WO2021132726A1 - シリカマイクロカプセル - Google Patents

シリカマイクロカプセル Download PDF

Info

Publication number
WO2021132726A1
WO2021132726A1 PCT/JP2020/049255 JP2020049255W WO2021132726A1 WO 2021132726 A1 WO2021132726 A1 WO 2021132726A1 JP 2020049255 W JP2020049255 W JP 2020049255W WO 2021132726 A1 WO2021132726 A1 WO 2021132726A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica
shell
microcapsules
organic compound
primary alcohol
Prior art date
Application number
PCT/JP2020/049255
Other languages
English (en)
French (fr)
Inventor
理紗 沢田
達也 諸藤
山崎 大輔
義人 古賀
智彦 市川
晴美 清藤
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to US17/789,104 priority Critical patent/US20230050059A1/en
Priority to CN202080090466.9A priority patent/CN114845804A/zh
Priority to EP20907520.9A priority patent/EP4082623A4/en
Priority to JP2021567771A priority patent/JPWO2021132726A1/ja
Publication of WO2021132726A1 publication Critical patent/WO2021132726A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/11Encapsulated compositions
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/26Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests in coated particulate form
    • A01N25/28Microcapsules or nanocapsules
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N31/00Biocides, pest repellants or attractants, or plant growth regulators containing organic oxygen or sulfur compounds
    • A01N31/02Acyclic compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P17/00Pest repellants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/25Silicon; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/34Alcohols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/34Alcohols
    • A61K8/342Alcohols having more than seven atoms in an unbroken chain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/58Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing atoms other than carbon, hydrogen, halogen, oxygen, nitrogen, sulfur or phosphorus
    • A61K8/585Organosilicon compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5015Organic compounds, e.g. fats, sugars
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q13/00Formulations or additives for perfume preparations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • B01J13/16Interfacial polymerisation
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B9/00Essential oils; Perfumes
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0039Coated compositions or coated components in the compositions, (micro)capsules
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/001Softening compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/08Silicates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2003Alcohols; Phenols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2003Alcohols; Phenols
    • C11D3/2006Monohydric alcohols
    • C11D3/2027Monohydric alcohols unsaturated
    • C11D3/2031Monohydric alcohols unsaturated fatty or with at least 8 carbon atoms in the alkenyl chain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/412Microsized, i.e. having sizes between 0.1 and 100 microns
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/12Soft surfaces, e.g. textile

