditions varying with a rise rate of 7 mbar, and the second mixture was run under pressure conditions of 3000 mbar.
  • the temperature condition was maintained at 17°C and the stirring speed was 300 rpm.
  • Microparticles generated at the junction where the flow of the first mixture and the flow of the second mixture meet were collected in a water tank containing the second mixture.
  • the microparticles collected in the water bath were firstly stirred at 17° C. for 30 minutes at a rate of 300 rpm, the temperature was raised to 38° C., and the microparticles collected in the water bath were stirred secondly at a rate of 400 rpm for 1 hour, and then the temperature was raised to 45° C. and thirdly stirred at a rate of 500 rpm for 3 hours.
  • microparticles after stirring were washed several times with bacteria-filtered purified water, and freeze-dried to prepare microparticles.
  • a biodegradable polymer except that a biodegradable polymer mixture was prepared by dissolving poly(lactide-co-glycolide) (PLGA) and polylactide (PLA) in dichloromethane in a weight ratio of 1.7 to 18.3. Microparticles were prepared in the same manner as in Example 1.
  • PLGA poly(lactide-co-glycolide)
  • PLA polylactide
  • Microparticles were prepared in the same manner as in Preparation Example 1, except that a biodegradable polymer mixture was prepared by dissolving polylactide (PLA) as a biodegradable polymer in dichloromethane.
  • PLA polylactide
  • microparticles of Preparation Example 1 and the microparticles of Preparation Example 3 were mixed in a weight ratio of 1:3.
  • microparticles of Preparation Example 1 and the microparticles of Preparation Example 3 were mixed in a weight ratio of 1:4.
  • Microparticles were prepared in the same manner as in Preparation Example 1, except that the weight ratio of leuprolide acetate and the biodegradable polymer in the first mixture was 1:4.
  • Microparticles were prepared in the same manner as in Preparation Example 1, except that the weight ratio of leuprolide acetate and the biodegradable polymer in the first mixture was 1:7.
  • Microparticles were prepared in the same manner as in Preparation Example 1, except that the weight ratio of leuprolide acetate and the biodegradable polymer in the first mixture was 1:2.
  • microparticles were prepared as an injection formulation, and the following suspending solvent was used.
  • 3 and 4 are SEM pictures of the leuprin DPS strain of Comparative Example 1, and it can be confirmed that non-uniform particles are mixed.
  • the microparticles of the present invention 55.29 ⁇ m to 73.09 ⁇ m (Production Example 1) and 72.26 ⁇ m to 95.78 ⁇ m (Production Example 2), it can be seen that the particle diameter distribution is uniformly distributed.
  • the values according to the above formula, Preparation Example 1 and Preparation Example 2 show a value close to 1, whereas Comparative Example 1 has a value greater than 1, and it can be confirmed that the size distribution is not uniform.
  • leuprolide formulations were purchased, and the properties of the particles were confirmed by SEM pictures.
  • Figure 5 relates to Laurelin Depo Inj (Dongkook Pharmaceutical), and Figure 7 relates to Lupier Depot Inj (Daewoong Pharmaceutical).
  • the size of the particles is not uniform and is distributed in various ways, and it can be confirmed that the surface of the particles is not smooth but shows a rough surface state.
  • microparticles were a sustained release formulation for 1 month or more, and it was confirmed whether or not the medicinal effect of leuprolide was maintained by continuously releasing leuprolide for 1 month after injection.
  • leuprolide acetate administered to rats is 0.1 mg/kg.
  • PK values are average PK values for 10 rats.
  • leuprolide acetate administered to rats through the microparticles, which are sustained release formulations of the present invention for more than 3 months is adjusted to 0.3 mg / kg. and the experiment was conducted in the same way. The experiment was conducted in the same manner for Comparative Example 1.
  • the C max is the maximum blood concentration of leuprolide for 24 hours after administration of the injection
  • the C 24h is the blood concentration value of leuprolide in blood collected 24 hours after administration of the injection.
  • microparticles of the present invention do not have an initial over-release in both the 1-month dosage form and the 3-month dosage form, and leuprolide is continuously released for 1 month or 3 months.
  • Comparative Example 1 has a lot of initial over-release compared to the present invention.
  • Comparative Example 1 and Preparation Example 2 of the present invention were administered to beagle dogs, and blood was collected to measure the blood concentration (PK) of leuprolide and the blood concentration (PD) of testosterone.
  • the total amount of the injection containing the microparticles of Preparation Example 1 used as a sustained-release formulation for 3 months or more was 92.64mg, and the leuprolide in the injection contained 11.25mg.
  • 11.25 mg of Luphrin DPS was administered to beagle dogs.
  • Preparation Example 1 and Comparative Example 1 were administered to 5 beagle dogs each, and an intravenous injection method was used as the administration route.
  • the C max is the maximum blood concentration of leuprolide for 24 hours after administration of the injection
  • the C 24h is the blood concentration value of leuprolide in blood collected 24 hours after administration of the injection.
  • the PK measurement result of the injection containing the microparticles of the present invention showed that the maximum blood concentration of leuprolide for 24 hours after administration of the injection was 0.407ng/ml, and Comparative Example 1 was 98.570ng/ml. It was confirmed that it showed a big difference. Accordingly, the value according to the above formula was confirmed to be 3.42 in the present invention, and 52.68 in Comparative Example 1, indicating a large difference.
  • FIG. 9 is a comparison result for confirming the PD value after administration of Preparation Example 2 and Comparative Example 1. It can be confirmed that the appearance, it can be confirmed that the effect is expressed by leuprolide. On the other hand, in the case of Comparative Example 1, as a result of checking the blood testosterone level for 14 weeks, it was confirmed to be 0.5ng/ml or more, and it could be confirmed that the effect of leuprolide was not shown.
  • the present invention relates to microparticles containing leuprolide and a method for preparing the same.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Reproductive Health (AREA)
  • Endocrinology (AREA)
  • Dermatology (AREA)
  • Dispersion Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Neurosurgery (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

본 발명은 류프로라이드를 포함하는 마이크로 입자 및 이의 제조 방법에 관한 것으로, 주사제로 투약 시, 마이크로 입자의 크기가 작아, 고통을 낮출 수 있고, 표적 부위에서 류프로라이드의 방출 속도를 조절하여, 초기 과방출을 방지하고, 류프로라이드의 효과를 나타내기에, 충분한 양의 약물에 노출하며, 류프로라이드에 의한 효과를 1개월 이상 나타낼 수 있다. 또한, 상기 마이크로 입자는 입자의 크기가 균일하고, 표면이 매끄러운 형태이며, 장시간 지속적으로 류프로라이드의 방출 효과를 나타낼 수 있는 마이크로 입자의 제조 방법에 관한 것이다.

Description

류프로라이드를 포함하는 마이크로 입자 및 이의 제조 방법
본 발명은 류프로라이드를 포함하는 마이크로 입자 및 이의 제조 방법에 관한 것이다.
LHRH(황체형성호르몬 방출 호르몬)은 GnRH(성선자극호르몬 방출 호르몬)으로도 알려져 있으며, 척추 동물의 생식계를 조절하는 시상하부 데카펩티드(pGlu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly-NH2)이다.
이것은 정중 융기 및 누두 줄기의 시상하부-뇌하수체 문맥계의 모세혈관으로 방출된다. 이러한 모세혈관망에 의해 LHRH가 뇌 하수체 전엽에 도달하고, 제2 모세혈관망에 의해 성선자극 표적 세포에 도달한다. GnRH는 G 단백질을 통해 포스 포리파제 C에 커플링되어 세포내 칼슘 유동을 증가시키는 7개의 막 횡단 세그먼트를 갖는 수용체를 통해 표적 세포의 멤브레인 레벨에서 작용한다.
상기와 같은 작용으로 성선자극 호르몬 FSH(난포-자극 호르몬) 및 LH (황체화 호르몬)의 생합성 및 방출이 유도된다. LHRH 작용제 및 길항제는 여성의 자궁내막증, 섬유종, 다낭난소증, 유방암, 난소암 및 자궁내막암, 의료-보조된 출산 프로토콜 동안의 성선자극 뇌하수체 탈감작증의 치료, 남성의 양성 전립선 과 다형성증 및 전립선암의 치료, 및 남성 또는 여성의 성조숙증의 치료에 효과적인 것으로 나타났다.
현재 사용되는 LHRH 효현제(Luteinizing Hormone Releasing Hormone agonist)는 낮은 경구 생체 이용률로 인해 일반적으로 정맥 내 또는 정맥하 방법으로 투여해야 하는 펩티드 화합물이다.
또한 LHRH 효현제는 만성 질환의 약물로서 장기간 동안 투약 받아야 한다. LHRH 효현제 계열의 약물은 약효 발현을 위해 초기에 신속하게 충분한 양의 약물에의 노출이 필요하다고 알려져 있다.
LHRH 효현제 중의 하나인 류프로라이드 아세테이트(leuprolide acetate)는 기존의 피하 또는 근육 주사 시 반감기가 짧아서 투여 후 급속한 혈중 농도의 감소가 발생하여 수 시간 이내에 사라지는 특성이 있다. 이로 인해 약효를 유지하기 위해서는 매일 투여해야 하는 불편함이 있었으며, 특히 주사제라는 특징으로 인해 이러한 불편함은 더욱 가중되었다.
이를 개선하기 위해 1회 투여로 약효가 4주 이상 지속하는 제제(서방성 제제)들이 개발되어 판매되어 왔다.
그러나, 류프로라이드 아세테이트의 약효 발현을 위해서는 표적부위에 대하여 투여 초기에 충분한 양의 약물에의 노출이 필요하다고 알려져 있어, 상기 류프로라이드 아세테이트의 혈중 농도가 최초상승(initial rise) 후에 2 내지 4 주 동안 순환성 성호르몬 수준(circulating sex hormone levels)을 저해하므로 류프로라이드가 효과적이기 위해서는, 마이크로 입자로부터의 약물 초기 방출률이 높은 것이 바람직한 것으로 알려져 있다.
이에 현재 시중에 유통 중인 제품은 모두 류프로라이드를 주사제로 투약 후, 류프로라이드의 혈중 농도를 측정 시, 초기 과방출이 나타나며, 초기 과방출이 나타나지 않을 경우, 류프로라이드에 의한 효과가 발현되지 않는다고 알려져 있다.
[선행기술문헌]
[특허문헌]
(특허문헌1) KR 10-2003-0064401 A1
본 발명의 목적은 류프로라이드를 포함하는 마이크로 입자 및 이의 제조 방법에 관한 것이다.
본 발명의 다른 목적은 주사제로 투약 시, 마이크로 입자의 크기가 작아, 고통을 낮출 수 있고, 표적 부위에서 류프로라이드의 방출 속도를 조절하여, 초기 과방출을 방지하고, 류프로라이드의 효과를 나타내기에, 충분한 양의 약물에 노출하며, 류프로라이드에 의한 효과를 1개월 이상 나타낼 수 있는 류프로라이드를 포함하는 마이크로 입자를 제공하는 것이다.
본 발명의 다른 목적은 상기 마이크로 입자는 입자의 크기가 균일하고, 표면이 매끄러운 형태이며, 장시간 지속적으로 류프로라이드의 방출 효과를 나타낼 수 있는 마이크로 입자의 제조 방법을 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명의 일 실시예에 따른 류프로라이드를 포함하는 마이크로 입자는 류프로라이드 및 생분해성 고분자를 포함하며, 마이크로 입자의 평균 직경은 40 내지 100㎛이며, 하기 식 1에 의한 값이 0.5 내지 2일 수 있다:
[식 1]
Figure PCTKR2022018982-appb-img-000001
여기서,
D10은 입자의 누적분포에서 최대값에 대하여 10%에 해당하는 입자의 직경이며,
D50은 입자의 누적분포에서 최대값에 대하여 50%에 해당하는 입자의 직경이며,
D90은 입자의 누적분포에서 최대값에 대하여 90%에 해당하는 입자의 직경이다.
상기 류프로라이드 및 생분해성 고분자는 1:2 내지 1:10의 중량 비율로 포함할 수 있다.
주사제로 투여 시, 표적 부위에서 류프로라이드의 방출 속도가 조절되어, 초기 과방출의 문제가 없고, 상기 류프로라이드에 의해 테스토스테론의 억제 효과가 1개월 이상 지속될 수 있다.
하기 식 2에 의한 값이 1 내지 5일 수 있다:
[식 2]
Figure PCTKR2022018982-appb-img-000002
여기서,
류프로라이드를 포함하는 마이크로 입자를 비글견에 주사제로 투여하고, 류프로라이드의 혈중 농도를 측정한 것으로,
상기 1회 주사에 의해 비글견에 투여된 류프로라이드 아세테이트가 11.25mg이며,
Cmax는 주사제를 투여하고, 24시간 동안의 류프로라이드의 최대 혈중 농도이고,
C24h는 주사제를 투여하고 24시간 경과 후, 채혈한 혈액 내 류프로라이드의 혈중 농도 값이다.
본 발명의 다른 일 실시예에 따른 류프로라이드를 포함하는 마이크로 입자의 제조 방법은 1) 류프로라이드 및 생분해성 고분자를 혼합하여 제1 혼합물을 제조하는 단계; 2) 용매에 계면활성제를 용해하여 제2 혼합물을 제조하는 단계; 3) 상기 제1 혼합물 및 제2 혼합물은 교차점이 형성된 제1 마이크로 채널 및 제2 마이크로 채널에 각 주입하여 흐르게 하여 상기 교차점에서 마이크로 입자를 생성하는 단계; 4) 상기 마이크로 입자를 상기 제2 혼합물이 담긴 수조 내에 수집하는 단계; 5) 상기 수집한 마이크로 입자에 존재하는 유기 용매를 제거하는 단계; 및 6) 상기 유기 용매가 제거된 마이크로 입자를 정제수로 세척 및 동결 건조하는 단계를 포함하며, 하기 식 1에 의한 값이 0.5 내지 2일 수 있다:
[식 1]
Figure PCTKR2022018982-appb-img-000003
여기서,
D10은 입자의 누적분포에서 최대값에 대하여 10%에 해당하는 입자의 직경이며,
D50은 입자의 누적분포에서 최대값에 대하여 50%에 해당하는 입자의 직경이며,
D90은 입자의 누적분포에서 최대값에 대하여 90%에 해당하는 입자의 직경이다.
상기 제1 혼합물을 제1 마이크로 채널에 주입 시, 700 내지 1,300mbar의 압력 조건으로 주입 후, 10 내지 30mbar/min의 제1 조건으로 압력을 상승시키고, 상기 주입 압력 조건이 950 내지 1,500mbar에 도달 시, 2 내지 8mbar/min의 제2 조건으로 압력을 상승시키는 것일 수 있다.
상기 제2 혼합물은 상기 제1 혼합물을 제1 마이크로 채널의 주입할 때, 압력 조건 대비 2 내지 4배의 압력 조건으로 제2 마이크로 채널로 주입될 수 있다.
상기 5) 단계는, 5-1) 15 내지 20℃에서 20 내지 40분 동안 100 내지 300rpm의 속도로 1차 교반하는 단계; 5-2) 30 내지 40℃에서 60 내지 120 분 동안 100 내지 300rpm의 속도로 2차 교반하는 단계; 및 5-3) 40 내지 45℃에서 4 내지 8시간 동안 100 내지 300rpm의 속도로 3차 교반하는 것일 수 있다.
본 발명은 주사제로 투약 시, 마이크로 입자의 크기가 작아, 고통을 낮출 수 있고, 표적 부위에서 류프로라이드의 방출 속도를 조절하여, 초기 과방출을 방지하고, 류프로라이드의 효과를 나타내기에, 충분한 양의 약물에 노출하며, 류프로라이드에 의한 효과를 1개월 이상 나타낼 수 있다.
또한, 상기 마이크로 입자는 입자의 크기가 균일하고, 표면이 매끄러운 형태이며, 장시간 지속적으로 류프로라이드의 방출 효과를 나타낼 수 있는 마이크로 입자의 제조 방법에 관한 것이다.
도 1은 본 발명의 일 실시예에 따른 마이크로 입자의 SEM 사진이다.
도 2은 본 발명의 일 실시예에 따른 마이크로 입자의 SEM 사진이다.
도 3은 본 발명의 일 실시예에 따른 마이크로 입자의 SEM 사진이다.
도 4은 본 발명의 일 실시예에 따른 마이크로 입자의 SEM 사진이다.
도 5은 본 발명의 일 실시예에 따른 마이크로 입자의 SEM 사진이다.
도 6은 본 발명의 일 실시예에 따른 마이크로 입자의 SEM 사진이다.