Definitions

  • the present invention relates to silica microcapsules.
  • microcapsules containing fragrances and bioactive agent substances have been developed and used in a wide range of business fields such as cosmetics, pharmaceuticals, general household products, and printing.
  • Melamine resin and aminoplast resin such as polyurea / urethane resin have been used as the shell constituting the microcapsules.
  • microcapsules are inevitably discharged into the environment, and in recent years, they have contributed to a substance of concern called microplastics. Therefore, it is desired to develop microcapsules having high environmental friendliness as an alternative to aminoplast resin.
  • silica microcapsules having a shell containing silica as a constituent are attracting attention as materials that can be expected to be environmentally friendly.
  • high density of the shell is required for long-term stable blending in preparations containing oils such as cosmetics, liquid detergents and fabric softeners, and preparations containing high concentrations of surfactants.
  • the pharmaceutical product has various pHs and viscosities depending on its use, and is required to be able to be blended in a pharmaceutical product having a wide range of physical characteristics. Therefore, various silica capsules have been studied so far.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 4-265149 contains a hydrophobic substance such as a fragrance using colloidal silica or fumed silica for the purpose of providing a micro-encapsulated substance containing a hydrophobic substance.
  • a hydrophobic substance such as a fragrance using colloidal silica or fumed silica for the purpose of providing a micro-encapsulated substance containing a hydrophobic substance.
  • a microencapsulation containing an outer silica layer is described.
  • shells containing silica as a constituent component and core-shell type microcapsules containing an oil-soluble component as a core component have also been studied.
  • Patent Document 2 describes a microcapsule particle composition or the like having a core material encapsulated in a microcapsule shell, and uses a fragrance as a core material and a cationic surfactant. It is described that a silica capsule particle composition having a strong shell can be obtained by forming silica capsule particles as an emulsifier and then treating the silica capsule particles with polyethyleneimine or the like.
  • Patent Document 3 describes a method for preparing microcapsules having a sunscreen component or the like as a core, and a cationic surfactant and a nonionic surfactant are used in combination to be used outside the system (Patent Document 3).
  • Japanese Patent Application Laid-Open No. 2012-501849 shows the stability of the aqueous suspension of silicate shell microcapsules, in which a colloidal silicate sequestering agent is added to the aqueous suspension of silicate shell microcapsules and colloidal silicate particles. How to improve is described.
  • Japanese Patent Application Laid-Open No. 2012-501849 shows the stability of the aqueous suspension of silicate shell microcapsules, in which a colloidal silicate sequestering agent is added to the aqueous suspension of silicate shell microcapsules and colloidal silicate particles. How to improve is described.
  • Patent Document 5 describes a core made of an organic compound such as a fragrance, a first shell that encloses the core, and a method for producing microcapsules having a second shell that encloses the first shell. It is described that the shell of microcapsules is formed by a two-step sol-gel reaction to increase the tightness and strength of the shell.
  • the present invention is a silica microcapsule having a shell and a core containing one or more organic compounds inside the shell.
  • the shell contains silica as a constituent.
  • the organic compound relates to silica microcapsules containing primary alcohols.
  • primary alcohol is widely used in compounded fragrances as an active ingredient for cosmetics and pharmaceuticals, and as a soft and low threshold fragrance ingredient, and is an important ingredient as an inclusion component of microcapsules.
  • alcohol-based fragrances are often used as blended fragrances because they have a softer scent than ester-based fragrances and have a low threshold value.
  • primary alcohols are excellent in fragrance and impart a fresh scent. It is preferred because it can be used and has a high palatability. Therefore, from the viewpoint of improving the degree of freedom of blending into the applicable formulation and controlling the particle size distribution, it is also required to reduce the particle size of the silica capsule.
  • the step of emulsifying the aqueous phase component containing a surfactant and the oil phase component containing the contained organic compound and the raw material silica (silica precursor) is performed.
  • the particle size of the obtained silica capsule depends on the particle size of the emulsified droplet of the emulsion obtained by this emulsification treatment, fine emulsified droplets can be formed in a shorter time, and the silica having a smaller particle size can be formed. There is also a need to improve the production efficiency of capsules.
  • the present inventors have found that the particle size of silica capsules can be unexpectedly reduced by using a primary alcohol as an inclusion component, and have reached the present invention.
  • the present invention is a method for producing silica microcapsules containing an organic compound containing a primary alcohol, a softening agent composition containing the silica microcapsules, and silica microcapsules having excellent production efficiency of silica capsules having a small particle size. Regarding.
  • the present inventors can obtain silica microcapsules having a smaller particle size by using core-shell type silica microcapsules having a core containing an organic compound containing a primary alcohol and a shell containing silica as a constituent component.
  • the present invention relates to the following [1] to [4].
  • the shell contains silica as a constituent.
  • the organic compound contains a primary alcohol and contains
  • Step I An emulsion obtained by emulsifying an aqueous phase component containing a cationic surfactant and an oil phase component containing an organic compound containing a primary alcohol and a tetraalkoxysilane is subjected to a sol-gel reaction under acidic conditions.
  • the shell contains silica as a constituent.
  • the organic compound contains a primary alcohol and contains A method for producing silica microcapsules, which comprises the following steps 1 and 2.
  • Step 1 An emulsion obtained by emulsifying an aqueous phase component containing a cationic surfactant and an oil phase component containing an organic compound and tetraalkoxysilane is subjected to a sol-gel reaction under acidic conditions to form a core.
  • Step 2 Obtained in Step 1.
  • a silica microcapsule containing an organic compound containing a primary alcohol, a softener composition containing the silica microcapsule, and a silica microcapsule having an excellent production efficiency of a silica capsule having a small particle size can be provided.
  • the silica microcapsule (silica capsule) of the present invention is a silica capsule having a shell and a core containing one or more kinds of organic compounds inside the shell, and the shell contains silica as a constituent component and the organic.
  • the compound comprises a primary alcohol.
  • long-term retention of an organic compound containing a primary alcohol contained therein is also referred to as “long-term retention”.
  • production efficiency of silica capsules having a smaller particle size is also simply referred to as "production efficiency”.
  • a silica capsule containing an organic compound containing a primary alcohol can be obtained, and the production efficiency of the silica capsule can be further improved.
  • the reason is not clear, but it can be considered as follows.
  • the silica capsule of the present invention contains a primary alcohol as an inclusion component, the area of the oil-water interface, which is the shell forming site of the silica capsule, increases with respect to the amount of the inclusion component by reducing the particle size of the emulsified droplet. Therefore, the amount of excess silica precursor that does not contribute to shell formation can be suppressed, the density and strength of the shell can be enhanced, and a silica capsule containing an organic compound containing a primary alcohol can be obtained.
  • the shell is broken in response to various stimulating factors, so that the delivery performance of the primary alcohol can be satisfactorily exhibited, and the retention and release of the contained components can be controlled.
  • the relationship between the emulsification treatment time and the median diameter D 50 of the emulsified droplet depends on the production scale and the stirring means used for preparing the emulsion, but in improving the performance of the stirring means. There is a limit.
  • the contained organic compound contains a primary alcohol, when emulsifying the oil phase component containing the primary alcohol and the aqueous phase component, fine emulsified droplets can be efficiently produced in a shorter time. It is considered that the production efficiency of silica capsules having a smaller particle size can be improved probably because they can be formed.
  • the core of the silica capsule of the present invention contains one or more organic compounds.
  • the organic compound contains a primary alcohol from the viewpoint of reducing the particle size of the silica capsule. From the same viewpoint as described above, the primary alcohol has a carbon number of preferably 4 or more, more preferably 6 or more, still more preferably 8 or more, and preferably 18 or less, more preferably 16 or less, still more preferable. Is 14 or less, more preferably 12 or less.
  • the hydrophilicity or hydrophobicity of the primary alcohol may be indexed by the cLogP value, which is a calculated value of the common logarithm "LogP" of the partition coefficient P (n-octanol / water) between n-octanol and water. it can.
  • the cLogP value is calculated by the method described in A.Leo Comprehensive Medicinal Chemistry, Vol.4 C.Hansch, PGSammens, JB Taylor and CARamsden, Eds., P.295, Pergamon Press, 1990. ) ′′, Which is the cLogP value calculated by the program CLOGP v4.01.
  • the cLogP value of the primary alcohol is preferably 1.0 or more, more preferably 2.0 or more, still more preferably 3.0 or more, and preferably 7.0 or less, more preferably 6.5 or less. , More preferably 6.0 or less, and even more preferably 5.5 or less.
  • the primary alcohol is a fragrance (fragrance component in a compounded fragrance), an antibacterial agent, a preservative, a repellent (for example, a pest repellent), and a pharmaceutical active ingredient. It is preferable that it is one or more selected from.
  • the primary alcohol is preferably a fragrance component.
  • the primary alcohol is preferably a fragrance component.
  • the primary alcohols include linear saturated aliphatic primary alcohols such as 1-decanol, 1-undecanol, 1-dodecanol (alcohol C-12); and direct cis-3-hexenol and the like.
  • Chain unsaturated aliphatic primary alcohols linear or branched aliphatic primary alcohols such as branched saturated aliphatic primary alcohols such as tetrahydrogeraniol; 4-isopropylcyclohexanemethanol, sandals mysol core
  • Orid primary alcohols containing saturated or unsaturated ring structures such as; terpene primary alcohols such as geraniol, nerol, citronellol; 2-phenylethyl alcohol, cinnamyl alcohol, benzyl alcohol, 6-phenyl-1-hexanol.
  • Primary alcohols such as aromatic primary alcohols such as pump fleur.
  • the primary alcohols are preferably terpene-based primary alcohols, linear or branched aliphatic primary alcohols, and aromatic primary alcohols from the viewpoint of reducing the particle size of silica capsules.
  • One or more selected from alcohols more preferably one or more selected from terpene primary alcohols and aromatic primary alcohols.
  • the terpenic primary alcohol is preferably geraniol, citronerol, or nerol
  • the aliphatic primary alcohol is preferably alcohol C-12, tetrahydrogeraniol, or cis-3-hexenol, and is aromatic primary.
  • the alcohol examples include 2-phenylethyl alcohol, 6-phenyl-1-hexanol, and benzyl alcohol.
  • the primary alcohol is preferably one or more selected from geraniol, citronellol, nerol, 2-phenylethyl alcohol, and tetrahydrogeraniol from the viewpoint of flexibility of formulation as a fragrance.
  • the primary alcohol can be used alone or in combination of two or more.
  • the cLogP value of the primary alcohol contained in the contained organic compound is calculated by multiplying the cLogP value of each primary alcohol by the volume ratio of each primary alcohol and adding them. It can be obtained by doing.
  • the organic compound may contain components other than the primary alcohol.
  • Other components preferably include fragrances, fragrance precursors, oils (eg, moisturizers), antioxidants, cooling agents, dyes, dyes, silicones, solvents, and oil-soluble polymers other than the primary alcohols.
  • fragrances eg, fragrance precursors, oils, antioxidants, and solvents other than the primary alcohol, and more preferably other than the primary alcohol.
  • fragrances and fragrance precursors One or more selected from fragrances and fragrance precursors.
  • the fragrance precursor examples include a compound that releases a fragrance component in response to water, a compound that releases a fragrance component in response to light, and the like.
  • the compound that releases the fragrance component in response to water examples include a siliceous ester compound having an alkoxy component derived from fragrance alcohol, a fatty acid ester compound having an alkoxy component derived from fragrance alcohol, a carbonyl component derived from fragrance aldehyde or fragrance ketone, and alcohol.
  • Examples thereof include a hemiaminol compound or a hydrazone compound obtained by the above reaction.
  • Compounds that release fragrance components in response to light include 2-nitrobenzyl ether compounds having an alkoxy component derived from fragrance alcohols, ⁇ -ketoester compounds having carbonyl components derived from fragrance aldehydes and fragrance ketones, and alkoxy derived from fragrance alcohols. Examples thereof include coumarin acid ester compounds having components.
  • These perfume precursors may be used, for example, as a polymer such as a reaction product of a part of the carboxy group of polyacrylic acid and a perfume alcohol.
  • the organic compound preferably has appropriate hydrophobicity from the viewpoint of increasing the encapsulation rate and improving the long-term retention.
  • the cLogP value can be used as an index showing the hydrophilicity or hydrophobicity of the organic compound.
  • the cLogP value of the organic compound can be obtained by multiplying the cLogP value of each constituent component by the volume ratio of each constituent component and summing them.
  • the cLogP value of the organic compound is preferably 1.0 or more, more preferably 2.0 or more, still more preferably 3.0 or more, even more preferably 4.0 or more, and preferably 30 or less. It is preferably 20 or less, more preferably 10 or less, and even more preferably 7.0 or less.
  • the encapsulation rate of the organic compound in the obtained silica capsule is improved in the sol-gel reaction using oil droplets in water described later. Further, even when the organic compound is a fragrance composition composed of a plurality of fragrance components, similarly, when the cLogP value of the fragrance composition is 1.0 or more, the sol-gel reaction can be carried out. The encapsulation rate of the fragrance composition in the obtained silica capsule can be improved.
  • an organic compound having a high oil-water interfacial tension not only an organic compound having a high oil-water interfacial tension but also an organic compound having a relatively low oil-water interfacial tension can be included as a core of a silica capsule.
  • the oil-water interfacial tension of the organic compound contained as the core is preferably 3 mN / m or more, more preferably 4 mN / m or more, still more preferably 5 mN / m or more, and more, from the viewpoint of easy formation of the core-shell type silica capsule.
  • the oil-water interfacial tension of the organic compound can be measured by the method described in Examples.
  • the content of the primary alcohol in the organic compound is preferably 1% by mass or more, more preferably 2% by mass or more, from the viewpoint of satisfactorily expressing the delivery performance of the primary alcohol and improving the production efficiency. More preferably 3% by mass or more, still more preferably 5% by mass or more, still more preferably 10% by mass or more, still more preferably 20% by mass or more, still more preferably 30% by mass or more, still more preferably 40% by mass. % Or more, more preferably 50% by mass or more, and preferably 100% by mass or less from the viewpoint of increasing the encapsulation rate and improving the long-term retention.
  • the content of the other component in the organic compound has the effect of the present invention. It is a range that does not inhibit, and is an amount according to the function exerted by such other components.
  • the organic compound is a blended fragrance
  • the content of other components in the organic compound is an amount corresponding to the required fragrance.
  • the primary alcohol since the primary alcohol can be encapsulated in the silica capsule at a high encapsulation rate, it can be prepared without being restricted by the type and amount of the primary alcohol.
  • the shell of the silica capsule of the present invention contains silica as a component.
  • the shell of the silica capsule of the present invention preferably contains silica, which is a hydrolyzed polycondensate of alkoxysilane, as a constituent component.
  • the silica capsule shell of the present invention has a viewpoint of reducing the particle size of the silica capsule, increasing the encapsulation rate, improving long-term retention, exhibiting the delivery performance of primary alcohol, and improving production efficiency. From the viewpoint of allowing the mixture to be formed, it is preferably formed by a sol-gel reaction using an alkoxysilane as a precursor.
  • the "sol-gel reaction” means a reaction in which alkoxysilane is hydrolyzed and polycondensed to form silica, which is a constituent of the shell, through a sol and gel state.
  • alkoxysilane is hydrolyzed and polycondensed to form silica, which is a constituent of the shell, through a sol and gel state.
  • tetraalkoxysilane is hydrolyzed
  • a silanol compound is produced by a dehydration condensation reaction and a dealcohol condensation reaction to produce a siloxane oligomer, and the dehydration condensation reaction further proceeds to form silica.
  • the shell of the silica capsule of the present invention may contain an inorganic polymer other than silica as a constituent component as long as the effect of the present invention is not impaired.
  • the inorganic polymer means a polymer containing an inorganic element.
  • the inorganic polymer include a polymer composed of only an inorganic element, a polymer in which the main chain is composed of only an inorganic element and has an organic group as a side chain or a substituent.
  • the inorganic polymer is preferably a metal oxide containing a metal element or a metalloid element, and more preferably a metal alkoxide [M (OR) x] as a precursor, which is similar to the sol-gel reaction of silica described above. It is a polymer formed by the reaction.
  • M is a metal or metalloid element
  • R is a hydrocarbon group.
  • the metal or metalloid element constituting the metal alkoxide include titanium, zirconium, aluminum, zinc and the like.
  • the alkoxysilane has a viewpoint of reducing the particle size of the silica capsule, increasing the encapsulation rate of the organic compound, improving the long-term retention, and satisfactorily expressing the delivery performance of the primary alcohol, and the production efficiency. From the viewpoint of improvement, tetraalkoxysilane is preferable.
  • the tetraalkoxysilane preferably has an alkoxy group having 1 or more and 4 or less carbon atoms from the viewpoint of promoting the sol-gel reaction, and more preferably tetramethoxysilane, tetraethoxysilane, and tetraisopropoxysilane. It is one or more selected from, more preferably one or more selected from tetramethoxysilane and tetraethoxysilane, and even more preferably tetraethoxysilane.
  • the silica capsule shell of the present invention is preferably produced by the following step I.
  • Step I An emulsion obtained by emulsifying an aqueous phase component containing a cationic surfactant and an oil phase component containing an organic compound containing a primary alcohol and a tetraalkoxysilane is subjected to a sol-gel reaction under acidic conditions.
  • step I an emulsion obtained by emulsifying an aqueous phase component containing a cationic surfactant and an oil phase component containing an organic compound containing a primary alcohol and a tetraalkoxysilane is sol-gel under acidic conditions.
  • This is a step of forming a silica capsule having a core and a shell containing silica as a constituent of the reaction to obtain an aqueous dispersion containing the silicapsule.
  • Examples of the cationic surfactant in the step I include an alkylamine salt and an alkyl quaternary ammonium salt.
  • the alkyl group of the alkylamine salt and the alkyl quaternary ammonium salt preferably has 10 or more carbon atoms, more preferably 12 or more carbon atoms, still more preferably 14 or more carbon atoms, and preferably 22 or less, more preferably 20 or less carbon atoms. More preferably, it is 18 or less.
  • Examples of the alkylamine salt include alkylamine acetate salts such as laurylamine acetate and stearylamine acetate.
  • Examples of the quaternary ammonium salt include an alkyltrimethylammonium salt, a dialkyldialkylammonium salt, and an alkylbenzyldimethylammonium salt.
  • alkyltrimethylammonium salt examples include alkyltrimethylammonium chlorides such as lauryltrimethylammonium chloride, cetyltrimethylammonium chloride and stearyltrimethylammonium chloride; alkyltrimethylammonium bromides such as lauryltrimethylammonium bromide, cetyltrimethylammonium bromide and stearyltrimethylammonium bromide.
  • alkyltrimethylammonium salt include dialkyldimethylammonium chloride such as distearyldimethylammonium chloride; and dialkyldimethylammonium bromide such as distearyldimethylammonium bromide.
  • alkylbenzyldimethylammonium salt examples include alkylbenzyldimethylammonium chloride and alkylbenzyldimethylammonium bromide.
  • the cationic surfactant is preferably a quaternary ammonium salt, more preferably an alkyltrimethylammonium salt having an alkyl group having 10 or more and 22 or less carbon atoms, and further preferably 10 or more and 22 carbon atoms.
  • alkyltrimethylammonium chloride having the following alkyl group, more preferably one or more selected from lauryltrimethylammonium chloride, stearyltrimethylammonium chloride, and cetyltrimethylammonium chloride, and even more preferably cetyltrimethylammonium chloride. is there.
  • step I other emulsifiers may be further contained in addition to the cationic surfactant as long as the effects of the present invention are not impaired.
  • examples of other emulsifiers include polymer dispersants, nonionic surfactants, anionic surfactants, and amphoteric surfactants.
  • the content of the cationic surfactant in the aqueous phase component is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, still more preferably 0.3% by mass or more, from the viewpoint of dispersion stability of the emulsified droplets.
  • the content of the cationic surfactant in the aqueous phase component is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, still more preferably 0.3% by mass or more, from the viewpoint of dispersion stability of the emulsified droplets.
  • it is preferably 10% by mass or less, more preferably.
  • the amount of the oil phase component in the total amount of the emulsion obtained in step I is preferably 5% by mass or more, more preferably 10% by mass or more, still more preferably 15% by mass or more, and From the viewpoint of obtaining a stable emulsion, it is preferably 50% by mass or less, more preferably 45% by mass or less, still more preferably 40% by mass or less, still more preferably 35% by mass or less.
  • the amount of tetraalkoxysilane added in step I is preferably 10% by mass or more, more preferably 10% by mass or more, based on the amount of the organic compound in step I, from the viewpoint of promoting the sol-gel reaction and forming a sufficiently dense shell.
  • the amount of tetraalkoxysilane added in step I is the ratio when the amount of the organic compound in step I is 100% by mass.
  • the total amount of the organic compound and tetraalkoxysilane in the total amount of the aqueous phase component and the oil phase component in the step I is preferably 5% by mass or more, more preferably 10% by mass or more, still more preferably 15% by mass or more. From the viewpoint of obtaining a stable emulsion, the content is preferably 50% by mass or less, more preferably 45% by mass or less, still more preferably 40% by mass or less, still more preferably 35% by mass or less.
  • Step I preferably includes the following steps 1-1 to 1-4.
  • Step 1-1 A step of preparing an aqueous phase component containing a cationic surfactant
  • Step 1-2 A step of mixing the organic compound and a tetraalkoxysilane to prepare an oil phase component
  • Step 1-4 A step of mixing and emulsifying the aqueous phase component obtained in step 1 and the oil phase component obtained in step 1-2 to obtain an emulsion
  • the emulsion obtained in step 1-3 is 1 A step of forming a silica capsule having a core and a shell containing silica as a constituent, which is subjected to a sol-gel reaction in the first step.
  • the stirring means used for preparing the emulsion is not particularly limited, but a homogenizer having a strong shearing force, a high-pressure disperser, an ultrasonic disperser, or the like can be used.
  • homo mixer "Disper” (product name, manufactured by Primix Corporation), “Clearmix” (product name, manufactured by M-Technique Co., Ltd.), “Cavitron” (product name, manufactured by Pacific Machinery & Engineering Co., Ltd.), etc. are used. You can also do it.
  • the temperature at the time of mixing and emulsifying the aqueous phase component and the oil phase component is preferably 5 ° C. or higher, more preferably 8 ° C.
  • the rotation speed of the stirring means and the mixing and emulsification time of the aqueous phase component and the oil phase component are appropriately adjusted so that the median diameter D 50 of the emulsified droplet of the emulsified solution is within the range described later.
  • the median diameter D 50 of the emulsified droplet in the emulsion of step I is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, and further, from the viewpoint of reducing the specific surface area with respect to the outside environment of the silica capsule and enhancing the long-term retention. It is preferably 0.3 ⁇ m or more, and is preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less, still more preferably 10 ⁇ m or less, from the viewpoint of reducing the particle size of the silica capsule and the physical strength of the silica capsule. It is even more preferably 5 ⁇ m or less, even more preferably 3 ⁇ m or less, and even more preferably 2 ⁇ m or less.
  • the median diameter D 50 of the emulsified droplet can be measured by the method described in Examples.
  • the initial pH of the sol-gel reaction in step I is determined from the viewpoint of maintaining a balance between the hydrolysis reaction and the condensation reaction of tetraalkoxysilane, and from the viewpoint of suppressing the formation of a highly hydrophilic sol and promoting the progress of encapsulation. It is preferably 3.0 or more, more preferably 3.3 or more, still more preferably 3.5 or more, and suppresses the coexistence of formation of a silica shell and aggregation of emulsion droplets, and silica having a dense shell. From the viewpoint of obtaining capsules, it is preferably 4.5 or less, more preferably 4.3 or less, still more preferably 4.1 or less.
  • step 1-4 may preferably be the following step 1-4'.
  • Step 1-4' The pH of the emulsion obtained in Step 1-3 is adjusted with a pH adjuster, and the sol-gel reaction of the first step is carried out to form a silica capsule having a core and a shell. And the step of obtaining an aqueous dispersion containing the silica capsule
  • Examples of the acidic pH adjuster include inorganic acids such as hydrochloric acid, nitric acid and sulfuric acid, organic acids such as acetic acid and citric acid, and solutions obtained by adding a cation exchange resin to water, ethanol and the like, preferably hydrochloric acid and sulfuric acid. , Nitric acid, citric acid.
  • Examples of the alkaline pH adjuster include sodium hydroxide, sodium hydrogencarbonate, potassium hydroxide, ammonium hydroxide, diethanolamine, triethanolamine, trishydroxymethylaminomethane and the like, and sodium hydroxide and ammonium hydroxide are preferable. ..
  • the reaction temperature of the sol-gel reaction in step I can be any value as long as it is equal to or higher than the melting point of water contained as the aqueous phase and lower than the boiling point. From the viewpoint of controlling the balance and forming a dense shell, it is preferable to keep the temperature within a certain range.
  • the range is preferably 5 ° C. or higher and 60 ° C. or lower, more preferably 10 ° C. or higher and 50 ° C. or lower, and further preferably 15 ° C. or higher and 40 ° C. or lower.
  • the reaction time of the sol-gel reaction in step I is preferably 0.5 hours or more, more preferably 1 hour or more, still more preferably 1 hour or more, when the reaction start is defined as when the inside of the reaction system reaches a predetermined reaction temperature. It is 5 hours or more, more preferably 10 hours or more, and preferably 50 hours or less, more preferably 40 hours or less, still more preferably 30 hours or less.
  • the shell of the silica capsule of the present invention from the viewpoint of increasing the encapsulation rate of the organic compound, improving the long-term retention, and satisfactorily expressing the delivery performance of the primary alcohol, the shell is made of alkoxy. It is preferable to have an inner shell containing silica which is a hydrolyzed polycondensate of silane as a constituent component, and an outer shell further containing silica which is a hydrolyzed polycondensate product of alkoxysilane as a constituent component on the outside of the inner shell. ..
  • silica capsule (1) As a specific example of such a silica capsule, as the silica capsule (1) obtained in step I (hereinafter referred to as silica capsule (1)), a silica precursor is further added to an aqueous dispersion containing the silica capsule (1). It is preferable that silica formed by adding tetraalkoxysilane and performing the sol-gel reaction in two steps is contained as a constituent component. That is, the silica capsule of the present invention in this case is preferably produced by a method including the following steps 1 and 2.
  • Step 1 An emulsion obtained by emulsifying an aqueous phase component containing a cationic surfactant and an oil phase component containing an organic compound containing a primary alcohol and a tetraalkoxysilane is subjected to a sol-gel reaction under acidic conditions.
  • Step 2 In step 1 to form a silica capsule (1) having a core and a first shell containing silica as a constituent, and to obtain an aqueous dispersion containing the silica capsule (1).