도 7은 본 발명의 일 실시예에 따른 마이크로 입자를 주사제로 비글견에 투여 후, PK-PD 결과이다.
도 8은 본 발명의 일 실시예에 따른 마이크로 입자를 주사제로 비글견에 투여 후, PK-PD 결과이다.
도 9는 본 발명의 일 실시예에 따른 마이크로 입자를 주사제로 비글견에 투여 후, PD 결과이다.
본 발명은 류프로라이드 및 생분해성 고분자를 포함하며, 마이크로 입자의 평균 직경은 40 내지 100㎛이며, 하기 식 1에 의한 값이 0.5 내지 2인 류프로라이드를 포함하는 마이크로 입자에 관한 것이다:
[식 1]
Figure PCTKR2022018982-appb-img-000004
여기서,
D10은 입자의 누적분포에서 최대값에 대하여 10%에 해당하는 입자의 직경이며,
D50은 입자의 누적분포에서 최대값에 대하여 50%에 해당하는 입자의 직경이며,
D90은 입자의 누적분포에서 최대값에 대하여 90%에 해당하는 입자의 직경이다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
본 발명에서 '류프로라이드(leuprolide)'는 5-Oxo-L-prolyl-Lhistidyl-L-tryptophanyl-L-seryl-L-tyrosyl-D-leucyl-L-leucyl-L-arginyl-L-prolyl ethylamide 및 이의 약학적으로 허용 가능한 염을 모두 포함하는 할 수 있다. 상기 류프로라이드는 류프로렐린(Leuprorelin)으로 표현될 수 있으며, 표기에 관련 없이, 류프로라이드 및 이의 약학적으로 허용 가능한 염은 모두 사용 가능하다.
본 발명에서 '약학적으로 허용가능한'이란 생리학적으로 허용되고 인간에게 투여될 때, 통상적으로 알레르기 반응 또는 이와 유사한 반응을 일으키지 않는 것을 의미한다.
본 발명에서 '약학적으로 허용 가능한 염'은 약학적으로 허용 가능한 유리산(free acid)에 의하여 형성된 산 부가염을 의미한다. 상기 유리산으로는 유기산과 무기산을 사용할 수 있다. 상기 유기산은 이에 제한되는 것은 아니나, 구연산, 초산, 젖산, 주석산, 말레인산, 푸마르산, 포름산, 프로피온산, 옥 살산, 트리플로오로아세트산, 벤조산, 글루콘산, 메타술폰산, 글리콜산, 숙신산, 4-톨루엔술폰산, 글루탐산 및 아스파르트산을 포함한다. 또한 상기 무기산은 이에 제한되는 것은 아니나, 염산, 브롬산, 황산 및 인산을 포함한다.
본 발명의 일 실시예에 따른 류프로라이드를 포함하는 마이크로 입자는 류프로라이드 및 생분해성 고분자를 포함하며, 마이크로 입자의 평균 직경은 40 내지 100㎛이며, 하기 식 1에 의한 값이 0.5 내지 2일 수 있다:
[식 1]
Figure PCTKR2022018982-appb-img-000005
여기서,
D10은 입자의 누적분포에서 최대값에 대하여 10%에 해당하는 입자의 직경이며,
D50은 입자의 누적분포에서 최대값에 대하여 50%에 해당하는 입자의 직경이며,
D90은 입자의 누적분포에서 최대값에 대하여 90%에 해당하는 입자의 직경이다.
상기 D10, D50 및 D90은 마이크로 입자에 대한 직경을 측정하고, 이에 대해 누적 분포 상에서 최대값에 대하여, 10%, 50% 및 90%에 해당되는 값을 의미하는 것이다.
상기 식 1은 청구항 1에서 입자의 평균 직경을 한정함과 동시에 (D90-D50) 과 (D50-D10)의 비율을 한정하는 것으로, 평균 입자 분포 내에서, 입자의 누적 분포 상 최대값에 대하여 90%에 해당되는 입자의 직경과 50%에 해당되는 입자의 직경 차와 50%에 해당되는 입자의 직경과 10%에 해당되는 입자의 직경 차이를 비율로 확인하여, 균일한 입자 분포 정도를 확인하는 것으로, 그 값이 1에 가까울수록 균일한 분포 폭을 의미하는 것입니다.
본 발명의 식 1은 마이크로 입자의 크기 분포를 보다 명확하게 확인하기 위한 것으로, 식1에 의한 값이 0.5 내지 2이며, 0.7 내지 1.5이며, 0.9 내지 1.3일 수 있다. 상기 식 1에 의한 값을 만족함과 동시에, 마이크로 입자의 평균 직경이 40 내지 100㎛인 경우, 마이크로 입자의 크기가 평균 직경 값에 근접하여 분포하는 것을 의미한다. 이는 균일한 크기의 마이크로 입자가 주사를 통해 체내로 주입되고, 균일한 크기를 갖는 마이크로 입자가 유사한 정도로 생분해되며, 상기 마이크로 입자의 생분해에 의해 류프로라이드의 방출 효과를 나타낼 수 있다.
즉, 류프로라이드를 포함하는 마이크로 입자는, 체내에서 류프로라이드의 방출 정도가 입자의 크기 및 비표면적과 연관성이 높고, 비표면적을 크게 하기 위해선 균일한 직경을 갖는 마이크로 입자를 이용하는 것이 필수적이다. 상기와 같이 입자의 크기가 매우 균일한 마이크로 입자를 이용함에 따라, 체내 주입 시, 초기 과방출을 방지할 수 있고, 장시간 지속적으로 류프로라이드의 방출 효과를 나타낼 수 있어, 류프로라이드에 의한 효과를 1개월 이상 발휘할 수 있다.
상기 류프로라이드 및 생분해성 고분자는 1:2 내지 1:10의 중량 비율로 포함하며, 바람직하게는 1:2 내지 1:8이며, 보다 바람직하게는 1:4 내지 1:7일 수 있다. 상기 범위 내에서 혼합하여 사용 시, 생분해성 고분자의 분해에 의해 류프로라이드가 장시간 지속적으로 방출 효과를 나타낼 수 있다.
상기 생분해성 고분자는 폴리락트산, 폴리락타이드, 폴리락틱-코-글리콜산, 폴리락타이드-코-글리콜라이드(PLGA), 폴리포스파진, 폴리이미노카보네이트, 폴리포스포에스테르, 폴리안하이드라이드, 폴리오르쏘에스테르, 폴리카프로락톤, 폴리하이드록시발레이트, 폴리하이드록시부티레이트, 폴리아미노산 및 이들의 조합으로 이루어진 군으로부터 선택되며, 바람직하게는 폴리락타이드-코-글리콜라이드(PLGA) 또는 폴리락타이드이지만, 상기 예시에 국한되지 않는다.
본 발명의 다른 일 실시예에 따른 류프로라이드를 포함하는 마이크로 입자는 하기 식 2에 따른 값이 1 내지 15일 수 있다:
[식 2]
Figure PCTKR2022018982-appb-img-000006
여기서,
류프로라이드를 포함하는 마이크로 입자를 비글견에 주사제로 투여하고, 류프로라이드의 혈중 농도를 측정한 것으로,
상기 1회 주사에 의해 비글견에 투여된 류프로라이드 아세테이트가 11.25mg이며,
Cmax는 주사제를 투여하고, 24시간 동안의 류프로라이드의 최대 혈중 농도이고,
C24h는 주사제를 투여하고 24시간 경과 후, 채혈한 혈액 내 류프로라이드의 혈중 농도 값이다.
앞서 설명한 바와 같이, 류프로라이드는 약효가 발휘되기 위해선, 초기 과방출이 필수적인 요소에 해당된다고 알려져 있다. 즉, 주사제로 투여 시, 초기에 류프로라이드의 혈중 농도가 높은 수준을 나타낼 수 있도록, 약물 초기 방출률이 높을 것을 요구하였다. 즉, LHRH 효현제로서 충분한 약리효과를 나타내기 위해서는, 투입 초기, 약물의 방출률이 높은 수준을 나타내야 한다고 알려져 있고, 이를 위해 시중에 유통되는 류프로라이드에 대한 제형은, 초기 약물의 방출률이 높게 나타낼 수 있도록 제조되고 있는 실정이다.
이에 대해, 류프로라이드 뿐 아니라 대다수의 약물은 과다 노출 시, 부작용이 발생할 수 있다. 즉, 류프로라이드의 과다 방출에 의해, 구역질, 주사 부위 주변의 통증 발생, 두통, 배뇨 장애, 관절 통증 등의 부작용이 발생할 수 있다.
상기와 같은 부작용의 발생 우려가 존재함에도 불구하고, 류프로라이드의 약효를 나타내기 위해선, 주사제로 투약 시, 약물의 초기 과방출이 필요하다고 알려져 있다.
이에 대해, 본 발명에서는 상기 식 2에 의한 값을 만족하는 경우, 24시간 내 최대 혈중 농도 값은, 종래 류프로라이드 제형에 비해 낮추고, 장시간 류프로라이드의 지속 방출 효과를 나타낼 수 있다.
즉, 상기 식 2에 의한 값을 도출하기 위해, 시중에 판매 중인 제품을 구매하여 동일한 실험을 진행한 결과, 값이 50 내지 60으로 높은 값을 나타내는 것을 확인할 수 있고, 반면 본 발명의 마이크로 입자를 투여한 경우는, 1 내지 15이며, 바람직하게는 2 내지 10이며, 보다 바람직하게는 3 내지 8로 큰 차이를 나타냄을 확인하였다.
상기와 같은 결과 차이는, 종래 류프로라이드는 효과를 발휘하기 위해선, 초기 과방출이 반드시 필요하다고 알려져 있어, 식 2의 분자 값이 크게 확인되는 반면, 본 발명의 마이크로 입자는 초기 과방출을 방지하면서도, 류프로라이드에 의한 약효는 발휘함과 동시에 장시간 지속적으로 약물 방출에 의한 효과를 발휘할 수 있는 최적의 혈중 농도를 도출한 것이다.
상기 식 2에 의한 값은, 분자에서 류프로라이드의 최대 혈중 농도 값을 포함하고 있어, 최대 혈중 농도 값이 커질수록 식 2의 값이 커질 수 있고, 반대로 분모인 C24h의 값이 작을 경우, 식 2의 값이 커질 수 있다.
상기와 같이 류프로라이드의 최대 혈중 농도 값이 커짐에 따라, 식 2의 값이 큰 값을 나타내는 것은, 주사제로 이용 시, 초기 과방출이 나타남을 의미한다 할 것이며, C24h의 값이 작아, 식 2의 값이 커지는 것은, 장시간 약물 방출 효과를 나타내지 못함을 의미한다고 할 것이다.
이에, 상기 식 2의 값이 본 발명의 범위 내로 포함되는 경우, 류프로라이드의 초기 과방출을 방지하고, 류프로라이드에 의한 약효를 발휘할 수 있으며, 주사제로 투여 시, 1개월 이상 류프로라이드의 약효를 지속적으로 발휘할 수 있다고 할 것이다.
본 발명의 다른 일 실시예에 따른 류프로라이드를 포함하는 마이크로 입자의 제조 방법은 1) 류프로라이드 및 생분해성 고분자를 혼합하여 제1 혼합물을 제조하는 단계; 2) 용매에 계면활성제를 용해하여 제2 혼합물을 제조하는 단계; 3) 상기 제1 혼합물 및 제2 혼합물은 교차점이 형성된 제1 마이크로 채널 및 제2 마이크로 채널에 각 주입하여 흐르게 하여 상기 교차점에서 마이크로 입자를 생성하는 단계; 4) 상기 마이크로 입자를 상기 제2 혼합물이 담긴 수조 내에 수집하는 단계; 5) 상기 수집한 마이크로 입자에 존재하는 유기 용매를 제거하는 단계; 및 6) 상기 유기 용매가 제거된 마이크로 입자를 정제수로 세척 및 동결 건조하는 단계를 포함하며, 하기 식 1에 의한 값이 0.5 내지 2일 수 있다:
[식 1]
Figure PCTKR2022018982-appb-img-000007
여기서,
D10은 입자의 누적분포에서 최대값에 대하여 10%에 해당하는 입자의 직경이며,
D50은 입자의 누적분포에서 최대값에 대하여 50%에 해당하는 입자의 직경이며,
D90은 입자의 누적분포에서 최대값에 대하여 90%에 해당하는 입자의 직경이다.
상기 1) 단계는 제1 혼합물을 제조하는 단계로, 류프로라이드 및 생분해성 고분자를 유기 용매에 용해시켜 제1 혼합물을 제조하는 단계로, 상기 생분해성 고분자는 폴리락트산, 폴리락타이드, 폴리락틱-코-글리콜산, 폴리락타이드-코-글리콜라이드(PLGA), 폴리포스파진, 폴리이미노카보네이트, 폴리포스포에스테르, 폴리안하이드라이드, 폴리오르쏘에스테르, 폴리카프로락톤, 폴리하이드록시발레이트, 폴리하이드록시부티레이트, 폴리아미노산 및 이들의 조합으로 이루어진 군으로부터 선택되며, 바람직하게는 폴리락타이드-코-글리콜라이드(PLGA)이지만, 상기 예시에 국한되지 않는다.
또한, 상기 유기 용매는 물과 섞이지 않는 것으로, 예를 들면, 클로로포름, 클로로에탄, 디클로로에탄, 트리클로로에탄 및 이들의 혼합물로 이루어진 군으군부터 선택된 어느 하나 이상의 것이며, 바람직하게는 디클로로메탄이지만, 예시에 국한되는 것은 아니며, 생분해성 고분자 및 류프로라이드를 용해시킬 수 있는 유기 용매로, 상기 예시에 국한되지 않고, 당업자가 쉽게 선택할 수 있는 유기 용매라면 모두 사용 가능하다고 할 것이다.
상기 1) 단계는 류프로라이드 및 생분해성 고분자를 용해시킨 제1 혼합물을 제조하는 것으로, 용매는 상기에 기재한 바와 같이, 유기 용매를 사용한다. 이는 류프로라이드 및 생분해성 고분자의 용해 특성을 이용하여, 유기 용매를 사용하여 완전히 용해시킨다.
보다 구체적으로 류프로라이드 아세테이트를 제1 용매에 용해시키고, 생분해성 고분자를 제2 용매에 용해시킨다. 이후, 상기 제1 용매에 용해된 류프로라이드 아세테이트 혼합물 및 제2 용매에 용해된 생분해성 고분자 혼합물을 혼합하여, 제1 혼합물로 제조하였다.
상기 제1 혼합물은 류프로라이드 및 생분해성 고분자를 1:2 내지 1:10의 중량 비율로 포함한다. 바람직하게는 1:2 내지 1:8이며, 보다 바람직하게는 1:4 내지 1:7일 수 있다. 상기 류프로라이드 및 생분해성 고분자의 중량 비율이 1:2 미만인 경우, 즉 생분해성 고분자를 상기 중량 비율보다 미만으로 포함하는 경우에는 류프로라이드의 중량에 비해 생분해성 고분자의 중량 비율이 적어, 구형의 생분해성 고분자 입자에 류프로라이드가 고르게 분포하여 포함되고 있는 형태의 서방성 입자 제조가 어려운 문제가 발생하며, 생분해성 고분자 및 류프로라이드의 중량 비율이 1:10을 초과하는 경우, 즉 생분해성 고분자를 상기 중량 비율보다 초과하여 포함하는 경우에는, 서방성 입자 내 류프로라이드 함량이 적어 원하는 농도의 약물투여를 위해 많은 양의 서방성 입자를 투여해야 하는 문제가 발생할 수 있다.
보다 구체적으로, 상기 제1 혼합물 내의 생분해성 고분자는 15 내지 25 중량% 포함하며, 바람직하게는 20 중량% 이지만, 상기 예시에 국한되지 않는다.
상기 2) 단계는 제2 혼합물을 제조하는 단계로, 계면활성제를 물에 용해시켜 제2 혼합물을 제조한다. 상기 계면활성제는 생분해성 고분자 용액이 안정한 에멀젼 형성을 도울 수 있는 것이라면 제한 없이 사용 가능하다. 구체적으로는 비이온성 계면활성제, 음이온성 계면활성제, 양이온성 계면활성제 및 이들의 혼합물로 이루어진 군으로부터 선택된 어느 하나 이상의 것이며, 더욱 구체적으로 메틸셀룰로오스, 폴리비닐피롤리돈, 레시틴, 젤라틴, 폴리비닐알코올, 폴리옥시에틸렌 소르비탄 지방산 에스테르, 폴리옥시에틸렌 피마자유 유도체, 라우릴 황산 나트륨, 스테아르산 나트륨, 에스테르 아민, 리니어 디아민, 패티 아민 및 이들의 혼합물로 이루어진 군으로부터 선택된 어느 하나 이상의 것이며, 바람직하게는 폴리비닐알코올이지만, 예시에 국한되지는 않는다.
상기 3) 단계는 웨이퍼 상에 형성된 마이크로 채널로 제1 혼합물 및 제2 혼합물을 주입하여, 흐르게 하는 단계이다.
보다 구체적으로, 마이크로 채널은 실리콘 웨이퍼, 또는 고분자 필름으로 이루어진 군으로부터 선택된 소재에 형성될 수 있으나, 상기 소재의 예시는 상기 예시에 국한되지 않고, 마이크로 채널의 형성이 가능한 소재는 모두 사용 가능하다.
상기 고분자 필름은 폴리이미드(Polyimide), 폴리에틸렌(Polyethylene), 플루오르화에틸렌프로필렌(Fluorinated ethylene propylene), 폴리프로필렌(Polypropylene), 폴리에틸렌 테레프탈레이트(Polyethylene terephthalate), 폴리에틸렌 나프탈레이트(Polyethylene naphthalate), 폴리술폰(Polysulfone) 및 이들의 혼합으로 이루어진 군으로부터 선택될 수 있으나, 상기 예시에 국한되지 않는다.
일 예시로, 실리콘 웨이퍼에 e-beam evaporator를 이용하여 알루미늄을 증착하며, 포토리소그래피(photolithography) 기법을 이용하여 포토레지스트(photoresist)를 알루미늄 위에 패터닝한다. 이후, 포토레지스트를 마스크로 이용하여 알루미늄 식각(etching)하고, 포토레지스트를 제거한 후 알루미늄을 마스크로 하여 실리콘을 DRIE(deep ion reactive etching)로 에칭하고, 알루미늄 제거 후 웨이퍼 위에 유리를 양극 접합하여 밀봉하여, 상기의 마이크로 채널을 제조한다.
상기의 마이크로 채널은 평균 직경이 80 내지 120㎛이며, 바람직하게는 100㎛이지만, 예시에 국한되지 않는다. 마이크로 채널의 평균 직경이 80㎛ 이하인 경우 제조되는 서방성 입자의 직경이 40㎛ 미만으로 작은 서방성 입자가 제조될 가능성이 있어 유효한 약물의 방출 및 생체내 흡수에 영향을 미칠 수 있다. 또한 제조된 서방성 입자의 크기가 100㎛ 초과인 경우, 주사제로 투여 시 이물감 및 통증이 증가될 수 있으며 제조된 입자의 입도분포가 커져 균일한 입도의 서방성 입자를 제조하기 어렵다.
다만, 상기 마이크로 채널의 평균 직경은 주입압력의 범위에 따라 변경될 수 있다. 또한, 상기 마이크로 채널의 평균 직경은 입자의 평균 직경과 밀접하게 관련되지만, 제1 혼합물 및 제2 혼합물의 주입 압력과도 밀접한 관련이 있다.
또한, 상기 마이크로 채널의 단면 폭(w) 및 단면의 높이(d)는 제조되는 서방성 입자의 평균 직경(d')과 밀접한 관련이 있다. 도 8과 같이, 상기 마이크로 채널 단면의 폭(w)은 서방성 입자의 평균 직경(d')에 대해 0.7 내지 1.3의 비율 범위이며, 마이크로 채널 단면의 높이(d)는 서방성 입자의 평균 직경(d')에 대해 0.7 내지 1.3의 비율 범위이다.
즉, 제조하고자 하는 서방성 입자의 평균 직경(d')이 결정되면, 이에 따라, 마이크로 채널 단면의 폭(w) 및 높이(d)의 길이는 d'의 0.7 내지 1.3의 비율 범위로 설정해야만, 원하는 크기의 서방성 입자 제조가 가능하다.
상기 3) 단계는 제1 혼합물 및 제2 혼합물을 교차점이 형성된 제1 마이크로 채널 및 제2 마이크로 채널로 상기 주입 압력 조건 하에서, 흐르게 하는 것이다.
즉, 제1 혼합물은 제1 마이크로 채널을 따라 흐르며, 제2 혼합물은 상기 제1 마이크로 채널과 교차점을 형성하도록 성형된 제2 마이크로 채널을 따라 흘러, 제1 혼합물의 흐름과 만나게 된다.