  • encapsulating the first shell means including the first shell of the silica capsule (1) formed in step 1. It also includes encapsulating the silica capsule (1).
  • step 2 a shell is further formed on the silica capsule formed in step 1, and the silica capsule obtained in step 2 becomes a silica capsule having an increased shell thickness as a whole, and the shell formed in step 1 is formed.
  • the first shell formed by the step 1 is also referred to as a "first shell”
  • the second shell formed by the step 2 is also referred to as a "second shell”. ..
  • Step 2 When the shell of the silica capsule of the present invention contains silica formed by performing a sol-gel reaction in two steps as a constituent component, the method for producing a silica capsule of the present invention is added to step 1. Further, step 2 is included. In step 2, a sol-gel reaction is carried out by further adding tetraalkoxysilane to the aqueous dispersion containing the silica capsule (1) obtained in step 1, and silica having a second shell encapsulating the first shell. This is the process of forming a capsule.
  • the amount of tetraalkoxysilane added in step 2 is preferably 7% by mass or more, more preferably 10% by mass, based on the amount of the organic compound in step 1 from the viewpoint of forming a second shell encapsulating the first shell. % Or more, more preferably 15% by mass or more, and preferably 200% by mass or less, more preferably 170 from the viewpoint of suppressing the formation of silica sol dispersed in the aqueous phase and improving the dispersion stability of the silica capsule. It is mass% or less, more preferably 150 mass% or less.
  • the amount of tetraalkoxysilane added in step 2 is the ratio when the amount of the organic compound in step 1 is 100% by mass.
  • the amounts of the organic compound and tetraalkoxysilane in step 1 are the organic compounds and tetraalkoxysilanes used in step 1, respectively. Is the amount of.
  • the amount of the organic compound and tetraalkoxysilane in step 1 is determined from the amount of the organic compound and tetraalkoxysilane used in step 1, respectively. It is an amount proportionally converted using the amount of the aqueous dispersion obtained in step 1 to be subjected to step 2.
  • the total amount of tetraalkoxysilane to be added to the aqueous dispersion containing the silica capsule (1) obtained in step 1 may be added all at once, or may be added intermittently in divided portions. Although it may be added continuously, it is preferable to add it continuously by dropping from the viewpoint of forming a highly dense second shell.
  • the dropping time can be appropriately set according to the scale of production, but from the viewpoint of suppressing the separation of the tetraalkoxysilane to be added and the aqueous dispersion, it is possible to set the dropping time appropriately. It is preferably 5 minutes or more, more preferably 10 minutes or more, still more preferably 30 minutes or more, and preferably 1,200 minutes or less, more preferably 1,000 minutes or less, still more preferably 500 minutes or less.
  • the total amount of tetraalkoxysilane added when step 1 and step 2 are included is preferable with respect to the amount of the organic compound in step 1. Is 30% by mass or more, more preferably 35% by mass or more, still more preferably 40% by mass or more, and preferably 250% by mass or less, more preferably 200% by mass or less, still more preferably 150% by mass or less. ..
  • the total amount of tetraalkoxysilane added is a ratio when the amount of the organic compound in step 1 is 100% by mass.
  • the total amount of the organic compound and tetraalkoxysilane in step 1 is preferable to the total amount of the aqueous dispersion before the addition of tetraalkoxysilane in step 2, from the viewpoint of improving the long-term retention of the organic compound.
  • Step 1 The adjustment of the total amount of the organic compound and tetraalkoxysilane in step 1 with respect to the total amount of the aqueous dispersion before the addition of tetraalkoxysilane in step 2 is obtained in the amount of the organic compound and tetraalkoxysilane in step 1 and in step 1.
  • Step 1 may be carried out so that the total amount of the aqueous dispersion is within the above range, or may be carried out by further adding water to the aqueous dispersion obtained in step 1 to dilute it.
  • the aqueous dispersion obtained in step 1 may be diluted with water in step 2 before the addition of tetraalkoxysilane. That is, the step 2 may be the following step 2'.
  • Step 2' Water is added to the aqueous dispersion containing the silica capsule (1) obtained in Step 1 to dilute it, and then tetraalkoxysilane is further added to carry out a sol-gel reaction to carry out the first shell.
  • the total amount of the organic compound and tetraalkoxysilane in step 1 is preferably 3% by mass or more, more preferably 5% by mass or more, still more preferably 10% by mass, based on the total amount of the aqueous dispersion obtained in step 1 before dilution. % Or more, more preferably 15% by mass or more, and preferably 50% by mass or less, more preferably 40% by mass or less, still more preferably 35% by mass or less, still more preferably 30% by mass or less.
  • the amount of the organic compound and tetraalkoxysilane in step 1 is the same as that of the organic compound and tetraalkoxysilane used in step 1. The amount.
  • the amount of the organic compound and tetraalkoxysilane in step 1 is determined from the amount of the organic compound and tetraalkoxysilane used in step 1 in step 2. It is an amount proportionally converted using the amount of the aqueous dispersion obtained in the step 1 to be subjected to.
  • the dilution ratio is preferably 2 times or more, more preferably 2.5 times or more, and preferably 20 times or less, more preferably 10 times or less, more preferably 7 times or less.
  • the "dilution ratio" refers to the aqueous dispersion after dilution with water with respect to the total amount of the aqueous dispersion obtained in step 1 used in step 2'before dilution (hereinafter, "diluted aqueous dispersion"). It is the mass ratio of the total amount of (also referred to as “body”) (total amount of diluted aqueous dispersion / total amount of aqueous dispersion obtained in step 1 to be subjected to step 2 ′ before dilution).
  • the reaction temperature of the sol-gel reaction in step 2 or step 2' can be arbitrarily selected as long as it is above the melting point and below the boiling point of the water contained as the dispersion medium, but is condensed with the hydrolysis reaction in the sol-gel reaction. From the viewpoint of controlling the balance of the reaction and forming a dense shell, it is preferably 5 ° C. or higher, more preferably 10 ° C. or higher, further preferably 15 ° C. or higher, and preferably 60 ° C. or lower, more preferably 50 ° C. or higher. ° C. or lower, more preferably 40 ° C. or lower.
  • the sol-gel reaction of step 1 and the sol-gel reaction of step 2 or step 2' may be carried out at different reaction temperatures.
  • reaction time of the sol-gel reaction after the completion of the addition is preferably 0.5 hours or more, more preferably 1 hour or more, further preferably 5 hours or more, still more preferably 10 hours or more, and preferably 50 hours or more. It is less than an hour, more preferably less than 40 hours.
  • an organic polymer compound may be further added to the aqueous dispersion containing the silica capsule obtained in step I. Further, in the case where the present invention includes step 1 and step 2, in step 2 or step 2', the organic polymer compound is further added to the aqueous dispersion containing the silica capsule (1) obtained in step 1. It may be added.
  • the organic polymer compound means a compound having a weight average molecular weight of 5,000 or more.
  • the organic polymer compound is preferably one or more selected from a cationic polymer and a nonionic polymer.
  • the nonionic polymer means a water-soluble polymer having no electric charge in water.
  • the silica capsule can be imparted with a function according to the use of the silica capsule.
  • a cationic polymer or a nonionic polymer is used as the organic polymer compound
  • the silica capsule according to the present invention is used in a fiber treatment agent composition such as a softener composition, the adsorptivity to fibers is improved.
  • the term "water-soluble polymer” refers to a polymer that has been dried at 105 ° C. for 2 hours, and when the polymer that has reached a constant weight is dissolved in 100 g of water at 25 ° C., the dissolved amount is 1 mg or more.
  • nonionic polymer examples include polymers having a structural unit derived from a nonionic monomer, water-soluble polysaccharides (cellulose-based, gum-based, starch-based, etc.) and derivatives thereof.
  • a nonionic monomer a (meth) acrylate having a hydrocarbon group derived from an aliphatic alcohol having 1 to 22 carbon atoms; a styrene-based monomer such as styrene; an aromatic group-containing (meth) acrylate such as benzyl (meth) acrylate.
  • Polyalkylene glycol (meth) acrylate such as polyethylene glycol mono (meth) acrylate
  • alkoxypolyalkylene such as methoxypolyethylene glycol mono (meth) acrylate and octoxypolyethylene glycol mono (meth) acrylate
  • Glycol mono (meth) acrylate (meth) acrylamide and the like can be mentioned.
  • Nonionic polymers include copolymers of vinylpyrrolidone such as polyvinylpyrrolidone and vinylpyrrolidone / vinyl acetate copolymers with other nonionic monomers, and celluloses such as hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose and hydroxyethyl methyl cellulose.
  • vinylpyrrolidone such as polyvinylpyrrolidone and vinylpyrrolidone / vinyl acetate copolymers with other nonionic monomers
  • celluloses such as hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose and hydroxyethyl methyl cellulose.
  • One or more selected from the based polymers are preferable, and one or more selected from polyvinylpyrrolidone and hydroxypropyl cellulose is more preferable.
  • cationic polymer examples include polymers containing a quaternary ammonium base, polymers having a nitrogen-based cationic group, and polymers that may become cationic due to pH adjustment.
  • step 2 or step 2' when an organic polymer compound is further added to the aqueous dispersion containing the silica capsule (1) obtained in step 1, the cationic polymer is used in step 1.
  • the situation in which the obtained silica capsule (1) tends to aggregate in the aqueous dispersion can be alleviated, and the formation of coarse particles and the like can be suppressed in the subsequent step 2 or step 2'.
  • Cationic polymers include poly (diallyldimethylammonium chloride), poly (acrylic acid-co-diallyldimethylammonium chloride), poly (acrylamide-co-diallyldimethylammonium chloride), and poly (acrylamide-co-acrylic acid-co-).
  • Polydialyldimethylammonium salts such as diallyldimethylammonium chloride) and their copolymers, poly (2- (methacryloyloxy) ethyltrimethylammonium chloride), polyethyleneimine, polyallylamine, cationized cellulose, cationized guar gum, cationized tara gum, Examples thereof include cationized phenuglique gum and cationized locust bin gum.
  • polydiallyldimethylammonium salts and copolymers thereof are preferable, and poly (diallyldimethylammonium chloride), poly (acrylic acid-co-diallyldimethylammonium chloride), and poly (acrylamide-co-acrylic acid-co-) are preferable.
  • poly (diallyldimethylammonium chloride), poly (acrylic acid-co-diallyldimethylammonium chloride), and poly (acrylamide-co-acrylic acid-co-) are preferable.
  • One or more selected from (diallyldimethylammonium chloride) is more preferable, and poly (diallyldimethylammonium chloride) is further preferable.
  • the cationic group equivalent of the cationic polymer is preferably 1 meq / g or more, more preferably 3 meq, from the viewpoint of dispersibility of the silica capsule (1), suppression of the formation of coarse particles, and improvement of long-term retention. It is / g or more, more preferably 4.5 meq / g or more, and preferably 10 meq / g or less, more preferably 8 meq / g or less.
  • the cationic polymer may contain anionic groups, in which case the amount of anionic groups contained in the cationic polymer is preferably 3.5 meq / g or less, more preferably 2 meq / g or less, still more preferably 1 meq /. It is less than or equal to g. In the present invention, the cationic group equivalent of the cationic polymer is calculated based on the monomer composition.
  • the amount of the organic polymer compound added is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, still more preferably 0, based on the amount of the aqueous dispersion obtained in step I or step 1. .2% by mass or more, and preferably 5% by mass or less, more preferably 3% by mass or less, still more preferably 2% by mass or less.
  • the amount of the organic polymer compound added is a ratio when the amount of the aqueous dispersion obtained in step I or step 1 is 100% by mass.
  • the silica capsule of the present invention obtained by step I, step 2 or step 2' is obtained in a state of being dispersed in water. Depending on the application, this can be used as it is, but in some cases, the silica capsule is used separately.
  • the separation method a filtration method, a centrifugal separation method or the like can be adopted.
  • the silica capsule of the present invention is a silica capsule having a core containing the organic compound and a shell encapsulating the core.
  • the shell of the silica capsule of the present invention encapsulates a core, contains silica as a constituent, and preferably has an average thickness of 5 nm or more and 20 nm or less.
  • the silica capsule of the present invention is preferably a silica capsule having a core containing the organic compound, a first shell encapsulating the core, and a second shell encapsulating the first shell.
  • the silica capsule of the present invention has a first shell and a second shell
  • the first shell encapsulates a core and contains silica as a constituent component, preferably having an average thickness of 5 nm or more and 20 nm or less, and the first shell.
  • the two shells include the first shell, contain silica as a constituent component, and preferably have an average thickness of 10 nm or more and 100 nm or less.
  • the average thickness of the silica capsule shell and the average thickness of the first and second shells of the silica capsule can be measured by transmission electron microscopy (TEM) observation. Specifically, the thickness of the shell or the first shell and the second shell is actually measured on a photograph under the observation of a transmission electron microscope.
  • TEM transmission electron microscopy
  • This operation is performed by changing the field of view five times. From the obtained data, the distribution of the average thickness of the shell or the first shell and the second shell is obtained.
  • the standard magnification of the transmission electron microscope is 10,000 times or more and 100,000 times or less, but it is appropriately adjusted depending on the size of the silica capsule.
  • TEM transmission electron microscope
  • JEM-2100 manufactured by JEOL Ltd.
  • the median diameter D 50 of the silica capsule of the present invention is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, still more preferably 1 ⁇ m, from the viewpoint of improving long-term retention and improving the dispersion stability of the silica capsule. From the viewpoint of improving the physical strength of the silica capsule and improving the long-term retention, it is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, still more preferably 30 ⁇ m or less, still more preferably 10 ⁇ m or less, and more. More preferably, it is 7 ⁇ m or less.
  • the median diameter D 50 of the silica capsule can be measured by the method described in Examples.
  • the silica capsule of the present invention is formed by encapsulating a primary alcohol as the organic compound in a core at a high encapsulation rate. From this point of view, the inclusion rate of the primary alcohol is preferably 30% or more, more preferably 40% or more, further preferably 50% or more, still more preferably 60% or more, still more preferably 70% or more, and more. It is more preferably 80% or more, even more preferably 90% or more, and preferably 100% or less. Further, since the silica capsule of the present invention contains a primary alcohol as the organic compound, a wide variety of compounded fragrances can be designed when the organic compound is a compounded fragrance.
  • the inclusion rate of the primary alcohol is preferably 100% or less, more preferably 80% or less, still more preferably 60% or less, still more preferably 40% or less, and preferably 10% or more.
  • the inclusion rate of primary alcohol is measured by the following method. [Measurement of inclusion rate] Hexane containing dodecane and tridecane as internal standard substances (hereinafter referred to as "reference A”) was prepared at about 20 ppm, and 0.62 g of ion-exchanged water and 20 mL of reference A were added to 0.04 g of the organic compound as an inclusion component.
  • each component of the organic compound contained in this solution is gas.
  • the GC area value ⁇ (1) of each fragrance component per 1 mg / mL of the organic compound is determined by measurement using chromatography.
  • 20 mL of the reference A was added to a mixed solution in which silica capsules and water were mixed so that the content of the organic compound as an inclusion component was 0.04 g, and the total amount was 0.66 g, and the mixture was shaken 10 times.
  • the upper layer is passed through a membrane filter (for example, manufactured by Toyo Filter Paper Co., Ltd., product name "DISMIC”, model “13JP020AN”), and the organic compound contained in this solution is measured by gas chromatography, and 1 mg of the organic compound is measured.
  • a membrane filter for example, manufactured by Toyo Filter Paper Co., Ltd., product name "DISMIC”, model “13JP020AN”
  • the organic compound contained in this solution is measured by gas chromatography, and 1 mg of the organic compound is measured.
  • the inclusion rate of the primary alcohol contained in the organic compound is calculated according to the following formula (i).
  • Inclusion rate (%) ⁇ ( ⁇ (1) - ⁇ (1)) / ⁇ (1) ⁇ ⁇ 100 (i)
  • the silica capsule of the present invention can be used for various purposes, for example, cosmetics such as milky lotion, cosmetic liquid, lotion, beauty essence, cream, gel preparation, hair treatment agent, non-pharmaceutical product, cleaning agent, etc. It can be suitably used for various applications such as softeners, fiber treatment agents such as anti-wrinkle sprays, sanitary products such as paper diapers, and air fresheners.
  • the silica capsule of the present invention can be used by blending it with a composition such as a detergent composition, a fiber treatment agent composition, a cosmetic composition, an air freshener composition, and a deodorant composition.
  • a detergent composition such as a powder detergent composition and a liquid detergent composition
  • a fiber treatment agent composition such as a softener composition
  • a fiber treatment agent composition is more preferable, and a softener is more preferable.
  • the composition is more preferred.
  • the present invention further discloses the following silica microcapsules, a softener composition containing silica microcapsules, and a method for producing silica microcapsules.
  • Silica microcapsules having a shell and a core containing one or more organic compounds inside the shell.
  • the shell contains silica as a constituent.
  • the content of the primary alcohol in the organic compound is preferably 1% by mass or more, more preferably 2% by mass or more, still more preferably 3% by mass or more, still more preferably 5% by mass or more, still more. It is preferably 10% by mass or more, more preferably 20% by mass or more, still more preferably 30% by mass or more, still more preferably 40% by mass or more, still more preferably 50% by mass or more, and preferably 100% by mass or more.
  • the silica microcapsule according to ⁇ 1> which is not more than% by mass.
  • the oil-water interfacial tension of the organic compound is preferably 3 mN / m or more, more preferably 4 mN / m or more, still more preferably 5 mN / m or more, still more preferably 7 mN / m or more, and preferably. 40 mN / m or less, more preferably 30 mN / m or less, still more preferably 25 mN / m or less, still more preferably 20 mN / m or less, still more preferably 18 mN / m or less.
  • the primary alcohol has a carbon number of preferably 4 or more, more preferably 6 or more, still more preferably 8 or more, and preferably 18 or less, more preferably 16 or less, still more preferably 14 or less.
  • the cLogP of the primary alcohol is preferably 1.0 or more, more preferably 2.0 or more, still more preferably 3.0 or more, and preferably 7.0 or less, more preferably 6.
  • ⁇ 6> The silica according to any one of ⁇ 1> to ⁇ 5>, wherein the primary alcohol is preferably one or more selected from a fragrance, an antibacterial agent, a preservative, a repellent, and a pharmaceutical active ingredient.
  • the primary alcohol is preferably one or more selected from a fragrance, an antibacterial agent, a preservative, a repellent, and a pharmaceutical active ingredient.
  • Microcapsules. ⁇ 7> The silica microcapsules according to any one of ⁇ 1> to ⁇ 5>, wherein the primary alcohol is preferably a fragrance component.
  • the primary alcohol is preferably one or more selected from a terpene-based primary alcohol, a linear or branched aliphatic primary alcohol, and an aromatic primary alcohol, more preferably a terpene-based alcohol.
  • the silica microcapsule according to any one of ⁇ 1> to ⁇ 7> above which is one or more selected from primary alcohols and aromatic primary alcohols.
  • the primary alcohol is selected from geraniol, citronellol, nerol, 1-dodecanol, tetrahydrogeraniol, cis-3-hexenol, 2-phenylethyl alcohol, 6-phenyl-1-hexanol, and benzyl alcohol 1
  • the silica microcapsule according to any one of ⁇ 1> to ⁇ 7> which is more than one species.
  • the median diameter D 50 of the silica microcapsules is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, still more preferably 1 ⁇ m or more, and preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less.
  • ⁇ 11> The silica microcapsule according to any one of ⁇ 1> to ⁇ 10>, wherein the shell contains silica which is a hydrolyzed polycondensate of alkoxysilane as a constituent component.
  • ⁇ 12> The silica microcapsule according to any one of ⁇ 1> to ⁇ 10>, wherein the shell contains silica formed by a sol-gel reaction using alkoxysilane as a precursor as a constituent component.
  • the shell contains an inner shell containing silica, which is a hydrolyzed polycondensate of alkoxysilane, as a constituent component, and silica, which is a hydrolyzed polycondensate of alkoxysilane, as a constituent component outside the inner shell.
  • ⁇ 14> The silica microcapsule according to any one of ⁇ 1> to ⁇ 12>, wherein the shell contains silica formed by performing a sol-gel reaction of alkoxysilane in two steps as a constituent component.
  • ⁇ 15> The silica microcapsule according to any one of ⁇ 11> to ⁇ 14>, wherein the alkoxysilane is tetraethoxysilane.
  • ⁇ 16> A softener composition containing the silica microcapsules according to any one of ⁇ 1> to ⁇ 15>.
  • the shell contains silica as a constituent.
  • the organic compound contains a primary alcohol and contains
  • a method for producing silica microcapsules which comprises the following step I.
  • Step I An emulsion obtained by emulsifying an aqueous phase component containing a cationic surfactant and an oil phase component containing an organic compound containing a primary alcohol and a tetraalkoxysilane is subjected to a sol-gel reaction under acidic conditions.
  • the median diameter D 50 of the emulsified droplet in the emulsion of step I is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, still more preferably 0.3 ⁇ m or more, and preferably 50 ⁇ m or less.
  • the shell contains silica as a constituent.
  • the organic compound contains a primary alcohol and contains A method for producing silica microcapsules, which comprises the following steps 1 and 2.
  • Step 1 An emulsion obtained by emulsifying an aqueous phase component containing a cationic surfactant and an oil phase component containing an organic compound and tetraalkoxysilane is subjected to a sol-gel reaction under acidic conditions to form a core.
  • Step 1 A step of forming silica microcapsules (1) having a first shell containing silica as a constituent, and obtaining an aqueous dispersion containing the silica microcapsules (1)
  • Step 2 Obtained in Step 1.
  • the median diameter D 50 of the emulsified droplet in the emulsion of step 1 is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, still more preferably 0.3 ⁇ m or more, and preferably 50 ⁇ m or less.
  • step 2 Water is added to the aqueous dispersion containing the silica microcapsules (1) obtained in Step 1 to dilute it, and then tetraalkoxysilane is further added to carry out a sol-gel reaction.
  • step ⁇ 22> In step 2'for forming silica microcapsules having a second shell encapsulating the shell, the dilution ratio is preferably 2 times or more, more preferably 2.5 times or more, and preferably.
  • the ratio is 20 times or less, more preferably 10 times or less, and more preferably 7 times or less.
  • step 1 includes the following steps 1-1 to 1-4.
  • Step 1-1 Step to prepare the aqueous phase component containing the cationic surfactant
  • Step 1-2 Step to mix the organic compound and tetraalkoxysilane to prepare the oil phase component
  • Step 1-3 Step 1-1
  • Step 1-4 A step of mixing and emulsifying the aqueous phase component obtained in Step 1-2 with the oil phase component obtained in Step 1-2 to obtain an emulsion.
  • Step 1-4 The emulsion obtained in Step 1-3 is subjected to one step.
  • Examples and Comparative Examples were carried out by the following methods.
  • Median diameter D 50 Median diameter D 50 and silica median diameter D 50 of the capsule of the emulsified droplets laser diffraction / scattering particle size distribution analyzer "LA-960" (trade name, manufactured by Horiba, Ltd.) was used.
  • a flow cell was used for the measurement, the medium was water, and the refractive index of the dispersoid was set to 1.45-0i.
  • An emulsion or an aqueous dispersion containing silica capsules was added to the flow cell, and measurement was carried out at a concentration showing a transmittance of around 90%, and a median diameter D 50 was determined on a volume basis.
  • Oil-water interfacial tension The oil-water interfacial tension of the organic compound contained in the core was measured by the suspension method (pendant drop method). A contact angle meter "DropMaster series DM-501" (manufactured by Kyowa Interface Science Co., Ltd.) was used in a constant temperature room at 25 ° C. The analysis was performed by the Young-Laplace method using software "FAMAS” (manufactured by Kyowa Interface Science Co., Ltd.).
  • Example 1 11.1 g of coatamine 60 W (trade name, manufactured by Kao Corporation, cetyltrimethylammonium chloride, effective content 30% by mass) was diluted with 188.89 g of ion-exchanged water to obtain an aqueous phase component. To this aqueous phase component, 24 g of model fragrance 1 (volume average cLogP value: 3.6, specific gravity: 0.88, oil-water interfacial tension: 11.9 mN / m) and 6 g of tetraethoxy in the blending ratio shown in Table 1 below are added.
  • model fragrance 1 volume average cLogP value: 3.6, specific gravity: 0.88, oil-water interfacial tension: 11.9 mN / m
  • An oil phase component prepared by mixing silane (hereinafter, also referred to as "TEOS") is added, and the number of revolutions is increased at room temperature (about 25 ° C.) using a homomixer (manufactured by HsiangTai, model: HM-310, the same applies hereinafter).
  • the mixed solution was emulsified under the conditions of 5,000 rpm for 10 minutes and a rotation speed of 5,200 rpm for 10 minutes to obtain an emulsified solution.
  • the median diameter D 50 of the emulsified droplet at this time was 1.77 ⁇ m.
  • Step 2' After diluting 275 g of the aqueous dispersion obtained in step 1 with 825 g of water (dilution ratio 4 times), 66 g of TEOS was applied over 420 minutes while stirring the obtained mixture at a liquid temperature of 30 ° C. And dropped. Water containing silica capsule (I) in which the model fragrance 1 is encapsulated in amorphous silica to form a second shell that encloses the first shell by cooling after further stirring for 17 hours after the dropping. A dispersion was obtained.
  • Example 2 (Step 1) 1.87 g of coatamine 60W was diluted with 110.42 g of ion-exchanged water to obtain an aqueous phase component. To this aqueous phase component, 40 g of model fragrance 2 (volume average cLogP value: 3.9, specific gravity: 0.90, oil-water interfacial tension: 13.2 mN / m) and 6 g of TEOS are added. The oil phase component prepared by mixing is added, and the mixed solution is emulsified at room temperature (about 25 ° C.) using the homomixer under the conditions of a rotation speed of 6,500 rpm for 5 minutes and a rotation speed of 8,000 rpm for 5 minutes. And an emulsion was obtained.
  • model fragrance 2 volume average cLogP value: 3.9, specific gravity: 0.90, oil-water interfacial tension: 13.2 mN / m
  • 6 g of TEOS 6 g of TEOS
  • the median diameter D 50 of the emulsified droplet at this time was 0.78 ⁇ m.
  • the mixture was transferred to a separable flask equipped with a stirring blade and a cooler, and stirred for 24 hours while maintaining the liquid temperature at 30 ° C. Then, an aqueous dispersion containing a silica capsule (1-2) having a core made of model fragrance 2 and a first shell made of silica was obtained.
  • Step 2' After diluting 5.00 g of the aqueous dispersion obtained in step 1 with 15.15 g of water (dilution ratio 4 times), 1.18 g of the obtained mixture is stirred at a liquid temperature of 30 ° C. TEOS was added. By cooling after continuing stirring for 24 hours, a second shell encapsulating the first shell is formed, and an aqueous dispersion containing silica capsules (II) in which the model fragrance 2 is encapsulated in amorphous silica is obtained. It was.
  • Example 3 (Step 1) 1.87 g of coatamine 60W was diluted with 112.19 g of ion-exchanged water to obtain an aqueous phase component. In addition to this aqueous phase component, 29.99 g of model fragrance 3 (volume average cLogP value: 4.3, specific gravity: 0.92, oil-water interfacial tension: 13.8 mN / m) and 7. The oil phase component prepared by mixing 46 g of TEOS is added, and the rotation speed is 6,500 rpm for 5 minutes and the rotation speed is 8,000 rpm for 5 minutes using the homomixer at room temperature (about 25 ° C.). The mixed solution was emulsified to obtain an emulsified solution.
  • model fragrance 3 volume average cLogP value: 4.3, specific gravity: 0.92, oil-water interfacial tension: 13.8 mN / m
  • the oil phase component prepared by mixing 46 g of TEOS is added, and the rotation speed is 6,500 rpm for 5 minutes and the rotation
  • the median diameter D 50 of the emulsified droplet at this time was 0.78 ⁇ m.
  • the pH of the obtained emulsion was adjusted to 3.7 using 0.17 g of a 0.2N hydrochloric acid aqueous solution, and then transferred to a separable flask equipped with a stirring blade and a cooler, and the liquid temperature was maintained at 30 ° C. Stirring for 24 hours gave an aqueous dispersion containing a silica capsule (1-3) having a core made of model fragrance 3 and a first shell made of silica.
  • Step 2' After diluting 5.04 g of the aqueous dispersion obtained in step 1 with 15.26 g of water (dilution ratio 4 times), 1.20 g of the obtained mixture is stirred at a liquid temperature of 30 ° C. TEOS was added. By cooling after continuing stirring for 24 hours, a second shell encapsulating the first shell is formed, and an aqueous dispersion containing a silica capsule (III) in which the model fragrance 3 is encapsulated in amorphous silica is obtained. It was. The median diameter D 50 of the silica capsule (III) was 1.68 ⁇ m.
  • Example 4 (Step 1) 1.87 g of coatamine 60W was diluted with 110.88 g of ion-exchanged water to obtain an aqueous phase component. In addition to this aqueous phase component, 30.00 g of model fragrance 4 (volume average cLogP value: 3.5, specific gravity: 0.85, oil-water interfacial tension: 12.1 mN / m) and 7. The oil phase component prepared by mixing 50 g of TEOS is added, and the rotation speed is 6,500 rpm for 5 minutes and the rotation speed is 8,000 rpm for 5 minutes using the homomixer at room temperature (about 25 ° C.). The mixed solution was emulsified to obtain an emulsified solution.
  • model fragrance 4 volume average cLogP value: 3.5, specific gravity: 0.85, oil-water interfacial tension: 12.1 mN / m
  • the oil phase component prepared by mixing 50 g of TEOS is added, and the rotation speed is 6,500 rpm for 5 minutes and the rotation
  • the median diameter D 50 of the emulsified droplet at this time was 0.91 ⁇ m.
  • the pH of the obtained emulsion was adjusted to 3.8 with 0.19 g of a 0.2N hydrochloric acid aqueous solution, and then transferred to a separable flask equipped with a stirring blade and a cooler, and the liquid temperature was maintained at 30 ° C. Stirring for 24 hours gave an aqueous dispersion containing a silica capsule (1-4) having a core made of model fragrance 4 and a first shell made of silica.
  • Step 2' After diluting 4.99 g of the aqueous dispersion obtained in step 1 with 14.98 g of water (dilution ratio 4 times), 1.19 g of the obtained mixture is stirred at a liquid temperature of 30 ° C. TEOS was added. By cooling after continuing stirring for 24 hours, a second shell encapsulating the first shell was formed, and an aqueous dispersion containing silica capsules (IV) in which the model fragrance 4 was encapsulated in amorphous silica was obtained. It was. The median diameter D 50 of the silica capsule (IV) was 5.54 ⁇ m.
  • Example 5 1.66 g of coatamine 60 W was diluted with 98.02 g of ion-exchanged water to obtain an aqueous phase component.
  • an oil phase component prepared by mixing 40.15 g of citronellol (cLogP value: 3.5, oil-water interfacial tension: 9.9 mN / m) and 10.00 g of TEOS was added, and room temperature (about).
  • the mixed solution was emulsified using the homomixer at 25 ° C.) under the conditions of a rotation speed of 6,500 rpm for 5 minutes and a rotation speed of 8,000 rpm for 3 minutes to obtain an emulsified liquid.
  • the median diameter D 50 of the emulsified droplet at this time was 2.12 ⁇ m.
  • the mixture was transferred to a separable flask equipped with a stirring blade and a cooler, and the liquid temperature was maintained at 30 ° C. The mixture was stirred for 24 hours to obtain an aqueous dispersion containing a silica capsule (1-5) having a core made of citronellol and a first shell made of silica.
  • Step 2' After diluting 24.96 g of the aqueous dispersion obtained in step 1 with 74.93 g of water (dilution ratio 4 times), 6.00 g of the obtained mixture is stirred at a liquid temperature of 30 ° C. TEOS was added dropwise over 420 minutes. After dropping, stirring is continued for another 34 hours and then cooling is performed to form a second shell that encloses the first shell, and an aqueous dispersion containing citronellol containing silica capsules (V) encapsulated in amorphous silica. I got a body. The median diameter D 50 of the silica capsule (V) was 1.07 ⁇ m.
  • Example 6 1.51 g of coatamine 60 W was diluted with 88.53 g of ion-exchanged water to obtain an aqueous phase component.
  • 24.01 g of model fragrance 5 volume average cLogP value: 3.0, specific gravity: 0.95, oil-water interfacial tension: 5.7 mN / m
  • the oil phase component prepared by mixing 04 g of TEOS is added, and the rotation speed is 6,500 rpm for 5 minutes and the rotation speed is 8,000 rpm for 3 minutes using the homomixer at room temperature (about 25 ° C.).
  • the mixed solution was emulsified to obtain an emulsified solution.
  • the median diameter D 50 of the emulsified droplet at this time was 0.65 ⁇ m.
  • the mixture was transferred to a separable flask equipped with a stirring blade and a cooler, and the liquid temperature was maintained at 30 ° C. Stirring for 24 hours gave an aqueous dispersion containing a silica capsule (1-6) having a core made of model perfume 5 and a first shell made of silica.
  • Step 2' After diluting 24.96 g of the aqueous dispersion obtained in step 1 with 74.93 g of water (dilution ratio 4 times), 6.00 g of the obtained mixture is stirred at a liquid temperature of 30 ° C. TEOS was added dropwise over 420 minutes.
  • Example 7 0.75 g of Coatamine 60W was diluted with 44.27 g of ion-exchanged water to obtain an aqueous phase component.
  • 12.00 g of model fragrance 6 volume average cLogP value: 3.9, specific gravity: 0.87, oil-water interfacial tension: 13.6 mN / m
  • the oil phase component prepared by mixing 00 g of TEOS is added, and the rotation speed is 6,500 rpm for 5 minutes and the rotation speed is 8,000 rpm for 5 minutes using the homomixer at room temperature (about 25 ° C.).
  • the mixed solution was emulsified to obtain an emulsified solution.
  • the median diameter D 50 of the emulsified droplet at this time was 0.27 ⁇ m.
  • the pH of the obtained emulsion was adjusted to 3.7 using 0.58 g of a 0.2N hydrochloric acid aqueous solution, and then transferred to a separable flask equipped with a stirring blade and a cooler, and the liquid temperature was maintained at 30 ° C. Stirring for 24 hours gave an aqueous dispersion containing a silica capsule (1-7) having a core made of model fragrance 6 and a first shell made of silica.
  • Step 2' After diluting 5.00 g of the aqueous dispersion obtained in step 1 with 17.14 g of water (dilution ratio 4 times), 1.20 g of the obtained mixture is stirred at a liquid temperature of 30 ° C. TEOS was added. By cooling after continuing stirring for 24 hours, a second shell encapsulating the first shell was formed, and an aqueous dispersion containing a silica capsule (VII) in which the model fragrance 6 was encapsulated in amorphous silica was obtained. It was. The median diameter D 50 of the silica capsule (VII) was 1.06 ⁇ m.
  • Example 8 1.54 g of Coatamine 60W was diluted with 88.60 g of ion-exchanged water to obtain an aqueous phase component.
  • This aqueous phase component was prepared by mixing 24.00 g of model fragrance 7 (specific gravity: 0.86, oil-water interfacial tension: 17.6 mN / m) and 6.06 g of TEOS in the blending ratio shown in Table 7 below.
  • the oil phase component is added, and the mixed solution is emulsified at room temperature (about 25 ° C.) using the homomixer at a rotation speed of 6,500 rpm for 5 minutes and a rotation speed of 8,000 rpm for 5 minutes. Obtained.
  • the median diameter D 50 of the emulsified droplet at this time was 1.05 ⁇ m.
  • the pH of the obtained emulsion was adjusted to 3.7 using 0.77 g of a 0.2N hydrochloric acid aqueous solution, and then transferred to a separable flask equipped with a stirring blade and a cooler, and the liquid temperature was maintained at 30 ° C. Stirring for 24 hours gave an aqueous dispersion containing a silica capsule (1-8) having a core made of model fragrance 7 and a first shell made of silica.
  • Step 2' After diluting 101.10 g of the aqueous dispersion obtained in step 1 with 304.65 g of water (dilution ratio 4 times), 24.16 g of the obtained mixture is stirred at a liquid temperature of 30 ° C. TEOS was added. By cooling after continuing stirring for 24 hours, a second shell encapsulating the first shell is formed, and an aqueous dispersion containing silica capsules (VIII) in which the model fragrance 7 is encapsulated in amorphous silica is obtained. It was.
  • Example 9 (Step 1) 1.49 g of coatamine 60W was diluted with 88.52 g of ion-exchanged water to obtain an aqueous phase component.
  • 24.13 g of model fragrance 8 (volume average cLogP value: 4.3, specific gravity: 0.88, oil-water interfacial tension: 16.3 mN / m) and 6.
  • the oil phase component prepared by mixing 01 g of TEOS is added, and the rotation speed is 6,500 rpm for 5 minutes and the rotation speed is 8,000 rpm for 5 minutes using the homomixer at room temperature (about 25 ° C.).
  • the mixed solution was emulsified to obtain an emulsified solution.
  • the median diameter D 50 of the emulsified droplet at this time was 1.09 ⁇ m.
  • the pH of the obtained emulsion was adjusted to 3.7 using 0.54 g of a 0.2N hydrochloric acid aqueous solution, and then transferred to a separable flask equipped with a stirring blade and a cooler, and the liquid temperature was maintained at 30 ° C. Stirring for 24 hours gave an aqueous dispersion containing a silica capsule (1-9) having a core made of model fragrance 8 and a first shell made of silica.
  • Step 2' After diluting by adding 305.58 g of water to 100.22 g of the aqueous dispersion obtained in step 1 (dilution ratio 4 times), 24.00 g of the obtained mixture is stirred at a liquid temperature of 30 ° C. TEOS was added. By cooling after continuing stirring for 24 hours, a second shell encapsulating the first shell is formed, and an aqueous dispersion containing a silica capsule (IX) in which the model fragrance 8 is encapsulated in amorphous silica is obtained. It was.
  • Example 10 1.51 g of coatamine 60 W was diluted with 88.47 g of ion-exchanged water to obtain an aqueous phase component.
  • 23.95 g of model fragrance 9 volume average cLogP value: 3.5, specific gravity: 0.95, oil-water interfacial tension: 8.0 mN / m
  • the oil phase component prepared by mixing 05 g of TEOS is added, and the rotation speed is 6,500 rpm for 5 minutes and the rotation speed is 8,000 rpm for 5 minutes using the homomixer at room temperature (about 25 ° C.).
  • the mixed solution was emulsified to obtain an emulsified solution.
  • the median diameter D 50 of the emulsified droplet at this time was 0.48 ⁇ m.
  • the pH of the obtained emulsion was adjusted to 3.7 using 0.22 g of a 0.1 N hydrochloric acid aqueous solution, and then transferred to a separable flask equipped with a stirring blade and a cooler, and the liquid temperature was maintained at 30 ° C. Stirring for 24 hours gave an aqueous dispersion containing a silica capsule (1-10) having a core made of model perfume 9 and a first shell made of silica.
  • Step 2' After diluting 99.88 g of the aqueous dispersion obtained in step 1 by adding 300.84 g of water (dilution ratio 4 times), 24.00 g of the obtained mixture is stirred at a liquid temperature of 30 ° C. TEOS was added. By cooling after continuing stirring for 24 hours, a second shell encapsulating the first shell is formed, and an aqueous dispersion containing a silica capsule (X) in which the model fragrance 9 is encapsulated in amorphous silica is obtained. It was.
  • Example 11 1.50 g of coatamine 60 W was diluted with 88.50 g of ion-exchanged water to obtain an aqueous phase component.
  • 24.00 g of a model fragrance 10 volume average cLogP value: 3.3, specific gravity: 0.96, oil-water interfacial tension: 12.1 mN / m
  • the oil phase component prepared by mixing 04 g of TEOS is added, and the rotation speed is 6,500 rpm for 5 minutes and the rotation speed is 8,000 rpm for 5 minutes using the homomixer at room temperature (about 25 ° C.).
  • the mixed solution was emulsified to obtain an emulsified solution.
  • the median diameter D 50 of the emulsified droplet at this time was 0.86 ⁇ m.
  • the pH of the obtained emulsion was adjusted to 3.8 using 0.52 g of a 0.1 N hydrochloric acid aqueous solution, and then transferred to a separable flask equipped with a stirring blade and a cooler, and the liquid temperature was maintained at 30 ° C. Stirring for 24 hours gave an aqueous dispersion containing a silica capsule (1-11) having a core made of model perfume 10 and a first shell made of silica.
  • Step 2' After diluting 100.39 g of the aqueous dispersion obtained in step 1 with 306.51 g of water (dilution ratio 4 times), 24.15 g of the obtained mixture is stirred at a liquid temperature of 30 ° C. TEOS was added. By cooling after continuing stirring for 24 hours, an aqueous dispersion containing silica capsules (XI) in which the model fragrance 10 was encapsulated in amorphous silica was obtained.
  • XI silica capsules
  • Example 12 (Step 1) 4.18 g of Coatamine 60W was diluted with 1045.50 g of ion-exchanged water to obtain an aqueous phase component.
  • aqueous phase component 280.00 g of model fragrance 11 (volume average cLogP value: 3.7, specific gravity: 0.88, oil-water interfacial tension: 13.9 mN / m) and 70.
  • the oil phase component prepared by mixing 10 g of TEOS is added, and the rotation speed is 6,500 rpm for 5 minutes and the rotation speed is 8,000 rpm for 17 minutes using the homomixer at room temperature (about 25 ° C.).
  • the mixed solution was emulsified to obtain an emulsified solution.
  • the median diameter D 50 of the emulsified droplet at this time was 1.16 ⁇ m.
  • the mixture was transferred to a separable flask equipped with a stirring blade and a cooler, and stirred for 24 hours while maintaining the liquid temperature at 30 ° C.
  • an aqueous dispersion containing a silica capsule (1-12) having a core made of model fragrance 11 and a first shell made of silica was obtained.
  • Step 2 To 1400 g of the aqueous dispersion obtained in Step 1, 42.00 g of TEOS was added while stirring at a liquid temperature of 30 ° C. By cooling after continuing stirring for 24 hours, an aqueous dispersion containing silica capsules (XII) in which the model fragrance 11 was encapsulated in amorphous silica was obtained.
  • Comparative Example 1 A 15% by mass Gosenol GH-20 (trade name, manufactured by Nippon Synthetic Chemical Industry Co., Ltd., polyvinyl alcohol) aqueous solution was prepared. An aqueous phase component was obtained by diluting 27.31 g of a 15 mass% Gosenol GH-20 aqueous solution with 175.67 g of ion-exchanged water.
  • aqueous phase component 84.48 g of the model fragrance 1 and 6.61 g of methacrylic acid (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), 4.76 g of NK ESTER 1G (trade name, manufactured by Shin-Nakamura Chemical Industries, Ltd.) , Ethylene glycol dimethacrylate), and V-65 (trade name, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., 2,2'-azobis (2,4-dimethylvaleronitrile)) 0.18 g.
  • methacrylic acid manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.
  • NK ESTER 1G trade name, manufactured by Shin-Nakamura Chemical Industries, Ltd.
  • V-65 trade name, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., 2,2'-azobis (2,4-dimethylvaleronitrile
  • the phase components are added, and the mixed solution is emulsified at room temperature (about 25 ° C.) using the homomixer at a rotation speed of 6,500 rpm for 5 minutes and at a rotation speed of 8,000 rpm for 5 minutes to obtain an emulsion. It was.
  • the median diameter D 50 of the emulsified droplet at this time was 2.31 ⁇ m.
  • the emulsion was replaced with nitrogen and stirred at 65 ° C. for 4 hours and 75 ° C. for 3 hours to obtain a suspension.
  • the monomer unreaction rate was measured by using liquid chromatography, it was 36.9% methacrylic acid and 91.7% ethylene glycol dimethacrylate.
  • Comparative Example 1 was confirmed under a microscope, core-shell type capsules were not formed.
  • Comparative Example 2 After dissolving 0.005 g of cetyltrimethylbromide in 37.53 g of ion-exchanged water, 12.03 g of Ludox HS-40 (trade name, manufactured by DuPont, colloidal silica, average particle size 12 nm) is added and mixed. , Obtained a dispersion. Using the homomixer at room temperature (about 25 ° C.), 37.56 g of the model fragrance 10 was added and mixed while stirring the dispersion. Immediately after mixing, a milky white liquid was obtained, but when left for about 5 minutes, the oil phase and the aqueous phase became separated liquids.
  • Ludox HS-40 trade name, manufactured by DuPont, colloidal silica, average particle size 12 nm
  • Comparative Example 3 (Step 1) 1.67 g of coatamine 60W was diluted with 98.34 g of ion-exchanged water to obtain an aqueous phase component.
  • Model fragrance 12 (volume average cLogP value: 4.2, specific gravity: 0.95, oil-water interfacial tension: 21.0 mN) containing 40.00 g of primary alcohol in the blending ratio shown in Table 12 below.
  • An oil phase component prepared by mixing 3.00 g of TEOS with / m) was added, and the mixed solution was emulsified using the homomixer at room temperature (about 25 ° C.) to obtain an emulsified solution.
  • the median diameter D 50 of the emulsified droplet at this time was 1.16 ⁇ m.
  • Step 2 After diluting 25.00 g of the aqueous dispersion obtained in step 1 with 75.00 g of water (dilution ratio 4 times), 6.00 g of the obtained mixture is stirred at a liquid temperature of 30 ° C. TEOS was added.
  • a second shell encapsulating the first shell is formed, and an aqueous dispersion containing a silica capsule (C3) in which the model fragrance 12 is encapsulated in amorphous silica is obtained. It was.
  • the median diameter D 50 of the silica capsule (C3) was 2.18 ⁇ m.
  • the silica capsule is immersed in 2 mL of acetonitrile containing tridecane at a concentration of 10 ⁇ g / mL as an internal standard, and an ultrasonic irradiation device ( Using a model "5510" manufactured by Hexane, ultrasonic waves were irradiated for 60 minutes under the conditions of an output of 180 W and an oscillation frequency of 42 kHz to elute the fragrance in the silica capsule.
  • an ultrasonic irradiation device Using a model "5510" manufactured by Hexane, ultrasonic waves were irradiated for 60 minutes under the conditions of an output of 180 W and an oscillation frequency of 42 kHz to elute the fragrance in the silica capsule.
  • each fragrance component contained in this solution was measured by gas chromatography, and silica capsules were used.
  • the GC area value ⁇ (2) of the fragrance component contained in the above was used.
  • the fragrance retention rate of each fragrance component was measured according to the following formula (ii). The results are shown in Tables 14, 16, 20, 22, 24, 25 and 26 below. The blanks in these tables indicate that the measurement was not performed.
  • Perfume retention rate (%) ⁇ (GC area value ⁇ (2) of the fragrance component contained in the silica capsule contained in the softener 100 mg after storage) / (GC area value ⁇ of the fragrance component contained in the softener 100 mg (2)) ⁇ ⁇ 100 (ii)
  • the GC area value ⁇ (2) of the fragrance component in the above formula was calculated from the composition of the model fragrance, the inclusion ratio of the fragrance, and the blending amount of the silica capsule used for preparing the softener.
  • Table 27 shows the components of the shells of the silica capsules of Examples and Comparative Examples, the types of model fragrances as organic compounds contained in the core, the types and contents of primary alcohols in the organic compounds, and cLogP of primary alcohols. The value and the result of the inclusion rate are shown.
  • silica couple cells of the examples can contain primary alcohols at a higher inclusion rate than those of the comparative examples.
  • Example 13 1.65 g of coatamine 60 W was diluted with 148.43 g of ion-exchanged water to obtain an aqueous phase component.
  • an oil phase component prepared by mixing 40.01 g of citronellol (cLogP value: 3.5, oil-water interfacial tension: 9.9 mN / m) and 10.01 g of TEOS was added, and the homomixer was added.
  • the mixed solution was emulsified under the conditions of a rotation speed of 8,000 rpm for 5 minutes and a rotation speed of 9,000 rpm for 5 minutes to obtain an emulsified liquid.
  • the median diameter D 50 of the emulsified droplet at this time was 5.2 ⁇ m.
  • the pH of the obtained emulsion was adjusted to 3.7 using a 1% by mass aqueous sulfuric acid solution, and then transferred to a separable flask equipped with a stirring blade and a cooler, and the liquid temperature was maintained at 30 ° C. for 24 hours. The mixture was stirred to obtain an aqueous dispersion containing a silica capsule (XIII) in which citronellol was encapsulated in amorphous silica.
  • the encapsulation rate of the fragrance component of the obtained silica capsule (XIII) was measured by the above-mentioned method. The results are shown in Table 28.
  • the silica capsule of Example 13 can contain citronellol, which is a primary alcohol, at a high inclusion rate.
  • Sample bottle mouth Smell when opening the lid of the sample bottle that stores the evaluation softener
  • Dehydrating cloth Smell of the towel after the washing machine dehydration treatment When rubbing the dehydrating cloth: Towel after the washing machine dehydration treatment is completed Smell when rubbing Dry cloth: Smell of towel after washing machine treatment Drying cloth Smell when rubbing dry cloth: Smell when the towel after washing machine treatment is dried and the towel after drying is rubbed
  • the silica capsule of Example 1 can contain primary alcohol at a high inclusion rate, and even when the silica capsule is blended with a softener and used for washing machine treatment, at each timing. It can be seen that the fragrance intensity is strong, the freshness can be sufficiently felt, and the delivery performance of the fragrance containing primary alcohol to the towel is excellent. From this, it can be seen that the silica capsule of the present invention can provide an agent that makes the user feel freshness and the strength of the odor at each timing.
  • Example 14 10.0 g of Coatamine 60W was diluted with 590.7 g of ion-exchanged water to obtain an aqueous phase component.
  • An oil phase component prepared by mixing 160 g of model fragrance 13 (cLogP value: 3.6, oil-water interfacial tension: 13.7 mN / m) and 40.3 g of TEOS shown in Table 30 below was added to this aqueous phase component.
  • the mixed solution is emulsified at room temperature (about 25 ° C.) using the homomixer at a rotation speed of 7,000 rpm for 10 minutes to obtain an emulsified solution having a median diameter D 50 of the emulsified droplets of 1.19 ⁇ m. Obtained.
  • the pH of the obtained emulsion was adjusted to 3.7 using 0.13 g of a 1 mass% sulfuric acid aqueous solution, and then transferred to a separable flask equipped with a stirring blade and a cooler, and the liquid temperature was maintained at 30 ° C. , Stirred for 24 hours to obtain an aqueous dispersion containing a silica capsule (1-14) having a core made of model fragrance 14 and a first shell made of silica.
  • Step 2' After diluting 37.5 g of the aqueous dispersion obtained in step 1 with 112.5 g of water (dilution ratio 4 times), 11.8 g of the obtained mixture is stirred at a liquid temperature of 30 ° C.
  • TEOS aqueous dispersion containing a silica capsule (XIV) in which citronellol is encapsulated in amorphous silica to form a second shell that encloses the first shell by cooling after further stirring for 24 hours after the dropping.
  • the median diameter D 50 of the silica capsule (XIV) was 4.3 ⁇ m.
  • the encapsulation rate of the fragrance component of the obtained silica capsule (XIV) was measured by the above-mentioned method. The results are shown in Table 30.
  • Comparative Example 4 (Step 1) 10.0 g of coatamine 60W was diluted with 590.0 g of ion-exchanged water to obtain an aqueous phase component. 160.0 g of model fragrance 14 (cLogP value: 3.8, oil-water interfacial tension: 19.8 mN / m) containing no primary alcohol shown in Table 31 below and 40.0 g of TEOS are mixed with this aqueous phase component. The oil phase component prepared in the above process was added, and the mixed solution was emulsified at room temperature (about 25 ° C.) using the homomixer at a rotation speed of 7,000 rpm for 30 minutes to obtain a median diameter D 50 of the emulsified droplets.
  • An emulsion having a size of 1.60 ⁇ m was obtained.
  • the median diameter D 50 of the emulsified droplet 10 minutes after the start of the emulsification treatment was 1.94 ⁇ m.
  • the pH of the obtained emulsion was adjusted to 3.7 using 0.13 g of a 1 mass% sulfuric acid aqueous solution, and then transferred to a separable flask equipped with a stirring blade and a cooler, and the liquid temperature was maintained at 30 ° C. , Stirred for 24 hours to obtain an aqueous dispersion containing a silica capsule (1-C4) having a core made of model fragrance 15 and a first shell made of silica.
  • Step 2 To 200 g of the aqueous dispersion obtained in Step 1, 11.9 g of TEOS was added dropwise over 420 minutes while stirring at a liquid temperature of 30 ° C. After the dropping, the mixture is further stirred for 24 hours and then cooled to form a second shell that encloses the first shell, and the model fragrance 14 contains a silica capsule (C4) encapsulated in amorphous silica. An aqueous dispersion was obtained. The median diameter D 50 of the silica capsule (C4) was 4.1 ⁇ m. The encapsulation rate of the fragrance component of the obtained silica capsule (C4) was measured by the above-mentioned method. The results are shown in Table 31.
  • the silica capsule of Example 14 can be encapsulated with a high inclusion rate even though it contains a primary alcohol. Further, from the result of the median diameter D 50 of the emulsified droplet 10 minutes after the start of the emulsification treatment, the median diameter of the emulsified droplet in Example 14 was shorter than that in Comparative Example 4. It can be seen that D 50 is significantly reduced. In Comparative Example 4, the median diameter D 50 of the emulsified droplet decreases with time, but the reduction of the median diameter D 50 is insufficient even after the emulsification treatment time has elapsed for 30 minutes.
  • Example 14 since the contained organic compound contains a primary alcohol, the emulsified droplets were emulsified in a short time of 10 minutes, although the shearing force was applied at the same rotation speed as in Comparative Example 4. It can be seen that the median diameter D 50 is reduced. From the comparison between Example 14 and Comparative Example 4, since the contained organic compound contains a primary alcohol, fine emulsified droplets can be efficiently formed in a shorter time, and silica having a smaller particle size can be formed. It can be seen that the production efficiency of capsules can be improved.
  • the silica capsule containing an organic compound containing a primary alcohol not only has a function of imparting freshness to the scent as a fragrance component, but also has a function of promoting emulsification. It is characterized as a silica capsule with excellent production efficiency.
  • Example 15 (Step 1) 1.88 g of Coatamine 60W was diluted with 110.37 g of ion-exchanged water to obtain an aqueous phase component.
  • an oil phase component prepared by mixing 30 g of model fragrance 15 (cLogP value: 4.7) and 7.50 g of TEOS shown in Table 32 below was added, and at room temperature (about 25 ° C.).
  • the mixed solution was emulsified for 5 minutes at a rotation speed of 6,500 rpm using the homomixer to obtain an emulsified solution having a median diameter D 50 of the emulsified droplets of 2.1 ⁇ m.
  • the pH of the obtained emulsion was adjusted to 3.64 with 0.10 g of a 0.2N hydrochloric acid aqueous solution, and then transferred to a separable flask equipped with a stirring blade and a cooler, while maintaining the liquid temperature at 30 ° C. , Stirred for 24 hours to obtain an aqueous dispersion containing a silica capsule (1-15) having a core made of model fragrance 15 and a shell made of silica.
  • Step 2' While stirring 100 g of the aqueous dispersion obtained in step 1 at a liquid temperature of 30 ° C., 3.0 g of TEOS was added dropwise over 420 minutes.
  • Comparative Example 5 (Step 1) 1.88 g of Coatamine 60W was diluted with 110.34 g of ion-exchanged water to obtain an aqueous phase component. To this aqueous phase component, an oil phase component prepared by mixing 30 g of the model fragrance 16 (cLogP value: 4.8) shown in Table 33 below and 7.51 g of TEOS was added, and at room temperature (about 25 ° C.). The mixed solution was emulsified for 5 minutes at a rotation speed of 6,500 rpm using the homomixer to obtain an emulsified solution having a median diameter D 50 of the emulsified droplets of 4.1 ⁇ m.
  • the pH of the obtained emulsion was adjusted to 3.67 with 0.02 g of a 0.2N hydrochloric acid aqueous solution, and then transferred to a separable flask equipped with a stirring blade and a cooler, while maintaining the liquid temperature at 30 ° C. , Stirred for 24 hours to obtain an aqueous dispersion containing a silica capsule (1-C5) having a core made of model fragrance 16 and a shell made of silica.
  • Step 2' While stirring 100 g of the aqueous dispersion obtained in step 1 at a liquid temperature of 30 ° C., 2.5 g of TEOS was added dropwise over 420 minutes.
  • the silica capsule of Example 15 can be encapsulated with a high inclusion rate even though it contains a primary alcohol. Further, from the result of the median diameter D 50 of the emulsified droplet 5 minutes after the start of the emulsification treatment, the median diameter of the emulsified droplet in Example 15 was shorter than that in Comparative Example 5. It can be seen that D 50 is significantly reduced. In Comparative Example 5, the median diameter D 50 of the emulsified droplet decreases with time, but the reduction of the median diameter D 50 is insufficient even after the emulsification treatment time has elapsed for 30 minutes.
  • Example 15 since the contained organic compound contains a primary alcohol, the emulsified droplets were emulsified in a short time of 5 minutes, although the shearing force was applied at the same rotation speed as in Comparative Example 5. It can be seen that the median diameter D 50 is reduced. From the comparison between Example 15 and Comparative Example 5, since the contained organic compound contains a primary alcohol, fine emulsified droplets can be efficiently formed in a shorter time, and silica having a smaller particle size can be formed. It can be seen that the production efficiency of capsules can be improved.
  • the silica capsule containing an organic compound containing a primary alcohol not only has a function of imparting freshness to the scent as a fragrance component, but also has a function of promoting emulsification. It is characterized as a silica capsule with excellent production efficiency. Further, from Tables 32 and 33, in Example 15, since the fragrance containing tetrahydrogeraniol, which is a primary alcohol, is used as a fragrance, the fragrance containing no primary alcohol is used as compared with Comparative Example 5. Therefore, it can be seen that the emulsified droplets are small and the obtained silica capsule can also have a small particle size, despite the same emulsification treatment conditions.
  • an organic compound containing a primary alcohol can be encapsulated at a high inclusion rate, and can be stably retained for a long period of time even in a preparation containing an oil agent or a surfactant. Therefore, the silica capsule of the present invention can be stably blended in cosmetics, liquid detergents, fabric softeners, etc., and has good delivery performance of primary alcohols according to various factors such as pressure, humidity, heat, and light. Can be expressed. Further, in the present invention, when the primary alcohol contained in the organic compound contained in the core is a fragrance component, not only can the freshness be imparted to various preparations as its function, but also the production efficiency is remarkably improved. It is also useful as a method for producing silica capsules.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Birds (AREA)
  • Emergency Medicine (AREA)
  • Environmental Sciences (AREA)
  • Zoology (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Inorganic Chemistry (AREA)
  • Dentistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Cosmetics (AREA)
  • Silicon Compounds (AREA)