보다 구체적으로, 상기 제1 혼합물을 제1 마이크로 채널에 주입 시, 700 내지 1,300mbar의 압력 조건으로 주입 후, 10 내지 30mbar/min의 제1 조건으로 압력을 상승시키고, 상기 주입 압력 조건이 950 내지 1,500mbar에 도달 시, 2 내지 8mbar/min의 제2 조건으로 압력을 상승시킬 수 있다.
또한, 상기 제2 혼합물은 상기 제1 혼합물을 제1 마이크로 채널의 주입할 때, 압력 조건 대비 2 내지 4배의 압력 조건으로 제2 마이크로 채널로 주입시킬 수 있다.
구체적으로, 상기 마이크로 채널을 이용한 제조 방법에서 플로우미터를 이용해 마이크로 채널 내부를 흐르는 제1 혼합물, 제2 혼합물의 유속을 일정한 값으로 설정하고 피드백 제어를 통해 압력을 측정하였을 때, 제1 혼합물이 마이크로 채널을 일정한 유속으로 흐르게 하기 위해 요구되는 압력이 시간에 따라 점차 상승함을 확인하였다.
따라서 상기 제1 혼합물에 가하는 압력을 일정하게 상승시키는 방법을 이용하여 유속의 변동성을 최소화하고, 상기 제1 혼합물이 마이크로 채널 내부에서 서서히 경화됨으로 인해 마이크로 입자 분포의 불균일 또는 채널 폐쇄의 문제를 방지하며, 목표로 하는 마이크로 입자의 제조 수율을 높일 수 있다.
또한, 상기 제1 혼합물 및 제2 혼합물을 마이크로 채널에 주입할 때의 압력 조건은 제조된 마이크로 입자의 평균 직경을 조절하기 위한 것으로, 상기 범위를 구체적으로 만족하지 못하는 경우, 제조된 입자의 크기가 균일하지 않거나, 상기 본 발명의 마이크로 입자의 평균 직경 범위를 만족시키지 못하거나, 상기 식 1의 값을 충족시키지 못하는 문제가 발생할 수 있다.
즉, 직선 방향의 마이크로 채널로 주입되는 제1 혼합물보다 제1 혼합물의 흐름과 교차점을 형성하는 제2 혼합물의 흐름을 더 빠른 유속으로 흐르게 하기 위해, 더 높은 압력 조건 하에서 제2 혼합물을 흐르게 한다.
상기와 같이, 제1 혼합물 및 제2 혼합물의 유속을 다르게 하고, 제2 혼합물의 유속을 제1 혼합물의 유속보다 빠르게 함으로써, 제1 혼합물의 흐름과 제2 혼합물의 흐름이 만나는 지점에서 상대적으로 더 빠른 유속을 가지는 제2 혼합물이 제1 혼합물을 압축하게 되고, 이때 제1 혼합물 및 제2 혼합물의 반발력으로 인해 제1 혼합물 내의 생분해성 고분자 및 류프로라이드가 구 형상의 마이크로 입자를 생성하게 되며, 보다 구체적으로, 구형의 생분해성 고분자에 류프로라이드가 고르게 분포되어 있는 형태의 마이크로 입자를 형성하게 된다.
상기 4) 단계는, 마이크로 입자를 수집하는 단계로 제2 혼합물이 담긴 수조 내에서 마이크로 입자를 수집하여, 초기 생성된 마이크로 입자들 간의 뭉치는 현상(aggregation)을 방지한다.
상기 4) 단계는 상기 2) 단계에서 제조한 제2 혼합물, 즉 계면활성제 및 물의 혼합 용액을 이용하는 것으로, 제2 혼합물을 상기 2) 단계에서 제조한 이후, 일부는 마이크로 채널로 주입시키고, 다른 일부는 4) 단계의 수조로 이동시켜, 수집된 마이크로 입자들간의 뭉치는 현상을 방지하는데 이용된다.
상기 5) 단계는, 수조 내에서 수집된 마이크로 입자에 존재하는 유기 용매를 제거하기 위한 단계로, 일정한 온도 조건 및 교반 속도로 교반하여, 서방성 입자의 표면에 존재하는 유기 용매를 증발시켜 제거한다. 이때, 교반 조건은 5-1) 15 내지 20℃에서 20 내지 40분 동안 100 내지 300rpm의 속도로 1차 교반하는 단계; 5-2) 30 내지 40℃에서 60 내지 120 분 동안 100 내지 300rpm의 속도로 2차 교반하는 단계; 및 5-3) 40 내지 45℃에서 4 내지 8시간 동안 100 내지 300rpm의 속도로 3차 교반하는 것이다.
상기 교반 속도는 1차 및 2차 교반 단계는 온도 조건 및 교반 진행 시간을 달리하여, 교반 공정을 진행한다.
상기와 같이, 온도 조건을 1차 교반 공정에 비해 2차 교반 공정에서 상승시켜 교반하는 것을 특징으로 하며, 온도를 단계적으로 상승시킴에 따라, 마이크로 입자의 표면에 존재하는 유기 용매의 증발 속도를 조절할 수 있다. 즉, 마이크로 입자의 표면에 존재하는 유기 용매를 서서히 증발시켜, 매끄러운 표면을 가지는 마이크로 입자를 제조할 수 있다.
제1 혼합물 및 제2 혼합물이 마이크로 채널을 흐를 때의 온도 또한 15 내지 20℃이며, 바람직하게는 17℃이다. 즉, 마이크로 채널을 흐르고, 교차점을 형성하여 마이크로 입자를 생성한 이후, 수집된 마이크로 입자를 1차 교반할 때 까지는 일정하게 15 내지 20℃로 저온을 유지한다. 마이크로 입자의 제조 과정에서 저온을 유지해야만, 구형의 입자를 제조 및 유지가 가능하다. 즉, 저온 조건이 아닌 경우에는 일정한 구 형상의 입자를 제조하기 어려운 문제가 발생한다.
이후, 2차 교반 공정 및 3차 교반 공정은 온도를 점진적으로 상승시키고, 교반 시간을 늘려, 마이크로 입자의 표면에 존재하는 유기 용매가 서서히 증발되도록 하여, 표면에서 유기 용매가 증발됨에 따라, 마이크로 입자의 표면에 미치는 영향을 최소화할 수 있다. 즉, 급격하게 유기 용매가 증발되는 경우, 유기 용매의 증발에 의해 마이크로 입자의 표면이 매끈하지 못하고, 거칠어지는 문제가 발생할 수 있다. 이러한 문제를 방지하고자, 상기와 같이 온도 조건을 점진적으로 상승시키고, 교반 공정을 진행하는 시간 또한 증가시켜, 유기 용매의 증발 속도를 조절할 수 있고, 이러한 유기 용매의 증발 속도 조절로 인해, 제조된 마이크로 입자의 표면 거칠기를 제어할 수 있다.
마지막으로 상기 6) 단계는, 마이크로 입자를 세척 및 건조하는 단계로, 교반하여 표면의 유기 용매를 모두 제거한 마이크로 입자를 제균 여과된 정제수로 수 차례 세척하여 마이크로 입자에 잔존하는 계면활성제를 제거하고, 이후 동결 건조한다.
최종적으로 생성된 마이크로 입자는 구형의 생분해성 고분자로 이루어진 마이크로 입자에 류프로라이드가 고르게 분포되어 있는 형태이며, 류프로라이드 및 생분해성 고분자를 1:2 내지 1:10의 중량 비율로 포함한다.
상기 마이크로 입자 내에 포함된 류프로라이드 및 생분해성 고분자의 중량 비율은 제1 혼합물에서의 중량 비율과 동일한데, 이는 마이크로 입자를 제조하고, 유기 용매를 모두 증발시켜 제거함에 따라, 제1 혼합물 내에서의 중량 비율과 동일한 비율로 류프로라이드 및 생분해성 고분자를 함유한 마이크로 입자를 제조할 수 있다.
본 발명의 다른 일 실시예에 따른 류프로라이드를 포함하는 마이크로 입자를 함유한 주사용 조성물은 류프로라이드를 포함하는 마이크로 입자; 및 현탁 용제를 포함할 수 있다.
상기 주사용 조성물은 현탁 용제에 마이크로 입자가 균일하게 포함된 형태로, 주사용 조성물을 투여 시, 체내에 마이크로 입자 자체를 주입하여, 류프로라이드의 장기간 투여 효과를 나타낼 수 있다.
보다 구체적으로, 체내에 마이크로 입자가 주입되면, 생분해성 고분자의 분해에 의해 류프로라이드가 방출되는 효과가 나타나게 되고, 이때, 본 발명의 마이크로 입자는 생분해성 고분자 및 류프로라이드가 균일하게 혼합된 형태이므로, 장시간 일정한 농도의 류프로라이드의 투여 효과를 나타낼 수 있다.
즉 본 발명의 주사용 조성물을 이용하여 1회 주사 시, 1개월 이상 체내에서 류프로라이드가 지속적으로 방출됨에 따라, 매일 복용해야 되는 문제를 해결하여 사용자의 편의성을 높일 수 있다. 보다 구체적으로, 본 발명의 주사용 조성물을 이용하는 경우, 1개월 동안 류프로라이드가 지속적으로 방출될 수 있는 장기 지속 제형, 3개월 동안 류프로라이드가 지속적으로 방출될 수 있는 장기 지속 제형 또는 6개월 동안 류프로라이드가 지속적으로 방출될 수 있는 장기 지속 제형으로 제공될 수 있다.
상기 현탁 용제는 등장화제, 현탁화제 및 용제를 포함한다.
보다 구체적으로, 상기 등장화제는 D-만니톨(D-Mannitol), 말티톨(Maltitol), 솔비톨(Sorbitol), 락티톨(Lactitol), 자일리톨(Xylitol), 염화나트륨(Sodium chloride) 및 이의 혼합으로 이루어진 군으로부터 선택될 수 있으며, 바람직하게는 D-만니톨이지만, 상기 예시에 국한되지 않는다.
상기 현탁화제는 카르복시메틸셀룰로오스나트륨(Soduim Carboxymethylcellulose), 폴리소르베이트80(Polysorbate 80), 녹말(starch), 녹말 유도체, 다가알콜류, 키토산(chitosan), 키토산 유도체, 셀룰로스(cellulose), 셀룰로스 유도체, 콜라겐(collagen), 젤라틴 (gelatin), 히알루론산(hyaluronic acid, HA), 알긴산(alginic acid), 알진(algin), 펙틴(pectin), 카라기난(carrageenan), 콘드로이틴(chondroitin), 콘드로이틴 설페이트(chondroitin sulfate), 덱스트란(dextran), 덱스트란 설페이트(dextran sulfate), 폴리라이신(polylysine), 티틴(titin), 피브린(fibrin), 아가로스 (agares), 플루란(fluran), 잔탄검(xanthan gum) 및 이의 혼합으로 이루어진 군으로부터 선택되며, 바람직하게는 카르복시메틸셀룰로오스나트륨 및 폴리소르베이트 80이지만, 상기 예시에 국한되지 않는다.