Abstract

シェルと、該シェルの内部に1種以上の有機化合物を含むコアとを有するシリカマイクロカプセルであり、該シェルが、シリカを構成成分として含み、該有機化合物が、1級アルコールを含む、シリカマイクロカプセル、該シリカマイクロカプセルを含有する柔軟剤組成物、及び、該シリカマイクロカプセルの製造方法に関する。

Description

シリカマイクロカプセル
 本発明は、シリカマイクロカプセルに関する。
 化粧品、医薬品、一般家庭品、印刷等の広範な事業分野において、香料や生理活性剤物質を内包した様々なマイクロカプセルが開発され、利用されている。マイクロカプセルを構成するシェルとしてはメラミン樹脂や、ポリウレア/ウレタン樹脂等のアミノプラスト樹脂が用いられてきた。しかしながら、マイクロカプセルは環境への排出が避けられず、近年、マイクロプラスチックと呼ばれる懸念物質の一因となっている。このため、アミノプラスト樹脂に代わる環境調和性の高いマイクロカプセルの開発が望まれている。
 その中で、シリカを構成成分としたシェルを有するシリカマイクロカプセル(以下、「シリカカプセル」ともいう)は、環境調和性が期待出来る材料として注目されている。しかし、化粧品、液体洗剤、柔軟仕上げ剤等の油剤を含む製剤や界面活性剤を高濃度で含む製剤に長期間、安定的に配合するためには、シェルの高い緻密性が要求される。また、製剤はその用途に応じて、様々なpHや粘度を有しており、広範な物性を有する製剤に配合できることも求められている。そこで、これまでに様々なシリカカプセルの検討が行われてきた。
 例えば、特開平4-265149号(特許文献1)では、疎水性物質を含有するミクロ包封体等の提供を目的として、コロイドシリカ又はヒュームドシリカを用いた、香料等の疎水性物質を含有する外部シリカ層を含むミクロ包封体が記載されている。
 一方で、シリカを構成成分としたシェル、油溶性成分等をコア成分としたコアシェル型マイクロカプセルも検討されてきた。
 米国特許第9532933号明細書(特許文献2)には、マイクロカプセルシェル内にカプセル化されたコア材料を有するマイクロカプセル粒子組成物等が記載され、香料をコア材料として、カチオン性界面活性剤を乳化剤としてシリカカプセル粒子を形成させた後、該シリカカプセル粒子をポリエチレンイミン等で処理することにより、強固なシェルを有するシリカカプセル粒子組成物が得られることが記載されている。
 特表2009-542667号(特許文献3)には、サンスクリーン成分等をコアとするマイクロカプセルの調製方法が記載され、カチオン性界面活性剤と非イオン性界面活性剤を併用し、系外(ex-situ)エマルション重合によりテトラアルコキシシランを重合させることにより、マイクロカプセルからの油相の拡散又は浸出に対してより耐性のあるカプセルが得られることが記載されている。
 特表2012-501849号(特許文献4)には、シリケートシェルマイクロカプセル及びコロイド状シリケート粒子の水性懸濁液にコロイド状シリケート封鎖剤を添加する、シリケートシェルマイクロカプセルの水性懸濁液の安定性を向上させる方法が記載されている。
 特開2015-128762号(特許文献5)には、香料等の有機化合物からなるコア、コアを包接する第一シェルと、第一シェルを包接する第二シェルとを有するマイクロカプセルの製造方法が記載され、マイクロカプセルのシェルを2段階のゾル-ゲル反応で形成することによりシェルの緻密性と強度を高めることが記載されている。
 本発明は、シェルと、該シェルの内部に1種以上の有機化合物を含むコアとを有するシリカマイクロカプセルであり、
 該シェルが、シリカを構成成分として含み、
 該有機化合物が、1級アルコールを含む、シリカマイクロカプセルに関する。
 ここで、1級アルコールは、化粧品や医薬品等の有効成分や、柔らかくて閾値が低い香り成分として調合香料の中に広く用いられ、マイクロカプセルの内包成分として重要な成分である。一般に、アルコール系香料は、エステル系香料と比べて香りが柔らかく、また、閾値が低いことから調合香料によく用いられているが、特に、1級アルコールは、香気に優れ、みずみずしい香りを付与することができ、嗜好性も高いことから好んで用いられる。
 そこで、適用する製剤への配合の自由度の向上、及び粒径分布の制御の観点から、シリカカプセルの小粒径化も求められている。シリカカプセルのシェルをゾル-ゲル反応で形成する場合には、界面活性剤を含む水相成分と、内包する有機化合物及び原料シリカ(シリカ前駆体)を含む油相成分とを乳化処理する工程を有するが、得られるシリカカプセルの粒径は、この乳化処理により得られる乳化液の乳化滴の粒径にも依存するため、より短時間で微細な乳化滴を形成でき、小粒径化したシリカカプセルの生産効率の向上も求められている。
 本発明者らは、1級アルコールを内包成分に用いることにより、意外にもシリカカプセルを小粒径化することができることを見出し、本発明に至った。
 本発明は、1級アルコールを含む有機化合物を内包するシリカマイクロカプセル、該シリカマイクロカプセルを含有する柔軟剤組成物、及び、小粒径化したシリカカプセルの生産効率に優れるシリカマイクロカプセルの製造方法に関する。
 本発明者らは、1級アルコールを含む有機化合物を含有するコアと、シリカを構成成分として含むシェルとを有するコアシェル型のシリカマイクロカプセルにより、小粒径化したシリカマイクロカプセルとすることができることを見出した。
 すなわち、本発明は、下記の〔1〕~〔4〕に関する。
〔1〕シェルと、該シェルの内部に1種以上の有機化合物を含むコアとを有するシリカマイクロカプセルであり、
 該シェルが、シリカを構成成分として含み、
 該有機化合物が、1級アルコールを含む、シリカマイクロカプセル。
〔2〕前記〔1〕に記載のシリカマイクロカプセルを含有する、柔軟剤組成物。
〔3〕シェルと、該シェルの内部に1種以上の有機化合物を含むコアとを有するシリカマイクロカプセルの製造方法であって、
 該シェルが、シリカを構成成分として含み、
 該有機化合物が、1級アルコールを含み、
 下記の工程Iを含む、シリカマイクロカプセルの製造方法。
 工程I:カチオン性界面活性剤を含む水相成分と、1級アルコールを含む有機化合物及びテトラアルコキシシランを含む油相成分とを乳化して得られる乳化液を、酸性条件下でゾル-ゲル反応に供し、コアと、シリカを構成成分とするシェルと、を有するシリカカプセルを形成し、該シリカカプセルを含有する水分散体を得る工程
〔4〕シェルと、該シェルの内部に1種以上の有機化合物を含むコアとを有するシリカマイクロカプセルの製造方法であって、
 該シェルが、シリカを構成成分として含み、
 該有機化合物が、1級アルコールを含み、
 下記の工程1及び工程2を含む、シリカマイクロカプセルの製造方法。
 工程1:カチオン性界面活性剤を含む水相成分と、有機化合物及びテトラアルコキシシランを含む油相成分とを乳化して得られる乳化液を、酸性条件下でゾル-ゲル反応に供し、コアと、シリカを構成成分とする第一のシェルと、を有するシリカマイクロカプセル(1)を形成し、該シリカマイクロカプセル(1)を含有する水分散体を得る工程
 工程2:工程1で得られたシリカマイクロカプセル(1)を含有する水分散体に、更にテトラアルコキシシランを添加してゾル-ゲル反応を行い、第一のシェルを包接する第二のシェルを有するシリカマイクロカプセルを形成する工程
 本発明によれば、1級アルコールを含む有機化合物を内包するシリカマイクロカプセル、該シリカマイクロカプセルを含有する柔軟剤組成物、及び、小粒径化したシリカカプセルの生産効率に優れるシリカマイクロカプセルの製造方法を提供することができる。
[シリカマイクロカプセル]
 本発明のシリカマイクロカプセル(シリカカプセル)は、シェルと、該シェルの内部に1種以上の有機化合物を含むコアとを有するシリカカプセルであり、該シェルが、シリカを構成成分として含み、該有機化合物が、1級アルコールを含む。
 なお、本明細書において、内包される1級アルコールを含む有機化合物の長期間の保持性を「長期保持性」ともいう。また、小粒径化したシリカカプセルの生産効率を単に「生産効率」ともいう。
 本発明によれば、1級アルコールを含む有機化合物を内包するシリカカプセルを得ることができ、さらに、該シリカカプセルの生産効率を向上させることができる。その理由は定かではないが、次のように考えられる。
 一方、本発明のシリカカプセルは、内包成分として1級アルコールを含むため、乳化滴が小粒径化されることにより、内包成分の量に対するシリカカプセルのシェル形成場である油水界面の面積が増大することとなり、シェル形成に寄与しない余剰のシリカ前駆体の量を抑制することができ、シェルの緻密性及び強度が高められることができ、1級アルコールを含む有機化合物を内包するシリカカプセルを得ることができると考えられる。そして、各種刺激因子に応じてシェルが破れることにより、1級アルコールのデリバリー性能を良好に発現することができ、内包成分の保持と放出とを制御することができると考えられる。
 また、一般に、シリカカプセルの製造において、乳化処理時間と乳化滴のメジアン径D50との関係は、製造規模と乳化液の調製に用いられる撹拌手段に依存するが、撹拌手段の性能向上には限界がある。本発明においては、内包する有機化合物が1級アルコールを含むことにより、1級アルコールを含む油相成分と、水相成分とを乳化する際に、より短時間で効率的に微細な乳化滴を形成することができるためか、小粒径化したシリカカプセルの生産効率を向上させることができると考えられる。
<コア>
 本発明のシリカカプセルのコアは、1種以上の有機化合物を含む。
 前記有機化合物は、シリカカプセルの小粒径化の観点から、1級アルコールを含む。
 前記1級アルコールの炭素数は、前記と同様の観点から、好ましくは4以上、より好ましくは6以上、更に好ましくは8以上であり、そして、好ましくは18以下、より好ましくは16以下、更に好ましくは14以下、より更に好ましくは12以下である。
 前記1級アルコールの親水性又は疎水性は、n-オクタノールと水との間の分配係数P(n-オクタノール/水)の常用対数「LogP」の計算値であるcLogP値を指標とすることができる。ここで、cLogP値は、A.Leo Comprehensive Medicinal Chemistry, Vol.4 C.Hansch, P.G.Sammens, J.B Taylor and C.A.Ramsden, Eds., P.295, Pergamon Press, 1990に記載の方法で計算した″LogP(cLogP)″であり、プログラムCLOGP v4.01により計算したcLogP値である。
 前記1級アルコールのcLogP値は、好ましくは1.0以上、より好ましくは2.0以上、更に好ましくは3.0以上であり、そして、好ましくは7.0以下、より好ましくは6.5以下、更に好ましくは6.0以下、より更に好ましくは5.5以下である。
 前記1級アルコールは、1級アルコールのデリバリー性能を良好に発現させる観点から、香料(調合香料中の香料成分)、抗菌剤、防腐剤、忌避剤(例えば、害虫忌避剤)、及び医薬品有効成分から選ばれる1種以上であることが好ましい。
 本発明において、前記1級アルコールは香料成分であることが好ましい。前記1級アルコールを芳香成分としてコアに内包することにより、本発明のシリカカプセルを柔軟剤組成物等へ含有させた場合においても、デリバリー性、及び圧力の付与に応じた発香性に優れ、1級アルコール特有の香りのもたらす効果を享受できる。
 前記1級アルコールの具体例としては、例えば、1-デカノール、1-ウンデカノール、1-ドデカノール(アルコールC-12)等の直鎖状の飽和脂肪族1級アルコール;シス-3-ヘキセノール等の直鎖状の不飽和脂肪族1級アルコール;テトラヒドロゲラニオール等の分岐鎖状の飽和脂肪族1級アルコールなどの直鎖状又は分岐鎖状の脂肪族1級アルコール;4-イソプロピルシクロヘキサンメタノール、サンダルマイソールコア等の飽和又は不飽和の環構造を含む脂肪族1級アルコール;ゲラニオール、ネロール、シトロネロール等のテルペン系1級アルコール;2-フェニルエチルアルコール、シンナミルアルコール、ベンジルアルコール、6-フェニル-1-ヘキサノール、パンプルフルール等の芳香族系1級アルコールなどの1級アルコールが挙げられる。
 これらの中でも、前記1級アルコールは、シリカカプセルの小粒径化の観点からは、好ましくはテルペン系1級アルコール、直鎖状又は分岐鎖状の脂肪族1級アルコール、及び芳香族系1級アルコールから選ばれる1種以上、より好ましくはテルペン系1級アルコール及び芳香族系1級アルコールから選ばれる1種以上である。具体的には、テルペン系1級アルコールとしては、ゲラニオール、シトロネロール、ネロールが好ましく、脂肪族1級アルコールとしては、アルコールC-12、テトラヒドロゲラニオール、シス-3-ヘキセノールが好ましく、芳香族系1級アルコールとしては、2-フェニルエチルアルコール、6-フェニル-1-ヘキサノール、ベンジルアルコールである。
 また、前記1級アルコールは、香料としての処方の融通性の観点からは、ゲラニオール、シトロネロール、ネロール、2-フェニルエチルアルコール、及び、テトラヒドロゲラニオールから選ばれる1種以上が好ましい。
 前記1級アルコールは1種を単独で又は2種以上を併用して用いることができる。前記1級アルコールを2種以上用いる場合には、内包する有機化合物に含まれる1級アルコールのcLogP値は、各1級アルコールのcLogP値に各1級アルコールの体積比を乗じ、それらの和とすることで求めることができる。
 前記有機化合物は、前記1級アルコール以外の他の成分を含んでもよい。
 他の成分としては、好ましくは、前記1級アルコール以外の、香料、香料前駆体、油剤(例えば、保湿剤)、酸化防止剤、冷感剤、染料、色素、シリコーン、溶媒、及び油溶性ポリマーから選ばれる1種以上、より好ましくは、前記1級アルコール以外の、香料、香料前駆体、油剤、酸化防止剤、及び溶媒から選ばれる1種以上、更に好ましくは、前記1級アルコール以外の、香料及び香料前駆体から選ばれる1種以上である。
 香料前駆体としては、水に反応して香料成分を放出する化合物、光に反応して香料成分を放出する化合物等が挙げられる。
 水に反応して香料成分を放出する化合物としては、香料アルコール由来のアルコキシ成分を有するケイ酸エステル化合物、香料アルコール由来のアルコキシ成分を有する脂肪酸エステル化合物、香料アルデヒド又は香料ケトン由来のカルボニル成分とアルコール化合物の反応で得られるアセタール化合物もしくはヘミアセタール化合物、香料アルデヒド又は香料ケトン由来のカルボニル成分と1級アミン化合物との反応で得られるシッフ塩基化合物、香料アルデヒド又は香料ケトン由来のカルボニル成分とヒドラジン化合物との反応で得られるヘミアミナール化合物又はヒドラゾン化合物が挙げられる。
 光に反応して香料成分を放出する化合物としては、香料アルコール由来のアルコキシ成分を有する2-ニトロベンジルエーテル化合物、香料アルデヒドや香料ケトン由来のカルボニル成分を有するα-ケトエステル化合物、香料アルコール由来のアルコキシ成分を有するクマリン酸エステル化合物が挙げられる。これらの香料前駆体は、例えばポリアクリル酸の一部のカルボキシ基と香料アルコールとの反応生成物等のポリマーとして用いてもよい。
 前記有機化合物は、内包率を高める観点、及び長期保持性を向上させる観点から、適度な疎水性を有することが好ましい。前記有機化合物の親水性又は疎水性を表す指標として、前記cLogP値を用いることができる。
 前記有機化合物が複数の構成成分から構成される場合、該有機化合物のcLogP値は、各構成成分のcLogP値に各構成成分の体積比を乗じ、それらの和とすることで求めることができる。
 前記有機化合物のcLogP値は、好ましくは1.0以上、より好ましくは2.0以上、更に好ましくは3.0以上、より更に好ましくは4.0以上であり、そして、好ましくは30以下、より好ましくは20以下、更に好ましくは10以下、より更に好ましくは7.0以下である。
 前記有機化合物のcLogP値が1.0以上であることにより、後述する水中油滴によるゾル-ゲル反応において、得られるシリカカプセル内への有機化合物の内包率が向上する。また、前記有機化合物が、複数の香料成分から構成される香料組成物のような場合であっても同様に、香料組成物のcLogP値が1.0以上であることによって、ゾル-ゲル反応で得られるシリカカプセル内への香料組成物の内包率を向上させることができる。
 本発明においては、油水界面張力が高い有機化合物はもちろんのこと、油水界面張力が比較的低い有機化合物であっても、シリカカプセルのコアとして内包することができる。
 コアとして内包される有機化合物の油水界面張力は、コアシェル型のシリカカプセルの形成容易性の観点から、好ましくは3mN/m以上、より好ましくは4mN/m以上、更に好ましくは5mN/m以上、より更に好ましくは7mN/m以上であり、そして、好ましくは40mN/m以下、より好ましくは30mN/m以下、更に好ましくは25mN/m以下、より更に好ましくは20mN/m以下、より更に好ましくは18mN/m以下である。
 前記有機化合物の油水界面張力は実施例に記載の方法により測定することができる。
 前記有機化合物中の1級アルコールの含有量は、1級アルコールのデリバリー性能を良好に発現させる観点、及び生産効率を向上させる観点から、好ましくは1質量%以上、より好ましくは2質量%以上、更に好ましくは3質量%以上、より更に好ましくは5質量%以上、より更に好ましくは10質量%以上、より更に好ましくは20質量%以上、より更に好ましくは30質量%以上、より更に好ましくは40質量%以上、より更に好ましくは50質量%以上であり、そして、内包率を高める観点、及び長期保持性を向上させる観点から、好ましくは100質量%以下である。
 前記有機化合物に含まれる1級アルコールが香料成分であって、該有機化合物が1級アルコール以外の他の成分を含む場合、該有機化合物中の他の成分の含有量は、本発明の効果を阻害しない範囲であり、かかる他の成分が発揮する機能に応じた量である。例えば、前記有機化合物が調合香料の場合には、該有機化合物中の他の成分の含有量は求められる香りに応じた量となる。本発明においては、1級アルコールを高い内包率でシリカカプセルに内包することができるため、1級アルコールの種類や量の制約を受けることなく調合することができる。
<シェル>
 本発明のシリカカプセルのシェルは、シリカを構成成分として含む。
 本発明のシリカカプセルのシェルは、アルコキシシランの加水分解重縮合物であるシリカを構成成分として含むことが好ましい。
 本発明のシリカカプセルのシェルは、シリカカプセルの小粒径化の観点、内包率を高める観点、及び長期保持性を向上させる観点、1級アルコールのデリバリー性能を発現させる観点、並びに生産効率を向上させる観点から、アルコキシシランを前駆体としたゾル-ゲル反応により形成されてなるものが好ましい。
 本発明において「ゾル-ゲル反応」とは、アルコキシシランが加水分解及び重縮合反応により、ゾル及びゲル状態を経てシェルの構成成分であるシリカを形成する反応を意味する。具体的には、例えばテトラアルコキシシランが加水分解され、シラノール化合物が脱水縮合反応及び脱アルコール縮合反応によりシロキサンオリゴマーを生成し、更に脱水縮合反応が進行することによりシリカが形成される反応である。
 また、本発明のシリカカプセルのシェルは、本発明の効果を阻害しない範囲で、シリカ以外の無機重合体を構成成分として含んでもよい。本発明において無機重合体とは、無機元素を含む重合体をいう。該無機重合体としては、無機元素のみからなる重合体、主鎖が無機元素のみから構成され側鎖又は置換基として有機基を有する重合体等が挙げられる。
 前記無機重合体は、好ましくは金属元素又は半金属元素を含む金属酸化物であり、更に好ましくは金属アルコキシド〔M(OR)x〕を前駆体として、前述のシリカのゾル-ゲル反応と同様の反応により形成されてなる重合体である。ここで、Mは金属又は半金属元素であり、Rは炭化水素基である。
 金属アルコキシドを構成する金属又は半金属元素としては、チタン、ジルコニウム、アルミニウム、亜鉛等が挙げられる。
 前記アルコキシシランは、シリカカプセルの小粒径化の観点、有機化合物の内包率を高める観点、及び長期保持性を向上させる観点、1級アルコールのデリバリー性能を良好に発現させる観点、並びに生産効率を向上させる観点から、好ましくはテトラアルコキシシランである。
 前記テトラアルコキシシランとしては、ゾル-ゲル反応を促進する観点から、好ましくは炭素数1以上4以下のアルコキシ基を有するものであり、より好ましくはテトラメトキシシラン、テトラエトキシシラン、及びテトライソプロポキシシランから選ばれる1種以上であり、更に好ましくはテトラメトキシシラン及びテトラエトキシシランから選ばれる1種以上であり、より更に好ましくはテトラエトキシシランである。
[シリカマイクロカプセルの製造方法]
 本発明のシリカカプセルのシェルは、好ましくは下記の工程Iにより製造される。
 工程I:カチオン性界面活性剤を含む水相成分と、1級アルコールを含む有機化合物及びテトラアルコキシシランを含む油相成分とを乳化して得られる乳化液を、酸性条件下でゾル-ゲル反応に供し、コアと、シリカを構成成分とするシェルと、を有するシリカカプセルを形成し、該シリカカプセルを含有する水分散体を得る工程
〔工程I〕
 工程Iは、カチオン性界面活性剤を含む水相成分と、1級アルコールを含む有機化合物及びテトラアルコキシシランを含む油相成分とを乳化して得られる乳化液を、酸性条件下でゾル-ゲル反応に供し、コアと、シリカを構成成分とするシェルと、を有するシリカカプセルを形成し、該シリカプセルを含有する水分散体を得る工程である。
 工程Iにおけるカチオン性界面活性剤として、アルキルアミン塩、アルキル第4級アンモニウム塩等が挙げられる。アルキルアミン塩及びアルキル第4級アンモニウム塩のアルキル基の炭素数は、好ましくは10以上、より好ましくは12以上、更に好ましくは14以上であり、そして、好ましくは22以下、より好ましくは20以下、更に好ましくは18以下である。
 アルキルアミン塩としては、ラウリルアミンアセテート、ステアリルアミンアセテート等のアルキルアミン酢酸塩が挙げられる。
 第4級アンモニウム塩としては、アルキルトリメチルアンモニウム塩、ジアルキルジアルキルアンモニウム塩、アルキルベンジルジメチルアンモニウム塩等が挙げられる。
 アルキルトリメチルアンモニウム塩としては、ラウリルトリメチルアンモニウムクロライド、セチルトリメチルアンモニウムクロライド、ステアリルトリメチルアンモニウムクロライド等のアルキルトリメチルアンモニウムクロライド;ラウリルトリメチルアンモニウムブロマイド、セチルトリメチルアンモニウムブロマイド、ステアリルトリメチルアンモニウムブロマイド等のアルキルトリメチルアンモニウムブロマイド等が挙げられる。
 ジアルキルジメチルアンモニウム塩としては、ジステアリルジメチルアンモニウムクロライド等のジアルキルジメチルアンモニウムクロライド;ジステアリルジメチルアンモニウムブロマイド等のジアルキルジメチルアンモニウムブロマイド等が挙げられる。
 アルキルベンジルジメチルアンモニウム塩としては、アルキルベンジルジメチルアンモニウムクロライド、アルキルベンジルジメチルアンモニウムブロマイド等が挙げられる。
 カチオン性界面活性剤は、これらの中でも、好ましくは第4級アンモニウム塩であり、より好ましくは炭素数10以上22以下のアルキル基を有するアルキルトリメチルアンモニウム塩であり、更に好ましくは炭素数10以上22以下のアルキル基を有するアルキルトリメチルアンモニウムクロライドであり、より更に好ましくはラウリルトリメチルアンモニウムクロライド、ステアリルトリメチルアンモニウムクロライド、及びセチルトリメチルアンモニウムクロライドから選ばれる1種以上であり、より更に好ましくはセチルトリメチルアンモニウムクロライドである。
 工程Iにおいて、本発明の効果を阻害しない範囲で、カチオン性界面活性剤に加えて、更に他の乳化剤を含んでもよい。他の乳化剤としては、高分子分散剤、ノニオン性界面活性剤、アニオン性界面活性剤、両性界面活性剤が挙げられる。
 工程Iにおいて水相成分中のカチオン性界面活性剤の含有量は、乳化滴の分散安定性の観点から、好ましくは0.1質量%以上、より好ましくは0.3質量%以上、更に好ましくは0.4質量%以上であり、そして、乳化液の分散安定性に寄与しない余剰の乳化剤による乳化剤ミセルの形成を抑制し、カプセル化効率を向上させる観点から、好ましくは10質量%以下、より好ましくは5質量%以下、更に好ましくは2質量%以下、より更に好ましくは1質量%以下、より更に好ましくは0.7質量%以下である。
 工程Iで得られる乳化液の総量中の油相成分の量は、製造効率の観点から、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは15質量%以上であり、そして、安定な乳化液を得る観点から、好ましくは50質量%以下、より好ましくは45質量%以下、更に好ましくは40質量%以下、より更に好ましくは35質量%以下である。
 工程Iにおけるテトラアルコキシシランの添加量は、ゾル-ゲル反応を促進させ、十分に緻密なシェルを形成する観点から、工程Iの有機化合物の量に対して、好ましくは10質量%以上、より好ましくは12質量%以上、更に好ましくは14質量%以上であり、そして、過剰のテトラアルコキシシランが有機化合物中に残存することを抑制する観点から、好ましくは60質量%以下、より好ましくは50質量%以下、更に好ましくは40質量%以下、より更に好ましくは35質量%以下である。
 ここで、工程Iにおけるテトラアルコキシシランの添加量は、工程Iの有機化合物の量を100質量%としたときの割合である。
 工程Iにおける水相成分及び油相成分の合計量中の有機化合物及びテトラアルコキシシランの合計量は、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは15質量%以上であり、そして、安定な乳化液を得る観点から、好ましくは50質量%以下、より好ましくは45質量%以下、更に好ましくは40質量%以下、より更に好ましくは35質量%以下である。
 工程Iは、好ましくは下記の工程1-1~1-4を含む。
 工程1-1:カチオン性界面活性剤を含む水相成分を調製する工程
 工程1-2:前記有機化合物とテトラアルコキシシランを混合し、油相成分を調製する工程
 工程1-3:工程1-1で得られた水相成分と工程1-2で得られた油相成分とを混合及び乳化し、乳化液を得る工程
 工程1-4:工程1-3で得られた乳化液を、1段階目のゾル-ゲル反応に供し、コアと、シリカを構成成分とするシェルとを有するシリカカプセルを形成する工程
 前記乳化液の調製に用いられる撹拌手段は特に限定されないが、強い剪断力を有するホモジナイザー、高圧分散機、超音波分散機等を使用することができる。また、ホモミキサー、「ディスパー」(商品名、プライミクス株式会社製)、「クレアミックス」(商品名、エムテクニック株式会社製)、「キャビトロン」(商品名、大平洋機工株式会社製)等を使用することもできる。
 水相成分及び油相成分の混合及び乳化時の温度は、製造安定性の観点から、好ましくは5℃以上、より好ましくは8℃以上、更に好ましくは10℃以上、より更に好ましくは15℃以上であり、そして、好ましくは50℃以下、より好ましくは40℃以下、更に好ましくは35℃以下、より更に好ましくは30℃以下である。
 撹拌手段の回転数等及び水相成分及び油相成分の混合及び乳化の時間は、乳化液の乳化滴のメジアン径D50が後述する範囲となるように適宜調整することが好ましい。
 工程Iの乳化液における乳化滴のメジアン径D50は、シリカカプセル外環境に対する比表面積を少なくし、長期保持性を高める観点から、好ましくは0.1μm以上、より好ましくは0.2μm以上、更に好ましくは0.3μm以上であり、そして、シリカカプセルの小粒径化の観点、及び、シリカカプセルの物理的強度の観点から、好ましくは50μm以下、より好ましくは30μm以下、更に好ましくは10μm以下、より更に好ましくは5μm以下、より更に好ましくは3μm以下、より更に好ましくは2μm以下である。
 乳化滴のメジアン径D50は、実施例に記載の方法により測定することができる。
 工程Iにおけるゾル-ゲル反応の初期pHは、テトラアルコキシシランの加水分解反応と縮合反応のバランスを保つ観点、及び親水性の高いゾルの生成を抑制し、カプセル化の進行を促進する観点から、好ましくは3.0以上、より好ましくは3.3以上であり、更に好ましくは3.5以上であり、そして、シリカシェルの形成と乳化滴の凝集の併発を抑制し、緻密なシェルを有するシリカカプセルを得る観点から、好ましくは4.5以下、より好ましくは4.3以下、更に好ましくは4.1以下である。
 前記有機化合物を含む油相成分の酸性、アルカリ性の強さに応じて、所望の初期pHに調整する観点から、任意の酸性又はアルカリ性のpH調整剤を用いてもよい。
 前記乳化液のpHが所望の値以下となることもある。その場合には、後述するアルカリ性のpH調整剤を用いて調整することが好ましい。
 すなわち、工程1-4は、好ましくは、下記の工程1-4’であってもよい。
 工程1-4’:工程1-3で得られた乳化液のpHを、pH調整剤を用いて調整し、1段階目のゾル-ゲル反応を行い、コアとシェルとを有するシリカカプセルを形成し、該シリカカプセルを含有する水分散体を得る工程
 酸性のpH調整剤として、塩酸、硝酸、硫酸等の無機酸、酢酸、クエン酸等の有機酸、陽イオン交換樹脂等を水やエタノール等に加えた液などが挙げられ、好ましくは塩酸、硫酸、硝酸、クエン酸である。
 アルカリ性のpH調整剤として、水酸化ナトリウム、炭酸水素ナトリウム、水酸化カリウム、水酸化アンモニウム、ジエタノールアミン、トリエタノールアミン、トリスヒドロキシメチルアミノメタンなどが挙げられ、好ましくは水酸化ナトリウム、水酸化アンモニウムである。
 工程Iにおけるゾル-ゲル反応の反応温度は、水相として含まれる水の融点以上、沸点以下であれば任意の値を選択することができるが、ゾル-ゲル反応における加水分解反応と縮合反応のバランスを制御し、緻密なシェルを形成する観点から、温度を一定範囲にするのが好ましい。該範囲としては、好ましくは5℃以上60℃以下、より好ましくは10℃以上50℃以下、更に好ましくは15℃以上40℃以下である。
 工程Iにおけるゾル-ゲル反応の反応時間は、反応系内が所定の反応温度になったときを反応開始と規定した場合、好ましくは0.5時間以上、より好ましくは1時間以上、更に好ましくは5時間以上、より更に好ましくは10時間以上であり、そして、好ましくは50時間以下、より好ましくは40時間以下、更に好ましくは30時間以下である。
 また、本発明のシリカカプセルのシェルは、有機化合物の内包率を高める観点、及び長期保持性を向上させる観点、並びに1級アルコールのデリバリー性能を良好に発現させる観点からは、前記シェルが、アルコキシシランの加水分解重縮合物であるシリカを構成成分として含む内殻と、該内殻の外側に更にアルコキシシランの加水分解重縮合物であるシリカを構成成分として含む外殻とを有することが好ましい。かかるシリカカプセルの具体的な一例としては、工程Iで得られるシリカカプセル(1)(以下、シリカカプセル(1)という)として、該シリカカプセル(1)を含有する水分散体に更にシリカ前駆体としてテトラアルコキシシランを添加し、ゾル-ゲル反応を2段階で行うことにより形成されてなるシリカを構成成分として含むことが好ましい。すなわち、この場合の本発明のシリカカプセルは、下記の工程1及び工程2を含む方法により製造することが好ましい。
 工程1:カチオン性界面活性剤を含む水相成分と、1級アルコールを含む有機化合物及びテトラアルコキシシランを含む油相成分とを乳化して得られる乳化液を、酸性条件下でゾル-ゲル反応に供し、コアと、シリカを構成成分とする第一のシェルと、を有するシリカカプセル(1)を形成し、該シリカカプセル(1)を含有する水分散体を得る工程
 工程2:工程1で得られたシリカカプセル(1)を含有する水分散体に、更にテトラアルコキシシランを添加してゾル-ゲル反応を行い、第一のシェルを包接する第二のシェルを有するシリカカプセルを形成する工程
 なお、本明細書において、工程1及び工程2を行う場合において、「第一のシェルを包接する」とは、工程1で形成したシリカカプセル(1)の第一のシェルを包接することを意味し、シリカカプセル(1)を包接することをも含む。
 工程2により、工程1で形成されたシリカカプセルに更にシェルが形成されることとなり、工程2で得られるシリカカプセルは、全体としてシェルの厚みが増大したシリカカプセルとなり、工程1で形成されたシェルを内殻とし、工程2で形成されたシェルを外殻とするシェルを有するシリカカプセルとなると考えられる。
 また、以下において、工程1及び工程2を行う場合において、工程1より形成される第一のシェルを「第一シェル」、工程2より形成される第二のシェルを「第二シェル」ともいう。
〔工程2〕
 本発明のシリカカプセルのシェルが、ゾル-ゲル反応を2段階で行うことにより形成されてなるシリカを構成成分として含む場合には、本発明のシリカカプセルの製造方法は、工程1に加えて、さらに工程2を含む。
 工程2は、工程1で得られたシリカカプセル(1)を含有する水分散体に、更にテトラアルコキシシランを添加してゾル-ゲル反応を行い、第一シェルを包接する第二シェルを有するシリカカプセルを形成する工程である。
 工程2におけるテトラアルコキシシランの添加量は、第一シェルを包接した第二シェルを形成する観点から、工程1の有機化合物の量に対して、好ましくは7質量%以上、より好ましくは10質量%以上、更に好ましくは15質量%以上であり、そして、水相に分散するシリカゾルの生成を抑制し、シリカカプセルの分散安定性を向上させる観点から、好ましくは200質量%以下、より好ましくは170質量%以下、更に好ましくは150質量%以下である。
 ここで、工程2におけるテトラアルコキシシランの添加量は、工程1の有機化合物の量を100質量%としたときの割合である。
 なお、本発明において、工程1で得られる水分散体の全量を工程2に供する場合は、工程1の有機化合物及びテトラアルコキシシランの量は、それぞれ、工程1で用いた有機化合物及びテトラアルコキシシランの量である。工程1で得られる水分散体の一部を工程2に供する場合は、工程1の有機化合物及びテトラアルコキシシランの量は、それぞれ、工程1で用いた有機化合物及びテトラアルコキシシランの量から、工程2に供する工程1で得られた水分散体の量を用いて比例換算した量である。
 工程2において、工程1で得られるシリカカプセル(1)を含有する水分散体に添加するテトラアルコキシシランは、全量を一括で添加してもよく、間欠的に分割して添加してもよく、連続的に添加してもよいが、緻密性の高い第二シェルを形成する観点から、連続的に滴下して添加することが好ましい。
 テトラアルコキシシランを連続的に滴下して添加する場合、その滴下時間は製造の規模に応じて適宜設定することができるが、添加するテトラアルコキシシランと水分散体との分離を抑制する観点から、好ましくは5分間以上、より好ましくは10分間以上、更に好ましくは30分間以上であり、そして、好ましくは1,200分間以下、より好ましくは1,000分間以下、更に好ましくは500分間以下である。
 本発明において、工程1及び工程2を含む場合のテトラアルコキシシランの添加総量、すなわち工程1及び工程2で用いられるテトラアルコキシシランの合計添加量は、工程1の有機化合物の量に対して、好ましくは30質量%以上、より好ましくは35質量%以上、更に好ましくは40質量%以上であり、そして、好ましくは250質量%以下、より好ましくは200質量%以下、更に好ましくは150質量%以下である。テトラアルコキシシランの添加総量を上記範囲にすることにより、内包する有機化合物を長期間保持することができる。
 ここで、テトラアルコキシシランの添加総量(工程1及び工程2で用いられるテトラアルコキシシランの合計添加量)は、工程1の有機化合物の量を100質量%としたときの割合である。
 本発明において、工程2におけるテトラアルコキシシランの添加前の水分散体の総量に対して、工程1の有機化合物及びテトラアルコキシシランの合計量は、有機化合物の長期保持性を向上させる観点から、好ましくは20質量%以下、より好ましくは18質量%以下、更に好ましくは15質量%以下、より更に好ましくは10質量%以下、より更に好ましくは7質量%以下であり、そして、生産効率の観点から、好ましくは2質量%以上、より好ましくは3質量%以上、更に好ましくは5質量%以上である。
 工程2におけるテトラアルコキシシランの添加前の水分散体の総量に対する、工程1の有機化合物及びテトラアルコキシシランの合計量の調整は、工程1の有機化合物及びテトラアルコキシシランの量と工程1で得られる水分散体の総量とが上記範囲となるように工程1を行ってもよく、工程1で得られた水分散体に更に水を添加して希釈することにより行ってもよい。
 本発明は、生産効率の観点から、工程2において、テトラアルコキシシランの添加前に、工程1で得られた水分散体を水で希釈してもよい。すなわち、工程2は、下記工程2’であってもよい。
 工程2’:工程1で得られたシリカカプセル(1)を含有する水分散体に水を添加して希釈した後、更にテトラアルコキシシランを添加し、ゾル-ゲル反応を行い、第一のシェルを包接する第二のシェルを有するシリカカプセルを形成する工程
 工程1で得られた水分散体の希釈前の総量に対する、工程1の有機化合物及びテトラアルコキシシランの合計量は、好ましくは3質量%以上、より好ましくは5質量%以上、更に好ましくは10質量%以上、より更に好ましくは15質量%以上であり、そして、好ましくは50質量%以下、より好ましくは40質量%以下、更に好ましくは35質量%以下、更に好ましくは30質量%以下である。
 また、本発明において、工程1で得られる水分散体の全量を工程2’に供する場合は、工程1の有機化合物及びテトラアルコキシシランの量は、工程1で用いた有機化合物及びテトラアルコキシシランの量である。工程1で得られる水分散体の一部を工程2’に供する場合は、工程1の有機化合物及びテトラアルコキシシランの量は、工程1で用いた有機化合物及びテトラアルコキシシランの量から、工程2に供する工程1で得られた水分散体の量を用いて比例換算した量である。
 希釈倍率は、好ましくは2倍以上、より好ましくは2.5倍以上であり、そして、好ましくは20倍以下、より好ましくは10倍以下、より好ましくは7倍以下である。
 なお、本明細書において「希釈倍率」とは、工程2’に供する工程1で得られた水分散体の希釈前の総量に対する、水で希釈した後の水分散体(以下、「希釈水分散体」ともいう)の総量の質量比(希釈水分散体の総量/工程2’に供する工程1で得られた水分散体の希釈前の総量)である。
 工程2又は工程2’におけるゾル-ゲル反応の反応温度は、分散媒として含まれる水の融点以上、沸点以下であれば任意に選択することができるが、ゾル-ゲル反応における加水分解反応と縮合反応のバランスを制御し、緻密なシェルを形成する観点から、好ましくは5℃以上、より好ましくは10℃以上、更に好ましくは15℃以上であり、そして、好ましくは60℃以下、より好ましくは50℃以下、更に好ましくは40℃以下である。工程1のゾル-ゲル反応と工程2又は工程2’のゾル-ゲル反応とで異なる反応温度で実施してもよい。
 工程2においてテトラアルコキシシランを滴下して添加する場合には、添加終了後更に反応を続けることが好ましい。添加終了後のゾル-ゲル反応の反応時間は、好ましくは0.5時間以上、より好ましくは1時間以上、更に好ましくは5時間以上、より更に好ましくは10時間以上であり、そして、好ましくは50時間以下、より好ましくは40時間以下である。
 本発明は、工程Iで得られたシリカカプセルを含有する水分散体に、更に有機高分子化合物を添加してもよい。
 また、本発明は、工程1及び工程2を含む場合には、工程2又は工程2’において、工程1で得られたシリカカプセル(1)を含有する水分散体に、更に有機高分子化合物を添加してもよい。ここで、有機高分子化合物とは重量平均分子量5,000以上の化合物を意味する。
 前記有機高分子化合物は、好ましくはカチオン性ポリマー及びノニオン性ポリマーから選ばれる1種以上である。
 前記ノニオン性ポリマーは、水中で電荷を有しない水溶性ポリマーを意味する。ノニオン性ポリマーを用いることにより、シリカカプセルの用途に応じた機能を該シリカカプセルに付与させることができる。
 前記有機高分子化合物としてカチオン性ポリマー又はノニオン性ポリマーを用いる場合、例えば本発明に係るシリカカプセルを柔軟剤組成物等の繊維処理剤組成物等に用いる際には、繊維への吸着性の向上が期待できる。
 本明細書において「水溶性ポリマー」とは、105℃で2時間乾燥させ、恒量に達したポリマーを25℃の水100gに溶解させたときに、その溶解量が1mg以上であるポリマーをいう。