상기 용제는 주사용수(Injection water)를 이용할 수 있으며, 주사용수로 사용가능한 용제는 제한 없이 모두 사용 가능하다.
제조예 1
류프로라이드를 포함하는 마이크로 입자의 제조
류프로라이드 아세테이트를 디메틸설폭사이드(Dimethyl sulfoxide)에 용해하여 API 혼합물을 제조하였다. 폴리(락타이드-코-클리콜라이드)(PLGA)를 디클로로메탄에 용해시켜 생분해성 고분자 혼합물을 제조하였다.
상기 API 혼합물 및 생분해성 고분자 혼합물을 혼합하여 제1 혼합물을 제조하였다. 이때, 제1 혼합물 내의 류프로라이드 아세테이트 및 생분해성 고분자의 중량 비율은 1:5이다.
계면활성제인 폴리비닐알콜을 물에 혼합하여, 폴리비닐알콜을 0.5 중량% 포함하는 제2 혼합물을 제조하였다.
상기 제1 혼합물 및 제2 혼합물을 실리콘 웨이퍼 상에 형성된 마이크로 채널에 주입하여 흐르게 하였다.
이때, 제1 혼합물 및 제2 혼합물을 일정한 유속으로 흐르게 하기 위해, 제1 혼합물은 1000mbar의 압력 조건으로 시작하여 분당 20mbar의 상승률로 일정하게 압력을 상승시키는 조건 하에 흐르게 한 후 1200mbar에 도달하였을 때 분당 7mbar의 상승률로 변경한 조건 하에서 흐르게 하였고, 제2 혼합물은 3000mbar의 압력 조건 하에서 흐르게 하였다. 온도 조건은 17℃, 교반 속도는 300rpm을 유지하였다.
상기 제1 혼합물의 흐름 및 제2 혼합물의 흐름이 만나는 교차점에서 생성된 마이크로 입자를 제2 혼합물이 담긴 수조 내에서 수집하였다. 상기 수조 내에 수집된 마이크로 입자를 17℃에서 30분 동안 300rpm의 속도로 1차 교반하고, 38℃로 온도를 상승시켜, 1시간 동안 400rpm의 속도로 2차 교반하고, 이후 45℃로 온도를 상승시켜, 3시간 동안 500rpm의 속도로 3차 교반 하였다.
교반을 완료한 마이크로 입자를 제균 여과된 정제수로 수 차례 세척하고, 동결 건조하여 마이크로 입자를 제조하였다.
제조예 2
생분해성 고분자로, 폴리(락타이드-코-글리콜라이드)(PLGA) 및 폴리락타이드(PLA)를 1.7 대 18.3의 중량 비율로 디클로로메탄에 용해하여 생분해성 고분자 혼합물을 제조한 것을 제외하고, 제조예 1과 동일한 방법으로 마이크로 입자를 제조하였다.
제조예 3
생분해성 고분자로 폴리락타이드(PLA)를 디클로로메탄에 용해하여 생분해성 고분자 혼합물을 제조한 것을 제외하고, 제조예 1과 동일한 방법으로 마이크로 입자를 제조하였다.
이후, 제조예 1의 마이크로 입자 및 제조예 3의 마이크로 입자를 1:3의 중량 비율로 혼합하였다.
제조예 4
제조예 1의 마이크로 입자 및 제조예 3의 마이크로 입자를 1:4의 중량 비율로 혼합하였다.
제조예 5
상기 제1 혼합물 내의 류프로라이드 아세테이트 및 생분해성 고분자의 중량 비율이 1:4인 것을 제외하고, 제조예 1과 동일한 방법으로 마이크로 입자를 제조하였다.
제조예 6
상기 제1 혼합물 내의 류프로라이드 아세테이트 및 생분해성 고분자의 중량 비율이 1:7인 것을 제외하고, 제조예 1과 동일한 방법으로 마이크로 입자를 제조하였다.
제조예 7
상기 제1 혼합물 내의 류프로라이드 아세테이트 및 생분해성 고분자의 중량 비율이 1:2인 것을 제외하고, 제조예 1과 동일한 방법으로 마이크로 입자를 제조하였다.
비교예 1
비교예로, 시중에 판매중인 루프린 DPS주(한국 다케다 제약)를 이용하였다. 상기 루프린 DPS주에 대한 구체적인 정보는 하기와 같다.
구분 루프린DPS주(한국다케다제약)
류프로라이드 아세테이트 11.25
PLA 99.30
D-mannitol 19.45
총량(mg) 130.00
API : Polymer ratio 1 : 8.827
상기 마이크로 입자는 주사 제형으로 제조하였으며, 하기 현탁 용제를 사용하였다.
함량기준 배합목적 성분명 분량 단위
2.0 mL 등장화제 D-만니톨
(D-Mannitol)
100.0 Mg
현탁화제 카르복시메틸셀룰로오스나트륨
(Soduim Carboxymethylcellulose)
10.0 mg
현탁화제 폴리소르베이트80(Polysorbate 80) 10.0 mg
용제 주사용수(Injection water) 나머지
실험예 1
마이크로 입자의 성상 검토
제조예 및 비교예에 대한 마이크로 입자의 성상을 검토하기 위하여, 제조된 마이크로 입자의 성상을 SEM 사진을 통해 검토하였다.
도 1 및 2는 제조예 1 내지 7의 마이크로 입자의 SEM 사진에 관한 것으로, 완전 구형의 서방성 입자가 생성되는 것을 확인할 수 있다.
도 3 및 4는 비교예 1의 루프린 DPS주의 SEM 사진으로, 불균일한 입자가 혼재되어 있는 것을 확인할 수 있다.
마이크로 입자의 직경을 구체적으로 확인하기 위해, Microtrac 입도분석기을 이용하여 제조예 1, 제조예 2 및 비교예 1에 대한 분석을 진행하였다.
제조예 1 제조예 2 비교예 1
%Tile Size(㎛) %Tile Size(㎛) %Tile Size(㎛)
10.00 55.29 10.00 72.26 10.00 5.88
20.00 57.56 20.00 75.28 20.00 9.23
30.00 59.57 30.00 77.38 30.00 12.20
40.00 61.46 40.00 79.18 40.00 15.71
50.00 63.29 50.00 80.99 50.00 19.21
60.00 65.10 60.00 82.85 60.00 23.67
70.00 66.98 70.00 84.84 70.00 28.88
80.00 69.06 80.00 87.23 80.00 35.15
90.00 71.49 90.00 91.49 90.00 44.08
95.00 73.09 95.00 95.78 95.00 52.07
Figure PCTKR2022018982-appb-img-000008
1.025
Figure PCTKR2022018982-appb-img-000009
1.20
Figure PCTKR2022018982-appb-img-000010
1.87
상기 표 3에 의하면, 비교예 1은 D10 내지 D95의 입자 직경이 5.88㎛ 내지 52.07㎛로 다양하게 분포하는 걸 확인할 수 있다. 이는 앞서 설명한 바와 같이, 초기 과방출을 위해, 다양한 크기의 마이크로 입자를 포함하도록 구성한 것이다.
반면, 본 발명의 마이크로 입자는, 55.29㎛ 내지 73.09㎛(제조예 1) 및 72.26㎛ 내지 95.78㎛(제조예 2)로, 입자의 직경 분포가 균일하게 분포하는 것을 확인할 수 있다. 또한, 상기 식에 의한 값도, 제조예 1 및 제조예 2는 1에 가까운 값을 나타내는 것을 확인할 수 있는 반면, 비교예 1은 1보다 큰 값으로, 크기 분포가 균일하지 않은 것을 확인할 수 있다.
다른 비교예로 시중에 판매 중인 류프로라이드 제형에 대해 구매하고, 이에 대한 입자의 성상을 SEM 사진으로 확인하였다.
도 5는 로렐린데포주(동국제약)에 관한 것이며, 도 7은 루피어데포주(대웅제약)에 관한 것이다.
상기 도 5 및 도 6에 의하면, 입자의 크기가 균일하지 않고, 다양하게 분포하고 있음을 확인할 수 있고, 입자의 표면이 매끈하지 않고 거친 표면 상태를 나타냄을 확인할 수 있다.
실험예 2
약동학 특성 평가
본 발명의 류프로라이드를 포함하는 마이크로 입자 및 이를 함유한 주사 제형에 대한 약동학 평가를 확인하였다
상기 마이크로 입자는 1개월 이상 지속 방출 제형으로, 주사 후 1개월 동안 류프로라이드를 지속적으로 방출하여 류프로라이드에 의한 약효를 유지하는지 여부를 확인하였다.
본 발명의 마이크로 입자를 통해, 쥐에 투여되는 류프로라이드 아세테이트는 0.1mg/kg이다.
체내 혈중 농도를 확인하기 위해, 10마리의 쥐에 주사하고, 24h, 18h, 12h, 6h, 0h, 주사제를 쥐에 투여 후, 0.5h, 1h, 3h, 6h, 1day, 2day, 3day, 4day, 1week, 2week, 3week 및 4week에 채혈하고, 분석하였다. 하기 PK값은 10마리 쥐에 대한 PK 평균 값이다.
Time TIME (hr) PK
제조예 1
  -24 0
  -18 0
  -12 0
  -6 0
  0 0
  0.5 4.12
  1 13.32
  3 13.13
  6 8.76
1d 24 4.78
2d 48 1.92
3d 72 1.17
4d 96 0.86
1w 168 1.61
2w 336 2.09
3w 504 1.86
4w 672 1.68
5w 840 2.20
 
Figure PCTKR2022018982-appb-img-000011
 
2.79
동일한 방식으로 3개월 동안 약물이 지속 방출되는지 여부를 확인하기 위해, 본 발명의 3개월 이상 지속 방출 제형인 마이크로 입자를 통해, 쥐에 투여되는 류프로라이드 아세테이트는 0.3mg/kg으로 조절한 것을 제외하고 동일한 방식으로 실험을 진행하였다. 비교예 1에 대해서도 동일한 방식으로 실험을 진행하였다.
실험 결과는 하기 표 5와 같다.
Day PK
d 제조예 2 비교예 1
-1 0 0
-0.75 0 0
-0.5 0 0
-0.25 0 0
0 0 0
0.01 346.813 4803.779
0.02 460.551 6660.572
0.04 486.102 7475.354
0.08 273.596 7589.883
0.13 128.908 5184.862
0.25 66.350 1287.771
0.5 148.698 643.497
1 87.603 401.335
2 55.667 44.172
3 35.895 22.934
4 34.396 21.015
7 21.016 10.414
14 6.501 14.327
21 5.358 16.114
28 5.993 17.985
42 23.749 22.018
56 93.315 28.323
84 54.991 30.565
91 26.798 19.457
Figure PCTKR2022018982-appb-img-000012
5.55 18.91
상기 Cmax는 주사제를 투여하고, 24시간 동안의 류프로라이드의 최대 혈중 농도이고, 상기 C24h는 주사제를 투여하고 24시간 경과 후, 채혈한 혈액 내 류프로라이드의 혈중 농도 값이다.
상기 표 4 및 표 5에 의하면 본 발명의 마이크로 입자는 1개월 제형 및 3개월 제형 모두에서 초기 과방출이 없고, 1개월 또는 3개월 동안 류프로라이드가 지속적으로 방출되는 것을 확인할 수 있다.
상기 식에 의한 값을 계산한 결과에서도, 1개월 제형은 2.79이고, 3개월 제형은 5.55로 본 발명의 범위 내에 포함되는 것을 확인할 수 있으나, 비교예 1은 18.91로 본 발명의 범위를 벗어나는 것을 확인할 수 있다.
또한, 비교예 1은 본 발명과 비교하여 초기 과방출이 많이 일어나는 것을 실험을 통해 확인할 수 있다.
실험예 3
약동학 특성 평가
본 발명의 류프로라이드를 포함하는 마이크로 입자 및 이를 함유한 주사 제형에 대한 약동학 평가를 확인하였다.
평가는 비교예 1 및 본 발명의 제조예 2의 제형을 비글견에 투여하고, 채혈하여 류프로라이드의 혈중 농도(PK) 및 테스토스테론의 혈중 농도(PD)를 측정하였다.
상기 3개월 이상 지속방출 제형으로 이용한 제조예 1의 마이크로 입자를 포함하는 주사제는 총 92.64mg이며, 주사제 내 류프로라이드는 11.25mg 포함하였다. 또한, 비교예 1은 루프린DPS주 11.25mg을 비글견에 투여하였다.
실험을 위해, 제조예 1 및 비교예 1을 각 비글견 5마리에 투여하였으며, 투여 경로는 정맥 주사 방식을 이용하였다.
상기 제조예 1 및 비교예 1을 비글견에 투여 전 24h, 18h, 12h, 6h, 0h, 제조예 1 및 비교예 1을 비글견에 투여 후, 0h, 0.25h, 0.5h, 1h, 2h, 3h, 6h, 12h, 1day, 2day, 3day, 4day, 1week, 2week, 3week, 4week, 6week, 8week, 12week, 13week 및 14week에 채혈하고, 분석하였다.
채혈 후 5마리 비글견에 대한 PK 및 PD의 평균 값을 계산하였다. 실험 결과는 하기 표 6, 도 7 내지 도 9와 같다.
Time
(w)
Time
(d, w)
Time (h) PK PD
제조예 2 비교예 1 제조예 2 비교예 2
-0.143 -24 0 0 1.014 1.378
-0.107 -18 0 0 1.119 1.569
-0.071 -12 0 0 2.450 2.924
-0.036 -6 0 0 0.950 1.462
0.000 0 0 0 0.913 3.017
0.001 0.25 0.065 23.476 1.167 1.904
0.003 0.5 0.205 43.535 2.252 4.078
0.006 1 0.351 98.570 4.454 5.043
0.012 2 0.407 83.505 4.972 6.029
0.018 3 0.365 61.216 5.406 6.271
0.036 6 0.187 16.511 4.752 6.119
0.071 12 0.081 3.017 3.383 4.940
0.143 1d 24 0.119 1.871 3.257 5.212
0.286 2d 48 0.106 1.249 2.742 4.702
0.429 3d 72 0.079 1.099 2.451 7.203
0.571 4d 96 0.087 0.994 1.026 3.381
1 1w 168 0.050 1.277 0.666 1.626
2 2w 336 0.027 0.491 1.356 0.517
3 3w 504 0.067 0.088 1.454 1.500
4 4w 672 1.032 0.102 0.574 1.187
6 6w 1008 0.953 0.086 0.005 1.035
8 8w 1344 0.930 0.121 0 0.929
12 12w 2016 0.958 0.133 0 0.799
13 13w 2184 1.353 0.095 0 0.743
14 14w 2352 0.941 0.092 0 1.143
Figure PCTKR2022018982-appb-img-000013
3.42 52.68 - -
상기 Cmax는 주사제를 투여하고, 24시간 동안의 류프로라이드의 최대 혈중 농도이고, 상기 C24h는 주사제를 투여하고 24시간 경과 후, 채혈한 혈액 내 류프로라이드의 혈중 농도 값이다.
상기 실험 결과에 의하면, 본 발명의 마이크로 입자를 포함하는 주사제는 PK 측정 결과, 주사제 투여 후, 24시간 동안 류프로라이드의 최대 혈중 농도가 0.407ng/ml이고, 비교예 1은 98.570ng/ml로 큰 차이를 나타냄을 확인하였다. 이에 상기 식에 의한 값이 본 발명은 3.42로 확인되었으며, 비교예 1은 52.68로 큰 차이를 나타냄을 확인하였다.
또한, PD 측정 결과에 의하면, 본 발명의 마이크로 입자는 6주 경과 시점에서 0.5ng/ml로 거세 효과가 발현되는 것을 확인할 수 있는 반면, 비교예 1은 0.5ng/ml 이하로 나타나지 않아, 실질적인 거세 효과가 나타나지 않음을 확인할 수 있다.
즉, 보다 구체적으로 도 9는 제조예 2 및 비교예 1을 투여하고, PD 값을 확인하기 위한 비교 결과로, 제조예 2의 PD 값은 5주가 경과한 이후, 0.5ng/ml 이하로 테스토스테론 수치가 나타나는 것을 확인할 수 있어, 류프로라이드에 의해 효과가 발현됨을 확인할 수 있다. 반면 비교예 1의 경우, 14주 동안 혈중 테스토스테론 수치를 확인한 결과, 0.5ng/ml 이상으로 확인되어, 류프로라이드에 의한 효과가 나타나지 않는 것을 확인할 수 있다.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
본 발명은 류프로라이드를 포함하는 마이크로 입자 및 이의 제조 방법에 관한 것이다.

Claims (8)