 ノニオン性ポリマーとしては、ノニオン性モノマー由来の構成単位を有するポリマー、水溶性多糖類(セルロース系、ガム系、スターチ系等)及びその誘導体等が挙げられる。
 ノニオン性モノマーとしては、炭素数1以上22以下の脂肪族アルコール由来の炭化水素基を有する(メタ)アクリレート;スチレン等のスチレン系モノマー;ベンジル(メタ)アクリレート等の芳香族基含有(メタ)アクリレート;酢酸ビニル;ビニルピロリドン;ビニルアルコール;ポリエチレングリコールモノ(メタ)アクリレート等のポリアルキレングリコール(メタ)アクリレート;メトキシポリエチレングリコールモノ(メタ)アクリレート、オクトキシポリエチレングリコールモノ(メタ)アクリレート等のアルコキシポリアルキレングリコールモノ(メタ)アクリレート;(メタ)アクリルアミド等が挙げられる。
 ノニオン性ポリマーは、ポリビニルピロリドン、ビニルピロリドン/酢酸ビニル共重合体等のビニルピロリドンと他のノニオン性モノマーとの共重合体、及びヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース等のセルロース系ポリマーから選ばれる1種以上が好ましく、ポリビニルピロリドン及びヒドロキシプロピルセルロースから選ばれる1種以上がより好ましい。
 カチオン性ポリマーとしては、四級アンモニウム塩基を含有するポリマーの他、窒素系のカチオン基を有するポリマー、pH調整によりカチオン性を帯びることがあるポリマー等が挙げられる。工程2又は工程2’において、工程1で得られたシリカカプセル(1)を含有する水分散体に、更に有機高分子化合物を添加する場合には、カチオン性ポリマーを用いることにより、工程1で得られるシリカカプセル(1)が水分散体中で凝集しやすい状況を緩和することができ、続く工程2又は工程2’において粗大粒子等の生成を抑制できる。
 カチオン性ポリマーとしては、ポリ(ジアリルジメチルアンモニウムクロライド)、ポリ(アクリル酸-co-ジアリルジメチルアンモニウムクロライド)、ポリ(アクリルアミド-co-ジアリルジメチルアンモニウムクロライド)、ポリ(アクリルアミド-co-アクリル酸-co-ジアリルジメチルアンモニウムクロライド)等のポリジアリルジメチルアンモニウム塩及びその共重合体、ポリ(2-(メタクリロイルオキシ)エチルトリメチルアンモニウムクロライド)、ポリエチレンイミン、ポリアリルアミン、カチオン化セルロース、カチオン化グアーガム、カチオン化タラガム、カチオン化フェヌグリークガム、カチオン化ローカストビンガム等が挙げられる。これらの中でも、ポリジアリルジメチルアンモニウム塩及びその共重合体が好ましく、ポリ(ジアリルジメチルアンモニウムクロライド)、ポリ(アクリル酸-co-ジアリルジメチルアンモニウムクロライド)、及びポリ(アクリルアミド-co-アクリル酸-co-ジアリルジメチルアンモニウムクロライド)から選ばれる1種以上がより好ましく、ポリ(ジアリルジメチルアンモニウムクロライド)が更に好ましい。
 カチオン性ポリマーのカチオン基当量は、シリカカプセル(1)の分散性の観点及び粗大粒子の生成を抑制する観点、並びに長期保持性を向上させる観点から、好ましくは1meq/g以上、より好ましくは3meq/g以上、更に好ましくは4.5meq/g以上であり、そして、好ましくは10meq/g以下、より好ましくは8meq/g以下である。カチオン性ポリマーにアニオン基が含まれてもよいが、その場合、カチオン性ポリマーに含まれるアニオン基当量は、好ましくは3.5meq/g以下、より好ましくは2meq/g以下、更に好ましくは1meq/g以下である。なお、本発明において、カチオン性ポリマーのカチオン基当量は、モノマー組成に基づいた計算により算出したものを用いる。
 有機高分子化合物の添加量は、工程I又は工程1で得られた水分散体の量に対して、好ましくは0.05質量%以上、より好ましくは0.1質量%以上、更に好ましくは0.2質量%以上であり、そして、好ましくは5質量%以下、より好ましくは3質量%以下、更に好ましくは2質量%以下である。
 ここで、有機高分子化合物の添加量は、工程I又は工程1で得られた水分散体の量を100質量%としたときの割合である。
工程I、工程2又は工程2’により得られる本発明のシリカカプセルは、水中に分散した状態で得られる。用途によってはこれをそのまま使用することもできるが、場合によっては、シリカカプセルを分離して使用する。分離方法としては、ろ過法、遠心分離法等を採用することができる。
(シリカマイクロカプセル)
 本発明のシリカカプセルは、前記有機化合物を含むコアと、該コアを包接するシェルとを有するシリカカプセルである。
 本発明のシリカカプセルのシェルは、コアを包接し、シリカを構成成分として含み、好ましくは5nm以上20nm以下の平均厚さを有する。
 また、本発明のシリカカプセルは、好ましくは、前記有機化合物を含むコアと、該コアを包接する第一シェルと、第一シェルを包接する第二シェルとを有するシリカカプセルである。
 本発明のシリカカプセルが第一シェルと第二シェルとを有する場合、第一シェルは、コアを包接し、シリカを構成成分として含み、好ましくは5nm以上20nm以下の平均厚さを有し、第二シェルは、第一シェルを包接し、シリカを構成成分として含み、好ましくは10nm以上100nm以下の平均厚さを有する。
 シリカカプセルのシェルの平均厚さ、並びにシリカカプセルの第一シェル及び第二シェルの平均厚さは、透過型電子顕微鏡(TEM)観察により測定することができる。具体的には、透過型電子顕微鏡観察下で、シェル又は第一シェル及び第二シェルの厚さを写真上で実測する。この操作を、視野を5回変えて行う。得られたデータからシェル又は第一シェル及び第二シェルの平均厚さの分布を求める。透過型電子顕微鏡の倍率の目安は1万倍以上10万倍以下であるが、シリカカプセルの大きさによって適宜調節される。ここで、透過型電子顕微鏡(TEM)として、例えば商品名「JEM-2100」(日本電子株式会社製)を用いることができる。
 本発明のシリカカプセルのメジアン径D50は、長期保持性を向上させ、シリカカプセルの分散安定性を向上させる観点から、好ましくは0.1μm以上、より好ましくは0.5μm以上、更に好ましくは1μm以上であり、そして、シリカカプセルの物理的強度を向上させ、長期保持性を向上させる観点から、好ましくは100μm以下、より好ましくは50μm以下、更に好ましくは30μm以下、より更に好ましくは10μm以下、より更に好ましくは7μm以下である。
 シリカカプセルのメジアン径D50は、実施例に記載の方法により測定することができる。
 本発明のシリカカプセルは、前記有機化合物として1級アルコールを高い内包率でコアに内包されてなる。当該観点からは、1級アルコールの内包率は、好ましくは30%以上、より好ましくは40%以上、更に好ましくは50%以上、より更に好ましくは60%以上、より更に好ましくは70%以上、より更に好ましくは80%以上、より更に好ましくは90%以上であり、そして、好ましくは100%以下である。
 また、本発明のシリカカプセルは、前記有機化合物として1級アルコールを含むため、該有機化合物が調合香料の場合には多種多様な調合香料を設計することができる。当該観点からは、1級アルコールの内包率は、好ましくは100%以下、より好ましくは80%以下、更に好ましくは60%以下、より更に好ましくは40%以下であり、そして、好ましくは10%以上である。
 具体的には、1級アルコールの内包率は、以下の方法により測定される。
〔内包率の測定〕
 約20ppmでドデカン及びトリデカンを内部標準物質として含んだヘキサン(以下、「基準A」と表記する)を準備し、内包成分である有機化合物0.04gにイオン交換水0.62g及び基準A20mLを加え、10回振とうした後、上層をメンブレンフィルター(例えば、東洋濾紙株式会社製、製品名「DISMIC」、型式「13JP020AN」)に通液後、この溶液に含まれる有機化合物の各成分を、ガスクロマトグラフィーを用いて測定し、有機化合物1mg/mLあたりの各香料成分のGCエリア値α(1)を求める。
 別途、内包成分である有機化合物の含有量が0.04gになるようにシリカカプセル及び水を混合して総量を0.66gとした混合液に、前記基準A20mLを加え10回振とうした後、上層をメンブレンフィルター(例えば、東洋濾紙株式会社製、製品名「DISMIC」、型式「13JP020AN」)で通液し、この溶液に含まれる有機化合物を、ガスクロマトグラフィーを用いて測定し、有機化合物1mg/mLあたりの有機化合物の各成分のGCエリア値β(1)を求める。
 そして、以下の式(i)にしたがって有機化合物中に含まれる1級アルコールの内包率を算出する。
 内包率(%)={(α(1)―β(1))/α(1)}×100 (i)
 本発明のシリカカプセルは、種々の用途に用いることができ、例えば、乳液、化粧液、化粧水、美容液、クリーム、ジェル製剤、毛髪処理剤、医薬部外品等の香粧品、洗浄剤、柔軟剤、しわ防止スプレー等の繊維処理剤、紙おむつ等の衛生用品、芳香剤等の各種用途に好適に用いることができる。
 本発明のシリカカプセルは、洗浄剤組成物、繊維処理剤組成物、香粧品組成物、芳香剤組成物、消臭剤組成物等の組成物に配合して用いることができる。該組成物としては、粉末洗浄剤組成物、液体洗浄剤組成物等の洗浄剤組成物;柔軟剤組成物等の繊維処理剤組成物等が好ましく、繊維処理剤組成物がより好ましく、柔軟剤組成物が更に好ましい。
 上述した実施形態に関し、本発明は更に以下のシリカマイクロカプセル、シリカマイクロカプセルを含有する柔軟剤組成物、及びシリカマイクロカプセルの製造方法を開示する。
<1> シェルと、該シェルの内部に1種以上の有機化合物を含むコアとを有するシリカマイクロカプセルであり、
 該シェルが、シリカを構成成分として含み、
 該有機化合物が、1級アルコールを含む、シリカマイクロカプセル。
<2> 前記有機化合物中の1級アルコールの含有量が、好ましくは1質量%以上、より好ましくは2質量%以上、更に好ましくは3質量%以上、より更に好ましくは5質量%以上、より更に好ましくは10質量%以上、より更に好ましくは20質量%以上、より更に好ましくは30質量%以上、より更に好ましくは40質量%以上、より更に好ましくは50質量%以上であり、そして、好ましくは100質量%以下である、前記<1>に記載のシリカマイクロカプセル。
<3> 前記有機化合物の油水界面張力が、好ましくは3mN/m以上、より好ましくは4mN/m以上、更に好ましくは5mN/m以上、より更に好ましくは7mN/m以上であり、そして、好ましくは40mN/m以下、より好ましくは30mN/m以下、更に好ましくは25mN/m以下、より更に好ましくは20mN/m以下、より更に好ましくは18mN/m以下である、前記<1>又は<2>に記載のシリカマイクロカプセル。
<4> 前記1級アルコールの炭素数が、好ましくは4以上、より好ましくは6以上、更に好ましくは8以上であり、そして、好ましくは18以下、より好ましくは16以下、更に好ましくは14以下、より更に好ましくは12以下である、前記<1>~<3>のいずれかに記載のシリカマイクロカプセル。
<5> 前記1級アルコールのcLogPが、好ましくは1.0以上、より好ましくは2.0以上、更に好ましくは3.0以上であり、そして、好ましくは7.0以下、より好ましくは6.5以下、更に好ましくは6.0以下、より更に好ましくは5.5以下である、前記<1>~<4>のいずれかに記載のシリカマイクロカプセル。
<6> 前記1級アルコールが、好ましくは香料、抗菌剤、防腐剤、忌避剤、及び医薬品有効成分から選ばれる1種以上である、前記<1>~<5>のいずれかに記載のシリカマイクロカプセル。
<7> 前記1級アルコールが、好ましくは香料成分である、前記<1>~<5>のいずれかに記載のシリカマイクロカプセル。
<8> 前記1級アルコールが、好ましくはテルペン系1級アルコール、直鎖状又は分岐鎖状の脂肪族1級アルコール、及び芳香族系1級アルコールから選ばれる1種以上、より好ましくはテルペン系1級アルコール及び芳香族系1級アルコールから選ばれる1種以上である、前記<1>~<7>のいずれかに記載のシリカマイクロカプセル。
<9> 前記1級アルコールが、ゲラニオール、シトロネロール、ネロール、1-ドデカノール、テトラヒドロゲラニオール、シス-3-ヘキセノール、2-フェニルエチルアルコール、6-フェニル-1-ヘキサノール、及び、ベンジルアルコールから選ばれる1種以上である、前記<1>~<7>のいずれかに記載のシリカマイクロカプセル。
<10> 前記シリカマイクロカプセルのメジアン径D50が、好ましくは0.1μm以上、より好ましくは0.5μm以上、更に好ましくは1μm以上であり、そして、好ましくは100μm以下、より好ましくは50μm以下、更に好ましくは30μm以下、より更に好ましくは10μm以下、より更に好ましくは7μm以下である、前記<1>~<9>のいずれかに記載のシリカマイクロカプセル。
<11> 前記シェルが、アルコキシシランの加水分解重縮合物であるシリカを構成成分として含む、前記<1>~<10>のいずれかに記載のシリカマイクロカプセル。
<12> 前記シェルが、アルコキシシランを前駆体としたゾル-ゲル反応により形成されてなるシリカを構成成分として含む、前記<1>~<10>のいずれかに記載のシリカマイクロカプセル。
<13> 前記シェルが、アルコキシシランの加水分解重縮合物であるシリカを構成成分として含む内殻と、該内殻の外側に更にアルコキシシランの加水分解重縮合物であるシリカを構成成分として含むシリカを構成成分として含む外殻とを有する、前記<1>~<12>のいずれかに記載のシリカマイクロカプセル。
<14> 前記シェルが、アルコキシシランのゾル-ゲル反応を2段階で行うことにより形成されてなるシリカを構成成分として含む、前記<1>~<12>のいずれかに記載のシリカマイクロカプセル。
<15> 前記アルコキシシランが、テトラエトキシシランである、前記<11>~<14>のいずれかに記載のシリカマイクロカプセル。
<16> 前記<1>~<15>のいずれかに記載のシリカマイクロカプセルを含有する、柔軟剤組成物。
<17> シェルと、該シェルの内部に1種以上の有機化合物を含むコアとを有するシリカマイクロカプセルの製造方法であって、
 該シェルが、シリカを構成成分として含み、
 該有機化合物が、1級アルコールを含み、
 下記の工程Iを含む、シリカマイクロカプセルの製造方法。
 工程I:カチオン性界面活性剤を含む水相成分と、1級アルコールを含む有機化合物及びテトラアルコキシシランを含む油相成分とを乳化して得られる乳化液を、酸性条件下でゾル-ゲル反応に供し、コアと、シリカを構成成分とするシェルと、を有するシリカカプセルを形成し、該シリカカプセルを含有する水分散体を得る工程
<18> 工程Iの乳化液における乳化滴のメジアン径D50が、好ましくは0.1μm以上、より好ましくは0.2μm以上、更に好ましくは0.3μm以上であり、そして、好ましくは50μm以下、より好ましくは30μm以下、更に好ましくは10μm以下、より更に好ましくは5μm以下、より更に好ましくは3μm以下、より更に好ましくは2μm以下である、前記<17>に記載のシリカマイクロカプセルの製造方法。
<19> シェルと、該シェルの内部に1種以上の有機化合物を含むコアとを有するシリカマイクロカプセルの製造方法であって、
 該シェルが、シリカを構成成分として含み、
 該有機化合物が、1級アルコールを含み、
 下記の工程1及び工程2を含む、シリカマイクロカプセルの製造方法。
 工程1:カチオン性界面活性剤を含む水相成分と、有機化合物及びテトラアルコキシシランを含む油相成分とを乳化して得られる乳化液を、酸性条件下でゾル-ゲル反応に供し、コアと、シリカを構成成分とする第一のシェルと、を有するシリカマイクロカプセル(1)を形成し、該シリカマイクロカプセル(1)を含有する水分散体を得る工程
 工程2:工程1で得られたシリカマイクロカプセル(1)を含有する水分散体に、更にテトラアルコキシシランを添加してゾル-ゲル反応を行い、第一のシェルを包接する第二のシェルを有するシリカマイクロカプセルを形成する工程
<20> 工程1の乳化液における乳化滴のメジアン径D50が、好ましくは0.1μm以上、より好ましくは0.2μm以上、更に好ましくは0.3μm以上であり、そして、好ましくは50μm以下、より好ましくは30μm以下、更に好ましくは10μm以下、より更に好ましくは5μm以下、より更に好ましくは3μm以下、より更に好ましくは2μm以下である、前記<19>に記載のシリカマイクロカプセルの製造方法。
<21> 工程2が下記の工程2’である、前記<19>又は<20>に記載のシリカマイクロカプセルの製造方法。
 工程2’:工程1で得られたシリカマイクロカプセル(1)を含有する水分散体に水を添加して希釈した後、更にテトラアルコキシシランを添加し、ゾル-ゲル反応を行い、第一のシェルを包接する第二のシェルを有するシリカマイクロカプセルを形成する工程
<22> 工程2’において、希釈倍率が、好ましくは2倍以上、より好ましくは2.5倍以上であり、そして、好ましくは20倍以下、より好ましくは10倍以下、より好ましくは7倍以下である、前記<21>に記載のシリカマイクロカプセルの製造方法。
<23> 工程1が、下記の工程1-1~1-4を含む、前記<19>~<22>のいずれかに記載のシリカマイクロカプセルの製造方法。
 工程1-1:カチオン性界面活性剤を含む水相成分を調製する工程
 工程1-2:有機化合物とテトラアルコキシシランを混合し、油相成分を調製する工程
 工程1-3:工程1-1で得られた水相成分と工程1-2で得られた油相成分とを混合及び乳化し、乳化液を得る工程
 工程1-4:工程1-3で得られた乳化液を、1段階目のゾル-ゲル反応に供し、コアと、シリカを構成成分とする第一シェルと、を有するシリカマイクロカプセル(1)を形成する工程
 実施例及び比較例における各種測定は、以下の方法により行った。
〔メジアン径D50
 乳化滴のメジアン径D50及びシリカカプセルのメジアン径D50は、レーザ回折/散乱式粒子径分布測定装置「LA-960」(商品名、株式会社堀場製作所製)を用いて測定した。測定はフローセルを使用し、媒体は水、分散質の屈折率は1.45-0iに設定した。乳化液又はシリカカプセルを含む水分散体をフローセルに添加し、透過率が90%付近を示した濃度で測定を実施し、体積基準でメジアン径D50を求めた。
〔油水界面張力〕
 コアに内包される有機化合物の油水界面張力の測定を、懸滴法(ペンダントドロップ法)にて行った。25℃の恒温室にて、接触角計「DropMasterシリーズ DM-501」(協和界面科学株式会社製)を用いた。解析には、ソフトウェア「FAMAS」(協和界面科学株式会社製)を用いて、Young-Laplace法にて行った。
実施例1
(工程1)
 11.1gのコータミン60W(商品名、花王株式会社製、セチルトリメチルアンモニウムクロライド、有効分30質量%)を188.89gのイオン交換水で希釈して水相成分を得た。この水相成分に、24gの下記表1に示す配合割合のモデル香料1(体積平均cLogP値:3.6、比重:0.88、油水界面張力:11.9mN/m)と6gのテトラエトキシシラン(以下、「TEOS」ともいう)を混合して調製した油相成分を加え、室温(約25℃)にてホモミキサー(HsiangTai製、モデル:HM-310、以下同様)を用いて回転数5,000rpmを10分間、更に回転数5,200rpmを10分間の条件にて混合液を乳化し、乳化液を得た。この時の乳化滴のメジアン径D50は1.77μmであった。
 得られた乳化液のpHを0.1N水酸化ナトリウム水溶液を用いて3.8に調整した後、撹拌翼と冷却器を備えたセパラブルフラスコに移し、液温を30℃に保ちつつ、24時間撹拌し、モデル香料1からなるコアとシリカからなる第一シェルとを有するシリカカプセル(1-1)を含有する水分散体を得た。
(工程2’)
 工程1で得られた水分散体275gに対し、水825gを添加して希釈した後(希釈倍率4倍)、得られる混合液を液温30℃で撹拌しながら、66gのTEOSを420分かけて滴下した。滴下後、更に17時間撹拌を続けた後に冷却することにより、第一シェルを包接する第二シェルを形成し、モデル香料1が非晶質シリカで内包されたシリカカプセル(I)を含有する水分散体を得た。
Figure JPOXMLDOC01-appb-T000001
実施例2
(工程1)
 1.87gのコータミン60Wを110.42gのイオン交換水で希釈して水相成分を得た。この水相成分に、40gの下記表2に示す配合割合のモデル香料2(体積平均cLogP値:3.9、比重:0.90、油水界面張力:13.2mN/m)と6gのTEOSを混合して調製した油相成分を加え、室温(約25℃)にて前記ホモミキサーを用いて回転数6,500rpmを5分間、回転数8,000rpmを5分間の条件にて混合液を乳化し、乳化液を得た。この時の乳化滴のメジアン径D50は0.78μmであった。
 得られた乳化液のpHを0.2N塩酸水溶液を用いて3.7に調整した後、撹拌翼と冷却器を備えたセパラブルフラスコに移し、液温を30℃に保ちつつ、24時間撹拌し、モデル香料2から成るコアとシリカからなる第一シェルとを有するシリカカプセル(1-2)を含有する水分散体を得た。
(工程2’)
 工程1で得られた水分散体5.00gに対し、水15.15gを添加して希釈した後(希釈倍率4倍)、得られる混合液を液温30℃で撹拌しながら、1.18gのTEOSを添加した。24時間撹拌を続けた後に冷却することにより、第一シェルを包接する第二シェルを形成し、モデル香料2が非晶質シリカで内包されたシリカカプセル(II)を含有する水分散体を得た。
Figure JPOXMLDOC01-appb-T000002
実施例3
(工程1)
 1.87gのコータミン60Wを112.19gのイオン交換水で希釈して水相成分を得た。この水相成分に、29.99gの下記表3に示す配合割合のモデル香料3(体積平均cLogP値:4.3、比重:0.92、油水界面張力:13.8mN/m)と7.46gのTEOSを混合して調製した油相成分を加え、室温(約25℃)にて前記ホモミキサーを用いて回転数6,500rpmを5分間、回転数8,000rpmを5分間の条件にて混合液を乳化し、乳化液を得た。この時の乳化滴のメジアン径D50は0.78μmであった。
 得られた乳化液のpHを0.2N塩酸水溶液0.17gを用いて3.7に調整した後、撹拌翼と冷却器を備えたセパラブルフラスコに移し、液温を30℃に保ちつつ、24時間撹拌し、モデル香料3から成るコアとシリカからなる第一シェルとを有するシリカカプセル(1-3)を含有する水分散体を得た。
(工程2’)
 工程1で得られた水分散体5.04gに対し、水15.26gを添加して希釈した後(希釈倍率4倍)、得られる混合液を液温30℃で撹拌しながら、1.20gのTEOSを添加した。24時間撹拌を続けた後に冷却することにより、第一シェルを包接する第二シェルを形成し、モデル香料3が非晶質シリカで内包されたシリカカプセル(III)を含有する水分散体を得た。シリカカプセル(III)のメジアン径D50は1.68μmであった。
Figure JPOXMLDOC01-appb-T000003
実施例4
(工程1)
 1.87gのコータミン60Wを110.88gのイオン交換水で希釈して水相成分を得た。この水相成分に、30.00gの下記表4に示す配合割合のモデル香料4(体積平均cLogP値:3.5、比重:0.85、油水界面張力:12.1mN/m)と7.50gのTEOSを混合して調製した油相成分を加え、室温(約25℃)にて前記ホモミキサーを用いて回転数6,500rpmを5分間、回転数8,000rpmを5分間の条件にて混合液を乳化し、乳化液を得た。この時の乳化滴のメジアン径D50は0.91μmであった。
 得られた乳化液のpHを0.2N塩酸水溶液0.19gを用いて3.8に調整した後、撹拌翼と冷却器を備えたセパラブルフラスコに移し、液温を30℃に保ちつつ、24時間撹拌し、モデル香料4から成るコアとシリカからなる第一シェルとを有するシリカカプセル(1-4)を含有する水分散体を得た。
(工程2’)
 工程1で得られた水分散体4.99gに対し、水14.98gを添加して希釈した後(希釈倍率4倍)、得られる混合液を液温30℃で撹拌しながら、1.19gのTEOSを添加した。24時間撹拌を続けた後に冷却することにより、第一シェルを包接する第二シェルを形成し、モデル香料4が非晶質シリカで内包されたシリカカプセル(IV)を含有する水分散体を得た。シリカカプセル(IV)のメジアン径D50は5.54μmであった。
Figure JPOXMLDOC01-appb-T000004
実施例5
(工程1)
 1.66gのコータミン60Wを98.02gのイオン交換水で希釈して水相成分を得た。この水相成分に、40.15gのシトロネロール(cLogP値:3.5、油水界面張力:9.9mN/m)と10.00gのTEOSを混合して調製した油相成分を加え、室温(約25℃)にて前記ホモミキサーを用いて回転数6,500rpmを5分間、回転数8,000rpmを3分間の条件にて混合液を乳化し、乳化液を得た。この時の乳化滴のメジアン径D50は2.12μmであった。
 得られた乳化液のpHを0.2N塩酸水溶液0.46gを用いて3.8に調整した後、撹拌翼と冷却器を備えたセパラブルフラスコに移し、液温を30℃に保ちつつ、24時間撹拌し、シトロネロールから成るコアとシリカからなる第一シェルとを有するシリカカプセル(1-5)を含有する水分散体を得た。
(工程2’)
 工程1で得られた水分散体24.96gに対し、水74.93gを添加して希釈した後(希釈倍率4倍)、得られる混合液を液温30℃で撹拌しながら、6.00gのTEOSを420分かけて滴下した。滴下後、更に34時間撹拌を続けた後に冷却することにより、第一シェルを包接する第二シェルを形成し、シトロネロールが非晶質シリカで内包されたシリカカプセル(V)を含む含有する水分散体を得た。シリカカプセル(V)のメジアン径D50は1.07μmであった。
実施例6
(工程1)
 1.51gのコータミン60Wを88.53gのイオン交換水で希釈して水相成分を得た。この水相成分に、24.01gの下記表5に示す配合割合のモデル香料5(体積平均cLogP値:3.0、比重:0.95、油水界面張力:5.7mN/m)と6.04gのTEOSを混合して調製した油相成分を加え、室温(約25℃)にて前記ホモミキサーを用いて回転数6,500rpmを5分間、回転数8,000rpmを3分間の条件にて混合液を乳化し、乳化液を得た。この時の乳化滴のメジアン径D50は0.65μmであった。
 得られた乳化液のpHを0.2N塩酸水溶液0.33gを用いて3.3に調整した後、撹拌翼と冷却器を備えたセパラブルフラスコに移し、液温を30℃に保ちつつ、24時間撹拌し、モデル香料5から成るコアとシリカからなる第一シェルとを有するシリカカプセル(1-6)を含有する水分散体を得た。
 表5にはcLogP値が記載されていない香料成分があるが、体積平均cLogP値は、cLogP値が記載されている香料成分から平均値を求めた。以下のcLogP値が記載されていない香料成分がある場合においても同様である。
(工程2’)
 工程1で得られた水分散体24.96gに対し、水74.93gを添加して希釈した後(希釈倍率4倍)、得られる混合液を液温30℃で撹拌しながら、6.00gのTEOSを420分かけて滴下した。滴下後、更に34時間撹拌を続けた後に冷却することにより、第一シェルを包接する第二シェルを形成し、モデル香料5が非晶質シリカで内包されたシリカカプセル(VI)を含有する水分散体を得た。シリカカプセル(VI)のメジアン径D50は5.70μmであった。
Figure JPOXMLDOC01-appb-T000005
実施例7
(工程1)
 0.75gのコータミン60Wを44.27gのイオン交換水で希釈して水相成分を得た。この水相成分に、12.00gの下記表6に示す配合割合のモデル香料6(体積平均cLogP値:3.9、比重:0.87、油水界面張力:13.6mN/m)と3.00gのTEOSを混合して調製した油相成分を加え、室温(約25℃)にて前記ホモミキサーを用いて回転数6,500rpmを5分間、回転数8,000rpmを5分間の条件にて混合液を乳化し、乳化液を得た。この時の乳化滴のメジアン径D50は0.27μmであった。
 得られた乳化液のpHを0.2N塩酸水溶液0.58gを用いて3.7に調整した後、撹拌翼と冷却器を備えたセパラブルフラスコに移し、液温を30℃に保ちつつ、24時間撹拌し、モデル香料6から成るコアとシリカからなる第一シェルとを有するシリカカプセル(1-7)を含有する水分散体を得た。
(工程2’)
 工程1で得られた水分散体5.00gに対し、水17.14gを添加して希釈した後(希釈倍率4倍)、得られる混合液を液温30℃で撹拌しながら、1.20gのTEOSを添加した。24時間撹拌を続けた後に冷却することにより、第一シェルを包接する第二シェルを形成し、モデル香料6が非晶質シリカで内包されたシリカカプセル(VII)を含有する水分散体を得た。シリカカプセル(VII)のメジアン径D50は1.06μmであった。
Figure JPOXMLDOC01-appb-T000006
実施例8
(工程1)
 1.54gのコータミン60Wを88.60gのイオン交換水で希釈して水相成分を得た。この水相成分に、24.00gの下記表7に示す配合割合のモデル香料7(比重:0.86、油水界面張力:17.6mN/m)と6.06gのTEOSを混合して調製した油相成分を加え、室温(約25℃)にて前記ホモミキサーを用いて回転数6,500rpmを5分間、回転数8,000rpmを5分間の条件にて混合液を乳化し、乳化液を得た。この時の乳化滴のメジアン径D50は1.05μmであった。
 得られた乳化液のpHを0.2N塩酸水溶液0.77gを用いて3.7に調整した後、撹拌翼と冷却器を備えたセパラブルフラスコに移し、液温を30℃に保ちつつ、24時間撹拌し、モデル香料7から成るコアとシリカからなる第一シェルとを有するシリカカプセル(1-8)を含有する水分散体を得た。
(工程2’)
 工程1で得られた水分散体101.10gに対し、水304.65gを添加して希釈した後(希釈倍率4倍)、得られる混合液を液温30℃で撹拌しながら、24.16gのTEOSを添加した。24時間撹拌を続けた後に冷却することにより、第一シェルを包接する第二シェルを形成し、モデル香料7が非晶質シリカで内包されたシリカカプセル(VIII)を含有する水分散体を得た。
Figure JPOXMLDOC01-appb-T000007
実施例9
(工程1)
 1.49gのコータミン60Wを88.52gのイオン交換水で希釈して水相成分を得た。この水相成分に、24.13gの下記表8に示す配合割合のモデル香料8(体積平均cLogP値:4.3、比重:0.88、油水界面張力:16.3mN/m)と6.01gのTEOSを混合して調製した油相成分を加え、室温(約25℃)にて前記ホモミキサーを用いて回転数6,500rpmを5分間、回転数8,000rpmを5分間の条件にて混合液を乳化し、乳化液を得た。この時の乳化滴のメジアン径D50は1.09μmであった。
 得られた乳化液のpHを0.2N塩酸水溶液0.54gを用いて3.7に調整した後、撹拌翼と冷却器を備えたセパラブルフラスコに移し、液温を30℃に保ちつつ、24時間撹拌し、モデル香料8から成るコアとシリカからなる第一シェルとを有するシリカカプセル(1-9)を含有する水分散体を得た。
(工程2’)
 工程1で得られた水分散体100.22gに対し、水305.58gを添加して希釈した後(希釈倍率4倍)、得られる混合液を液温30℃で撹拌しながら、24.00gのTEOSを添加した。24時間撹拌を続けた後に冷却することにより、第一シェルを包接する第二シェルを形成し、モデル香料8が非晶質シリカで内包されたシリカカプセル(IX)を含有する水分散体を得た。
Figure JPOXMLDOC01-appb-T000008
実施例10
(工程1)
 1.51gのコータミン60Wを88.47gのイオン交換水で希釈して水相成分を得た。この水相成分に、23.95gの下記表9に示す配合割合のモデル香料9(体積平均cLogP値:3.5、比重:0.95、油水界面張力:8.0mN/m)と6.05gのTEOSを混合して調製した油相成分を加え、室温(約25℃)にて前記ホモミキサーを用いて回転数6,500rpmを5分間、回転数8,000rpmを5分間の条件にて混合液を乳化し、乳化液を得た。この時の乳化滴のメジアン径D50は0.48μmであった。
 得られた乳化液のpHを0.1N塩酸水溶液0.22gを用いて3.7に調整した後、撹拌翼と冷却器を備えたセパラブルフラスコに移し、液温を30℃に保ちつつ、24時間撹拌し、モデル香料9から成るコアとシリカからなる第一シェルとを有するシリカカプセル(1-10)を含有する水分散体を得た。
(工程2’)
 工程1で得られた水分散体99.88gに対し、水300.84gを添加して希釈した後(希釈倍率4倍)、得られる混合液を液温30℃で撹拌しながら、24.00gのTEOSを添加した。24時間撹拌を続けた後に冷却することにより、第一シェルを包接する第二シェルを形成し、モデル香料9が非晶質シリカで内包されたシリカカプセル(X)を含有する水分散体を得た。
Figure JPOXMLDOC01-appb-T000009
実施例11
(工程1)
 1.50gのコータミン60Wを88.50gのイオン交換水で希釈して水相成分を得た。この水相成分に、24.00gの下記表10に示す配合割合のモデル香料10(体積平均cLogP値:3.3、比重:0.96、油水界面張力:12.1mN/m)と6.04gのTEOSを混合して調製した油相成分を加え、室温(約25℃)にて前記ホモミキサーを用いて回転数6,500rpmを5分間、回転数8,000rpmを5分間の条件にて混合液を乳化し、乳化液を得た。この時の乳化滴のメジアン径D50は0.86μmであった。
 得られた乳化液のpHを0.1N塩酸水溶液0.52gを用いて3.8に調整した後、撹拌翼と冷却器を備えたセパラブルフラスコに移し、液温を30℃に保ちつつ、24時間撹拌し、モデル香料10から成るコアとシリカからなる第一シェルとを有するシリカカプセル(1-11)を含有する水分散体を得た。
(工程2’)
 工程1で得られた水分散体100.39gに対し、水306.51gを添加して希釈した後(希釈倍率4倍)、得られる混合液を液温30℃で撹拌しながら、24.15gのTEOSを添加した。24時間撹拌を続けた後に冷却することにより、モデル香料10が非晶質シリカで内包されたシリカカプセル(XI)を含有する水分散体を得た。
Figure JPOXMLDOC01-appb-T000010
実施例12
(工程1)
 4.18gのコータミン60Wを1045.50gのイオン交換水で希釈して水相成分を得た。この水相成分に、280.00gの下記表11に示す配合割合のモデル香料11(体積平均cLogP値:3.7、比重:0.88、油水界面張力:13.9mN/m)と70.10gのTEOSを混合して調製した油相成分を加え、室温(約25℃)にて前記ホモミキサーを用いて回転数6,500rpmを5分間、回転数8,000rpmを17分間の条件にて混合液を乳化し、乳化液を得た。この時の乳化滴のメジアン径D50は1.16μmであった。
 得られた乳化液のpHを0.1N塩酸水溶液を用いて3.7に調整した後、撹拌翼と冷却器を備えたセパラブルフラスコに移し、液温を30℃に保ちつつ、24時間撹拌し、モデル香料11から成るコアとシリカからなる第一シェルとを有するシリカカプセル(1-12)を含有する水分散体を得た。
(工程2)
 工程1で得られた水分散体1400gに対し、液温30℃で撹拌しながら、42.00gのTEOSを添加した。24時間撹拌を続けた後に冷却することにより、モデル香料11が非晶質シリカで内包されたシリカカプセル(XII)を含有する水分散体を得た。
Figure JPOXMLDOC01-appb-T000011
比較例1
 15質量%のゴーセノールGH-20(商品名、日本合成化学工業株式会社製、ポリビニルアルコール)水溶液を調整した。
 27.31gの15質量%のゴーセノールGH-20水溶液を175.67gのイオン交換水で希釈して水相成分を得た。この水相成分に、84.48gの前記モデル香料1と6.61gのメタクリル酸(富士フイルム和光純薬株式会社製)、4.76gのNK ESTER 1G(商品名、新中村化学工業株式会社製、エチレングリコールジメタクリレート)、及びV-65(商品名、富士フイルム和光純薬株式会社製、2,2’-アゾビス(2,4-ジメチルバレロニトリル))0.18gを混合して調製した油相成分を加え、室温(約25℃)にて前記ホモミキサーを用いて回転数6,500rpmで5分間、回転数8,000rpmで5分間の条件にて混合液を乳化し、乳化液を得た。この時の乳化滴のメジアン径D50は2.31μmであった。
 乳化液を窒素置換し、65℃で4時間、75℃で3時間撹拌し、懸濁液を得た。なお、液体クロマトグラフィーを利用してモノマー未反応率を測定したところ、メタクリル酸36.9%、エチレングリコールジメタクリレート91.7%であった。
 比較例1の懸濁液について顕微鏡で確認したところ、コアシェル型カプセルが形成されていなかった。
比較例2
 0.005gのセチルトリメチルブロマイドを37.53gのイオン交換水に溶解させた後、12.03gのLudox HS-40(商品名、デュポン社製、コロイダルシリカ、平均粒度12nm)を添加して混合し、分散体を得た。室温(約25℃)にて前記ホモミキサーを用いて、前記分散体を撹拌しながら、37.56gの前記モデル香料10を添加して混合した。混合直後は乳白色の液体が得られたが、5分ほど放置すると油相と水相が分離した液体となった。
比較例3
(工程1)
 1.67gのコータミン60Wを98.34gのイオン交換水で希釈して水相成分を得た。この水相成分に、40.00gの下記表12に示す配合割合の1級アルコールを含まないモデル香料12(体積平均cLogP値:4.2、比重:0.95、油水界面張力:21.0mN/m)と3.00gのTEOSを混合して調製した油相成分を加え、室温(約25℃)にて前記ホモミキサーを用いて混合液を乳化し、乳化液を得た。この時の乳化滴のメジアン径D50は1.16μmであった。
 得られた乳化液のpHを0.1N水酸化ナトリウム水溶液を用いて3.8に調整した後、撹拌翼と冷却器を備えたセパラブルフラスコに移し、液温を30℃に保ちつつ、24時間撹拌し、モデル香料12から成るコアとシリカからなる第一シェルとを有するシリカカプセル(1-C3)を含有する水分散体を得た。
(工程2’)
 工程1で得られた水分散体25.00gに対し、水75.00gを添加して希釈した後(希釈倍率4倍)、得られる混合液を液温30℃で撹拌しながら、6.00gのTEOSを添加した。24時間撹拌を続けた後に冷却することにより、第一シェルを包接する第二シェルを形成し、モデル香料12が非晶質シリカで内包されたシリカカプセル(C3)を含有する水分散体を得た。シリカカプセル(C3)のメジアン径D50は2.18μmであった。
Figure JPOXMLDOC01-appb-T000012
[シリカカプセルの評価]
〔香料成分の内包率の測定方法〕
 実施例1~12で得られたシリカカプセル(I)~(XII)の香料成分の内包率をそれぞれ下記の方法により測定した。
 なお、比較例2についても、同様の操作を行い香料成分の内包率を測定した。
 約20ppmでドデカン及びトリデカンを内部標準物質として含んだヘキサン(基準A)を準備した。各モデル香料0.04gにイオン交換水0.62g及び基準A20mLを加え、10回振とうした後、上層をメンブレンフィルター(東洋濾紙株式会社製、製品名「DISMIC」、型式「13JP020AN」)に通液後、この溶液に含まれる各香料成分を、ガスクロマトグラフィーを用いて測定し、香料1mg/mLあたりの各香料成分のGCエリア値α(1)を求めた。
 別途、モデル香料の含有量が約0.04gになるように実施例で得られたシリカカプセルを含む水分散体又は比較例2で得られた液体及び水を混合して総量を0.66gとした混合液に、前記基準A20mLを加え10回振とうした後、上層を前記メンブレンフィルターで通液し、この溶液に含まれる各香料成分を、ガスクロマトグラフィーを用いて測定し、各水分散体又は比較例2で得られた液体に含まれる香料1mg/mLあたりの各香料成分のGCエリア値β(1)を求めた。
 以下の式(i)にしたがって香料成分の内包率を算出した。結果を以下の表14~26に示す。なお、これらの表中の内包率の空欄は、測定を行わなかったことを示す。
 内包率(%)={(α(1)―β(1))/α(1)}×100 (i)
〔香料成分の長期保持性の評価方法〕
(1)評価用柔軟剤の調製
 実施例1,3,7,9,11,12で得られたシリカカプセルを含む各水分散体及び比較例2で得られた液体を、以下の表13に示す組成を有する柔軟剤基剤に添加し、評価用柔軟剤を調製した。内包されている香料の含有量は、評価用柔軟剤中、0.5質量%となるようにした。
Figure JPOXMLDOC01-appb-T000013

 表13中の各表記は以下のとおりである。
 *1:柔軟剤基剤のpHが3.2となるように配合した。
 *2:植物脂肪酸とトリエタノールアミンを1.65/1モルで反応させて得られるエステルアミンを公知の方法を用いてジメチル硫酸で4級化したものである。
 *3:ロンザジャパン株式会社製
(2)香料成分の長期保持性の評価
 上記(1)で調製した各評価用柔軟剤を、それぞれスクリュー管に入れて密封し、40℃にて保管した。
 保管開始後3週間経過した後(実施例7及び実施例11で得られたシリカカプセルを含む水分散体を用いた場合のみ1週間経過した後)に前記スクリュー管を取り出し、柔軟剤100mgをスポイトですくい取って、イオン交換水10gで希釈した後、メンブレンフィルター(Millipore社製、製品名「Omnipore」、型番「JAWP04700」)に通すことにより、メンブレンフィルター上にカプセルを回収した。
 更に、メンブレンフィルター上で、イオン交換水10mL、次いでヘキサン10mLによりシリカカプセルを洗浄後、該シリカカプセルを、内部標準としてトリデカンを10μg/mLの濃度で含むアセトニトリル2mLに浸漬し、超音波照射装置(Branson社製、型式「5510」)を用いて、出力180W、発振周波数42kHzの条件で超音波を60分照射してシリカカプセル内の香料を溶出させた。この溶液をもう一度メンブレンフィルター(東洋濾紙株式会社製、製品名「DISMIC」、型式「13JP020AN」)に通液後、この溶液に含まれる各香料成分を、ガスクロマトグラフィーを用いて測定し、シリカカプセルに内包されていた香料成分のGCエリア値α(2)とした。次いで、以下の式(ii)にしたがって各香料成分の香料保持率を測定した。結果を以下の表14,16,20,22,24,25,26に示す。なお、これらの表中の空欄は測定しなかったことを示す。
 香料保持率(%)={(保管後柔軟剤100mgに含まれるシリカカプセルに内包されている香料成分のGCエリア値α(2))/(柔軟剤100mgに含まれる香料成分のGCエリア値β(2))}×100   (ii)
 なお、上記式における香料成分のGCエリア値β(2)は、モデル香料の組成、香料の内包率及び柔軟剤の調製に用いたシリカカプセルの配合量から算出した。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
 下記の表27に実施例及び比較例のシリカカプセルのシェルの構成成分、コアに内包した有機化合物としてモデル香料の種類、該有機化合物中の1級アルコールの種類及び含有量、1級アルコールのcLogP値、並びに内包率の結果を示す。
Figure JPOXMLDOC01-appb-T000027
 表27から、実施例のシリカカプルセルは、比較例と比べて、1級アルコールを高い内包率で内包できることがわかる。
実施例13
(工程I)
 1.65gのコータミン60Wを148.43gのイオン交換水で希釈して水相成分を得た。この水相成分に、40.01gのシトロネロール(cLogP値:3.5、油水界面張力:9.9mN/m)と10.01gのTEOSを混合して調製した油相成分を加え、前記ホモミキサーを用いて回転数8,000rpmを5分間、回転数9,000rpmを5分間の条件にて混合液を乳化し、乳化液を得た。この時の乳化滴のメジアン径D50は5.2μmであった。
 得られた乳化液のpHを、1質量%硫酸水溶液を用いて3.7に調整した後、撹拌翼と冷却器を備えたセパラブルフラスコに移し、液温を30℃に保ちつつ、24時間撹拌し、シトロネロールが非晶質シリカで内包されたシリカカプセル(XIII)を含有する水分散体を得た。
 得られたシリカカプセル(XIII)の香料成分の内包率を前述の方法により測定した。結果を表28に示す。
Figure JPOXMLDOC01-appb-T000028
 表28から、実施例13のシリカカプセルは、1級アルコールであるシトロネロールを高い内包率で内包できることがわかる。
〔シリカカプセルの使用評価〕
(1)評価用柔軟剤の調製
 実施例1及び比較例3で得られたシリカカプセルを含む水分散体を、表13に示す組成を有する柔軟剤基剤に添加し、評価用柔軟剤を調製した。内包されている香料の含有量は、評価用柔軟剤中、0.2質量%となるようにした。
(2)香りの官能評価
 4名の専門パネラーが各家庭に持ち帰り、各家庭の柔軟剤の自動投与装置を有する洗濯機にて、評価用柔軟剤を用いて木綿タオルの通常の洗濯機処理を行い、下記のタイミングにて、香り強度及び香りのみずみずしさの官能評価を行った。官能評価は、専門パネラー4名が下記の評価基準0~5の0.5刻み11段階で行い、付けた評価値の合計として表29に結果を示す。
(官能評価のタイミング)
 サンプルビンの口:評価用柔軟剤を保存しているサンプルビンの蓋を開けた際のにおい
 脱水布:洗濯機脱水処理終了後のタオルのにおい
 脱水布擦り時:洗濯機脱水処理終了後のタオルを擦った際のにおい
 乾燥布:洗濯機処理後のタオルを干し、乾燥終了後のタオルのにおい
 乾燥布擦り時:洗濯機処理後のタオルを干し、乾燥終了後のタオルを擦った際のにおい
〔評価基準〕
〔香り強度の評価基準〕
5:とても強い香り
4:強い香り
3:楽に感知できる香り
2:香りの種類が認識できる程度の弱い香り(認知閾値)
1:やっと感知できる香り(検知閾値)
0:無香
〔みずみずしさの評価基準〕
5:とても強く感じるみずみずしさ
4:強く感じるみずみずしさ
3:楽に感知できるみずみずしさ
2:弱いみずみずしさ(認知閾値)
1:やっと感知できるみずみずしさ(検知閾値)
0:みずみずしさを全く感知できない
Figure JPOXMLDOC01-appb-T000029
 表29から、実施例1のシリカカプセルは、1級アルコールを高い内包率で内包でき、該シリカカプセルは柔軟剤に配合して洗濯機処理に用いた場合であっても、それぞれのタイミングで、香り強度が強く、みずみずしさを十分に感じさせることができ、タオルへの1級アルコールを含む香料のデリバリー性能に優れていることがわかる。このことから、本発明のシリカカプセルは、それぞれのタイミングでみずみずしさを感じさせ、においの強度も強く感じさせる剤を提供できることがわかる。
実施例14
(工程1)
 10.0gのコータミン60Wを590.7gのイオン交換水で希釈して水相成分を得た。この水相成分に、160gの下記表30に示すモデル香料13(cLogP値:3.6、油水界面張力:13.7mN/m)と40.3gのTEOSを混合して調製した油相成分を加え、室温(約25℃)にて前記ホモミキサーを用いて回転数7,000rpmを10分間の条件にて混合液を乳化し、乳化滴のメジアン径D50が1.19μmである乳化液を得た。
 得られた乳化液のpHを、1質量%硫酸水溶液0.13gを用いて3.7に調整した後、撹拌翼と冷却器を備えたセパラブルフラスコに移し、液温を30℃に保ちつつ、24時間撹拌し、モデル香料14からなるコアとシリカからなる第一シェルとを有するシリカカプセル(1-14)を含有する水分散体を得た。
(工程2’)
 工程1で得られた水分散体37.5gに対し、水112.5gを添加して希釈した後(希釈倍率4倍)、得られる混合液を液温30℃で撹拌しながら、11.8gのTEOSを420分間かけて滴下した。滴下後、更に24時間撹拌を続けた後に冷却することにより、第一シェルを包接する第二シェルを形成し、シトロネロールが非晶質シリカで内包されたシリカカプセル(XIV)を含有する水分散体を得た。シリカカプセル(XIV)のメジアン径D50は4.3μmであった。
 得られたシリカカプセル(XIV)の香料成分の内包率を前述の方法により測定した。結果を表30に示す。
Figure JPOXMLDOC01-appb-T000030
比較例4
(工程1)
 10.0gのコータミン60Wを590.0gのイオン交換水で希釈して水相成分を得た。この水相成分に、160.0gの下記表31に示す1級アルコールを含まないモデル香料14(cLogP値:3.8、油水界面張力:19.8mN/m)と40.0gのTEOSを混合して調製した油相成分を加え、室温(約25℃)にて前記ホモミキサーを用いて回転数7,000rpmを30分間の条件にて混合液を乳化し、乳化滴のメジアン径D50が1.60μmである乳化液を得た。なお、乳化処理開始10分後の乳化滴のメジアン径D50は1.94μmであった。
 得られた乳化液のpHを、1質量%硫酸水溶液0.13gを用いて3.7に調整した後、撹拌翼と冷却器を備えたセパラブルフラスコに移し、液温を30℃に保ちつつ、24時間撹拌し、モデル香料15から成るコアとシリカからなる第一シェルとを有するシリカカプセル(1-C4)を含有する水分散体を得た。
(工程2)
 工程1で得られた水分散体200gに対し、液温30℃で撹拌しながら、11.9gのTEOSを420分間かけて滴下した。滴下後、更に24時間撹拌を続けた後に冷却することにより、第一シェルを包接する第二シェルを形成し、モデル香料14が非晶質シリカで内包されたシリカカプセル(C4)を含む含有する水分散体を得た。シリカカプセル(C4)のメジアン径D50は4.1μmであった。
 得られたシリカカプセル(C4)の香料成分の内包率を前述の方法により測定した。結果を表31に示す。
Figure JPOXMLDOC01-appb-T000031
 表30から、実施例14のシリカカプセルは、1級アルコールを含んでいるにもかかわらず高い内包率で内包できることがわかる。
 また、乳化処理開始10分後の乳化滴のメジアン径D50の結果から、実施例14は、比較例4と比べて、乳化処理時間が短時間であるにもかかわらず、乳化滴のメジアン径D50が著しく低下することがわかる。
 比較例4では、経時的に乳化滴のメジアン径D50は低下するが、乳化処理時間が30分経過後であっても、メジアン径D50の低下が不十分である。
 一方、実施例14では、内包する有機化合物が1級アルコールを含むため、比較例4と同じ回転数で剪断力を付与しているにも関わらず、乳化処理時間10分間の短時間で乳化滴のメジアン径D50を低減させることが分かる。
 この実施例14と比較例4との対比から、内包する有機化合物が1級アルコールを含むことにより、より短時間で効率的に微細な乳化滴を形成することができ、小粒径化したシリカカプセルの生産効率を向上させることができることがわかる。
 本発明において、1級アルコールを含む有機化合物を内包したシリカカプセルは、1級アルコールが、香料成分として香りにみずみずしさを付与する機能を有するだけでなく、乳化を促進する機能も有することにより、生産効率に優れるシリカカプセルとして特徴付けられる。
実施例15
(工程1)
 1.88gのコータミン60Wを110.37gのイオン交換水で希釈して水相成分を得た。この水相成分に、30gの下記表32に示すモデル香料15(cLogP値:4.7)と7.50gのTEOSを混合して調製した油相成分を加え、室温(約25℃)にて前記ホモミキサーを用いて回転数6,500rpmで混合液を5分間乳化し、乳化滴のメジアン径D50が2.1μmである乳化液を得た。
 得られた乳化液のpHを、0.2N塩酸水溶液0.10gを用いて3.64に調整した後、撹拌翼と冷却器を備えたセパラブルフラスコに移し、液温を30℃に保ちつつ、24時間撹拌し、モデル香料15からなるコアとシリカからなるシェルとを有するシリカカプセル(1-15)を含有する水分散体を得た。
(工程2’)
 工程1で得られた水分散体100gを液温30℃で撹拌しながら、3.0gのTEOSを420分間かけて滴下した。滴下後、更に24時間撹拌を続けた後に冷却することにより、該シリカカプセルを包接する外殻シェルを形成し、モデル香料15が非晶質シリカで内包されたシリカカプセル(XV)を含有する水分散体を得た。シリカカプセル(XV)のメジアン径D50は2.7μmであった。
 得られたシリカカプセル(XV)の香料成分の内包率を前述の方法により測定した。結果を表32に示す。
Figure JPOXMLDOC01-appb-T000032
比較例5
(工程1)
 1.88gのコータミン60Wを110.34gのイオン交換水で希釈して水相成分を得た。この水相成分に、30gの下記表33に示すモデル香料16(cLogP値:4.8)と7.51gのTEOSを混合して調製した油相成分を加え、室温(約25℃)にて前記ホモミキサーを用いて回転数6,500rpmで混合液を5分間乳化し、乳化滴のメジアン径D50が4.1μmである乳化液を得た。
 得られた乳化液のpHを、0.2N塩酸水溶液0.02gを用いて3.67に調整した後、撹拌翼と冷却器を備えたセパラブルフラスコに移し、液温を30℃に保ちつつ、24時間撹拌し、モデル香料16からなるコアとシリカからなるシェルとを有するシリカカプセル(1-C5)を含有する水分散体を得た。
(工程2’)
 工程1で得られた水分散体100gを液温30℃で撹拌しながら、2.5gのTEOSを420分間かけて滴下した。滴下後、更に24時間撹拌を続けた後に冷却することにより、上記シリカカプセルを包接する外殻シェルを形成し、モデル香料16が非晶質シリカで内包されたシリカカプセル(C5)を含有する水分散体を得た。シリカカプセル(C5)のメジアン径D50は5.3μmであった。
 得られたシリカカプセル(XVI)の香料成分の内包率を前述の方法により測定した。結果を表33に示す。
Figure JPOXMLDOC01-appb-T000033
 表32から、実施例15のシリカカプセルは、1級アルコールを含んでいるにもかかわらず高い内包率で内包できることがわかる。
 また、乳化処理開始5分後の乳化滴のメジアン径D50の結果から、実施例15は、比較例5と比べて、乳化処理時間が短時間であるにもかかわらず、乳化滴のメジアン径D50が著しく低下することがわかる。
 比較例5では、経時的に乳化滴のメジアン径D50は低下するが、乳化処理時間が30分経過後であっても、メジアン径D50の低下が不十分である。
 一方、実施例15では、内包する有機化合物が1級アルコールを含むため、比較例5と同じ回転数で剪断力を付与しているにも関わらず、乳化処理時間5分間の短時間で乳化滴のメジアン径D50を低減させることが分かる。
 この実施例15と比較例5との対比から、内包する有機化合物が1級アルコールを含むことにより、より短時間で効率的に微細な乳化滴を形成することができ、小粒径化したシリカカプセルの生産効率を向上させることができることがわかる。
 本発明において、1級アルコールを含む有機化合物を内包したシリカカプセルは、1級アルコールが、香料成分として香りにみずみずしさを付与する機能を有するだけでなく、乳化を促進する機能も有することにより、生産効率に優れるシリカカプセルとして特徴付けられる。
 また、表32及び表33から、実施例15では、内包成分が1級アルコールであるテトラヒドロゲラニオールを含む香料であることにより、内包成分が1級アルコールを含まない香料を用いた比較例5に対して、同じ乳化処理条件でありにも関わらず、乳化滴が小さく、得られたシリカカプセルも小粒径化できることがわかる。
 本発明のシリカカプセルによれば、1級アルコールを含む有機化合物を高い内包率で内包し、かつ、油剤や界面活性剤を含む製剤中においても、長期間、安定に保持することができる。したがって、本発明のシリカカプセルは、化粧品、液体洗剤、柔軟仕上げ剤等に安定に配合することができ、圧力や湿度、熱、光等の各種因子に応じた1級アルコールのデリバリー性能を良好に発現することができる。また、本発明は、コアに内包する有機化合物に含まれる1級アルコールが香料成分である場合にはその機能としてみずみずしさを各種製剤に付与することができるだけでなく、生産効率が著しく改善されたシリカカプセルの製造方法としても有用である。