  1. 류프로라이드 및 생분해성 고분자를 포함하며,
    마이크로 입자의 평균 직경은 40 내지 100㎛이며,
    하기 식 1에 의한 값이 0.5 내지 2인
    류프로라이드를 포함하는 마이크로 입자:
    [식 1]
    Figure PCTKR2022018982-appb-img-000014
    여기서,
    D10은 입자의 누적분포에서 최대값에 대하여 10%에 해당하는 입자의 직경이며,
    D50은 입자의 누적분포에서 최대값에 대하여 50%에 해당하는 입자의 직경이며,
    D90은 입자의 누적분포에서 최대값에 대하여 90%에 해당하는 입자의 직경이다.
  2. 제1항에 있어서,
    상기 류프로라이드 및 생분해성 고분자는 1:2 내지 1:10의 중량 비율로 포함하는
    류프로라이드를 포함하는 마이크로 입자.
  3. 제1항에 있어서,
    주사제로 투여 시, 표적 부위에서 류프로라이드의 방출 속도가 조절되어, 초기 과방출의 문제가 없고,
    상기 류프로라이드에 의해 테스토스테론의 억제 효과가 1개월 이상 지속되는
    류프로라이드를 포함하는 마이크로 입자.
  4. 제1항에 있어서,
    하기 식 2에 의한 값이 1 내지 15인
    류프로라이드를 포함하는 마이크로 입자:
    [식 2]
    Figure PCTKR2022018982-appb-img-000015
    여기서,
    류프로라이드를 포함하는 마이크로 입자를 비글견에 주사제로 투여하고, 류프로라이드의 혈중 농도를 측정한 것으로,
    상기 1회 주사에 의해 비글견에 투여된 류프로라이드 아세테이트가 11.25mg이며,
    Cmax는 주사제를 투여하고, 24시간 동안의 류프로라이드의 최대 혈중 농도이고,
    C24h는 주사제를 투여하고 24시간 경과 후, 채혈한 혈액 내 류프로라이드의 혈중 농도 값이다.
  5. 1) 류프로라이드 및 생분해성 고분자를 혼합하여 제1 혼합물을 제조하는 단계;
    2) 용매에 계면활성제를 용해하여 제2 혼합물을 제조하는 단계;
    3) 상기 제1 혼합물 및 제2 혼합물은 교차점이 형성된 제1 마이크로 채널 및 제2 마이크로 채널에 각 주입하여 흐르게 하여 상기 교차점에서 마이크로 입자를 생성하는 단계;
    4) 상기 마이크로 입자를 상기 제2 혼합물이 담긴 수조 내에 수집하는 단계;
    5) 상기 수집한 마이크로 입자에 존재하는 유기 용매를 제거하는 단계; 및
    6) 상기 유기 용매가 제거된 마이크로 입자를 정제수로 세척 및 동결 건조하는 단계를 포함하며,
    하기 식 1에 의한 값이 0.5 내지 2인
    류프로라이드를 포함하는 마이크로 입자의 제조 방법:
    [식 1]
    Figure PCTKR2022018982-appb-img-000016
    여기서,
    D10은 입자의 누적분포에서 최대값에 대하여 10%에 해당하는 입자의 직경이며,
    D50은 입자의 누적분포에서 최대값에 대하여 50%에 해당하는 입자의 직경이며,
    D90은 입자의 누적분포에서 최대값에 대하여 90%에 해당하는 입자의 직경이다.
  6. 제5항에 있어서,
    상기 제1 혼합물을 제1 마이크로 채널에 주입 시, 700 내지 1,300mbar의 압력 조건으로 주입 후, 10 내지 30mbar/min의 제1 조건으로 압력을 상승시키고,
    상기 주입 압력 조건이 950 내지 1,500mbar에 도달 시, 2 내지 8mbar/min의 제2 조건으로 압력을 상승시키는
    류프로라이드를 포함하는 마이크로 입자의 제조 방법.
  7. 제5항에 있어서,
    상기 제2 혼합물은 상기 제1 혼합물을 제1 마이크로 채널의 주입할 때, 압력 조건 대비 2 내지 4배의 압력 조건으로 제2 마이크로 채널로 주입되는
    류프로라이드를 포함하는 마이크로 입자의 제조 방법.
  8. 제5항에 있어서,
    상기 5) 단계는,
    5-1) 15 내지 20℃에서 20 내지 40분 동안 100 내지 300rpm의 속도로 1차 교반하는 단계;
    5-2) 30내지 40℃에서 60 내지 120 분 동안 100 내지 300rpm의 속도로 2차 교반하는 단계; 및
    5-3) 40 내지 45℃에서 4 내지 8시간 동안 100 내지 300rpm의 속도로 3차 교반하는 것인
    류프로라이드를 포함하는 마이크로 입자의 제조 방법.
PCT/KR2022/018982 2021-12-03 2022-11-28 류프로라이드를 포함하는 마이크로 입자 및 이의 제조 방법 WO2023101348A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22901706.6A EP4420657A1 (en) 2021-12-03 2022-11-28 Microparticles containing leuprolide, and preparation method thereof
CN202280079931.8A CN118354762A (zh) 2021-12-03 2022-11-28 含有亮丙瑞林的微粒及其制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210171567A KR102386163B1 (ko) 2021-12-03 2021-12-03 류프로라이드를 포함하는 마이크로 입자 및 이의 제조 방법
KR10-2021-0171567 2021-12-03

Publications (1)

Publication Number Publication Date
WO2023101348A1 true WO2023101348A1 (ko) 2023-06-08

Family

ID=81211258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/018982 WO2023101348A1 (ko) 2021-12-03 2022-11-28 류프로라이드를 포함하는 마이크로 입자 및 이의 제조 방법

Country Status (6)

Country Link
US (1) US12016897B2 (ko)
EP (1) EP4420657A1 (ko)
KR (1) KR102386163B1 (ko)
CN (1) CN118354762A (ko)
TW (1) TWI835445B (ko)
WO (1) WO2023101348A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102386163B1 (ko) 2021-12-03 2022-04-14 (주)인벤티지랩 류프로라이드를 포함하는 마이크로 입자 및 이의 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030064401A (ko) 2000-09-21 2003-07-31 아트릭스 라보라토리스, 인코포레이티드 개선된 효능을 갖는 류프롤리드의 중합체 전달 제제
KR101039237B1 (ko) * 2010-10-12 2011-06-07 동국제약 주식회사 새로운 용출률이 개선된 서방출성 미립구의 제조방법
KR102157124B1 (ko) * 2019-12-23 2020-09-18 (주)인벤티지랩 피나스테라이드를 포함하는 서방성 주사용 조성물
KR102259589B1 (ko) * 2020-11-30 2021-06-02 (주)인벤티지랩 미소구체 제조 시스템 및 미소구체 제조 방법
KR102386163B1 (ko) * 2021-12-03 2022-04-14 (주)인벤티지랩 류프로라이드를 포함하는 마이크로 입자 및 이의 제조 방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001010414A1 (en) * 1999-08-04 2001-02-15 Oakwood Laboratories L.L.C. Slow release microspheres
WO2015052204A1 (en) * 2013-10-08 2015-04-16 Ferring Bv Microparticles comprising gnrh made by pgss
WO2018136909A1 (en) 2017-01-23 2018-07-26 Savior Lifetec Corporation Preparation of microparticles of an active ingredient

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030064401A (ko) 2000-09-21 2003-07-31 아트릭스 라보라토리스, 인코포레이티드 개선된 효능을 갖는 류프롤리드의 중합체 전달 제제
KR101039237B1 (ko) * 2010-10-12 2011-06-07 동국제약 주식회사 새로운 용출률이 개선된 서방출성 미립구의 제조방법
KR102157124B1 (ko) * 2019-12-23 2020-09-18 (주)인벤티지랩 피나스테라이드를 포함하는 서방성 주사용 조성물
KR102259589B1 (ko) * 2020-11-30 2021-06-02 (주)인벤티지랩 미소구체 제조 시스템 및 미소구체 제조 방법
KR102386163B1 (ko) * 2021-12-03 2022-04-14 (주)인벤티지랩 류프로라이드를 포함하는 마이크로 입자 및 이의 제조 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SATAPATHY SOUMYA, SAHOO RUDRA, SATAPATHY BISWARANJAN, IMMANI RAMACHANDRARAO, PANIGRAHI LALATENDU, MALLICK SUBRATA: "Development and Characterization of Leuprolide Acetate Encapsulated PLGA Microspheres for Parenteral Controlled Release Depot Injection", INDIAN JOURNAL OF PHARMACEUTICAL EDUCATION AND RESEARCH, ASSOCIATION OF PHARMACEUTICAL TEACHERS OF INDIA IND, IN, vol. 55, no. 1, 1 March 2021 (2021-03-01), IN , pages 107 - 116, XP009546701, ISSN: 0019-5464, DOI: 10.5530/ijper.55.1.14 *

Also Published As

Publication number Publication date
EP4420657A1 (en) 2024-08-28
US20230173015A1 (en) 2023-06-08
CN118354762A (zh) 2024-07-16
TW202322801A (zh) 2023-06-16
TWI835445B (zh) 2024-03-11
US12016897B2 (en) 2024-06-25
KR102386163B1 (ko) 2022-04-14

Similar Documents

Publication Publication Date Title
WO2022050783A1 (ko) 약물의 지속 방출을 위한 서방형 마이크로입자
WO2010056065A9 (en) Method for preparing microspheres and microspheres produced thereby
WO2011081406A2 (ko) 단백질, 폴리펩타이드 또는 펩타이드 약물 전달용 고분자 및 그 제조방법, 및 단백질, 폴리펩타이드 또는 펩타이드 약물의 서방형 조성물 및 그 제조 방법
WO2023101348A1 (ko) 류프로라이드를 포함하는 마이크로 입자 및 이의 제조 방법
WO2016108534A1 (ko) 고분자 나노입자 동결건조물 및 그 제조방법
WO2020197190A1 (en) Method for preparing biocompatible polymer-based apixaban-loaded microspheres
WO2020197185A1 (en) Compositions of dispersed phase for preparation of apixaban-loaded microspheres and biocompatible polymer-based apixaban-loaded microspheres prepared therefrom
WO2018147660A1 (ko) 정신질환 또는 중추신경계 질환 치료용 약물전달 제형
WO2016114521A1 (ko) 안정성이 개선된 정제형태의 두타스테리드 조성물
WO2022010317A1 (ko) 도네페질 함유 서방출성 plga 미립구의 제조방법
WO2012087051A2 (en) Microparticles containing physiologically active peptide, method for preparing the same, and pharmaceutical composition comprising the same
EP3188720A1 (en) Tadalafil oral dispersible film and preparing method thereof
WO2020130585A1 (ko) 데슬로렐린을 함유하는 서방형 주사제 및 그 제조방법
WO2023038202A1 (ko) 생분해성 고분자를 이용한 서방형 미립구 및 이의 제조방법
WO2022124508A1 (ko) 조직 수복용 주사제 조성물 및 이의 제조 방법
WO2023090922A1 (ko) 날트렉손을 포함하는 서방성 주사용 조성물 및 이의 제조 방법
WO2021242021A1 (ko) 글루카곤 유사 펩타이드 1 작용제 함유 제어방출 미립구 및 이의 제조방법
WO2023158228A1 (ko) 데슬로렐린을 포함하는 서방성 주사용 조성물
WO2021261926A1 (ko) 치매치료를 위한 장기지속형 주사제
WO2024049279A2 (ko) 루프롤라이드를 포함하는 서방형 미립구, 이를 포함하는 주사제제 및 이의 제조방법
WO2024101859A1 (ko) 덱사메타손 아세테이트를 포함하는 서방형 주사제제 및 그 제조방법
WO2022114876A1 (ko) 캐스파제 저해제를 함유하는 주사용 조성물 및 이의 제조 방법
WO2023090899A1 (ko) 난용성 약물을 포함하는 마이크로 입자의 제조 방법
WO2024019439A1 (ko) 두타스테라이드를 포함하는 서방성 주사용 조성물
WO2024219854A1 (ko) 리라글루티드 함유 plga 미립구의 제조방법, 이에 따라 제조된 서방출성 미립구, 및 이를 포함하는 주사제용 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22901706

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022901706

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2024532892

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280079931.8

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2022901706

Country of ref document: EP

Effective date: 20240521

NENP Non-entry into the national phase

Ref country code: DE