Claims (19)

  1.  シェルと、該シェルの内部に1種以上の有機化合物を含むコアとを有するシリカマイクロカプセルであり、
     該シェルが、シリカを構成成分として含み、
     該有機化合物が、1級アルコールを含む、シリカマイクロカプセル。
  2.  前記有機化合物中の1級アルコールの含有量が5質量%以上100質量%以下である、請求項1に記載のシリカマイクロカプセル。
  3.  前記有機化合物の油水界面張力が3mN/m以上である、請求項1又は2に記載のシリカマイクロカプセル。
  4.  前記1級アルコールの炭素数が4以上である、請求項1~3のいずれかに記載のシリカマイクロカプセル。
  5.  前記1級アルコールのcLogPが1.0以上7.0以下である、請求項1~4のいずれかに記載のシリカマイクロカプセル。
  6.  前記1級アルコールが、香料、抗菌剤、防腐剤、忌避剤、及び医薬品有効成分から選ばれる1種以上である、請求項1~5のいずれかに記載のシリカマイクロカプセル。
  7.  前記1級アルコールが、ゲラニオール、シトロネロール、ネロール、1-ドデカノール、テトラヒドロゲラニオール、シス-3-ヘキセノール、2-フェニルエチルアルコール、6-フェニル-1-ヘキサノール、及び、ベンジルアルコールから選ばれる1種以上である、請求項1~6のいずれかに記載のシリカマイクロカプセル。
  8.  前記シリカマイクロカプセルのメジアン径D50が0.1μm以上100μm以下である、請求項1~7のいずれかに記載のシリカマイクロカプセル。
  9.  前記シェルが、アルコキシシランの加水分解重縮合物であるシリカを構成成分として含む、請求項1~8のいずれかに記載のシリカマイクロカプセル。
  10.  前記シェルが、アルコキシシランを前駆体としたゾル-ゲル反応により形成されてなるシリカを構成成分として含む、請求項1~8のいずれかに記載のシリカマイクロカプセル。
  11.  前記シェルが、アルコキシシランの加水分解重縮合物であるシリカを構成成分として含む内殻と、該内殻の外側に更にアルコキシシランの加水分解重縮合物であるシリカを構成成分として含むシリカを構成成分として含む外殻とを有する、請求項1~10のいずれかに記載のシリカマイクロカプセル。
  12.  前記シェルが、アルコキシシランのゾル-ゲル反応を2段階で行うことにより形成されてなるシリカを構成成分として含む、請求項1~10のいずれかに記載のシリカマイクロカプセル。
  13.  前記アルコキシシランが、テトラエトキシシランである、請求項9~12のいずれかに記載のシリカマイクロカプセル。
  14.  請求項1~13のいずれかに記載のシリカマイクロカプセルを含有する、柔軟剤組成物。
  15.  シェルと、該シェルの内部に1種以上の有機化合物を含むコアとを有するシリカマイクロカプセルの製造方法であって、
     該シェルが、シリカを構成成分として含み、
     該有機化合物が、1級アルコールを含み、
     下記の工程Iを含む、シリカマイクロカプセルの製造方法。
     工程I:カチオン性界面活性剤を含む水相成分と、1級アルコールを含む有機化合物及びテトラアルコキシシランを含む油相成分とを乳化して得られる乳化液を、酸性条件下でゾル-ゲル反応に供し、コアと、シリカを構成成分とするシェルと、を有するシリカカプセルを形成し、該シリカカプセルを含有する水分散体を得る工程
  16.  シェルと、該シェルの内部に1種以上の有機化合物を含むコアとを有するシリカマイクロカプセルの製造方法であって、
     該シェルが、シリカを構成成分として含み、
     該有機化合物が、1級アルコールを含み、
     下記の工程1及び工程2を含む、シリカマイクロカプセルの製造方法。
     工程1:カチオン性界面活性剤を含む水相成分と、有機化合物及びテトラアルコキシシランを含む油相成分とを乳化して得られる乳化液を、酸性条件下でゾル-ゲル反応に供し、コアと、シリカを構成成分とする第一のシェルと、を有するシリカマイクロカプセル(1)を形成し、該シリカマイクロカプセル(1)を含有する水分散体を得る工程
     工程2:工程1で得られたシリカマイクロカプセル(1)を含有する水分散体に、更にテトラアルコキシシランを添加してゾル-ゲル反応を行い、第一のシェルを包接する第二のシェルを有するシリカマイクロカプセルを形成する工程
  17.  工程2が下記の工程2’である、請求項16に記載のシリカマイクロカプセルの製造方法。
     工程2’:工程1で得られたシリカマイクロカプセル(1)を含有する水分散体に水を添加して希釈した後、更にテトラアルコキシシランを添加し、ゾル-ゲル反応を行い、第一のシェルを包接する第二のシェルを有するシリカマイクロカプセルを形成する工程
  18.  工程2’において、希釈倍率が2倍以上20倍以下である、請求項17に記載のシリカマイクロカプセルの製造方法。
  19.  工程1が、下記の工程1-1~1-4を含む、請求項16~18のいずれかに記載のシリカマイクロカプセルの製造方法。
     工程1-1:カチオン性界面活性剤を含む水相成分を調製する工程
     工程1-2:有機化合物とテトラアルコキシシランを混合し、油相成分を調製する工程
     工程1-3:工程1-1で得られた水相成分と工程1-2で得られた油相成分とを混合及び乳化し、乳化液を得る工程
     工程1-4:工程1-3で得られた乳化液を、1段階目のゾル-ゲル反応に供し、コアと、シリカを構成成分とする第一シェルと、を有するシリカマイクロカプセル(1)を形成する工程

     
PCT/JP2020/049255 2019-12-27 2020-12-28 シリカマイクロカプセル WO2021132726A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/789,104 US20230050059A1 (en) 2019-12-27 2020-12-28 Silica microcapsules
CN202080090466.9A CN114845804A (zh) 2019-12-27 2020-12-28 二氧化硅微胶囊
EP20907520.9A EP4082623A4 (en) 2019-12-27 2020-12-28 SILICA MICRO CAPSULES
JP2021567771A JPWO2021132726A1 (ja) 2019-12-27 2020-12-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-239906 2019-12-27
JP2019239906 2019-12-27

Publications (1)

Publication Number Publication Date
WO2021132726A1 true WO2021132726A1 (ja) 2021-07-01

Family

ID=76574748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/049255 WO2021132726A1 (ja) 2019-12-27 2020-12-28 シリカマイクロカプセル

Country Status (5)

Country Link
US (1) US20230050059A1 (ja)
EP (1) EP4082623A4 (ja)
JP (1) JPWO2021132726A1 (ja)
CN (1) CN114845804A (ja)
WO (1) WO2021132726A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04265149A (ja) 1990-09-27 1992-09-21 Quest Internatl Nederland Bv 包封する方法及び包封された物質を含有する製品
JP2003500428A (ja) * 1999-05-26 2003-01-07 ゾル−ゲル テクノロジーズ エルティーディー. ゾルゲルマイクロカプセルを含むサンスクリーン組成物
JP2004010609A (ja) * 2002-06-08 2004-01-15 International Floral Design Kyokai:Kk 生花風の加工物及びその製造方法
JP2009542667A (ja) 2006-06-27 2009-12-03 ダウ・コーニング・コーポレイション テトラアルコキシシランの乳化重合からのマイクロカプセル
US20100143422A1 (en) * 2008-12-04 2010-06-10 Lewis Michael Popplewell Microcapsules Containing Active Ingredients
JP2012501849A (ja) 2008-09-12 2012-01-26 ダウ コーニング コーポレーション シリケートシェルマイクロカプセルの懸濁液
CN102720054A (zh) * 2012-03-31 2012-10-10 上海嘉乐股份有限公司 抗紫外冷感整理面料及加工方法和二氧化硅包覆十二醇微胶囊在面料中的应用
JP2015506816A (ja) * 2011-12-01 2015-03-05 レ イノベーションズ マタレアムLes Innovations Materium シリカマイクロカプセル、その製造プロセスおよびその使用
JP2015128762A (ja) 2013-12-06 2015-07-16 花王株式会社 マイクロカプセルの製造方法
CN106148005A (zh) * 2016-07-01 2016-11-23 西南大学 一种包埋食品香料趋避赤拟谷盗的微胶囊及其制备方法
US9532933B2 (en) 2008-12-04 2017-01-03 International Flavors & Fragrances Inc. Microcapsules containing active ingredients

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1100671B (it) * 1977-10-15 1985-09-28 Dow Corning Ltd Composizioni detergenti
JP5364305B2 (ja) * 2008-06-23 2013-12-11 花王株式会社 香り持続性マイクロカプセル
GB0818864D0 (en) * 2008-10-15 2008-11-19 Dow Corning Fabric and fibre conditioning additives

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04265149A (ja) 1990-09-27 1992-09-21 Quest Internatl Nederland Bv 包封する方法及び包封された物質を含有する製品
JP2003500428A (ja) * 1999-05-26 2003-01-07 ゾル−ゲル テクノロジーズ エルティーディー. ゾルゲルマイクロカプセルを含むサンスクリーン組成物
JP2004010609A (ja) * 2002-06-08 2004-01-15 International Floral Design Kyokai:Kk 生花風の加工物及びその製造方法
JP2009542667A (ja) 2006-06-27 2009-12-03 ダウ・コーニング・コーポレイション テトラアルコキシシランの乳化重合からのマイクロカプセル
JP2012501849A (ja) 2008-09-12 2012-01-26 ダウ コーニング コーポレーション シリケートシェルマイクロカプセルの懸濁液
US20100143422A1 (en) * 2008-12-04 2010-06-10 Lewis Michael Popplewell Microcapsules Containing Active Ingredients
US9532933B2 (en) 2008-12-04 2017-01-03 International Flavors & Fragrances Inc. Microcapsules containing active ingredients
JP2015506816A (ja) * 2011-12-01 2015-03-05 レ イノベーションズ マタレアムLes Innovations Materium シリカマイクロカプセル、その製造プロセスおよびその使用
CN102720054A (zh) * 2012-03-31 2012-10-10 上海嘉乐股份有限公司 抗紫外冷感整理面料及加工方法和二氧化硅包覆十二醇微胶囊在面料中的应用
JP2015128762A (ja) 2013-12-06 2015-07-16 花王株式会社 マイクロカプセルの製造方法
CN106148005A (zh) * 2016-07-01 2016-11-23 西南大学 一种包埋食品香料趋避赤拟谷盗的微胶囊及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A. LEO: "Comprehensive Medicinal Chemistry", vol. 4, 1990, PERGAMON PRESS, pages: 295
See also references of EP4082623A4

Also Published As

Publication number Publication date
EP4082623A4 (en) 2024-02-07
US20230050059A1 (en) 2023-02-16
CN114845804A (zh) 2022-08-02
JPWO2021132726A1 (ja) 2021-07-01
EP4082623A1 (en) 2022-11-02

Similar Documents

Publication Publication Date Title
EP2244689B1 (en) Deposition of lipophilic active material in surfactant containing compositions
JP5802821B2 (ja) マイクロカプセルの製造方法
JP6827961B2 (ja) カプセル封入された香料組成物における、またはこれに関する改善
DE60312277T2 (de) Gekapselte Riechstoffzusammensetzungen
JP5048515B2 (ja) コロイド状陽イオン粒子を用いて予め乳化した疎水性の有益助剤を含む洗浄用組成物とその製造方法
JP5202831B2 (ja) コアシェル型カプセル
US20080146478A1 (en) Encapsulated active material containing nanoscaled material
JP6659019B2 (ja) マイクロカプセル及びその製造方法
TW201012542A (en) Improvements relating to surfactant-containing compositions
CN111655220A (zh) 用于延迟递送香料的泡囊、它们的制备及其用途
WO2021132728A1 (ja) マイクロカプセルの製造方法
JP7190067B2 (ja) マイクロカプセルの製造方法
WO2021132726A1 (ja) シリカマイクロカプセル
JP5592644B2 (ja) 複合シリカ粒子
CN107787357A (zh) 包封的香料组合物中或与之相关的改进
JP7132678B2 (ja) マイクロカプセルの製造方法
WO2021132727A1 (ja) マイクロカプセル水分散液
US20240050913A1 (en) Method for producing silica microcapsule
WO2023277101A1 (ja) マイクロカプセル水分散液
CN117580637A (zh) 微胶囊水分散液

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907520

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021567771

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020907520

Country of ref document: EP

Effective date: 20220727